WorldWideScience

Sample records for alumel

  1. 49 CFR Appendix D to Part 178 - Thermal Resistance Test

    Science.gov (United States)

    2010-10-01

    ... must be 1/16 inch, ceramic packed, metal sheathed, type K (Chromel-Alumel), grounded junction with a... ignition, and time of occurrence of each event. 6.3Record the temperature and time history of the...

  2. 16 CFR 1209.6 - Test procedures for critical radiant flux.

    Science.gov (United States)

    2010-01-01

    ...) diameter stainless steel sheathed, grounded junction chromel alumel thermocouples are located in the... chamber 2.5 cm±0.1 (1±1/32 in) down from the top and 10.2 cm±0.1 (4 in±1/32) back from the inside of the... profile determination. A timer shall be used for measuring preheat and pilot contact time. (c)...

  3. Recuperação dos termopares do elemento cobustível instrumentado do reator nuclear Triga IPR-R1

    OpenAIRE

    Mesquita, Amir Zacarias; Pinto, Antônio Juscelino; Cândido, Marco Antônio

    2010-01-01

    O elemento combustível instrumentado (CI) é em todos os aspectos igual aos elementos combustíveis normais dos reatores de pesquisa TRIGA, exceto pela presença em seu centro de três termopares do tipo K (cromel-alumel). Em 2004 o CI foi colocado na posição de maior fluxo de nêutrons do núcleo do reator TRIGA IPR-R1, permanecendo neste local até junho de 2007. Durante este tempo seus termopares monitoraram a temperatura e a potência do núcleo em todas as operações, possibilitando ta...

  4. The use of thermocouples which transmute during service in nuclear reactors

    International Nuclear Information System (INIS)

    Some current nuclear fuel experiments at CRNL require the use of thermocouples to measure temperatures of up to 22000C under reactor operating conditions. A literature search has shown that transient electrical effects and transmutation of the thermocouple alloys can cause temperature measurement errors of up to +-1% and +-30%, respectively. However, the error due to transient electrical effects can be corrected by making temperature measurements immediately following reactor shutdown. Furthermore it has been shown that transmutation effects can be corrected for by calibrating the high temperature tungsten-rhenium thermocouples against a chromel-alumel thermocouple in a cooler part of the experiment. The use of these techniques is expected to reduce temperature measurement errors to +-2% in the best case. (auth)

  5. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature Tc. Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author)

  6. Resonant Thermoelectric Nanophotonics

    CERN Document Server

    Mauser, Kelly W; Kim, Seyoon; Fleischman, Dagny; Atwater, Harry A

    2016-01-01

    Photodetectors are typically based on photocurrent generation from electron-hole pairs in semiconductor structures and on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. In this work, we demonstrate subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large enough localized temperature gradients to generate easily measureable thermoelectric voltages. We show that such structures are tunable and are capable of highly wavelength specific detection, with an input power responsivity of up to 119 V/W (referenced to incident illumination), and response times of nearly 3 kHz, by combining resonant absorption and thermoelectric junctions within a single structure, yielding a bandgap-independent photodetection mechanism. We report results for both resonant nanophotonic bismuth telluride-antimony telluride structures and chromel-alumel...

  7. Modelling of the steady state thermal behaviour of a permanent magnet direct current motor with commutator. 3D finite elements study

    Science.gov (United States)

    Bernard, R.; Glises, R.; Chamagne, D.; Cuchet, D.; Kauffmann, J. M.

    1999-08-01

    The aim of this work concerns the development and the validation of a thermal steady state model applied to a permanent magnet direct current motor with commutator. The rated power of the machine is 120 W. Design has been realized thanks to the thermal modulus of the computation software with the finite element method Flux3D. It is shown in this work how it is possible to use only the heat equation to simulate the thermal behaviour of the motor. It implies calculating of new fluid conductivities (considering also all thermal modes) by comparison of calculated and experimental temperatures. To realize these 3D modelizations, it is necessary to know and to locate all the losses of the motor which are considered as thermal sources. The experimental temperatures are given by 40 chromel-alumel thermocouples of 100 μm diameter located in the rotor and the stator of the machine. Numerical computations use Dirichlet boundary layer conditions given by an IR camera. Ce travail concerne le développement et la validation d'un modèle de simulation du comportement thermique tridimensionnel en régime permanent d'un moteur électrique de 120 watt à courant continu, à aimants permanents et à collecteur. Le logiciel est développé à partir du code de calculs par éléments finis Flux3D. L'équation de la chaleur modélise l'ensemble des transferts thermiques du moteur. Cela nécessite de recaler certains paramètres fluides par comparaison des températures simulées et expérimentales. Une séparation détaillée des différentes pertes est nécessaire pour obtenir une bonne précision finale. Un banc d'essais thermiques permet d'obtenir à l'aide de 40 thermocouples (chromel-alumel de 100 μm de diamètre) les températures au stator et au rotor. Une caméra thermographique infrarouge donne les conditions aux limites de Dirichlet nécessaires à la modélisation.

  8. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate

  9. Cell integrated multi-junction thermocouple array for solid oxide fuel cell temperature sensing: N+1 architecture

    Science.gov (United States)

    Ranaweera, Manoj; Kim, Jung-Sik

    2016-05-01

    Understanding the cell temperature distribution of solid oxide fuel cell (SOFC) stacks during normal operation has multifaceted advantages in performance and degradation studies. Present efforts on measuring temperature from operating SOFCs measure only the gas channel temperature and do not reveal the cell level temperature distribution, which is more important for understanding a cell's performance and its temperature-related degradation. The authors propose a cell-integrated, multi-junction thermocouple array for in-situ cell surface temperature monitoring of an operational SOFC. The proposed thermocouple array requires far fewer numbers of thermoelements than that required by sets of thermocouples for the same number of temperature sensing points. Hence, the proposed array causes lower disturbance to cell performance than thermocouples. The thermoelement array was sputter deposited on the cathode of a commercial SOFC using alumel (Ni:Al:Mn:Si - 95:2:2:1 by wt.) and chromel (Ni:Cr - 90:10 by wt.). The thermocouple array was tested in a furnace over the entire operating temperature range of a typical SOFC. The individual sensing points of the array were shown to measure temperature independently from each other with equivalent accuracy to a thermocouple. Thus, the concept of multi-junction thermocouples is experimentally validated and its stability on a porous SOFC cathode is confirmed.

  10. Experimental study of temperature field at fast reactor subassembly exit under drastic changes of coolant temperature

    International Nuclear Information System (INIS)

    Failure conditions due to dangerous increasing in power or flow rate drop are the most hazardous in terms of the rise of thermal stresses. Initial rise in temperature may run to 100 C and more. Sodium temperature at the subassembly inlet is varied according to definite time constant which is equal to fuel pin time constant (about 2 sec), that is below the time constant for massive part of subassembly head (4-10 sec). Thus, variations in sodium temperature are, for subassembly head, almost momentary and bring about maximal thermal stresses. Experiments on transient temperature behavior in subassembly head under thermal impact conditions have been performed on the model. Magnitude of temperature has been measured in two cross sections by chromel-alumel thermocouples bond in the middle of the wall, at its outer surface and in the coolant flow for distance of 3 mm from the wall. To measure temperature difference between middle of the wall and its surface fast differential thermocouples chromel-sodium-potassium have been used

  11. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference

    Directory of Open Access Journals (Sweden)

    Stella Crosara Lopes

    2009-04-01

    Full Text Available The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs of the metals and ceramics. Verabond (VB Ni-Cr-Be alloy, Verabond II (VB2, Ni-Cr alloy, Pors-on 4 (P, Pd-Ag alloy, and IPS (I and Duceram (D ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01 for the MCBS test results (MPa, with PI showing higher MCBS (67.72 than the other pairs, which did not present any significant differences. The CTE (10-6 oC-1 differences were: VBI (0.54, VBD (1.33, VB2I (-0.14, VB2D (0.63, PI (1.84 and PD (2.62. Pearson's correlation test (r=0.17 was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

  12. Performance assessment of thermal sensors during short-duration convective surface heating measurements

    Science.gov (United States)

    Sahoo, Niranjan; Kumar, Rakesh

    2016-09-01

    The determination of convective surface heating is a very crucial parameter in high speed flow environment. Most of the ground based facilities in this domain have short duration experimental time scale (~milliseconds) of measurements. In these facilities, the calorimetric heat transfer sensors such as thin film gauges (TFGs) and coaxial surface junction thermocouple (CSJT) are quite effective temperature detectors. They have thickness in the range of few microns and have capability of responding in microsecond time scale. The temperature coefficient of resistance (TCR) and the sensitivity are calibration parameter indicators that show the linear change in the resistance of the gauge as a function of temperature. In the present investigation, three of types of heat transfer gauges are fabricated in the laboratory namely, TFG made out of platinum, TFG made out of platinum mixed with CNT and chromel-alumel surface junction coaxial thermocouple (K-type). The calibration parameters of the gauges are determined though oil-bath experiments. The average value TCR and sensitivity of platinum TFG is found to be 0.0024 K-1 and 465 μV/K, while similar values of CSJT are obtained as, 0.064 K-1 and 40.5 μV/K, respectively. The TFG made out of platinum mixed with CNT (5 % by mass) shows the enhancement of TCR as well as sensitivity and the corresponding values are 0.0034 K-1 and 735 μV/K, respectively. The relative performances of heat transfer gauges are compared in a simple laboratory scale experiment in which the gauges are exposed to a sudden step heat load in convection mode for the time duration of 200 ms. The surface heat fluxes are predicted from the temperature history through one dimensional heat conduction modeling. While comparing the experimental results, it is seen that prediction of surface heat flux from all the heat transfer gauges are within the range of ±4 %.

  13. MONITORAMENTO DA TEMPERATURA NO INTERIOR DE CHAPAS AGLOMERADAS DURANTE O PROCESSO DE PRENSAGEM

    Directory of Open Access Journals (Sweden)

    Elio José Santini

    2005-03-01

    Full Text Available O objetivo do presente trabalho foi analisar o comportamento da temperatura nas faces e no miolo de chapas de partículas aglomeradas, coladas com 8% de adesivo (base peso seco das partículas tanino-formaldeído. As chapas foram produzidas com três repetições por tratamento, com massa específica nominal de 0,7 g/cm³ e pressão específica de prensagem de 27 kgf/cm². Os tratamentos basearam-se na utilização de flocos de pinus (Pinus elliottii e partículas de eucalipto (Eucalytus sp, sendo que os flocos de pinus apresentavam três diferentes comprimentos nominais (40, 75 e 110 mm e duas espessuras (0,5 e 1,0 mm. Também foram analisados duas temperaturas de prensagem (140 e 180°C e dois teores de umidade nominal do colchão (17 e 21%. A temperatura no interior dos painéis durante a prensagem foi obtida por meio de fios para termopares tipo K (cromo-alumel. Os gráficos da temperatura em função do tempo de prensagem mostraram uma rápida elevação da temperatura nos primeiros 100 segundos de prensagem, mantendo-se num plateau possivelmente após atingir a temperatura de ebulição da água. A temperatura voltou a aumentar, de forma mais gradual, após a perda de grande parte da umidade do colchão. Observa-se que colchões formados por flocos de maior espessura apresentaram elevação mais rápida de temperatura no miolo. O principal fator que influenciou na velocidade de elevação da temperatura no miolo dos painéis aglomerados foi o teor de umidade do colchão, sendo que quanto maior o teor de umidade, mais rápida foi a elevação da temperatura.