Sample records for alumel

  1. Proceedings of the International Symposium on Diamond Materials Held in Washington, DC on 5-10 May 1991. Volume 91-8 (United States)


    A.M. Bonnot, T. Lopez-Rios, B. Mathis & J. Leroy CHARACTERIZATION OF DC PLASMAS FOR THE CONTROL 290 OF DIAMOND DEPOSITION L.S. Plano , D.A. Stevenson...589 M.I. Landstrass, M.A. Plano , & D. Moyer THE GROWTH AND SOME PROPERTIES OF DIAMOND FILMS 597 OF P- AND N-TYPE CONDUCTIVITY OBTAINED BY...temperature was measured by a 0.125mm diame- ter chromel/alumel thermocouple in intimate contact with the crystal. The thermocou- pie was threaded through a

  2. Evaluation of miniature single-wire sheathed thermocouples for turbine blade temperature measurement (United States)

    Hollanda, R.


    Chromel Alumel thermocouples were used, with sheath diameters of 0.15 and 0.25 mm. Tests were conducted at temperatures ranging from 750 to 1250 K. Both steady state and thermal cycling tests were performed for times up to 200 hours. Initial testing was performed in a low velocity gas stream for long time periods using a Meker-type burner. Additional testing was done in a high velocity gas stream for short time periods using a hot gas tunnel and also in a J75 jet engine. A total of eleven 0.15 mm diameter thermocouples and six 0.25 mm diameter thermocouples were tested. Drift rates up to 2.5% in 10 hours were observed. Photomicrographs show that this design is near the limit of miniaturization based on present manufacturing capabilities. Results indicate that the effects of miniaturization on reliability and accuracy must be considered when choosing thermocouples for a particular application.

  3. Resonant Thermoelectric Nanophotonics

    CERN Document Server

    Mauser, Kelly W; Kim, Seyoon; Fleischman, Dagny; Atwater, Harry A


    Photodetectors are typically based on photocurrent generation from electron-hole pairs in semiconductor structures and on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. In this work, we demonstrate subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large enough localized temperature gradients to generate easily measureable thermoelectric voltages. We show that such structures are tunable and are capable of highly wavelength specific detection, with an input power responsivity of up to 119 V/W (referenced to incident illumination), and response times of nearly 3 kHz, by combining resonant absorption and thermoelectric junctions within a single structure, yielding a bandgap-independent photodetection mechanism. We report results for both resonant nanophotonic bismuth telluride-antimony telluride structures and chromel-alumel...

  4. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate

  5. Miniature sheathed thermocouples for turbine blade temperature measurement (United States)

    Holanda, R.; Glawe, G. E.; Krause, L. N.


    An investigation was made of sheathed thermocouples for turbine blade temperature measurements. Tests were performed on the Chromel-Alumel sheathed thermocouples with both two-wire and single-wire configurations. Sheath diameters ranged from 0.25 to 0.76 mm, and temperatures ranged from 1080 to 1250 K. Both steady-state and thermal cycling tests were performed for times up to 450 hr. Special-order and commercial-grade thermocouples were tested. The tests showed that special-order single-wire sheathed thermocouples can be obtained that are reliable and accurate with diameters as small as 0.25 mm. However, all samples of 0.25-mm-diameter sheathed commercial-grade two-wire and single-wire thermocouples that were tested showed unacceptable drift rates for long-duration engine testing programs. The drift rates were about 1 percent in 10 hr. A thermocouple drift test is recommended in addition to the normal acceptance tests in order to select reliable miniature sheathed thermocouples for turbine blade applications.

  6. Cell integrated multi-junction thermocouple array for solid oxide fuel cell temperature sensing: N+1 architecture (United States)

    Ranaweera, Manoj; Kim, Jung-Sik


    Understanding the cell temperature distribution of solid oxide fuel cell (SOFC) stacks during normal operation has multifaceted advantages in performance and degradation studies. Present efforts on measuring temperature from operating SOFCs measure only the gas channel temperature and do not reveal the cell level temperature distribution, which is more important for understanding a cell's performance and its temperature-related degradation. The authors propose a cell-integrated, multi-junction thermocouple array for in-situ cell surface temperature monitoring of an operational SOFC. The proposed thermocouple array requires far fewer numbers of thermoelements than that required by sets of thermocouples for the same number of temperature sensing points. Hence, the proposed array causes lower disturbance to cell performance than thermocouples. The thermoelement array was sputter deposited on the cathode of a commercial SOFC using alumel (Ni:Al:Mn:Si - 95:2:2:1 by wt.) and chromel (Ni:Cr - 90:10 by wt.). The thermocouple array was tested in a furnace over the entire operating temperature range of a typical SOFC. The individual sensing points of the array were shown to measure temperature independently from each other with equivalent accuracy to a thermocouple. Thus, the concept of multi-junction thermocouples is experimentally validated and its stability on a porous SOFC cathode is confirmed.

  7. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas


    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply to Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to

  8. Performance assessment of thermal sensors during short-duration convective surface heating measurements (United States)

    Sahoo, Niranjan; Kumar, Rakesh


    The determination of convective surface heating is a very crucial parameter in high speed flow environment. Most of the ground based facilities in this domain have short duration experimental time scale (~milliseconds) of measurements. In these facilities, the calorimetric heat transfer sensors such as thin film gauges (TFGs) and coaxial surface junction thermocouple (CSJT) are quite effective temperature detectors. They have thickness in the range of few microns and have capability of responding in microsecond time scale. The temperature coefficient of resistance (TCR) and the sensitivity are calibration parameter indicators that show the linear change in the resistance of the gauge as a function of temperature. In the present investigation, three of types of heat transfer gauges are fabricated in the laboratory namely, TFG made out of platinum, TFG made out of platinum mixed with CNT and chromel-alumel surface junction coaxial thermocouple (K-type). The calibration parameters of the gauges are determined though oil-bath experiments. The average value TCR and sensitivity of platinum TFG is found to be 0.0024 K-1 and 465 μV/K, while similar values of CSJT are obtained as, 0.064 K-1 and 40.5 μV/K, respectively. The TFG made out of platinum mixed with CNT (5 % by mass) shows the enhancement of TCR as well as sensitivity and the corresponding values are 0.0034 K-1 and 735 μV/K, respectively. The relative performances of heat transfer gauges are compared in a simple laboratory scale experiment in which the gauges are exposed to a sudden step heat load in convection mode for the time duration of 200 ms. The surface heat fluxes are predicted from the temperature history through one dimensional heat conduction modeling. While comparing the experimental results, it is seen that prediction of surface heat flux from all the heat transfer gauges are within the range of ±4 %.


    Directory of Open Access Journals (Sweden)

    Elio José Santini


    Full Text Available O objetivo do presente trabalho foi analisar o comportamento da temperatura nas faces e no miolo de chapas de partículas aglomeradas, coladas com 8% de adesivo (base peso seco das partículas tanino-formaldeído. As chapas foram produzidas com três repetições por tratamento, com massa específica nominal de 0,7 g/cm³ e pressão específica de prensagem de 27 kgf/cm². Os tratamentos basearam-se na utilização de flocos de pinus (Pinus elliottii e partículas de eucalipto (Eucalytus sp, sendo que os flocos de pinus apresentavam três diferentes comprimentos nominais (40, 75 e 110 mm e duas espessuras (0,5 e 1,0 mm. Também foram analisados duas temperaturas de prensagem (140 e 180°C e dois teores de umidade nominal do colchão (17 e 21%. A temperatura no interior dos painéis durante a prensagem foi obtida por meio de fios para termopares tipo K (cromo-alumel. Os gráficos da temperatura em função do tempo de prensagem mostraram uma rápida elevação da temperatura nos primeiros 100 segundos de prensagem, mantendo-se num plateau possivelmente após atingir a temperatura de ebulição da água. A temperatura voltou a aumentar, de forma mais gradual, após a perda de grande parte da umidade do colchão. Observa-se que colchões formados por flocos de maior espessura apresentaram elevação mais rápida de temperatura no miolo. O principal fator que influenciou na velocidade de elevação da temperatura no miolo dos painéis aglomerados foi o teor de umidade do colchão, sendo que quanto maior o teor de umidade, mais rápida foi a elevação da temperatura.

  10. A Study of the Behavior Characteristics for K-type Thermocouple

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Songhae; Kim, Yongsik; Lee, Sooill [KHNP Central Research Institute, Daejeon (Korea, Republic of); Kim, Sungjin [Woojin inc., Osan (Korea, Republic of); Lyou, Jooon [Chungnam National Univ., Daejeon (Korea, Republic of)


    K-type thermocouple is widely used in nuclear power plants (NPP) and they provide reliable service. Generally, the thermocouple assembly is the finished product and usually only nondestructive tests are performed on the assembly, whereas destructive tests are confined to selected bulk cable specimens. This K-type thermocouple has been used representatively in the In-Core Instrument Assembly (ICI) in the nuclear power plants. The ICI consists of five rhodium emitter detectors that provide information on the thermal power for the core and one K-type thermocouple made with two cables (Chromel-Alumel) that provides the temperature of core exit (CET). Generally, the quantity of the ICI is absolutely different according to the number of fuel assemblies in the NPP. In the case of SKN 3 and 4, they were designed to the 61 ICI to provide information on the core cooling to the inadequate core cooling monitoring system (ICCMS). This measured temperature could be also used to check the entry condition of severe accidents. The technology of the TFDR is a generic skill to detect the fault position of the cable. In-core Instruments (ICIs) were used to detect the Core Exit Temperature (CET) in a reactor. This measured temperature was also used to check the entry condition of severe accidents. However, if a serious accident occurs, the upper portion of the core is damaged. This instrument has not been available. This paper illustrates the estimation possibility for the status of molten core through the high-temperature characteristics test of k-type thermocouple. It turns out that it is possible to measure the k-type thermocouple up to 1350 .deg. C degrees before melting during insertion into the melting furnace. Additionally, in order to measure a high temperature of 2000 .deg. C or more, the replacement possibility of k-type thermocouple was evaluated. However the tungsten-rhenium thermocouple is impossible to use in the detection of temperature at the in-core because of the