WorldWideScience

Sample records for altitude saline wetland

  1. Hurricane-induced failure of low salinity wetlands

    Science.gov (United States)

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  2. Halophyte filters as saline treatment wetlands; Applicators and constraints

    OpenAIRE

    Gaag, J.J.; Paulissen, M.P.C.P.; Slim, P.A.

    2010-01-01

    Purification of wastewater rich in nutrients and organic pollutants is essential for the protection of receiving waters and to enable water reuse. This report investigates the possibilities and constraints of constructed wetlands for treatment of slightly saline wastewater from aquaculture systems. As the body of literature for saline treatment wetlands is relatively small, the reports starts with a summary of processes in freshwater systems. It is then explained that these processes are also...

  3. Wetland Vegetation Integrity Assessment with Low Altitude Multispectral Uav Imagery

    Science.gov (United States)

    Boon, M. A.; Tesfamichael, S.

    2017-08-01

    The use of multispectral sensors on Unmanned Aerial Vehicles (UAVs) was until recently too heavy and bulky although this changed in recent times and they are now commercially available. The focus on the usage of these sensors is mostly directed towards the agricultural sector where the focus is on precision farming. Applications of these sensors for mapping of wetland ecosystems are rare. Here, we evaluate the performance of low altitude multispectral UAV imagery to determine the state of wetland vegetation in a localised spatial area. Specifically, NDVI derived from multispectral UAV imagery was used to inform the determination of the integrity of the wetland vegetation. Furthermore, we tested different software applications for the processing of the imagery. The advantages and disadvantages we experienced of these applications are also shortly presented in this paper. A JAG-M fixed-wing imaging system equipped with a MicaScene RedEdge multispectral camera were utilised for the survey. A single surveying campaign was undertaken in early autumn of a 17 ha study area at the Kameelzynkraal farm, Gauteng Province, South Africa. Structure-from-motion photogrammetry software was used to reconstruct the camera position's and terrain features to derive a high resolution orthoretified mosaic. MicaSense Atlas cloud-based data platform, Pix4D and PhotoScan were utilised for the processing. The WET-Health level one methodology was followed for the vegetation assessment, where wetland health is a measure of the deviation of a wetland's structure and function from its natural reference condition. An on-site evaluation of the vegetation integrity was first completed. Disturbance classes were then mapped using the high resolution multispectral orthoimages and NDVI. The WET-Health vegetation module completed with the aid of the multispectral UAV products indicated that the vegetation of the wetland is largely modified ("D" PES Category) and that the condition is expected to

  4. Biodiversity impacts from salinity increase in a coastal wetland.

    Science.gov (United States)

    Amores, Maria José; Verones, Francesca; Raptis, Catherine; Juraske, Ronnie; Pfister, Stephan; Stoessel, Franziska; Antón, Assumpció; Castells, Francesc; Hellweg, Stefanie

    2013-06-18

    A Life Cycle Impact Assessment method was developed to evaluate the environmental impact associated with salinity on biodiversity in a Spanish coastal wetland. The developed characterization factor consists of a fate and an effect factor and equals 3.16 × 10(-1) ± 1.84 × 10(-1) PAF · m(3) · yr · m(-3) (PAF: Potentially Affected Fraction of species) indicating a "potential loss of 0.32 m(3) ecosystem" for a water consumption rate of 1 m(3) · yr(-1). As a result of groundwater consumption with a rate of 1 m(3) · yr(-1), the PAF in the lost cubic meter of ecosystem equals 0.05, which has been proposed as the maximum tolerable effect to keep the ecosystem intact. The fate factor was calculated from seasonal water balances of the wetland Albufera de Adra. The effect factor was obtained from the fitted curve of the potentially affected fraction of native wetland species due to salinity and can be applied to other wetlands with similar species composition. In order to test the applicability of the characterization factor, an assessment of water consumption of greenhouse crops in the area was conducted as a case study. Results converted into ecosystem quality damage using the ReCiPe method were compared to other categories. While tomatoes are responsible for up to 30% of the impact of increased salinity due to water consumption on ecosystem quality in the studied area, melons have the largest impact per tonne produced.

  5. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    OpenAIRE

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-01-01

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health -- changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and othe...

  6. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  7. Feeding ecology of breeding gadwalls on saline wetlands

    Science.gov (United States)

    Serie, J.R.; Swanson, G.A.

    1976-01-01

    The feeding ecology of breeding gadwalls (Anas strepera) from saline wetlands in North Dakota was examined in relation to sex, pair mates, reproductive status, food availability, and wetland type during the spring and summer of 1971 and 1972. Esophagi of males and females contained 40.4 and 48.2 percent animal food, respectively, between 17 April and 25 August. Animal foods consumed by paired females varied with reproductive condition and were independent of their mates. Invertebrates increased from 47.7 i?? 17.4 percent in the diet during prelaying to 72.0 i?? 18.4 percent during laying and declined to 46.3 i?? 30.0 percent during postlaying. Aquatic insects dominated the diet during egg-laying and were selected disproportionately relative to their availability. Esophageal contents indicated that diversity of plant and animal foods in the diet varied inversely with specific conductance. Major factors influencing food selection of the breeding birds are discussed as interactions among their physiological status, their anatomical and behavioral characteristics, and the abundance and behavior of food organisms as influenced by chemical and physical features of the environment. The data suggested that these interrelated ecological factors act simultaneously to control the phenology of events and determine the foods utilized.

  8. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  9. Bacteria isolated from pristine high altitude environments in the Argentinean Andean wetlands: plasmid profile and multiple antibiotic resistance

    International Nuclear Information System (INIS)

    Dib, J.R.; Martinez, M.A.; Sineriz, F.; Farias, M.E.

    2005-01-01

    Full text: Andean wetlands, placed in the North-Western Argentine at 4,600 m altitude, are attractive for both, environmental and biotechnology studies. Most of these wetlands are completely remote and inaccessible, having a high salinity and metal contents, a wide range of daily temperature changes, and an important intensity of solar UV-B radiation. Bacteria isolated from these environments were identified by 16SrDNA sequence and resulted in Gram-positive colored bacteria. Interesting features, to our knowledge never reported so far from bacteria isolates from these pristine high altitude lake-environments, such as similar plasmids profiles and multiple antibiotic resistances are the focus of this work. At least two plasmids were found in all isolates studied by using modifications of the alkaline Iysis method. Their preliminary characterization in this work includes size, incompatibility group through PCR, genetic transference to suitable hosts by transformation and conjugation, and studies of possible relationships of them with antibiotic resistances. (author)

  10. Texture classification of vegetation cover in high altitude wetlands zone

    International Nuclear Information System (INIS)

    Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu

    2014-01-01

    The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data

  11. Wetland Flow and Salinity Budgets and Elements of a Decision Support System toward Implementation of Real-Time Seasonal Wetland Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.; Johnson, C.B.

    2011-12-17

    The project has provided science-based tools for the long-term management of salinity in drainage discharges from wetlands to the San Joaquin River. The results of the project are being used to develop best management practices (BMP) and a decision support system to assist wetland managers adjust the timing of salt loads delivered to the San Joaquin River during spring drawdown. Adaptive drainage management scheduling has the potential to improve environmental compliance with salinity objectives in the Lower San Joaquin River by reducing the frequency of violation of Vernalis salinity standards, especially in dry and critically dry years. The paired approach to project implementation whereby adaptively managed and traditional practices were monitored in a side-by-side fashion has provided a quantitative measure of the impacts of the project on the timing of salt loading to the San Joaquin River. The most significant accomplishments of the project has been the technology transfer to wetland biologists, ditch tenders and water managers within the Grasslands Ecological Area. This “learning by doing” has build local community capacity within the Grassland Water District and California Department of Fish and Game providing these institutions with new capability to assess and effectively manage salinity within their wetlands while simultaneously providing benefits to salinity management of the San Joaquin River.

  12. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    Science.gov (United States)

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  13. Inter-specific variation in salinity effects on germination in Pacific Northwest tidal wetland plants

    Science.gov (United States)

    Environmental stressors such as salinity may affect plant germination and early growth, eventually impacting the distribution and abundance of more mature individuals. In a lab study we evaluated germination sensitivity to salinity in 13 tidal wetland species found in the Pacific...

  14. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-10-15

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health--changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and other conditions unfavorable to propagation of the most desirable moist soil plants. Hence, the implementation of a program to monitor annual changes in the most common moist soil plants might serve as an index of habitat health and sustainability. Our review of the current scientific and popular literature failed to identify a good, comprehensive field guide that could be used to calibrate and verify high resolution remote sensing imagery, that we had started to use to develop maps of wetland moist soil plants in the Grassland Water District. Since completing the guide it has been used to conduct ground truthing field surveys using the California Native Plant Society methodology in 2004. Results of this survey and a previous wetland plant survey in 2003 are published in a companion LBNL publication summarizing 4 years of fieldwork to advance the science of real-time wetland salinity management.

  15. Estimates of Carbon Reservoirs in High-Altitude Wetlands in the Colombian Andes

    Directory of Open Access Journals (Sweden)

    Enrique Javier Peña

    2009-10-01

    Full Text Available The observed increase in emission of greenhouse gases, with attendant effects on global warming, have raised interests in identifying sources and sinks of carbon in the environment. Terrestrial carbon (C sequestration involves capture of atmospheric C through photosynthesis and storage in biota, soil and wetlands. Particularly, wetland systems function primarily as long-term reservoirs for atmospheric carbon dioxide (CO2 and as sources of atmospheric methane (CH4. The objective of this study was to evaluate the patterns of carbon reservoirs in two high-altitude wetlands in the central Andean mountain of Colombia. Carbon cycle in both systems is related mainly with the plant biomass dynamics from the littoral zone. Thus, total organic carbon concentrate an average up to 329 kg of N ha-1 and 125 kg of P ha-1 every year vs only 17 kg N ha-1 and 6 kg P ha-1 in the water column of the limnetic zone in the wetland, evidencing spatial differences in carbon concentrations for these types of ecosystems. Results revealed that these systems participate in the balance and sequestration of carbon in the Colombian Andes.

  16. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  17. Numerical study of hydrodynamic and salinity transport processes in the Pink Beach wetlands of the Liao River estuary, China

    Directory of Open Access Journals (Sweden)

    H. Qiao

    2018-06-01

    Full Text Available Interaction studies of vegetation within flow environments are essential for the determination of bank protection, morphological characteristics and ecological conditions for wetlands. This paper uses the MIKE 21 hydrodynamic and salinity model to simulate the hydrodynamic characteristics and salinity transport processes in the Pink Beach wetlands of the Liao River estuary. The effect of wetland plants on tidal flow in wetland areas is represented by a varying Manning coefficient in the bottom friction term. Acquisition of the vegetation distribution is based on Landsat TM satellites by remote sensing techniques. Detailed comparisons between field observation and simulated results of water depth, salinity and tidal currents are presented in the vegetated domain of the Pink Beach wetlands. Satisfactory results were obtained from simulations of both flow characteristics and salinity concentration, with or without vegetation. A numerical experiment was conducted based on variations in vegetation density, and compared with the tidal currents in non-vegetated areas; the computed current speed decreased remarkably with an increase in vegetation density. The impact of vegetation on water depth and salinity was simulated, and the findings revealed that wetland vegetation has an insignificant effect on the water depth and salinity in this wetland domain. Several stations (from upstream to downstream in the Pink Beach wetlands were selected to estimate the longitudinal variation of salinity under different river runoff conditions; the results showed that salinity concentration decreases with an increase in river runoff. This study can consequently help increase the understanding of favourable salinity conditions for particular vegetation growth in the Pink Beach wetlands of the Liao River estuary. The results also provide crucial guidance for related interaction studies of vegetation, flow and salinity in other wetland systems.

  18. Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.

    2018-01-01

    A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.

  19. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland.

    Science.gov (United States)

    Hadad, H R; Mufarrege, M M; Di Luca, G A; Maine, M A

    2017-04-01

    Salvinia herzogii, Pistia stratiotes and Eichhornia crassipes (floating species) were the dominant macrophytes in a constructed wetland (CW) over the first years of operation. Later, the emergent Typha domingensis displaced the floating species, becoming dominant. The industrial effluent treated at this CW showed high pH and salinity. The aim of this work was to study the tolerance of floating species and T. domingensis exposed to different pH and salinity treatments. Treatments at pH 8, 9, 10 and 11 and salinities of 2,000; 3,000; 4,000; 6,000; and 8,000 mg L -1 were performed. Floating macrophytes were unable to tolerate the studied pH and salinity ranges, while T. domingensis tolerated higher pH and salinity values. Many industrial effluents commonly show high pH and salinity. T. domingensis demonstrated to be a suitable macrophyte to treat this type of effluents.

  20. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Effects of salinity and flooding on post-hurricane regeneration potential in coastal wetland vegetation.

    Science.gov (United States)

    Middleton, Beth A

    2016-08-01

    The nature of regeneration dynamics after hurricane flooding and salinity intrusion may play an important role in shaping coastal vegetation patterns. The regeneration potentials of coastal species, types and gradients (wetland types from seaward to landward) were studied on the Delmarva Peninsula after Hurricane Sandy using seed bank assays to examine responses to various water regimes (unflooded and flooded to 8 cm) and salinity levels (0, 1, and 5 ppt). Seed bank responses to treatments were compared using a generalized linear models approach. Species relationships to treatment and geographical variables were explored using nonmetric multidimensional scaling. Flooding and salinity treatments affected species richness even at low salinity levels (1 and 5 ppt). Maritime forest was especially intolerant of salinity intrusion so that species richness was much higher in unflooded and low salinity conditions, despite the proximity of maritime forest to saltmarsh along the coastal gradient. Other vegetation types were also affected, with potential regeneration of these species affected in various ways by flooding and salinity, suggesting relationships to post-hurricane environment and geographic position. Seed germination and subsequent seedling growth in coastal wetlands may in some cases be affected by salinity intrusion events even at low salinity levels (1 and 5 ppt). These results indicate that the potential is great for hurricanes to shift vegetation type in sensitive wetland types (e.g., maritime forest) if post-hurricane environments do not support the regeneration of extent vegetation. This article is a U.S. Government work and is in the public domain in the USA. © Botanical Society of America (outside the USA) 2016.

  2. Bacterial Survival under Extreme UV Radiation: A Comparative Proteomics Study of Rhodobacter sp., Isolated from High Altitude Wetlands in Chile

    Directory of Open Access Journals (Sweden)

    Vilma Pérez

    2017-06-01

    Full Text Available Salar de Huasco, defined as a polyextreme environment, is a high altitude saline wetland in the Chilean Altiplano (3800 m.a.s.l., permanently exposed to the highest solar radiation doses registered in the world. We present here the first comparative proteomics study of a photoheterotrophic bacterium, Rhodobacter sp., isolated from this remote and hostile habitat. We developed an innovative experimental approach using different sources of radiation (in situ sunlight and UVB lamps, cut-off filters (Mylar, Lee filters and a high-throughput, label-free quantitative proteomics method to comprehensively analyze the effect of seven spectral bands on protein regulation. A hierarchical cluster analysis of 40 common proteins revealed that all conditions containing the most damaging UVB radiation induced similar pattern of protein regulation compared with UVA and visible light spectral bands. Moreover, it appeared that the cellular adaptation of Rhodobacter sp. to osmotic stress encountered in the hypersaline environment from which it was originally isolated, might further a higher resistance to damaging UV radiation. Indeed, proteins involved in the synthesis and transport of key osmoprotectants, such as glycine betaine and inositol, were found in very high abundance under UV radiation compared to the dark control, suggesting the function of osmolytes as efficient reactive oxygen scavengers. Our study also revealed a RecA-independent response and a tightly regulated network of protein quality control involving proteases and chaperones to selectively degrade misfolded and/or damaged proteins.

  3. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Directory of Open Access Journals (Sweden)

    Juan Herrero

    Full Text Available Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight extracts as the standard for expressing the electrical conductivity (EC of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1 to 183.0 dS m(-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  4. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    Science.gov (United States)

    Herrero, Juan; Weindorf, David C; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1) to 183.0 dS m(-1). This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  5. Hydrological regime and salinity alter the bioavailability of Cu and Zn in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Speelmans, M. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Lock, K., E-mail: koen.lock@UGent.b [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Vanthuyne, D.R.J. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Hendrickx, F. [Terrestrial Ecology Unit (TEREC), Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent (Belgium); Du Laing, G.; Tack, F.M.G. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Janssen, C.R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2010-05-15

    In the context of the European Water Framework Directive, controlled flooding of lowlands is considered as a potential water management strategy to minimise the risk of flooding of inhabited areas. However, due to historical pollution and overbank sedimentation, metal levels are elevated in most wetlands, which can cause adverse effects on the ecosystem's dynamics. Additionally, salinity affects the bioavailability of metals present or imported into these systems. The effect of different flooding regimes and salinity exposure scenarios (fresh- and brackish water conditions) on Cu and Zn accumulation in the oligochaete Tubifex tubifex (Mueller, 1774) was examined. Metal mobility was closely linked to redox potential, which is directly related to the prevalent hydrological regime. Flooded, and thus more reduced, conditions minimized the availability of metals, while oxidation of the substrates during a drier period was associated with a rapid increase of metal availability and accumulation in the oligochaetes. - Metal bioavailability in wetlands.

  6. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    Science.gov (United States)

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  7. Biogeochemical and hydrological controls in mobilizing Se in a saline wetland environment

    Science.gov (United States)

    Datta, S.; Hettiarachchi, G. M.; Crawford, M.; Karna, R.; Allmendinger, N. E.; Khatiwada, R.

    2010-12-01

    Selenium (Se) contamination in watersheds remains a challenge to water and land and wildlife managers throughout the west and mid west of US. In that sense, understanding the fundamentals of Se mobilization, fixation and bioconcentration is the current research endeavor. The challenge for Se research is developing watershed-geochemical models that are well founded in Se geochemical/biologcial principles that can be applied in a wide range of situations to inform decisions. Pariette Wetlands, a 9000 acre Bureau of Land Management controlled wetland system composed of 20 ponds located at the confluence of Pariette Draw and the Green River is the present location of this study. The agricultural and irrigation practices and the water-rock interactions leading to salinization can be associated with changes in Se chemistry in the rivers. Since its inception Pariette Wetlands has been home to a rich and diverse wetland ecosystem located in the arid Uintah Basin of Northeastern Utah. Detailed sampling of surficial sediments (0-1 m) from stream banks, channel beds and for water sampling have been undergone in 2 separate field trips throughout the entire reach of the wetland. To establish Pariette Draw’s contribution of Se to the Green river, water and sediments were also sampled from the Green River up and downstream of its confluence with Pariette Draw. In situ measurements of water parameters within the wetland suggest a clear trend of increased pH from upstream, 8, to downstream, 9.2 and combined with TDS suggest a pH controlled saline environment system. The headwaters near Flood Control Dam have an added input of Se from a possible irrigation source upstream in Pleasant Valley area while Se drastically decreases downstream towards the Red Head Pond. Se fractionation in sediments is being analyzed via a sequential extraction procedure to locate the labile fractions of mostly inorganic bound Se. Solid state speciation of Se via μ-XRF aided μ-XANES is being combined

  8. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  9. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds.

    Science.gov (United States)

    Liu, Fu-jun; Hu, Weng-Ying; Li, Quan-Yi

    2002-07-01

    The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline-alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO3-(-)N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH4-(-)N (NH3-N), NO2-(-)N; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect-exerting speed of PSB was slower, but the effect-sustaining time was longer; (6) the appropriate concentration of PSB application in saline-alkali wetland ponds was 10 x 10(-6) mg/L, one-time effective period was more than 15 days. So PSB was an efficient water quality improver in saline-alkali ponds.

  10. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    Science.gov (United States)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  11. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  12. Paleoenvironmental and paleohydrochemical conditions of dolomite formation within a saline wetland in arid northwest Australia

    Science.gov (United States)

    Mather, Caroline C.; Skrzypek, Grzegorz; Dogramaci, Shawan; Grierson, Pauline F.

    2018-04-01

    Groundwater dolocrete occurring within the Fortescue Marsh, a large inland wetland in the Pilbara region of northwest Australia, has been investigated to provide paleoenvironmental and paleohydrological records and further the understanding of low temperature dolomite formation in terrestrial settings over the Quaternary Period. Two major phases of groundwater dolocrete formation are apparent from the presence of two distinct units of dolocrete, based on differences in depth, δ18O values and mineral composition. Group 1 (G1) occurs at depth 20-65 m b.g.l. (below ground level) and contains stoichiometric dolomite with δ18O values of -4.02-0.71‰. Group 2 (G2) is shallower (0-23 m b.g.l.), occurring close to the current groundwater level, and contains Ca-rich dolomite ± secondary calcite with a comparatively lower range of δ18O values (-7.74 and -6.03‰). Modelled δ18O values of paleogroundwater from which older G1 dolomite precipitated indicated highly saline source water, which had similar stable oxygen isotope compositions to relatively old brine groundwater within the Marsh, developed under a different hydroclimatic regime. The higher δ18O values suggest highly evaporitic conditions occurred at the Marsh, which may have been a playa lake to saline mud flat environment. In contrast, G2 dolomite precipitated from comparatively fresher water, and modelled δ18O values suggested formation from mixing between inflowing fresher groundwater with saline-brine groundwater within the Marsh. The δ18O values of the calcite indicates formation from brackish to saline groundwater, which suggests this process may be associated with coeval gypsum dissolution. In contrast to the modern hydrology of the Marsh, which is surface water dependent and driven by a flood and drought regime, past conditions conducive to dolomite precipitation suggest a groundwater dependent system, where shallow groundwaters were influenced by intensive evaporation.

  13. Microalgae community of the Huaytire wetland, an Andean high-altitude wetland in Peru Comunidade de microalgas do wetland Huaytire, uma área alagada de alta altitude nos Andes peruanos

    Directory of Open Access Journals (Sweden)

    Gian Salazar-Torres

    2012-09-01

    Full Text Available AIM: The diversity and distribution of microalgae communities in a high-altitude (3,000 to 4,500 m a.s.l Andean wetland, regionally known as bofedal, were examined to assess seasonal and spatial patterns. METHODS: Samples were taken monthly from June to December, 2008 at 13 stations in the Huaytire wetland (16° 54’ S and 70° 20’ W, covering three areas (impacted by urban land use, impacted by camelid pasture, and non-impacted and three climatologically induced periods (ice-covered, ice-melt and ice-free. RESULTS: A total of 52 genera of algae were recorded. Diatoms were the predominant group in abundance and richness. We found a significantly higher abundance during the ice-melting period, when light exposure and runoff were intermediate, in comparison to the ice-covered (low light and flushing and ice-free (high light and low runoff periods. Microalgae abundance was significantly lower in the non-impacted area compared to the sites close to the urban area and to the camelid pastures. Alpha diversity ranged from 8 to 29 genera per sample. High genera exchange was observed throughout the wetland, showing a similar floristic composition (beta diversity = 4%. CONCLUSIONS: We found that diatoms were dominant and adapted to the extreme conditions of the Andean wetland, showing higher abundance during the ice-melt period and in the livestock area. Also, taxa richness was higher in the ice-melt period and in the most-impacted areas.OBJETIVO: A diversidade e distribuição da comunidade de microalgas em uma área alagada nos Andes (3.000 a 4.500 m de altitude, regionalmente conhecido como bofedal, foram examinadas para avaliar seus padrões sazonais e espaciais. MÉTODOS: As amostras foram coletadas, mensalmente, de junho a dezembro de 2008, em 13 estações no bofedal Huaytire (16° 54’ S e 70° 20’ W, abrangendo três áreas (impactada por ação urbana, impactada por pastagem de gado camelídeo e área não impactada e três per

  14. Microalgae community of the Huaytire wetland, an Andean high-altitude wetland in Peru Comunidade de microalgas do wetland Huaytire, uma área alagada de alta altitude nos Andes peruanos

    Directory of Open Access Journals (Sweden)

    Gian Salazar-Torres

    2012-01-01

    Full Text Available AIM: The diversity and distribution of microalgae communities in a high-altitude (3,000 to 4,500 m a.s.l Andean wetland, regionally known as bofedal, were examined to assess seasonal and spatial patterns. METHODS: Samples were taken monthly from June to December, 2008 at 13 stations in the Huaytire wetland (16° 54’ S and 70° 20’ W, covering three areas (impacted by urban land use, impacted by camelid pasture, and non-impacted and three climatologically induced periods (ice-covered, ice-melt and ice-free. RESULTS: A total of 52 genera of algae were recorded. Diatoms were the predominant group in abundance and richness. We found a significantly higher abundance during the ice-melting period, when light exposure and runoff were intermediate, in comparison to the ice-covered (low light and flushing and ice-free (high light and low runoff periods. Microalgae abundance was significantly lower in the non-impacted area compared to the sites close to the urban area and to the camelid pastures. Alpha diversity ranged from 8 to 29 genera per sample. High genera exchange was observed throughout the wetland, showing a similar floristic composition (beta diversity = 4%. CONCLUSIONS: We found that diatoms were dominant and adapted to the extreme conditions of the Andean wetland, showing higher abundance during the ice-melt period and in the livestock area. Also, taxa richness was higher in the ice-melt period and in the most-impacted areas.OBJETIVO: A diversidade e distribuição da comunidade de microalgas em uma área alagada nos Andes (3.000 a 4.500 m de altitude, regionalmente conhecido como bofedal, foram examinadas para avaliar seus padrões sazonais e espaciais. MÉTODOS: As amostras foram coletadas, mensalmente, de junho a dezembro de 2008, em 13 estações no bofedal Huaytire (16° 54’ S e 70° 20’ W, abrangendo três áreas (impactada por ação urbana, impactada por pastagem de gado camelídeo e área não impactada e três per

  15. Impact of highly saline wetland ecosystem on floral diversity of the Cholistan desert

    International Nuclear Information System (INIS)

    Gill, A.H.; Ahmad, K.S.; Habib, S.; Ahmad, S.A.; Nawaz, T.; Ahmad, F.

    2012-01-01

    The impact of highly saline wetland ecosystem created under Salinity Control and Reclamation Project (SCARP) on floral diversity was investigated in the arid environments of Cholistan Desert. Species richness, diversity indices and evenness indices were worked out to look at the distance at which the salt water has altered the native vegetation. Four sites including SCARP ponds of different ages (S1, S2, S3 and S4), and a reference site (SR) were selected for vegetation studies and data were recorded by 1 x 1 m quadrats, which were laid on permanent transect lines. Salt water showed great influence on ecological parameters of the native vegetation up to 40 m. Multivariate (cluster) analysis showed close clustering of highly salt tolerant species, Aeluropus lagopoides, Tamarix dioica and Suaeda fruticosa in one group, and relatively less tolerant Crotalaria burhia, Cyperus conglomeratus, Indigofera argentea, Haloxylon salicornicum, Haloxylon stocksii, Neurada procumbens and Salsola baryosma in second group. Moderately salt tolerant Aristida adscensionis, Lasiurus scindicus and Sporobolus iocladus were clustered in a separate group. (author)

  16. Potential of Constructed Wetlands for Removal of Antibiotics from Saline Aquaculture Effluents

    Directory of Open Access Journals (Sweden)

    Maria Bôto

    2016-10-01

    Full Text Available This work aimed to evaluate the potential of constructed wetlands (CWs for removal of antibiotics (enrofloxacin and oxytetracycline and antibiotic resistant bacteria from saline aquaculture wastewaters. Removal of other contaminants (nutrients, organic matter and metals and toxicity reduction and the influence of antibiotics with these processes were evaluated. Thus, nine CWs microcosms, divided into three treatments, were assembled and used to treat wastewater (doped or not with the selected antibiotics between October and December of 2015. Each week treated wastewater was removed and new wastewater (doped or not was introduced in CWs. Results showed >99% of each antibiotic was removed in CWs. After three weeks of adaptation, removal percentages >95% were also obtained for total bacteria and for antibiotic resistant bacteria. Nutrients, organic matter and metal removal percentages in CWs treated wastewater were identical in the absence and in the presence of each antibiotic. Toxicity in treated wastewaters was significantly lower than in initial wastewaters, independently of antibiotics presence. Results showed CWs have a high efficiency for removing enrofloxacin or oxytetracycline as well as antibiotic resistant bacteria from saline aquaculture wastewaters. CWs can also remove other contaminants independently of drug presence, making the aquaculture wastewater possible to be reutilized and/or recirculated.

  17. Leachates and elemental ratios of macrophytes and benthic algae of an Andean high altitude wetland

    Directory of Open Access Journals (Sweden)

    Beatriz MODENUTTI

    2011-08-01

    Full Text Available In wetlands, macrophytes and filamentous algae constitute an important carbon source for the total content of Dissolved Organic Matter (DOM of the environment. Mallín wetland meadows are highly diverse and rare habitats in Patagonia, that can be characterized as wet meadows with a dense cover mainly dominated by herbaceous plants. We carried out a field study comparing elemental composition (C:N:P of benthic algae (Spirogyra sp. and Zygnema sp. and the submerged macrophyte (Myriophyllum quitense from a high latitude wetland (local name: mallín. Besides we performed laboratory experiments in order to study the effect of ultraviolet radiation (UVR on the optical properties and nutrient release of DOM from leachates of these benthic algae and submerged macrophyte. The obtained results indicated that macrophyte leachates could contribute significantly to changes in the optical characteristics of the wetlands while benthic algae contribute with leachates with low photoreactivity. Finally, nutrient release differs among plant species and season: benthic algae leachates release more P in spring, while M. quitense releases more of this nutrient in autumn. These results suggested that the different colonization may contribute differentially to the chemical environment of the wetland.

  18. Diversity of gall-inducing insects in the high altitude wetland forests in Pernambuco, Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    JC Santos

    Full Text Available We report on the richness of galling insects in the altitudinal wetland forests of Pernambuco State, Northeastern Brazil. We found 80 distinct types of insect galls on 49 species of host plants belonging to 28 families and 35 genera. Most of the galled plant species belong to Nyctaginaceae, Fabaceae, Meliaceae, Sapindaceae and Myrtaceae. The most common gall were spheroid and globoid; most galls were glabrous, predominantly green and with one chamber, and on the leaves. Most galls were induced by Cecidomyiidae (Diptera. The results of this study contribute to existing knowledge richness of galling insects and host-plant diversity in the altitudinal wetland forests of Northeastern Brazil.

  19. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    Science.gov (United States)

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage

  20. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    Science.gov (United States)

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  1. Changes in standing stocks and fluxes of carbon due to salinization: tidal freshwater wetland forest retreat to marsh

    Science.gov (United States)

    Krauss, K.; Noe, G. B.; Duberstein, J. A.; Conner, W. H.; Stagg, C. L.; Jones, M.; Bernhardt, C. E.; Cormier, N.

    2017-12-01

    Assessments of organic carbon (C) standing stocks and fluxes as wetland ecosystems transition from tidally influenced freshwater forested wetlands to low-salinity marshes are not typically included in "blue carbon" accounting. However, these ecosystems have the potential to store and convey large quantities of C. Here, we report on data collected from eight riverine sites along salinity and hydro-edaphic gradients in South Carolina and Georgia to provide the first complete estimates of C storage, flux, and burial, including estimation of C export to aquatic environments, in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. Total standing stocks of C ranged from 280 to 891 Mg C/ha along both rivers but with no consistent trend in standing stock shifts along salinity gradients between the two rivers. Soil C standing stocks were most variable among sites. Furthermore, we assessed input (litterfall, woody growth, herbaceous growth, root growth and surface sediment C accretion) in comparison with output (surface litter decomposition, root decomposition and gaseous C) fluxes over periods ranging from 2 to 11 years. C sequestration from mass balance calculations ranged from 103 to 728 g C/m2/year among sites, with generally greater C sequestration on sites with prominent salinity-mediated conversion to oligohaline marsh. Dissolved C export was estimated as the difference between C sequestration and soil C burial using 14C dating of cores, and ranged from 144 to 404 g C/m2/year, representing a large amount of C export to feed aquatic biogeochemical transformations and secondary productivity. Along with C accounting, these sites also differed in how N and P were mineralized in soils, with considerable N mineralization on salinity-stressed (2.4-4.3 parts per thousand) forested sites with newly encroached marsh plants and considerable P mineralization on slightly higher salinity marshes. In all, C storage from tidal freshwater forested wetlands

  2. A new species of Cletocamptus Schmankewitsch, 1875 (Crustacea, Copepoda, Harpacticoida from a high altitude saline lake in Central Mexico

    Directory of Open Access Journals (Sweden)

    Eduardo Suarez Morales

    2013-04-01

    Full Text Available During the analysis of littoral samples collected from a high-altitude saline crater lake in Central Mexico, several female and male specimens of harpacticoid copepods were recovered and taxonomically examined. They were found to represent an undescribed species of the canthocamptid genus Cletocamptus Schmankewitsch, 1875. The new species, C. gomezi n. sp. is described herein based on specimens of both sexes. It resembles C. stimpsoni Gómez, Fleeger, Rocha-Olivares and Foltz, 2004 from Louisiana but also C. trichotus Kiefer, 1929. The new species differs from C. stimpsoni and from other congeners by details of the maxillular armature, the setation of the endopodal segments of legs 2 and 3, and the armature of the third exopodal segment of legs 3 and 4. Also, the dorsal (VII and the outer (IV caudal setae are both relatively shorter than in C. stimpsoni. This is the second species of the genus known to be distributed in Mexico. The occurrence of the new species in a high-altitude saline lake, the isolation of the type locality, and its absence from adjacent freshwater lakes suggest that this species is endemic to this site.

  3. Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data

    Science.gov (United States)

    Otto, M.; Scherer, D.; Richters, J.

    2011-05-01

    High Altitude Wetlands of the Andes (HAWA) belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV) indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI) and Normalized Differenced Infrared Index (NDII) data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000) and at the end of austral summer (May 2001). The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %). Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43) and MODIS Eight Day Maximum Snow Extent data (MOD10A2) from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82) in dry austral winter months (June to August) and between temporal HAWA and precipitation (r2: 0.75) during austral summer (March to May). Annual changes in spatial extend of perennial HAWA

  4. Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data

    Directory of Open Access Journals (Sweden)

    M. Otto

    2011-05-01

    Full Text Available High Altitude Wetlands of the Andes (HAWA belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI and Normalized Differenced Infrared Index (NDII data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000 and at the end of austral summer (May 2001. The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %. Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS. Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43 and MODIS Eight Day Maximum Snow Extent data (MOD10A2 from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82 in dry austral winter months (June to August and between temporal HAWA and precipitation (r2: 0.75 during austral summer

  5. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    Science.gov (United States)

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  6. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    Science.gov (United States)

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  7. Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction

    Science.gov (United States)

    LaBaugh, James W.; Rosenberry, Donald O.; Mushet, David M.; Neff, Brian; Nelson, Richard D.; Euliss, Ned H.

    2018-01-01

    Study RegionCottonwood Lake area wetlands, North Dakota, U.S.A.Study FocusFluctuations in pond permanence, size, and salinity are key features of prairie-pothole wetlands that provide a variety of wetland habitats for waterfowl in the northern prairie of North America. Observation of water-level and salinity fluctuations in a semi-permanent wetland pond over a 20-year period, included periods when the wetland occasionally was dry, as well as wetter years when the pond depth and surface extent doubled while volume increased 10 times.New hydrological insights for the study regionCompared to all other measured budget components, groundwater flow into the pond often contributed the least water (8–28 percent) but the largest amount (>90 percent) of specific solutes to the water and solute budgets of the pond. In drier years flow from the pond into groundwater represented > 10 percent of water loss, and in 1992 was approximately equal to evapotranspiration loss. Also during the drier years, export of calcium, magnesium, sodium, potassium, chloride, and sulfate by flow from the pond to groundwater was substantial compared with previous or subsequent years, a process that would have been undetected if groundwater flux had been calculated as a net value. Independent quantification of water and solute gains and losses were essential to understand controls on water-level and salinity fluctuations in the pond in response to variable climate conditions.

  8. Analysis and Mapping of the Spectral Characteristics of Fractional Green Cover in Saline Wetlands (NE Spain Using Field and Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Manuela Domínguez-Beisiegel

    2016-07-01

    Full Text Available Inland saline wetlands are complex systems undergoing continuous changes in moisture and salinity and are especially vulnerable to human pressures. Remote sensing is helpful to identify vegetation change in semi-arid wetlands and to assess wetland degradation. Remote sensing-based monitoring requires identification of the spectral characteristics of soils and vegetation and their correspondence with the vegetation cover and soil conditions. We studied the spectral characteristics of soils and vegetation of saline wetlands in Monegros, NE Spain, through field and satellite images. Radiometric and complementary field measurements in two field surveys in 2007 and 2008 were collected in selected sites deemed as representative of different soil moisture, soil color, type of vegetation, and density. Despite the high local variability, we identified good relationships between field spectral data and Quickbird images. A methodology was established for mapping the fraction of vegetation cover in Monegros and other semi-arid areas. Estimating vegetation cover in arid wetlands is conditioned by the soil background and by the occurrence of dry and senescent vegetation accompanying the green component of perennial salt-tolerant plants. Normalized Difference Vegetation Index (NDVI was appropriate to map the distribution of the vegetation cover if the green and yellow-green parts of the plants are considered.

  9. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    Science.gov (United States)

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  10. Increasing salinity drastically reduces hatching success of crustaceans from depression wetlands of the semi-arid Eastern Cape Karoo region, South Africa.

    Science.gov (United States)

    Mabidi, Annah; Bird, Matthew S; Perissinotto, Renzo

    2018-04-13

    Salinity is an important factor affecting freshwater aquatic species distribution and diversity. The semi-arid Eastern Cape Karoo region of South Africa has been earmarked for shale gas development through hydraulic fracturing. The process uses large amounts of water and produces briny wastewater. When not managed properly, these wastewaters may lead to salinisation of surface freshwater bodies in the region. Therefore, the effect of salinity on the hatching success of crustacean resting eggs was examined using sediments from four depression wetlands found in the region. The sediments were exposed for 28 days to salinity levels of 0.5 g L -1 , 2.5 g L -1 , 5 g L -1 and 10 g L -1 . Control aquaria in which no salt was added were also set up. There was a significant decrease in the emerged taxa richness and abundances at salinities of 2.5 g L -1 and above. Anostraca, Notostraca and Spinicaudata hatchlings were abundant at salinities of 0.5 g L -1 and below, while Copepoda, Daphniidae (Cladocera) and Ostracoda were observed in the highest salinity, but their densities were still lower with increased salinities. Given the importance of large branchiopods in the trophic balance of depression wetlands, their loss may alter the ecological balance and function of these ecosystems.

  11. Ecological, biogeochemical and salinity changes in coastal lakes and wetlands over the last 200 years

    Science.gov (United States)

    Roberts, Lucy; Holmes, Jonathan; Horne, David

    2016-04-01

    Shallow lakes provide extensive ecosystem services and are ecologically important aquatic resources supporting a diverse flora and fauna. In marginal-marine areas, where such lakes are subjected to the multiple pressures of coastal erosion, sea level rise, increasing sea surface temperature and increasing frequency and intensity of storm surges, environments are complex and unstable. They are characterised by physico-chemical variations due to climatic (precipitation/evaporation cycles) and dynamic factors (tides, currents, freshwater drainage and sea level changes). Combined with human activity in the catchment these processes can alter the salinity, habitat and ecology of coastal fresh- to brackish water ecosystems. In this study the chemical and biological stability of coastal lakes forming the Upper Thurne catchment in the NE of the Norfolk Broads, East Anglia, UK are seriously threatened by long-term changes in salinity resulting from storm surges, complex hydrogeology and anthropogenic activity in the catchment. Future management decisions depend on a sound understanding of the potential ecological impacts, but such understanding is limited by short-term observations and measurements. This research uses palaeolimnological approaches, which can be validated and calibrated with historical records, to reconstruct changes in the aquatic environment on a longer time scale than can be achieved by observations alone. Here, salinity is quantitatively reconstructed using the trace-element geochemistry (Sr/Ca and Mg/Ca) of low Mg-calcite shells of Ostracoda (microscopic bivalved crustaceans) and macrophyte and macroinvertebrate macrofossil remains are used as a proxy to assess ecological change in response to variations in salinity. δ13C values of Cladocera (which are potentially outcompeted by the mysid Neomysis integer with increasing salinity and eutrophication) can be used to reconstruct carbon cycling and energy pathways in lake food webs, which alongside

  12. Distribution of greenhouse gases in hyper-arid and arid areas of northern Chile and the contribution of the high altitude wetland microbiome (Salar de Huasco, Chile).

    Science.gov (United States)

    Molina, Verónica; Eissler, Yoanna; Cornejo, Marcela; Galand, Pierre E; Dorador, Cristina; Hengst, Martha; Fernandez, Camila; Francois, Jean Pierre

    2018-04-06

    Northern Chile harbors different bioclimatic zones including hyper-arid and arid ecosystems and hotspots of microbial life, such as high altitude wetlands, which may contribute differentially to greenhouse gases (GHG) such as carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O). In this study, we explored ground level GHG distribution and the potential role of a wetland situated at 3800 m.a.s.l, and characterized by high solar radiation arid to hyper-arid zones. The microbiome from the water and sediments was described by high-throughput sequencing 16S rRNA and rDNA genes. The results indicate that GHG at ground level were variable along the elevation gradient potentially associated with different bioclimatic zones, reaching high values at the high Andean steppe and variable but lower values in the Atacama Desert and at the wetland. The water areas of the wetland presented high concentrations of CH 4 and CO 2 , particularly at the spring areas and in air bubbles below microbial mats. The microbial community was rich (> 40 phyla), including archaea and bacteria potentially active in the different matrices studied (water, sediments and mats). Functional microbial groups associated with GHG recycling were detected at low frequency, i.e., arid and arid areas of northern Chile are sites of GHG exchange associated with various bioclimatic zones and particularly in aquatic areas of the wetland where this ecosystem could represent a net sink of N 2 O and a source for CH 4 and CO 2 .

  13. Toxicity of high salinity tannery wastewater and effects on constructed wetland plants

    DEFF Research Database (Denmark)

    Calheirosa, C.S.C.; Silva, G.; Quitério, P.V.B.

    2012-01-01

    The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted ...

  14. Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling

    Science.gov (United States)

    Cormier, Nicole; Krauss, Ken W.; Conner, William H.

    2013-01-01

    Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N m−2 year−1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g m−2 year−1) over the

  15. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Junhong, E-mail: junhongbai@163.com; Huang, Laibin, E-mail: seahuanglaibin@gmail.com; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg{sup −1}] for salinity and [0–4.0 mg kg{sup −1}] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg{sup −1} available Cd and 778.6 mg kg{sup −1} salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity.

  17. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments

    International Nuclear Information System (INIS)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-01-01

    Highlights: • A higher germination rate of soil seed bank was observed in the indoor experiment. • The outdoor experiment showed larger number and destiny of germinated seedlings. • Urbanization had greater impacts on soil seed banks than wetland reclamation. • Soil seed banks for wetland restoration were more suitable in the reclaimed region. • Suitable salt or Cd levels could activate seedling emergence in the soil seed bank. - Abstract: Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0–2000 mg kg −1 ] for salinity and [0–4.0 mg kg −1 ] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg −1 available Cd and 778.6 mg kg −1 salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity

  18. Preliminary study on the dynamics of heavy metals in saline wastewater treated in constructed wetland mesocosms or microcosms filled with porous slag.

    Science.gov (United States)

    Liang, Yinxiu; Zhu, Hui; Bañuelos, Gary; Xu, Yingying; Yan, Baixing; Cheng, Xianwei

    2018-06-07

    This study aims to evaluate the practical potential of using constructed wetlands (CWs) for treating saline wastewater containing various heavy metals. The results demonstrated that CWs growing Canna indica with porous slag as substrate could efficiently remove heavy metals (Cu, Zn, Cd, and Pb) from saline wastewater at an electrical conductivity (EC) of 7 mS/cm, especially under low influent load. Salts with salinity level (characterized as EC) of 30 mS/cm suppressed the removal of some heavy metals, dependent on heavy metal species and their influent concentrations. The presence of salts in CWs can improve the accumulation of Cu, Zn, and Pb in plant tissues as compared to control treatment, irrespective of metal concentrations in solution. The influence of salts on Cd accumulation depended on both salinity levels and Cd concentrations in solution. Although more heavy metals were accumulated in roots than in shoots, the harvesting of aboveground plant materials is still efficient addition for heavy metal removal due to the greater biomass and growth rate of aboveground plant material. Furthermore, replacing all plants instead of preserving roots from harvested plants in CWs over a period of time is essential for heavy metal removal, because the continued accumulation by roots can be inhibited by the increasing accumulated heavy metals from saline wastewater.

  19. Hydrologic modeling in a marsh-mangrove ecotone: Predicting wetland surface water and salinity response to restoration in the Ten Thousand Islands region of Florida, USA

    Science.gov (United States)

    Michot, B.D.; Meselhe, E.A.; Krauss, Ken W.; Shrestha, Surendra; From, Andrew S.; Patino, Eduardo

    2017-01-01

    At the fringe of Everglades National Park in southwest Florida, United States, the Ten Thousand Islands National Wildlife Refuge (TTINWR) habitat has been heavily affected by the disruption of natural freshwater flow across the Tamiami Trail (U.S. Highway 41). As the Comprehensive Everglades Restoration Plan (CERP) proposes to restore the natural sheet flow from the Picayune Strand Restoration Project area north of the highway, the impact of planned measures on the hydrology in the refuge needs to be taken into account. The objective of this study was to develop a simple, computationally efficient mass balance model to simulate the spatial and temporal patterns of water level and salinity within the area of interest. This model could be used to assess the effects of the proposed management decisions on the surface water hydrological characteristics of the refuge. Surface water variations are critical to the maintenance of wetland processes. The model domain is divided into 10 compartments on the basis of their shared topography, vegetation, and hydrologic characteristics. A diversion of +10% of the discharge recorded during the modeling period was simulated in the primary canal draining the Picayune Strand forest north of the Tamiami Trail (Faka Union Canal) and this discharge was distributed as overland flow through the refuge area. Water depths were affected only modestly. However, in the northern part of the refuge, the hydroperiod, i.e., the duration of seasonal flooding, was increased by 21 days (from 115 to 136 days) for the simulation during the 2008 wet season, with an average water level rise of 0.06 m. The average salinity over a two-year period in the model area just south of Tamiami Trail was reduced by approximately 8 practical salinity units (psu) (from 18 to 10 psu), whereas the peak dry season average was reduced from 35 to 29 psu (by 17%). These salinity reductions were even larger with greater flow diversions (+20%). Naturally, the reduction

  20. Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hester, Mark W.; Shaffer, Gary P.; Willis Jonathan M.; DesRoches, Dennis J.

    2001-02-21

    This study builds upon earlier research conducted by Southeastern Louisiana University concerning the efficacy of utilizing processed drill cuttings as an alternative substrate source for wetland rehabilitation (wetland creation and restoration). Previous research has indicated that processed drill cuttings exhibit a low degree of contaminant migration from the process drill cuttings to interstitial water and low toxicity, as tested by seven-day mysid shrimp chronic toxicity trials.

  1. Soil seed banks and their germination responses to cadmium and salinity stresses in coastal wetlands affected by reclamation and urbanization based on indoor and outdoor experiments.

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Zhaoqin; Lu, Qiongqiong; Wang, Junjing; Zhao, Qingqing

    2014-09-15

    Indoor and outdoor seedling emergence experiments were conducted to thoroughly investigate germination patterns as affected by reclamation and urbanization, the ecological characteristics of soil seed banks, and their relationships with environmental factors in both urbanized and reclaimed regions of the Pearl River Delta in coastal wetlands. The germination rate of the soil seed bank was higher in the indoor experiment compared with that in the outdoor experiment, whereas the number and destiny of the germinated seedlings were greater in the outdoor experiment. The species diversity and number, as well as the richness and evenness indices, were higher in the urbanized region compared with the reclaimed region. However, the dominance and Sørensen similarity indices were greater in the reclaimed region compared with those indices in the urbanized region. Higher salinity and Cadmium (Cd) levels could inhibit seed germination; however, their suitable ranges (i.e. [0-2,000 mg kg(-1)] for salinity and [0-4.0 mg kg(-1)] for available Cd) can activate seedling emergence, and more seedlings germinated under the intersectional levels at 0.34 mg kg(-1) available Cd and 778.6 mg kg(-1) salinity. Seawater intrusion caused by the sea level rise will possibly result in the salt-tolerant community in this area due to increasing salinity. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands.

    Science.gov (United States)

    Schofield, P J; Loftus, W F; Fontaine, J A

    2009-04-01

    This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg (c. 1.0 mg l(-1)) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus, except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher.

  3. Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hester, Mark W.; Shaffer, Gary P.; Willis, Jonathan M.; DesRoches, Dennis J.

    2002-06-03

    Both interstitial water and plant tissue associated with the DC-A substrate exhibited low metal concentrations. Also in agreement with the previous study, plant performance in the DC-A substrate was found to be comparable to plant performance in the dredge spoil and topsoil substrates. This was extremely important because it indicated that the drill cuttings themselves served as an excellent substrate for wetland plant growth, but that the processing and stabilization techniques and drilling fluid formulations required further refinement.

  4. Treatment Wetlands

    OpenAIRE

    Dotro, Gabriela; Langergraber, Günter; Molle, Pascal; Nivala, Jaime; Puigagut, Jaume; Stein, Otto; Von Sperling, Marcos

    2017-01-01

    Overview of Treatment Wetlands; Fundamentals of Treatment Wetlands; Horizontal Flow Wetlands; Vertical Flow Wetlands; French Vertical Flow Wetlands; Intensified and Modified Wetlands; Free Water Surface Wetlands; Other Applications; Additional Aspects.

  5. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  6. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Science.gov (United States)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  7. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Directory of Open Access Journals (Sweden)

    M. Ghose-Hajra

    2015-03-01

    Full Text Available Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana’s coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana’s disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  8. Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain.

    Science.gov (United States)

    Aguilera, Margarita; Jiménez-Pranteda, Maria L; Kharroub, Karima; González-Paredes, Ana; Durban, Juan J; Russell, Nick J; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2009-07-01

    A Gram-negative, non-spore-forming, motile, moderately halophilic, aerobic, rod-shaped bacterium, designated strain FP2.5(T), was isolated from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Strain FP2.5(T) was subjected to a polyphasic taxonomic study. It produced colonies with a light-yellow pigment. Strain FP2.5(T) grew at salinities of 3-15 % (w/v) and at temperatures of 20-40 degrees C. The pH range for growth was 5-9. Strain FP2.5(T) was able to utilize various organic acids as sole carbon and energy source. Its major fatty acids were C(16 : 0), C(18 : 1)omega9c and C(16 : 1)omega9c. The DNA G+C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FP2.5(T) appeared to be a member of the genus Marinobacter and clustered closely with the type strains of Marinobacter segnicrescens, Marinobacter bryozoorum and Marinobacter gudaonensis (levels of 16S rRNA gene sequence similarity of 98.1, 97.4 and 97.2 %, respectively). However, DNA-DNA relatedness between the new isolate and the type strains of its closest related Marinobacter species was low; levels of DNA-DNA relatedness between strain FP2.5(T) and M. segnicrescens LMG 23928(T), M. bryozoorum DSM 15401(T) and M. gudaonensis DSM 18066(T) were 36.3, 32.1 and 24.9 %, respectively. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain FP2.5(T) is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter lacisalsi sp. nov. is proposed. The type strain is FP2.5(T) (=CECT 7297(T)=LMG 24237(T)).

  9. Bacterial Active Community Cycling in Response to Solar Radiation and Their Influence on Nutrient Changes in a High-Altitude Wetland.

    Science.gov (United States)

    Molina, Verónica; Hernández, Klaudia; Dorador, Cristina; Eissler, Yoanna; Hengst, Martha; Pérez, Vilma; Harrod, Chris

    2016-01-01

    Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3-3.9 H', 1125 W m -2 ) compared to morning and afternoon (0.6-2.8 H'). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ , but both functional groups ( Nitrosomona and Nitrospira ) appeared mainly in pyrolibraries generated from dark incubations. In total, our results reveal that both the structure and the diversity of the active bacteria community was extremely dynamic through the day, and showed marked shifts in composition that influenced nutrient recycling, highlighting how abiotic

  10. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  11. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  12. Restored Drill Cuttings for Wetlands Creation: Results of Mesocosm Approach to Emulate Field Conditions Under Varying Salinity and Hydrologic Conditions; FINAL

    International Nuclear Information System (INIS)

    Hester, Mark W.; Shaffer, Gary P.; Willis, Jonathan M.; DesRoches, Dennis J.

    2002-01-01

    Both interstitial water and plant tissue associated with the DC-A substrate exhibited low metal concentrations. Also in agreement with the previous study, plant performance in the DC-A substrate was found to be comparable to plant performance in the dredge spoil and topsoil substrates. This was extremely important because it indicated that the drill cuttings themselves served as an excellent substrate for wetland plant growth, but that the processing and stabilization techniques and drilling fluid formulations required further refinement

  13. Environmental gradients across wetland vegetation groups in the arid slopes of Western Alborz Mountains, N. Iran

    Directory of Open Access Journals (Sweden)

    Asghar Kamrani

    2011-01-01

    Full Text Available Mountain wetlands are unique ecosystems in the arid southern slopes of Alborz range, the second largest range in Iran. The spatial distribution characteristics of wetland vegetation in the arid region of the Alborz and the main factors affecting their distributional patterns were studied. A classification of vegetation and ecological characteristics were carried out using data extracted from 430 relevés in 90 wetland sites. The data were analyzed using Two Way Indicator Species Analysis (TWINSPAN and detrended correspondence analysis (DCA. The wetland vegetation of Alborz Mountain was classified into four large groups. The first vegetation group was calcareous rich vegetation, mainly distributed in the river banks and characterized by helophytes such as Bolboschoenus affinis as indicator species. The second group was saline transitional vegetation, distributed in the ecotone areas and dominated by Phragmites australis. The third vegetation group is wet meadow vegetation which mainly consists of geophytes, endemic and Irano-Turanian species, distributed in the higher altitudes. This vegetation is mainly characterized by indicator species such as Carex orbicularis, high level concentration of Fe2+ and percentage of organic matter in the soil. The fourth vegetation group is aquatic vegetation, distributed in the lakeshores. The aquatic group species are mainly hydrophytic such as Batrachium trichophyllum. The TWINSPAN vegetation groups could be also recognized in the DCA graphs and ecologically differentiated by ANOVA of studied variables. Four vegetation groups can be differentiated on two first axes of indirect ordination. There is a gradient of pH, EC and organic matter associated with altitude on the DCA diagram. Correlation analysis between the axes of DCA and environmental factors shows that altitude, soil texture and other dependant environmental variables (e.g. pH are the main environmental factors affecting the distribution of wetland

  14. Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction

    Directory of Open Access Journals (Sweden)

    James W. LaBaugh

    2018-06-01

    New hydrological insights for the study region: Compared to all other measured budget components, groundwater flow into the pond often contributed the least water (8–28 percent but the largest amount (>90 percent of specific solutes to the water and solute budgets of the pond. In drier years flow from the pond into groundwater represented > 10 percent of water loss, and in 1992 was approximately equal to evapotranspiration loss. Also during the drier years, export of calcium, magnesium, sodium, potassium, chloride, and sulfate by flow from the pond to groundwater was substantial compared with previous or subsequent years, a process that would have been undetected if groundwater flux had been calculated as a net value. Independent quantification of water and solute gains and losses were essential to understand controls on water-level and salinity fluctuations in the pond in response to variable climate conditions.

  15. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  16. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  17. National Wetlands Inventory Lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear wetland features (including selected streams, ditches, and narrow wetland bodies) mapped as part of the National Wetlands Inventory (NWI). The National...

  18. Wetlands and Sustainability

    Directory of Open Access Journals (Sweden)

    Richard Smardon

    2014-11-01

    Full Text Available This editorial provides an overview of the special issue “Wetlands and Sustainability”. In particular, the special issue contains a review of Paul Keddy’s book “Wetland Ecology” with specific reference to wetland sustainability. It also includes papers addressing wetland data acquisition via radar and remote sensing to better understand wetland system dynamics, hydrologic processes linked to wetland stress and restoration, coastal wetlands land use conflict/management, and wetland utilization for water quality treatment.

  19. Winter Tourism and mountain wetland management and restoration

    Science.gov (United States)

    Gaucherand, S.; Mauz, I.

    2012-04-01

    The degradation and loss of wetlands is more rapid than that of other ecosystems (MEA 2005). In mountains area, wetlands are small and scattered and particularly sensitive to global change. The development of ski resorts can lead to the destruction or the deterioration of mountain wetlands because of hydrologic interferences, fill in, soil compression and erosion, etc. Since 2008, we have studied a high altitude wetland complex in the ski resort of Val Thorens. The aim of our study was to identify the impacts of mountain tourism development (winter and summer tourism) on wetland functioning and to produce an action plan designed to protect, rehabilitate and value the wetlands. We chose an approach based on multi-stakeholder participatory process at every stage, from information gathering to technical choices and monitoring. In this presentation, we show how such an approach can efficiently improve the consideration of wetlands in the development of a ski resort, but also the bottlenecks that need to be overcome. We will also discuss some of the ecological engineering techniques used to rehabilitate or restore high altitude degraded wetlands. Finally, this work has contributed to the creation in 2012 of a mountain wetland observatory coordinated by the conservatory of Haute-Savoie. The objective of this observatory is to estimate ecosystem services furnished by mountain wetlands and to find restoration strategies adapted to the local socio-economical context (mountain agriculture and mountain tourism).

  20. Fringe wetlands

    International Nuclear Information System (INIS)

    Lugo, A.E.

    1990-01-01

    Fringe wetlands are characterized by the dominance of few species, a clear species zonation, synchrony of ecological processes with episodic events, and simplicity in the structure of vegetation. The structure and ecosystem dynamics of fringe forested wetlands are presented with emphasis on saltwater wetlands because they have been studied more than freshwater ones. The study areas were Caribbean and Florida mangroves. Fringe wetlands are found on the water edge of oceans, inland estuaries, and lakes. Water motion in the fringe is bi-directional and perpendicular to the forest and due mostly to tidal energy in oceanic and estuarine fringes. in lakes, water moves in and out of the fringe under the influence of wind, waves, or seiches. some fringe forests are occasionally flushed by terrestrial runoff or aquifer discharge. In contrast, fringe forests located on small offshore islands or steep coastal shroes are isolated from terrestrial runoff or aquifer discharge, and their hydroperiod is controlled by tides and waves only. Literature reviews suggest that ecosystem parameters such as vegetation structure, tree growth, primary productivity, and organic matter in sediments respond proportionally to hydrologic energy. Human activity that impacts on fringe forested wetlands include harvesting of trees, oil pollution and eutrophication. 72 refs., 12 figs., 9 tabs

  1. Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Newton, Wesley E.; Otto, Clint R.V.; Nelson, Richard D.; LaBaugh, James W.; Scherff, Eric J.; Rosenberry, Donald O.

    2014-01-01

    We evaluated the efficacy of using chemical characteristics to rank wetland relation to surface and groundwater along a hydrologic continuum ranging from groundwater recharge to groundwater discharge. We used 27 years (1974–2002) of water chemistry data from 15 prairie pothole wetlands and known hydrologic connections of these wetlands to groundwater to evaluate spatial and temporal patterns in chemical characteristics that correspond to the unique ecosystem functions each wetland performed. Due to the mineral content and the low permeability rate of glacial till and soils, salinity of wetland waters increased along a continuum of wetland relation to groundwater recharge, flow-through or discharge. Mean inter-annual specific conductance (a proxy for salinity) increased along this continuum from wetlands that recharge groundwater being fresh to wetlands that receive groundwater discharge being the most saline, and wetlands that both recharge and discharge to groundwater (i.e., groundwater flow-through wetlands) being of intermediate salinity. The primary axis from a principal component analysis revealed that specific conductance (and major ions affecting conductance) explained 71% of the variation in wetland chemistry over the 27 years of this investigation. We found that long-term averages from this axis were useful to identify a wetland’s long-term relation to surface and groundwater. Yearly or seasonal measurements of specific conductance can be less definitive because of highly dynamic inter- and intra-annual climate cycles that affect water volumes and the interaction of groundwater and geologic materials, and thereby influence the chemical composition of wetland waters. The influence of wetland relation to surface and groundwater on water chemistry has application in many scientific disciplines and is especially needed to improve ecological understanding in wetland investigations. We suggest ways that monitoring in situ wetland conditions could be linked

  2. Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands

    Science.gov (United States)

    McIvor, Carole

    2005-01-01

    Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.

  3. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  4. National Wetlands Inventory Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland area features mapped as part of the National Wetlands Inventory (NWI). The National Wetlands Inventory is a national program sponsored by the US Fish and...

  5. The importance of water quality to wetland establishment

    International Nuclear Information System (INIS)

    Trites, M.; Bayley, S.

    2010-01-01

    Extracting oil from sands produces huge volumes of saline tailings. This presentation demonstrated that the ability to recreate boreal peatland communities after oil sands mining will be constrained by water quality. Typical boreal wetlands can be described along a bog to poor fen to rich fen gradient that correlates to increasing water pH and calcium concentration. There are major differences in vegetation communities along this gradient. Bogs and poor fens are characterized by slowly decomposing Sphagnum moss, while brown moss and productive herbaceous communities characterize rich fens. Post-mining wetlands generally have sodium concentrations above the tolerance limits of most freshwater peatland species. This study involved a survey of 25 boreal wetlands across a natural salinity gradient to determine a suite of potential native vegetation species to use for oils sand reclamation. Sixteen herbaceous vegetation communities that could be incorporated into oil sands wetlands were identified, but the diversity of communities decreased as salinity increased. Some of these wetlands had thick organic matter accumulations, despite having salinity equal to or higher than oil sands wetlands. Organic matter accumulation rates were also measured. If salinity is moderate and nutrient levels adequate, highly productive species like Carex aquatilis and Typha latifolia can accumulate organic matter quickly. Triglochin maritima can accumulate organic matter over the long term, even if salinity is high and nutrient levels are low. Although there is potential for peat to accumulate in future oil sands wetlands, the rates of peat accumulation will probably be slower than in undisturbed freshwater bogs and fens because of the elevated salinity. tabs., figs.

  6. The importance of water quality to wetland establishment

    Energy Technology Data Exchange (ETDEWEB)

    Trites, M.; Bayley, S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2010-07-01

    Extracting oil from sands produces huge volumes of saline tailings. This presentation demonstrated that the ability to recreate boreal peatland communities after oil sands mining will be constrained by water quality. Typical boreal wetlands can be described along a bog to poor fen to rich fen gradient that correlates to increasing water pH and calcium concentration. There are major differences in vegetation communities along this gradient. Bogs and poor fens are characterized by slowly decomposing Sphagnum moss, while brown moss and productive herbaceous communities characterize rich fens. Post-mining wetlands generally have sodium concentrations above the tolerance limits of most freshwater peatland species. This study involved a survey of 25 boreal wetlands across a natural salinity gradient to determine a suite of potential native vegetation species to use for oils sand reclamation. Sixteen herbaceous vegetation communities that could be incorporated into oil sands wetlands were identified, but the diversity of communities decreased as salinity increased. Some of these wetlands had thick organic matter accumulations, despite having salinity equal to or higher than oil sands wetlands. Organic matter accumulation rates were also measured. If salinity is moderate and nutrient levels adequate, highly productive species like Carex aquatilis and Typha latifolia can accumulate organic matter quickly. Triglochin maritima can accumulate organic matter over the long term, even if salinity is high and nutrient levels are low. Although there is potential for peat to accumulate in future oil sands wetlands, the rates of peat accumulation will probably be slower than in undisturbed freshwater bogs and fens because of the elevated salinity. tabs., figs.

  7. Kansas Playa Wetlands

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the distribution, areal extent, and morphometry of playa wetlands throughout western Kansas. Playa wetlands were...

  8. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  9. The System Nobody Sees: Irrigated Wetland Management and Alpaca Herding in the Peruvian Andes

    NARCIS (Netherlands)

    Verzijl, A.; Guerrero Quispe, S.

    2013-01-01

    Increasingly, attention in regional, national, and international water governance arenas has focused on high-altitude wetlands. However, existing local water management practices in these wetlands are often overlooked. This article looks at the irrigation activities of alpaca herders in the

  10. The System Nobody Sees: Irrigated Wetland Management and Alpaca Herding in the Peruvian Andes

    OpenAIRE

    Verzijl, A.; Guerrero Quispe, S.

    2013-01-01

    Increasingly, attention in regional, national, and international water governance arenas has focused on high-altitude wetlands. However, existing local water management practices in these wetlands are often overlooked. This article looks at the irrigation activities of alpaca herders in the community of Ccarhuancho in the Central Andes of Peru. For more than two centuries, they have been constructing small-scale irrigation canals to maintain and expand the local wetlands, called bofedales. Th...

  11. "Wetlands: Water Living Filters?",

    OpenAIRE

    Dordio, Ana; Palace, A. J.; Pinto, Ana Paula

    2008-01-01

    Human societies have indirectly used natural wetlands as wastewater discharge sites for many centuries. Observations of the wastewater depuration capacity of natural wetlands have led to a greater understanding of the potential of these ecosystems for pollutant assimilation and have stimulated the development of artificial wetlands systems for treatment of wastewaters from a variety of sources. Constructed wetlands, in contrast to natural wetlands, are human-made systems that are designed, bu...

  12. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    Science.gov (United States)

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  13. Effects of brine contamination from energy development on wetland macroinvertebrate community structure in the Prairie Pothole Region

    Science.gov (United States)

    Preston, Todd M.; Borgreen, Michael J.; Ray, Andrew M.

    2018-01-01

    Wetlands in the Prairie Pothole Region (PPR) of North America support macroinvertebrate communities that are integral to local food webs and important to breeding waterfowl. Macroinvertebrates in PPR wetlands are primarily generalists and well adapted to within and among year changes in water permanence and salinity. The Williston Basin, a major source of U.S. energy production, underlies the southwest portion of the PPR. Development of oil and gas results in the coproduction of large volumes of highly saline, sodium chloride dominated water (brine) and the introduction of brine can alter wetland salinity. To assess potential effects of brine contamination on macroinvertebrate communities, 155 PPR wetlands spanning a range of hydroperiods and salinities were sampled between 2014 and 2016. Brine contamination was documented in 34 wetlands with contaminated wetlands having significantly higher chloride concentrations, specific conductance and percent dominant taxa, and significantly lower taxonomic richness, Shannon diversity, and Pielou evenness scores compared to uncontaminated wetlands. Non-metric multidimensional scaling found significant correlations between several water quality parameters and macroinvertebrate communities. Chloride concentration and specific conductance, which can be elevated in naturally saline wetlands, but are also associated with brine contamination, had the strongest correlations. Five wetland groups were identified from cluster analysis with many of the highly contaminated wetlands located in a single cluster. Low or moderately contaminated wetlands were distributed among the remaining clusters and had macroinvertebrate communities similar to uncontaminated wetlands. While aggregate changes in macroinvertebrate community structure were observed with brine contamination, systematic changes were not evident, likely due to the strong and potentially confounding influence of hydroperiod and natural salinity. Therefore, despite the observed

  14. Classical altitude training.

    Science.gov (United States)

    Friedmann-Bette, B

    2008-08-01

    For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of >or=1800-2700 m for 3-4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration >or=3 weeks at an altitude >or=2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.

  15. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  16. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    Science.gov (United States)

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  17. Why are wetlands important?

    Science.gov (United States)

    Wetlands are among the most productive ecosystems in the world, comparable to rain forests and coral reefs. An immense variety of species of microbes, plants, insects, amphibians, reptiles, birds, fish, and mammals can be part of a wetland ecosystem.

  18. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  19. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  20. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  1. High altitude illness

    Science.gov (United States)

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  2. Endurance training at altitude.

    Science.gov (United States)

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training.

  3. Altitude and endurance training.

    Science.gov (United States)

    Rusko, Heikki K; Tikkanen, Heikki O; Peltonen, Juha E

    2004-10-01

    The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (altitude training period (training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.

  4. Changes of hydrological environment and their influences on coastal wetlands in the southern Laizhou Bay, China.

    Science.gov (United States)

    Zhang, Xuliang; Zhang, Yuanzhi; Sun, Hongxia; Xia, Dongxing

    2006-08-01

    The structure and function of the coastal wetland ecosystem in the southern Laizhou Bay have been changed greatly and influenced by regional hydrological changes. The coastal wetlands have degraded significantly during the latest 30 years due to successive drought, decreasing of runoff, pollution, underground saline water intrusion, and aggravating marine disasters such as storm tides and sea level rising. Most archaic lakes have vanished, while artificial wetlands have been extending since natural coastal wetlands replaced by salt areas and ponds of shrimps and crabs. The pollution of sediments in inter-tidal wetlands and the pollution of water quality in sub-tidal wetlands are getting worse and therefore "red tides" happen more often than before. The biodiversity in the study area has been decreased. Further studies are still needed to protect the degraded coastal wetlands in the area.

  5. Effects of water level on three wetlands soil seed banks on the Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Miaojun Ma

    Full Text Available BACKGROUND: Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. METHODOLOGY: We examined the effects of water level (0 cm, 5 cm and 10 cm on seed germination and seedling establishment from soil seed banks at 0-5 cm and 5-10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. PRINCIPAL FINDINGS: Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. CONCLUSIONS/SIGNIFICANCE: Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank.

  6. Microbial diversity and carbon cycling in San Francisco Bay wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled the diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.

  7. Methane emissions from different coastal wetlands in New England, US

    Science.gov (United States)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  8. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  9. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  10. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  11. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  12. Pipeline corridors through wetlands

    International Nuclear Information System (INIS)

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity

  13. Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration

    Directory of Open Access Journals (Sweden)

    Marcelo Ardón

    2017-07-01

    Full Text Available Coastal wetland restoration is an important tool for climate change adaptation and excess nutrient runoff mitigation. However, the capacity of restored coastal wetlands to provide multiple ecosystem services is limited by stressors, such as excess nutrients from upstream agricultural fields, high nutrient legacies on-site, and rising salinities downstream. The effects of these stressors are exacerbated by an accelerating hydrologic cycle, expected to cause longer droughts punctuated by more severe storms. We used seven years of surface water and six years of soil solution water chemistry from a large (440 ha restored wetland to examine how fertilizer legacy, changes in hydrology, and drought-induced salinization affect dissolved nutrient and carbon concentrations. To better understand the recovery trajectory of the restored wetland, we also sampled an active agricultural field and two mature forested wetlands. Our results show that nitrogen (N and phosphorus (P concentrations in soil solution were 2–10 times higher in the restored wetland compared to two mature forested wetlands, presumably due to legacy fertilizer mobilized by reflooding. Despite elevated nutrient concentrations relative to reference wetlands, the restored wetland consistently attenuated N and P pulses delivered from an upstream farm. Even with continued loading, N and P concentrations in surface water throughout the restored wetland have decreased since the initial flooding. Our results suggest that high nutrient concentrations and export from wetlands restored on agricultural lands may be a severe but temporary problem. If field to wetland conversion is to become a more widespread method for ameliorating nutrient runoff and adapting coastal plain ecosystems to climate change, we should adopt new methods for minimizing the initial export phase of wetland restoration efforts.

  14. High altitude organic gold

    DEFF Research Database (Denmark)

    Pouliot, Mariève; Pyakurel, Dipesh; Smith-Hall, Carsten

    2018-01-01

    Ethnopharmacological relevance Ophiocordyceps sinensis (Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora, a high altitude Himalayan fungus-caterpillar product found in alpine meadows in China, Bhutan, Nepal, and India, has been used in the Traditional Chinese Medicine system for over 2000 years...

  15. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  16. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  17. Recreating wetland ecosystems in an oil sands disturbed landscape : Suncor consolidated-tailings demonstration wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Daly, C. [Suncor Energy, Fort McMurray, AB (Canada). Aquatic Reclamation Research; Tedder, W.; Marlowe, P. [Golder Associates Ltd., Calgary, AB (Canada). Oil Sands Div.

    2009-10-01

    Open pit oil sands mining involves the disturbance of thin overburden covers of Boreal forest lands that must be returned to equivalent land capability after mining activities have ceased. Before mining starts, any wetlands are drained, timber is harvested, and peat, topsoils and subsoils are stockpiled for later use. This article discussed wetland reclamation activities conducted by Suncor Energy at its open pit mining operations. Research facilities were constructed in order to determine if wetlands constructed with consolidated tailings (CT) and pond effluent water (PEW) were able to support a sustainable vegetation community. Thirty-three cat-tail plots were established at the facility as well as unplanted plots in order to determine how quickly natural establishment occurred. Shoreline plug transplants and transplants from a natural saline lake were also introduced. Within 5 years, over 23 plant species had naturally colonized the CT wetlands. However, diversity was lower in CT and PEW-constructed wetlands. It was concluded that the application of a native peat-mineral mix soil may help to increase plant diversity. 20 refs., 5 figs.

  18. Surficial and vertical distribution of heavy metals in different estuary wetlands in the Pearl river, South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honggang; Cui, Baoshan [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing (China); Zhang, Kejiang [Xinjiang Research Center of Water and Wastewater Treatment, Xinjiang Deland Co., LTD., Urumqi (China)

    2012-10-15

    A total of 87 soil profiles sampled from five types of wetlands in the Pearl River estuary were analyzed to investigate the surficial and vertical distributions of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn). The results show that wetlands directly connected with rivers (e.g., riparian wetlands, estuarine wetlands, and mangrove wetlands) has much higher metal concentrations than those indirectly connected with rivers (e.g., pond wetlands and reclaimed wetlands). The river water is the major pollution source for all investigated heavy metals. The vertical distribution of heavy metals can be classified into three patterns: (i) linear distribution pattern. The concentration of heavy metals gradually decreases with an increase in soil depth (for riparian and estuarine wetlands); (ii) irregular and stable pattern (for pond and reclaimed wetlands); and (iii) middle enrichment pattern (for mangrove wetlands). In addition to river-borne inputs, a variety of vegetation composition, hydraulic conditions, and human activities also contribute to the variation in distribution of heavy metals in different wetlands. Soil properties (e.g., particle size, pH, salinity, and SOM) also affect the distribution of trace metals in each soil layer. The major pollution source of heavy metals is industrial wastewater. Other sources include agriculture and domestic premises, and atmospheric deposition. This study provides a sound basis for the risk assessment of heavy metals in the studied wetlands and for wetland conservation in general. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Altitude Compensating Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  20. [Arterial hypertension due to altitude].

    Science.gov (United States)

    Domej, Wolfgang; Trapp, Michael; Miggitsch, Eva Maria; Krakher, Tiziana; Riedlbauer, Rita; Roher, Peter; Schwaberger, Günther

    2008-01-01

    The behavior of blood pressure under hypoxic conditions depends on individual factors, altitude and duration of stay at altitude. While most humans are normotensive at higher altitudes, a few will react with moderate hypertension or hypotension. Excessive elevation of arterial blood pressure is not even to be expected below 4,000 m. Rather, several weeks' stay at higher altitude will decrease systolic and diastolic blood pressure at rest as well as during physical exertion. A high-altitude treatment for rehabilitation purposes at moderate altitude may be recommended for patients with cardio-circulatory disorders. Improvements can last several months even after returning to accustomed altitudes. Furthermore, endurance-trained hypertensive patients with pharmacologically controlled arterial blood pressure might be able to participate in mountain treks without additional health risk.

  1. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross

    1990-02-01

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  2. Trace gas emissions from burning Florida wetlands

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross

    1990-01-01

    Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.

  3. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  4. Wetlands and infectious diseases

    Directory of Open Access Journals (Sweden)

    Robert H. Zimmerman

    2001-01-01

    Full Text Available There is a historical association between wetlands and infectious disease that has led to the modification of wetlands to prevent disease. At the same time there has been the development of water resources projects that increase the risk of disease. The demand for more water development projects and the increased pressure to make natural wetlands economically beneficial creates the need for an ecological approach to wetland management and health assessment. The environmental and health interactions are many. There is a need to take into account the landscape, spatial boundaries, and cross-boundary interactions in water development projects as well as alternative methods to provide water for human needs. The research challenges that need to be addressed are discussed.

  5. Coastal Wetland Restoration Bibliography

    National Research Council Canada - National Science Library

    Yozzo, David

    1997-01-01

    This bibliography was compiled to provide biologists, engineers, and planners at Corps Districts and other agencies/ institutions with a guide to the diverse body of literature on coastal wetland restoration...

  6. Principles of Wetland Restoration

    Science.gov (United States)

    the return of a degraded ecosystem to a close approximation of its remaining natural potential - is experiencing a groundswell of support across the United States. The number of stream, river, lake, wetland and estuary restoration projects grows yearly

  7. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  8. Hydrologic and Vegetative Removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands

    Science.gov (United States)

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Oates, Stori C.; Miller, Melissa A.; Conrad, Patricia A.; Shapiro, Karen; Hardin, Dane; Dominik, Clare; Melli, Ann; Jessup, David A.

    2013-01-01

    Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality. PMID:23315738

  9. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  10. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  11. Climatic Alterations of Wetlands: Conservation and Adaptation Practices in Bangladesh

    Science.gov (United States)

    Siddiquee, S. A.

    2016-02-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  12. [Research progress on wetland ecotourism].

    Science.gov (United States)

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  13. Water management can reinforce plant competition in salt-affected semi-arid wetlands

    Science.gov (United States)

    Coletti, Janaine Z.; Vogwill, Ryan; Hipsey, Matthew R.

    2017-09-01

    The diversity of vegetation in semi-arid, ephemeral wetlands is determined by niche availability and species competition, both of which are influenced by changes in water availability and salinity. Here, we hypothesise that ignoring physiological differences and competition between species when managing wetland hydrologic regimes can lead to a decrease in vegetation diversity, even when the overall wetland carrying capacity is improved. Using an ecohydrological model capable of resolving water-vegetation-salt feedbacks, we investigate why water surface and groundwater management interventions to combat vegetation decline have been more beneficial to Casuarina obesa than to Melaleuca strobophylla, the co-dominant tree species in Lake Toolibin, a salt-affected wetland in Western Australia. The simulations reveal that in trying to reduce the negative effect of salinity, the management interventions have created an environment favouring C. obesa by intensifying the climate-induced trend that the wetland has been experiencing of lower water availability and higher root-zone salinity. By testing alternative scenarios, we show that interventions that improve M. strobophylla biomass are possible by promoting hydrologic conditions that are less specific to the niche requirements of C. obesa. Modelling uncertainties were explored via a Markov Chain Monte Carlo (MCMC) algorithm. Overall, the study demonstrates the importance of including species differentiation and competition in ecohydrological models that form the basis for wetland management.

  14. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  15. Wetlands & Deepwater Habitats - MO 2012 East West Gateway Wetlands (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Cowardin’s Classification of Wetlands and Deep Water Habitats of the United States (http://www.npwrc.usgs.gov/resource/wetlands/classwet/index.htm), together with...

  16. A decision support system for adaptive real-time management ofseasonal wetlands in California

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark

    2001-10-16

    This paper describes the development of a comprehensive flow and salinity monitoring system and application of a decision support system (DSS) to improve management of seasonal wetlands in the San Joaquin Valley of California. The Environmental Protection Agency regulates salinity discharges from non-point sources to the San Joaquin River using a procedure known as the Total Maximum Daily Load (TMDL) to allocate the assimilative capacity of the River for salt among watershed sources. Management of wetland sources of salt load will require the development of monitoring systems, more integrative management strategies and coordination with other entities. To obtain local cooperation the Grassland Water District, whose primary function is to supply surface water to private duck clubs and managed wetlands, needs to communicate to local landowners the likely impacts of salinity regulation on the long term health and function of wildfowl habitat. The project described in this paper will also provide this information. The models that form the backbone of the DSS develop salinity balances at both a regional and local scale. The regional scale concentrates on deliveries to and exports from the Grasland Water District while the local scale focuses on an individual wetland unit where more intensive monitoring is being conducted. The design of the DSS is constrained to meet the needs of busy wetland managers and is being designed from the bottom up utilizing tools and procedures familiar to these individuals.

  17. Training at altitude in practice.

    Science.gov (United States)

    Dick, F W

    1992-10-01

    There can be little doubt that training at altitude is fundamental to preparing an athlete for competition at altitude. However the value of training at altitude for competition at sea level appears on the one hand to lack total acceptance amongst sports scientists; and on the other to hold some cloak of mystery for coaches who have yet to enjoy first hand experience. The fact is that very few endurance athletes will ignore the critical edge which altitude training affords. Each fraction of a percentage of performance advantage gained through methods which are within the rules of fair play in sport, may shift the balance between failure and achievement. Moreover, there is growing support for application of training at altitude for speed-related disciplines. This paper aims to demystify the subject by dealing with practical aspects of training at altitude. Such aspects include a checklist of what should and should not be done at altitude, when to use altitude relative to target competitions, and specific training examples.

  18. Wetlands Restoration Definitions and Distinctions

    Science.gov (United States)

    Ecological restoration is a valuable endeavor that has proven very difficult to define. The term indicates that degraded and destroyed natural wetland systems will be reestablished to sites where they once existed. But, what wetland ecosystems are we talki

  19. Wetland Program Development Grants (WPDGs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  20. Wetland Restoration and Sediment Removal

    Data.gov (United States)

    Department of the Interior — In 2008, Minnesota’s Private Lands Program and Wetland Management Districts began to compare different methods of restoring prairie pothole wetlands to see if there...

  1. Wetlands: The changing regulatory landscape

    International Nuclear Information System (INIS)

    Glick, R.M.

    1993-01-01

    Protection of wetlands became a national issue in 1988 when President George Bush pledged no net loss of wetlands in the US under his open-quotes environmental presidency.close quotes As wetlands became a national issue, the job of protecting them became an obligation for many groups, including hydro-power developers. Now, when a site selected for development includes an area that may be classified as a wetland, the developer quickly discovers the importance of recognizing and protecting these natural habitats. Federal legislation severely limits development of wetland, and most states increase the restrictions with their own wetlands regulations. The difficulty of defining wetlands complicates federal and state enforcement. Land that appears to be dry may in fact be classified as a wetland. So, even if a site appears dry, potential hydro developers must confirm whether or not any jurisdictional wetlands are present. Regulated lands include much more than marshes and swamps. Further complicating the definition of wetlands, a recent court decision found that even artificially created wetlands, such as man-made ponds, may be subject to regulation. Hydro developers must be aware of current regulatory requirements before they consider development of any site that may contain wetlands. To be certain that a site is open-quotes buildableclose quotes from the standpoint of wetlands regulation, a developer must verify (with the help of state agencies) that the property does not contain any jurisdictional wetlands. If it does, the regulatory process before development becomes much more complicated. For the short term, uncertainty abounds and extreme caution is in order. Because the regulatory process has become so complex and an agreeable definition of wetlands so elusive, the trend among the Corps and collaborating agencies is to constrict nationwide permits in favor of narrowing the jurisdictional definition of wetlands

  2. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  3. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  4. Global warming and prairie wetlands

    International Nuclear Information System (INIS)

    Poiani, K.A.; Johnson, W.C.

    1991-01-01

    In this article, the authors discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns and waterfowl habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model

  5. Wetland soils, hydrology and geomorphology

    Science.gov (United States)

    C. Rhett Jackson; James A. Thompson; Randall K. Kolka

    2014-01-01

    The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...

  6. Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: implications for the filtration functions of wetlands.

    Science.gov (United States)

    Liu, Jin; Ye, Siyuan; Yuan, Hongming; Ding, Xigui; Zhao, Guangming; Yang, Shixiong; He, Lei; Wang, Jin; Pei, Shaofeng; Huang, Xiaoyu

    2018-02-01

    Grain size and concentrations of organic carbon (Corg) and particulate metals (PMs) As, Cd, Cr, Cu, Hg, Pb, Zn, Al, Fe, and Mn of 373 surface sediment samples, salinities in 67 surface water samples, were analyzed in various environments, including the upper delta plain wetlands (UDPW), its adjacent shallow sea wetland (SSW) in the Liaodong Bay, and river channels that are running through the Liaohe Delta, to evaluate the spatial distribution, transportation environmental dynamics of metals, and the provenance of metal pollution and assess the filtration functions of wetlands. The concentrations of PMs for UDPW were generally higher by a factor of ~ 10-22% compared with its analogues in SSW, suggesting the accumulation of PMs within the UDPW indicates that the UDPW systems are efficiently physical and chemical traps for PMs of anthropogenic sources by retaining and storing pollutants flowing into the sea. However, there was sever sewage irrigation-induced Cd pollution with a geo-accumulation index of 0.62-3.11 in an area of ~ 86 km 2 of the adjacent shallow sea wetland, where large amount wetlands were historically moved for agriculture in the UDPW. Remarkably, the distributions of PMs were controlled by salinity-induced desorption and re-adsorption mechanisms and significantly dispersed the contamination coverage by the three-dimensional hydrodynamic and sedimentation processes that dominated by inputs of freshwater and ocean dynamics including NE-SW tidal currents and NE-E longshore drifts in the SSW of the Liaodong Bay. A high agreement between the UDPW and the SSW datasets in principal component analysis essentially reflects that the characteristics of PM sources in the SSW were actually inherited from that in the UDPW, with a much closer relationship among metals, organic matter, and fine particulates in SSW than that of UDPW, which was judged by their correlation coefficient range of 0.406-0.919 in SSW against those of 0.042-0.654 in UDPW.

  7. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    Energy Technology Data Exchange (ETDEWEB)

    Dodla, Syam K. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States); Wang, Jim J. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States)], E-mail: jjwang@agctr.lsu.edu; DeLaune, Ron D. [Wetland Biogeochemistry Institute, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803 (United States); Cook, Robert L. [Chemistry Department, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2008-12-15

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by {sup 13}C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N{sub 2}O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO{sub 3}{sup -} at FM and potential for emission of N{sub 2}O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO{sub 3}{sup -}-N L{sup -1} increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted

  8. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    International Nuclear Information System (INIS)

    Dodla, Syam K.; Wang, Jim J.; DeLaune, Ron D.; Cook, Robert L.

    2008-01-01

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by 13 C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N 2 O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO 3 - at FM and potential for emission of N 2 O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO 3 - -N L -1 increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted Mississippi River water used for coastal

  9. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Science.gov (United States)

    2012-10-16

    ..., consistent with sound principles of fish and wildlife management, conservation, legal mandates, and our... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland Management District, SD; Final Comprehensive Conservation Plan and Finding of No Significant Impact for...

  10. Constructed wetlands : the Canadian context

    Energy Technology Data Exchange (ETDEWEB)

    Speer, S.; Champagne, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering

    2006-07-01

    Large volumes of wastewater from livestock and production facilities must be treated to minimize the contamination of waterways in agricultural areas. This paper investigated the use of constructed wetlands as a lower-cost and efficient method of treating agricultural wastewaters. The study found that while constructed wetlands required limited maintenance, temperature dependency of the constructed wetlands systems is a limiting factor in their widespread implementation. Lower operating temperatures are only overcome by constructing larger wetlands systems, which require a substantial amount of land. The Canadian climate poses significant challenges to the implementation of constructed wetlands, which become inoperative during winter months. Plants and bacteria normally become dormant or die during winter months, which can create a lag in wetland treatment during the initial months of operation in the Spring. Snowmelt and added rainfall in the Spring can also create a high flow within the wetland cells, as many constructed wetlands rely on runoff as a feed source. Washout of bacteria can occur. Wastewater storage systems or further engineering of the wetlands may be required. It was concluded that insulating wetland cells will maintain a warmer operating temperature, while the addition of an aeration system will increase the treatment efficiency of the wetland during winter months. 17 refs., 5 tabs., 2 figs.

  11. Acute high-altitude sickness

    Directory of Open Access Journals (Sweden)

    Andrew M. Luks

    2017-02-01

    Full Text Available At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases.

  12. Three approaches to the classification of inland wetlands. [Dismal Swamp, Tennessee, and Florida

    Science.gov (United States)

    Gammon, P. T.; Malone, D.; Brooks, P. D.; Carter, V.

    1977-01-01

    In the Dismal Swamp project, seasonal, color-infrared aerial photographs and LANDSAT digital data were interpreted for a detailed analysis of the vegetative communities in a large, highly altered wetland. In Western Tennessee, seasonal high altitude color-infrared aerial photographs provided the hydrologic and vegetative information needed to map inland wetlands, using a classification system developed for the Tennessee Valley Region. In Florida, color-infrared aerial photographs were analyzed to produce wetland maps using three existing classification systems to evaluate the information content and mappability of each system. The methods used in each of the three projects can be extended or modified for use in the mapping of inland wetlands in other parts of the United States.

  13. Microbiology of wetlands

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Dedysh, S.N.

    2013-01-01

    Watersaturated soil and sediment ecosystems (i.e. wetlands) are ecologically as well as economically important systems due to their high productivity, their nutrient (re)cycling capacities and their prominent contribution to global greenhouse gas emissions. Being on the transition between

  14. Vegetation of wetlands of the prairie pothole region

    Science.gov (United States)

    Kantrud, H.A.; Millar, J.B.; Van Der Valk, A.G.; van der Valk, A.

    1989-01-01

    Five themes dominate the literature dealing with the vegetation of palustrine and lacustrine wetlands of the prairie pothole region: environmental conditions (water or moisture regime, salinity), agricultural disturbances (draining, grazing, burning, sedimentation, etc.), vegetation dynamics, zonation patterns, and classification of the wetlands.The flora of a prairie wetland is a function of its water regime, salinity, and disturbance by man. Within a pothole, water depth and duration determines distribution of species. In potholes deep enough to have standing water even during droughts, the central zone will be dominated by submersed species (open water). In wetlands that go dry during periods of drought or annually, the central zone will be dominated by either tall emergent species (deep marsh) or midheight emergents (shallow marsh), respectively. Potholes that are only flooded briefly in the spring are dominated by grasses, sedges, and forbs (wet meadow). Within a pothole, the depth of standing water in the deepest, usually central, part of the basin determines how many zones will be present. Lists of species associated with different water regimes and salinity levels are presented.Disturbances due to agricultural activities have impacted wetlands throughout the region. Drainage has eliminated many potholes, particularly in the southern and eastern parts of the region. Grazing, mowing, and burning have altered the composition of pothole vegetation. The composition of different vegetation types impacted by grazing, haying, and cultivation is presented in a series of tables. Indirect impacts of agriculture (increased sediment, nutrient, and pesticide inputs) are widespread over the region, but their impacts on the vegetation have never been studied.Because of the periodic droughts and wet periods, many palustrine and lacustrine wetlands undergo vegetation cycles associated with water-level changes produced by these wet-dry cycles. Periods of above normal

  15. Altitude training improves glycemic control.

    Science.gov (United States)

    Chen, Shu-Man; Lin, Hsueh-Yi; Kuo, Chia-Hua

    2013-08-31

    Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate the shortfall caused by reduced fatty acid oxidation. Short-term moderate altitude exposure plus endurance physical activity has been found to improve glucose tolerance (not fasting glucose) in humans, which is associated with the improvement in the whole-body insulin sensitivity. However, most of people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness and insulin resistance. There is a wide variation among individuals in response to the altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity was not apparent in those individuals with low baseline dehydroepiandrosterone sulfate (DHEA-S) concentration. In rats, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can also improve insulin sensitivity, secondary to an effective suppression of adiposity. After prolonged hypoxia training, obese abnormality in upregulated baseline levels of AMP-activated protein kinase (AMPK) and AS160 phosphorylation in skeletal muscle can be reversed. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on the favorable change in body composition. Altitude training can exert strong impact on our metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting metabolic syndromes.

  16. Adaptive responses to salinity stress across multiple life stages in anuran amphibians.

    Science.gov (United States)

    Albecker, Molly A; McCoy, Michael W

    2017-01-01

    In many regions, freshwater wetlands are increasing in salinity at rates exceeding historic levels. Some freshwater organisms, like amphibians, may be able to adapt and persist in salt-contaminated wetlands by developing salt tolerance. Yet adaptive responses may be more challenging for organisms with complex life histories, because the same environmental stressor can require responses across different ontogenetic stages. Here we investigated responses to salinity in anuran amphibians: a common, freshwater taxon with a complex life cycle. We conducted a meta-analysis to define how the lethality of saltwater exposure changes across multiple life stages, surveyed wetlands in a coastal region experiencing progressive salinization for the presence of anurans, and used common garden experiments to investigate whether chronic salt exposure alters responses in three sequential life stages (reproductive, egg, and tadpole life stages) in Hyla cinerea , a species repeatedly observed in saline wetlands. Meta-analysis revealed differential vulnerability to salt stress across life stages with the egg stage as the most salt-sensitive. Field surveys revealed that 25% of the species known to occur in the focal region were detected in salt-intruded habitats. Remarkably, Hyla cinerea was found in large abundances in multiple wetlands with salinity concentrations 450% higher than the tadpole-stage LC 50 . Common garden experiments showed that coastal (chronically salt exposed) populations of H. cinerea lay more eggs, have higher hatching success, and greater tadpole survival in higher salinities compared to inland (salt naïve) populations. Collectively, our data suggest that some species of anuran amphibians have divergent and adaptive responses to salt exposure across populations and across different life stages. We propose that anuran amphibians may be a novel and amenable natural model system for empirical explorations of adaptive responses to environmental change.

  17. Competition, salinity, and clonal growth in native and introduced irises.

    Science.gov (United States)

    Mopper, Susan; Wiens, Karen C; Goranova, Greta A

    2016-09-01

    Iris pseudacorus spread rapidly into North America after introduction from Europe in the 1800s and now co-occurs with native I. hexagona in freshwater Louisiana wetlands. Native irises support and interact with multiple trophic levels, whereas I. pseudacorus is classified an invasive pest because it grows aggressively, reduces biodiversity, and displaces native vegetation. Salinity levels are increasing in coastal wetlands worldwide. We examined how salt-stress affects competitive interactions between these conspecifics. We established a three-way full-factorial common-garden experiment that included species (I. pseudacorus, I. hexagona), competition (no competition, intraspecific competition, and interspecific competition), and salinity (0, 4, 8 parts per thousand NaCl), with six replicates per treatment. After 18 mo, Iris pseudacorus produced much more biomass than the native species did (F1, 92 = 71.5, P Interspecific competition did not affect the introduced iris, but biomass of the native was strongly reduced (competition × species interaction: F2, 95 = 76.7, P = 0.002). Salinity significantly reduced biomass of both species (F2, 92 = 21.8, P competitive advantage over the native, regardless of environmental salinity levels. Based on patterns in clonal reproduction, the introduced iris could potentially threaten native iris populations. We are currently investigating seed production and mortality during competition and stress because both clonal and sexual reproduction must be considered when predicting long-term population dynamics. © 2016 Botanical Society of America.

  18. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  19. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  20. 40 CFR 258.12 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... degraded wetlands or creation of man-made wetlands); and (5) Sufficient information is available to make a... expansions shall not be located in wetlands, unless the owner or operator can make the following...

  1. Restoration of ailing wetlands.

    Directory of Open Access Journals (Sweden)

    Oswald J Schmitz

    2012-01-01

    Full Text Available It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide.

  2. Wetlands - an underestimated economic resource?

    International Nuclear Information System (INIS)

    Gren, I.M.; Soederqvist, T.

    1996-01-01

    Wetlands are producing several valuable resources like fish, potential for recreation, water cleaning etc. These resources, and methods for assigning an economic value to them, are discussed in this article. Swedish and foreign empirical studies of the economic value of wetlands are reviewed. This review shows that socioeconomic estimates of the value of wetlands risk to be misleading if the direct and indirect values are not properly accounted for. 37 refs

  3. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  4. Literature Review and Database of Relations Between Salinity and Aquatic Biota: Applications to Bowdoin National Wildlife Refuge, Montana

    Science.gov (United States)

    Gleason, Robert A.; Tangen, Brian A.; Laubhan, Murray K.; Finocchiaro, Raymond G.; Stamm, John F.

    2009-01-01

    Long-term accumulation of salts in wetlands at Bowdoin National Wildlife Refuge (NWR), Mont., has raised concern among wetland managers that increasing salinity may threaten plant and invertebrate communities that provide important habitat and food resources for migratory waterfowl. Currently, the U.S. Fish and Wildlife Service (USFWS) is evaluating various water management strategies to help maintain suitable ranges of salinity to sustain plant and invertebrate resources of importance to wildlife. To support this evaluation, the USFWS requested that the U.S. Geological Survey (USGS) provide information on salinity ranges of water and soil for common plants and invertebrates on Bowdoin NWR lands. To address this need, we conducted a search of the literature on occurrences of plants and invertebrates in relation to salinity and pH of the water and soil. The compiled literature was used to (1) provide a general overview of salinity concepts, (2) document published tolerances and adaptations of biota to salinity, (3) develop databases that the USFWS can use to summarize the range of reported salinity values associated with plant and invertebrate taxa, and (4) perform database summaries that describe reported salinity ranges associated with plants and invertebrates at Bowdoin NWR. The purpose of this report is to synthesize information to facilitate a better understanding of the ecological relations between salinity and flora and fauna when developing wetland management strategies. A primary focus of this report is to provide information to help evaluate and address salinity issues at Bowdoin NWR; however, the accompanying databases, as well as concepts and information discussed, are applicable to other areas or refuges. The accompanying databases include salinity values reported for 411 plant taxa and 330 invertebrate taxa. The databases are available in Microsoft Excel version 2007 (http://pubs.usgs.gov/sir/2009/5098/downloads/databases_21april2009.xls) and contain

  5. Soil and water characteristics of a young surface mine wetland

    Science.gov (United States)

    Andrew Cole, C.; Lefebvre, Eugene A.

    1991-05-01

    Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.

  6. Groundwater salinity study in the Mekong Delta using isotope techniques

    International Nuclear Information System (INIS)

    Le Van Khoi, Nguyen Kien Chinh; Do Tien Hung

    2002-01-01

    Environmental isotopes D, 18 O and chemical composition were used for study of recharge and salinization of groundwater in the are located between Bassac and Mekong Rivers. The results showed that: (a) Pleistocene aquifers are recharged through flood plains and outcrops located at the same altitude. The sanility of groundwater in these aquifers is mostly due to dissolution of the aquifer material, (b) Pliocene and Miocene aquifers receive recharge through outcrops located at the higher altitude on the northeast extension of the Delta and Cambodia. The salinity of groundwater in the coastal region of the aquifer is attributable to sea water intrusion. There appears to be significant retention of sea water in the coastal sediment during intrusion. (Author)

  7. Roofvogels in de Nederlandse wetlands

    NARCIS (Netherlands)

    Dijkstra, Cornelis; Beemster, Nicolaas; Zijlstra, Menno; van Eerden, M; Daan, Serge

    1995-01-01

    Roofvogels in de Nederlandse wetlands (1995). C. Dijkstra, N. Beemster, M. Zijlstra, M. van Eerden, S. Daan RWS, RDIJ, Flevobericht nr. 381. ISBN 90-369-1147-8. Dit Flevobericht vormt de eindrapportage van het onderzoeksproject " De betekenis van grootschalige wetlands voor roofvogels". De verwerkte

  8. Carbon Storage in US Wetlands.

    Science.gov (United States)

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. ...

  9. Carbon dynamics in wetland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, K.; Ciborowski, J.; Gardner-Costa, J.; Slama, C. [Windsor Univ., ON (Canada); Daly, C.; Hornung, J. [Suncor Energy, Calgary, AB (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Frederick, K.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Liber, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Smits, J. [Calgary Univ., AB (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This study focused on the reclamation of wetland ecosystems impacted by oil sands development in the boreal wetlands. Although these wetlands play an important role in global carbon balance, their ecosystem function is compromised by direct and regional anthropogenic disturbance and climate change. Large oil sand mining areas that require reclamation generate substantial quantities of extraction process-affected materials. In order to determine if the reclaimed wetlands were restored to equivalent ecosystem function, this study evaluated carbon flows and food web structure in oil sands-affected wetlands. The purpose was to determine whether a prescribed reclamation strategy or topsoil amendment accelerates reclaimed wetland development to produce self-sustaining peatlands. In addition to determining carbon fluxes, this study measured compartment standing stocks for residual hydrocarbons, organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, detritus, zoobenthos and aquatic-terrestrial exports. Most biotic 28 compartments differed between oil-sands-affected and reference wetlands, but the difference lessened with age. Macroinvertebrate trophic diversity was lower in oil sands-affected wetlands. Peat amendment seemed to speed convergence for some compartments but not others. These results were discussed in the context of restoration of ecosystem function and optimization of reclamation strategies.

  10. Estimating environmental conditions affecting protozoal pathogen removal in surface water wetland systems using a multi-scale, model-based approach.

    Science.gov (United States)

    Daniels, Miles E; Hogan, Jennifer; Smith, Woutrina A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Shapiro, Karen; Los Huertos, Marc; Conrad, Patricia A; Dominik, Clare; Watson, Fred G R

    2014-09-15

    Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii are waterborne protozoal pathogens distributed worldwide and empirical evidence suggests that wetlands reduce the concentrations of these pathogens under certain environmental conditions. The goal of this study was to evaluate how protozoal removal in surface water is affected by the water temperature, turbidity, salinity, and vegetation cover of wetlands in the Monterey Bay region of California. To examine how protozoal removal was affected by these environmental factors, we conducted observational experiments at three primary spatial scales: settling columns, recirculating wetland mesocosm tanks, and an experimental research wetland (Molera Wetland). Simultaneously, we developed a protozoal transport model for surface water to simulate the settling columns, the mesocosm tanks, and the Molera Wetland. With a high degree of uncertainty expected in the model predictions and field observations, we developed the model within a Bayesian statistical framework. We found protozoal removal increased when water flowed through vegetation, and with higher levels of turbidity, salinity, and temperature. Protozoal removal in surface water was maximized (~0.1 hour(-1)) when flowing through emergent vegetation at 2% cover, and with a vegetation contact time of ~30 minutes compared to the effects of temperature, salinity, and turbidity. Our studies revealed that an increase in vegetated wetland area, with water moving through vegetation, would likely improve regional water quality through the reduction of fecal protozoal pathogen loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  12. Climate change and intertidal wetlands.

    Science.gov (United States)

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  13. Impact of municipal wastewater effluent on seed bank response and soils excavated from a wetland impoundment

    Science.gov (United States)

    Finocchiaro, R.G.; Kremer, R.J.; Fredrickson, L.H.

    2009-01-01

    Intensive management of wetlands to improve wildlife habitat typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased societal, industrial, and agricultural demands for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is commonly overlooked as an influence on wetland soil seed banks and soils. In four separate greenhouse trials conducted over a 2-yr period, we examined the effects of municipal wastewater effluent (WWE) on vegetation of wetland seed banks and soils excavated from a wildlife management area in Missouri, USA. We used microcosms filled with one of two soil materials and irrigated with WWE, Missouri River water, or deionized water to simulate moist-soil conditions. Vegetation that germinated from the soil seed bank was allowed to grow in microcosms for approximately 100 d. Vegetative taxa richness, plant density, and biomass were significantly reduced in WWE-irrigated soil materials compared with other water sources. Salinity and sodicity rapidly increased in WWE-irrigated microcosms and probably was responsible for inhibiting germination or interfering with seedling development. Our results indicate that irrigation with WWE promoted saline-sodic soil conditions, which alters the vegetation community by inhibiting germination or seedling development. ?? 2009, The Society of Wetland Scientists.

  14. Predicted water quality of oil sands reclamation wetlands : impact of physical design and hydrology

    International Nuclear Information System (INIS)

    2006-01-01

    Although engineered wetlands can be used as treatment systems in the reclamation of oil sands mines, a variety of factors must be considered to improve the biological functioning of many oil sands reclamation landscapes. Key factors in the control of concentrations of dissolved substances include area, depth, shape, surrounding landscape material and contributing water quality and quantity. Seasonal cycles of precipitation and ice cover also require consideration in the planning of wetlands ecosystems. This paper presented details of a model designed to predict constituent concentrations in planned wetlands based on probable inflow and processes. Input variables consisted of key substances and hydrological factors that may be encountered on reclaimed landscapes. The model was constructed to perform sensitivity analyses of wetlands with respect to total dissolved solids (TDS), major ions, and naphthenic acids concentrations. Inputs and assumptions drawn from previous environmental impact assessments completed for proposed and approved oil sands projects were used. Results suggested that wetlands volume is an important factor in the moderation of peak flows and substance decay. The predictions generated by the model suggested that wetlands size, tailings and sandcap placement schedules may be manipulated to achieve desired wetlands salinities. It was observed that the proportion of the watershed covered by specific land types can affect both initial and future concentrations. Long-term climate change that results in 15 per cent more or less runoff was predicted to have little effect on wetlands concentrations, although concentrations may rise during periodic droughts. It was concluded that site-specific modelling and careful planning is needed to achieve desired water quality for the creation of engineered wetlands. 18 refs., 3 tabs., 3 figs

  15. Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers

    Science.gov (United States)

    Maie, Nagamitsu; Sekiguchi, Satoshi; Watanabe, Akira; Tsutsuki, Kiyoshi; Yamashita, Youhei; Melling, Lulie; Cawley, Kaelin M.; Shima, Eikichi; Jaffé, Rudolf

    2014-08-01

    Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation-emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here

  16. Wetlands Research Program. Wetland Evaluation Technique (WET). Volume 2. Methodology.

    Science.gov (United States)

    1987-10-01

    to waves taller than I ft? • " Guidelines: 1 "Sufficient" is defined as the height of vegetation or relief multiplied * by length of vegetation or...Sci., Interim Rep. No. 3, Gloucester Point, VA. 52 pp. 203 VI. 4 WET 2.0 Simmons, E. G. 1957. An ecological survey of the Upper Laguna Madre of Texas...A wetland class characterized by vegetation that is 6 m or taller . Fringe Wetland - Fringe wetlands along a channel (i.e.. river, stream, etc.)are

  17. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  18. Application of microwave radiometers for wetlands and estuaries monitoring

    International Nuclear Information System (INIS)

    Shutko, A.; Haldin, A.; Novichikhin, E.

    1997-01-01

    This paper presents the examples of experimental data obtained with airborne microwave radiometers used for monitoring of wetlands and estuaries located in coastal environments. The international team of researchers has successfully worked in Russia, Ukraine and USA. The data presented relate to a period of time between 1990 and 1995. They have been collected in Odessa Region, Black Sea coast, Ukraine, in Regions of Pittsville and Winfield, Maryland, USA, and in Region of St. Marks, Florida, USA. The parameters discussed are a soil moisture, depth to a shallow water table, vegetation index, salinity of water surface

  19. Atrazine remediation in wetland microcosms.

    Science.gov (United States)

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.

  20. Ecological profiles of wetland plant species in the northern Apennines (N. Italy

    Directory of Open Access Journals (Sweden)

    Marcello TOMASELLI

    2003-02-01

    Full Text Available Eighteen selected species occurring in the wetlands of the northern Apennines were studied by the ecological profile method. By this method, it is possible to identify the ecological factors mostly influencing species distribution within a particular vegetation. Moreover, it is possible to evaluate both ecological amplitude and ecological preferences of species. Ecological profiles were built for three factors (altitude, pH and electrical conductivity from a data set of 265 phytosociological relevés, used for altitude, and from a set of 92 measures, carried out in selected sites, for idrochemical variables. By numerical classification, based on chord distance and minimum variance, the ecological species groups for each factor were individuated. Subsequently, they were ordered by correspondence analysis for detecting relationships between ecological groups and classes of factors. By applying a goodness-of-fit test to ecological profiles, the species significantly deviating from uniformity were detected. They can be regarded as indicators for the corresponding ecological factor. We found seven indicator species for altitude (Carex nigra, C. rostrata, Juncus filiformis, J. alpino-articulatus, Eriophorum latifolium, E. angustifolium and Warnstorfia exannulata, four indicator species for electrical conductivity (Campylium stellatum, Carex tumidicarpa, Eriophorum latifolium and Juncus alpino-articulatus and one indicator species for pH (Sphagnum capillifolium. The ecological profiles of the wetland species in the northern Apennines were compared with those reported in literature for the same species from the Alps (namely Dolomites. In this way, a certain degree of ecological shift in several wetland species of the northern Apennines was documented. For altitude, it is possible to explain the shift considering the reduced elevational amplitude of northern Apennine wetlands with respect to those of the Alps. For pH, Sphagnum capillifolium occurs in

  1. The emergence of treatment wetlands

    International Nuclear Information System (INIS)

    Cole, S.

    1998-01-01

    Judging by the growing number of wetlands built for wastewater treatment around the world, this natural technology seems to have firmly established roots. After almost 30 years of use in wastewater treatment, constructed treatment wetlands now number over 500 in Europe and 600 in North America. Marsh-type surface flow systems are most common in North America, but subsurface flow wetlands, where wastewater flows beneath the surface of a gravel-rock bed, predominate in Europe. The inexpensive, low maintenance technology is in high demand in Central America, Eastern Europe, and Asia. New applications, from nitrate-contaminated ground water to effluent from high-intensity livestock operations, are also increasing. But in the United States, treatment-wetland technology has not yet gained national regulatory acceptance. Some states and EPA regions are eager to endorse them, but others are wary of this nontraditional method of treating wastewater. In part, this reluctance exists because the technology is not yet completely understood. Treatment wetlands also pose a potential threat to wildlife attracted to this new habitat -an ecosystem exposed to toxic compounds. New efforts are under way, however, to place the technology onto firmer scientific and regulatory ground. Long-term demonstration and monitoring field studies are currently probing the inner workings of wetlands and their water quality capabilities to provide better data on how to design more effective systems. A recent study of US policy and regulatory issues surrounding treatment wetlands has recommended that the federal government actively promote the technology and clear the regulatory roadblocks to enable wider use. Proponents argue that the net environmental benefits of constructed wetlands, such as restoring habitat and increasing wetlands inventory, should be considered. 8 refs., 6 photos

  2. Using Tradtional Ecological Knowledge to Protect Wetlands: the Swinomish Tribe's Wetland Cultural Assessment Project

    Science.gov (United States)

    Mitchell, T.

    2017-12-01

    "Traditional" wetland physical assessment modules do not adequately identify Tribal cultural values of wetlands and thus wetlands may not be adequately protected for cultural uses. This Swinomish Wetlands Cultural Assessment Project has developed a cultural resource scoring module that can be incorporated into wetland assessments to better inform wetland protections. Local native knowledge was gathered about the traditional uses of 99 native wetland plant species. A cultural scoring matrix was developed based on the presence of traditionally used plants in several use categories including: construction, ceremonial, subsistence, medicinal, common use, plant rarity, and place of value for each wetland. The combined score of the cultural and physcial modules provides an overall wetland score that relates to proscribed buffer protection widths. With this local native knowledge incorporated into wetland assessments, we are protecting and preserving Swinomish Reservation wetlands for both cultural uses and ecological functionality through the Tribe's wetland protection law.

  3. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    Science.gov (United States)

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  4. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  5. Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses.

    Science.gov (United States)

    Ernesto Medina; Elvira Cuevas; Ariel Lugo

    2007-01-01

    Pterocarpus officinalis L. is a dominant tree of freshwater coastal wetlands in the Caribbean and the Guiana regions. It is frequently associated with mangroves in areas with high rainfall and/or surface run-off. We hypothesized that P. officinalis is a freshwater swamp species that when occurring in association with mangroves occupies low-salinity soil microsites, or...

  6. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  7. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  8. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  9. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    Science.gov (United States)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  10. Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient

    Science.gov (United States)

    Osland, Michael J.; Enwright, Nicholas M.; Stagg, Camille L.

    2014-01-01

    Climate gradient-focused ecological research can provide a foundation for better understanding critical ecological transition points and nonlinear climate-ecological relationships, which is information that can be used to better understand, predict, and manage ecological responses to climate change. In this study, we examined the influence of freshwater availability upon the coverage of foundation plant species in coastal wetlands along a northwestern Gulf of Mexico rainfall gradient. Our research addresses the following three questions: (1) what are the region-scale relationships between measures of freshwater availability (e.g., rainfall, aridity, freshwater inflow, salinity) and the relative abundance of foundation plant species in tidal wetlands; (2) How vulnerable are foundation plant species in tidal wetlands to future changes in freshwater availability; and (3) What is the potential future relative abundance of tidal wetland foundation plant species under alternative climate change scenarios? We developed simple freshwater availability-based models to predict the relative abundance (i.e., coverage) of tidal wetland foundation plant species using climate data (1970-2000), estuarine freshwater inflow-focused data, and coastal wetland habitat data. Our results identify regional ecological thresholds and nonlinear relationships between measures of freshwater availability and the relative abundance of foundation plant species in tidal wetlands. In drier coastal zones, relatively small changes in rainfall could produce comparatively large landscape-scale changes in foundation plant species abundance which would affect some ecosystem good and services. Whereas a drier future would result in a decrease in the coverage of foundation plant species, a wetter future would result in an increase in foundation plant species coverage. In many ways, the freshwater-dependent coastal wetland ecological transitions we observed are analogous to those present in dryland

  11. Altitude exposures during commercial flight: a reappraisal.

    Science.gov (United States)

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  12. Altitude Stress During Participation of Medical Congress

    Science.gov (United States)

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  13. Mine-associated wetlands as avian habitat

    International Nuclear Information System (INIS)

    Horstman, A.J.; Nawrot, J.R.; Woolf, A.

    1998-01-01

    Surveys for interior wetland birds at mine-associated emergent wetlands on coal surface mines in southern Illinois detected one state threatened and two state endangered species. Breeding by least bittern (Ixobrychus exilis) and common moorhen (Gallinula chloropus) was confirmed. Regional assessment of potential wetland bird habitat south of Illinois Interstate 64 identified a total of 8,109 ha of emergent stable water wetlands; 10% were associated with mining. Mine-associated wetlands with persistent hydrology and large expanses of emergent vegetation provide habitat that could potentially compensate for loss of natural wetlands in Illinois

  14. The use of halophytic plants for salt phytoremediation in constructed wetlands.

    Science.gov (United States)

    Farzi, Abolfazl; Borghei, Seyed Mehdi; Vossoughi, Manouchehr

    2017-07-03

    This research studied the use of constructed wetlands (CWs) to reduce water salinity. For this purpose, three halophytic species of the Chenopodiaceae family (Salicornia europaea, Salsola crassa, and Bienertia cycloptera) that are resistant to saline conditions were planted in the CWs, and experiments were conducted at three different salinity levels [electrical conductivity (EC)∼2, 6, 10 dS/m]. EC and concentrations of calcium (Ca), magnesium (Mg), sodium (Na), and chlorine (Cl) were measured before and after phytoremediation with a retention time of 1 week. The results suggested that these plants were able to grow well and complete their life cycles at all the salinity levels within this study. Moreover, these plants reduced the measured parameters to acceptable levels. Therefore, these plants can be considered good options for salt phytoremediation.

  15. Climatic Controls on the Porewater Chemistry of Mid-Continental Wetlands

    Science.gov (United States)

    Levy, Zeno Francis

    hummocky glacial stagnation moraine under semi-arid climate where wetlands frequently fill and dry with surface ponds over low-permeability glacial till in response to snowmelt runoff and evapotranspiration. Both sites have been the subject of long-term hydrological study since c. 1980 and are well-established examples of the sensitivity of wetland functions to changes in climate. The first chapter of this dissertation utilizes a semi-conservative tracer suite (pH, Ca, Mg, Sr, 87Sr/86Sr) to fingerprint discharge of calcareous groundwater to GLAP peat along a 6 km transect from a bog crest downslope to an internal fen water track and bog islands. However, stable isotopes of the peat porewaters (delta18O and delta 2H) show that the subsurface throughout the entire study area is currently flushed with recharge from the near surface peat. I hypothesize that back-diffusion of groundwater-derived solutes from the peat matrix to active pore-spaces has allowed the geochemical signal from paleo-hydrogeologic discharge to persist into the current regime of dilute recharge. This effect promotes methane generation in the peatland subsurface by allowing transport of labile carbon compounds from the land surface to depth while maintaining geochemical conditions (i.e. pH) in the deep peat favorable to biogenic methane production. The results of this study show that autogenic hydrogeochemical feedback mechanisms contribute to the resilience of peatlands systems and associated ecological functions against climate change. The second chapter of this dissertation consists of a detailed geoelectrical survey of a well-studied, closed-basin prairie wetland (P1) in the CLSA that has experienced record drought and heavy rains (i.e. deluge) during the late 20th century. Subsurface storage of sulfate (SO4) salts allows many such closed-basin prairie wetlands to maintain moderate surface water salinities (TDS from 1 to 10 g L-1) that influence communities of aquatic biota. I imaged saline lenses of

  16. 78 FR 68719 - Floodplain Management and Protection of Wetlands

    Science.gov (United States)

    2013-11-15

    ... of wetlands in Sec. 55.2(b)(11) to cover manmade wetlands in order to ensure that wetlands built for...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands AGENCY: Office of the Secretary, HUD... wetlands and floodplains. With respect to wetlands, the rule codifies existing procedures for Executive...

  17. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  18. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  19. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    Science.gov (United States)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  20. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    Science.gov (United States)

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  1. Cardiovascular Effects of Altitude on Performance Athletes.

    Science.gov (United States)

    Shah, Ankit B; Coplan, Neil

    Altitude plays an important role in cardiovascular performance and training for athletes. Whether it is mountaineers, skiers, or sea-level athletes trying to gain an edge by training or living at increased altitude, there are many potential benefits and harms of such endeavors. Echocardiographic studies done on athletes at increased altitude have shown evidence for right ventricular dysfunction and pulmonary hypertension, but no change in left ventricular ejection fraction. In addition, 10% of athletes are susceptible to pulmonary hypertension and high-altitude pulmonary edema. Some studies suggest that echocardiography may be able to identify athletes susceptible to high-altitude pulmonary edema prior to competing or training at increased altitudes. Further research is needed on the long-term effects of altitude training, as repeated, transient episodes of pulmonary hypertension and right ventricular dysfunction may have long-term implications. Current literature suggests that performance athletes are not at higher risk for ventricular arrhythmias when training or competing at increased altitudes. For sea-level athletes, the optimal strategy for attaining the benefits while minimizing the harms of altitude training still needs to be clarified, although-for now-the "live high, train low" approach appears to have the most rationale.

  2. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  3. Designated Wetlands and Setback Distances in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This GIS layer depicts wetlands designated for protection in the state of Iowa. Designated wetland is defined in Iowa Code subsection 459.102(21) as follows: 21....

  4. Industry and forest wetlands: Cooperative research initiatives

    International Nuclear Information System (INIS)

    Shepard, J.P.; Lucier, A.A.; Haines, L.W.

    1993-01-01

    In 1989 the forest products industry responded to a challenge of the National Wetlands Policy Forum to initiate a cooperative research program on forest wetlands management organized through the National Council of the Paper Industry for Air and Stream Improvement (NCASI). The objective is to determine how forest landowners can manage wetlands for timber production while protecting other wetland functions such as flood storage, water purification, and food chain/wildlife habitat support. Studies supported by the NCASI in 9 states are summarized. Technical support on wetland regulatory issues to member companies is part of the research program. Since guidelines for recognizing wetlands for regulatory proposed have changed frequently, the NCASI has recommend an explicit link between wetland delineation and a classification system that considers difference among wetland types in vegetation, soils, hydrology, appearance, landscape position, and other factors. 16 refs

  5. 40 CFR 230.41 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... through secondary impacts. Discharging fill material in wetlands as part of municipal, industrial or recreational development may modify the capacity of wetlands to retain and store floodwaters and to serve as a...

  6. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA

    Science.gov (United States)

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Soileau, D.M.; DeBosier, A.S.

    2000-01-01

    Saltwater intrusion from the Gulf of Mexico is one important factor in the destruction of baldcypress (Taxodium distichum (L.) Rich.) swamps along the Louisiana Gulf Coast, USA. Recent restoration efforts have focused on identification of baldcypress genotypes with greater tolerance to saline conditions than previously reported. To date, salt tolerance investigations have not been conducted under saline field conditions. In 1996, therefore, three plantations were established with 10 half-sib genotype collections of baldcypress in mesohaline wetlands. Tree survival and growth were measured at the end of two growing seasons, and foliar ion concentrations of Na, Cl, K, and Ca and available soil nutrients were measured during the 1996 growing season. In general, soil nutrient concentrations exceeded averages found in other baldcypress stands in the southeastern United States. Seedlings differed among sites in all parameters measured, with height, diameter, foliar biomass, and survival decreasing as site salinity increased. Average seedling height at the end of two years, for example, was 196.4 cm on the lowest salinity site and 121.6 cm on the highest. Several half-sib families maintained greater height growth increments (ranging from 25.5 to 54.5 cm on the highest salinity site), as well as lower foliar ion concentrations of K, Cl, and Ca. Results indicate that genotypic screening of baldcypress may improve growth and vigor of seedlings planted within wetlands impacted by saltwater intrusion.

  7. Physiological aspects of altitude training and the use of altitude simulators

    OpenAIRE

    Ranković Goran; Radovanović Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training thr...

  8. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  9. 40 CFR 257.9 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... not locate such units in wetlands, unless the owner or operator can make the following demonstrations... actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and (5) Sufficient information is available to make a reasonable determination with respect to these demonstrations...

  10. North Dakota Wetlands Discovery Guide. Photocopy Booklet.

    Science.gov (United States)

    Dietz, Nancy J., Ed.; And Others

    This booklet contains games and activities that can be photocopied for classroom use. Activities include Wetland Terminology, Putting on the Map, Erosional Forces, Water in...Water out, Who Lives Here?, Wetlands in Disguise, Dichotomous Plant Game, Algae Survey, Conducting an Algal Survey, Water Quality Indicators Guide, Farming Wetlands, Wetlands…

  11. Description of the Wetlands Research Programme

    CSIR Research Space (South Africa)

    Walmsley, RD

    1988-01-01

    Full Text Available This report presents a rationale to the development of a multidisciplinary South African Wetland Research Programme. A definition of what is meant by the term wetland is given along with a general description of what types of wetland occur in South...

  12. Pemanfaatan air olahan wetland di Sitimulyo dalam pembuatan kulit pikel domba

    Directory of Open Access Journals (Sweden)

    Dwi Ningsih

    2012-12-01

    Full Text Available ABSTRACT Research has been done to study the effects of treated wetland water utilization in Sitimulyo on the making of pickled sheepskin. The treated wetland water on the making of pickled sheepskin was done by using three variable ratio of wetland water: water that is 100:0; 75:25; 50:50. Used as a comparison was control or without any additional water wetland. Skin that was used as much as 12 pieces of sheepskin divided into 4 groups and 3 pieces of leather for each treatment. Quality parameters observed include skin moisture content, salinity, pH, and organoleptic observation. From the results showed that the treated wetland water in Sitimulyo not meet the water requirements for tanning leather according to SNI 06-0649-1989 on water for vegetable leather tanning process. Pickle skin test results show that the chemical (moisture, salt and pH and organoleptic not meet the requirements of SNI 06-3537-1994 on quality leather and test methods pickle sheep.

  13. Ecosystem stress response : understanding effects on the benthic invertebrate community of Alberta oil-sands wetlands

    International Nuclear Information System (INIS)

    Wytrykush, C.M.; Ciborowski, J.J.H.

    2003-01-01

    The environmental stress response of invertebrates was examined using wetlands in the Alberta oil-sands region as a model. Wetlands in this region occur naturally or they have been affected by oil-sands mining process materials such as mine-tailings, or saline process water. These materials can be toxic to aquatic organisms due to their high concentrations of sulphate ions, ammonia, polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids. Wetlands are classified as either young or mature, and as having low or high sediment organic content. This study examined food web dynamics and structure in wetlands using stable isotopes to determine the effects of stress on ecological communities. Primary and secondary production in the wetlands was measured along with invertebrate diversity in order to determine a relationship. The maximum trophic position was determined using stable carbon and nitrogen isotopes to indicate food chain length which is influenced by energetic constraints, ecosystem size and stressors. The study quantifies the dynamics of vital links between the responses to environmental pressures in aquatic systems and the effects on terrestrial ecosystems

  14. Altitude valve for railway suspension control system

    Science.gov (United States)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  15. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  16. Chemical and biotic characteristics of prairie lakes and large wetlands in south-central North Dakota—Effects of a changing climate

    Science.gov (United States)

    Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.

    2015-09-28

    The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.

  17. Hurricane impacts on coastal wetlands: a half-century record of storm-generated features from southern Louisiana

    Science.gov (United States)

    Morton, Robert A.; Barras, John A.

    2011-01-01

    Temporally and spatially repeated patterns of wetland erosion, deformation, and deposition are observed on remotely sensed images and in the field after hurricanes cross the coast of Louisiana. The diagnostic morphological wetland features are products of the coupling of high-velocity wind and storm-surge water and their interaction with the underlying, variably resistant, wetland vegetation and soils. Erosional signatures include construction of orthogonal-elongate ponds and amorphous ponds, pond expansion, plucked marsh, marsh denudation, and shoreline erosion. Post-storm gravity reflux of floodwater draining from the wetlands forms dendritic incisions around the pond margins and locally integrates drainage pathways forming braided channels. Depositional signatures include emplacement of broad zones of organic wrack on topographic highs and inorganic deposits of variable thicknesses and lateral extents in the form of shore-parallel sandy washover terraces and interior-marsh mud blankets. Deformational signatures primarily involve laterally compressed marsh and displaced marsh mats and balls. Prolonged water impoundment and marsh salinization also are common impacts associated with wetland flooding by extreme storms. Many of the wetland features become legacies that record prior storm impacts and locally influence subsequent storm-induced morphological changes. Wetland losses caused by hurricane impacts depend directly on impact duration, which is controlled by the diameter of hurricane-force winds, forward speed of the storm, and wetland distance over which the storm passes. Distinguishing between wetland losses caused by storm impacts and losses associated with long-term delta-plain processes is critical for accurate modeling and prediction of future conversion of land to open water.

  18. Performance of portable ventilators at altitude.

    Science.gov (United States)

    Blakeman, Thomas; Britton, Tyler; Rodriquez, Dario; Branson, Richard

    2014-09-01

    Aeromedical transport of critically ill patients requires continued, accurate performance of equipment at altitude. Changes in barometric pressure can affect the performance of mechanical ventilators calibrated for operation at sea level. Deploying ventilators that can maintain a consistent tidal volume (VT) delivery at various altitudes is imperative for lung protection when transporting wounded war fighters to each echelon of care. Three ventilators (Impact 731, Hamilton T1, and CareFusion Revel) were tested at pediatric (50 and 100 mL) and adult (250-750 mL) tidal VTs at 0 and 20 cm H₂O positive end expiratory pressure and at inspired oxygen of 0.21 and 1.0. Airway pressure, volume, and flow were measured at sea level as well as at 8,000, 16,000, and 22,000 ft (corresponding to barometric pressures of 760, 564, 412, and 321 mm Hg) using a calibrated pneumotachograph connected to a training test lung in an altitude chamber. Set VT and delivered VT as well as changes in VT at each altitude were compared by t test. The T1 delivered VT within 10% of set VT at 8,000 ft. The mean VT was less than set VT at sea level as a result of circuit compressible volume with the Revel and the 731. Changes in VT varied widely among the devices at sea level and at altitude. Increasing altitudes resulted in larger VT than set for the Revel and the T1. The 731 compensated for changes in altitude delivered VT within 10% at the adult settings at all altitudes. Altitude compensation is an active software algorithm. Only the 731 actively accounts for changes in barometric pressure to maintain the set VT at all tested altitudes.

  19. Lake Superior Coastal Wetland Fish Assemblages and ...

    Science.gov (United States)

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  20. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    Science.gov (United States)

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  1. The nitrogen abatement cost in wetlands

    International Nuclear Information System (INIS)

    Bystroem, Olof

    1998-01-01

    The costs of abating agricultural nitrogen pollution in wetlands are estimated. By linking costs for construction of wetlands to the denitrification capacity of wetlands, an abatement cost function can be formed. A construction-cost function and a denitrification function for wetlands is estimated empirically. This paper establishes a link between abatement costs and the nitrogen load on wetlands. Since abatement costs fluctuate with nitrogen load, ignoring this link results in incorrect estimates of abatement costs. The results demonstrate that wetlands have the capacity to provide low cost abatement of nitrogen compounds in runoff. For the Kattegatt region in Sweden, marginal abatement costs for wetlands are shown to be lower than costs of land use changing measures, such as extended land under fallow or cultivation of fuel woods, but higher than the marginal costs of reducing nitrogen fertilizer

  2. In Situ Wetland Restoration Demonstration

    Science.gov (United States)

    2014-07-01

    wetland habitats where: habitat disruption should be minimized; desirable flora or fauna might be harmed by traditional remedial excavation methods...However, it is possible that short-term impacts to hydrophytic flora and fauna may occur. Other potential challenges include the long-term physical

  3. Magellanic Wetlands : More than Moor

    Czech Academy of Sciences Publication Activity Database

    Filipová, L.; Hédl, Radim; Dančák, M.

    2013-01-01

    Roč. 48, č. 2 (2013), s. 163-188 ISSN 1211-9520 R&D Projects: GA ČR GA206/08/0389 Institutional support: RVO:67985939 Keywords : wetland * vegetation * environment Subject RIV: EF - Botanics Impact factor: 1.612, year: 2013

  4. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  5. ABOUT TRANSITION ALTITUDE IN RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article is about establishing a common transition altitude over all territory of Russian Federation. The main objective is to prove the necessity of a common transition altitude in Russian airspace and to define, which variant of tran- sition altitude (low, medium, high is the most suitable to be implemented in Russia. ICAO and IFALPA points of view, data and experience from different states and regions all over the world were examined in order to show all the advantages and disadvantages of different approaches towards common transition altitude. The research showed that the most appro- priate common transition altitude in Russia will be 10000 feet (3050 meters, it will cover almost all the international aero- dromes and regions in the country. Only several exceptions are needed in mountainous areas. This article can be used to further study of the possibility of implementation of common transition altitude, because it can’t take into consideration all the local features of all the FIRs (Flight Information Regions in Russia. The conclusion is establishing a common transi- tion altitude over such a big part of the world as Russian Federation will lead to improvement of the flight safety, harmoni- zation with ICAO and IFALPA policies and flexibility in airspace design.

  6. High Altitude Launch for a Practical SSTO

    Science.gov (United States)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  7. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  8. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  9. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    Science.gov (United States)

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  10. The Accumulation and Seasonal Dynamic of the Soil Organic Carbon in Wetland of the Yellow River Estuary, China

    Directory of Open Access Journals (Sweden)

    Xianxiang Luo

    2014-01-01

    Full Text Available The wetland of the Yellow River estuary is a typical new coastal wetland in northern China. It is essential to study the carbon pool and its variations for evaluating the carbon cycle process. The study results regarding the temporal-spatial distribution and influential factors of soil organic carbon in four typical wetlands belonging to the Yellow River estuary showed that there was no significant difference in the contents of the surface soil TOC to the same season among the four types of wetlands. For each type of wetlands, the TOC content in surface soils was significantly higher in October than that in both May and August. On the whole, the obvious differences in DOC contents in surface soils were not observed in the different wetland types and seasons. The peak of TOC appeared at 0–10 cm in the soil profiles. The contents of TOC and DOC were significantly higher in salsa than those in reed, suggesting that the rhizosphere effect of organic carbon in salsa was more obvious than that in reed. The results of the principal component analysis showed that the nitrogen content, salinity, bulk density, and water content were dominant influential factors for organic carbon accumulation and seasonal variation.

  11. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  12. China's natural wetlands: past problems, current status, and future challenges

    Science.gov (United States)

    Shuqing An; Harbin Li; Baohua Guan; Changfang Zhou; Zhongsheng Wang; Zifa Deng; Yingbiao Zhi; Yuhong Liu; Chi Xu; Shubo Fang; Jinhui Jiang; Hongli Li

    2007-01-01

    Natural wetlands, occupying 3.8% of China's land and providing 54.9% of ecosystem services, are unevenly distributed among eight wetland regions. Natural wetlands in China suffered great loss and degradation (e.g., 23.0% freshwater swamps, 51.2% coastal wetlands) because of the wetland reclamation during China's long history of civilization, and the...

  13. Classification of wetlands and deepwater habitats of the United States

    Science.gov (United States)

    Cowardin, L.M.; Carter, V.; Golet, F.C.; LaRoe, E.T.

    1985-01-01

    that grow principally on or below the surface of the water; (2) Moss-Lichen Wetland, dominated by mosses or lichens; (3) Emergent Wetland, dominated by emergent herbaceous angiosperms; (4) Scrub-Shrub Wetland, dominated by shrubs or small trees; and (5) Forested Wetland, dominated by large trees.The Dominance Type, which is named for the dominant plant or animal forms, is the lowest level of the classification hierarchy. Only examples are provided for this level; Dominance Types must be developed by individual users of the classification.Modifying terms applied to the Classes or Subclasses are essential for use of the system. In tidal areas, the type and duration of flooding are described by four Water Regime Modifiers: subtidal, irregularly exposed, regularly flooded, and irregularly flooded. In nontidal areas, eight Regimes are used: permanently flooded, intermittently exposed, semipermanently flooded, seasonally flooded, saturated, temporarily flooded, intermittently flooded, and artificially flooded. A hierarchical system of Water Chemistry Modifiers, adapted from the Venice System, is used to describe the salinity of the water. Fresh waters are further divided on the basis of pH. Use of a hierarchical system of soil modifiers taken directly from U.S. soil taxonomy is also required. Special modifiers are used where appropriate: excavated, impounded, diked, partly drained, farmed, and artificial.Regional differences important to wetland ecology are described through a regionalization that combines a system developed for inland areas by R. G. Bailey in 1976 with our Marine and Estuarine provinces.The structure of the classification allows it to be used at any of several hierarchical levels. Special data required for detailed application of the system are frequently unavailable, and thus data gathering may be prerequisite to classification. Development of rules by the user will be required for specific map scales. Dominance Types and relationships of plant and anima

  14. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  15. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    Science.gov (United States)

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  16. Engineered wetlands : an innovative environmental solution

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.; Davis, B.M. [Jacques Whitford NAWE, White Bear Lake, MN (United States)

    2008-03-15

    Engineered wetlands are now considered as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and waters. Engineered wetlands incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems in order to enhance oxygen delivery to the wetland's aerobic micro-organisms. The wetlands typically emphasize specific characteristics of wetland ecosystems to improve treatment capacities. This article discussed an engineered wetlands installed at a set of pipeline terminals as well as at a former British Petroleum (BP) refinery. The pipeline terminal generated contact wastewater containing BTEX and ammonia, and a subsurface engineered wetland was built in 1998. To date, the 16,000{sup 2} foot wetland has treated a flow-equalized input of approximately 1.5 m{sup 3} per day of contaminants. At the refinery, a wetland treatment system was designed to treat 6000 m{sup 3} of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs). The treatment site consists of a golf course, river front trails, and a white water kayak course. A cascade aeration system was used for iron oxidation and air-stripping. A soil matrix biofilter was used for passive gas phase benzene removal, as well as for the removal of ferric hydroxide precipitates. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 1 fig.

  17. Working group report on wetlands and wildlife

    International Nuclear Information System (INIS)

    Teels, B.

    1991-01-01

    The results and conclusions of a working group held to discuss the state of knowledge and knowledge gaps concerning climatic change impacts on wetlands and wildlife are presented. Prairie pothole wetlands are extremely productive and produce ca 50% of all ducks in North America. The most productive, and most vulnerable to climate change, are small potholes, often less than one acre in area. Changes in water regimes and land use will have more impact on wildlife than changes in temperature. There are gaps in knowledge relating to: boreal wetlands and their wildlife, and response to climate; wetland inventories that include the smallest wetlands; coordinated schemes for monitoring status and trends of wetlands and wildlife; and understanding of ecological relationships within wetlands and their wildlife communities. Recommendations include: coordinate and enhance existing databases to provide an integrated monitoring system; establish research programs to increase understanding of ecological relationships within wetland ecosystems; evaluate programs and policies that affect wetlands; and promote heightened public awareness of general values of wetlands

  18. Engineered wetlands : an innovative environmental solution

    International Nuclear Information System (INIS)

    Wallace, S.; Davis, B.M.

    2008-01-01

    Engineered wetlands are now considered as an emerging technology for the in situ remediation of hydrocarbon-contaminated soil and waters. Engineered wetlands incorporate a horizontal subsurface flow gravel bed reactor lined with impermeable liners, and are equipped with forced bed aeration systems in order to enhance oxygen delivery to the wetland's aerobic micro-organisms. The wetlands typically emphasize specific characteristics of wetland ecosystems to improve treatment capacities. This article discussed an engineered wetlands installed at a set of pipeline terminals as well as at a former British Petroleum (BP) refinery. The pipeline terminal generated contact wastewater containing BTEX and ammonia, and a subsurface engineered wetland was built in 1998. To date, the 16,000 2 foot wetland has treated a flow-equalized input of approximately 1.5 m 3 per day of contaminants. At the refinery, a wetland treatment system was designed to treat 6000 m 3 of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs). The treatment site consists of a golf course, river front trails, and a white water kayak course. A cascade aeration system was used for iron oxidation and air-stripping. A soil matrix biofilter was used for passive gas phase benzene removal, as well as for the removal of ferric hydroxide precipitates. It was concluded that engineered wetlands can offer long-term solutions to site remediation challenges. 1 fig

  19. Wetland restoration, flood pulsing, and disturbance dynamics

    Science.gov (United States)

    Middleton, Beth A.

    1999-01-01

    While it is generally accepted that flood pulsing and disturbance dynamics are critical to wetland viability, there is as yet no consensus among those responsible for wetland restoration about how best to plan for those phenomena or even whether it is really necessary to do so at all. In this groundbreaking book, Dr. Beth Middleton draws upon the latest research from around the world to build a strong case for making flood pulsing and disturbance dynamics integral to the wetland restoration planning process.While the initial chapters of the book are devoted to laying the conceptual foundations, most of the coverage is concerned with demonstrating the practical implications for wetland restoration and management of the latest ecological theory and research. It includes a fascinating case history section in which Dr. Middleton explores the restoration models used in five major North American, European, Australian, African, and Asian wetland projects, and analyzes their relative success from the perspective of flood pulsing and disturbance dynamics planning.Wetland Restoration also features a wealth of practical information useful to all those involved in wetland restoration and management, including: * A compendium of water level tolerances, seed germination, seedling recruitment, adult survival rates, and other key traits of wetland plant species * A bibliography of 1,200 articles and monographs covering all aspects of wetland restoration * A comprehensive directory of wetland restoration ftp sites worldwide * An extensive glossary of essential terms

  20. Effects of erythrocyte infusion on VO2max at high altitude

    DEFF Research Database (Denmark)

    Young, Jette Feveile; Sawka, M N; Muza, S R

    1996-01-01

    This study investigated whether autologous erythrocyte infusion would ameliorate the decrement in maximal O2 uptake (VO2max) experienced by lowlanders when they ascend to high altitude. VO2max was measured in 16 men (treadmill running) at sea level (SL) and on the 1st (HA1) and 9th (HA9) days...... of high-altitude (4,300 m) residence. After VO2max was measured at SL, subjects were divided into two matched groups (n = 8). Twenty-four hours before ascent to high altitude, the experimental group received a 700-ml infusion of autologous erythrocytes and saline (42% hematocrit), whereas the control...... group received only saline. The VO2max of erythrocyte-infused [54 +/- 1 (SE) ml.kg-1.min-1] and control subjects (52 +/- 2 ml.kg-1.min-1) did not differ at SL before infusion. The decrement in VO2max on HA1 did not differ between groups, averaging 26% overall, despite higher (P

  1. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Li eFu

    2015-02-01

    Full Text Available Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this Zoige wetland sample. It appears that the aceticlastic methanogenesis dominated at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures.

  2. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  3. Ciliates and their picophytoplankton-feeding activity in a high altitude warm-monomictic saline lake

    Czech Academy of Sciences Publication Activity Database

    Peštová, D.; Macek, Miroslav; Pérez, M. E. M.

    2008-01-01

    Roč. 44, č. 1 (2008), s. 13-25 ISSN 0932-4739 Institutional research plan: CEZ:AV0Z60170517 Keywords : ciliates * autotrophic picoplankton * feeding rates Subject RIV: EH - Ecology, Behaviour Impact factor: 1.000, year: 2008

  4. National Wetland Mitigation Banking Study Wetland Migitation Banking.

    Science.gov (United States)

    1994-02-01

    habitat (i.e. number of snags, extent of exposed steep shoreline, etc.) rather than selecting species themselves as function indicators [ WWF 1992...etc.) that are converted to portray hydrologic, water quality, and habitat functions as well as wetland loss on watershed scales [ WWF 1992]. The...Natural Areas - include the Stewardship Program, a partnership program between the private and public sectors for conservation land acquisitions

  5. Introduction to altitude/hypoxic training symposium.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    Altitude/hypoxic training has traditionally been an intriguing and controversial area of research and sport performance. This controversial aspect was evident recently in the form of scholarly debates in highly regarded professional journals, as well as the World Anti-Doping Agency's (WADA) consideration of placing "artificially-induced hypoxic conditions" on the 2007 Prohibited List of Substances/Methods. In light of the ongoing controversy surrounding altitude/hypoxic training, this symposium was organized with the following objectives in mind: 1) to examine the primary physiological responses and underlying mechanisms associated with altitude/hypoxic training, including the influence of genetic predisposition; 2) to present evidence supporting the effect of altitude/hypoxic acclimatization on both hematological and nonhematological markers, including erythrocyte volume, skeletal muscle-buffering capacity, hypoxic ventilatory response, and physiological efficiency/economy; 3) to evaluate the efficacy of several contemporary simulated altitude modalities and training strategies, including hypoxic tents, nitrogen apartments, and intermittent hypoxic exposure (IHE) or training, and to address the legal and ethical issues associated with the use of simulated altitude; and 4) to describe different altitude/hypoxic training strategies used by elite-level athletes, including Olympians and military special forces. In addressing these objectives, papers will be presented on the topics of: 1) effect of hypoxic "dose" on physiological responses and sea-level performance (Drs. Benjamin Levine and James Stray-Gundersen), 2) nonhematological mechanisms of improved performance after hypoxic exposure (Dr. Christopher Gore), 3) application of altitude/hypoxic training by elite athletes (Dr. Randall Wilber), and 4) military applications of hypoxic training (Dr. Stephen Muza).

  6. A GIS semiautomatic tool for classifying and mapping wetland soils

    Science.gov (United States)

    Moreno-Ramón, Héctor; Marqués-Mateu, Angel; Ibáñez-Asensio, Sara

    2016-04-01

    Wetlands are one of the most productive and biodiverse ecosystems in the world. Water is the main resource and controls the relationships between agents and factors that determine the quality of the wetland. However, vegetation, wildlife and soils are also essential factors to understand these environments. It is possible that soils have been the least studied resource due to their sampling problems. This feature has caused that sometimes wetland soils have been classified broadly. The traditional methodology states that homogeneous soil units should be based on the five soil forming-factors. The problem can appear when the variation of one soil-forming factor is too small to differentiate a change in soil units, or in case that there is another factor, which is not taken into account (e.g. fluctuating water table). This is the case of Albufera of Valencia, a coastal wetland located in the middle east of the Iberian Peninsula (Spain). The saline water table fluctuates throughout the year and it generates differences in soils. To solve this problem, the objectives of this study were to establish a reliable methodology to avoid that problems, and develop a GIS tool that would allow us to define homogeneous soil units in wetlands. This step is essential for the soil scientist, who has to decide the number of soil profiles in a study. The research was conducted with data from 133 soil pits of a previous study in the wetland. In that study, soil parameters of 401 samples (organic carbon, salinity, carbonates, n-value, etc.) were analysed. In a first stage, GIS layers were generated according to depth. The method employed was Bayesian Maxim Entropy. Subsequently, it was designed a program in GIS environment that was based on the decision tree algorithms. The goal of this tool was to create a single layer, for each soil variable, according to the different diagnostic criteria of Soil Taxonomy (properties, horizons and diagnostic epipedons). At the end, the program

  7. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    Science.gov (United States)

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  8. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.

  9. EnviroAtlas - Potential Wetland Areas - Contiguous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Potential Wetland Areas (PWA) dataset shows potential wetland areas at 30-meter resolution. Beginning two centuries ago, many wetlands were turned...

  10. [Physiological aspects of altitude training and the use of altitude simulators].

    Science.gov (United States)

    Ranković, Goran; Radovanović, Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatisation, which improves oxygen transport and/or utilisation, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training through hypoxia), and live high and train low (the new trend). In an effort to reduce the financial and logistical challenges of travelling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters). Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarised.

  11. Physiological aspects of altitude training and the use of altitude simulators

    Directory of Open Access Journals (Sweden)

    Ranković Goran

    2005-01-01

    Full Text Available Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training, live low and train high (training through hypoxia, and live high and train low (the new trend. In an effort to reduce the financial and logistical challenges of traveling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters. Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarized.

  12. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  13. Diffusive flux of methane from warm wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Barber, T.R.; Burke, R.A.; Sackett, W.M. (Univ. of South Florida, St. Petersburg (USA))

    1988-12-01

    Diffusion of methane across the air-water interface from several wetland environments in south Florida was estimated from measured surface water concentrations using an empirically derived gas exchange model. The flux from the Everglades sawgrass marsh system varied widely, ranging from 0.18 + or{minus}0.21 mol CH{sub 4}/sq m/yr for densely vegetated regions to 2.01 + or{minus}0.88 for sparsely vegetated, calcitic mud areas. Despite brackish salinities, a strong methane flux, 1.87 + or{minus}0.63 mol CH{sub 4}/sq m/yr, was estimated for an organic-rich mangrove pond near Florida Bay. The diffusive flux accounted for 23, 36, and 13% of the total amount of CH{sub 4} emitted to the atmosphere from these environments, respectively. The average dissolved methane concentration for an organic-rich forested swamp was the highest of any site at 12.6 microM; however, the calculated diffusive flux from this location, 2.57 + or{minus}1.88 mol CH{sub 4}/sq m/yr, was diminished by an extensive plant canopy that sheltered the air-water interface from the wind. The mean diffusive flux from four freshwater lakes, 0.77 + or{minus}0.73 mol CH{sub 4}/sq m/yr, demonstrated little temperature dependence. The mean diffusive flux for an urbanized, subtropical estuary was 0.06 + or{minus}0.05 mol CH{sub 4}/sq m/yr.

  14. Remote sensing of wetland parameters related to carbon cycling

    Science.gov (United States)

    Bartlett, David S.; Johnson, Robert W.

    1985-01-01

    Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.

  15. Stromatolites on the rise in peat-bound karstic wetlands.

    Science.gov (United States)

    Proemse, Bernadette C; Eberhard, Rolan S; Sharples, Chris; Bowman, John P; Richards, Karen; Comfort, Michael; Barmuta, Leon A

    2017-11-13

    Stromatolites are the oldest evidence for life on Earth, but modern living examples are rare and predominantly occur in shallow marine or (hyper-) saline lacustrine environments, subject to exotic physico-chemical conditions. Here we report the discovery of living freshwater stromatolites in cool-temperate karstic wetlands in the Giblin River catchment of the UNESCO-listed Tasmanian Wilderness World Heritage Area, Australia. These stromatolites colonize the slopes of karstic spring mounds which create mildly alkaline (pH of 7.0-7.9) enclaves within an otherwise uniformly acidic organosol terrain. The freshwater emerging from the springs is Ca-HCO 3 dominated and water temperatures show no evidence of geothermal heating. Using 16 S rRNA gene clone library analysis we revealed that the bacterial community is dominated by Cyanobacteria, Alphaproteobacteria and an unusually high proportion of Chloroflexi, followed by Armatimonadetes and Planctomycetes, and is therefore unique compared to other living examples. Macroinvertebrates are sparse and snails in particular are disadvantaged by the development of debilitating accumulations of carbonate on their shells, corroborating evidence that stromatolites flourish under conditions where predation by metazoans is suppressed. Our findings constitute a novel habitat for stromatolites because cool-temperate freshwater wetlands are not a conventional stromatolite niche, suggesting that stromatolites may be more common than previously thought.

  16. Do geographically isolated wetlands influence landscape functions?

    OpenAIRE

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie; Basu, Nandita B.; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan

    2016-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bo...

  17. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  18. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  19. Characteristic community structure of Florida's subtropical wetlands: the Florida wetland condition index

    Science.gov (United States)

    Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...

  20. SLOSS or Not? Factoring Wetland Size Into Decisions for Wetland Conservation, Enhancement, Restoration, and Creation

    Science.gov (United States)

    Mitigation or replacement of several small impacted wetlands or sites with fewer large wetlands can occur deliberately through the application of functional assessment methods (e.g., Adamus 1997) or coincidentally as the result of market-based mechanisms for wetland mitigation ba...

  1. Artificial wetlands - yes or no?

    Czech Academy of Sciences Publication Activity Database

    Horák, Václav; Lusk, Stanislav; Halačka, Karel; Lusková, Věra

    2004-01-01

    Roč. 4, č. 2 (2004), s. 119-127 ISSN 1642-3593. [International Symposium on the Ecology of Fluvial Fishes /9./. Lodz, 23.06.2003-26.06.2003] R&D Projects: GA AV ČR IBS6093007; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : floodplain * artificial wetlands * fish communities Subject RIV: EH - Ecology, Behaviour

  2. Hydrogeology and hydrology of the Punta Cabullones wetland area, Ponce, southern Puerto Rico, 2007-08

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Soler-López, Luis R.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Municipio Autónomo de Ponce and the Puerto Rico Department of Natural and Environmental Resources, conducted a study of the hydrogeology and hydrology of the Punta Cabullones area in Ponce, southern Puerto Rico. (Punta Cabullones is also referred to as Punta Cabullón.) The Punta Cabullones area is about 9 square miles and is an ecological system made up of a wetland, tidal flats, saltflats, mangrove forests, and a small fringing reef located a short distance offshore. The swales or depressions between successive beach ridges became development avenues for saline to hypersaline wetlands. The Punta Cabullones area was designated by the U.S. Fish and Wildlife Service as a coastal barrier in the 1980s because of its capacity to act as a buffer zone to ameliorate the impacts of natural phenomenon such as storm surges. Since 2003, Punta Cabullones has been set aside for preservation as part of the mitigation effort mandated by Federal and State laws to compensate for the potential environmental effects that might be caused by the construction of the Las Américas Transshipment Port. Total rainfall measured during 2008 within the Punta Cabullones area was 36 inches, which is slightly greater than the long-term annual average of 32 inches for the coastal plain near Ponce. Two evapotranspiration estimates, 29 and 37 inches, were obtained for the subarea of the Punta Cabullones area that is underlain by fan-delta and alluvial deposits by using two variants of the Penman semi-empirical equation. The long-term water stage and chemical character of the wetland in Punta Cabullones are highly dependent on the seasonal and annual variations of both rainfall and sea-wave activity. Also, unseasonal short-term above-normal rainfall and sea-wave events resulting from passing storms may induce substantial changes in the water stage and the chemical character of the wetland. In general, tidal fluctuations exert a minor role in

  3. Assessment of Wetland Hydrological Dynamics in a Modified Catchment Basin: Case of Lake Buninjon, Victoria, Australia.

    Science.gov (United States)

    Yihdego, Yohannes; Webb, John A

    2017-02-01

      The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.

  4. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  5. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  6. Diversity and composition of sediment bacteria in subtropical coastal wetlands of North Stradbroke Island, Queensland, Australia

    Science.gov (United States)

    Chuvochina, Maria; Sampayo, Eugenia; Welti, Nina; Hayes, Matthew; Lu, Yang; Lovelock, Catherine; Lockington, David

    2013-04-01

    Coastal wetlands provide a wide variety of important ecosystem services but continue to suffer disturbance, degradation and deforestation. Sediment bacteria are responsible for major nutrient transformation and recycling in these ecosystems. Insight into microbial community composition and the factors that determine them may improve our understanding of biogeochemical processes, food web dynamics, biodegradation processes and, thus, help to develop the management strategies for preserving the ecosystem health and services. Characterizing shifts in community taxa along environmental gradients has been shown to provide a useful tool for determining the major drivers affecting community structure and function. North Stradbroke Island (NSI) in Southern Queensland presents considerable habitat diversity including variety of groundwater dependent ecosystems such as lakes, swamps, sedge-like salt marshes and mangroves. Ecological responses of continuous groundwater extraction for municipal purposes and sand mining operations on NSI are still need to be assessed in order to protect its unique environment. Changes in coastal hydrology due to either climate change or human activity may directly affect microbial populations and, thus, biogeochemical cycles of nutrients. These may result in altering/losing some ecosystem services provided by coastal wetlands. In this study we examine microbial diversity and determine environmental controls on bacterial community structure along a natural transition from freshwater forested wetland (melaleuca woodland), sedge-like salt marsh and into mangroves located at NSI. The study area is characterized by significant groundwater flow, nutrient limitation and sharp transition from one ecosystem type to another. Sediment cores (0-5 cm and 20-25 cm depth) were collected from three representative sites of each zone (mangroves - salt marsh - freshwater wetland) along the salinity gradient in August 2012. Subsamples were set aside for use in

  7. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  8. Algal Bio-Indication in Assessment of Hydrological Impact on Ecosystem in Wetlands of “Slavyansky Resort”

    Directory of Open Access Journals (Sweden)

    Klymiuk Valentina

    2015-06-01

    Full Text Available Algal bio-indication is commonly used in water quality assessment but can also help in assessing the impact of hydrology on freshwater wetland ecosystems.We identified 350 species and infraspecific taxa of algae from nine taxonomic divisions (Cyanoprokaryota, Chrysophyta, Euglenophyta,Dinophyta,Xanthophyta,Cryptophyta,Bacillariophyta,Chlorophyta,Charophyta in 121 phytoplankton samples collected between 2007-2013 from seven lakes in the wetlands of the Regional Landscape Park “Slavyansky Resort”, Ukraine. The algal species richness and phytoplankton biomass decreased as water salinity increased. In turn the water salinity was influenced by the inflow of groundwater, karst fracture and by the alluvial water tributaries of a paleoriver that affects the formation processes of lake-spring sulphide mud from the resort, which is often used for therapeutic purposes.

  9. Acute high-altitude illness | Hofmeyr | South African Medical Journal

    African Journals Online (AJOL)

    A substantial proportion of South Africa (SA)'s population lives at high altitude (>1 500 m), and many travel to very high altitudes (>3 500 m) for tourism, business, recreation or religious pilgrimages every year. Despite this, knowledge of acute altitude illnesses is poor among SA doctors. At altitude, the decreasing ambient ...

  10. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana

    Science.gov (United States)

    Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P.

    2013-01-01

    The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.

  11. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    Science.gov (United States)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  12. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  13. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  14. Influence of the Houma Navigation Canal on Salinity Patterns and Landscape Configuration in Coastal Louisiana

    Science.gov (United States)

    Steyer, Gregory D.; Sasser, Charles; Evers, Elaine; Swenson, Erick; Suir, Glenn; Sapkota, Sijan

    2008-01-01

    Coastal Louisiana is a dynamic and ever changing landscape. From 1956 to 2004, over 297,000 ha of Louisiana's coastal wetlands were lost because of the effects of natural and human-induced activities. Studies show that, in 2005, Hurricanes Katrina and Rita transformed over 56,200 ha of wetlands to open water in various parts of coastal Louisiana. Besides the catastrophic hurricanes, factors such as subsidence, sea-level rise, freshwater and sediment deprivation, saltwater intrusion, the dredging of oil and gas canals, navigation canals, shoreline erosion, and herbivory are all contributors to wetland loss in Louisiana. Various scientific literatures have well described the direct impacts associated with an immediate physical conversion of habitat in coastal Louisiana; however, the indirect impacts that are subtle and operate over longer time horizons (such as salinity intrusion) have been difficult to discern. In this report, long-term influences on salinity patterns and landscape configuration are evaluated for pre- and postconstruction periods of the Houma Navigation Canal (HNC), which is located in the coastal region of southeastern Louisiana. Analysis of daily and hourly salinity data from long-term data collection stations within the areas surrounding the HNC indicated that there were no obvious patterns in increasing salinity levels following the completion of the canal, except for the immediate increase in salinity spikes that occurred toward the completion of its construction in 1961. Increases in salinity spikes were also observed during a severe drought in 1999-2000. Data from Bayou Grand Caillou at Dulac, however, show a longer term trend of increasing salinity levels, which is similar to the pattern observed at the Houma Water Treatment Plant. A potential explanation for these patterns is based on the dredging history of the HNC, where dates of maintenance dredging correspond fairly closely to the salinity peaks in Bayou Grand Caillou and the canal. It

  15. Wise use of wetlands: current state of protection and utilization of Chinese wetlands and recommendations for improvement.

    Science.gov (United States)

    Wang, Yanxia; Yao, Yong; Ju, Meiting

    2008-06-01

    Wetland protection and utilization sometimes appear to be in conflict, but promoting the wise use of wetlands can solve this problem. All countries face the challenge of sustainable development of wetlands to a greater or lesser extent, but the problem is especially urgent in developing countries, such as China, that want to accelerate their economic development without excessive environmental cost. Chinese wetlands contribute greatly to economic development, but improper use of these natural resources has endangered their existence. It is thus necessary to provide scientific guidance to managers and users of wetlands. In this paper, we analyze the present status of Chinese wetland protection and utilization, and discuss problems in six categories: a lack of public awareness of the need for wetland protection; insufficient funding for wetland protection and management; an imperfect legal system to protect wetlands; insufficient wetland research; lack of coordination among agencies and unclear responsibilities; and undeveloped technologies related to wetland use and protection. The wise use of Chinese wetlands will require improvements in four main areas: increased wetland utilization research, scientific management of wetland utilization, improved laws and regulations to protect wetlands, and wider dissemination of wetland knowledge. Based on these categories, we propose a framework for the optimization of wetland use by industry to provide guidance for China and other countries that cannot sacrifice economic benefits to protect their wetlands.

  16. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  17. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  18. Altitude Registration of Limb-Scattered Radiation

    Science.gov (United States)

    Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe

    2017-01-01

    One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of +/-200 m. Results using ARRM indicate a approx. 300 to 400m intra-orbital TH change varying seasonally +/-100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of approx. 200m over 5 years with a relative accuracy (a long-term accuracy) of 100m outside the polar regions.

  19. North American Wetlands and Mosquito Control

    Science.gov (United States)

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  20. Effects of drought and salt stresses on growth characteristics of euhalophyte Suaeda salsa in coastal wetlands

    Science.gov (United States)

    Jia, Jia; Huang, Chen; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wen, Xiaojun

    2018-02-01

    The pot experiment was carried out in the Yellow River Delta to investigate the effects of drought and salt stresses on growth characteristics of Suaeda salsa, and to reveal the role of nitrogen (N) application in alleviation effects of drought and salt stresses on Suaeda salsa in coastal wetlands. In this study, plants were exposed to two water contents treatments (i.e., 14% and 26% water content), four salinity treatments (i.e., 2 g/kg, 4 g/kg, 6 g/kg, and 8 g/kg NaCl) and two N application treatments (i.e., 0 and 200 N mg/kg) in field conditions. Growth characteristics of Suaeda salsa were assessed as fresh weight, dry weight, height, total nitrogen (TN) and total carbon (TC). Our results showed that fresh weight, dry weight and height of Suaeda salsa promoted at lower salinity treatments but reduced at higher salinity treatments, while TN and TC contents kept stable with increasing salinity levels. Drought stress diminished the fresh weight, dry weight and height of Suaeda salsa, whereas enhanced TN contents. Under the interactive stresses of drought and salt, fresh weight and dry weight showed slight increases at lower salinity treatments, whereas decreases at higher salinity treatments. N application promoted the fresh weight, dry weight and TN contents other than the height and TC contents of Suaeda salsa. The interaction between N application and salt stress exhibited a significant influence on the fresh weight and dry weight of Suaeda salsa, whereas no significant interaction between N application and drought stress was observed. These findings of this study suggested that higher salinity, drought and the interaction of drought and higher salinity would retard the growth of Suaeda salsa, whereas N application could only mitigate the deleterious effects of salt stress on Suaeda salsa.

  1. East African wetland-catchment data base for sustainable wetland management

    Science.gov (United States)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  2. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  3. Zooplankton diversity of a protected and vulnerable wetland system in southern South America (Llancanelo area, Argentina

    Directory of Open Access Journals (Sweden)

    D. Sabina D’Ambrosio

    2016-02-01

    Full Text Available Abstract In arid regions, climatic conditions exert a great control on the aquatic systems present, but recent changes in climate have produced an enhanced salinization of the aquatic environments located there. Consequently, a major reduction in biodiversity would be expected in those wetlands that were originally fresh water. Salinity is a principal cause of reduced biodiversity particularly in zooplankton because few of those species can adapt to the salt pressure of saline environments. Therefore, the aim of this study was to gain essential information on the diversity of aquatic invertebrates in Llancanelo basin by focussing the analysis on the zooplankton community and exploring seasonal and spatial differences in the zooplankton assemblages of this vulnerable wetland system within an arid region of Argentina. Seasonal samples were taken at nine sites in the basin (a shallow lake, 4 springs, streams, and the Malargüe River. A total of 45 species were identified. The zooplankton abundance in the lake displayed a clear seasonal contrast and was higher than that recorded in the springs and lotic environments. Boeckella poopoensis, Fabrea salina, and Brachionus plicatilis predominated in the lake, indicating their halophilia. The presence of the crustaceans Alona sp., Macrocyclops albidus, and Paracyclops fimbriatus was restricted to the springs; whereas Notholca labis and Notholca squamula were found only in running water. The zooplankton species richness in the Llancanelo area is low because of both the salt content in the lake and the irregularity of freshwater entry in all locations during the annual cycle.

  4. The role of the upper tidal estuary in wetland blue carbon storage and flux

    Science.gov (United States)

    Krauss, Ken W.; Noe, Gregory B.; Duberstein, Jamie A.; Conner, William H.; Stagg, Camille L.; Cormier, Nicole; Jones, Miriam C.; Bernhardt, Christopher E.; Lockaby, B. Graeme; From, Andrew S.; Doyle, Thomas W.; Day, Richard H.; Ensign, Scott H.; Pierfelice, Katherine N.; Hupp, Cliff R.; Chow, Alex T.; Whitbeck, Julie L.

    2018-01-01

    Carbon (C) standing stocks, C mass balance, and soil C burial in tidal freshwater forested wetlands (TFFW) and TFFW transitioning to low‐salinity marshes along the upper estuary are not typically included in “blue carbon” accounting, but may represent a significant C sink. Results from two salinity transects along the tidal Waccamaw and Savannah rivers of the US Atlantic Coast show total C standing stocks were 321‐1264 Mg C ha‐1 among all sites, generally shifting to greater soil storage as salinity increased. Carbon mass balance inputs (litterfall, woody growth, herbaceous growth, root growth, surface accumulation) minus C outputs (surface litter and root decomposition, gaseous C) over a period of up to 11 years were 340‐900 g C m‐2 yr‐1. Soil C burial was variable (7‐337 g C m‐2 yr‐1), and lateral C export was estimated as C mass balance minus soil C burial as 267‐849 g C m‐2yr‐1. This represents a large amount of C export to support aquatic biogeochemical transformations. Despite reduced C persistence within emergent vegetation, decomposition of organic matter, and higher lateral C export, total C storage increased as forests converted to marsh with salinization. These tidal river wetlands exhibited high N mineralization in salinity‐stressed forested sites and considerable P mineralization in low salinity marshes. Large C standing stocks and rates of C sequestration suggest that TFFW and oligohaline marshes are considerably important globally to coastal C dynamics and in facilitating energy transformations in areas of the world in which they occur.

  5. 398 ASSESSMENT OF WETLAND VALUATION PROCESSES FOR ...

    African Journals Online (AJOL)

    Osondu

    This study therefore examined the processes involved in the valuation of wetland resources for ... of the subsistence uses of wetland resources are also not ... hydrological cycle, playing a key role in the provision ..... Management Strategies at the River Basin Scale. A ... Using. GIS: A Thesis Submitted to the Graduate Faculty.

  6. Carbon Cycling in Wetland Forest Soils

    Science.gov (United States)

    Carl C. Trettin; Martin F. Jurgensen

    2003-01-01

    Wetlands comprise a small proportion (i.e., 2 to 3%) of earth's terrestrial surface, yet they contain a significant proportion of the terrestrial carbon (C) pool. Soils comprise the largest terrestrial C pool (ca. 1550 Pg C in upper 100 cm; Eswaran et al., 1993; Batjes, 1996), and wetlands contain the single largest component, with estimates ranging between 18...

  7. Stochastic modeling of wetland-groundwater systems

    Science.gov (United States)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  8. Diversity patterns of temporary wetland macroinvertebrate ...

    African Journals Online (AJOL)

    Although macroinvertebrates are potentially useful for assessing the condition of temporary wetlands, little is yet known about them. Macroinvertebrate assemblages were assessed in 138 temporary wetlands in the south-western Cape, recording 126 taxa. However, predicted richness estimates were all higher than the ...

  9. Advancing the use of minirhizotrons in wetlands

    Science.gov (United States)

    C. M. Iversen; M. T. Murphy; M. F. Allen; J. Childs; D. M. Eissenstat; E.A. Lilleskov; T. M. Sarjala; V. L. Sloan; P. F. Sullivan

    2012-01-01

    Background. Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However,...

  10. Macroinvertebrate variation in endorheic depression wetlands in ...

    African Journals Online (AJOL)

    Aquatic macroinvertebrates are rarely used in wetland assessments due to their variation. However, in terms of biodiversity, these invertebrates form an important component of wetland fauna. Spatial and temporal variation of macroinvertebrate assemblages in endorheic depressions (locally referred to as 'pans') in ...

  11. The carbon balance of North American wetlands

    Science.gov (United States)

    Scott D. Bridgham; J. Patrick Megonigal; Jason K. Keller; Norman b. Bliss; Carl Trettin

    2006-01-01

    We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-l, although the uncertainty around this estimate is greater than 100%, with the...

  12. Pesticide mitigation capacities of constructed wetlands

    Science.gov (United States)

    Matthew T. Moore; Charles M. Cooper; Sammie Smith; John H. Rodgers

    2000-01-01

    This research focused on using constructed wetlands along field perimeters to buffer receiving water against potential effects of pesticides associated with storm runoff. The current study incorporated wetland mesocosm sampling following simulated runoff events using chlorpyrifos, atrazine, and metolachlor. Through this data collection and simple model analysis,...

  13. Vegetation dynamics of the Tanbi Wetland National Park, The Gambia

    Science.gov (United States)

    Ceesay, A.

    2016-12-01

    Changes in mangrove vegetation have been identified as an important indicator of environmental change. The mangroves of the Tanbi Wetland National Park (TWNP) connect the Atlantic coast with the estuary of the River Gambia and as such, play an invaluable role in the agriculture, tourism and fisheries sectors of The Gambia. Our research seeks to understand the long-term changes in the mangrove vegetation to strengthen the formulation of sustainable alternative livelihoods and adaptation strategies to climate change. Mangrove vegetation dynamics was assessed by remote sensing, using decadal Landsat images covering 1973 - 2012. Physicochemical parameters were analyzed during the rainy and dry seasons of The Gambia for correlation with climate data. Our findings indicate that the long-term changes in salinity (24.5 and 35.8ppt) and water temperature (27.6oC and 30.2oC) during the rainy and dry seasons respectively are retarding mangrove growth. Mangrove vegetation cover declined by 6%, while grassland increased by 56.4%. This research concludes that long-term hyper-salinity is the cause for the stunted vegetation and lack of mangrove rejuvenation. We propose that specialized replanting systems such as the use of saplings be adopted instead of the conventional use of propagules. Alternative livelihoods also need to be diversified to support coastal communities.

  14. Restoring Tides to Avoid Methane Emissions in Degraded Wetlands: A Potent and Untapped Climate Intervention

    Science.gov (United States)

    Kroeger, K. D.; Crooks, S.; Moseman-Valtierra, S.; Tang, J.

    2016-12-01

    To date, activity related to carbon (C) management in coastal marine ecosystems (sometimes referred to as "Blue Carbon") has been concerned primarily with preserving existing C stocks or creating new wetlands to increase CO2 uptake and sequestration. Here we show that the globally-widespread occurrence of hydrologically-altered, degraded wetlands, and associated enhanced GHG emissions, presents an opportunity to reduce an anthropogenic GHG emission through restoration. We model the climatic forcing associated with carbon sinks in natural wetlands and with GHG emissions in altered and degraded wetlands, as well as compile geographic data on tidal restrictions to show that substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of saline tidal flows in diked, impounded and tidally-restricted coastal wetlands. Despite high rates of carbon storage in coastal ecosystems, tidal restoration has dramatically greater potential per unit area as a climate intervention than most other ecosystem management actions. We argue that such emissions reductions represent avoided anthropogenic emissions, equivalent in concept to reduced fossil fuel emissions. Once the emissions have been avoided, the benefit of that action cannot be eliminated, even if emissions resume in the future due to degradation of the ecosystem. The avoided emissions therefore have inherent "permanence", obviating concerns associated with vulnerability of C stocks in land-use based interventions that enhance C sequestration in wood or soil. Further, emissions reductions are likely to be rapid, and given the high radiative efficiency of avoided CH4, wetland tidal restorations can provide near-term climate benefit. The U.S. has recently initiated an effort to include coastal wetlands in the Inventory of U.S. Greenhouse Gas Emissions and Sinks, and the analysis presented here indicates that tidally restricted wetlands meet the primary criteria for inventoried ecosystems in that

  15. Atmospheric electron flux at airplane altitude

    International Nuclear Information System (INIS)

    Enomoto, R.; Chiba, J.; Ogawa, K.; Sumiyoshi, T.; Takasaki, F.; Kifune, T.; Matsubara, Y.; Nishimura, J.

    1991-01-01

    We have developed a new detector to systematically measure the cosmic-ray electron flux at airplane altitudes. We loaded a lead-glass-based electron telescope onto a commercial cargo airplane. The first experiment was carried out using the air route between Narita (Japan) and Sydney (Australia); during this flight we measured the electron flux at various altitudes and latitudes. The thresholds of the electron energies were 1, 2, and 4 GeV. The results agree with a simple estimation using one-dimensional shower theory. A comparison with a Monte Carlo calculation was made

  16. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Adame

    Full Text Available Coastal wetlands can have exceptionally large carbon (C stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes, and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N and phosphorus (P from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1 followed by medium mangroves (623±41 Mg ha(-1, dwarf mangroves (381±52 Mg ha(-1 and marshes (177±73 Mg ha(-1. At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%. Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  17. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention.

    Science.gov (United States)

    Kroeger, Kevin D; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu

    2017-09-20

    Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as "Blue Carbon"), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH 4 ) and CO 2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH 4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.

  18. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.

    Science.gov (United States)

    Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang

    2015-01-01

    Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.

  19. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention

    Science.gov (United States)

    Kroeger, Kevin D.; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu

    2017-01-01

    Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as “Blue Carbon”), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.

  20. Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Tsao-Melcer, D. C.; Schoellhamer, D.H.; Fregien, S.; Athearn, N.D.

    2009-01-01

    Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l-1) to very high salinities (250 g l -1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40-80 g l-1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2-4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths. ?? 2009 USGS, US Government.

  1. Are isolated wetlands groundwater recharge hotspots?

    Science.gov (United States)

    Webb, A.; Wicks, C. M.; Brantley, S. T.; Golladay, S. W.

    2017-12-01

    Geographically isolated wetlands (GIWs) are a common landscape feature in the mantled karst terrain of the Dougherty Plain physiographic district in Southwestern Georgia. These wetlands support a high diversity of obligate/facultative wetland flora and fauna, including several endangered species. While the ecological value of these wetlands is well documented, the hydrologic effects of GIWs on larger watershed processes, such as water storage and aquifer recharge, are less clear. Our project seeks to understand the spatial and temporal variation in recharge across GIWs on this mantled karst landscape. In particular, our first step is to understand the role of isolated wetlands (presumed sinkholes) in delivering water into the underlying aquifer. Our hypothesis is that many GIWs are actually water-filled sinkholes and are locations of focused recharge feeding either the underlying upper Floridan aquifer or the nearby creeks. If we are correct, then these sinkholes should exhibit "drains", i.e., conduits into the limestone bedrock. Thus, the purposes of our initial study are to image the soil-limestone contact (the buried epikarstic surface) and determine if possible subsurface drains exist. Our field work was conducted at the Joseph W Jones Ecological Research Center. During the dry season, we conducted ground penetrating radar (GPR) surveys as grids and lines across a large wetland and across a field with no surface expression of a wetland or sinkhole. We used GPR (200 MHz antenna) with 1-m spacing between antenna and a ping rate of 1 ping per 40 centimeters. Our results show that the epikarstic surface exhibits a drain underneath the wetland (sinkhole) and that no similar feature was seen under the field, even though the survey grid and spacing were similar. As our project progresses, we will survey additional wetlands occurring across varying soil types to determine the spatial distribution between surface wetlands and subsurface drains.

  2. Is wetland mitigation successful in Southern California?

    Science.gov (United States)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  3. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  4. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  5. Modeling natural wetlands: A new global framework built on wetland observations

    Science.gov (United States)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  6. Sapflow and water use of freshwater wetland trees exposed to saltwater incursion in a tidally influenced South Carolina watershed

    Science.gov (United States)

    Krauss, K.W.; Duberstein, J.A.

    2010-01-01

    Sea-level rise and anthropogenic activity promote salinity incursion into many tidal freshwater forested wetlands. Interestingly, individual trees can persist for decades after salt impact. To understand why, we documented sapflow (Js), reduction in Js with sapwood depth, and water use (F) of baldcypress (Taxodium distichum (L.) Rich.) trees undergoing exposure to salinity. The mean Js of individual trees was reduced by 2.8 g H2O??m-2??s-1 (or by 18%) in the outer sapwood on a saline site versus a freshwater site; however, the smallest trees, present only on the saline site, also registered the lowest Js. Hence, tree size significantly influenced the overall site effect on Js. Trees undergoing perennial exposure to salt used greater relative amounts of water in outer sapwood than in inner sapwood depths, which identifies a potentially different strategy for baldcypress trees coping with saline site conditions over decades. Overall, individual trees used 100 kg H2O??day-1 on a site that remained relatively fresh versus 23.9 kg H2O??day-1 on the saline site. We surmise that perennial salinization of coastal freshwater forests forces shifts in individual-tree osmotic balance and water-use strategy to extend survival time on suboptimal sites, which further influences growth and morphology.

  7. 76 FR 79145 - Floodplain Management and Protection of Wetlands

    Science.gov (United States)

    2011-12-21

    ...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands Correction In proposed rule document... Type of proposed action Type of proposed action (new Wetlands or 100- Non-wetlands area reviewable... construction in wetlands locations. \\2\\ Or those paragraphs of Sec. 55.20 that are applicable to an action...

  8. 7 CFR 1410.10 - Restoration of wetlands.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for restoration to wetlands or that was restored to wetlands while under such contract, may, if approved by CCC...

  9. 7 CFR 12.30 - NRCS responsibilities regarding wetlands.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false NRCS responsibilities regarding wetlands. 12.30 Section 12.30 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.30 NRCS responsibilities regarding wetlands. (a) Technical and...

  10. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  11. On leadership and success in professional wetland science

    Science.gov (United States)

    The Society of Wetland Scientists and the wetland profession are fortunate to have an abundance of leaders. These leaders respond to the needs of the Society for guidance and direction. They also consistently advance wetland science and improve the quality of wetland management...

  12. Natural wetland in China | Pan | African Journal of Environmental ...

    African Journals Online (AJOL)

    As it is known to all, wetland is one of the most crucial ecosystems in the world, with large varieties in China. How to protect wetland in China has become a more serious problem and five typical wetlands were selected in the article to illustrate the condition. Through the comparison between the past and present of wetland, ...

  13. Determination of the health of Lunyangwa wetland using Wetland Classification and Risk Assessment Index

    Science.gov (United States)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.; Msilimba, Golden

    2016-04-01

    Wetlands are major sources of various ecological goods and services including storage and distribution of water in space and time which help in ensuring the availability of surface and groundwater throughout the year. However, there still remains a poor understanding of the range of values of water quality parameters that occur in wetlands either in its impacted state or under natural conditions. It was thus imperative to determine the health of Lunyangwa wetland in Mzuzu City in Malawi in order to classify and determine its state. This study used the Escom's Wetland Classification and Risk Assessment Index Field Guide to determine the overall characteristics of Lunyangwa wetland and to calculate its combined Wetland Index Score. Data on site information, field measurements (i.e. EC, pH, temperature and DO) and physical characteristics of Lunyangwa wetland were collected from March, 2013 to February, 2014. Results indicate that Lunyangwa wetland is a largely open water zone which is dominated by free-floating plants on the water surface, beneath surface and emergent in substrate. Furthermore, the wetland can be classified as of a C ecological category (score = 60-80%), which has been moderately modified with moderate risks of the losses and changes occurring in the natural habitat and biota in the wetland. It was observed that the moderate modification and risk were largely because of industrial, agricultural, urban/social catchment stressors on the wetland. This study recommends an integrated and sustainable management approach coupled with continuous monitoring and evaluation of the health of the wetland for all stakeholders in Mzuzu City. This would help to maintain the health of Lunyangwa wetland which is currently at risk of being further modified due to the identified catchment stressors.

  14. BUFFER ZONE METHOD, LAND USE PLANNING AND CONSERVATION STRATEGIES ABOUT WETLANDS UNDER URBANIZATION PRESSURE IN TURKEY

    OpenAIRE

    Ergen, Baris

    2010-01-01

    Wetlands are special areas that they offer habitat for terrestrial and water life. Wetlands are nest sides also for amphibian, for this reason wetlands offer wide range diversity for species. Wetlands are also reproduction regions for birds. Wetlands have special importance for ecosystem because they obstruct erosion. Wetlands absorb contaminants from water therefore wetlands contribute to clean water and they offer more potable water. Wetlands obstruct waterflood. In that case wetlands must ...

  15. Dietary Recommendations for Cyclists during Altitude Training

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-01-01

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH), “live high, train low” (LH-TL) or “intermittent hypoxic training” (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented. PMID:27322318

  16. Dietary Recommendations for Cyclists during Altitude Training.

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-06-18

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  17. Ocular morbidity among porters at high altitudes.

    Science.gov (United States)

    Gnyawali, Subodh; Shrestha, Gauri Shankar; Khanal, Safal; Dennis, Talisa; Spencer, John C

    2017-01-01

    High altitude, often characterized by settings over 2400m, can be detrimental to the human body and pose a significant risk to ocular health. Reports concerning various ocular morbidities occurring as a consequence of high altitude are limited in the current literature. This study was aimed at evaluating the ocular health of porters working at high altitudesof Himalayas in Nepal. A mobile eye clinic was set up in Ghat and patient data were collected from its out- patient unit by a team of seven optometrists which was run for five days. Ghat is a small village in north-eastern Nepal, located at 2860 m altitude. Travellers walking through the trekking route were invited to get their eyes checked at the clinic. Comprehensive ocular examinations were performed, including visual acuities, objective and subjective refraction, anterior and posterior segment evaluations, and intraocular pressure measurements; blood pressure and blood glucose levels were also measured as required. Ocular therapeutics, prescription glasses, sunglasses and ocular health referrals were provided free of cost as necessary. A total of 1890 people visited the eye clinic, among which 57.4% (n=1084) were porters. Almost half of the porters had an ocular morbidity. Correctable refractive error was most prevalent, with other ocular health-related complications, including dry eye disease, infectious disorders, glaucoma and cataract. Proper provision of regular and effective eye care services should be made more available for those residing at these high altitudes in Nepal. © NEPjOPH.

  18. Altitude, Orthocenter of a Triangle and Triangulation

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-03-01

    Full Text Available We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides. Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

  19. 76 FR 11675 - IFR Altitudes; Miscellaneous Amendments

    Science.gov (United States)

    2011-03-03

    ... action is needed because of changes occurring in the National Airspace System. These changes are designed... matters of flight safety and operational efficiency in the National Airspace System, are related to... RIVER, AK NDB BARTER ISLAND, AK NDB... 2000 From To MEA MAA Sec. 95.3000 Low Altitude RNAV Routes Sec...

  20. Dietary Recommendations for Cyclists during Altitude Training

    Directory of Open Access Journals (Sweden)

    Małgorzata Michalczyk

    2016-06-01

    Full Text Available The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH, “live high, train low” (LH-TL or “intermittent hypoxic training” (IHT. Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  1. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  2. Pathology of high altitude pulmonary oedema

    International Nuclear Information System (INIS)

    Saleem, N.

    2014-01-01

    Objective: To describe autopsy findings in fatal cases of high altitude pulmonary oedema. Study Design: Descriptive study. Place and Duration of Study: The study was carried out between 1999 and 2002 at an army field medical unit in Baltistan, Armed Forces Institute of Pathology, Rawalpindi and Army Medical College, Rawalpindi, Pakistan. Patients and Methods:Autopsies were performed in 17 fatal cases of High Altitude Pulmonary Edema (HAPE) occurring among soldiers serving in Siachen. Results:All cases were males with a mean age of 26.8 years (19-35). The mean altitude at which HAPE occurred was 5192 meters (2895-6492), and the mean duration of stay at these altitudes was 15.3 days (1-30). Eleven individuals had undergone proper acclimatization. The commonest clinical findings were cough (70%), dyspnoea (53%), nausea (47%), headache (41%), vomiting (35%), chest pain (35%) and tightness in chest (24%). Cyanosis and frothy secretions in the nostrils and mouth were present in all but one case. Mean combined weight of lungs was 1470 grams (1070-1810). There was marked congestion of outer and cut surfaces. Interstitial oedema was present in all cases. RBCs and leukocyte infiltrates were seen in 13 and alveolar hyaline membranes in 9 cases. Thrombi were seen in 2 cases. Cerebral oedema was present in 9 cases. Conclusion:HAPE can occur after more than two weeks of stay at high altitudes despite proper acclimatization. Concomitant cerebral oedema is frequently present. Our autopsy findings are consistent with what has been reported previously. (author)

  3. Uranium Immobilization in Wetland Soils

    Science.gov (United States)

    Jaffe, Peter R.; Koster van Groos, Paul G.; Li, Dien; Chang, Hyun-Shik; Seaman, John C.; Kaplan, Daniel I.; Peacock, Aaron D.; Scheckel, Kirk

    2014-05-01

    In wetlands, which are a major feature at the groundwater-surface water interface, plants deliver oxygen to the subsurface to keep root tissue aerobic. Some of this oxygen leaches into the rhizosphere where it will oxidize iron that typically precipitates on or near roots. Furthermore, plans provide carbon via root exudates and turnover, which in the presence of the iron oxides drives the activity of heterotrophic iron reducers in wetland soils. Oxidized iron is an important electron acceptor for many microbially-driven transformations, which can affect the fate and transport of several pollutants. It has been shown that heterotrophic iron reducing organisms, such as Geobacter sp., can reduce water soluble U(VI) to insoluble U(IV). The goal of this study was to determine if and how iron cycling in the wetland rhizosphere affects uranium dynamics. For this purpose, we operated a series of small-scale wetland mesocosms in a greenhouse to simulate the discharge of uranium-contaminated groundwater to surface waters. The mesocosms were operated with two different Fe(II) loading rates, two plant types, and unplanted controls. The mesocosms contained zones of root exclusion to differentiate between the direct presence and absence of roots in the planted mesocosms. The mesocosms were operated for several month to get fully established, after which a U(VI) solution was fed for 80 days. The mesocosms were then sacrificed and analyzed for solid-associated chemical species, microbiological characterization, micro-X-ray florescence (µ-XRF) mapping of Fe and U on the root surface, and U speciation via X-ray Absorption Near Edge Structure (XANES). Results showed that bacterial numbers including Geobacter sp., Fe(III), as well as total uranium, were highest on roots, followed by sediments near roots, and lowest in zones without much root influence. Results from the µ-XRF mapping on root surfaces indicated a strong spatial correlation between Fe and U. This correlation was

  4. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  5. Productive use of saline lands

    International Nuclear Information System (INIS)

    2003-01-01

    Water is essential for life, and not least for agricultural activity. It interacts with solar energy to determine the climate of the globe, and its interaction with carbon dioxide inside a plant results in photosynthesis on which depends survival of all life. Much of the water available to man is used for agriculture and yet its usage has not been well managed. One result has been the build up of soil salinity. The Department of Technical Co-operation is sponsoring a programme, with technical support from the Department of Research and Isotopes, to make more productive use of salt-affected land and to limit future build up of salinity. (IAEA)

  6. Geographically isolated wetlands: Rethinking a misnomer

    Science.gov (United States)

    Mushet, David M.; Calhoun, Aram J.K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  7. Urban wetlands: restoration or designed rehabilitation?

    Directory of Open Access Journals (Sweden)

    Beth Ravit

    2017-05-01

    Full Text Available The continuing loss of urban wetlands due to an expanding human population and urban development pressures makes restoration or creation of urban wetlands a high priority. However, urban wetland restorations are particularly challenging due to altered hydrologic patterns, a high proportion of impervious surface and stormwater runoff, degraded urban soils, historic contamination, and competitive pressure from non-native species. Urban wetland projects must also consider human-desired socio-economic benefits. We argue that using current wetland restoration approaches and existing regulatory “success” criteria, such as meeting restoration targets for vegetation structure based on reference sites in non-urban locations, will result in “failed” urban restorations. Using three wetland Case Studies in highly urbanized locations, we describe geophysical tools, stormwater management methods, and design approaches useful in addressing urban challenges and in supporting “successful” urban rehabilitation outcomes. We suggest that in human-dominated landscapes, the current paradigm of “restoration” to a previous state must shift to a paradigm of “rehabilitation”, which prioritizes wetland functions and values rather than vegetation structure in order to provide increased ecological benefits and much needed urban open space amenities.

  8. The hydrological and geochemical isolation of a freshwater bog within a saline fen in north-eastern Alberta

    Directory of Open Access Journals (Sweden)

    S.J. Scarlett

    2013-10-01

    Full Text Available In the oil sands development region near Fort McMurray, Alberta, wetlands cover ~62 % of the landscape, and ~95 % of these wetlands are peatlands. A saline fen was studied as a reference site for peatland reclamation. Despite highly saline conditions, a freshwater bog was observed in the path of local saline groundwater flow. The purpose of this study was to identify the hydrological controls that have allowed the development and persistence of a bog in this setting. The presence of bog vegetation and its dilute water chemistry suggest that saline groundwater from the fen rarely enters the bog, which functions predominantly as a groundwater recharge system. Chloride (Cl– and sodium (Na+ were the dominant ions in fen water, with concentrations averaging 5394 and 2307 mg L-1, respectively, while the concentrations in bog water were 5 and 4 mg L-1, respectively. These concentrations were reflected by salinity and electrical conductivity measurements, which in the fen averaged 9.3 ppt, and 15.8 mS cm-1, respectively, and in the bog averaged 0.1 ppt and 0.3 mS cm-1, respectively. A small ridge in the mineral substratum was found at the fen–bog margin, which created a persistent groundwater mound. Under the dry conditions experienced in early summer, groundwater flow was directed away from the bog at a rate of 14.6 mm day-1. The convex water table at the fen-bog margin impeded flow of saline water into the bog and instead directed it around the bog margin. However, the groundwater mound was eliminated during flooding in autumn, when the horizontal hydraulic gradient across the margin became negligible, suggesting the possibility of saline water ingress into the bog under these conditions.

  9. Limnology of Jagatpur wetland, Bhagalpur (Bihar), India.

    Science.gov (United States)

    Kumar, Brajnandan

    2011-10-01

    The water quality in Jagatpur wetland was assessed in terms of physico - chemical characteristics for two years, between August 2003-July 2005. The variations in different physico-chemical parameters have been discussed in this paper in relation to fluctuating climatic condition. The wetland is experiencing racing eutrophication as evidenced by pH was acidic to alkaline, total hardness was considerably high, bicarbonate was in moderate amount, phosphate-phosphorus content was in a range of medium to high and higher values of COD. The present status of the quality of water of Jagatpur wetland is delineated in this paper.

  10. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    Science.gov (United States)

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA

    Science.gov (United States)

    Dunagan, S.P.; Turner, C.E.

    2004-01-01

    During deposition of the Upper Jurassic Morrison Formation, water that originated as precipitation in uplands to the west of the Western Interior depositional basin infiltrated regional aquifers that underlay the basin. This regional groundwater system delivered water into the otherwise dry continental interior basin where it discharged to form two major wetland/lacustrine successions. A freshwater carbonate wetland/lacustrine succession formed in the distal reaches of the basin, where regional groundwater discharged into the Denver-Julesburg Basin, which was a smaller structural basin within the more extensive Western Interior depositional basin. An alkaline-saline wetland/lacustrine complex (Lake T'oo'dichi') formed farther upstream, where shallower aquifers discharged into the San Juan/Paradox Basin, which was another small structural basin in the Western Interior depositional basin. These were both wetlands in the sense that groundwater was the major source of water. Input from surface and meteoric water was limited. In both basins, lacustrine conditions developed during episodes of increased input of surface water. Inclusion of wetlands in our interpretation of what had previously been considered largely lacustrine systems has important implications for paleohydrology and paleoclimatology. The distal carbonate wetland/lacustrine deposits are well developed in the Morrison Formation of east-central Colorado, occupying a stratigraphic interval that is equivalent to the "lower" Morrison but extends into the "upper" Morrison Formation. Sedimentologic, paleontologic, and isotopic evidence indicate that regional groundwater discharge maintained shallow, hydrologically open, well oxygenated, perennial carbonate wetlands and lakes despite the semi-arid climate. Wetland deposits include charophyte-rich wackestone and green mudstone. Lacustrine episodes, in which surface water input was significant, were times of carbonate and siliciclastic deposition in scarce deltaic

  12. Algal and cyanobacterial saline biofilms of the Grande Coastal Lagoon, Lima, Peru

    OpenAIRE

    Montoya, Haydee

    2009-01-01

    Tropical coastal wetland ecosystems are widely distributed in arid regions. The Grande coastal lagoon in Peru's central plain is shallow, eutrophic and alkaline, exposed to the annual hydrological regime with flooding and desiccation periods, when a salt crust is formed. The brackish to hypersaline habitats showed salinity gradients from 2-90 ppt (NaCl) to saturation, pH values from 7.0 to 10.5, temperatures from 18 to 31 C, phosphate concentrations from 0.5 to 50 mg 1-1. Dominance of halophi...

  13. CAMEX-4 ER-2 HIGH ALTITUDE DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 High Altitude Dropsonde dataset was collected by the ER-2 High Altitude Dropsonde System (EHAD), which used dropwinsondes fitted with Global...

  14. Optic neuropathy following an altitude exposure.

    Science.gov (United States)

    Steigleman, Allan; Butler, Frank; Chhoeu, Austin; O'Malley, Timothy; Bower, Eric; Giebner, Stephen

    2003-09-01

    This case report describes a 20-yr-old man who presented with retro-orbital pain and blurred vision in his left eye 3 wk after an altitude exposure in a hypobaric chamber. He was found to have significant deficits in color vision and visual fields consistent with an optic neuropathy in his left eye. The patient was diagnosed with decompression sickness and treated with hyperbaric oxygen with a U.S. Navy Treatment Table VI. All signs and symptoms resolved with a single hyperbaric oxygen treatment but recurred. A head MRI revealed a left frontoethmoid sinus opacity. A concomitant sinusitis was diagnosed. The patient had full resolution of symptoms after a total of four hyperbaric oxygen treatments and antibiotic therapy at 6-wk follow-up. Although a para-infectious etiology for this patient's optic neuropathy cannot be excluded, his history of altitude exposure and significant, rapid response to hyperbaric oxygen treatment strongly implies decompression sickness in this case.

  15. Spatial and temporal distribution of ionospheric currents-4: altitude ...

    African Journals Online (AJOL)

    (a) The continuous distribution of current density model reproduces the altitude distribution parameters of EEJ current density very well, (b) the altitude distribution parameters of EEJ current density in India and Peru are not significantly different and (c) The altitude distribution parameters of EEJ current density from rockets ...

  16. Characterisation of the hydrology of an estuarine wetland

    Science.gov (United States)

    Hughes, Catherine E.; Binning, Philip; Willgoose, Garry R.

    1998-11-01

    The intertidal zone of estuarine wetlands is characterised by a transition from a saline marine environment to a freshwater environment with increasing distance from tidal streams. An experimental site has been established in an area of mangrove and salt marsh wetland in the Hunter River estuary, Australia, to characterise and provide data for a model of intertidal zone hydrology. The experimental site is designed to monitor water fluxes at a small scale (36 m). A weather station and groundwater monitoring wells have been installed and hydraulic head and tidal levels are monitored over a 10-week period along a short one-dimensional transect covering the transition between the tidal and freshwater systems. Soil properties have been determined in the laboratory and the field. A two-dimensional finite element model of the site was developed using SEEP/W to analyse saturated and unsaturated pore water movement. Modification of the water retention function to model crab hole macropores was found necessary to reproduce the observed aquifer response. Groundwater response to tidal fluctuations was observed to be almost uniform beyond the intertidal zone, due to the presence of highly permeable subsurface sediments below the less permeable surface sediments. Over the 36 m transect, tidal forcing was found to generate incoming fluxes in the order of 0.22 m 3/day per metre width of creek bank during dry periods, partially balanced by evaporative fluxes of about 0.13 m 3/day per metre width. During heavy rainfall periods, rainfall fluxes were about 0.61 m 3/day per metre width, dominating the water balance. Evapotranspiration rates were greater for the salt marsh dominated intertidal zone than the non-tidal zone. Hypersalinity and salt encrustation observed show that evapotranspiration fluxes are very important during non-rainfall periods and are believed to significantly influence salt concentration both in the surface soil matrix and the underlying aquifer.

  17. Hydrological states and the resilience of deltaic forested wetlands

    Science.gov (United States)

    Keim, R.; Allen, S. T.

    2017-12-01

    The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.

  18. Coastal wetlands: an integrated ecosystem approach

    Science.gov (United States)

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  19. VT National Wetlands Inventory Map Data - polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VCGI downloaded NWI quads from the US FWS web site and reprojected to VCS NAD83. NWI digital data files are records of wetlands location and...

  20. Design and maintenance of subsurface gravel wetlands.

    Science.gov (United States)

    2015-02-01

    This report summarizes the University of New Hampshire Stormwater Center (UNHSC) evaluation of : a review of Subsurface Gravel Wetlands design and specifications used by the New Hampshire : Department of Transportation (NHDOT or Department). : Subsur...

  1. NOAA C-CAP National Wetland Potential

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The probability rating which covers landcover mapping provides a continuum of wetness from dry to water. The layer is not a wetland classification but provides the...

  2. VT National Wetlands Inventory Map Data - lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) VCGI downloaded NWI quads from the US FWS web site and reprojected to VCS NAD83. NWI digital data files are records of wetlands location and...

  3. 76 FR 777 - National Wetland Plant List

    Science.gov (United States)

    2011-01-06

    ... the Wetland Conservation Provisions of the Food Security Act. Other applications of the list include... recommended changes and additions to the NWPL. The process will be supported by an interactive Web site where...

  4. Neutral barium cloud evolution at different altitudes

    International Nuclear Information System (INIS)

    Li Lei; Xu Ronglan

    2002-01-01

    Considering the joint effects of diffusion, collision, oxidation and photoionization, the authors study the evolution of the barium cloud at different altitudes in the space plasma active experiment. The results present the variation of the loss rate, number density distribution and brightness of the barium cloud over the range from 120 to 260 km. This can be divided into oxidation, oxidation plus photoionization and photoionization regions

  5. Guide to Altitude Decompression Sickness Research

    Science.gov (United States)

    2010-05-01

    fitness flight gender growth helium hormone human hyperbaric hypobaric hypoxia incidence injury interface interruption intra in-vitro isobaric male...exposure in hypobaric chambers and, due to its omission of other training, was not adequate for any other use. The two items required prior to...were kept in the contractor lab. 3. Hypobaric exposure records (Research Chamber Flight Records, including AF Forms 361) were kept by Altitude and

  6. HIGH ALTITUDES EFFECTS ON HEMATOLOGIC BLOOD PARAMETERS

    Directory of Open Access Journals (Sweden)

    Hasim Rushiti

    2015-05-01

    Full Text Available The approach and the objective of this experiment are consistent with the determination of changes of blood parameters after the stay of the students at an altitude of 1800-2300 meters, for a ten-day long ski course. In this paper are included a total of 64 students of the Faculty of Sport Sciences in Prishtina, of the age group of 19-25 (the average age is 21. All students previously have undergone a medical check for TA, arterial pulse and respiratory rate. In particular, the health situation is of subjects was examined, then, all students, at the same time, gave blood for analysis. In this experiment, three main hematologic parameters were taken in consideration: such as hemoglobin, hematocrit and red blood cells. The same analyses were carried out after the 10-day stay at a high altitude. The results of the experiment have shown significant changes after the ten-day stay at high altitude, despite the previous results that show changes only after the twenty-day stay in such elevations.

  7. Altitude variation of cosmic-ray neutrons

    International Nuclear Information System (INIS)

    Nakamura, T.; Uwamino, Y.; Ohkubo, T.; Hara, A.

    1987-01-01

    The altitude variation of the cosmic-ray neutron energy spectrum and the dose equivalent rate was measured at an average geomagnetic latitude of 24 degrees N by using the high-efficiency multi-sphere neutron spectrometer and neutron dose-equivalent counter developed by the authors. The data were obtained from a 2-h flight over Japan on 27 February 1985. The neutron energy spectra measured at sea level and at altitudes of 4880 m and at 11,280 m were compared with the calculated spectra of O'Brien and with other experimental spectra, and they are in moderately good agreement with them. The dose equivalent rate increases according to a quadratic curve up to about 6000 m and then increases linearly between 6000 m and 11,280 m. The dependence of dose equivalent rates at sea level and at an altitude of 12,500 m on geomagnetic latitude also is given by referring to other experimental results

  8. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  9. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Bien, Stephanie; Decker, Ashlee; Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States); Wulker, Brian [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  10. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    International Nuclear Information System (INIS)

    Powell, Jane; Bien, Stephanie; Decker, Ashlee; Homer, John; Wulker, Brian

    2013-01-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  11. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands

    Science.gov (United States)

    Zhao, Yanyun; Lu, Zhaohua; Liu, Jingtao; Hu, Shugang

    2017-12-01

    A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each⩾6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

  12. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau.

    Science.gov (United States)

    Deng, Yongcui; Liu, Yongqin; Dumont, Marc; Conrad, Ralf

    2017-01-01

    Lakes are widely distributed on the Tibetan Plateau, which plays an important role in natural methane emission. Aerobic methanotrophs in lake sediments reduce the amount of methane released into the atmosphere. However, no study to date has analyzed the methanotroph community composition and their driving factors in sediments of these high-altitude lakes (>4000 m). To provide new insights on this aspect, the abundance and composition in the sediments of six high-altitude alkaline lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied. The quantitative PCR, terminal restriction fragment length polymorphism, and 454-pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies ranged 10 4 -10 6 per gram fresh sediment. Type I methanotrophs predominated in Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-sequencing data from lake sediments of other regions, a significant salinity and alkalinity effect (P = 0.001) was detected, especially salinity, which explained ∼25% of methanotroph community variability. The main effect was Methylomicrobium being dominant (up to 100%) in saline lakes only. In freshwater lakes, however, methanotroph composition was relatively diverse, including Methylobacter, Methylocystis, and uncultured type Ib clusters. This study provides the first methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity is a driving factor for the community composition of aerobic methanotrophs.

  13. Do geographically isolated wetlands influence landscape functions?

    Science.gov (United States)

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J.K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  14. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    Science.gov (United States)

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  15. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Science.gov (United States)

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  16. Aquatic Coleoptera assemblages in protected wetlands of North-western Spain

    Directory of Open Access Journals (Sweden)

    Amaia Pérez-Bilbao

    2014-02-01

    Full Text Available Wetlands are diverse and productive ecosystems endangered by human pressure, which degradation implies a biodiversity loss worldwide. Among the biological assemblages of these habitats, aquatic Coleoptera is one of the most diverse and useful groups when assessing the ecological conditions of the ecosystems they inhabit. The aims of the present study were to analyze the diversity and composition of aquatic Coleoptera assemblages in 24 wetlands protected by the Natura 2000 network of North-western Spain and the influence of environmental variables on the distribution of species, in order to detect differences between the different types of standing water habitats. A total of 11,136 individuals of 105 species belonging to 12 families of aquatic Coleoptera (Gyrinidae, Haliplidae, Noteridae, Paelobiidae, Dytiscidae, Helophoridae, Hydrochidae, Hydrophilidae, Hydraenidae, Scirtidae, Elmidae and Dryopidae were collected. In general, wetlands presented high richness and diversity values, Dytiscidae and Hydrophilidae having the highest species richness. Most of recorded species have a wide biogeographical distribution and only 12 endemic ones were captured. Cluster and Non-Metric Multi-Dimensional Scaling (NMDS analyses showed the clustering of the studied ponds and lagoons in four groups based on biological data. In general, the wetlands of each group seem to have distinct aquatic Coleoptera faunas, as showed by the most representative species. A combination of altitude, SST and hydroperiod was the best explaining factor of the distribution of the species throughout the study area. This study shows the high biodiversity of standing water habitats in North-western Spain and the usefulness of water beetles in establishing habitat typologies.

  17. Ecological observations of major Salicornia beds from highly saline coastal wetlands of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Bhosale, S.H.; Nagle, V.L.

    along the Tamilnadu coast due to greater (0.83-7.2 m) tidal amplitude and flat topography. The sediments from beds of the Gulf of Kutchchh were rich (4.9-16.9% dry weight) in organic matter. The salt content in the sediments from Tamilnadu was relatively...

  18. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  19. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  20. Responses of freshwater molluscs to environmental factors in Southern Brazil wetlands Respostas de moluscos límnicos a fatores ambientais em áreas úmidas do sul do Brasil

    Directory of Open Access Journals (Sweden)

    L. Maltchik

    2010-08-01

    Full Text Available Freshwater molluscs play an important role in aquatic ecosystems, providing food for many fish species and vertebrates. Investigations on factors that determine mollusc species richness and distribution in wetland systems are scarce in the Neotropical region. The main goal of this study was to determine how much variation in mollusc richness and composition is explained by area, hydroperiod, altitude, water conductivity, and dominant aquatic vegetation. This survey was performed in an extensive area of a Neotropical region (~280,000 km² in southern Brazil, with a large number of wetland systems (111 and covering a wide gradient of altitude and wetland surface area. The mollusc richness was positively associated with wetland area and negatively associated with altitude. The richness and composition of the freshwater molluscs were similar between permanent and intermittent wetlands and it did not differ significantly between aquatic bed and emergent wetlands. The first three axes of CCA explained 16.2% of the total variation in the composition of the freshwater mollusc observed. The variation in the composition had a correlation with wetland area, altitude and water conductivity. Our results showed that the wetlands are important habitats for molluscs in southern Brazil, and that the richness and the composition of molluscs were associated with area, altitude, water conductivity and dominant vegetation.Moluscos límnicos desempenham um papel importante em ecossistemas aquáticos, fornecendo alimento para diversos peixes e vertebrados. Investigações sobre os fatores que determinam a riqueza e a distribuição das espécies de moluscos em áreas úmidas são escassos na região neotropical. O principal objetivo deste estudo foi determinar a variação na riqueza e na composição de moluscos em função da área, hidroperíodo, altitude, condutividade da água e tipo de vegetação aquática dominante. Este estudo foi desenvolvido em uma extensa

  1. Preacclimatization in hypoxic chambers for high altitude sojourns.

    Science.gov (United States)

    Küpper, Thomas E A H; Schöffl, Volker

    2010-09-01

    Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.

  2. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China.

    Science.gov (United States)

    Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.

  3. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  4. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings.

    Science.gov (United States)

    Saintilan, Neil; Rogers, Kerrylee

    2015-02-01

    A global trend of woody plant encroachment of terrestrial grasslands is co-incident with woody plant encroachment of wetland in freshwater and saline intertidal settings. There are several arguments for considering tree encroachment of wetlands in the context of woody shrub encroachment of grassland biomes. In both cases, delimitation of woody shrubs at regional scales is set by temperature thresholds for poleward extent, and by aridity within temperature limits. Latitudinal expansion has been observed for terrestrial woody shrubs and mangroves, following recent warming, but most expansion and thickening has been due to the occupation of previously water-limited grassland/saltmarsh environments. Increases in atmospheric CO₂, may facilitate the recruitment of trees in terrestrial and wetland settings. Improved water relations, a mechanism that would predict higher soil moisture in grasslands and saltmarshes, and also an enhanced capacity to survive arid conditions, reinforces local mechanisms of change. The expansion of woody shrubs and mangroves provides a negative feedback on elevated atmospheric CO₂ by increasing carbon sequestration in grassland and saltmarsh, and is a significant carbon sink globally. These broad-scale vegetation shifts may represent a new stable state, reinforced by positive feedbacks between global change drivers and endogenic mechanisms of persistence in the landscape.

  5. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana

    Science.gov (United States)

    Kwoun, Oh-Ig; Lu, Z.

    2009-01-01

    Using multi-temporal European Remote-sensing Satellites (ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) synthetic aperture radar (SAR) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscat-tering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-1 require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-1, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that SAR can provide necessary information to characterize coastal wetlands and monitor their changes.

  6. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  7. A global algorithm for estimating Absolute Salinity

    Science.gov (United States)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  8. 40 CFR 230.25 - Salinity gradients.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...

  9. Salinity: Electrical conductivity and total dissolved solids

    Science.gov (United States)

    The measurement of soil salinity is a quantification of the total salts present in the liquid portion of the soil. Soil salinity is important in agriculture because salinity reduces crop yields by reducing the osmotic potential making it more difficult for the plant to extract water, by causing spe...

  10. Design-a-wetland: a tool for generating and assessing constructed wetland designs for wastewater treatment

    International Nuclear Information System (INIS)

    Casaril, Carolina J.

    2007-01-01

    Full text: Full text: The hydrological cycle is a key cycle affected by current and predicted climate change. Wetlands are one of the key ecosystems within the hydrological cycle and could contribute significantly in facing the challenges of climate change, such as water shortage. The impact of wetlands on greenhouse gas emissions is much debated and, conversely, the impact of climate change on wetlands also raises many questions. There have been many attempts to harness and integrate the natural capacities of wetlands into constructed systems. These systems are especially designed for multiple purposes. They can be used for wastewater treatment and reuse, and have the potential to increase sustainability by changing land and water use practices. This project generates a 'Design-A-Wetland' prototype model, designed to facilitate decision-making in the creation of constructed wetlands. Constructed wetlands are specifically tailored to their end use; water treatment fish and fowl habitat, flood buffer zones, or sequestration of greenhouse gases. This project attempts to answer the following questions: Can a single integrated decision model be created for the design and assessment of artificial wetlands, provided either entry or exit standards are known and specified?; Can the elements of a system of interfacing the model with public consultation be specified?; The project identifies model schematics and lays the groundwork for modelling suited to the wide variety of inputs required for decision making

  11. Functional roles of wetlands: a case study of the coastal wetlands of ...

    African Journals Online (AJOL)

    The Coastal Wetland of the study area is used extensively for a large number of activities. It is also threatened because of their vulnerability and attractiveness for development. These therefore prompted a study of the Wetlands for a period of 18 months (July 1997 – December 1998) to identify the functional roles that ...

  12. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation's Wetlands

    Science.gov (United States)

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the publi...

  13. Inclusion of Riparian Wetland Module (RWM) into the SWAT model for assessment of wetland hydrological benefit

    Science.gov (United States)

    Wetlands are an integral part of many agricultural watersheds. They provide multiple ecosystem functions, such as improving water quality, mitigating flooding, and serving as natural habitats. Those functions are highly depended on wetland hydrological characteristics and their connectivity to the d...

  14. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.

    Science.gov (United States)

    Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C

    2016-12-01

    High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med

  15. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  16. Numerical Response of Migratory Shorebirds to Prey Distribution in a Large Temperate Arid Wetland, China

    Directory of Open Access Journals (Sweden)

    Yamian Zhang

    2016-01-01

    Full Text Available Wuliangsuhai Lake provides important breeding and stopover habitats for shorebirds. The health of this wetland ecosystem is rapidly deteriorating due to eutrophication and water pollution and environmental management is urgently needed. To explore the connections among ecosystem health, prey density, and shorebird populations, we conducted surveys of both the benthic macroinvertebrates and shorebirds in the shorebird habitat of the wetland during the 2011 autumn migration season. The abundance of both shorebirds and benthic macroinvertebrates varied significantly in both space and time. Our data showed a clear association between shorebird populations and the density of benthic macroinvertebrates, which explained 53.63% of the variation in shorebird abundance. The prey density was strongly affected by environmental factors, including water and sediment quality. Chironomidae were mainly found at sites with higher total phosphorus, but with lower sediment concentrations of Cu. Lymnaeidae were mainly found at sites with a higher pH, lower salinity, and lower concentrations of total phosphorus and Cu. Habitats with very high concentrations of total phosphorus, heavy metals, or salinity were not suitable for benthic macroinvertebrates. Our findings suggest that the reductions of nutrient and heavy metal loadings are crucial in maintaining the ecological function of Wuliangsuhai as a stopover habitat for migratory shorebirds.

  17. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    Andrew T. Taylor

    2011-01-01

    Full Text Available High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.

  18. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  19. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    Science.gov (United States)

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  20. GlobWetland Africa: Implementing Sustainable Earth Observation Based Wetland Monitoring Capacity in Africa and Beyond

    DEFF Research Database (Denmark)

    Tottrup, Christian; Riffler, Michael; Wang, Tiejun

    and decision support, [iii] receive a freely available, open, flexible and modifiable framework for easy establishment of new wetland observatories, for easy integration in existing observatory infrastructures and for easy adaptation to new requirements, e.g. changes in management processes.......Lack of data, appropriate information and challenges in human and institutional capacity put a serious constraint on effective monitoring and management of wetlands in Africa. Conventional data are often lacking in time or space, of poor quality or available at locations that are not necessarily...... for the conservation, wiseuse and effective management of wetlands in Africa and to provide African stakeholders with the necessary EO methods and tools to better fulfil their commitments and obligations towards the Ramsar Convention on Wetlands. The main objective of GlobWetland Africa (GW-A) is to provide the major...

  1. Wetlands of the Gulf Coast

    Science.gov (United States)

    2001-01-01

    This set of images from the Multi-angle Imaging SpectroRadiometer highlights coastal areas of four states along the Gulf of Mexico: Louisiana, Mississippi, Alabama and part of the Florida panhandle. The images were acquired on October 15, 2001 (Terra orbit 9718)and represent an area of 345 kilometers x 315 kilometers.The two smaller images on the right are (top) a natural color view comprised of red, green, and blue band data from MISR's nadir(vertical-viewing) camera, and (bottom) a false-color view comprised of near-infrared, red, and blue band data from the same camera. The predominantly red color of the false-color image is due to the presence of vegetation, which is bright at near-infrared wavelengths. Cities appear as grey patches, with New Orleans visible at the southern edge of Lake Pontchartrain, along the left-hand side of the images. The Lake Pontchartrain Bridge runs approximately north-south across the middle of the lake. The distinctive shape of the Mississippi River Delta can be seen to the southeast of New Orleans. Other coastal cities are visible east of the Mississippi, including Biloxi, Mobile and Pensacola.The large image is similar to the true-color nadir view, except that red band data from the 60-degree backward-looking camera has been substituted into the red channel; the blue and green data from the nadir camera have been preserved. In this visualization, green hues appear somewhat subdued, and a number of areas with a reddish color are present, particularly near the mouths of the Mississippi, Pascagoula, Mobile-Tensaw, and Escambia Rivers. Here, the red color is highlighting differences in surface texture. This combination of angular and spectral information differentiates areas with aquatic vegetation associated with poorly drained bottom lands, marshes, and/or estuaries from the surrounding surface vegetation. These wetland regions are not as well differentiated in the conventional nadir views.Variations in ocean color are apparent in

  2. Salinity and temperature tolerance of the invasive freshwater gastropod Tarebia granifera

    Directory of Open Access Journals (Sweden)

    Renzo Perissinotto

    2010-04-01

    Full Text Available Invasive aquatic species, such as the gastropod Tarebia granifera, can cause ecological isturbances and potentially reduce biodiversity by displacing indigenous invertebrates. In South Africa, T. granifera was first recorded in an estuarine environment in the St Lucia Estuary. Its tolerance to salinity and temperature was investigated through the experimental manipulation of these factors. T. granifera can tolerate temperatures between 0 ºC and 47.5 ºC, allowing it to survive high temperature extremes. The species may also survive cold snaps and invade higher altitude areas. More remarkably, this snail survives high salinity for a relatively long time, as LS50 (lethal salinity for 50% of the population was reached at 30 psu over 65–75 days. However, higher salinity adversely affected the T. granifera population. Snails acclimated to freshwater conditions and suddenly transferred to 30 psu experienced 100% mortality within 48 h. Snail activity also declined with increasing salinity. T. granifera’s environmental tolerance and parthenogenetic characteristics are the keys to successful introduction and establishment. Therefore, the management of T. granifera may prove diffcult in the short to medium term. The present findings constitute a contribution to the knowledge of biological invasions in Africa and to the understanding of estuarine invasions by T. granifera.

  3. Dose-response of altitude training: how much altitude is enough?

    Science.gov (United States)

    Levine, Benjamin D; Stray-Gundersen, James

    2006-01-01

    Altitude training continues to be a key adjunctive aid for the training of competitive athletes throughout the world. Over the past decade, evidence has accumulated from many groups of investigators that the "living high--training low" approach to altitude training provides the most robust and reliable performance enhancements. The success of this strategy depends on two key features: 1) living high enough, for enough hours per day, for a long enough period of time, to initiate and sustain an erythropoietic effect of high altitude; and 2) training low enough to allow maximal quality of high intensity workouts, requiring high rates of sustained oxidative flux. Because of the relatively limited access to environments where such a strategy can be practically applied, numerous devices have been developed to "bring the mountain to the athlete," which has raised the key issue of the appropriate "dose" of altitude required to stimulate an acclimatization response and performance enhancement. These include devices using molecular sieve technology to provide a normobaric hypoxic living or sleeping environment, approaches using very high altitudes (5,500m) for shorter periods of time during the day, and "intermittent hypoxic training" involving breathing very hypoxic gas mixtures for alternating 5 minutes periods over the course of 60-90 minutes. Unfortunately, objective testing of the strategies employing short term (less than 4 hours) normobaric or hypobaric hypoxia has failed to demonstrate an advantage of these techniques. Moreover individual variability of the response to even the best of living high--training low strategies has been great, and the mechanisms behind this variability remain obscure. Future research efforts will need to focus on defining the optimal dosing strategy for these devices, and determining the underlying mechanisms of the individual variability so as to enable the individualized "prescription" of altitude exposure to optimize the performance of

  4. Development of an indicator to monitor mediterranean wetlands.

    Science.gov (United States)

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered.

  5. Isoprene emission from wetland sedges

    Directory of Open Access Journals (Sweden)

    A. Ekberg

    2009-04-01

    Full Text Available High latitude wetlands play an important role for the surface-atmosphere exchange of carbon dioxide (CO2 and methane (CH4, but fluxes of biogenic volatile organic compounds (BVOC in these ecosystems have to date not been extensively studied. This is despite BVOC representing a measurable proportion of the total gaseous C fluxes at northern locations and in the face of the high temperature sensitivity of these systems that requires a much improved process understanding to interpret and project possible changes in response to climate warming. We measured emission of isoprene and photosynthetic gas exchange over two growing seasons (2005–2006 in a subarctic wetland in northern Sweden with the objective to identify the physiological and environmental controls of these fluxes on the leaf scale. The sedge species Eriophorum angustifolium and Carex rostrata were both emitters of isoprene. Springtime emissions were first detected after an accumulated diurnal mean temperature above 0°C of about 100 degree days. Maximum measured growing season standardized (basal emission rates (20°C, 1000 μmol m−2 s−1 were 1075 (2005 and 1118 (2006 μg C m−2 (leaf area h−1 in E. angustifolium, and 489 (2005 and 396 (2006 μg C m−2 h−1 in C. rostrata. Over the growing season, basal isoprene emission varied in response to the temperature history of the last 48 h. Seasonal basal isoprene emission rates decreased with leaf nitrogen (N, which may be explained by the typical growth and resource allocation pattern of clonal sedges as the leaves age. The observations were used to model emissions over the growing season, accounting for effects of temperature history, links to leaf assimilation rate and the light and temperature dependencies of the cold-adapted sedges.

  6. Altitude Testing of Large Liquid Propellant Engines

    Science.gov (United States)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  7. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones

    Energy Technology Data Exchange (ETDEWEB)

    Jay, David A.; Borde, Amy B.; Diefenderfer, Heida L.

    2016-04-26

    Spatially varying water-level regimes are a factor controlling estuarine and tidal-fluvial wetland vegetation patterns. As described in Part I, water levels in the Lower Columbia River and estuary (LCRE) are influenced by tides, river flow, hydropower operations, and coastal processes. In Part II, regression models based on tidal theory are used to quantify the role of these processes in determining water levels in the mainstem river and floodplain wetlands, and to provide 21-year inundation hindcasts. Analyses are conducted at 19 LCRE mainstem channel stations and 23 tidally exposed floodplain wetland stations. Sum exceedance values (SEVs) are used to compare wetland hydrologic regimes at different locations on the river floodplain. A new predictive tool is introduced and validated, the potential SEV (pSEV), which can reduce the need for extensive new data collection in wetland restoration planning. Models of water levels and inundation frequency distinguish four zones encompassing eight reaches. The system zones are the wave- and current-dominated Entrance to river kilometer (rkm) 5; the Estuary (rkm-5 to 87), comprised of a lower reach with salinity, the energy minimum (where the turbidity maximum normally occurs), and an upper estuary reach without salinity; the Tidal River (rkm-87 to 229), with lower, middle, and upper reaches in which river flow becomes increasingly dominant over tides in determining water levels; and the steep and weakly tidal Cascade (rkm-229 to 234) immediately downstream from Bonneville Dam. The same zonation is seen in the water levels of floodplain stations, with considerable modification of tidal properties. The system zones and reaches defined here reflect geological features and their boundaries are congruent with five wetland vegetation zones

  8. Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina

    International Nuclear Information System (INIS)

    Carol, Eleonora; Mas-Pla, Josep; Kruse, Eduardo

    2013-01-01

    Highlights: • Inland and estuarine water flows define wetland hydrology on the Samborombón Bay. • Hydrochemistry in shell-ridges and tidal plains is due to water–rock interaction. • Mixing, evaporation and halite dissolution determine salinity in marshes. • Water flow from the shell-ridges control the overall wetland water quality. • These wetlands are complex hydrological systems with vulnerable water resources. - Abstract: On the Samborombón Bay coastline, located in the Río de la Plata estuary in Buenos Aires province (Argentina), a complex hydrological system has developed at the interface between continental and estuarine water, where significant wetlands develop. The main hydrogeological units, namely the shell ridges, the tidal plain and the marsh areas, have been identified using geomorphological criteria. Water table, hydrochemical and isotopic data have been used to determine their hydrological features, as well as those of the streams and canals. Evaporation processes, in particular, have been considered when depicting chemical and isotopic changes in surface waters in streams and marsh areas. The shell ridges represent a hydrogeological unit in which rainwater is stored, constituting a lens-shaped freshwater aquifer. In this unit, just as in the tidal plain, carbonate dissolution and ion exchange are the main processes regulating water chemistry. On the other hand, in the marsh and surface waters, processes such as mixing with estuarine water and evaporation predominate. These processes control water fluxes and the salinity of the wetland areas and, consequently, their ability to preserve the existing biodiversity. This study shows the importance of knowledge of hydrochemical processes in any proposal concerning the management and preservation of this type of wetland

  9. Indicators of early successional trends in environmental condition and community function in constructed wetlands of the Athabasca Oilsands region

    Energy Technology Data Exchange (ETDEWEB)

    Ciborowski, J.; Kovalenko, K. [Windsor Univ., ON (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Mollard, F.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Smits, J.; Turcotte, D. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    This presentation reported on a study that compared interannual environmental variation in post-mining Athabasca oil sands landscapes. In particular, it compared biological, ecotoxicological and carbon dynamic aspects of sixteen 5 to 30 year old wetlands with different ages, reclamation materials and stockpiled surface materials such as peat. In addition to determining carbon fluxes, standing stocks of hydrocarbons were measured along with organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, litter, zoobenthos, and aquatic insect emergence. Gas fluxes, microbial, plant, zoobenthic, amphibian, and tree swallow nestling production, and stable isotope signatures were used to determine carbon pathways, fluxes and budgets. Coarse taxon richness in reference wetlands reached an asymptote in 5 to 7 years. Richness, composition and emergent plant cover of oilsands-affected wetlands converged over a 15 to 20 year period with reference wetland patterns. The development of emergent but not submergent plant cover and associated biota accelerated with the addition of peat. Water chemistry was found to be more important than sediment in terms of regulating submergent biological properties. The study showed that the most important regulator of community composition may be residual salinity. Compared to more temperate biomes, the successional trends were slower.

  10. Indicators of early successional trends in environmental condition and community function in constructed wetlands of the Athabasca Oilsands region

    International Nuclear Information System (INIS)

    Ciborowski, J.; Kovalenko, K.; Dixon, G.; Farwell, A.; Foote, L.; Mollard, F.; Roy, M.; Smits, J.; Turcotte, D.

    2010-01-01

    This presentation reported on a study that compared interannual environmental variation in post-mining Athabasca oil sands landscapes. In particular, it compared biological, ecotoxicological and carbon dynamic aspects of sixteen 5 to 30 year old wetlands with different ages, reclamation materials and stockpiled surface materials such as peat. In addition to determining carbon fluxes, standing stocks of hydrocarbons were measured along with organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, litter, zoobenthos, and aquatic insect emergence. Gas fluxes, microbial, plant, zoobenthic, amphibian, and tree swallow nestling production, and stable isotope signatures were used to determine carbon pathways, fluxes and budgets. Coarse taxon richness in reference wetlands reached an asymptote in 5 to 7 years. Richness, composition and emergent plant cover of oilsands-affected wetlands converged over a 15 to 20 year period with reference wetland patterns. The development of emergent but not submergent plant cover and associated biota accelerated with the addition of peat. Water chemistry was found to be more important than sediment in terms of regulating submergent biological properties. The study showed that the most important regulator of community composition may be residual salinity. Compared to more temperate biomes, the successional trends were slower.

  11. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  12. HIGH ALTITUDES EFFECTS ON HEMATOLOGIC BLOOD PARAMETERS

    OpenAIRE

    Hasim Rushiti; Florian Miftari; Besim Halilaj

    2015-01-01

    The approach and the objective of this experiment are consistent with the determination of changes of blood parameters after the stay of the students at an altitude of 1800-2300 meters, for a ten-day long ski course. In this paper are included a total of 64 students of the Faculty of Sport Sciences in Prishtina, of the age group of 19-25 (the average age is 21). All students previously have undergone a medical check for TA, arterial pulse and respiratory rate. In particular, the health situat...

  13. Improved Mapping of Riparian Wetlands Using Reach Topography (ECOSERV)

    Science.gov (United States)

    Riparian wetlands provide a suite of ecosystems services including floodwater retention, biogeochemical processing, and habitat provisioning. However in one mid-Atlantic watershed the National Wetlands Inventory was shown to underrepresent these systems by greater than 50%. These...

  14. Improved Mapping of Riparian Wetlands Using Reach Topography

    Science.gov (United States)

    Riparian wetlands provide a suite of ecosystems services including floodwater retention, biogeochemical processing, and habitat provisioning. However in one mid-Atlantic watershed the National Wetlands Inventory was shown to underrepresent these systems by greater than 50%. These...

  15. a comparison of wetland valuation purposes in lagos metropolis

    African Journals Online (AJOL)

    Osondu

    streams to maintain flow throughout the dry season, and ... consequently the wetland filtration process and the quality of the water in ... restoration versus degradation of wetlands. ... value to individual species based on economic functions and ...

  16. The study of Phosphorus distribution at Putrajaya Wetland

    Science.gov (United States)

    Mubin Zahari, Nazirul; Malek, Nur Farzana Fasiha Abdul; Fai, Chow Ming; Humaira Haron, Siti; Hafiz Zawawi, Mohd; Nazmi Ismail, Iszmir; Mohamad, Daud; Syamsir, Agusril; Sidek, Lariyah Mohd; Zakwan Ramli, Mohd; Ismail, Norfariza; Zubir Sapian, Ahmad; Noordin, Normaliza; Rahaman, Nurliyana Abdul; Muhamad, Yahzam; Mat Saman, Jarina

    2018-04-01

    This study is concerning phosphorus distribution in Putrajaya Wetland. Phosphorus is one of the important component in nutrients for living things be it aquatic or non – aquatic organisms. Total phosphorus (TP) results will give some information on the trophic status of surface water in water bodies. The focus of this study is to determine the total phosphorus concentration in Putrajaya Wetland which is in the inlet of the wetland then outlet of the wetland (Central Wetland Lake). The water sample is taken from Putrajaya Wetland and the test was conducted in the laboratory. The result from this study shows the results for total phosphorus according to month, sampling station and cells. Lowest total phosphate at the Central Wetland compare with all the wetland arms cells.

  17. New species of Eunotia from small isolated wetlands in Florida

    Science.gov (United States)

    Diatom species composition of small wetlands is diverse and unique due to a plethora of spatial and temporal variables. Diatoms from small wetlands can contribute greatly to better understanding microbial biodiversity, distribution, dispersal and populations.

  18. Wetland Polygons, California, 2016, California Aquatic Resources Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — This feature class contains polgon features depicting wetlands that are standardized to a common wetland classification system (CARI) and provide additional source...

  19. Geothermal wetlands: an annotated bibliography of pertinent literature

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, N.E.; Thurow, T.L.; Russell, B.F.; Sullivan, J.F.

    1980-05-01

    This annotated bibliography covers the following topics: algae, wetland ecosystems; institutional aspects; macrophytes - general, production rates, and mineral absorption; trace metal absorption; wetland soils; water quality; and other aspects of marsh ecosystems. (MHR)

  20. Kansas Protects and Restores Wetlands, Streams and Riparian Areas

    Science.gov (United States)

    Wetland Program Development Grant (WPDG) in 2007 when the Kansas State Conservation Commission began identifying team members interested in developing a framework for a comprehensive Kansas Wetland and Aquatic Resources Conservation Plan.

  1. Local institutions for sustaining wetland resources and community ...

    African Journals Online (AJOL)

    Administrator

    Data collection methods. Qualitative ..... Sondu-Miriu wetland some traditional fishing methods, for example, the ... ted processing, cooking and trading activities in the three wetlands. .... water access was making the water dirty after collection.

  2. Reduced blood flow through intrapulmonary arteriovenous anastomoses during exercise in lowlanders acclimatizing to high altitude.

    Science.gov (United States)

    Boulet, Lindsey M; Lovering, Andrew T; Tymko, Michael M; Day, Trevor A; Stembridge, Mike; Nguyen, Trang Anh; Ainslie, Philip N; Foster, Glen E

    2017-06-01

    What is the central question of this study? The aim was to determine, using the technique of agitated saline contrast echocardiography, whether exercise after 4-7 days at 5050 m would affect blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) compared with exercise at sea level. What is the main finding and its importance? Despite a significant increase in both cardiac output and pulmonary pressure during exercise at high altitude, there is very little Q̇IPAVA at rest or during exercise after 4-7 days of acclimatization. Mathematical modelling suggests that bubble instability at high altitude is an unlikely explanation for the reduced Q̇IPAVA. Blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) is elevated during exercise at sea level (SL) and at rest in acute normobaric hypoxia. After high altitude (HA) acclimatization, resting Q̇IPAVA is similar to that at SL, but it is unknown whether this is true during exercise at HA. We reasoned that exercise at HA (5050 m) would exacerbate Q̇IPAVA as a result of heightened pulmonary arterial pressure. Using a supine cycle ergometer, seven healthy adults free from intracardiac shunts underwent an incremental exercise test at SL [25, 50 and 75% of SL peak oxygen consumption (V̇O2 peak )] and at HA (25 and 50% of SL V̇O2 peak ). Echocardiography was used to determine cardiac output (Q̇) and pulmonary artery systolic pressure (PASP), and agitated saline contrast was used to determine Q̇IPAVA (bubble score; 0-5). The principal findings were as follows: (i) Q̇ was similar at SL rest (3.9 ± 0.47 l min -1 ) compared with HA rest (4.5 ± 0.49 l min -1 ; P = 0.382), but increased from rest during both SL and HA exercise (P exercise (P = 0.003); (iii) Q̇IPAVA was increased from SL rest (0) to HA rest (median = 1; P = 0.04) and increased from resting values during SL exercise (P exercise (P = 0.91), despite significant increases in Q̇ and PASP. Theoretical

  3. Temporal Variability of Canopy Light Use Efficiency and its Environmental Controls in a Subtropical Mangrove Wetland

    Science.gov (United States)

    Zhu, X.

    2016-12-01

    Mangrove wetlands play an important role in global carbon cycle due to their strong carbon sequestration resulting from high plant carbon assimilation and low soil respiration. However, temporal variability of carbon sequestration in mangrove wetlands is less understood since carbon processes of mangrove wetlands are influenced by many complicated and concurrent environmental controls including tidal activities, site climate and soil conditions. Canopy light use efficiency (LUE), is the most important plant physiological parameter that can be used to describe the temporal dynamics of canopy photosynthesis, and therefore a better characterization of temporal variability of canopy LUE will improve our understanding in mangrove photosynthesis and carbon balance. One of our aims is to study the temporal variability of canopy LUE and its environmental controls in a subtropical mangrove wetland. Half-hourly canopy LUE is derived from eddy covariance (EC) carbon flux and photosynthesis active radiation observations, and half-hourly environmental controls we measure include temperature, humidity, precipitation, radiation, tidal height, salinity, etc. Another aim is to explore the links between canopy LUE and spectral indices derived from near-surface tower-based remote sensing (normalized difference vegetation index, enhanced vegetation index, photochemical reflectance index, solar-induced chlorophyll fluorescence, etc.), and then identify potential quantitative relationships for developing remote sensing-based estimation methods of canopy LUE. At present, some instruments in our in-situ observation system have not yet been installed (planned in next months) and therefore we don't have enough measurements to support our analysis. However, a preliminary analysis of our historical EC and climate observations in past several years indicates that canopy LUE shows strong temporal variability and is greatly affected by environmental factors such as tidal activity. Detailed and

  4. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    Science.gov (United States)

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  5. Gas Research Institute wetland research program

    International Nuclear Information System (INIS)

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables

  6. Forms of organic phosphorus in wetland soils

    Science.gov (United States)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  7. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  8. Broken connections of wetland cultural knowledge

    Science.gov (United States)

    Middleton, Beth A.

    2016-01-01

    As global agriculture intensifies, cultural knowledge of wetland utilization has eroded as natural resources become more stressed, and marginal farmers move away from the land. The excellent paper by Fawzi et al. (2016) documents a particularly poignant case of traditional knowledge loss among the Marsh Arab women of Iraq. Through interviews, the authors document the breakdown of skill transfer from the older to younger generation of women. The authors link the loss of their cultural knowledge with the loss of wetlands in the region. Women no longer can help provide for their families using wetland products, and along with that, their ancient knowledge of plant usage is lost. These ancient skills included medicinal uses, and reed harvesting for weaving and water buffalo fodder. As, the majority of the Mesopotamian Marshes have dried, this way of life is being forgotten (Fawzi et al. 2015). The global tragedy is that while the careful alliance of wetlands and people have sustained human cultures for millennia, degraded wetlands lose their ability to provide these services (Maltby 1980).

  9. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J; Alm, J; Saarnio, S [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1997-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  10. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    International Nuclear Information System (INIS)

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C. Jr.

    2002-01-01

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community

  11. Icelandic Inland Wetlands: Characteristics and Extent of Draining

    OpenAIRE

    Gudmundsson, Jon; Brink, Sigmundur H.; Arnalds, Olafur; Gisladottir, Fanney O.; Oskarsson, Hlynur

    2016-01-01

    Iceland has inland wetland areas with soils exhibiting both Andosol and Histosol properties which are uncommon elsewhere on Earth. They are generally fertile, with higher bird-nest densities than in similar wetlands in the neighboring countries, with nutrients released by rapid weathering of aeolian materials of basaltic nature. Icelandic inland wetlands cover about 9000 km2 constituting 19.4 % of the vegetated surfaces of the island. The wetland soils are often 1–3 m thick and store 33 to >1...

  12. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  13. The FAA altitude chamber training flight profile : a survey of altitude reactions, 1965-1989.

    Science.gov (United States)

    1990-09-01

    Reactions from 1,161 trainees out of 12,759 trainees subjected to the FAA altitude chamber training flights from 1965-1989 are annotated in this survey. Although there were some mild and expected reactions, these training profiles appear to provide a...

  14. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Flats Wetlands in the Everglades

    National Research Council Canada - National Science Library

    Noble, Chris

    2002-01-01

    .... However, a variety of other potential uses have been identified, including the determination of minimal effects under the Food Security Act, design of wetland restoration projects, and management of wetlands...

  15. The road to higher permanence and biodiversity in exurban wetlands.

    Science.gov (United States)

    Urban, Mark C; Roehm, Robert

    2018-01-01

    Exurban areas are expanding throughout the world, yet their effects on local biodiversity remain poorly understood. Wetlands, in particular, face ongoing and substantial threats from exurban development. We predicted that exurbanization would reduce the diversity of wetland amphibian and invertebrate communities and that more spatially aggregated residential development would leave more undisturbed natural land, thereby promoting greater local diversity. Using structural equation models, we tested a series of predictions about the direct and indirect pathways by which exurbanization extent, spatial pattern, and wetland characteristics might affect diversity patterns in 38 wetlands recorded during a growing season. We used redundancy, indicator species, and nested community analyses to evaluate how exurbanization affected species composition. In contrast to expectations, we found higher diversity in exurban wetlands. We also found that housing aggregation did not significantly affect diversity. Exurbanization affected biodiversity indirectly by increasing roads and development, which promoted permanent wetlands with less canopy cover and more aquatic vegetation. These pond characteristics supported greater diversity. However, exurbanization was associated with fewer temporary wetlands and fewer of the species that depend on these habitats. Moreover, the best indicator species for an exurban wetland was the ram's head snail, a common disease vector in disturbed ponds. Overall, results suggest that exurbanization is homogenizing wetlands into more permanent water bodies. These more permanent, exurban ponds support higher overall animal diversity, but exclude temporary wetland specialists. Conserving the full assemblage of wetland species in expanding exurban regions throughout the world will require protecting and creating temporary wetlands.

  16. Mitigating Losses of Wetland Ecosystems: A Context for Evaluation.

    Science.gov (United States)

    Mattingly, Rosanna L.

    1994-01-01

    Preservation of our wetlands has been an issue for many years. Today, despite current laws and those adopted 200 years ago, the wetlands remain insufficiently protected and developed. A holistic guide and suggestions for the classroom are provided to aid in efforts directed at wetland education, research and management. (ZWH)

  17. Changes in Landscape Pattern of Wetland around Hangzhou Bay

    Science.gov (United States)

    Lin, Wenpeng; Li, Yuan; Xu, Dan; Zeng, Ying

    2018-04-01

    Hangzhou Bay is an important estuarial coastal wetland, which offers a large number of land and ecological resources. It plays a significant role in the sustainable development of resources, environment and economy. In this paper, based on the remote sensing images in 1996, 2005 and 2013, we extracted the coastal wetland data and analyzed the wetland landscape pattern of the Hangzhou Bay in the past 20 years. The results show that: (1) the area of coastal wetland is heading downwards in the recent decades. Paddy field and the coastal wetland diminish greatly. (2) the single dynamic degree of wetland of the Hangzhou Bay displays that paddy fields and coastal wetlands are shrinking, but lakes, reservoirs and ponds are constantly expanding. (3) the wetland landscape pattern index shows that total patch area of the coastal wetland and paddy fields have gradually diminished. The Shannon diversity index, the Shannon evenness index as well as the landscape separation index of the coastal wetlands in the Hangzhou Bay increase steadily. The landscape pattern in the study area has shown a trend of high fragmentation, dominance decreases, but some dominant landscape still exist in this region. (4) Urbanization and natural factors lead to the reduction of wetland area. Besides the pressure of population is a major threat to the wetland. The study will provide scientific basis for long-term planning for this region.

  18. Balancing carbon sequestration and GHG emissions in a constructed wetland

    NARCIS (Netherlands)

    Klein, de J.J.M.; Werf, van der A.K.

    2014-01-01

    In many countries wetlands are constructed or restored for removing nutrients from surface water. At the same time vegetated wetlands can act as carbon sinks when CO2 is sequestered in biomass. However, it is well known that wetlands also produce substantial amounts of greenhouse gasses CH4 and N2O.

  19. HANDBOOK FOR CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE

    Science.gov (United States)

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. This report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, whic...

  20. Geographically Isolated Wetlands: Why We Should Keep the Term

    Science.gov (United States)

    Use of the term "isolated wetlands" in the U.S. Supreme Court’s SWANCC decision created confusion, since it could imply functional isolation. In response, the term "geographically isolated wetlands" (GIWs) - wetlands surrounded by uplands - was introduced in 2003. A recent arti...

  1. 7 CFR 623.13 - Wetlands reserve plan of operations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Wetlands reserve plan of operations. 623.13 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES EMERGENCY WETLANDS RESERVE PROGRAM § 623.13 Wetlands reserve plan of operations. (a) After NRCS has accepted the applicant for enrollment in the...

  2. Socio-Economic Determinants of Wetland Cultivation in Kemise ...

    African Journals Online (AJOL)

    A study of wetland use in Kemise, central Illubabor, southwestern Ethiopia, shows food shortage as the main factor behind wetland cultivation in the locality. However, discriminant analysis results indicate that it is the wealthier farmers who tend to cultivate wetlands rather than the economically less fortunate ones.

  3. Biodiversity studies in three Coastal Wetlands in Ghana, West Africa ...

    African Journals Online (AJOL)

    Plant biodiversity studies of three coastal wetlands in Ghana were made. The wetlands are the Sakumo, Muni-Pomadze and Densu Delta Ramsar sites. Each wetland is made up of a flood plain which consists of salt marsh (about 20%), mangrove swamps (between 15 and 30%), fresh water swamp (about 40 - 45%), and in ...

  4. Managing Wetlands for Improved Food Security in Uganda | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers will determine the food security status of households adjacent to wetlands and the part that wetlands resources contribute to it. They will analyze the tradeoffs in using wetlands for crop production. And, they will test, adapt and promote agricultural technologies that enhance productivity while minimizing ...

  5. 32 CFR 644.319 - Protection of wetlands.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Protection of wetlands. 644.319 Section 644.319... ESTATE HANDBOOK Disposal § 644.319 Protection of wetlands. The requirements of Executive Order 11990, Protection of Wetlands, 42 FR 26961, (24 May 1977) are applicable to the disposal of Federal lands and...

  6. 7 CFR 1410.11 - Farmable Wetlands Program.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Farmable Wetlands Program. 1410.11 Section 1410.11... Wetlands Program. (a) In addition to other allowable enrollments, land may be enrolled in this program through the Farmable Wetlands Program (FWP) within the overall Conservation Reserve Program provided for...

  7. Structural and functional loss in restored wetland ecosystems.

    Directory of Open Access Journals (Sweden)

    David Moreno-Mateos

    2012-01-01

    Full Text Available Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages, and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils, remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha and wetlands restored in warm (temperate and tropical climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

  8. Development of soil properties and nitrogen cycling in created wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  9. Book review: Southern Forested Wetlands: Ecology and Management

    Science.gov (United States)

    Carl C. Trettin

    2000-01-01

    The southern region has the largest proportion of wetlands in the conterminous US. The majority of that wetland resource is forested by diverse vegetation communities reflecting differences in soil, hydrology, geomorphology, climatic conditions and past management. Wetland resources in the southern US are very important to the economy providing both commodity and non-...

  10. Accumulation and bioaccessibility of trace elements in wetland ...

    African Journals Online (AJOL)

    Accumulation of trace metals in sediment can cause severe ecological impacts. In this study, determination of elemental concentrations in water and sediment was done. Shadegan wetland is one of the most important wetlands in southwest of Iran and is among the Ramsar-listed wetlands. Wastewaters from industries ...

  11. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  12. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  13. Multiple factors influence the vegetation composition of Southeast U.S. wetlands restored in the Wetlands Reserve Program

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2013-01-01

    Degradation of wetlands on agricultural lands contributes to the loss of local or regional vegetation diversity. The U.S. Department of Agriculture’s Wetlands Reserve Program (WRP) funds the restoration of degraded wetlands on private ‘working lands’, but these WRP projects have not been studied in the Southeast United States. Wetland hydrogeomorphic type influences...

  14. Wetland biogeochemical processes and simulation modeling

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Jia, Jia; Wang, Xin

    2018-02-01

    As the important landscape with rich biodiversity and high productivity, wetlands can provide numerous ecological services including playing an important role in regulating global biogeochemical cycles, filteringpollutants from terrestrial runoff and atmospheric deposition, protecting and improving water quality, providing living habitats for plants and animals, controlling floodwaters, and retaining surface water flow during dry periods (Reddy and DeLaune, 2008; Qin and Mitsch, 2009; Zhao et al., 2016). However, more than 50% of the world's wetlands had been altered, degraded or lost through a wide range of human activities in the past 150 years, and only a small percentage of the original wetlands remained around the world after over two centuries of intensive development and urbanization (O'connell, 2003; Zhao et al., 2016).

  15. Numerical simulation of altitude impact on pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xiaohui; He, Boshu; Ling, Ling; Wang, Lei [Beijing Jiaotong Univ., Beijing (China). Inst. of Mechanical, Electronic and Control Engineering

    2013-07-01

    A drop-tube Furnace simulation model has been developed to investigate the pulverized coal combustion characteristics under different altitudes using the commercially available software Fluent. The altitude conditions of 0, 500, 1,000, 1,500 m have been discussed. The results included the fields of temperature, pressure, velocity, the coal burnout, CO burnout and NO emission in the tube furnace. The variation of these parameters with altitude has been analyzed. The coal combustion characteristics were affected by the altitude. The time and space for coal burnout should be increased with the rise of altitude. The valuable results could be referenced in the design of coal- fired furnaces for the high altitude areas.

  16. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  17. Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation

    OpenAIRE

    Gonzales, Gustavo F.; Jefe de la Unidad de Reproducción, Instituto de Investigaciones de la Altura y Jefe del Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Doctor en Medicina y Doctor en Ciencias. Especialista en Endocrinología.

    2011-01-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulti...

  18. Biotic development comparisons of a wetland constructed to treat mine water drainage with a natural wetland system

    International Nuclear Information System (INIS)

    Webster, H.J.; Hummer, J.W.; Lacki, M.J.

    1994-01-01

    Using 5-yr of baseline data from a constructed wetland, the authors compared the biotic changes in this wetland to conditions in a natural wetland to determine if biotic development patterns were similar. The constructed wetland was built in 1985 to treat a coal mine discharge and was planted with broadleaf cattail (Typha latifolia) within the three-cell, 0.26 ha wetland. Species richness in permanent quadrants of the constructed wetland declined over the study period, while cattail coverage increased. Plant species composition diversified at the edges, with several species becoming established. The constructed wetland deepened and expanded slightly in area coverage during the study period. The constructed wetland supported herptofaunal communities that appeared more stable through time than those of the natural wetland and sustained a rudimentary food chain dependent upon autotrophic algal populations. Despite fundamental differences in substrate base, morphology, and water flow patterns, biotic trends for the constructed wetland coincided with succession-like patterns at the natural wetland. They suggest that further shifts in the biotic composition of the constructed wetland are likely, but the system should continue to persist if primary production meets or exceeds the microbial metabolic requirements necessary to treat mine drainage

  19. Investigating public decisions about protecting wetlands.

    Science.gov (United States)

    Getzner, Michael

    2002-03-01

    Quantitative analyses of species protection decisions taken by public authorities regularly show that ecological factors, such as the probability of extinction, often play a minor role in the decision-making process. The taxonomy of the species or its potential conflict with economic development is a more powerful factor. This paper presents quantitative empirical research on the protection of wetlands in Austria. Econometrically estimated models show that geographical and ecological factors (such as the size of the area, elevation and importance for biodiversity) play a significant role in the protection of wetlands. Additional influences include conflict variables encoding the negative effects of the primary economic sector (agriculture) or tourism.

  20. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  1. Aspirated Compressors for High Altitude Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  2. Does 'altitude training' increase exercise performance in elite athletes?

    Science.gov (United States)

    Lundby, Carsten; Robach, Paul

    2016-07-01

    What is the topic of this review? The aim is to evaluate the effectiveness of various altitude training strategies as investigated within the last few years. What advances does it highlight? Based on the available literature, the foundation to recommend altitude training to athletes is weak. Athletes may use one of the various altitude training strategies to improve exercise performance. The scientific support for such strategies is, however, not as sound as one would perhaps imagine. The question addressed in this review is whether altitude training should be recommended to elite athletes or not. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  3. Altitude variations of ionospheric currents at auroral latitudes

    International Nuclear Information System (INIS)

    Kamide, Y.; Brekke, A.

    1993-01-01

    On the basis of updated EISCAT experiments, the first full derivation of the ionospheric current density of the auroral electrojets at six different altitudes are presented. It is found that current vectors at different altitudes are quite different, although the eastward and westward currents prevail in the evening and morning sectors, respectively, once the currents are integrated over altitude. The eastward electrojet becomes almost northward whilst the westward electrojet becomes almost southward, at the highest altitude, 125 km, in this study. The physical implications of these characteristics are discussed

  4. The effect of altitude hypoxia on glucose homeostasis in men

    DEFF Research Database (Denmark)

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...... (noradrenaline and adrenaline) and day 7 (adrenaline), but not at sea level. 4. In conclusion, insulin action decreases markedly in response to two days of altitude hypoxia, but improves with more prolonged exposure. HGP is always unchanged. The changes in insulin action may in part be explained by the changes...

  5. High Altitude Warfare: The Kargil Conflict and the Future

    National Research Council Canada - National Science Library

    Acosta, Marcus

    2003-01-01

    The unique combination of thin air, freezing temperatures, and mountainous terrain that forms the high altitude environment has resisted advances in military technology for centuries, The emergence...

  6. APOLLO 16 COMMANDER JOHN YOUNG ENTERS ALTITUDE CHAMBER FOR TESTS

    Science.gov (United States)

    1971-01-01

    Apollo 16 commander John W. Young prepares to enter the lunar module in an altitude chamber in the Manned Spacecraft Operations Building at the spaceport prior to an altitude run. During the altitude run, in which Apollo 16 lunar module pilot Charles M. Duke also participated, the chamber was pumped down to simulate pressure at an altitude in excess of 200,000 feet. Young, Duke and command module pilot Thomas K. Mattingly II, are training at the Kennedy Space Center for the Apollo 16 mission. Launch is scheduled from Pad 39A, March 17, 1972.

  7. Mapping long-term wetland response to climate

    Science.gov (United States)

    Zhou, Q.; Gallant, A.; Rover, J.

    2016-12-01

    Wetlands provide unique feeding and breeding habitat for numerous waterfowl species. The distribution of wetlands has been considerably changed due to agricultural land conversion and hydrologic modification. Climate change may further impact wetlands through altered moisture regimes. This study characterized long-term variation in wetland conditions by using dense time series from all available Landsat data from 1985 to 2014. We extracted harmonic frequencies from 30 years to two years to delineate the long-term variation in all seven Landsat bands. A cluster analysis and unsupervised classification then enabled us to map different classes of wetland response. We demonstrated the method in the Prairie Pothole Region in North Dakota.

  8. Observations On Some Upper Amazonian Wetlands of Southeastern Peru

    Science.gov (United States)

    Householder, J. E.; Muttiah, R.; Khanal, S.

    2007-05-01

    Upper Amazonian wetlands represent little studied, poorly understood, and grossly under protected systems. Scientific investigation of Amazonian wetlands is in its infancy; nor is there much known about their ecological services. Regionally, wetlands form a ubiquitous and significant component of floodplain habitat fed by perennial springs as well as overland runoff. Locally, wetland vegetation forms bewilderingly complex vegetation mosaics that seem to be governed by local topography and hydrology. Drawing upon intensive field campaigns and remotely sensed imagery, we summarize the results and experiences gathered in wetlands of southeastern Peru.

  9. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  10. ( Phaseolus vulgaris L. ) seedlings to salinity stress

    African Journals Online (AJOL)

    The effect of salinity stress on five cultivars of common bean: Bassbeer, Beladi, Giza 3, HRS 516 and RO21 were evaluated on a sand/peat medium with different salinity levels (0, 50 and 100 mM NaCl) applied 3 weeks after germination for duration of 10 days. Salinity had adverse effects not only on the biomass yield and ...

  11. A global algorithm for estimating Absolute Salinity

    Directory of Open Access Journals (Sweden)

    T. J. McDougall

    2012-12-01

    Full Text Available The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density than does Practical Salinity.

    When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic, Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p in the world ocean.

    To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811. In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally.

  12. The Impact of Altitude on Sleep-Disordered Breathing in Children Dwelling at High Altitude: A Crossover Study.

    Science.gov (United States)

    Hughes, Benjamin H; Brinton, John T; Ingram, David G; Halbower, Ann C

    2017-09-01

    Sleep-disordered breathing (SDB) is prevalent among children and is associated with adverse health outcomes. Worldwide, approximately 250 million individuals reside at altitudes higher than 2000 meters above sea level (masl). The effect of chronic high-altitude exposure on children with SDB is unknown. This study aims to determine the impact of altitude on sleep study outcomes in children with SDB dwelling at high altitude. A single-center crossover study was performed to compare results of high-altitude home polysomnography (H-PSG) with lower altitude laboratory polysomnography (L-PSG) in school-age children dwelling at high altitude with symptoms consistent with SDB. The primary outcome was apnea-hypopnea index (AHI), with secondary outcomes including obstructive AHI; central AHI; and measures of oxygenation, sleep quality, and pulse rate. Twelve participants were enrolled, with 10 included in the final analysis. Median altitude was 1644 masl on L-PSG and 2531 masl on H-PSG. Median AHI was 2.40 on L-PSG and 10.95 on H-PSG. Both obstructive and central respiratory events accounted for the difference in AHI. Oxygenation and sleep fragmentation were worse and pulse rate higher on H-PSG compared to L-PSG. These findings reveal a clinically substantial impact of altitude on respiratory, sleep, and cardiovascular outcomes in children with SDB who dwell at high altitude. Within this population, L-PSG underestimates obstructive sleep apnea and central sleep apnea compared to H-PSG. Given the shortage of high-altitude pediatric sleep laboratories, these results suggest a role for home sleep apnea testing for children residing at high altitude. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  13. Conservation of Mexican wetlands: role of the North American Wetlands Conservation Act

    Science.gov (United States)

    Wilson, M.H.; Ryan, D.A.

    1997-01-01

    Mexico's wetlands support a tremendous biological diversity and provide significant natural resource benefits to local communities. Because they are also critical stopover and wintering grounds for much of North America's waterfowl and other migratory birds, Mexico has become an important participant in continental efforts to conserve these resources through the North American Wetlands Conservation Act. Funding from the Act has supported partnerships in a number of Mexico's priority wetlands to conduct data analyses and dissemination, mapping, environmental education, wetland restoration, development of sustainable economic alternatives for local people, and reserve planning and management. These partnerships, with the close involvement of Mexico's Federal Government authority, the Instituto Nacional de Ecologia, have advanced conservation in a uniquely Mexican model that differs from that employed in the United States and Canada.

  14. Connecting the Dots: Hydrologic Connectivity Between Wetlands and Other Wetlands and Waterbodies

    Science.gov (United States)

    Wetlands perform numerous ecosystem functions that in turn provide abundant ecosystem services beneficial to humankind. These may include, but are not limited to, flood water storage and release, nutrient transformations, carbon sequestration, and the provision of habitat or ref...

  15. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Mississippi: WETLANDS (Wetland Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing coastal wetlands classified according to the Environmental Sensitivity Index (ESI) classification system for...

  16. Salinity Temperature and Roughness Remote Scanner (STARRS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides spatially continuous high-resolution surface salinity imagery in a synoptic manner from small aircraft. Its output complements data collected from...

  17. Modelling transport of water and solutes in future wetlands in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Vaexjoe (Sweden)

    2006-03-15

    The Forsmark area consists of a number of natural wetlands. As a part of the evaluation of wetlands in the safety assessment for the area, possible future wetlands are being studied with respect to hydrology and transport mechanisms. A sensitivity analyses is performed to point out the governing parameters for the wetland hydraulics. The analysis of future wetlands is carried out using the hydrological model system Mike SHE. Mike SHE has been used to describe the near-surface hydrology for a regional model area in Forsmark. Three types of areas have been chosen. Today's lake Bolundfjaerden is because of its shallow depth likely to develop into a mire in the future. As it is situated in the downstream part of the regional model area, the runoff to the lake from upstream surface water system is significant. Lake Eckarfjaerden is situated in the upstream part of the catchment at a higher altitude and with a smaller inflow. Lake Puttan is situated above a planned layout of the repository and has a potential to receive discharges from a repository. It also lies in the downstream part of a large discharge area. The topography of the future mires is assumed to be flat, up to today's mean water level in each lake. To transport the surface runoff through the wetland, streams or water courses are assumed to form within the peat. The analyses of future wetlands in the Forsmark area show that the hydraulic conditions that exists today will somewhat alter as the peat is formed. For Bolundsfjaerden, where there during present conditions are weak discharge areas, a recharge area has formed during the summer. This can be explained by the amount of surface water that forms on the surface which increases the head elevation in the upper soil layers. The same holds for Eckarfjaerden, while Puttan after the peat has developed still is a discharge area due to its naturally strong discharge position close to the sea. Different vegetation and development stages for the peat have

  18. Modelling transport of water and solutes in future wetlands in Forsmark

    International Nuclear Information System (INIS)

    Vikstroem, Maria; Gustafsson, Lars-Goeran

    2006-03-01

    The Forsmark area consists of a number of natural wetlands. As a part of the evaluation of wetlands in the safety assessment for the area, possible future wetlands are being studied with respect to hydrology and transport mechanisms. A sensitivity analyses is performed to point out the governing parameters for the wetland hydraulics. The analysis of future wetlands is carried out using the hydrological model system Mike SHE. Mike SHE has been used to describe the near-surface hydrology for a regional model area in Forsmark. Three types of areas have been chosen. Today's lake Bolundfjaerden is because of its shallow depth likely to develop into a mire in the future. As it is situated in the downstream part of the regional model area, the runoff to the lake from upstream surface water system is significant. Lake Eckarfjaerden is situated in the upstream part of the catchment at a higher altitude and with a smaller inflow. Lake Puttan is situated above a planned layout of the repository and has a potential to receive discharges from a repository. It also lies in the downstream part of a large discharge area. The topography of the future mires is assumed to be flat, up to today's mean water level in each lake. To transport the surface runoff through the wetland, streams or water courses are assumed to form within the peat. The analyses of future wetlands in the Forsmark area show that the hydraulic conditions that exists today will somewhat alter as the peat is formed. For Bolundsfjaerden, where there during present conditions are weak discharge areas, a recharge area has formed during the summer. This can be explained by the amount of surface water that forms on the surface which increases the head elevation in the upper soil layers. The same holds for Eckarfjaerden, while Puttan after the peat has developed still is a discharge area due to its naturally strong discharge position close to the sea. Different vegetation and development stages for the peat have been

  19. Object-Based Image Analysis in Wetland Research: A Review

    Directory of Open Access Journals (Sweden)

    Iryna Dronova

    2015-05-01

    Full Text Available The applications of object-based image analysis (OBIA in remote sensing studies of wetlands have been growing over recent decades, addressing tasks from detection and delineation of wetland bodies to comprehensive analyses of within-wetland cover types and their change. Compared to pixel-based approaches, OBIA offers several important benefits to wetland analyses related to smoothing of the local noise, incorporating meaningful non-spectral features for class separation and accounting for landscape hierarchy of wetland ecosystem organization and structure. However, there has been little discussion on whether unique challenges of wetland environments can be uniformly addressed by OBIA across different types of data, spatial scales and research objectives, and to what extent technical and conceptual aspects of this framework may themselves present challenges in a complex wetland setting. This review presents a synthesis of 73 studies that applied OBIA to different types of remote sensing data, spatial scale and research objectives. It summarizes the progress and scope of OBIA uses in wetlands, key benefits of this approach, factors related to accuracy and uncertainty in its applications and the main research needs and directions to expand the OBIA capacity in the future wetland studies. Growing demands for higher-accuracy wetland characterization at both regional and local scales together with advances in very high resolution remote sensing and novel tasks in wetland restoration monitoring will likely continue active exploration of the OBIA potential in these diverse and complex environments.

  20. Evaluation of a market in wetland credits: entrepreneurial wetland banking in Chicago.

    Science.gov (United States)

    Robertson, Morgan; Hayden, Nicholas

    2008-06-01

    With the rise of market-led approaches to environmental policy, compensation for permitted discharge of dredge or fill material into wetlands under Section 404 of the U.S. Clean Water Act has been purchased increasingly from entrepreneurial third-party providers. The growth of this practice (i.e., entrepreneurial wetland banking) has resolved many challenges associated with wetland compensation. But it has also produced (1) quantifiable temporal loss of wetland ecological functions, (2) spatial redistribution of wetland area, and (3) a degree of regulatory instability that may pose a threat to entrepreneurial compensation as a sustainable component of wetland-compensation policy. We used achieved compensation ratios, lapse between bank credit sale and the attainment of performance standards, distance between impact and bank site, and changes in bank market area to examine these 3 factors. We analyzed data from a census of all such transactions in the Chicago District of the U.S. Army Corps of Engineers, compiled from site visits, Corps databases, and contacts with consultants and Section 404 permittees. Entrepreneurial banking provided compensation at a lower overall ratio than nonbank forms of compensation. Approximately 60% of bank credits were sold after site-protection standards were met but before ecological performance standards were met at the bank site. The average distance between bank and impact site was approximately 26 km. The area of markets within which established banks can sell wetland credits has fluctuated considerably over the study period. Comparing these data with similar data for other compensation mechanisms will assist in evaluating banking as an element of conservation policy. Data characterizing the performance of entrepreneurial wetland banks in actual regulatory environments are scarce, even though it is the most established of similar markets that have become instrumental to federal policy in administering several major environmental

  1. Hydrological science and wetland restoration: some case studies from Europe

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Throughout the world, wetlands are increasingly being recognised as important elements of the landscape because of their high biodiversity and goods and services they provide to mankind. After many decades of wetland destruction and conversion, large areas of wetlands are now protected under the International Convention on Wetlands (Ramsar and regional or national legislation such as the European Union Habitats Directive. In many cases, there is a need to restore the ecological character of the wetland through appropriate water management. This paper provides examples of scientific knowledge of wetland hydrology that can guide such restoration. It focuses on the need for sound hydrological science on a range of issues including water level control, topography, flood storage, wetland connections with rivers and sustainability of water supply under climate change.

  2. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  3. Seawater and Freshwater Circulations through Coastal Forested Wetlands on a Caribbean Island

    Directory of Open Access Journals (Sweden)

    Luc Lambs

    2015-07-01

    Full Text Available Structure and composition of coastal forested wetlands are mainly controlled by local topography and soil salinity. Hydrology plays a major role in relation with tides, seaward, and freshwater inputs, landward. We report here the results of a two-year study undertaken in a coastal plain of the Guadeloupe archipelago (FWI. As elsewhere in the Caribbean islands, the study area is characterized by a micro-tidal regime and a highly seasonal climate. This work aimed at understanding groundwater dynamics and origin (seawater/freshwater both at ecosystems and stand levels. These hydrological processes were assessed through 18O/16O and 2H/1H isotopic analyses, and from monthly monitoring of water level and soil salinity at five study sites located in mangrove (3 and swamp forest (2. Our results highlight the importance of freshwater budget imbalance during low rainfall periods. Sustained and/or delayed dry seasons cause soil salinity to rise at the mangrove/swamp forest ecotone. As current models on climate change project decreasing rainfall amounts over the inner Caribbean region, one may expect for this area an inland progression of the mangrove forest to the expense of the nearby swamp forest.

  4. Occupancy modeling of autonomously recorded vocalizations to predict distribution of rallids in tidal wetlands

    Science.gov (United States)

    Stiffler, Lydia L.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Conservation and management for a species requires reliable information on its status, distribution, and habitat use. We identified occupancy and distributions of king (Rallus elegans) and clapper (R. crepitans) rail populations in marsh complexes along the Pamunkey and Mattaponi Rivers in Virginia, USA by modeling data on vocalizations recorded from autonomous recording units (ARUs). Occupancy probability for both species combined was 0.64 (95% CI: 0.53, 0.75) in marshes along the Pamunkey and 0.59 (0.45, 0.72) in marshes along the Mattaponi. Occupancy probability along the Pamunkey was strongly influenced by salinity, increasing logistically by a factor of 1.62 (0.6, 2.65) per parts per thousand of salinity. In contrast, there was not a strong salinity gradient on the Mattaponi and therefore vegetative community structure determined occupancy probability on that river. Estimated detection probability across both marshes was 0.63 (0.62, 0.65), but detection rates decreased as the season progressed. Monitoring wildlife within wetlands presents unique challenges for conservation managers. Our findings provide insight not only into how rails responded to environmental variation but also into the general utility of ARUs for occupancy modeling of the distribution and habitat associations of rails within tidal marsh systems.

  5. Exploring drivers of wetland hydrologic fluxes across parameters and space

    Science.gov (United States)

    Jones, C. N.; Cheng, F. Y.; Mclaughlin, D. L.; Basu, N. B.; Lang, M.; Alexander, L. C.

    2017-12-01

    Depressional wetlands provide diverse ecosystem services, ranging from critical habitat to the regulation of landscape hydrology. The latter is of particular interest, because while hydrologic connectivity between depressional wetlands and downstream waters has been a focus of both scientific research and policy, it remains difficult to quantify the mode, magnitude, and timing of this connectivity at varying spatial and temporary scales. To do so requires robust empirical and modeling tools that accurately represent surface and subsurface flowpaths between depressional wetlands and other landscape elements. Here, we utilize a parsimonious wetland hydrology model to explore drivers of wetland water fluxes in different archetypal wetland-rich landscapes. We validated the model using instrumented sites from regions that span North America: Prairie Pothole Region (south-central Canada), Delmarva Peninsula (Mid-Atlantic Coastal Plain), and Big Cypress Swamp (southern Florida). Then, using several national scale datasets (e.g., National Wetlands Inventory, USFWS; National Hydrography Dataset, USGS; Soil Survey Geographic Database, NRCS), we conducted a global sensitivity analysis to elucidate dominant drivers of simulated fluxes. Finally, we simulated and compared wetland hydrology in five contrasting landscapes dominated by depressional wetlands: prairie potholes, Carolina and Delmarva bays, pocosins, western vernal pools, and Texas coastal prairie wetlands. Results highlight specific drivers that vary across these regions. Largely, hydroclimatic variables (e.g., PET/P ratios) controlled the timing and magnitude of wetland connectivity, whereas both wetland morphology (e.g., storage capacity and watershed size) and soil characteristics (e.g., ksat and confining layer depth) controlled the duration and mode (surface vs. subsurface) of wetland connectivity. Improved understanding of the drivers of wetland hydrologic connectivity supports enhanced, region

  6. Education and training of future wetland scientists and managers

    Science.gov (United States)

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or

  7. The Legal Structure of Taiwan’s Wetland Conservation Act

    Directory of Open Access Journals (Sweden)

    Yi-Yuan Su

    2014-12-01

    Full Text Available In July of 2013, Taiwan passed its Wetland Conservation Act and will begin the implementation of the Act on 2 February 2015. With this Act, Taiwan has become the second Asian country to have specific legislation on wetland conservation and protection. This new law enables the society to achieve sustainable utilization on wetland ecological services. The core concepts of the Wetland Conversation Act include biological diversity conservation and wise use of wetland resources. Special political circumstances prevent Taiwan from registering its wetlands as a conservation priority under the Ramsar Convention. This new law allows the government to evaluate and assign a specific area as a “Wetland of Importance.” Under this status, any development activities within the designated area shall be prohibited unless the developer prepares a usage plan for review. The usage plan and the original usage of the natural resources within the wetland area shall also follow the “wise use” principle to protect the wetland and biological service system. However, this new law does not provide clear separation between the two different “wise use” standards. If the development is deemed necessary, new law provides compensation mitigation measures to extend the surface of the wetland and provides additional habitats for various species. Wetland conservation and management rely heavily on systematic research and fundamental data regarding Taiwan’s wetlands. Determining how to adopt these scientific methodologies and transfer them into enforceable mechanisms is a sizeable challenge for both biologists and lawyers as the Wetland Conservation Act creates many legal norms without clarifying definitions. This article will review the current wetland regulations from the legal perspective and provide suggestions for enforcement in the future.

  8. Ecohydrological characterization of the Nyando wetland, Lake ...

    African Journals Online (AJOL)

    ihe

    hydrological factors that have influenced wetland evolution. Multi-temporal .... ongoing experimental and modeling investigations by the authors of this paper. Soils .... season (dry) imagery due to the lack of suitable (cloud free) wet season scenes. ..... basins where the interactions between land use, climatic characteristics ...

  9. 2011 Summary: Coastal wetland restoration research

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.; Carlson Mazur, Martha L.; Czayka, Alex; Dominguez, Andrea; Doty, Susan; Eggleston, Mike; Green, Sean; Sweetman, Amanda

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) projects currently taking place in Great Lakes coastal wetlands provide a unique opportunity to study ecosystem response to management actions as practitioners strive to improve wetland function and increase ecosystem services. Through a partnership between the U.S. Geological Survey – Great Lakes Science Center (GLSC), U.S. Fish and Wildlife Service (USFWS), and Ducks Unlimited, a GLRI-funded project has reestablished the hydrologic connection between an intensively managed impounded wetland (Pool 2B) and Crane Creek, a small Lake Erie tributary, by building a water-control structure that was opened in the spring of 2011. The study site is located within the USFWS Ottawa National Wildlife Refuge (ONWR) and lies within the boundaries of the U.S. Environmental Protection Agency (EPA)-designated Maumee River Area of Concern. The broad objective of the project is to evaluate how hydrologically reconnecting a previously diked wetland impacts fish, mollusks, and other biota and affects nutrient transport, nutrient cycling, water quality, flood storage, and many other abiotic conditions. The results from this project suggest large system-wide benefits from sustainable reestablishment of lake-driven hydrology in this and other similar systems. We comprehensively sampled water chemistry, fish, birds, plants, and invertebrates in Crane Creek coastal wetlands, Pool 2A (a reference diked wetland), and Pool 2B (the reconnected wetland) in 2010 and 2011 to: 1) Characterize spatial and seasonal patterns for these parameters. 2) Examine ecosystem response to the opening of a water-control structure that allows fish passage Our sampling efforts have yielded data that reveal striking changes in water quality, hydrology, and fish assemblages in our experimental unit (2B). Prior to the reconnection, the water chemistry in pools 2A and 2B were very similar. Afterwards, we found that the water chemistry in reconnected Pool 2B was more

  10. Wetlands as energy-dissipating systems

    Czech Academy of Sciences Publication Activity Database

    Pokorný, J.; Květ, Jan; Rejšková, A.; Brom, J.

    2010-01-01

    Roč. 37, č. 12 (2010), s. 1299-1305 ISSN 1367-5435 Institutional research plan: CEZ:AV0Z60870520 Keywords : wetlands * vegetation * energy fluxes * primary production * landscape management Subject RIV: EF - Botanics Impact factor: 2.416, year: 2010 http://www.springerlink.com/content/y5t4750647q84553/

  11. Wetlands Conservation and Use. Issue Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview stresses the significance of wetland habitats in all 50 states. The needs of wildlife and humans are also considered in respect to…

  12. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2018-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen...

  13. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  14. River and wetland classifications for freshwater conservation ...

    African Journals Online (AJOL)

    River and wetland classifications for freshwater conservation planning in KwaZulu-Natal, South Africa. ... regional- or provincial-scale conservation planning. The hierarchical structure of the classifications provides scope for finer resolution, by the addition of further levels, for application at a sub-regional or municipal scale.

  15. Distribution of clonal growth forms in wetlands

    Czech Academy of Sciences Publication Activity Database

    Sosnová, Monika; van Diggelen, R.; Klimešová, Jitka

    2010-01-01

    Roč. 92, č. 1 (2010), s. 33-39 ISSN 0304-3770 R&D Projects: GA ČR GD206/08/H044 Institutional research plan: CEZ:AV0Z60050516 Keywords : clonal growth organ * the Netherlands * wetland plant community Subject RIV: EF - Botanics Impact factor: 2.087, year: 2010

  16. Radar geomorphology of coastal and wetland environments

    Science.gov (United States)

    Lewis, A. J.; Macdonald, H. C.

    1973-01-01

    Details regarding the collection of radar imagery over the past ten years are considered together with the geomorphic, geologic, and hydrologic data which have been extracted from radar imagery. Recent investigations were conducted of the Louisiana swamp marsh and the Oregon coast. It was found that radar imagery is a useful tool to the scientist involved in wetland research.

  17. A description of the wetlands research programme

    CSIR Research Space (South Africa)

    Walmsley, RD

    1988-01-01

    Full Text Available ) What is the relationship between soil moisture and vegetation type? 2) What is the relationship between soil type and vegetation type? 3 ) What are the environmental requirements of wetland dependent animals? 4) What are the roles of microbiota...

  18. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  19. Quadrant to Measure the Sun's Altitude

    Science.gov (United States)

    Windsor, A Morgan, Jr.

    2013-01-01

    The changing altitude of the Sun (either over the course of a day or longer periods) is a phenomenon that students do not normally appreciate. However, the altitude of the Sun affects many topics in disciplines as diverse as astronomy, meteorology, navigation, or horology, such as the basis for seasons, determination of latitude and longitude, or…

  20. [Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].

    Science.gov (United States)

    Gonzales, Gustavo F

    2011-03-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.

  1. Improving estimation of flight altitude in wildlife telemetry studies

    Science.gov (United States)

    Poessel, Sharon; Duerr, Adam E.; Hall, Jonathan C.; Braham, Melissa A.; Katzner, Todd

    2018-01-01

    Altitude measurements from wildlife tracking devices, combined with elevation data, are commonly used to estimate the flight altitude of volant animals. However, these data often include measurement error. Understanding this error may improve estimation of flight altitude and benefit applied ecology.There are a number of different approaches that have been used to address this measurement error. These include filtering based on GPS data, filtering based on behaviour of the study species, and use of state-space models to correct measurement error. The effectiveness of these approaches is highly variable.Recent studies have based inference of flight altitude on misunderstandings about avian natural history and technical or analytical tools. In this Commentary, we discuss these misunderstandings and suggest alternative strategies both to resolve some of these issues and to improve estimation of flight altitude. These strategies also can be applied to other measures derived from telemetry data.Synthesis and applications. Our Commentary is intended to clarify and improve upon some of the assumptions made when estimating flight altitude and, more broadly, when using GPS telemetry data. We also suggest best practices for identifying flight behaviour, addressing GPS error, and using flight altitudes to estimate collision risk with anthropogenic structures. Addressing the issues we describe would help improve estimates of flight altitude and advance understanding of the treatment of error in wildlife telemetry studies.

  2. Respiratory Muscle Training and Exercise Endurance at Altitude.

    Science.gov (United States)

    Helfer, Samuel; Quackenbush, Joseph; Fletcher, Michael; Pendergast, David R

    2016-08-01

    Climbing and trekking at altitude are common recreational and military activities. Physiological effects of altitude are hypoxia and hyperventilation. The hyperventilatory response to altitude may cause respiratory muscle fatigue and reduce sustained submaximal exercise. Voluntary isocapnic hyperpnea respiratory muscle training (VIHT) improves exercise endurance at sea level and at depth. The purpose of this study was to test the hypothesis that VIHT would improve exercise time at altitude [3600 m (11,811 ft)] compared to control and placebo groups. Subjects pedaled an ergometer until exhaustion at simulated altitude in a hypobaric chamber while noninvasive arterial saturation (Sao2), ventilation (VE), and oxygen consumption (Vo2) were measured. As expected, Sao2 decreased to 88 ± 4% saturation at rest and to 81 ± 2% during exercise, and was not affected by VIHT. VIHT resulted in a 40% increase in maximal training VE compared to pre-VIHT. Exercise endurance significantly increased 44% after VIHT (P = altitude post-VIHT increased more (49%) for longer (21 min) and decreased less (11% at 25.4 ± 6.7 min). VIHT improved exercise time at altitude and sustained VE. This suggests that VIHT reduced respiratory muscle fatigue and would be useful to trekkers and military personnel working at altitude. Helfer S, Quackenbush J, Fletcher M, Pendergast DR. Respiratory muscle training and exercise endurance at altitutde. Aerosp Med Hum Perform. 2016; 87(8):704-711.

  3. Effect of high altitude cosmic irradiation upon cell generation time

    International Nuclear Information System (INIS)

    Soleilhavoup, J.P.; Croute, F.; Tixador, R.; Blanquet, Y.; Planel, H.

    1975-01-01

    Paramecia cultures placed at 3800 meter altitude show a proliferating activity acceleration compared to control cultures placed at low altitude under the same environment conditions. These results confirm the cosmic irradiation influence upon the activating effect produced by the natural ionizing radiations on living organisms [fr

  4. Exercise and Training at Altitudes: Physiological Effects and Protocols

    Directory of Open Access Journals (Sweden)

    Olga Cecilia Vargas Pinilla

    2014-01-01

    Full Text Available An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.

  5. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  6. Increase of cerebral blood flow at high altitude

    DEFF Research Database (Denmark)

    Lassen, N A

    1992-01-01

    but rather somewhat sharpened over five days at almost 4000 meters of altitude. This, along with other evidence, shows that CBF does not in itself adapt to chronic hypoxia. Nevertheless, a decrease in CBF is seen over days at constant altitude primarily due to increase in the hematocrit. The cerebral...

  7. Timing the arrival at 2340m altitude for aerobic performance

    DEFF Research Database (Denmark)

    Schuler, B; Thomsen, JJ; Gassmann, M

    2007-01-01

    This study tested the hypothesis that maximal oxygen uptake (VO2max) and performance increase upon altitude acclimatization at moderate altitude. Eight elite cyclists were studied at sea level, and after 1 (Day 1), 7 (Day 7), 14 (Day 14) and 21 (Day 21) days of exposure to 2340 m. Capillary blood...

  8. Air to muscle O2 delivery during exercise at altitude

    DEFF Research Database (Denmark)

    Calbet, J.A.; Lundby, C.

    2009-01-01

    , diffusion limitation explains most of the additional Pao2-Pao2. With altitude, acclimatization exercise (Pao2-Pao2) is reduced, but does not reach the low values observed in high altitude natives, who possess an exceptionally high DLo2. Convective O2 transport depends on arterial O2 content (Cao2), cardiac...

  9. Spatial and stress-related variation in benthic microbial gas flux in northeastern Alberta wetlands

    International Nuclear Information System (INIS)

    Ciborowski, J.; Gardner Costa, J.

    2010-01-01

    This study investigated the effects of oil sands process material (OSPM) on the sediment microbial respiration in newly constructed wetlands located in northeastern Alberta. The sediment gas flux in 10 wetlands with various sediment characteristics and ages was studied. Analyses of variance (ANOVA) were used to contrast the mean wetland production of methane (CH 4 ) and carbon dioxide (CO 2 ) with season, wetland status, wetland age, and wetland zones. The study showed that CH 4 was significantly higher in reference wetlands than in OSPM-impacted wetlands. A significant relationship between the status and zone of the wetland was observed for CH 4 fluxes in reference wetlands. CH 4 fluxes were higher in the non-vegetated zones of reference wetlands than in the vegetated zones of reference wetlands. CO 2 fluxes were low and not significantly different in any of the studied sites. Results indicated that the wetlands contributed little atmospheric carbon.

  10. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    Science.gov (United States)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in

  11. AltitudeOmics: Resetting of cerebrovascular CO2 reactivity following acclimatization to high altitude

    Directory of Open Access Journals (Sweden)

    Jui-Lin eFan

    2016-01-01

    Full Text Available Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv responses to modified rebreathing at sea level (SL, upon ascent (ALT1 and following 16 days of acclimatization (ALT16 to 5,260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95% vs. 129%, SL vs. ALT1, 95% confidence intervals (CI [77, 112], [111, 145], respectively, P=0.024 and the slope of the sigmoid response (4.5 vs. 7.5 %/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P=0.026 to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177%, 95% CI [139, 215], P<0.001; slope: 10.3 %/mmHg, 95% CI [8.2, 12.5], P=0.003 compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P=0.982, while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P=0.001 vs. SL, indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2 following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.

  12. Wetland Management - A Success Story In Transition - Restoration of Bhoj Wetland, India

    Science.gov (United States)

    Mudgal, M. K.; Tech, B. M.; Miwwa

    Wetlands are beautiful, biologically diverse, hydrologically disperse and ecological vibrant landscape world wide, embracing soils, water, plants, animals and human be- ing. The population growth in the catchment of wetlands led to multifarious human interventions for deriving maximum benefit from the wetlands and their catchments neglecting and disrespecting the principles of sustainability. This act of destruction has been pronounced in developing countries which are under the grip of poverty, illiteracy and lack of environmental education. SBhoj WetlandS is a Lake situated ´ in Central India, Earthen Dam across the river KOLANS in 1061 AD by then ruler king BHOJ. Till 1950 this Wetland was served as a principal source of water supply, even not requiring filtration. As the city grew and the wetland started getting encir- cled by habitation and urban development, the anthropogenic pressures on the lake increased, thus accelerating the process of eutrophication, making the water unfit for human consumption without due treatment due to deterioration of quality of water. For the conservation and management of Bhoj Wetland (Lake Bhopal) a project is under- taken in the financial assistance from Japan Bank for International Cooperation (JBIC, Japan). The project envisages tackle various issues of conservation and management ofn the wetlands under a multi prongs strategies and manner. Although these issues are deeply interrelated and interlinked but for operational and management ease, these issues have been divided into various sub projects which are being tackled indepen- dently, albeit with undercurrent knowledge and understanding of the related issues and interconnectivity with each other. The Project itself is an apt example of the spectrum of varied problems and issues that come to light when attempts are made for sustain- able conservation and management of a wetland. The Project as envisaged intends to conserve and manage through 14 sub projects as under:- Sub

  13. Low-Altitude Operation of Unmanned Rotorcraft

    Science.gov (United States)

    Scherer, Sebastian

    Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other aerial vehicles during online motion planning. Prior work has successfully addressed some tasks such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously unknown obstacles, respond to changing environmental conditions, and find unknown landing sites. We consider the problem of enabling autonomous operation at low-altitude with contributions to four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and present results from over a 1000 rims at speeds up to 10 m/s. Fast response is achieved through a reactive algorithm whose response is learned based on observing a pilot. Second, we show an algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a micro aerial vehicle, and an autonomous helicopter avoiding obstacles. Next, we examine the mission of finding a place to land near a ground goal. Good landing sites need to be detected and found and the final touch down goal is unknown. To detect the landing sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure. The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show results from urban, vegetated, and desert environments, and demonstrate the first autonomous helicopter that selects its own landing sites. We present a generalized

  14. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  15. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  16. Estimation of salinity power potential in India

    Digital Repository Service at National Institute of Oceanography (India)

    Das, V.K.; RamaRaju, D.V.

    Salinity gradient as a source of energy has much potential, but this has been recognized only recently. The energy density of this source is equivalent to about 250 m water head for a salinity difference of 35 ppt. This source exists...

  17. Investigations in Marine Chemistry: Salinity II.

    Science.gov (United States)

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  18. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-01-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC 50 values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC 50 obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC 50 ). This LC 50 value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC 50 . For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC 50 and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC 50 of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC 50 values. In contrast, LC 50 determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature

  19. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J.; Papas, Phil J.; Metzeling, Leon; Nugegoda, Dayanthi

    2004-06-01

    The degree to which laboratory derived measures of salinity tolerance reflect the field distributions of freshwater biota is uncertain. In this paper we compare laboratory-derived acute salinity tolerance (LC{sub 50} values) of freshwater macroinvertebrates (range 5.5-76 mS/cm) and fish (range 2.7-82 mS/cm) from southeastern Australia with the salinity from which they have been collected in the field. Only 4% of the macroinvertebrates were collected at salinity levels substantially higher than their 72-h LC{sub 50} obtained from directly transferring animals from low salinity water to the water they were tested (direct transfer LC{sub 50}). This LC{sub 50} value was correlated with the maximum salinity at which a species had been collected. For common macroinvertebrates, the maximum field salinity was approximated by the direct transfer 72-h LC{sub 50}. For adult freshwater fish, 21% of species were collected at salinities substantially greater than their acute direct transfer LC{sub 50} and there was a weak relationship between these two variables. Although there was a weak correlation between the direct transfer LC{sub 50} of early life stages of freshwater fish and the maximum field salinity, 58% of the field distribution were in higher than their LC{sub 50} values. In contrast, LC{sub 50} determined from experiments that acclimated adult fish to higher salinity (slow acclimation) provided a better indication of the field distribution: with only one fish species (7%) being in conflict with their maximum field salinity and a strong positive relationship between these variables. This study shows that laboratory measures of acute salinity tolerance can reflect the maximum salinity that macroinvertebrate and fish species inhabit and are consistent with some anecdotal observations from other studies. - Acute laboratory salinity tolerances relate to maximum salinity where organisms occur in nature.

  20. Groundwater fluxes in a shallow seasonal wetland pond: The effect of bathymetric uncertainty on predicted water and solute balances

    Science.gov (United States)

    Trigg, Mark A.; Cook, Peter G.; Brunner, Philip

    2014-09-01

    The successful management of groundwater dependent shallow seasonal wetlands requires a sound understanding of groundwater fluxes. However, such fluxes are hard to quantify. Water volume and solute mass balance models can be used in order to derive an estimate of groundwater fluxes within such systems. This approach is particularly attractive, as it can be undertaken using measurable environmental variables, such as; rainfall, evaporation, pond level and salinity. Groundwater fluxes estimated from such an approach are subject to uncertainty in the measured variables as well as in the process representation and in parameters within the model. However, the shallow nature of seasonal wetland ponds means water volume and surface area can change rapidly and non-linearly with depth, requiring an accurate representation of the wetland pond bathymetry. Unfortunately, detailed bathymetry is rarely available and simplifying assumptions regarding the bathymetry have to be made. However, the implications of these assumptions are typically not quantified. We systematically quantify the uncertainty implications for eight different representations of wetland bathymetry for a shallow seasonal wetland pond in South Australia. The predictive uncertainty estimation methods provided in the Model-Independent Parameter Estimation and Uncertainty Analysis software (PEST) are used to quantify the effect of bathymetric uncertainty on the modelled fluxes. We demonstrate that bathymetry can be successfully represented within the model in a simple parametric form using a cubic Bézier curve, allowing an assessment of bathymetric uncertainty due to measurement error and survey detail on the derived groundwater fluxes compared with the fixed bathymetry models. Findings show that different bathymetry conceptualisations can result in very different mass balance components and hence process conceptualisations, despite equally good fits to observed data, potentially leading to poor management