WorldWideScience

Sample records for altitude polar orbiting

  1. Investigating the auroral electrojets with low altitude polar orbiting satellites

    DEFF Research Database (Denmark)

    Moretto, T.; Olsen, Nils; Ritter, P.;

    2002-01-01

    Three geomagnetic satellite missions currently provide high precision magnetic field measurements from low altitude polar orbiting spacecraft. We demonstrate how these data can be used to determine the intensity and location of the horizontal currents that flow in the ionosphere, predominantly in...

  2. The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit

    Science.gov (United States)

    Furano, G.; Bidoli, V.; Casolino, M.; de Pascale, M. P.; Iannucci, A.; Morselli, A.; Picozza, P.; Reali, E.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, M.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Mazzenga, G.; Ricci, M.; Castellini, G.; Barbiellini, M.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Piccardi, S.; Spillantini, P.

    The satellite MITA, carrying on board the scientific payload NINA-2, was launched on July the 15th, 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. The satellite and the payload are currently operating within nominal parameters. NINA-2 is the first scientific payload for the technological flight of the Italian small satellite MITA. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840-km sun-synchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. NINA physics objectives are to study cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during the years 2000-2003, that is the solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin, so to study long and short term solar transient phenomena, and the study of the trapped radiation at higher geomagnetic cutoff.

  3. Geological exploration from orbital altitudes

    Science.gov (United States)

    Badgley, Peter C.; Fischer, William A.; Lyon, Ronald J. P.

    1965-01-01

    The National Aeronautics & Space Administration is planning geologic exploration from orbiting spacecraft. For that purpose it is evaluating new and refined exploration tools, often called remote sensors, including devices that are sensitive to force fields, such as gravity gradient systems, and devices that record the reflection or emission of electromagnetic energy. Both passive electromagnetic sensors (those that rely on natural sources of illumination, such as the Sun) and active electromagnetic sensors (which use an artificial source of illumination) are being considered.

  4. Collision probability at low altitudes resulting from elliptical orbits

    Science.gov (United States)

    Kessler, Donald J.

    1990-01-01

    The probability of collision between a spacecraft and another object is calculated for various altitude and orbit conditions, and factors affecting the probability are discussed. It is shown that a collision can only occur when the spacecraft is located at an altitude which is between the perigee and apogee altitudes of the object and that the probability per unit time is largest when the orbit of the object is nearly circular. However, at low altitudes, the atmospheric drag causes changes with time of the perigee and the apogee, such that circular orbits have a much shorter lifetime than many of the elliptical orbits. Thus, when the collision probability is integrated over the lifetime of the orbiting object, some elliptical orbits are found to have much higher total collision probability than circular orbits. Rocket bodies used to boost payloads from low earth orbit to geosynchronous orbit are an example of objects in these elliptical orbits.

  5. Dust observations at orbital altitudes surrounding Mars.

    Science.gov (United States)

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  6. Dust observations at orbital altitudes surrounding Mars.

    Science.gov (United States)

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere. PMID:26542578

  7. Dust observations at orbital altitudes surrounding Mars

    Science.gov (United States)

    Andersson, L.; Weber, T. D.; Malaspina, D.; Crary, F.; Ergun, R. E.; Delory, G. T.; Fowler, C. M.; Morooka, M. W.; McEnulty, T.; Eriksson, A. I.; Andrews, D. J.; Horanyi, M.; Collette, A.; Yelle, R.; Jakosky, B. M.

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars’s atmosphere.

  8. Semianalytic Integration of High-Altitude Orbits under Lunisolar Effects

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2012-01-01

    Full Text Available The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

  9. Polar Air Quality and Climate from a Molniya Orbit

    Science.gov (United States)

    O'Neill, N.; McConnell, J. C.; Mullins, M.; Chesser, H.; Solheim, B.; Kaminski, J.; Strong, K.; Jones, D.; Drummond, J.; Martin, R.; McElroy, C. T.; Evans, W. F.; Giroux, J. G.; Soucy, M. A.; Buijs, H. L.; Moreau, L. M.; Buttner, G.; Rahnama, P.; Rowlands, N.; Hackett, J.; Bell, A.

    2008-05-01

    The Arctic is a region of rapid climate change with warming temperatures and depleting summer ice which may be exacerbated by transport of soot and other anthropogenic material from mid-latitudes. It is also the source of winter storms delivering cold air to lower latitudes. Currently data is available for these areas from polar orbiting satellites, but only intermittently at a given location as the satellites pass overhead. Data from geostationary satellites, useful at lower latitudes, is not available for the Arctic because viewing angles to high latitude locations from geostationary orbit are poor. We are proposing the use of a satellite in a Molniya orbit for the acquisition of data for high latitudes which is a quasi-stationary orbit close to apogee. This talk will describe a proposal to the Canadian Space Agency for a mission aimed at the acquisition of air quality and climate data in boreal polar regions and mid-latitudes. Molniya orbits (named after the Russian communications satellite series that first used them) are highly elliptical orbits with an inclination of approximately 63°. At this inclination, the Earth oblateness perturbation does not cause any change to the orbit's argument of perigee. Further, if the orbit semi-major axis is chosen appropriately, the orbit can be timed to have a period of half a day (typical Molniya orbits have an apogee altitude of about 39750 km and a perigee altitude of about 600 km). The result of these two constraints is that the satellite is at apogee over the same high latitude location on the Earth every two orbits. At the alternate apogees, it is over a location at the same latitude but 180° away in longitude. Either location provides viewing coverage of the entire Earth above 60°N, and reasonable viewing down to 50°N. Further, because the satellite is travelling slowly at apogee, the viewing geometry is maintained for approximately 2/3 of the orbit (8 hr out of every 12). The suite of instruments we are

  10. Earth's external magnetic fields at low orbital altitudes

    Science.gov (United States)

    Klumpar, D. M.

    1990-01-01

    Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.

  11. A Minimum Delta V Orbit Maintenance Strategy for Low-Altitude Missions Using Burn Parameter Optimization

    Science.gov (United States)

    Brown, Aaron J.

    2011-01-01

    Orbit maintenance is the series of burns performed during a mission to ensure the orbit satisfies mission constraints. Low-altitude missions often require non-trivial orbit maintenance Delta V due to sizable orbital perturbations and minimum altitude thresholds. A strategy is presented for minimizing this Delta V using impulsive burn parameter optimization. An initial estimate for the burn parameters is generated by considering a feasible solution to the orbit maintenance problem. An low-lunar orbit example demonstrates the Delta V savings from the feasible solution to the optimal solution. The strategy s extensibility to more complex missions is discussed, as well as the limitations of its use.

  12. NOAA Polar-orbiting Operational Environmental Satellites (POES) Radiometer Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar-orbiting Operational Environmental Satellite (POES) series offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day...

  13. Entanglement of Polarization and Orbital Angular Momentum

    OpenAIRE

    Bhatti, Daniel; von Zanthier, Joachim; Agarwal, Girish S.

    2015-01-01

    We investigate two-photon entangled states using two important degrees of freedom of the electromagnetic field, namely orbital angular momentum (OAM) and spin angular momentum. For photons propagating in the same direction we apply the idea of $\\textit{entanglement duality}$ and develop schemes to do $\\textit{entanglement sorting}$ based either on OAM or polarization. In each case the entanglement is tested using appropriate witnesses. We finally present generalizations of these ideas to thre...

  14. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    Science.gov (United States)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; Milikh, G. M.; Namkung, M.; Nandikotkur, G.; Neumann, G.; Smith, D.; Sagdeev, R.; Sanin, A. G.; Starr, R. D.; Trombka, J. I.

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  15. Polar antiferromagnets produced with orbital order.

    Science.gov (United States)

    Ogawa, Naoki; Ogimoto, Yasushi; Ida, Yoshiaki; Nomura, Yusuke; Arita, Ryotaro; Miyano, Kenjiro

    2012-04-13

    Polar states are realized in pseudocubic manganite films fabricated on high-index substrates, in which a Jahn-Teller (JT) distortion remains an active variable. Several types of orbital orders (OOs) were found to develop large optical second harmonics, signaling broken-inversion symmetry distinct from their bulk forms and films on (100) substrates. The observed symmetry lifting and first-principles calculation both indicate that the modified JT q2 mode drives Mn-site off centering, which can be controlled by a magnetic-field-induced phase transition via a coupling of OO and spin orders.

  16. Exploration for fossil and nuclear fuels from orbital altitudes

    Science.gov (United States)

    Short, N. M.

    1977-01-01

    The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.

  17. China's FY-3 Polar Orbit Meteorological Satellite And Its Applications

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen; Fang Meng; Sun Anlai

    2009-01-01

    @@ FY-3 is China's second generation of polar orbit meteorological satellite. FY-3A,the first of the FY-3 series,was launched on May 27,2008 from Taiyuan Satellite Launeh Center. After 5 months of in-orbit test,the satellite and its ground application system were put into trial operation on November 18,2008,marking the successful technical upgrading of China's polar-orbit meteorological satellite.

  18. Plasma density enhancements in the high-altitude polar cap region observed on Akebono

    Science.gov (United States)

    Ichikawa, Yoh-ichi; Abe, Takumi; Yau, Andrew W.

    2002-05-01

    The plasma density in the polar cap ionosphere is generally low (=103 cm-3) above 4000 km altitude, in which the thermal plasma exhibits a distinctively low electron temperature (K) and low parallel ion drift velocity (dusk side. The occurrence of low electron temperature and ion drift velocity appears to suggest the antisunward convection of high-density plasma into the polar cap, and the decrease in electron temperature due to the disruption of field-aligned heat flux in the high-altitude polar cap.

  19. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  20. Orbital angular momentum is dependent on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that originates from the former part is spin, and the angular momentum that originates from the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin and or...

  1. A Minimum (Delta)V Orbit Maintenance Strategy for Low-Altitude Missions Using Burn Parameter Optimization

    Science.gov (United States)

    Brown, Aaron J.

    2011-01-01

    Orbit maintenance is the series of burns performed during a mission to ensure the orbit satisfies mission constraints. Low-altitude missions often require non-trivial orbit maintenance (Delta)V due to sizable orbital perturbations and minimum altitude thresholds. A strategy is presented for minimizing this (Delta)V using impulsive burn parameter optimization. An initial estimate for the burn parameters is generated by considering a feasible solution to the orbit maintenance problem. An example demonstrates the dV savings from the feasible solution to the optimal solution.

  2. Orbital Polarization in Relativistic Density Functional Theory

    OpenAIRE

    Sargolzaei, Mahdi

    2007-01-01

    The description of the magnetic properties of interacting many-particle systems has been one of the most important goals of physics. The problem is to derive the magnetic properties of such systems from quantum mechanical principles. It is well understood that the magnetization in an atom described by quantum numbers, spin (S), orbital (L), and total angular momentum (J) of its electrons. A set of guidelines, known as Hund's rules, discovered by Friedrich Hermann Hunds help us to determine th...

  3. Orbital engineering in symmetry-breaking polar heterostructures.

    Science.gov (United States)

    Disa, Ankit S; Kumah, Divine P; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A; Specht, Eliot D; Ismail-Beigi, Sohrab; Walker, F J; Ahn, Charles H

    2015-01-16

    We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO_{3}-LaNiO_{3}-LaAlO_{3} system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ∼50% change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO_{3} and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

  4. Aeroassisted transfer between coplanar elliptical orbits during near constant altitude coasting

    Science.gov (United States)

    Taratuta, Aba; Mishne, David; Gur, Ilana

    An aeroassisted transfer between coplanar elliptical orbits is presented. The maneuver consists of three thrust impulses and a coast flight in the atmosphere. Several control strategies for the atmospheric coast are analyzed: constant altitude coast, constant velocity glide, constant heating rate coast. For each control strategy, the optimal altitude is chosen. The criterion for the maneuver efficiency was the amount of fuel consumption for a given rotation angle, subject to a heating rate limit. The results are compared with aeroassisted multipass maneuver and aeroassisted drag-only maneuver. It was shown that the coast maneuver extends the region in which the lift-controlled aeroassisted maneuver is superior to other maneuvers. Numerical examples are presented.

  5. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  6. Controlling the Eccentricity of Polar Lunar Orbits with Low-Thrust Propulsion

    Directory of Open Access Journals (Sweden)

    O. C. Winter

    2009-01-01

    Full Text Available It is well known that lunar satellites in polar orbits suffer a high increase on the eccentricity due to the gravitational perturbation of the Earth. That effect is a natural consequence of the Lidov-Kozai resonance. The final fate of such satellites is the collision with the Moon. Therefore, the control of the orbital eccentricity leads to the control of the satellite's lifetime. In the present work we study this problem and introduce an approach in order to keep the orbital eccentricity of the satellite at low values. The whole work was made considering two systems: the 3-body problem, Moon-Earth-satellite, and the 4-body problem, Moon-Earth-Sun-satellite. First, we simulated the systems considering a satellite with initial eccentricity equals to 0.0001 and a range of initial altitudes between 100 km and 5000 km. In such simulations we followed the evolution of the satellite's eccentricity. We also obtained an empirical expression for the length of time needed to occur the collision with the Moon as a function of the initial altitude. The results found for the 3-body model were not significantly different from those found for the 4-body model. Secondly, using low-thrust propulsion, we introduced a correction of the eccentricity every time it reached the value 0.05. These simulations were made considering a set of different thrust values, from 0.1 N up to 0.4 N which can be obtained by using Hall Plasma Thrusters. In each run we measured the length of time, needed to correct the eccentricity value (from e=0.04 to e=0.05. From these results we obtained empirical expressions of this time as a function of the initial altitude and as a function of the thrust value.

  7. Qualitative features of the evolution of some polar satellite orbits

    Science.gov (United States)

    Vashkov'yak, M. A.

    2016-01-01

    Two special cases of the problem of the secular perturbations in the orbital elements of a satellite with a negligible mass produced by the joint influence of the oblateness of the central planet and the attraction by its most massive (or main) satellites and the Sun are considered. These cases are among the integrable ones in the general nonintegrable evolution problem. The first case is realized when the plane of the satellite orbit and the rotation axis of the planet lie in its orbital plane. The second case is realized when the plane of the satellite orbit is orthogonal to the line of intersection between the equatorial and orbital planes of the planet. The corresponding particular solutions correspond to those polar satellite orbits for which the main qualitative features of the evolution of the eccentricity and pericenter argument are described here. Families of integral curves have been constructed in the phase plane of these elements for the satellite systems of Jupiter, Saturn, and Uranus.

  8. X-ray Orbital Modulations in Intermediate Polars

    CERN Document Server

    Parker, T L; Mukai, K

    2005-01-01

    We present an analysis of 30 archival ASCA and RXTE X-ray observations of 16 intermediate polars to investigate the nature of their orbital modulation. We show that X-ray orbital modulation is widespread amongst these systems, but not ubiquitous as indicated by previous studies that included fewer objects. Only seven of the sixteen systems show a clearly statistically significant modulation depth whose amplitude decreases with increasing X-ray energy. Interpreting this as due to photoelectric absorption in material at the edge of an accretion disc would imply that such modulations are visible for all system inclination angles in excess of 60 degrees. However, it is also apparent that the presence of an X-ray orbital modulation can appear and disappear on a timescale of ~years or months in an individual system. This may be evidence for the presence of a precessing, tilted accretion disc, as inferred in some low mass X-ray binaries.

  9. Polarization control of single photon quantum orbital angular momentum states.

    Science.gov (United States)

    Nagali, E; Sciarrino, F; De Martini, F; Piccirillo, B; Karimi, E; Marrucci, L; Santamato, E

    2009-10-12

    The orbital angular momentum of photons, being defined in an infinite-dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of simple optical schemes for the coherent transfer of quantum information from the polarization to the orbital angular momentum of single photons and vice versa. All our schemes exploit a newly developed optical device, the so-called "q-plate", which enables the manipulation of the photon orbital angular momentum driven by the polarization degree of freedom. By stacking several q-plates in a suitable sequence, one can also have access to higher-order angular momentum subspaces. In particular, we demonstrate the control of the orbital angular momentum m degree of freedom within the subspaces of |m| = 2h and |m| = 4h per photon.

  10. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  11. Thermosphere variation at different altitudes over the northern polar cap during magnetic storms

    Science.gov (United States)

    Huang, Yanshi; Wu, Qian; Huang, Cheryl Y.; Su, Yi-Jiun

    2016-08-01

    In this study, we report observations and simulation results of heated neutrals at various altitudes inside the polar cap during two magnetic storms in January 2005. The Poynting flux measurements from the Defense Meteorological Satellite Program (DMSP) satellites show enhanced energy input in the polar cap during the storm main phase, which is underestimated in the TIE-GCM simulation. Neutral temperature measurements at 250 km from the ground-based Fabry-Perot Interferometer (FPI) at Resolute Bay are presented, along with the neutral density observations at 360 km and 470 km from Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) satellites, respectively. These data have been analyzed to demonstrate the altitudinal dependence of neutral response to the storm energy input. By comparing the TIE-GCM simulation results and the observations, we demonstrate that Poynting fluxes as well as the thermosphere response were underestimated in the model. The simulated neutral temperature at Resolute Bay increases by approximately 260° and 280° K for the two events, respectively, much lower than the observed temperature enhancements of 750° and 900° K. Neutral density enhancements with more than 30% increase over the background density were also observed at polar latitudes, with no clear distinction between the auroral zone and polar cap. All measurements indicate enhancements at high latitudes poleward of 80° magnetic latitude (MLAT) implying that substantial heating can occur within the polar cap during storms.

  12. Orbital polarization and magnetization for independent particles in disordered media

    CERN Document Server

    Schulz-Baldes, Hermann

    2012-01-01

    Formulas for the contribution of the conduction electrons to the polarization and magnetization are derived for disordered systems and within a one-particle framework. These results generalize known formulas for Bloch electrons and the presented proofs considerably simplify and strengthen prior justifications. The new formulas show that orbital polarization and magnetization are of geometric nature. This leads to quantization for a periodically driven Piezo effect as well as the derivative of the magnetization w.r.t. the chemical potential. It is also shown how the latter is connected to boundary currents in Chern insulators. The main technical tools in the proofs are an adaption of Nenciu's super-adiabatic theory to C$^*$-dynamical systems and Bellissard's Ito derivatives w.r.t. the magnetic field.

  13. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite polarization sensitivity analysis.

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-09-20

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides ±56.28° scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within ±45°. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller. PMID:27661594

  14. Electrical polarization and orbital magnetization: the modern theories.

    Science.gov (United States)

    Resta, Raffaele

    2010-03-31

    Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M--phenomenologically known as bulk properties--apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out

  15. Polarization radiation of vortex electrons with large orbital angular momentum

    CERN Document Server

    Ivanov, Igor P

    2013-01-01

    Vortex electrons, i.e. freely propagating electrons whose wavefunction has helical wavefronts, could emerge as a novel tool for the physics of electromagnetic (EM) radiation. They carry non-zero intrinsic orbital angular momentum (OAM) $\\ell$ and, for $\\ell \\gg 1$, a large OAM-induced magnetic moment, $\\mu \\approx \\ell \\mu_B$ ($\\mu_B$ is the Bohr magneton), which affects the radiation of EM waves. Here, we consider in detail its influence on two forms of polarization radiation, namely on Cherenkov and transition radiation. Due to large $\\ell$, we can neglect quantum or spin-induced effects, which are of order $\\hbar \\omega/E_e \\ll 1$, but retain the magnetic moment contribution $\\ell \\hbar \\omega/E_e \\lesssim 1$, which makes the quasiclassical approach to polarization radiation applicable. We discuss magnetic moment contribution to polarization radiation, which has never been experimentally observed, and study how its visibility depends on kinematical parameters and permittivity of the medium. In particular, ...

  16. Orbital mapping of energy bands and the truncated spin polarization in three-dimensional Rashba semiconductors

    CERN Document Server

    Liu, Qihang; Dessau, D S; Zunger, Alex

    2016-01-01

    Associated with spin-orbit coupling (SOC) and inversion symmetry breaking, Rashba spin polarization opens a new avenue for spintronic applications that was previously limited to ordinary magnets. However, spin polarization effects in actual Rashba systems are far more complicated than what conventional single-orbital models would suggest. By studying via first-principles DFT and a multi-orbital k.p model a 3D bulk Rashba system (free of complications by surface effects) we find that the physical origin of the leading spin polarization effects is SOC-induced hybridization between spin and multiple orbitals, especially those with nonzero orbital angular momenta. In this framework we establish a general understanding of the orbital mapping, common to the surface of topological insulators and Rashba system. Consequently, the intrinsic mechanism of various spin polarization effects, which pertain to all Rashba systems even those with global inversion symmetry, is understood as a manifestation of the orbital textur...

  17. The National Polar-orbiting Operational Environmental Satellite System

    Science.gov (United States)

    Hoffman, C. W.; Mango, S.; Schneider, S.; Duda, J.; Haas, J.; Bloom, H.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing 'weather' satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. NPOESS will transform today's short-term, space-based ocean research missions into a sustained, operational ocean remote sensing observation program. Ocean measurements comprise one-fourth of the 55 user-validated requirements for geophysical measurements that will be made by NPOESS sensors. In 1997, the IPO initiated a robust sensor risk reduction effort for early development of the critical sensor suites and algorithms necessary to support NPOESS. In 2001, preliminary design efforts were completed for the last of five critical imaging/sounding instruments for NPOESS. Ocean requirements have directly and substantially 'driven' the design of three NPOESS sensors: the Visible/Infrared Imager Radiometer Suite (VIIRS); the Conical-scanning Microwave Imager/Sounder (CMIS); and the Altimeter. With these instruments, NPOESS will deliver higher resolution (spatial and temporal) and more

  18. Characterization of cosmic rays and direction dependence in the Polar Region up to 88 km altitude

    Science.gov (United States)

    Zábori, Balázs; Hirn, Attila; Deme, Sándor; Apáthy, István; Pázmándi, Tamás

    2016-02-01

    Aims: The sounding rocket experiment REM-RED was developed to operate on board the REXUS-17 rocket in order to measure the intensity of cosmic rays. The experiment was launched from the ESRANGE Space Center (68 °N, 21 °E) on the 17th of March 2015 at the beginning of the most intense geomagnetic storm within the preceding 10 years. The experiment provided the opportunity to measure the intensity of cosmic rays in the Polar Region up to an altitude of 88 km above sea level. Methods: The experiment employed Geiger-Müller (GM) counters oriented with their axes perpendicular to each other in order to measure the cosmic ray intensity during the flight of the rocket. This measurement setup allowed performing direction-sensitive measurements as well. During the ascent phase the rocket was spinning and hence stabilized along its longitudinal axis looking close to the zenith direction. This phase of the flight was used for studying the direction dependence of the charged particle component of the cosmic rays. Results: In comparison with earlier, similar rocket experiments performed with GM tubes at lower geomagnetic latitudes, significantly higher cosmic radiation flux was measured above 50 km. A non-isotropic behavior was found below 50 km and described in detail for the first time in the Polar Region. This behavior is in good agreement with the results of the TECHDOSE experiment that used the same type of GM tubes on board the BEXUS-14 stratospheric balloon.

  19. Characterization of cosmic rays and direction dependence in the Polar Region up to 88 km altitude

    Directory of Open Access Journals (Sweden)

    Zábori Balázs

    2016-01-01

    Full Text Available Aims: The sounding rocket experiment REM-RED was developed to operate on board the REXUS-17 rocket in order to measure the intensity of cosmic rays. The experiment was launched from the ESRANGE Space Center (68 °N, 21 °E on the 17th of March 2015 at the beginning of the most intense geomagnetic storm within the preceding 10 years. The experiment provided the opportunity to measure the intensity of cosmic rays in the Polar Region up to an altitude of 88 km above sea level. Methods: The experiment employed Geiger-Müller (GM counters oriented with their axes perpendicular to each other in order to measure the cosmic ray intensity during the flight of the rocket. This measurement setup allowed performing direction-sensitive measurements as well. During the ascent phase the rocket was spinning and hence stabilized along its longitudinal axis looking close to the zenith direction. This phase of the flight was used for studying the direction dependence of the charged particle component of the cosmic rays. Results: In comparison with earlier, similar rocket experiments performed with GM tubes at lower geomagnetic latitudes, significantly higher cosmic radiation flux was measured above 50 km. A non-isotropic behavior was found below 50 km and described in detail for the first time in the Polar Region. This behavior is in good agreement with the results of the TECHDOSE experiment that used the same type of GM tubes on board the BEXUS-14 stratospheric balloon.

  20. Localized electron density enhancements in the high-altitude polar ionosphere and their relationships with storm-enhanced density (SED plumes and polar tongues of ionization (TOI

    Directory of Open Access Journals (Sweden)

    Y. Kitanoya

    2011-02-01

    Full Text Available Events of localized electron density increase in the high-altitude (>3000 km polar ionosphere are occasionally identified by the thermal plasma instruments on the Akebono satellite. In this paper, we investigate the vertical density structure in one of such events in detail using simultaneous observations by the Akebono and DMSP F15 satellites, the SuperDARN radars, and a network of ground Global Positioning System (GPS receivers, and the statistical characteristics of a large number (>10 000 of such events using Akebono data over half of an 11-year solar cycle. At Akebono altitude, the parallel drift velocity is remarkably low and the O+ ion composition ratio remarkably high, inside the high plasma-density regions at high altitude. Detailed comparisons between Akebono, DMSP ion velocity and density, and GPS total electron content (TEC data suggest that the localized plasma density increase observed at high altitude on Akebono was likely connected with the polar tongue of ionization (TOI and/or storm enhanced density (SED plume observed in the F-region ionosphere. Together with the SuperDARN plasma convection map these data suggest that the TOI/SED plume penetrated into the polar cap due to anti-sunward convection and the plume existed in the same convection channel as the dense plasma at high altitude; in other words, the two were probably connected to each other by the convecting magnetic field lines. The observed features are consistent with the observed high-density plasma being transported from the mid-latitude ionosphere or plasmasphere and unlikely a part of the polar wind population.

  1. The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b

    OpenAIRE

    Snellen, Ignas A. G.; de Kok, Remco J.; de Mooij, Ernst J. W.; Albrecht, Simon

    2010-01-01

    For extrasolar planets discovered using the radial velocity method, the spectral characterization of the host star leads to a mass-estimate of the star and subsequently of the orbiting planet. In contrast, if also the orbital velocity of the planet would be known, the masses of both star and planet could be determined directly using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report on the detection of the orbital velocity of extrasolar plan...

  2. Orbital mapping of energy bands and the truncated spin polarization in three-dimensional Rashba semiconductors

    Science.gov (United States)

    Liu, Qihang; Zhang, Xiuwen; Waugh, J. A.; Dessau, D. S.; Zunger, Alex

    2016-09-01

    Associated with spin-orbit coupling (SOC) and inversion symmetry breaking, Rashba spin polarization opens an avenue for spintronic applications that was previously limited to ordinary magnets. However, spin-polarization effects in actual Rashba systems are far more complicated than what conventional single-orbital models would suggest. By studying via density functional theory and a multiorbital k .p model a three-dimensional bulk Rashba system (free of complications by surface effects), BiTeI, we find that the physical origin of the leading spin-polarization effects is SOC-induced hybridization between spin and multiple orbitals, especially those with nonzero orbital angular momenta. In this framework we establish a general understanding of the orbital mapping, common to the surface of topological insulators and the Rashba system. Consequently, the intrinsic mechanism of various spin-polarization effects—which pertain to all Rashba systems, even those with global inversion symmetry—is understood as a manifestation of the orbital textures. This finding suggests a route for designing high-spin-polarization materials by considering the atomic-orbital content.

  3. Solar Wind Influence on the Oxygen Content of Ion Outflow in the High Altitude Polar Cap During Solar Minimum Conditions

    Science.gov (United States)

    Elliott, Heather A.; Comfort, Richard H.; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.

    2000-01-01

    We correlate solar wind and IMF properties with the properties of O(+) and H(+) in the polar cap in early 1996 during solar minimum conditions at altitudes between 5.5 and 8.9 Re geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the POLAR satellite. Throughout the high altitude polar cap, we observe H(+) to be more abundant than O(+). H(+) is a significant fraction of both the ionosphere and the solar wind, and O(+) is not a significant species in the solar wind. O(+) is the major species in the ionosphere so the faction of O(+) present in the magnetosphere is commonly used as a measure of the ionospheric contribution to the magnetosphere. For these reasons, 0+ is of primary interest in this study. We observe O(+) to be most abundant at lower latitudes when the solar wind speed is low (and low Kp), and at higher solar wind speeds (and high Kp) O(+) is observed across most of the polar cap. We also find that O(+) density and parallel flux are well organized by solar wind dynamic pressure; they both increase with solar wind dynamic pressure. H(+) is not as highly correlated with solar wind and IMF parameters, but H(+) density and parallel flux have some negative correlation with IMF By, and some positive correlation with VswBIMF. In this solar minimum data set, H(+) is dominant so that contributions of this plasma to the plasma sheet would have a very low O(+) to H(+) ratio.

  4. The orbital period of intermediate polar 1WGA J19582+3232

    CERN Document Server

    Zharikov, S V; Echevarria, J; Cardenas, A A; Zharikov, Sergei. V.; Tovmassian, Gaghik. H.; Echevarria, Juan; Cardenas;, Aixa Aube

    2001-01-01

    The detection of the orbital period of 4.36his reported for the new Intermediate Polar 1 WGA 1958.2+3232. The orbital period was derived from time-resolved photometric and spectral observations. We also confirmed the 733 sec spin period of the White Dwarf consistent with the X-ray pulsations and were able to distinguish the beat period in the light curve. Strong modulations with orbital period are detected in the emission spectral lines from spectral observations. They show the presence of a bright hot spot on the edge of the accretion disk. The parameters of this recently discovered Intermediate Polar are determined.

  5. The conductance and polarization in quantum wires with Rashba and Dresselhaus spin-orbit interactions

    Institute of Scientific and Technical Information of China (English)

    WANG Da-zhi; CHEN Yu-guang

    2008-01-01

    The conductance and polarization are studied in one-dimensional ballistic quantum wire with both Rashba and Dresselhaus spin-orbit interactions.Two kinds of structures are considered in the present work,one with mixture of two interactions and the other with sequence structure of them.We find that the conductance and polarization are strongly affected by these two interactions.With both interactions we obtain a multi-peak contour of spin polarization and a dramatic oscillation pattern of spin conductance,which are due to the different combination of the two spin-orbit interactions.

  6. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition During Current and Past Orbital Epochs with the NASA Ames GCM

    Science.gov (United States)

    Emmett, J. A.; Murphy, J. R.

    2016-09-01

    The NASA Ames GCM will be used to quantify net annual polar deposition rates of water ice and dust on Mars during current and past orbital epochs to investigate the formation history, structure, and stratigraphy of the polar layered terrains.

  7. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b.

    Science.gov (United States)

    Snellen, Ignas A G; de Kok, Remco J; de Mooij, Ernst J W; Albrecht, Simon

    2010-06-24

    For extrasolar planets discovered using the radial velocity method, the spectral characterization of the host star leads to a mass estimate of the star and subsequently of the orbiting planet. If the orbital velocity of the planet could be determined, the masses of both star and planet could be calculated using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report high-dispersion ground-based spectroscopy of a transit of the extrasolar planet HD 209458b. We see a significant wavelength shift in absorption lines from carbon monoxide in the planet's atmosphere, which we conclude arises from a change in the radial component of the planet's orbital velocity. The masses of the star and planet are 1.00 +/- 0.22M(Sun) and 0.64 +/- 0.09M(Jup) respectively. A blueshift of the carbon monoxide signal of approximately 2 km s(-1) with respect to the systemic velocity of the host star suggests the presence of a strong wind flowing from the irradiated dayside to the non-irradiated nightside of the planet within the 0.01-0.1 mbar atmospheric pressure range probed by these observations. The strength of the carbon monoxide signal suggests a carbon monoxide mixing ratio of (1-3) x 10(-3) in this planet's upper atmosphere.

  8. Determining the spin-orbit coupling via spin-polarized spectroscopy of magnetic impurities

    Science.gov (United States)

    Kaladzhyan, V.; Simon, P.; Bena, C.

    2016-10-01

    We study the spin-resolved spectral properties of the impurity states associated to the presence of magnetic impurities in two-dimensional as well as one-dimensional systems with Rashba spin-orbit coupling. We focus on Shiba bound states in superconducting materials, as well as on impurity states in metallic systems. Using a combination of a numerical T -matrix approximation and a direct analytical calculation of the bound-state wave function, we compute the local density of states (LDOS) together with its Fourier transform (FT). We find that the FT of the spin-polarized LDOS, a quantity accessible via spin-polarized scanning tunneling microscopy, allows to accurately extract the strength of the spin-orbit coupling. Also, we confirm that the presence of magnetic impurities is strictly necessary for such measurement, and that non-spin-polarized experiments cannot have access to the value of the spin-orbit coupling.

  9. Spin-polarized spin-orbit-split quantum-well states in a metal film

    Energy Technology Data Exchange (ETDEWEB)

    Varykhalov, Andrei; Sanchez-Barriga, Jaime; Gudat, Wolfgang; Eberhardt, Wolfgang; Rader, Oliver [BESSY Berlin (Germany); Shikin, Alexander M. [St. Petersburg State University (Russian Federation)

    2008-07-01

    Elements with high atomic number Z lead to a large spin-orbit coupling. Such materials can be used to create spin-polarized electronic states without the presence of a ferromagnet or an external magnetic field if the solid exhibits an inversion asymmetry. We create large spin-orbit splittings using a tungsten crystal as substrate and break the structural inversion symmetry through deposition of a gold quantum film. Using spin- and angle-resolved photoelectron spectroscopy, it is demonstrated that quantum-well states forming in the gold film are spin-orbit split and spin polarized up to a thickness of at least 10 atomic layers. This is a considerable progress as compared to the current literature which reports spin-orbit split states at metal surfaces which are either pure or covered by at most a monoatomic layer of adsorbates.

  10. Phase Diagram of Two-dimensional Polarized Fermi Gas With Spin-Orbit Coupling

    OpenAIRE

    Yang, Xiaosen; Wan, Shaolong

    2011-01-01

    We investigate the ground state of the two-dimensional polarized Fermi gas with spin-orbit coupling and construct the phase diagram at zero temperature. We find there exist phase separation when the binding energy is low. As the binding energy increasing, the topological nontrivial superfluid phase coexist with topologically trivial superfluid phase which is topological phase separation. The spin-orbit coupling interaction enhance the triplet pairing and destabilize the phase separation again...

  11. Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry

    OpenAIRE

    Isegawa, Miho; Fiedler, Luke; Leverentz, Hannah R.; Wang, Yingjie; Nachimuthu, Santhanamoorthi; Gao, Jiali; Truhlar, Donald G.

    2013-01-01

    The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to ...

  12. Generation of spin polarization in graphene by the spin-orbit interaction and a magnetic barrier

    Science.gov (United States)

    Zhang, Qingtian; Chan, K. S.; Lin, Zijing

    2014-10-01

    We study the generation of spin polarization in monolayer graphene in the presence of Rashba spin-orbit interaction (SOI) and a ferromagnetic (FM) stripe. It is shown that Rashba SOI alone can generate an in-plane (x-y plane) spin polarization, but a FM stripe with magnetization parallel to the current direction cannot generate any spin polarization. A combination of the Rashba SOI and the magnetic field of a FM stripe can increase the spin polarization to a value close to 100%, and the polarization components can be found along the x, y and z directions. The attainment of highly spin polarized current using the Rashba SOI and FM effect could have useful applications in the development of graphene spintronics.

  13. Orbit selection for a Mars geoscience/climatology orbiter

    Science.gov (United States)

    Uphoff, C.

    1984-01-01

    This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.

  14. Polarized Structure Function of Nucleon and Orbital Angular Momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh

    2007-06-01

    We have utilized the concept of valon model to calculate the spin structure function of a constituent quark. This structure is universal and arises from perturbative dressing of a valence quark in QCD. With a convolution method the polarized structure functions of proton, neutron, and deuteron are obtained. Our results agree rather well with all available experimental data. It suggests that the sea quark contribution to the spin of nucleon is consistent with zero, in agreement with HERMES data. It also reveals that while the total quark contribution to the spin of a constituent quark, or valon, is almost constant and equal to one, the gluon contribution grows with the increase of Q2, and hence, requiring a sizable negative angular momentum contribution. This component, as well as singlet and non-singlet parts are calculated in the Next-to-Leading order in QCD. We speculate that the gluon contribution to the spin of proton is in the order of 50%. Furthermore, we have determined the polarized valon distribution in a nucleon.

  15. Influence of orbital precession on the polar methane accumulation on Titan

    Science.gov (United States)

    Liu, J.; Schneider, T.

    2014-12-01

    Data collected by Cassini Spacecraft indicate that lakes on Titan are primarily found in the polar regions, preferentially in the north. It has been suggested that the hemispherical asymmetry in lake distribution is related to Saturn's orbital precession, which changes the seasonal distribution of solar radiation on Titan, but not the annual mean (Aharonson et al., 2009; Schneider et al., 2012). Saturn's current longitude of perihelion is near northern winter solstice. Hence, the northern summer on Titan is longer and less intense than the southern summer. The longer northern summer leads to greater net precipitation in the annual mean and the methane accumulation over the northern polar region (Schneider et al. 2012). Saturn's perihelion precesses over an approximately 45-kyr period, so the solar radiation at the top of Titan's atmosphere varies on this time scale. Here we investigate how the orbital precession influences the polar methane accumulation with a three-dimensional atmospheric model coupled to a dynamic surface reservoir of methane (Schneider et al. 2012). We find that methane accumulation is closely tied to Saturn's orbital precession. At the time when Saturn's longitude of perihelion is 180 degree away from the present day value, methane is mainly accumulated in the southern polar region due to the stronger annual-mean precipitation there induced by the longer southern summer. The annual-mean evaporation is largely unchanged with orbital precession, since it scales with the annual-mean insolation, which does not change under orbital precession. When Saturn's longitude of perihelion is close to equinox, methane is approximately evenly distributed in the northern and southern polar regions, and the lake dichotomy disappears. The timescale of methane redistribution from one pole to the other is short compared with the timescale of orbital precession, so the surface methane distribution can be viewed as being approximately in equilibrium with the solar

  16. Packet routing algorithm for polar orbit LEO satellite constellation network

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Broadband satellite networks are capable of providing global coverage and support various services. The networks constructed by Low Earth Orbit (LEO) satellite constellations have attracted great interests because of their short round-trip delays and wide bandwidths. A challenging problem is to develop a simple and efficient packet routing algorithm for the LEO satellite constellation network. This paper presents a SpiderWeb Topological Network (SWTN) and a distributed packet routing algorithm for the LEO satellite constellation network based on the SWTN. The algorithm gives the minimum propagation delay paths with low computational complexity and requires no routing tables, which is practical for on-board processing. The performance of the algorithm is demonstrated through simulations.

  17. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak...

  18. Orbit and Attitude Control of Asymmetric Satellites in Polar Near-Circular Orbit

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2009-10-01

    Full Text Available In this paper, the general problem about the orbit and attitude dynamic model is discussed. A feedback linearization control method is introduced for this model. Due to the asymmetric structure, the orbital properties of such satellites are the same as traditional symmetric ones, but the attitude properties are greatly different from the symmetric counterparts. With perturbations accumulate with time, the attitude angles increase periodically with time, but the orbital elements change much slower than the attitude angles. In the attitude dynamic model, chaos could appear. Traditional linear controllers can not compensate enough for asymmetric satellite when the mission is complex, especially in maneuver missions. Thus nonlinear control method is required to solve such problem in large scale. A feedback linearization method, one robust nonlinear control method, is introduced and applied to the asymmetric satellite in this paper. Some simulations are also given and the results show that feedback linearization controller not only stabilizes the system, but also exempt the chaos in the system.

  19. Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry

    Science.gov (United States)

    Isegawa, Miho; Fiedler, Luke; Leverentz, Hannah R.; Wang, Yingjie; Nachimuthu, Santhanamoorthi; Gao, Jiali; Truhlar, Donald G.

    2013-01-01

    The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to results obtained by previous NDDO semiempirical molecular orbital methods, both including and excluding dispersion terms. We also compare the PMO2 properties to SCC-DFTB calculations. Within the class of semiempirical molecular orbital methods, the PMO2 method is found to be especially accurate for polarizabilities, atomization energies, proton transfer energies, noncovalent complexation energies, and chemical reaction barrier heights and to have good across-the-board accuracy for a range of other properties, including dipole moments, partial atomic charges, and molecular geometries. PMID:23704835

  20. Martian Polar Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    Science.gov (United States)

    Sakimoto, S. E. H.; Garvin, J. B.

    1999-01-01

    Our knowledge of the age of the layered polar deposits and their activity in the volatile cycling and climate history of Mars is based to a large extent on their apparent ages as determined from crater counts. Interpretation of the polar stratigraphy (in terms of climate change) is complicated by reported differences in the ages of the northern and southern layered deposits. The north polar residual ice deposits are thought to be relatively young, based on the reported lack of any fresh impact craters in Viking Orbiter Images. Herkenhoff et al., report no craters at all on the North polar layered deposits or ice cap, and placed an upper bound on the surface age (or, alternatively, the vertical resurfacing rate) of 100 thousand years to 10 million years, suggesting that the north polar region is an active resurfacing site. In contrast, the southern polar region was found to have at least 15 impact craters in the layered deposits and cap. Plaut et al, concluded that the surface was less than or = 120 million years old. This reported age difference factor of 100 to 1000 increases complexity in climate and volatile modeling. Recent MOLA results for the topography of the northern polar cap document a handful or more of possible craters, which could result in revised age or resurfacing estimates for the northern cap. This study is a preliminary look at putative craters in both polar caps. Additional information is contained in the original extended abstract.

  1. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations.

    Science.gov (United States)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Zhang, Peng

    2016-09-01

    Focusing fields of optical vortex (OV) beams with circular or radial polarizations carry both spin angular momentum (SAM) and orbital angular momentum (OAM), and can realize non-axial spinning and orbiting motion of absorptive particles. Using the T-matrix method, we evaluate the optical forces and torques exerted on micro-sized particles induced by the OV beams. Numerical results demonstrate that the particle is trapped on the circle of intensity maxima, and experiences a transverse spin torque along azimuthal direction, a longitudinal spin torque, and an orbital torque, respectively. The direction of spinning motion is not only related to the sign of topological charge of the OV beam, but also to the polarization state. However, the topological charge controls the direction of orbiting motion individually. Optically induced rotations of particles with varying sizes and absorptivity are investigated in OV beams with different topological charges and polarization states. These results may be exploited in practical optical manipulation, especially for optically induced rotations of micro-particles.

  2. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B.

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.

  3. Polar Dunes Resolved by the Mars Orbiter Laser Altimeter Gridded Topography and Pulse Widths

    Science.gov (United States)

    Neumann, Gregory A.

    2003-01-01

    The Mars Orbiter Laser Altimeter (MOLA) polar data have been refined to the extent that many features poorly imaged by Viking Orbiters are now resolved in densely gridded altimetry. Individual linear polar dunes with spacings of 0.5 km or more can be seen as well as sparsely distributed and partially mantled dunes. The refined altimetry will enable measurements of the extent and possibly volume of the north polar ergs. MOLA pulse widths have been recalibrated using inflight data, and a robust algorithm applied to solve for the surface optical impulse response. It shows the surface root-mean-square (RMS) roughness at the 75-m-diameter MOLA footprint scale, together with a geological map. While the roughness is of vital interest for landing site safety studies, a variety of geomorphological studies may also be performed. Pulse widths corrected for regional slope clearly delineate the extent of the polar dunes. The MOLA PEDR profile data have now been re-released in their entirety (Version L). The final Mission Experiment Gridded Data Records (MEGDR's) are now provided at up to 128 pixels per degree globally. Densities as high as 512 pixels per degree are available in a polar stereographic projection. A large computational effort has been expended in improving the accuracy of the MOLA altimetry themselves, both in improved orbital modeling and in after-the-fact adjustment of tracks to improve their registration at crossovers. The current release adopts the IAU2000 rotation model and cartographic frame recommended by the Mars Cartography Working Group. Adoption of the current standard will allow registration of images and profiles globally with an uncertainty of less than 100 m. The MOLA detector is still operational and is currently collecting radiometric data at 1064 nm. Seasonal images of the reflectivity of the polar caps can be generated with a resolution of about 300 m per pixel.

  4. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  5. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect.

    Science.gov (United States)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-02

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  6. Polarized Parton Distribution, Orbital Angular Momentum, and the Violation of a8

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh

    2009-03-01

    We use the so-called valon model, to describe the spin structure of the nucleon. We show that about 40% of the nucleon spin is carried by the polarized valence quarks. The remaining part comes from the gluon polarization and the orbital angular momentum. It is shown that the sea quark contributions to the spin of any hadron is simply marginal and consistent with zero. We also found that the value of a8 is substantially smaller than the value inferred from hyperon—β decay, suggesting that full SU(3) symmetric assumption needs to be reconsidered. New and emerging experimental data tend to support this finding. Finally, we show that within the model presented here the experimental data on the polarized structure functions g1p,n,d are reproduced.

  7. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect

    Science.gov (United States)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-01-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved. PMID:24784778

  8. 不同高度范围月球卫星轨道受摄分析%Effects of Perturbations on Lunar Satellite Orbits at Different Altitudes

    Institute of Scientific and Technical Information of China (English)

    冯晶琅; 袁建平; 陈记争

    2011-01-01

    Aim. Lunar missions need comprehensive knowledge of the perturbation effects of: (1) deviation of moon from being spherical, (2) Earth, (3) sun; the introduction of the full paper points out that, since, to our knowledge, only fragmentary information exists in the open literature[2,3] , this paper intends to provide the comprehensive knowledge needed. We explain our research results in sections 1 and 2. Section 1 studies the magnitudes of changes in lunar non-spherical perturbation, earth perturbation and sun perturbation at different altitudes. Section 2 analyzes the effects of the three perturbations on the changes in orbital elements and perilune altitudes; it also simulares their effects on orbital elements at different altitudes; the simulation results, given in Figs. 2 through 5 and Tables 2 and 3, and their analysis show preliminarily that: ( 1 ) the higher the altitudes of lunar orbits, the greater are the changes in eccentricity, semi-major axis and perilune altitude caused by neglecting the earth perturbation, while the effects of lunar non-spherical perturbation decrease; (2) when the altitude is above 5300 kin, the effect of sun perturbation can not be ignored.%目前月球探测任务具有多样性,需要采用不同高度的月球卫星轨道,因此研究摄动力对不同高度月球卫星轨道的影响具有重要意义.文章首先分析了月球非球形摄动、地球引力摄动和太阳引力摄动三种摄动力大小随高度的变化规律.在此基础上,仿真计算了这三种摄动对不同高度月球卫星轨道的影响,得到了轨道要素和近月点高度在不同轨道高度范围内随这三种摄动力的变化规律.最后在近月点高度为百米级精度的条件下,给出了不同高度范围需要考虑的摄动力,为新型月球任务轨道设计和轨道控制提供参考.

  9. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  10. Terazulene Isomers: Polarity Change of OFETs through Molecular Orbital Distribution Contrast.

    Science.gov (United States)

    Yamaguchi, Yuji; Takubo, Maki; Ogawa, Keisuke; Nakayama, Ken-Ichi; Koganezawa, Tomoyuki; Katagiri, Hiroshi

    2016-09-01

    Intermolecular orbital coupling is fundamentally important to organic semiconductor performance. Recently, we reported that 2,6':2',6″-terazulene (TAz1) exhibited excellent performance as an n-type organic field-effect transistor (OFET) via molecular orbital distribution control. To validate and develop this concept, here we present three other terazulene regioisomers, which have three azulene molecules connected at the 2- or 6-position along the long axis of the azulene, thus constructing a linear expanded π-conjugation system: 2,2':6',2″-terazulene (TAz2), 2,2':6',6″-terazulene (TAz3), and 6,2':6',6″-terazulene (TAz4). TAz2 and TAz3 exhibit ambipolar characteristics; TAz4 exhibits clear n-type transistor behavior as an OFET. The lowest unoccupied molecular orbitals (LUMOs) of all terazulenes are fully delocalized over the entire molecule. In contrast, the highest occupied molecular orbitals (HOMOs) of TAz2 and TAz3 are delocalized over the 2,2'-biazulene units; the HOMOs of TAz4 are localized at one end of the azulene unit. These findings confirm that terazulene isomers which are simple hydrocarbon compounds are versatile materials with a tunable-polarity FET characteristic that depends on the direction of the azulene unit and the related contrast of the molecular orbital distribution in the terazulene backbone. PMID:27511286

  11. Corrigendum to "Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit"

    Science.gov (United States)

    El-Jaby, Samy

    2016-06-01

    A recent paper published in Life Sciences in Space Research (El-Jaby and Richardson, 2015) presented estimates of the secondary neutron ambient and effective dose equivalent rates, in air, from surface altitudes up to suborbital altitudes and low Earth orbit. These estimates were based on MCNPX (LANL, 2011) (Monte Carlo N-Particle eXtended) radiation transport simulations of galactic cosmic radiation passing through Earth's atmosphere. During a recent review of the input decks used for these simulations, a systematic error was discovered that is addressed here. After reassessment, the neutron ambient and effective dose equivalent rates estimated are found to be 10 to 15% different, though, the essence of the conclusions drawn remains unchanged.

  12. Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-07-01

    Full Text Available We study the wave-related (AC and static (DC parallel Poynting vector (Poynting energy flux as a function of altitude in auroral field lines using Polar EFI and MFE data. The study is statistical and contains 5 years of data in the altitude range 5000–30000 km. We verify the low altitude part of the results by comparison with earlier Astrid-2 EMMA Poynting vector statistics at 1000 km altitude. The EMMA data are also used to statistically compensate the Polar results for the missing zonal electric field component. We compare the Poynting vector with previous statistical DMSP satellite data concerning the electron precipitation power. We find that the AC Poynting vector (Alfvén-wave related Poynting vector is statistically not sufficient to power auroral electron precipitation, although it may, for Kp>2, power 25–50% of it. The statistical AC Poynting vector also has a stepwise transition at R=4 RE, so that its amplitude increases with increasing altitude. We suggest that this corresponds to Alfvén waves being in Landau resonance with electrons, so that wave-induced electron acceleration takes place at this altitude range, which was earlier named the Alfvén Resonosphere (ARS. The DC Poynting vector is ~3 times larger than electron precipitation and corresponds mainly to ionospheric Joule heating. In the morning sector (02:00–06:00 MLT we find that the DC Poynting vector has a nontrivial altitude profile such that it decreases by a factor of ~2 when moving upward from 3 to 4 RE radial distance. In other nightside MLT sectors the altitude profile is more uniform. The morning sector nontrivial altitude profile may be due to divergence of the perpendicular Poynting vector field at R=3–4 RE.

    Keywords. Magnetospheric physics (Auroral phenomena; Magnetosphere-ionosphere interactions – Space plasma physics (Wave-particle interactions

  13. Controlling Rashba spin orbit coupling in polar two-dimensional transition metal dichalcogenide

    CERN Document Server

    Yao, Qun-Fang; Tong, Wen-Yi; Gong, Shi-Jing; Wang, Ji-Qing; Wan, Xian-gang; Duan, Chun-Gang; Chu, J H

    2016-01-01

    Monolayer transition metal dichalcogenide (TMD) group of materials MXY (M=Mo, W, X(not equal to)Y=S, Se, Te) are two-dimensional polar semiconductors with Rashba spin orbit coupling (SOC). Setting WSeTe as an example and using density functional theory calculations, we investigate the influence of biaxial strain and electric field on Rashba SOC in MXY monolayer. The orbital analysis reveals that Rashba spin splitting around Gamma point occurs mainly through the SOC matrix elements between the W-dz2 and -dxz/yz orbitals, and those between the Se-pz and -px/y orbitals. We find the change of local electric field between Se and W atoms arising from the mirror symmetry breaking plays the critical role in forming the large Rashba SOC, and through a relatively small compressive/tensile strain (from -2% to 2%), a large tunability of Rashba SOC can be obtained due to the modified W-Se bonding interaction. In addition, we also explore the influence of electric field on Rashba SOC in WSeTe, which can impact the charge d...

  14. Imprints of molecular orbitals using photoelectron angular distribution by strong laser pulses of circular polarization

    Institute of Scientific and Technical Information of China (English)

    Ren Xiang-He; Wu Yan; Zhang Jing-Tao; Ma Hui; Xu Yu-Long

    2013-01-01

    We theoretically investigate the strong-field ionization of H2+ molecules in four different electronic states by calculating photoelectron angular distributions in circularly polarized fields.We find that the structure of photoelectron angular distribution depends on the molecular orbital as well as the energy of the photoelectron.The location of main lobes changes with the symmetric property of the molecular orbital.Generally,for molecules with bonding electronic states,the photoelectron's angular distribution shows a rotation of π/2 with respect to the molecular axis,while for molecules with antibonding electronic states,no rotation occurs.We use an interference scenario to interpret these phenomena.We also find that,due to the interference effect,a new pair of jets appears in the waist of the main lobes,and the main lobes or jets of the photoelectron's angular distribution are split into two parts if the photoelectron energy is sufficiently high.

  15. Space and time aliasing structure is monthly mean polar-orbiting satellite data

    Science.gov (United States)

    Zeng, Lixin; Levy, Gad

    1995-01-01

    Monthly mean wind fields from the European Remote Sensing Satellite (ERS1) scatterometer are presented. A banded structure which resembles the satellite subtrack is clearly and consistently apparent in the isotachs as well as the u and v components of the routinely produced fields. The structure also appears in the means of data from other polar-orbiting satellites and instruments. An experiment is designed to trace the cause of the banded structure. The European Centre for Medium-Range Weather Forecast (ECMWF) gridded surface wind analyses are used as a control set. These analyses are also sampled with the ERS1 temporal-spatial samplig pattern to form a simulated scatterometer wind set. Both sets are used to create monthly averages. The banded structures appear in the monthly mean simulated data but do not appear in the control set. It is concluded that the source of the banded structure lies in the spatial and temporal sampling of the polar-orbiting satellite which results in undersampling. The problem involves multiple timescales and space scales, oversampling and under-sampling in space, aliasing in the time and space domains, and preferentially sampled variability. It is shown that commonly used spatial smoothers (or filters), while producing visually pleasing results, also significantly bias the true mean. A three-dimensional spatial-temporal interpolator is designed and used to determine the mean field. It is found to produce satisfactory monthly means from both simulated and real ERS1 data. The implications to climate studies involving polar-orbiting satellite data are discussed.

  16. Detecting Canopy Water Status Using Shortwave Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Huber Gharib, Silvia; Proud, Simon Richard;

    2010-01-01

    -based canopy water status detection from geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data as compared to polar orbiting environmental satellite (POES)-based moderate resolution imaging spectroradiometer (MODIS) data. The EO-based SWIR water stress index...... (SIWSI) is evaluated against in situ measured canopy water content indicators at a semi-arid grassland savanna site in Senegal 2008. Daily SIWSI from both MODIS and SEVIRI data show an overall inverse relation to Normalized Difference Vegetation Index (NDVI) throughout the growing season. SIWSI...

  17. A search for spin-polarized photoemission from GaAs using light with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Clayburn, James McCarter, Joan Dreiling, Bernard Poelker, Dominic Ryan, Timothy Gay

    2013-01-01

    Laser light with photon energy near the bandgap of GaAs and with different amounts of orbital angular momentum was used to produce photoemission from unstrained GaAs. The degree of electron spin polarization was measured using a micro-Mott polarimeter and found to be consistent with zero with an upper limit of ~3% for light with up to ±5{bar h} of orbital angular momentum. In contrast, the degree of spin polarization was 32.32 ± 1.35% using circularly-polarized laser light at the same wavelength, which is typical of bulk GaAs.

  18. DETECTION OF A GIANT EXTRASOLAR PLANET ORBITING THE ECLIPSING POLAR DP LEO

    International Nuclear Information System (INIS)

    DP Leo is the first discovered eclipsing polar with a short period of 1.4967 hours. The period variation of the eclipsing binary was analyzed by using five new determined eclipse times together with those compiled from the literature. It is discovered that the O - C curve of DP Leo shows a cyclic variation with a period of 23.8 years and a semiamplitude of 31.5 s. The small-amplitude periodic change can be plausibly explained as the light-travel time effect due to the presence of a tertiary companion. The mass of the tertiary component is determined to be M 3sin i' = 0.00600(±0.00055) M sun = 6.28(±0.58) M Jupiter when a total mass of 0.69 M sun is adopted. If the tertiary companion is coplanar to the eclipsing binary (i.e., i' = 79.05), it should be a giant extrasolar planet with a mass of 6.39 M Jupiter at a distance of 8.6 astronomical units to the central binary. One of the most interesting things that we have learned about extrasolar planets over the last 17 years is that they can exist almost anywhere. The detection of a giant planet orbiting a polar would provide insight into the formation and evolution of circumbinary planets (planets orbiting both components of short-period binaries) as well as the late evolution of binary stars.

  19. Revisiting the proposed planetary system orbiting the eclipsing polar HU Aquarii

    CERN Document Server

    Wittenmyer, Robert A; Marshall, J P; Butters, O W; Tinney, C G

    2011-01-01

    It has recently been proposed, on the basis of eclipse-timing data, that the eclipsing polar cataclysmic variable HU Aquarii is host to at least two giant planets. However, that result has been called into question based upon the dynamical stability of the proposed planets. In this work, we present a detailed re-analysis of all eclipse timing data available for the HU Aquarii system, making use of standard techniques used to fit orbits to radial-velocity data. We find that the eclipse timings can be used to obtain a two-planet solution that does not require the presence of additional bodies within the system. We then perform a highly detailed dynamical analysis of the proposed planetary system. We show that the improved orbital parameters we have derived correspond to planets that are dynamically unstable on unfeasibly short timescales (of order 10^4 years or less). Given these results, we discuss briefly how the observed signal might in fact be the result of the intrinsic properties of the eclipsing polar, r...

  20. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    Science.gov (United States)

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography. PMID:9851922

  1. Detection of a planetary system orbiting the eclipsing polar HU Aqr

    CERN Document Server

    Qian, S -B; Liao, W -P; Li, L -J; Zhu, L -Y; Dai, Z -B; He, J -J; Zhao, E -G; Zhang, J; Li, K

    2011-01-01

    Using the precise times of mid-egress of the eclipsing polar HU Aqr, we discovered that this polar is orbited by two or more giant planets. The two planets detected so far have masses of at least 5.9 and 4.5\\,M_{Jup}. Their respective distances from the polar are 3.6 AU and 5.4 AU with periods of 6.54 and 11.96 years, respectively. The observed rate of period decrease derived from the downward parabolic change in O-C curve is a factor 15 larger than the value expected for gravitational radiation. This indicates that it may be only a part of a long-period cyclic variation, revealing the presence of one more planet. It is interesting to note that the two detected circumbinary planets follow the Titus-Bode law of solar planets with n=5 and 6. We estimate that another 10 years of observations will reveal the presence of the predicted third planet.

  2. Spin inverter and polarizer curved nanowire driven by Rashba and Dresselhaus spin-orbit interactions

    Science.gov (United States)

    Baldo, C.; Villagonzalo, C.

    2016-09-01

    We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin-orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10-4 of its otherwise magnitude in other regimes.

  3. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites.

    Science.gov (United States)

    Stroppa, Alessandro; Di Sante, Domenico; Barone, Paolo; Bokdam, Menno; Kresse, Georg; Franchini, Cesare; Whangbo, Myung-Hwan; Picozzi, Silvia

    2014-01-01

    Ferroelectricity is a potentially crucial issue in halide perovskites, breakthrough materials in photovoltaic research. Using density functional theory simulations and symmetry analysis, we show that the lead-free perovskite iodide (FA)SnI3, containing the planar formamidinium cation FA, (NH2CHNH2)(+), is ferroelectric. In fact, the perpendicular arrangement of FA planes, leading to a 'weak' polarization, is energetically more stable than parallel arrangements of FA planes, being either antiferroelectric or 'strong' ferroelectric. Moreover, we show that the 'weak' and 'strong' ferroelectric states with the polar axis along different crystallographic directions are energetically competing. Therefore, at least at low temperatures, an electric field could stabilize different states with the polarization rotated by π/4, resulting in a highly tunable ferroelectricity appealing for multistate logic. Intriguingly, the relatively strong spin-orbit coupling in noncentrosymmetric (FA)SnI3 gives rise to a co-existence of Rashba and Dresselhaus effects and to a spin texture that can be induced, tuned and switched by an electric field controlling the ferroelectric state. PMID:25533044

  4. Planetary Satellite Orbiters: Applications for the Moon

    Directory of Open Access Journals (Sweden)

    Jean Paulo dos Santos Carvalho

    2011-01-01

    Full Text Available Low-altitude, near-polar orbits are very desirable as science orbits for missions to planetary satellites, such as the Earth's Moon. In this paper, we present an analytical theory with numerical simulations to study the orbital motion of lunar low-altitude artificial satellite. We consider the problem of an artificial satellite perturbed by the nonuniform distribution of the mass of the Moon (J2–J5, J7, and C22. The conditions to get frozen orbits are presented. Using an approach that considers the single-averaged problem, we found families of periodic orbits for the problem of an orbiter travelling around the Moon, where frozen orbits valid for long periods of time are found. A comparison between the models for the zonal and tesseral harmonics coefficients is presented.

  5. Solar Wind Influence on the Oxygen Content of Ion Outflow in the High-Altitude Polar Cap During Solar Minimum Conditions

    Science.gov (United States)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.

    2001-01-01

    We correlate solar wind and interplanetary magnetic field (IMF) properties with the properties of O(+) and H(+) during early 1996 (solar minimum) at altitudes between 5.5 and 8.9 R(sub E) geocentric using the Thermal Ion Dynamics Experiment (TIDE) on the Polar satellite. Throughout the high-altitude polar cap we observe H(+) to be more abundant than O(+). O(+) is found to be more abundant at lower latitudes when the solar wind speed is low (and Kp is low), while at higher solar wind speeds (and high Kp), O(+) is observed across most of the polar cap. The O(+) density and parallel flux are well organized by solar wind dynamic pressure, both increasing with solar wind dynamic pressure. Both the O(+) density and parallel flux have positive correlations with both V(sub SW)B(sub IMF) and E(sub SW). No correlation is found between O(+) density and IMF Bz, although a nonlinear relationship with IMF By is observed, possibly due to a strong linear correlation with the dynamic pressure. H(+) is not as highly correlated with solar wind and IMF parameters, although H(+) density and parallel flux are negatively correlated with IMF By and positively correlated with both V(sub SW)B(sub IMF) and E(sub SW). In this solar minimum data set, H(+) is dominant, so that contributions of this plasma to the plasma sheet would have very low O(+) to H(+) ratios.

  6. Target element dependent spin–orbit coupling in polarized {sup 4}He{sup +} ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T.T., E-mail: suzuki.taku@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakai, O. [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Ichinokura, S. [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hirahara, T. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Hasegawa, S. [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-07-01

    We studied low-energy (1.57 keV) electron-spin polarized {sup 4}He{sup +} ion scattering on various 5d transition metal targets. The scattered ion intensity generally differed between the incident He{sup +} ions with up and down spins. This spin dependent ion scattering is attributed to the spin–orbit coupling (SOC) that acts transiently on the He{sup +} 1s electron spin in the He{sup +}-target binary collision. We observed that the amplitude of the spin dependence in ion scattering, i.e., the spin asymmetry, differs between 5d transition metal targets. This target element dependence of the spin asymmetry is discussed in terms of re-ionization of He{sup 0}, which originates from the neutralization of the He{sup +} ion during the He{sup +}-target collision. Since the re-ionization is spin independent process, it degrades the effective spin polarization of the He{sup +} ion beam. This explains smaller spin asymmetry with the target on which He{sup 0} is re-ionized with higher rate.

  7. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    Science.gov (United States)

    Laundal, Karl M.; Finlay, Christopher C.; Olsen, Nils

    2016-08-01

    Interaction between the solar wind and the Earth's magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth's main field. We present global currents from both hemispheres during different sunlight conditions. The results show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV emissions on the dayside and on particle precipitation at pre-midnight magnetic local times. In sunlight, the horizontal equivalent current flows in two cells, resembling an opposite ionospheric convection pattern, which implies that it is dominated by Hall currents. By combining the Birkeland current maps and the equivalent current, we are able to calculate the total horizontal current, without any assumptions about the conductivity. We show that the total horizontal current is close to zero in the polar cap when it is dark. That implies that the equivalent current, which is sensed by ground magnetometers, is largely canceled by the horizontal closure of the Birkeland currents.

  8. Spin-orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets

    International Nuclear Information System (INIS)

    The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-orbit interaction and to show and disentangle the matrix element and phase shift effects therein. The relationship between the energy dispersion of these phase shifts and the emission delay of photoelectron emission in attosecond-resolved photoemission is also discussed. Furthermore the influence of chiral structures of the photo-effect target on the spin polarization, the interferences of different spin components in coherent superpositions in photoemission and a cross-comparison of spin polarization in photoemission from non-magnetic solids with XMCD on magnetic materials are presented; these are all based upon the influence of the spin-orbit interaction in angle-resolved photoemission. (topical review)

  9. Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings.

    Science.gov (United States)

    Li, Yanming; Kim, Jihwan; Escuti, Michael J

    2012-12-01

    We present a novel optical element that efficiently generates orbital angular momentum (OAM) of light and transforms light between OAM modes based on a polarization grating with a fork-shaped singularity. This forked polarization grating (FPG) is composed of liquid crystalline materials, and can be made either static or switchable with high diffraction efficiency (i.e., 100% theoretically) into a single order. By spatially varying the Pancharatnam-Berry phase, FPGs shape the wavefront and thus control the OAM mode. We demonstrate theoretically and empirically that a charge l(g) FPG creates helical modes with OAM charge ±l(g) when a gaussian beam is input, and more generally, transforms the incident helical mode with OAM charge l(in) into output modes with OAM charge l(in)±l(g). We also show for the first time that this conversion into a single mode can be very efficient (i.e., ∼95% experimentally) at visible wavelengths, and the relative power between the two possible output modes is polarization-controllable from 0% to ∼100%. We developed a fabrication method that substantially improves FPG quality and efficiency over prior work. We also successfully fabricated switchable FPGs, which can be electrically switched between an OAM generating/transforming state and a transmissive state. Our experimental results showed >92% conversion efficiency for both configurations at 633 nm. These holographically fabricated elements are compact (i.e., thin glass plates), lightweight, and easily optimized for nearly any wavelength from ultraviolet to infrared, for a wide range of OAM charge, and for large or small clear apertures. They are ideal elements for enhanced control of OAM, e.g., in optical trapping and high-capacity information.

  10. Oscillating spin–orbit interaction as a source of spin-polarized wavepackets in two-terminal nanoscale devices

    International Nuclear Information System (INIS)

    Ballistic transport through nanoscale devices with time-dependent Rashba-type spin–orbit interaction (SOI) can lead to spin-polarized wavepackets that appear even for completely unpolarized input. The SOI that oscillates in a finite domain generates density and spin polarization fluctuations that leave the region as propagating waves. In particular, spin polarization has space and time dependence even in regions without SOI. Our results are based on an analytical solution of the time-dependent Schrödinger equation. The relevant Floquet quasi-energies that are obtained appear in the energy spectrum of both the transmitted and the reflected waves. (paper)

  11. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder

    Science.gov (United States)

    Weng, Fuzhong; Zou, Xiaolei; Sun, Ninghai; Yang, Hu; Tian, Miao; Blackwell, William J.; Wang, Xiang; Lin, Lin; Anderson, Kent

    2013-10-01

    The Suomi National Polar-Orbiting Partnership (NPP) satellite was launched on 28 October 2011 and carries the Advanced Technology Microwave Sounder (ATMS) on board. ATMS is a cross-track scanning instrument observing in 22 channels at frequencies ranging from 23 to 183 GHz, permitting the measurements of the atmospheric temperature and moisture under most weather conditions. In this study, the ATMS radiometric calibration algorithm used in the operational system is first evaluated through independent analyses of prelaunch thermal vacuum data. It is found that the ATMS peak nonlinearity for all the channels is less than 0.5 K, which is well within the specification. For the characterization of the ATMS instrument sensitivity or noise equivalent differential temperatures (NEDT), both standard deviation and Allan variance of warm counts are computed and compared. It is shown that NEDT derived from the standard deviation is about three to five times larger than that from the Allan variance. The difference results from a nonstationary component in the standard deviation of warm counts. The Allan variance is better suited than the standard deviation for describing NEDT. In the ATMS sensor brightness temperature data record (SDR) processing algorithm, the antenna gain efficiencies of main beam, cross-polarization beam, and side lobes must be derived accurately from the antenna gain distribution function. However, uncertainties remain in computing the efficiencies at ATMS high frequencies. Thus, ATMS antenna brightness temperature data records (TDR) at channels 1 to 15 are converted to SDR with the actual beam efficiencies whereas those for channels 16 to 22 are only corrected for the near-field sidelobe contributions. The biases of ATMS SDR measurements to the simulations are consistent between GPS RO and NWP data and are generally less than 0.5 K for those temperature-sounding channels where both the forward model and input atmospheric profiles are reliable.

  12. Integrating Satellite Measurements from Polar-orbiting instruments into Smoke Disperson Forecasts

    Science.gov (United States)

    Smith, N.; Pierce, R. B.; Barnet, C.; Gambacorta, A.; Davies, J. E.; Strabala, K.

    2015-12-01

    The IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system that currently generates trajectory-based forecasts of aerosol dispersion and stratospheric intrusions. Here we demonstrate new capabilities that use satellite measurements from the Joint Polar Satellite System (JPSS) Suomi-NPP (S-NPP) instruments (operational since 2012) in the generation of trajectory-based predictions of smoke dispersion from North American wildfires. Two such data products are used, namely the Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and the combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals. The latter is a new data product made possible by the release of full spectral-resolution CrIS measurements since December 2014. Once NUCAPS CO becomes operationally available it will be used in real-time applications such as IDEA-I along with VIIRS AOD and meteorological forecast fields to support National Weather Service (NWS) Incident Meteorologist (IMET) and air quality management decision making. By combining different measurements, the information content of the IDEA-I transport and dispersion forecast is improved within the complex terrain features that dominate the Western US and Alaska. The primary user community of smoke forecasts is the Western regions of the National Weather Service (NWS) and US Environmental Protection Agency (EPA) due to the significant impacts of wildfires in these regions. With this we demonstrate the quality of the smoke dispersion forecasts that can be achieved by integrating polar-orbiting satellite measurements with forecast models to enable on-site decision support services for fire incident management teams and other real-time air quality agencies.

  13. Suomi National Polar-orbiting Partnership Environmental Data Records: Algorithm Status and Product Maturity

    Science.gov (United States)

    Csiszar, I. A.; Feeley, J.; Zhou, L.; Gottshall, E.

    2012-12-01

    The Joint Polar Satellite System's (JPSS) Data Processing Segment generates a number of environmental data products from measurements by sensors on the Suomi National Polar-orbiting Partnership (SNPP) satellite that launched on October 28, 2011. The JPSS Environmental Data Record (EDR) Algorithm Development and Validation teams have been carrying out detailed evaluation of the products. This work is stabilizing the EDR products and proposing the implementation of product improvements and major algorithm changes. Building on validation stages established by the National Aeronautics and Space Administration for their Earth Observing System program and adapted by the Committee on Earth Observation Satellites Working Group on Calibration and Validation, the JPSS program defined program-specific algorithm maturity stages. The JPSS definitions provide the rigor and comprehensiveness necessary for algorithm validation while serving the compliance needs for product requirements verification. Based on specific algorithm readiness levels, the JPSS EDR product teams established a schedule of anticipated dates for the algorithms to achieve Beta, Provisional and Validated Stage 1, 2 and 3 statuses. These schedules account for the products' dependencies on the maturity of input Sensor Data Records (SDRs), Intermediate Products, and upstream EDRs. Declaring EDR product maturity is the result of a specific review of artifacts that document that the products meet a series of criteria defined for each maturity stage. During 2012, after the SDR products achieved Beta maturity, a number of fundamental EDRs also achieved Beta status. They are now or will shortly become available to the public through the National Oceanic and Atmospheric Administration's (NOAA) Comprehensive Large Array-data Stewardship System (CLASS). In the presentation, we will provide an overview of the latest EDR algorithm updates and the maturity schedule going forward.

  14. Nonadiabatic tunnel ionization of current-carrying orbitals of prealigned linear molecules in strong circularly polarized laser fields

    Science.gov (United States)

    Liu, Kunlong; Barth, Ingo

    2016-10-01

    We derive the analytical formula of the ratio of the ionization rates of degenerate valence π± orbitals of prealigned linear molecules in strong circularly polarized (CP) laser fields. Interestingly, our theory shows that the ionization ratio for molecular orbitals with opposite azimuthal quantum numbers ±|m | (e.g., π±) is identical to that for atomic orbitals with the same ±|m | (e.g., p±). In general, the electron counter-rotating to the CP laser field tunnels more easily, not only for atoms but also for linear molecules. Our theoretical predictions are then verified by numerically solving the three-dimensional time-dependent Schrödinger equation for the ionization of the prealigned nitric oxide (NO) molecule in strong CP laser fields. Due to the spin-orbital coupling in the electronic ground state of NO and the sensitivity of ionization to the sense of electron rotation, the ionization of NO in CP fields can produce spin-polarized photoelectrons with high controllability of spin polarization up to 100 % .

  15. Limb Correction of Polar-Orbiting Imagery for the Improved Interpretation of RGB Composites

    Science.gov (United States)

    Jedlovec, Gary J.; Elmer, Nicholas

    2016-01-01

    Red-Green-Blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical path length of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This paper reviews a newly developed technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical path length in order to produce limb-corrected RGB composites. The improved utility of a limb-corrected Air Mass RGB composite from the application of this approach is demonstrated using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.

  16. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin-Orbit Interaction

    Institute of Scientific and Technical Information of China (English)

    LI Yu-Xian

    2008-01-01

    Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin-orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different-spin-state electrons begin to separate, becomes lower due to the effect of the spin-orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance.

  17. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface

    Science.gov (United States)

    Yu, Shixing; Li, Long; Shi, Guangming

    2016-08-01

    A metasurface, which is composed of printed cross-dipole elements with different arm lengths, is designed, fabricated, and experimentally demonstrated to generate orbital angular momentum (OAM) vortex waves of dual polarizations and dual modes in the radio frequency domain simultaneously. The prototype of a practical metasurface is fabricated and measured to validate the results of theoretical analysis and design at 5.8 GHz. Numerical and experimental results verify that vortex waves with dual OAM modes and dual polarizations can be flexibly generated by using a reflective metasurface. The proposed method paves a way to generate diverse OAM vortex waves for radio frequency and microwave wireless communication applications.

  18. Toward a Unified View of the Moon's Polar Volatiles from the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Hayne, Paul

    2016-04-01

    Although the scientific basis for the possibility of water and other volatiles in the cold traps of the lunar polar regions was developed in the 1960's and '70's [1,2], only recently have the data become available to test the theories in detail. Furthermore, comparisons with other planetary bodies, particularly Mercury, have revealed surprising differences that may point to inconsistencies or holes in our understanding of the basic processes involving volatiles on airless bodies [3]. Addressing these gaps in understanding is critical to the future exploration of the Moon, for which water is an important scientific and engineering resource [4]. Launched in 2009, NASA's Lunar Reconnaissance Orbiter (LRO) has been acquiring data from lunar orbit for more than six years. All seven of the remote sensing instruments on the payload have now contributed significantly to advancing understanding of volatiles on the Moon. Here we present results from these investigations, and discuss attempts to synthesize the disparate information to create a self-consistent model for lunar volatiles. In addition to the LRO data, we must take into account results from earlier missions [5,6], ground-based telescopes [7], and sample analyses [8]. The results from these inter-comparisons show that water is likely available in useful quantities, but key additional measurements may be required to resolve remaining uncertainties. [1] Watson, K., Murray, B. C., & Brown, H. (1961), J. Geophys. Res., 66(9), 3033-3045. [2] Arnold, J. R. (1979), J. Geophys. Res. (1978-2012), 84(B10), 5659-5668. [3] Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., ... & Solomon, S. C. (2013), Science, 339(6117), 300-303. [4] Hayne, P. O., et al. (2014), Keck Inst. Space Studies Report. [5] Nozette, S., Lichtenberg, C. L., Spudis, P., Bonner, R., Ort, W., Malaret, E., ... & Shoemaker, E. M. (1996), Science, 274(5292), 1495-1498. [6] Pieters, C. M., Goswami, J. N., Clark, R. N

  19. Orbiting.

    OpenAIRE

    Halford, Sarah Juliette

    2013-01-01

    I always knew I was from another planet. Earth was my home, yes, I liked hamburgers and roller coasters, but there was still an orbit in me that seemed out of place. My imaginative orbit felt like it didn't to spin the "normal" way. As a performer I spent more time alienating myself and judging how different I felt, rather than owning the creative space I lived in and applying it to my craft. My past three years at UC San Diego have been the perfect atmosphere for my artist self. I have been ...

  20. Vector Laguerre-Gauss beams with polarization-orbital angular momentum entanglement in a graded-index medium.

    Science.gov (United States)

    Petrov, Nikolai I

    2016-07-01

    It is shown that the vector-vortex Laguerre-Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polarized vortex light beams with nonzero azimuthal and radial indices in a cylindrical graded-index waveguide is investigated. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects is analyzed. The effect of long-term periodic revival of wave packets due to mode interference in a graded-index cylindrical optical waveguide is demonstrated. High efficiency transfer of a strongly focused spot through an optical waveguide over large distances takes place with a period of revival. PMID:27409694

  1. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction

    Science.gov (United States)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-01

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  2. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction.

    Science.gov (United States)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-13

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase. PMID:27195598

  3. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2011-01-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa

  4. Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery

    Directory of Open Access Journals (Sweden)

    M. C. Anderson

    2010-08-01

    Full Text Available Thermal infrared (TIR remote sensing of land-surface temperature (LST provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (soil moisture, advection, air temperature are affecting plant stress. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil+canopy land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5–10 km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI, spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions of 30 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe and, Africa and other

  5. Latency features of SafetyNet ground systems architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS)

    Science.gov (United States)

    Duda, James L.; Mulligan, Joseph; Valenti, James; Wenkel, Michael

    2005-01-01

    A key feature of the National Polar-orbiting Operational Environmental Satellite System (NPOESS) is the Northrop Grumman Space Technology patent-pending innovative data routing and retrieval architecture called SafetyNetTM. The SafetyNetTM ground system architecture for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined with the Interface Data Processing Segment (IDPS), will together provide low data latency and high data availability to its customers. The NPOESS will cut the time between observation and delivery by a factor of four when compared with today's space-based weather systems, the Defense Meteorological Satellite Program (DMSP) and NOAA's Polar-orbiting Operational Environmental Satellites (POES). SafetyNetTM will be a key element of the NPOESS architecture, delivering near real-time data over commercial telecommunications networks. Scattered around the globe, the 15 unmanned ground receptors are linked by fiber-optic systems to four central data processing centers in the U. S. known as Weather Centrals. The National Environmental Satellite, Data and Information Service; Air Force Weather Agency; Fleet Numerical Meteorology and Oceanography Center, and the Naval Oceanographic Office operate the Centrals. In addition, this ground system architecture will have unused capacity attendant with an infrastructure that can accommodate additional users.

  6. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  7. In-situ measurement of smoke particles in the wintertime polar mesosphere between 80 and 85 km altitude

    Science.gov (United States)

    Amyx, K.; Sternovsky, Z.; Knappmiller, S.; Robertson, S.; Horanyi, M.; Gumbel, J.

    2008-01-01

    The MAGIC sounding rocket, launched in January 2005 into the polar mesosphere, carried two detectors for charged aerosol particles. The detectors are graphite patch collectors mounted flush with the skin of the payload and are connected to sensitive electrometers. The measured signal is the net current deposited on the detectors by heavy aerosol particles. The collection of electrons and ions is prevented by magnetic shielding and a small positive bias, respectively. Both instruments detected a layer of heavy aerosol particles between 80 and 85 km with a number density approximately 103 cm-3. Aerodynamic flow simulations imply that the collected particles are larger than ˜1 nm in radius. The particles are detected as a net positive charge deposited on the graphite collectors. It is suggested that the measured positive polarity is due to the electrification of the smoke particles upon impact on the graphite collectors.

  8. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction

    Science.gov (United States)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  9. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition during Current and Past Orbital Epochs with the NASA Ames GCM

    Science.gov (United States)

    Emmett, Jeremy; Murphy, Jim

    2016-10-01

    Structural and compositional variability in the layering sequences comprising Mars' polar layered terrains (PLT's) is likely explained by orbital-forced climatic variations in the sedimentary cycles of water ice and dust from which they formed [1]. The PLT's therefore contain a direct, extensive record of the recent climate history of Mars encoded in their structure and stratigraphy, but deciphering this record requires understanding the depositional history of their dust and water ice constituents. 3D Mars atmosphere modeling enables direct simulation of atmospheric dynamics, aerosol transport and quantification of surface accumulation for a range of past and present orbital configurations. By quantifying the net yearly polar deposition rates of water ice and dust under Mars' current and past orbital configurations characteristic of the last several millions of years, and integrating these into the present with a time-stepping model, the formation history of the north and south PLT's will be investigated, further constraining their age and composition, and, if reproducible, revealing the processes responsible for prominent features and stratigraphy observed within the deposits. Simulating the formation of the deposits by quantifying net deposition rates during past orbital epochs and integrating these into the present, effectively 'rebuilding' the terrains, could aid in understanding deeper stratigraphic trends, correlating between geographically-separated deposits, explaining the presence and shapes of large-scale polar features, and correlating stratigraphy with geological time. Quantification of the magnitude and geographical distribution of surface aerosol accumulation will build on the work of previous GCM-based investigations [3]. Construction and analysis of hypothetical stratigraphic sequences in the PLT's will draw from previous climate-controlled stratigraphy methodologies [2,4], but will utilize GCM-derived net deposition rates to model orbital

  10. The Operational Utility of Space Environmental Measurements From Polar-Orbiting, Sun-Synchronous Satellites in AFWA Models and Applications

    Science.gov (United States)

    Citrone, P. J.; Bonadonna, M. F.; Cade, T.; Nobis, T. E.; Denig, W. F.

    2005-12-01

    Satellite-based measurements of the space environment provide vital data inputs to advanced space weather models and applications used by the Air Force Weather Agency (AFWA) to generate mission-tailored space weather intelligence in support of U.S. military operations. Since the 1970's, the Defense Meteorological Satellite Program (DMSP) has provided in-situ measurements of the topside ionosphere and of the differential energy flux of precipitating electrons and ions into the auroral and polar regions. Recently, DMSP has deployed a new class of ultraviolet remote sensors which offer opportunities for improved space environmental monitoring. The DMSP polar-orbiting, sun-synchronous satellite measurements provide critical data inputs for current and future AFWA space weather models that specify and forecast the global thermosphere, ionosphere, and magnetosphere. The AFWA Space Weather Technology Branch is pursuing an ongoing effort to transition to operations advanced research technologies associated with space environmental forecasting, to include related software applications used by AFWA to generate mission-tailored visualization products that depict space weather impacts on military systems. The Space Environmental Sensor Suite (SESS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) will offer improved capabilities in terms of characterization and timeliness for space environmental data required by AFWA to meet new and emerging Department of Defense space weather operational requirements.

  11. Asynchronous Polar BY Cam: the Spin-orbital Synchronization and Variation of Accretion Geometry on the 8-year Time Scale

    Science.gov (United States)

    Pavlenko, E.; Andreev, M.; Babina, Y.; Malanushenko, V.

    2013-01-01

    Attempts to estimate the time of a spin-orbital synchronization for asynchronous polar BY Cam have been made many times since 1994 year. However the estimates obtained did not coincide in a wide region, varying from 150 years (Piirola et al. 1994) up to >3500 years (Kafka et al. 2005). We have undertaken photometric observations of BY Cam over 8.1 years (2004 - 2012) and collected an array of data covering 998 hours during 178 nights. Analyzing the data, we have obtained the most reliable estimate of the spin-orbital time synchronization, Ts = 250±20 years, which agrees very well with both Ts = 150- 290 yrs for asynchronous polar V1500 Cyg (Pavlenko & Pelt 1991); (Stockman et al. 1988) and the theoretically predicted Ts < 1000 yr for asynchronous polars as a whole (Andronov 1987). We also found that the accretion stream switches between two dipole magnetic poles and the equatorial magnetic poles during a synodic ˜ 15-d cycle; the number of switching and their phases can be kept during neighbor cycles but varies on a scale of years. Probably this may depend on the phase of the long-term ˜ 1500 day periodicity (Andreev et al. 2012).

  12. Kepler-63b: A Giant Planet in a Polar Orbit around a Young Sun-like Star

    CERN Document Server

    Sanchis-Ojeda, Roberto; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard; Johnson, John Asher; Torres, Guillermo; Albrecht, Simon; Campante, Tiago L; Chaplin, William J; Davies, Guy R; Lund, Mikkel L; Carter, Joshua A; Dawson, Rebekah I; Buchhave, Lars A; Everett, Mark E; Fischer, Debra A; Geary, John C; Gilliland, Ronald L; Horch, Elliott P; Howell, Steve B; Latham, David W

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, $m_{\\rm Kp} = 11.6$, $T_{\\rm eff} = 5576$ K, $M_\\star = 0.98\\, M_\\odot$). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is $6.1 \\pm 0.2 R_{\\earth}$, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit we can place a rough upper bound of $120 M_{\\earth}$ (3$\\sigma$). The host star has a high obliquity ($\\psi$ = $104^{\\circ}$), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-cross...

  13. Angular momentum of non-paraxial light beam: Dependence of orbital angular momentum on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that is associated with the former part is spin, and the angular momentum that is associated with the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin ...

  14. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G↑ and G↓, total conductance G and spin polarization Pz for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G↑ and G↓ and form spin polarization Pz. Moreover, the conductances present quantized plateaus, the plateaus and Pz show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (Pz∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  15. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Science.gov (United States)

    Cao, Changyong; DeLuccia, Frank J.; Xiong, Xiaoxiong; Wolfe, Robert; Weng, Fuzhong

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.

  16. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  17. On the Orbital Period of the Intermediate Polar 1WGA J1958.2+3232

    CERN Document Server

    Zharikov, S V; Echevarria, J; Zharikov, Sergei V.; Tovmassian, Gaghik H.; Echevarria, Juan

    2002-01-01

    Recently, Norton et al. 2002, on the basis of multiwavelength photometry of 1WGA J1958.2+3232, argued that the -1 day alias of the strongest peak in the power spectrum is the true orbital period of the system, casting doubts on the period estimated by Zharikov et al. 2001. We re-analyzed this system using our photometric and spectroscopic data along with the data kindly provided by Andy Norton and confirm our previous finding. After refining our analysis we find that the true orbital period of this binary system is 4.35h.

  18. 我国极轨气象卫星的发展%Development of China Polar Orbiting Meterological Satellite

    Institute of Scientific and Technical Information of China (English)

    李叶飞; 曹琼; 杨勇; 董瑶海

    2012-01-01

    The present statement of the polar orbiting meteorological satellite in China was introduced in this paper. The scheme of earth observation net composed by FY-3 morning satellite, afternoon satellite and raining detecting satellite was proposed. The main performances of the major instruments for the three satellites were given out. The development trend of the polar orbiting meteorological satellite such as the multi-payload observation, all- weather detection implementing with microwave band, improving spectrum resolution, improving the instrument sensibility and calibration precision, developing radio (GPS) occultation detection, and developing active remote sensing were discussed. The suggestions for China polar orbiting meteorological satellite development, which were earth integrated observation for meteorological satellite, high space resolution, high time resolution, high spectrum resolution, high radiation accuracy and global, all-weather and multi-band observation for remote sensing technology, active and passive detection integrating, high precision and quantitative for remote sensing application, and special satellite or small satellite array, were put forward. The key technologies to realize China polar orbiting meteorological satellite such as the coupling suppression of the rotational part and solar array, attitude control with high directional precision and high stability, data transmit with high data ratio, influence analysis of flutter on high spectrum imaging quality and vibration damping, high accuracy ground calibration and in-orbit calibration of active microwave, visual, infrared and ultraviolet band were also discussed.%介绍了我国极轨气象卫星的现况。提出了由风云三号(FY-3)上午星、下午星和降水测量卫星组成的我国极轨气象卫星对地观测网构想,给出了三种卫星的主要仪器性能指标。讨论了多载荷综合观测,利用微波波段实现全天候探测,提高光谱分辨率,提

  19. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin;

    2014-01-01

    -surface. This study shows that thermal remote sensing can be used to estimate soil temperatures. Our results provide insights into thermal observations collected with tandem polar-orbiting satellites when used toward obtaining soil temperatures under clear-sky conditions without the use of any ground......, including the daily-averaged temperature, thermal inertia, upward surface flux factor, and day-to-day change rate. Thus, under clear-sky conditions, the four thermal measurements in a diurnal cycle recorded with tandem polar-orbiting satellites are sufficient for reconstructing the DTC of both land surface...... and soil temperatures. Polar-orbiting satellite data from MODIS are used to show the model's capability. The results demonstrate that soil temperatures with a spatial resolution of 1km under snow-free conditions can be generated at any time of a clear-sky day. Validation is performed by using a comparison...

  20. Influence of quantum confinement and strain on orbital polarization of four-layer LaNiO3 superlattices: A DFT+DMFT study

    Science.gov (United States)

    Park, Hyowon; Millis, Andrew J.; Marianetti, Chris A.

    2016-06-01

    Atomically precise superlattices involving transition-metal oxides provide a unique opportunity to engineer correlated electron physics using strain (modulated by choice of substrate) and quantum confinement (controlled by layer thickness). Here we use the combination of density-functional theory and dynamical mean-field theory (DFT+DMFT) to study Ni Egd -orbital polarization in strained LaNiO3/LaAlO3 superlattices consisting of four layers of nominally metallic NiO2 and four layers of insulating AlO2 separated by LaO layers. The layer-resolved orbital polarization is calculated as a function of strain and analyzed in terms of structural, quantum confinement, and correlation effects. The effect of strain is determined from the dependence of the results on the Ni-O bond-length ratio and the octahedral rotation angles, quantum confinement is studied by comparison to bulk calculations with similar degrees of strain, and correlation effects are inferred by varying interaction parameters within our DFT+DMFT calculations. The calculated dependence of orbital polarization on strain in superlattices is qualitatively consistent with recent x-ray-absorption spectroscopy and resonant reflectometry data. However, interesting differences of detail are found between theory and experiment. Under tensile strain, the two inequivalent Ni ions display orbital polarization similar to that calculated for strained bulk LaNiO3 and observed in experiment. Compressive strain produces a larger dependence of orbital polarization on Ni position, and even the inner Ni layer exhibits orbital polarization different from that calculated for strained bulk LaNiO3.

  1. Towards More Consistent Retrievals of Ice Cloud Optical and Microphysical Properties from Polar Orbiting Sensors

    Science.gov (United States)

    Baum, B. A.; Heymsfield, A.; Yang, P.

    2011-12-01

    Differences exist in the ice cloud optical thickness and effective particle size products provided by teams working with data from AVHRR (Advanced Very High Resolution Radiometer), MODIS (MODerate resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of the Earth Reflectance), Imaging Infrared Radiometer (IIR), and CALIOP (Cloud Aerosol LIdar with Orthogonal Polarization). The issue is in large part due to the assumed ice cloud single-scattering properties that each team uses in their retrievals. To gain insight into this problem, we are developing ice cloud single-scattering properties consistently from solar through far-infrared wavelengths by merging ice cloud microphysical data from in situ measurements with the very latest light scattering calculations for ice habits that include droxtals, solid/hollow columns, plates, solid/hollow bullet rosettes, aggregates of columns, and small/large aggregates of plates. The in-situ measurements are from a variety of field campaigns, including ARM-IOP, CRYSTAL-FACE, ACTIVE, SCOUT, MidCiX, pre-AVE, TC-4, and MACPEX. Among other advances, the light scattering calculations include the full phase matrix (i.e., polarization), incorporate a new treatment of forward scattering, and three levels of surface roughness from smooth to severely roughened. This talk will focus on improvements to our methodology for building both spectral and narrowband bulk scattering optical models appropriate for satellite imagers and hyperspectral infrared sensors. The new models provide a basis for investigating retrieval differences in the products from the sensor teams. We will discuss recent work towards improving the consistency of ice cloud microphysical/optical property retrievals between solar, polarimetric, and infrared retrieval approaches. It will be demonstrated that severely roughened ice particles correspond best in comparisons to polarization measurements. Further discussion will provide insight as to the

  2. Review of a relativity and geodesy mission with counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    A new test of general relativity, capable of measuring the Lense-Thirring precession on a satellite orbit was proposed in 1974. We have recently realized that the remarkable geophysical output of this experiment can be enriched by allowing the point of encounter between the two satellites to progress from the poles to the equator during the course of the mission. There is reason to believe that by performing the experiment in this mode, all tesseral harmonics up to about 60th order could be separated and determined to accuracies up to three orders of magnitude better than current knowledge, and still obtain a 1% Lense-Thirring measurement. (orig.)

  3. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    DEFF Research Database (Denmark)

    Laundal, Karl M.; Finlay, Chris; Olsen, Nils

    2016-01-01

    Interaction between the solar wind and the Earth’s magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely...... and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth’s main field. We present global currents from both hemispheres during different sunlight conditions. The results...

  4. Two-Dimensional Pnictogen Honeycomb Lattice: Structure, On-Site Spin-Orbit Coupling and Spin Polarization.

    Science.gov (United States)

    Lee, Jason; Tian, Wen-Chuan; Wang, Wei-Liang; Yao, Dao-Xin

    2015-01-01

    Because of its novel physical properties, two-dimensional materials have attracted great attention. From first-principle calculations and vibration frequencies analysis, we predict a new family of two-dimensional materials based on the idea of octet stability: honeycomb lattices of pnictogens (N, P, As, Sb, Bi). The buckled structures of materials come from the sp(3) hybridization. These materials have indirect band gap ranging from 0.43 eV to 3.7 eV. From the analysis of projected density of states, we argue that the s and p orbitals together are sufficient to describe the electronic structure under tight-binding model, and the tight-binding parameters are obtained by fitting the band structures to first-principle results. Surprisingly large on-site spin-orbit coupling is found for all the pnictogen lattices except nitrogen. Investigation on the electronic structures of both zigzag and armchair nanoribbons reveals the possible existence of spin-polarized ferromagnetic edge states in some cases, which are rare in one-dimensional systems. These edge states and magnetism may exist under the condition of high vacuum and low temperature. This new family of materials would have promising applications in electronics, optics, sensors, and solar cells. PMID:26122870

  5. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  6. Spin polarization, orbital occupation and band gap opening in vanadium dioxide: The effect of screened Hartree-Fock exchange

    KAUST Repository

    Wang, Hao

    2014-07-01

    The metal-insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (α) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12.5%≤α≤20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that α=10% is the best possible choice for spin-polarized VO2 calculations. © 2014 Elsevier B.V. All rights reserved.

  7. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    Science.gov (United States)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  8. WASP-121 b: a hot Jupiter in a polar orbit and close to tidal disruption

    CERN Document Server

    Delrez, L; Almenara, J -M; Anderson, D R; Collier-Cameron, A; Díaz, R F; Gillon, M; Hellier, C; Jehin, E; Lendl, M; Maxted, P F L; Neveu-VanMalle, M; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A M S; Triaud, A H M J; Udry, S; Van Grootel, V; West, R G

    2015-01-01

    We present the discovery by the WASP-South survey, in close collaboration with the Euler and TRAPPIST telescopes, of WASP-121 b, a new remarkable short-period transiting hot Jupiter, whose planetary nature has been statistically validated by the PASTIS software. The planet has a mass of $1.183_{-0.062}^{+0.064}$ $M_{\\mathrm{Jup}}$, a radius of 1.865 $\\pm$ 0.044 $R_{\\mathrm{Jup}}$, and transits every $1.2749255_{-0.0000025}^{+0.0000020}$ days an active F6-type main-sequence star ($V$=10.4, $1.353_{-0.079}^{+0.080}$ $M_{\\odot}$, 1.458 $\\pm$ 0.030 $R_{\\odot}$, $T_{\\mathrm{eff}}$ = 6460 $\\pm$ 140 K). A notable property of WASP-121 b is that its orbital semi-major axis is only $\\sim$1.15 times larger than its Roche limit, which suggests that the planet might be close to tidal disruption. Furthermore, its large size and extreme irradiation ($\\sim$$7.1\\:10^{9}$ erg $\\mathrm{s}^{-1} \\mathrm{cm}^{-2}$) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAPPIST telescope,...

  9. Energetic particle environment in near-Earth orbit.

    Science.gov (United States)

    Klecker, B

    1996-01-01

    The hazard of exposure to high doses of ionizing radiation is one of the primary concerns of extended manned space missions and a continuous threat for the numerous spacecraft in operation today. In the near-Earth environment the main sources of radiation are solar energetic particles (SEP), galactic cosmic rays (GCR), and geomagnetically trapped particles, predominantly protons and electrons. The intensity of the SEP and GCR source depends primarily on the phase of the solar cycle. Due to the shielding effect of the Earth's magnetic field, the observed intensity of SEP and GCR particles in a near-Earth orbit will also depend on the orbital parameters altitude and inclination. The magnetospheric source strength depends also on these orbital parameters because they determine the frequency and location of radiation belt passes. In this paper an overview of the various sources of radiation in the near-Earth orbit will be given and first results obtained with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) will be discussed. SAMPEX was launched on 3 July 1992 into a near polar (inclination 82 degrees) low altitude (510 x 675 km) orbit. The SAMPEX payload contains four separate instruments of high sensitivity covering the energy range 0.5 to several hundred MeV/nucleon for ions and 0.4 to 30 MeV for electrons. This low altitude polar orbit with zenith-oriented instrumentation provides a new opportunity for a systematic study of the near-Earth energetic particle environment. PMID:11540369

  10. Long orbital period pre-polars containing an early K-type donor stars. Bottleneck accretion mechanism in action

    CERN Document Server

    Tovmassian, G; Zharikov, S; Reichart, D E; Haislip, J B; Ivarsen, K M; LaCluyze, A P; Moore, J P; Miroshnichenko, A S

    2016-01-01

    We studied two objects identified as a Cataclysmic Variables (CVs) with periods exceeding the natural boundary for Roche lobe filling ZAMS secondary stars. We present observational results for V1082 Sgr with 20.82 h orbital period, an object that shows low luminosity state, when its flux is totally dominated by a chromospherically active K- star with no signs of ongoing accretion. Frequent accretion shut-offs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 h binary system. They both have early K-type stars as a donor star. We argue, that similar to the shorter period pre-polars containing M-dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar ...

  11. Polarization dependent hard X-ray photoemission experiments for solids: Efficiency and limits for unraveling the orbital character of the valence band

    Energy Technology Data Exchange (ETDEWEB)

    Weinen, J., E-mail: Jonas.Weinen@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Koethe, T.C. [II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany); Chang, C.F.; Agrestini, S.; Kasinathan, D. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Liao, Y.F. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science-Park, Hsinchu 30077, Taiwan (China); Fujiwara, H.; Schüßler-Langeheine, C.; Strigari, F.; Haupricht, T. [II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany); Panaccione, G. [TASC Laboratory, IOM-CNR, Area Science Park, S.S.14, Km 163.5, I-34149 Trieste (Italy); Offi, F. [CNISM and Dipartimento di Scienze, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Monaco, G.; Huotari, S. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Tsuei, K.-D. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science-Park, Hsinchu 30077, Taiwan (China); Tjeng, L.H. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany)

    2015-01-15

    Highlights: • Efficiency and limits of polarization dependent HAXPES for solid state systems. • The polarization dependence is less than expected from atomic cross-sections. • Still high contrast (∼20–25) for s orbitals. • Quantitative determination of contributions to the valence band. - Abstract: We have investigated the efficiency and limits of polarization dependent hard X-ray photoelectron spectroscopy (HAXPES) in order to establish how well this method can be used to unravel quantitatively the contributions of the orbitals forming the valence band of solids. By rotating the energy analyzer rather than the polarization vector of the light using a phase retarder, we obtained the advantage that the full polarization of the light is available for the investigation. Using NiO, ZnO, and Cu{sub 2}O as examples for solid state materials, we established that the polarization dependence is much larger than in photoemission experiments utilizing ultra-violet or soft X-ray light. Yet we also have discovered that the polarization dependence is less than complete on the basis of atomic calculations, strongly suggesting that the trajectories of the outgoing electrons are affected by appreciable side-scattering processes even at these high kinetic energies. We have found in our experiment that these can be effectively described as a directional spread of ±18° of the photoelectrons. This knowledge allows us to identify, for example, reliably the Ni 3d spectral weight of the NiO valence band and at the same time to demonstrate the importance of the Ni 4s for the chemical stability of the compound.

  12. Estimation and Validation of Land Surface Temperatures from Chinese Second-Generation Polar-Orbit FY-3A VIRR Data

    Directory of Open Access Journals (Sweden)

    Bo-Hui Tang

    2015-03-01

    Full Text Available This work estimated and validated the land surface temperature (LST from thermal-infrared Channels 4 (10.8 µm and 5 (12.0 µm of the Visible and Infrared Radiometer (VIRR onboard the second-generation Chinese polar-orbiting FengYun-3A (FY-3A meteorological satellite. The LST, mean emissivity and atmospheric water vapor content (WVC were divided into several tractable sub-ranges with little overlap to improve the fitting accuracy. The experimental results showed that the root mean square errors (RMSEs were proportional to the viewing zenith angles (VZAs and WVC. The RMSEs were below 1.0 K for VZA sub-ranges less than 30° or for VZA sub-ranges less than 60° and WVC less than 3.5 g/cm2, provided that the land surface emissivities were known. A preliminary validation using independently simulated data showed that the estimated LSTs were quite consistent with the actual inputs, with a maximum RMSE below 1 K for all VZAs. An inter-comparison using the Moderate Resolution Imaging Spectroradiometer (MODIS-derived LST product MOD11_L2 showed that the minimum RMSE was 1.68 K for grass, and the maximum RMSE was 3.59 K for barren or sparsely vegetated surfaces. In situ measurements at the Hailar field site in northeastern China from October, 2013, to September, 2014, were used to validate the proposed method. The result showed that the RMSE between the LSTs calculated from the ground measurements and derived from the VIRR data was 1.82 K.

  13. Spin-resolved polarized transport through a quasi one-dimensional mesoscopic quantum ring-shaped conductor with local Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pliu@jit.edu.cn [Basic Department, Jinling Institute of Technology, Nanjing 211169 (China); Liu, Y. [Physics Department, Lehigh University, Bethlehem, PA 18015 (United States); Jiang, H.L.; Yang, Z.H. [Basic Department, Jinling Institute of Technology, Nanjing 211169 (China)

    2012-02-15

    We propose a quasi one-dimensional quantum ring-shaped model associated with Rashba spin-orbit (SO) interaction and Aharomov-Bohm flux to study a spin-dependent quantum transport. It is a possible candidate for spintronic current modulators. By tuning SO coupling strength and Fermi energy, we find there is a broad energy range of small vanishing spin transmission in the resonance and antiresonance interferences. More interestingly, the large on/off spin-resolved polarized conductance ratios are robust even in the presence of strong random on-site Anderson-type disorder in devices, which suggests a potential application in the real system.

  14. Utilization of the Suomi National Polar-Orbiting Partnership (NPP Visible Infrared Imaging Radiometer Suite (VIIRS Day/Night Band for Arctic Ship Tracking and Fisheries Management

    Directory of Open Access Journals (Sweden)

    William C. Straka

    2015-01-01

    Full Text Available Maritime ships operating on-board illumination at night appear as point sources of light to highly sensitive low-light imagers on-board environmental satellites. Unlike city lights or lights from offshore gas platforms, whose locations remain stationary from one night to the next, lights from ships typically are ephemeral. Fishing boat lights are most prevalent near coastal cities and along the thermal gradients in the open ocean. Maritime commercial ships also operate lights that can be detected from space. Such observations have been made in a limited way via U.S. Department of Defense satellites since the late 1960s. However, the Suomi National Polar-orbiting Partnership (S-NPP satellite, which carries a new Day/Night Band (DNB radiometer, offers a vastly improved ability for users to observe commercial shipping in remote areas such as the Arctic. Owing to S-NPP’s polar orbit and the DNB’s wide swath (~3040 km, the same location in Polar Regions can be observed for several successive passes via overlapping swaths—offering a limited ability to track ship motion. Here, we demonstrate the DNB’s improved ability to monitor ships from space. Imagery from the DNB is compared with the heritage low-light sensor, the Operational Linescan System (OLS on board the Defense Meteorological Support Program (DMSP satellites, and is evaluated in the context of tracking individual ships in the Polar Regions under both moonlit and moonless conditions. In a statistical sense, we show how DNB observations of ship lights in the East China Sea can be correlated with seasonal fishing activity, while also revealing compelling structures related to regional fishery agreements established between various nations.

  15. Pure spin polarized transport based on Rashba spin-orbit interaction through the Aharonov-Bohm interferometer embodied four-quantum-dot ring

    Institute of Scientific and Technical Information of China (English)

    Wu Li-Jun; Han Yu

    2013-01-01

    The spin-polarized linear conductance spectrum and current-voltage characteristics in a four-quantum-dot ring embodied into Aharonov-Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin-orbit interaction.It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π,and that Hubbard U cannot influence the electron transport properties in this case.When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength,the electronic spin polarization can reach a maximum value.Furthermore,by adjusting the bias voltages applied to the leads,the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations.Based on the numerical results,such a model can be applied to the design of a spin filter device.

  16. The National Polar-orbiting Operational Environmental Satellite System: Capabilities for Atmospheric Remote Sensing for NWP and Climate -- Moving Towards a Global Earth Observation System of Systems

    Science.gov (United States)

    Mango, S. A.; Hinnant, F.; Hoffman, C. W.; Smehil, D. L.; Schneider, S. R.; Simione, S.; Needham, B.; Stockton, D.

    2005-12-01

    Over the last decade, the tri-agency Integrated Program Office (IPO), comprised of the National Oceanic and Atmospheric Administration (NOAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA), has been managing the development of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Once operational later this decade, NPOESS will replace NOAA's Polar-orbiting Operational Environmental Satellites (POES) and DoD's Defense Meteorological Satellite Program (DMSP) systems. The IPO, through its Acquisition and Operations contractor, Northrop Grumman, will launch NPOESS spacecraft into three orbital planes to provide a single, national system capable of satisfying both civil and national security requirements for space-based, remotely sensed environmental data. With the development of NPOESS, we are evolving the existing "weather" satellites into integrated environmental observing systems by expanding our capabilities to observe, assess, and predict the total Earth system - ocean, atmosphere, land, and the space environment. The NPOESS will enable more accurate short-term weather forecasts and severe storm warnings and improved monitoring of atmospheric phenomena. NPOESS will also provide continuity of critical data for monitoring, understanding, and predicting climate change and assessing the impacts of climate change on seasonal and longer time scales. For these purposes, the NPOESS Integrated Program Office [IPO] is developing a suite of advanced, atmospheric sounding/probing instruments as a major part of the next generation meteorological, environmental and climate operational satellite system in polar, low earth orbit [LEO]. The IPO is developing the CrIS, Cross-track Infrared Sounder, an Ozone Mapping & Profiler Suite [OMPS]and a Visible and Infrared Imager and Radiometer Suite [VIIRS] and NASA is developing an Advanced Technology Microwave Sounder [ATMS]. These four instruments will be key

  17. The science case for a modern, multi-wavelength, polarization-sensitive LIDAR in orbit around Mars

    CERN Document Server

    Brown, Adrian J; Byrne, Shane; Sun, Wenbo; Titus, Timothy N; Colaprete, Anthony; Wolff, Michael J; Videen, Gorden

    2014-01-01

    We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR) instrument to measure the reflected intensity and polarization characteristics of backscattered radiation from planetary surfaces and atmospheres. We focus on the ability of such an instrument to enhance, perhaps revolutionize, our understanding of climate, volatiles and astrobiological potential of modern-day Mars.

  18. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    OpenAIRE

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Johnson, John Asher; Torres, Guillermo; Albrecht, Simon; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel L.; Carter, Joshua A.; Dawson, Rebekah I.; Buchhave, Lars A.

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m [subscript Kp] = 11.6, T [subscript eff] = 5576 K, M [star] = 0.98 M [subscript ☉]). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R [subscript ⊕], based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the exi...

  19. Nonadiabatic collisions of CaH with Li: Importance of spin-orbit-induced spin relaxation in spin-polarized sympathetic cooling of CaH

    Science.gov (United States)

    Warehime, Mick; Kłos, Jacek

    2015-09-01

    We apply our recently developed, quantum, nonadiabatic, two-dimensional finite element method [Warehime et al., J. Chem. Phys. 142, 034108 (2015)., 10.1063/1.4904432] to estimate the probability of the nonadiabatic reaction in spin-polarized Li (2S ) +CaH (2Σ+) . This spin-orbit-induced reaction leads to trap loss due to the opening of a barrierless pathway to the Ca (1S ) +LiH (1Σ+) products. To investigate this reaction we calculate three two-dimensional radial cuts of the potential energy surfaces for the triplet and singlet electronic states. We also calculate the spin-orbit coupling matrix element between these two electronic states. From our nonadiabatic scattering calculations we estimate the spin-flip probability in the sympathetic cooling of the CaH molecule with ultracold Li atoms to be small: on the order of 10-7 and increasing to 10-4 at higher temperatures. We estimate the order of the rate constant in our reduced dimensionality approach for the reaction proceeding on the singlet potential at a temperature of 1 K to be 10-10cm3 /s. This is of the same order as the measured value of 3.6 ×10-10cm3/s [Singh et al., Phys. Rev. Lett. 108, 203201 (2012), 10.1103/PhysRevLett.108.203201]. This reaction rate is at least seven orders of magnitude larger than our estimated rate of the spin-orbit-induced triplet to singlet reaction. Our nonadiabatic result is encouraging for the experimental prospects for this title system.

  20. Fulminant high altitude blindness.

    Science.gov (United States)

    Mashkovskiy, Evgeny; Szawarski, Piotr; Ryzhkov, Pavel; Goslar, Tomaz; Mrak, Irena

    2016-06-01

    Prolonged altitude exposure even with acclimatization continues to present a physiological challenge to all organ systems including the central nervous system. We describe a case of a 41-year-old Caucasian female climber who suffered severe visual loss that was due to possible optic nerve pathology occurring during a high altitude expedition in the Himalayas. This case is atypical of classic high altitude cerebral oedema and highlights yet another danger of prolonged sojourn at extreme altitudes. PMID:27601532

  1. Low altitude dose measurements from APEX, CRRES and DMSP.

    Science.gov (United States)

    Mullen, E G; Gussenhoven, M S; Bell, J T; Madden, D; Holeman, E; Delorey, D

    1998-01-01

    Dosimeter data taken on the APEX (1994-1996), CRRES (1990-1991) and DMSP (1984-1987) satellites have been used to study the low altitude (down to 350 km) radiation environment. Of special concern has been the inner edge of the inner radiation belt due to its steep gradient. We have constructed dose models of the inner edge of the belt from all three spacecraft and put them into a personal computer utility, called APEXRAD, that calculates dose for user-selected orbits. The variation of dose for low altitude, circular orbits is given as a function of altitude, inclination and particle type. Dose-depth curves show that shielding greater than approximately 1/4 in Al is largely ineffectual for low altitude orbits. The contribution of outer zone electrons to low altitude dose is shown to be important only for thin shields and to have significant variation with magnetic activity and solar cycle.

  2. Lunar Reconnaissance Orbiter (LRO) Observations with the Lunar Exploration Neutron Detector (LEND): Neutron Suppression Regions (NSR) and Polar Hydrogen

    Science.gov (United States)

    Chin, G.; Mitrofanov, I. G.; Boynton, W. V.; Golovin, D. V.; Evans, L. G.; Harshman, K.; Kozyrev, A. S.; Litvak, M. L.; McClanahan, T.; Milikh, G. M.; Sagdeev, R.; Sanin, A. B.; Shevchenko, V.; Shvetsov, V.; Smith, D.; Starr, R.; Trombka, J.; Zuber, M.

    2011-01-01

    Orbital detection of neutrons has become the dominant remote sensing technique for detecting and inferring H concentrations and its spatial distribution beneath planetary surfaces [Lawrence et al, (2010) Icarus, 205, pp. 195-209, Mitrofanov et al (2007) Science 297(5578), 78-81]. Indications for the presence of localized and relatively high water content was provided by LRO and LCROSS. LEND identified Cabeus, as the most promising LCROSS impact site [Mitrofanov I. et al. (2010) Science, 330, 483], and instruments onboard LRO and LCROSS have measured signatures of water, H2 and other volatiles in the impact plume [Colaprete A. et al. (2010) Science, 339,463, Gladstone R. et al. (2010) Science, 330, 472].

  3. Data catalog series for space science and applications flight missions. Volume 2A: Descriptions of geostationary and high-altitude scientific spacecraft and investigations

    Science.gov (United States)

    Hills, H. K. (Editor); Littlefield, R. G. (Editor); Schofield, N. J. (Editor); Vetts, J. I. (Editor)

    1982-01-01

    Data from Earth-orbiting spacecraft at geostationary and higher altitudes was cataloged. Three lunar-orbiting spacecraft and some others whose apogees did not attain the geostationary altitude are included.

  4. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP Visible Infrared Imaging Radiometer Suite (VIIRS Day/Night Band

    Directory of Open Access Journals (Sweden)

    Steven D. Miller

    2013-12-01

    Full Text Available Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP satellite, which carries a new Day/Night Band (DNB radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.

  5. Analysis of fine ELF wave structures observed poleward from the ionospheric trough by the low-altitude satellite DEMETER

    OpenAIRE

    Parrot, Michel; Nĕmec, František; Santolík, Ondřej

    2014-01-01

    International audience DEMETER was a three-axis stabilized Earth-pointing spacecraft launched on 29 June 2004 into a low-altitude (710 km) polar and circular orbit that was subsequently lowered to 650 km until the end of the mission in December 2010. DEMETER measured electromagnetic waves all around the Earth except at magnetic invariant latitudes >65°. The frequency range for the electric field was from DC up to 3.5 MHz and for the magnetic field from a few hertz up to 20 kHz. Electromagn...

  6. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  7. High altitude aircraft flight tests

    Science.gov (United States)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  8. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  9. [Mountaineering and altitude sickness].

    Science.gov (United States)

    Maggiorini, M

    2001-06-01

    Almost every second trekker or climber develops two to three symptoms of the high altitude illness after a rapid ascent (> 300 m/day) to an altitude above 4000 m. We distinguish two forms of high altitude illness, a cerebral form called acute mountain sickness and a pulmonary form called high altitude pulmonary edema. Essentially, acute mountain sickness is self-limiting and benign. Its symptoms are mild to moderate headache, loss of appetite, nausea, dizziness and insomnia. Nausea rarely progresses to vomiting, but if it does, this may anticipate a progression of the disease into the severe form of acute mountain sickness, called high altitude cerebral edema. Symptoms and signs of high altitude cerebral edema are severe headache, which is not relieved by acetaminophen, loss of movement coordination, ataxia and mental deterioration ending in coma. The mechanisms leading to acute mountain sickness are not very well understood; the loss of cerebral autoregulation and a vasogenic type of cerebral edema are being discussed. High altitude pulmonary edema presents in roughly twenty percent of the cases with mild symptoms of acute mountain sickness or even without any symptoms at all. Symptoms associated with high altitude pulmonary edema are incapacitating fatigue, chest tightness, dyspnoe at the minimal effort that advances to dyspnoe at rest and orthopnoe, and a dry non-productive cough that progresses to cough with pink frothy sputum due to hemoptysis. The hallmark of high altitude pulmonary edema is an exaggerated hypoxic pulmonary vasoconstriction. Successful prophylaxis and treatment of high altitude pulmonary edema using nifedipine, a pulmonary vasodilator, indicates that pulmonary hypertension is crucial for the development of high altitude pulmonary edema. The primary treatment of high altitude illness consists in improving hypoxemia and acclimatization. For prophylaxis a slow ascent at a rate of 300 m/day is recommended, if symptoms persist, acetazolamide at a

  10. Cloud-based opportunities in scientific computing: insights from processing Suomi National Polar-Orbiting Partnership (S-NPP) Direct Broadcast data

    Science.gov (United States)

    Evans, J. D.; Hao, W.; Chettri, S.

    2013-12-01

    The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of

  11. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  12. Feasibility demonstration for calibrating Suomi-National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite day/night band using Dome C and Greenland under moon light

    Science.gov (United States)

    Qiu, Shi; Shao, Xi; Cao, Changyong; Uprety, Sirish

    2016-01-01

    The day/night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi-NPP) represents a major advancement in night time imaging capabilities. DNB covers almost seven orders of magnitude in its dynamic range from full sunlight to half-moon. To achieve this large dynamic range, it uses four charge-coupled device arrays in three gain stages. The low gain stage (LGS) gain is calibrated using the solar diffuser. In operations, the medium and high gain stage values are determined by multiplying the gain ratios between the medium gain stage, and LGS, and high gain stage (HGS) and LGS, respectively. This paper focuses on independently verifying the radiometric accuracy and stability of DNB HGS using DNB observations of ground vicarious calibration sites under lunar illumination at night. Dome C in Antarctica in the southern hemisphere and Greenland in the northern hemisphere are chosen as the vicarious calibration sites. Nadir observations of these high latitude regions by VIIRS are selected during perpetual night season, i.e., from April to August for Dome C and from November to January for Greenland over the years 2012 to 2013. Additional selection criteria, such as lunar phase being more than half-moon and no influence of straylight effects, are also applied in data selection. The lunar spectral irradiance model, as a function of Sun-Earth-Moon distances and lunar phase, is used to determine the top-of-atmosphere reflectance at the vicarious site. The vicariously derived long-term reflectance from DNB observations agrees with the reflectance derived from Hyperion observations. The vicarious trending of DNB radiometric performance using DOME-C and Greenland under moon light shows that the DNB HGS radiometric variability (relative accuracy to lunar irradiance model and Hyperion observation) is within 8%. Residual variability is also discussed.

  13. Coupling between the charge carriers and lattice distortions via modulation of the orbital angular momentum m sub l =0 of the 3d holes by polarized XAS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, M.; Turtu, S.; Campanella, F.; Pettiti, I.; Udron, D. (INFM, Dipt. di Fisica, Rome-1 Univ. (Italy)); Bianconi, A. (INFM, Dipt. di Fisica, Rome-1 Univ. (Italy) Univ. of L' Aquila (Italy)); Flank, A.M.; Lagarde, P. (LURE, 91 - Orsay (France)); Li, C. (Inst. of Physics, Academia Sinica, Beijing (China))

    1991-12-01

    The change of the orbital angular momentum m{sub l} of the Cu 3d holes going from the insulating to the metallic phase has been studied in several families of high Tc superconductors. The symmetry of the 3d{sup 9}L states in the metallic phase has been studied by quantitative analysis of the variation of polarized Cu L{sub 3} X-ray absorption spectra. At a doping level n{sub h} {approx equal} 15% we have found 10% of Zhang-Rice singlets 3d{sub x}2{sub -y}2 L(b{sub 1}) and 5% of 3d{sub 3z}2{sub -r}2L(a{sub 1}) states. Therefore the percentage of the 3d{sub 3z}2{sub -r}2L states on the total number of the 3d{sup 9}L states is about 30% i.e. much larger than the probability of single hole states 3d{sub 3z}2{sub -r}2 in the insulating phase. The EXAFS and XANES studies of the Cu site structure and dynamics in Bi{sub 2}Sr{sub 2}Ca{sub 1-x}Y{sub x}Cu{sub 2}O{sub {proportional to}} {sub 8} system point toward the coupling of the charge carriers with distortions of the Cu sites driven by the m{sub l}=0 character of the Cu 3d holes that can be called a 3d{sub z}2{sub -r}2 polaron. (orig.).

  14. Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin-orbit couplings

    Institute of Scientific and Technical Information of China (English)

    Liu Song; Yan Yu-Zhen; Hu Liang-Bin

    2012-01-01

    The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic,extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically.Based on a unified semiclassical theoretical approach,it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions,namely an intrinsic contribution determined by the Berry curvature in the momentum space,an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering.The characteristics of these competing contributions are discussed in detail in the paper.

  15. Fourier Series Approximations to J2-Bounded Equatorial Orbits

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available The current paper offers a comprehensive dynamical analysis and Fourier series approximations of J2-bounded equatorial orbits. The initial conditions of heterogeneous families of J2-perturbed equatorial orbits are determined first. Then the characteristics of two types of J2-bounded orbits, namely, pseudo-elliptic orbit and critical circular orbit, are studied. Due to the ambiguity of the closed-form solutions which comprise the elliptic integrals and Jacobian elliptic functions, showing little physical insight into the problem, a new scheme, termed Fourier series expansion, is adopted for approximation herein. Based on least-squares fitting to the coefficients, the solutions are expressed with arbitrary high-order Fourier series, since the radius and the flight time vary periodically as a function of the polar angle. As a consequence, the solutions can be written in terms of elementary functions such as cosines, rather than complex mathematical functions. Simulations enhance the proposed approximation method, showing bounded and negligible deviations. The approximation results show a promising prospect in preliminary orbits design, determination, and transfers for low-altitude spacecrafts.

  16. Endurance training at altitude.

    Science.gov (United States)

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training. PMID:19519223

  17. High Altitude and Heart

    OpenAIRE

    Murat Yalcin; Ejder Kardesoglu; Zafer Isilak

    2011-01-01

    Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altit...

  18. The CAMEO barium release - E/parallel/ fields over the polar cap

    Science.gov (United States)

    Heppner, J. P.; Miller, M. L.; Pongratz, M. B.; Smith, G. M.; Smith, L. L.; Mende, S. B.; Nath, N. R.

    1981-01-01

    Four successive thermite barium releases at an altitude of 965 km over polar cap invariant latitudes 84 to 76 deg near magnetic midnight were conducted from the orbiting second stage of the vehicle that launched Nimbus 7; the releases were made as part of the CAMEO (Chemically Active Material Ejected in Orbit) program. This was the first opportunity to observe the behavior of conventional barium release when conducted at orbital velocity in the near-earth magnetic field. The principal unexpected characteristic in the release dynamics was the high, 1.4 to 2.6 km/s, initial Ba(+) expansion velocity relative to an expected velocity of 0.9 km/s. Attention is also given to neutral cloud expansion, initial ion cloud expansion, convective motion, and the characteristics of field-aligned motion. The possibility of measuring parallel electric fields over the polar cap by observing perturbations in the motion of the visible ions is assessed.

  19. Orbit determination and gravity field recovery from tracking data to the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Maier, Andrea; Baur, Oliver

    2015-04-01

    The Lunar Reconnaissance Orbiter (LRO), launched in 2009, is well suited for the estimation of the long wavelengths of the lunar gravity field due to its low altitude of 50 km. Further, the orbit of LRO was polar for two years providing global coverage. The satellite has been primarily tracked via S-band (mainly two-way Doppler range-rates and two-way radiometric ranges) from the dedicated station in White Sands and from the Universal Space Network (USN). Due to the onboard altimeter the orbital precision requirement in the radial direction was rigorously defined as 1m. Because simulation studies before LRO's launch showed that this precision could not be reached with S-band observations alone, it was decided to additionally track LRO via optical laser ranges. It is worthwhile to point out that LRO is the first spacecraft in interplanetary space routinely tracked with optical one-way laser ranges. Gravity field recovery from orbit perturbations is intrinsically related to precise orbit determination. This is why considerable effort was made to find the optimum settings for orbit modeling. For a time span of three months we conducted a series of orbit overlapping tests based on Doppler observations to find the optimum arc length and the optimum set of empirical parameters. The analysis of observation residuals and orbit overlap differences showed that the estimated orbits are most precise when subdividing the time span into 2.5 days and estimating one constant empirical acceleration in along track direction. These settings were then used to analyze 13 months of Doppler data to LRO. The processing of the optical one-way laser was difficult due to the involvement of two non-synchronous clocks in one measurement (one clock at the ground station and one clock onboard LRO). The NASA software GEODYN, which was used for orbit determination and parameter estimation, models the LRO clock using a drift rate (first-order term) and an aging rate (second-order term). It seems

  20. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  1. Family of Orbiters

    Science.gov (United States)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time. All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet. Phoenix will land just south of Mars's north polar ice cap.

  2. The First Russian Orbit-Borne Scatterometer: Numerical Simulation

    Science.gov (United States)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Kuznetsov, Yu. V.; Shlaferov, A. L.

    2016-04-01

    We have chosen a "SeaWinds" scatterometer with an orbital altitude of about 800 km as a prototype of the first Russian orbital scatterometer. An involuntary decrease in the orbit altitude to 650 km made us choose between conservation of the initial swath width 1800 km or the incidence angles with the swath-width decrease to 1500 km. A wider swath width has the advantage of a better coverage of the world-ocean surface. However, it leads to an increase in the local incidence angles and, hence, a decrease in the reflected-signal power. As a result, the signalto-noise ratio decreases and an error in the wind velocity and direction reconstruction because of the equipment noise increases. The error of the wind-velocity vector reconstruction for the same drive and antenna is the choice criterion. During the study, the mathematical model of the scatterometer is developed, the numerical simulation for both swath widths is performed, the data are processed, and the reconstruction accuracies of the wind velocity and direction are compared. It is shown that the reconstruction accuracy can significantly be improved if the measurement for two polarizations is used. The results obtained also show that the wind velocity is sufficiently well reconstructed for both swaths, while the wind-direction reconstruction accuracy in the case of a wider swath is worse than that required by the technical specifications for the scatterometer. Therefore, the swath width of the new scatterometer should be 1500 km.

  3. Global Geospace Science/Polar Plasma Laboratory: POLAR

    Science.gov (United States)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  4. Jupiter's High-Altitude Clouds

    Science.gov (United States)

    2007-01-01

    The New Horizons Multispectral Visible Imaging Camera (MVIC) snapped this incredibly detailed picture of Jupiter's high-altitude clouds starting at 06:00 Universal Time on February 28, 2007, when the spacecraft was only 2.3 million kilometers (1.4 million miles) from the solar system's largest planet. Features as small as 50 kilometers (30 miles) are visible. The image was taken through a narrow filter centered on a methane absorption band near 890 nanometers, a considerably redder wavelength than what the eye can see. Images taken through this filter preferentially pick out clouds that are relatively high in the sky of this gas giant planet because sunlight at the wavelengths transmitted by the filter is completely absorbed by the methane gas that permeates Jupiter's atmosphere before it can reach the lower clouds. The image reveals a range of diverse features. The south pole is capped with a haze of small particles probably created by the precipitation of charged particles into the polar regions during auroral activity. Just north of the cap is a well-formed anticyclonic vortex with rising white thunderheads at its core. Slightly north of the vortex are the tendrils of some rather disorganized storms and more pinpoint-like thunderheads. The dark 'measles' that appear a bit farther north are actually cloud-free regions where light is completely absorbed by the methane gas and essentially disappears from view. The wind action considerably picks up in the equatorial regions where giant plumes are stretched into a long wave pattern. Proceeding north of the equator, cirrus-like clouds are shredded by winds reaching speeds of up to 400 miles per hour, and more pinpoint-like thunderheads are visible. Although some of the famous belt and zone structure of Jupiter's atmosphere is washed out when viewed at this wavelength, the relatively thin North Temperate Belt shows up quite nicely, as does a series of waves just north of the belt. The north polar region of Jupiter in

  5. Low altitude remote sensing

    NARCIS (Netherlands)

    Pérez Calero, D.; Peyaud, A.; Van der Wal, D.; van 't Hof, J.; Hakkesteegt, H.; Vink, R.; Bovenkamp, E.G.P.; van Antwerpen, G.; Meynart, R.; Neeck, S.P.; Shimoda, H.; Habib, S.

    2008-01-01

    In 2007 TNO started to fly some sensors on an unmanned helicopter platform. These sensors included RGB, B/W and thermal infrared cameras. In 2008 a spectrometer was added. The goal for 2010 is to be able to offer a low altitude flying platform including several sensors. Development of these sensors

  6. LLOFX earth orbit to lunar orbit delta V estimation program user and technical documentation

    Science.gov (United States)

    1988-01-01

    The LLOFX computer program calculates in-plane trajectories from an Earth-orbiting space station to Lunar orbit in such a way that the journey requires only two delta V burns (one to leave Earth circular orbit and one to circularize into Lunar orbit). The program requires the user to supply the Space Station altitude and Lunar orbit altitude (in km above the surface), and the desired time of flight for the transfer (in hours). It then determines and displays the trans-Lunar injection (TLI) delta V required to achieve the transfer, the Lunar orbit insertion (LOI) delta V required to circularize the orbit around the Moon, the actual time of flight, and whether the transfer orbit is elliptical or hyperbolic. Return information is also displayed. Finally, a plot of the transfer orbit is displayed.

  7. 含Rashba自旋轨道耦合效应的非均匀量子线的极化输运性质%Spin-polarized transport in a nonuniform quantum wire with Rashba spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    徐中辉; 肖贤波

    2012-01-01

    The spin-polarized electron transport for a narrow-wide- narrow (NWN) quantum wire under the modulation of Rashba spin-orbit coupling (SOC) is investigated via the spin-resolved lattice Green function method. The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin polarized electron transport is taken into account simultaneously. It is found that a very large vertical spin-polarized current can be generated by the SOC-induced effective magnetic field at the structure-induced Fano resonance. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOC strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.%采用递归格林函数法研究了含Rashba自旋轨道耦合(spin-orbit coupling,SOC)的窄-宽-窄形量子线的自旋极化输运性质.同时考虑了体系的结构和不同Rashba子带的混合对电子输运性质的影响,结果表明当电子的入射能量处在结构引起的Fano共振点时,能在出射端电极得到极化率较大的自旋极化电流,而且其大小可由自旋轨道耦合强度及系统的结构参数共同调节.这些效应说明所研究的体系也许能用来设计自旋过滤器件.

  8. Polar Satcom System and Related Method

    Science.gov (United States)

    Mitchell, James P. (Inventor)

    2016-01-01

    A system and method for communication relay via a repeater platform satellite vehicle to a near surface station in the Polar Region is disclosed. A preferred embodiment receives a plurality of positioning and content data from a plurality of constellations of Geosynchronous Equatorial Orbit (GEO) Satellite Vehicles (SAT). Additionally, the system receives a plurality of position, time and altitude data from constellations of available repeater platform (RP) SATs. The system receives a request for content from a near surface station located in an area lacking adequate line-of-sight to the GEO based signal. The system aligns antenna elements onboard the desired RP SATs to amplify and relay the GEO based signal toward the near surface station and vice versa. Additionally, the system commands directional antenna elements onboard the station to send and receive the relayed signal making the GEO based content available to the near surface station.

  9. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    of the orbital structure of the initial state as well as the carrier-envelope phase of the applied pulse. Our ab initio results are compared with results obtained using the length-gauge strong-field approximation, which allows for a clear interpretation of the results in terms of classical physics. Furthermore...

  10. Cerebrovascular stroke at high altitude

    International Nuclear Information System (INIS)

    Objective: To asses the high altitude as a risk factor for cerebrovascular stroke in people residing at a height greater than 15,000 feet above sea level. Results: Ten patients suffered from stroke at high altitude while just one case had stroke in indexed age group at lower heights (p-value<0.05). Relative risk was 10 times greater at high altitude. Conclusion: High altitude is a risk factor for stroke in persons residing at altitudes of over 15, 000 ft. (author)

  11. Kinetic theory of spin-polarized systems in electric and magnetic fields with spin-orbit coupling. I. Kinetic equation and anomalous Hall and spin-Hall effects

    Science.gov (United States)

    Morawetz, K.

    2015-12-01

    The coupled kinetic equation for density and spin Wigner functions is derived including spin-orbit coupling, electric and magnetic fields, and self-consistent Hartree mean fields suited for SU(2) transport. The interactions are assumed to be with scalar and magnetic impurities as well as scalar and spin-flip potentials among the particles. The spin-orbit interaction is used in a form suitable for solid state physics with Rashba or Dresselhaus coupling, graphene, extrinsic spin-orbit coupling, and effective nuclear matter coupling. The deficiencies of the two-fluid model are worked out consisting of the appearance of an effective in-medium spin precession. The stationary solution of all these systems shows a band splitting controlled by an effective medium-dependent Zeeman field. The self-consistent precession direction is discussed and a cancellation of linear spin-orbit coupling at zero temperature is reported. The precession of spin around this effective direction caused by spin-orbit coupling leads to anomalous charge and spin currents in an electric field. Anomalous Hall conductivity is shown to consist of the known results obtained from the Kubo formula or Berry phases and a symmetric part interpreted as an inverse Hall effect. Analogously the spin-Hall and inverse spin-Hall effects of spin currents are discussed which are present even without magnetic fields showing a spin accumulation triggered by currents. The analytical dynamical expressions for zero temperature are derived and discussed in dependence on the magnetic field and effective magnetizations. The anomalous Hall and spin-Hall effect changes sign at higher than a critical frequency dependent on the relaxation time.

  12. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude. PMID:27651260

  13. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  14. Objects orbiting the Earth in deep resonance

    OpenAIRE

    J. C. Sampaio; Wnuk, E.; de Moraes, R. Vilhena; S. S. Fernandes

    2012-01-01

    The increasing number of objects orbiting the Earth justifies the great attention and interest in the observation, spacecraft protection and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, the TLE (Two-Line Elements) of the NORAD are studied observing the resonant period of the objects orbiting the Earth and the main resonance in the LEO region. The time behavior of th...

  15. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, L., E-mail: Leslami@iust.ac.ir; Faizabadi, E. [School of Physics, Iran University of Science and Technology, Tehran 16846 (Iran, Islamic Republic of)

    2014-05-28

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  16. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    Science.gov (United States)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  17. Time-variability of Polar Winter Snow Clouds on Mars

    Science.gov (United States)

    Hayne, P. O.; Kass, D. M.; Kleinboehl, A.; Schofield, J. T.; McCleese, D. J.

    2015-12-01

    Carbon dioxide snow clouds are known to occur in the polar regions on Mars during the long polar night. Earlier studies have shown that a substantial fraction (up to ~20%) of the seasonal ice caps of Mars can be deposited as CO2 snowfall. The presence of optically thick clouds can also strongly influence the polar energy balance, by scattering thermal radiation emitted by the surface and lower atmosphere. Furthermore, snow deposition is likely to affect the surface morphology and subsequent evolution of the seasonal caps. Therefore, both the spatial distribution and time variability of polar snow clouds are important for understanding their influence on the Martian CO2cycle and climate. However, previous investigations have suffered from relatively coarse time resolution (typically days), coarse or incomplete spatial coverage, or both. Here we report results of a dedicated campaign by the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter, to observe polar CO2 clouds with an unprecedented time-resolution within the same spatial region. By scanning the MCS field of view, we acquired observations directly over the north pole for every ~2hr orbit over the course of several days. This was repeated during two separate periods in northern winter. The 2 hr sampling frequency enables the detailed study of cloud evolution. These observations were also compared to a cloud-free, control region just off the pole, which was sampled in the same way. Results from this experiment show that the north polar CO2 clouds are dynamic, and appear to follow a consistent pattern: Beginning with a relatively clear atmosphere, the cloud rapidly grows to ~25 - 30 km altitude in future research, enabled by these unique observations. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  18. RHIC Polarized proton operation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D' Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  19. RHIC Polarized proton operation

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above injection

  20. Cardiovascular physiology at high altitude.

    Science.gov (United States)

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed.

  1. Orbital pseudotumor

    Science.gov (United States)

    ... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duane’s ...

  2. Spatial Analysis of Galactic Cosmic Ray Particles in Low Earth Orbit/Near Equator Orbit Using SPENVIS

    Science.gov (United States)

    Suparta, W.; Zulkeple, S. K.

    2014-04-01

    The space environment has grown intensively harmful to spacecraft and astronauts. Galactic cosmic rays (GCRs) are one of the radiation sources that composed of high energetic particles originated from space and capable of damaging electronic systems through single event upset (SEU) process. In this paper, we analyzed GCR fluxes at different altitudes by using Space Environment Information System (SPENVIS) software and the results are compared to determine their intensities with respect to distance in the Earth's orbit. The altitudes are set at low earth orbit (400 km and 685 km), medium earth orbit (19,100 km and 20,200 km) and high earth orbit (35,793 km and 1,000,000 km). Then, within Low Earth Orbit (LEO) near the equator (NEqO), we used altitude of 685 km to compare GCRs with the intensities of solar particles and trapped particles in the radiation belt to determine the significance of GCRs in the orbit itself.

  3. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  4. Modelling circumplanetary ejecta clouds at low altitudes: a probabilistic approach

    CERN Document Server

    Christou, Apostolos A

    2014-01-01

    A model is presented of a ballistic, collisionless, steady state population of ejecta launched at randomly distributed times and velocities and moving under constant gravity above the surface of an airless planetary body. Within a probabilistic framework, closed form solutions are derived for the probability density functions of the altitude distribution of particles, the distribution of their speeds in a rest frame both at the surface and at altitude and with respect to a moving platform such as an orbiting spacecraft. These expressions are validated against numerically-generated synthetic populations of ejecta under lunar surface gravity. The model is applied to the cases where the ejection speed distribution is (a) uniform (b) a power law. For the latter law, it is found that the effective scale height of the ejecta envelope directly depends on the exponent of the power law and increases with altitude. The same holds for the speed distribution of particles near the surface. Ejection model parameters can, t...

  5. Development of the High Altitude Student Platform

    Science.gov (United States)

    Guzik, T. G.; Besse, S.; Calongne, A.; Dominique, A.; Ellison, S. B.; Gould, R.; Granger, D.; Olano, D.; Smith, D.; Stewart, M.; Wefel, J. P.

    2008-11-01

    The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.

  6. Asteroid airburst altitude vs. strength

    Science.gov (United States)

    Robertson, Darrel; Wheeler, Lorien; Mathias, Donovan

    2016-10-01

    Small NEO asteroids (plans and emergency management.Strong asteroids, such as a monolithic boulder, fail and create peak energy deposition close to the altitude at which ram dynamic pressure exceeds the material cohesive strength. Weaker asteroids, such as a rubble pile, structurally fail at higher altitude, but it requires the increased aerodynamic pressure at lower altitude to disrupt and disperse the rubble. Consequently the resulting airbursts have a peak energy deposition at similar altitudes.In this study hydrocode simulations of the entry and break-up of small asteroids were performed to examine the effect of strength, size, composition, entry angle, and speed on the resulting airburst. This presentation will show movies of the simulations, the results of peak burst height, and the comparison to semi-analytical models.

  7. Venus Altitude Cycling Balloon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ISTAR Group ( IG) and team mate Thin Red Line Aerospace (TRLA) propose a Venus altitude cycling balloon (Venus ACB), an innovative superpressure balloon...

  8. Determining polar ionospheric electrojet currents from Swarm satellite constellation magnetic data

    Science.gov (United States)

    Aakjær, Cecilie Drost; Olsen, Nils; Finlay, Christopher C.

    2016-08-01

    We determine the strength and location of the ionospheric currents responsible for the polar electrojets from magnetic data collected by the Swarm satellite constellation on an orbit-by-orbit basis. The ionospheric currents are modelled using a simple, yet robust, method by a series of line currents at 110 km altitude (corresponding to the ionospheric E-layer) perpendicular to the satellite orbit, separated by 1° (about 113 km). We assess the reliability of our method, with the aim of a possible near-real-time application. A study of the effect of different regularization methods is therefore carried out. An L_1 model regularization of the second-order spatial differences, and robust treatment of the data (to account for non-Gaussian error distributions), yields the most encouraging results. We apply our approach to two three-weekly data periods in March 2014 (geomagnetic quiet conditions) and March 2015 (more disturbed conditions), respectively. Our orbit-by-orbit approach also allows the temporal evolution of the polar electrojets to be investigated. We find remarkable agreement of the ionospheric activity in Northern and Southern polar regions, with correlation exceeding 0.9 for periods longer than two days. Reliability of the approach is shown by three key results: (1) a common regularization parameter for all orbits with enough data coverage, (2) 0.95 squared coherence with the Auroral Electrojet index, and (3) 0.97 squared coherence is found between the side-by-side flying satellites, Alpha and Charlie, indicating a method invariant to small changes in data input. All these results indicate a possible automated near-real-time application.

  9. ORION: A Supersynchronous Transfer Orbit mission

    Science.gov (United States)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-05-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  10. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  11. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  12. Helioseismology with Solar Orbiter

    CERN Document Server

    Löptien, Björn; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Rodríguez, Julián Blanco; Cally, Paul S; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H; Solanki, Sami K

    2014-01-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21 deg (up to 34 deg by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3 x 10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. The full range of Earth-Sun-spacecraft angles provi...

  13. Altitude Testing of Large Liquid Propellant Engines

    Science.gov (United States)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  14. Geomagnetic disturbances imprints in ground and satellite altitude observatories

    Science.gov (United States)

    Yahiat, Yasmina; Lamara, Souad; Zaourar, Naima; Hamoudi, Mohamed

    2016-04-01

    The temporal evolution of the geomagnetic field and its variations have been repeatedly studied from both ground observatories and near-earth orbiting platforms. With the advent of the space ageand the launches of geomagnetic low altitude orbits satellites, a global coverage has been achieved. Since Magsat mission, more satellites were put into orbit and some of them are still collecting data enhancing the spatial and temporal descriptions of the field. Our study uses new data gathered by the latest SWARM satellite mission launched on November, 22nd 2013. It consists of a constellation of three identical satellites carrying on board high resolution and accuracy scientific equipment. Data from this constellation will allow better understanding the multiscale behavior of the geomagnetic field. Our goal is to analyze and interpret the geomagnetic data collected by this Swarm mission, for a given period and try to separate the external disturbances from internal contributions. We consider in the study the variation of the horizontal component H, for different virtual geomagnetic observatories at the satellite altitude. The analysis of data by Swarm orbital segments shows clearly the external disturbances of the magnetic field like that occurring on 27th of August 2014. This perturbation is shown on geomagnetic indexes and is related to a coronal mass ejection (CME). These results from virtual observatories are confirmed, by the equivalent analysis using ground observatories data for the same geographic positions and same epochs. Key words: Geomagnetic field, external field, geomagnetic index, SWARM mission, virtual observatories.

  15. Hormonal Changes Under Altitude Stress

    Directory of Open Access Journals (Sweden)

    H.D Brahmachari

    1977-04-01

    Full Text Available The separate effects of exposure for six hours to cold (8 degree Celsius, hypoxia (4267 m. and simulated altitude (8 degree Celsius at 4267 m.have been studied on ten human subjects in a decompression chamber, with respect to the changes in blood cortisol, ADH and urinary catecholamines. Changes in blood cortisol, PBI, ADH urinary excretion of 17-keto steroids and urine volume have been recorded on another ten subjects on acute exposure to high altitude (3505 m.. Changes in the same parameters alongwith urinary testosterone level, have been recorded on another 20 subjects on prolonged exposure for two years to high altitude (3505 m.. The results have been discussed.

  16. Nonlinear filtering for autonomous navigation of spacecraft in highly elliptical orbit

    Science.gov (United States)

    Vigneron, Adam C.; de Ruiter, Anton H. J.; Burlton, Bruce V.; Soh, Warren K. H.

    2016-05-01

    In support of Canada's proposed Polar Communication and Weather mission, this study examined the accuracy to which GPS-based autonomous navigation might be realized for spacecraft in a Molniya orbit. A navigation algorithm based on the Extended Kalman Filter was demonstrated to achieve a three-dimensional root-mean-square accuracy of 58.9 m over a Molniya orbit with 500 km and 40,000 km perigee and apogee altitudes, respectively. Despite the inclusion of biased and non-white error models in the generated GPS pseudorange measurements - a first for navigation studies in this orbital regime - algorithms based on the Unscented Kalman Filter and the Cubature Kalman Filter were not found to improve this result; their benefits were eclipsed due to the accurate pseudorange measurements which were available during periods of highly nonlinear dynamics. This study revealed receiver clock bias error to be a significant source of navigation solution error. For reasons of geometry, the navigation algorithm is not able to differentiate between this error and a radial position error. A novel dual-mode dynamic clock model was proposed and implemented as a means to minimize receiver clock bias error over the entire orbital regime.

  17. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Calhoun, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  18. Foreign body orbital cyst

    DEFF Research Database (Denmark)

    Yazdanfard, Younes; Heegard, Steffen; Fledelius, Hans C.;

    2001-01-01

    Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology......Ophthalmology, penetrating orbital injury, orbital foreign body, ultrasound, computed tomography (CT), histology...

  19. Polar Warming Drivers

    Science.gov (United States)

    McDunn, T. L.; Bougher, S. W.; Mischna, M. A.; Murphy, J. R.

    2012-12-01

    Polar warming is a dynamically induced temperature enhancement over mid-to-high latitudes that results in a reversed (poleward) meridional temperature gradient. This phenomenon was recently characterized over the 40-90 km altitude region [1] based on nearly three martian years of Mars Climate Sounder observations [2, 3]. Here we investigate which forcing mechanisms affect the magnitude and distribution of the observed polar warming by conducting simulations with the Mars Weather Research and Forecasting General Circulation Model [4, 5]. We present simulations confirming the influence topography [6] and dust loading [e.g., 7] have upon polar warming. We then present simulations illustrating the modulating influence gravity wave momentum deposition exerts upon polar warming, consistent with previous modeling studies [e.g., 8]. The results of this investigation suggest the magnitude and distribution of polar warming in the martian middle atmosphere is modified by gravity wave activity and that the characteristics of the gravity waves that most significantly affect polar warming vary with season. References: [1] McDunn, et al., 2012 (JGR), [2]Kleinböhl, et al., 2009 (JGR), [3] Kleinböhl, et al., 2011 (JQSRT), [4] Richardson, et al., 2007 (JGR), [5] Mischna, et al., 2011 (Planet. Space Sci.), [6] Richardson and Wilson, 2002 (Nature), [7] Haberle, et al., 1982 (Icarus), [8] Barnes, 1990 (JGR).

  20. Gamma rays in L-B coordinates at CORONAS-I altitude

    Directory of Open Access Journals (Sweden)

    I. N. Myagkova

    2005-09-01

    Full Text Available We present here observations of gamma rays in the energy range between 3.0 and 8.3 MeV gathered by the SONG instrument aboard low-altitude polar-orbiting satellite CORONAS-I throughout the period March-June 1994. We concentrate on the emissions related to the trapped particles and organize CORONAS-I measurements in the magnetic L–B coordinate system. The spatial distribution of the average gamma-ray counts reveals that the most intense fluxes were observed under the inner radiation belt, at L<2, and that they are exclusively confined into the region of stably trapped particles, where daughter gamma rays could result from the interactions within the spacecraft and instrumental matter. In the outer radiation zone (L~4, the enhanced gamma radiation, also detected outside the stably trapping region, shows pronounced longitudinal variations. The observed eastward increase in the gamma-ray count rate suggests quasi-traped energetic (megavolt electrons as a source of the gamma rays both in the upper atmosphere and in the satellite matter, most likely, through the bremsstrahlung process in the studied energy domain. Keywords. Magnetospheric physics (Energetic particles, precipitating; Energetic particles, trapped; Magnetosphereionosphere interactions

  1. Testing the magnetotail configuration based on observations of low-altitude isotropic boundaries during quiet times

    Science.gov (United States)

    Ilie, R.; Ganushkina, N.; Toth, G.; Dubyagin, S.; Liemohn, M. W.

    2015-12-01

    We investigate the configuration of the geomagnetic field on the nightside magnetosphere during a quiet time interval based on National Oceanic and Atmospheric Administration Polar Orbiting Environment Satellites Medium Energy Proton and Electron Detector (NOAA/POES MEPED) measurements in combination with numerical simulations of the global terrestrial magnetosphere using the Space Weather Modeling Framework. Measurements from the NOAA/POES MEPED low-altitude data sets provide the locations of isotropic boundaries; those are used to extract information regarding the field structure in the source regions in the magnetosphere. In order to evaluate adiabaticity and mapping accuracy, which is mainly controlled by the ratio between the radius of curvature and the particle's Larmor radius, we tested the threshold condition for strong pitch angle scattering based on the MHD magnetic field solution. The magnetic field configuration is represented by the model with high accuracy, as suggested by the high correlation coefficients and very low normalized root-mean-square errors between the observed and the modeled magnetic field. The scattering criterion, based on the values of k=Rcρ ratio at the crossings of magnetic field lines, associated with isotropic boundaries, with the minimum B surface, predicts a critical value of kCR˜33. This means that, in the absence of other scattering mechanisms, the strong pitch angle scattering takes place whenever the Larmor radius is ˜33 times smaller than the radius of curvature of the magnetic field, as predicted by the Space Weather Modeling Framework.

  2. The latest views of Venus as observed by the Japanese Orbiter "Akatsuki"

    Science.gov (United States)

    Satoh, Takehiko; Akatsuki Project Team

    2016-10-01

    Akatsuki, also known as the Venus Climate Orbiter (VCO) of Japan, was launched on 21 May 2010 from Tanegashima Space Center, Kagoshima, Japan. After 6 months of cruising to Venus, an attempt was made to insert Akatsuki in Venus orbit (VOI) on 7 December 2010. However, due to the clogged check valve in a pressurizing system of fuel line, the thrust to decelerate the spacecraft was not enough to allow it captured by the gravitational pull of Venus. After this failure, Akatsuki became an artificial planet around the sun with an orbital period of ~200 days. We waited for 5 earth years (or 9 Akatsuki years), and the second attempt (VOI-R1) was made on the same day, 7 December 2015. It was a great surprise to the world that a "once failed" spacecraft made a successful orbital insertion after many years of time. The orbital period around Venus is slightly shorter than 11 days, with the apoapsis altitude of ~0.37 million km.After Venus Express (VEX), which was in Venus orbit for 8 years, Akatsuki still keeps a unique position and is expected to make a great contribution to the Venus science due primarily to its orbit. In contrast to the polar orbits of Pioneer Venus or VEX, Akatsuki is in a near-equatorial plane and revolves westward, the same direction as the super rotating atmosphere. This orbit allows the spacecraft in a "partial" synchronization with the atmospheric motion when Akatsuki is near the planet. When at greater distances, the atmosphere moves faster than Akatsuki's orbital motion so the spacecraft maps the full longitude range of Venus in several days. This meteorological-satellite-like concept makes Akatsuki the most unique planetary orbiter in the history. To sense the various levels of the atmosphere, to draw 3-dimentional picture of dynamics, Akatsuki is equipped with 5 on-board cameras, UVI (283 and 365 nm wavelength), IR1 (0.90, 0.97, and 1.01 μm), IR2 (1.65, 1.735, 2.02, 2.26, and 2.32 μm), LIR (8-12 μm), and LAC (a special high-speed sensor at

  3. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  4. Orbital angular momentum microlaser.

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  5. A concept of the energy storable orbital power station (ESOPS)

    Science.gov (United States)

    Akiba, Ryojiro; Takano, Tadashi; Yokota, Hiroki

    To save foreseeable difficulties and risks associated with large scale development of the Space Power Station on GEO at a remote distance, the Energy Storable Orbital Power Station (ESOPS) placed in a near earth orbit is proposed. Most promising orbit for ESOPS is a fixed periapsis pseudo sun synchronous orbit. A thermodynamical power generation is preferable owing to its inherent insensitive nature against radiation suffered on the medium altitude orbit. Thermal energy storage using latent heat of fusion seems the best choice for this system. The power transmission from ESOPS to ground station presents most critical problems due to non-stationary characteristics.

  6. Sleep and Breathing at High Altitude.

    Science.gov (United States)

    Wickramasinghe, Himanshu; Anholm, James D.

    1999-01-01

    Sleep at high altitude is characterized by poor subjective quality, increased awakenings, frequent brief arousals, marked nocturnal hypoxemia, and periodic breathing. A change in sleep architecture with an increase in light sleep and decreasing slow-wave and REM sleep have been demonstrated. Periodic breathing with central apnea is almost universally seen amongst sojourners to high altitude, although it is far less common in long-standing high altitude dwellers. Hypobaric hypoxia in concert with periodic breathing appears to be the principal cause of sleep disruption at altitude. Increased sleep fragmentation accounts for the poor sleep quality and may account for some of the worsened daytime performance at high altitude. Hypoxic sleep disruption contributes to the symptoms of acute mountain sickness. Hypoxemia at high altitude is most severe during sleep. Acetazolamide improves sleep, AMS symptoms, and hypoxemia at high altitude. Low doses of a short acting benzodiazepine (temazepam) may also be useful in improving sleep in high altitude. PMID:11898114

  7. Altitude, Acute Mountain Sickness and Headache

    Science.gov (United States)

    ... Follow us on Instagram DONATE TODAY Altitude, Acute Mountain Sickness and Headache Abuse, Maltreatment, and PTSD and Their Relationship to Migraine Altitude, Acute Mountain Sickness and Headache Alcohol and Migraine Anxiety and ...

  8. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  9. Monitoring Polar Environmental Change Using FORMOSAT-2 Satellite

    Science.gov (United States)

    Huang, C.; Liu, C.; Chang, L.; Wang, S.; Yan, K.; Wu, F.; Wu, A.

    2007-12-01

    Polar ice loss to the sea currently account for virtually all of the sea-level rise that is not attributable to ocean warming. Huge section of the Ayles Ice Shelf broke off into the Arctic Ocean. Permafrost soil is losing its permanence across the Northern Hemisphere, altering ecosystems and damaging roads and buildings across Alaska, Canada, and Russia. Global warming change the polar environment significantly, especially in recent year. The National Space Organization (NSPO) of Taiwan successfully launched FORMOSAT-2 on 20 May 2004. The orbit is designed to be high-altitude,. Sun-synchronous, and daily-revisit. With high agility in attitude control, FORMOSAT-2 can cover the polar areas up to +/- 90 deg latitude. More than 72 Area of interests in Alaska, Canada, Greenland area and Ice land have imaged periodically in 2006 and 2007. The images have 2m resolution in panchromatic band and 8m in multispectral bands, with size of about 24 x 100 km or large. The ability of FORMOSAT-2 daily revisit has been extended to monitor the change of topography for the glacier and ice shelf daily, weekly and monthly. By using the FORMOSAT-2 stereo pair, we can determine the elevation profile (DEM) across the glacier surface. In this paper, we will present the mapping and topography of Greenland glaciers and ice land including Kangerdlugssuaq Glacier, Greenland, Belcher Glacier, Canada and Ayles ice island. We will demonstrate the DEM extract ability from FORMOSAT-2 polar stereo images( up to 82 deg latitude), and compared with the DEM of the popular SRTM, ASTER which can be acquired to 79 deg latitude. It is expected that FORMOSAT-2 polar images will be continuously collected for years and contribute to the research of global environmental change.

  10. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    Science.gov (United States)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  11. Cosmic Microwave Background Science at Commercial Airline Altitudes

    CERN Document Server

    Feeney, Stephen M; Peiris, Hiranya V; Verde, Licia; Errard, Josquin

    2016-01-01

    Obtaining high-sensitivity measurements of degree-scale cosmic microwave background (CMB) polarization is the most direct path to detecting primordial gravitational waves. Robustly recovering any primordial signal from the dominant foreground emission will require high-fidelity observations at multiple frequencies, with excellent control of systematics. We explore the potential for a new platform for CMB observations, the Airlander 10 hybrid air vehicle, to perform this task. We show that the Airlander 10 platform, operating at commercial airline altitudes, is well-suited to mapping frequencies above 220 GHz, which are critical for cleaning CMB maps of dust emission. Optimizing the distribution of detectors across frequencies, we forecast the ability of Airlander 10 to clean foregrounds of varying complexity as a function of altitude, demonstrating its complementarity with both existing (Planck) and ongoing (C-BASS) foreground observations. This novel platform could play a key role in defining our ultimate vi...

  12. A Mars' Year of Topographic Mapping With The Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.

    2001-01-01

    Since the end of February 1999 the Mars Orbiter Laser Altimeter (MOLA) has been mapping the planet continuously except for a 2 month period around solar conjunction in June 2000. At the end of January 2001 the Mars Global Surveyor Spacecraft (MGS) had completed its prime Mission, one Mars year of observing the planet, and begun the Extended Mission of slightly more than 14 months. MOLA will had acquired over 530 million altimetric measurements by early 2001, and continued to work perfectly. During the Extended Mission the main objective for MOLA will be observations of the seasonal variations in the locations and altitudes of clouds, the changes in the elevations of the polar icecaps due to the deposition and sublimation Of CO2, as well as supporting NASA's search for suitable future landing sites.

  13. Image Positioning Accuracy Analysis for the Super Low Altitude Remote Sensing Satellite

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line‐of‐sight rebuilding of each detection element and this direction precisely intersecting with the Earth’s elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  14. Computational mission analysis and conceptual system design for super low altitude satellite

    Institute of Scientific and Technical Information of China (English)

    Ming Xu; Jinlong Wang; Nan Zhou

    2014-01-01

    This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel

  15. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    梁科; 侯自新

    2001-01-01

    Vogan conjectured that the parabolic induction of orbit data is independent of the choice of the parabolic subgroup. In this paper we first give the parabolic induction of orbit covers, whose relationship with geometric orbit datum is also induced. Hence we show a geometric interpretation of orbit data and finally prove the conjugation for geometric orbit datum using geometric method.

  16. Atmospheric Drag Perturbation in an Autonomous Orbit Determination for Satellite

    Institute of Scientific and Technical Information of China (English)

    XUE shen-fang; JIN Sheng-zhen; NING Shu-nian; SUN Cai-hong

    2005-01-01

    In this paper, an autonomous orbit determination method for satellite using a large field of view star sensor is presented. The simulation of orbit under atmospheric drag perturbation are given with expanded Kalman filtering.The large field of view star sensor has the same precision as star sensor and a sufficient filed of view. Therefore ,the refraction stars can be observed more accurately in real time. The geometric relation between the refracted starlight and the earth can be determined by tangent altitude of the refraction starlight. And then the earth enter can be determined in satellite body frame. The simulation shows that the precision of the mean square deviation of satellite's position and velocity is 5m and 0.01m/s respectively. The calculated decrement of the semi-major axis in one day is close to the theoretical result, and the absolute error is in the range of decimeter when the altitude of orbit is 750 km. The simulateion of orbit of different initial semi-major axis shows that the higher the altitude of orbit is, the smaller the decrement of the semi-major axis is, and when the altitude of orbit is 1700 km the decimeter of the semi-major axis is 10-7km.

  17. Eye and orbit ultrasound

    Science.gov (United States)

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  18. Decompression to altitude: assumptions, experimental evidence, and future directions.

    Science.gov (United States)

    Foster, Philip P; Butler, Bruce D

    2009-02-01

    Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.

  19. Rocket Engine Altitude Simulation Technologies

    Science.gov (United States)

    Woods, Jody L.; Lansaw, John

    2010-01-01

    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  20. Auroral and magnetic variations in the polar cusp and cleft. Signatures of magnetopause boundary layer dynamics

    International Nuclear Information System (INIS)

    By combining continous ground-based observations of polar cleft/cusp auroras and local magnetic variations with electromagnetic parameters obtained from satellites in polar orbit (low-altitude cleft/cusp) and in the magnetosheath/interplanetary space, different electrodynamic processes in the polar cleft/cusp have been investigated. One of the more controversial questions in this field is related to the observed shifts in latitude of cleft/cusp auroras and the relationships with the interplanetary magnetic field (IMF) orientation, local magnetic disturbances (DP2 and DPY modes) and magnetospheric substorms. A new approach which may contribute to clarifying these complicated relationships, simultaneous groundbased observations of the midday and evening-midnight sectors of the auroral oval, is illustrated. A related topic is the spatial relationship between the cleft/cusp auroras and the ionospheric convection currents. A characteristic feature of the polar cusp and cleft regions during negative IMF Bz is repeated occurrence of certain short-lived auroral structures moving in accordance with the local convection pattern. Satellite measurements of particle precipitation, magnetic field and ion drift components permit detailed investigations of the electrodynamics of these cusp/cleft structures. Information on electric field components, Birkeland currents, Poynting flux, height-integrated Pedersen conductivity and Joule heat dissipation rate has been derived. These observations are discussed in relation to existing models of temporal plasma injections from the magnetosheath

  1. Objects orbiting the Earth in deep resonance

    CERN Document Server

    Sampaio, J C; de Moraes, R Vilhena; Fernandes, S S

    2012-01-01

    The increasing number of objects orbiting the Earth justifies the great attention and interest in the observation, spacecraft protection and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, the TLE (Two-Line Elements) of the NORAD are studied observing the resonant period of the objects orbiting the Earth and the main resonance in the LEO region. The time behavior of the semi-major axis, eccentricity and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  2. Inflammation of the Orbit

    Science.gov (United States)

    ... Diagnosis Treatment Medical Dictionary Additional Content Medical News Inflammation of the Orbit (Inflammatory Orbital Pseudotumor) By James ... Introduction to Eye Socket Disorders Cavernous Sinus Thrombosis Inflammation of the Orbit Orbital Cellulitis Preseptal Cellulitis Tumors ...

  3. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  4. Brane orbits

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A., E-mail: E.A.Bergshoeff@rug.nl [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Marrani, Alessio, E-mail: Alessio.Marrani@cern.ch [Physics Department, Theory Unit, CERN, CH-1211, Geneva 23 (Switzerland); Riccioni, Fabio, E-mail: Fabio.Riccioni@roma1.infn.it [INFN Sezione di Roma, Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2012-08-01

    We complete the classification of half-supersymmetric branes in toroidally compactified IIA/IIB string theory in terms of representations of the T-duality group. As a by-product we derive a last wrapping rule for the space-filling branes. We find examples of T-duality representations of branes in lower dimensions, suggested by supergravity, of which none of the component branes follow from the reduction of any brane in ten-dimensional IIA/IIB string theory. We discuss the constraints on the charges of half-supersymmetric branes, determining the corresponding T-duality and U-duality orbits.

  5. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    Science.gov (United States)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  6. Economy of Adaptation to High Altitude

    Institute of Scientific and Technical Information of China (English)

    Jean-Paul Richalet

    2004-01-01

    @@ The international meeting that will be held in Xining and Lhasa in August 2004 will be a wonderful occasion to share facts and concepts dealing with adaptation to high altitude. Life at high altitude is a challenge for thousands of animal species and millions of humans residing or visiting high altitude regions of the world. To try to understand the physiological mechanisms involved in the adaptation processes to high altitude hypoxia, it is convenient to start by defining what is "extreme" from a biological point of view.

  7. Aspirated Compressors for High Altitude Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been...

  8. Orbit Design and Simulation for Kufasat Nanosatellite

    Science.gov (United States)

    Mahdi, Mohammed Chessab

    2015-12-01

    Orbit design for KufaSat Nano-satellites is presented. Polar orbit is selected for the KufaSat mission. The orbit was designed with an Inclination which enables the satellite to see every part of the earth. KufaSat has a payload for imaging purposes which require a large amount of power, so the orbit is determined to be sun synchronous in order to provide the power through solar panels. The KufaSat mission is designed for the low earth orbit. The six initial Keplerian Elements of KufaSat are calculated. The orbit design of KufaSat according to the calculated Keplerian elements has been simulated and analyzed by using MATLAB first and then by using General Mission Analysis Tool.

  9. Intercomparison of polar ozone profiles by IASI/MetOp sounder with 2010 Concordiasi ozonesonde observations

    Directory of Open Access Journals (Sweden)

    J. Gazeaux

    2012-10-01

    Full Text Available Validation of ozone profiles measured from a nadir looking satellite instrument over Antarctica is a challenging task due to differences in their height sensitivity with ozonesonde measurements. In this paper we compare the ozone observations provided by the Infrared Atmospheric Sounding Interferometer (IASI instrument onboard the polar-orbiting satellite MetOp with ozone profiles collected between August and October 2010 at McMurdo Station, Antarctica, during the Concordiasi campaign. This campaign was aimed at satellite data validation and up to 20 zero-pressure sounding balloons carrying ozonesondes were launched during this period when the MetOp satellite was passing above McMurdo. This makes the dataset relevant for comparison, especially because those balloons covered the entire altitude range of IASI profiles. The validation methodology and the collocation criteria differ according to the availability of Global Positioning System auxiliary data with each Electro-Chemical Cell ozonesonde observation. We show that the relative mean difference depends on the altitude range investigated. The analysis shows a good agreement in the troposphere (below 10 km and middle stratosphere (25–40 km, where the differences are lower than 10%. However a significant positive bias of about 10–26% is estimated in the lower stratosphere at 10–25 km, depending on altitude. The positive bias in the 10–25 km range is consistent with previously reported studies comparing in-situ data with thermal infrared satellite measurements. This study allows a better characterization of the IASI products over the polar region when ozone depletion/recovery is occurring.

  10. Hyperon polarization in the constituent quark model

    International Nuclear Information System (INIS)

    A mechanism for hyperon polarization in the inclusive production is considered. The main role belongs to the orbital angular momentum and polarization of strange quark-antiquark pairs in the internal structure of constituent quarks. The nonperturbative hadron structure is based on the results of chiral quark models

  11. Ion Polarization Scheme for MEIC

    CERN Document Server

    Kondratenko, A M; Filatov, Yu N; Derbenev, Ya S; Lin, F; Morozov, V S; Zhang, Y

    2016-01-01

    The choice of a figure 8 shape for the booster and collider rings of MEIC opens wide possibilities for preservation of the ion polarization during beam acceleration as well as for control of the polarization at the collider's interaction points. As in the case of accelerators with Siberian snakes, the spin tune is energy independent but is equal to zero instead of one half. The figure-8 topology eliminates the effect of arcs on the spin motion. There appears a unique opportunity to control the polarization of any particle species including deuterons, using longitudinal fields of small integrated strength (weak solenoids). Contrary to existing schemes, using weak solenoids in figure-8 colliders, one can control the polarization at the interaction points without essentially any effect on the beam's orbital characteristics. A universal scheme for control of the polarization using weak solenoids provides an elegant solution to the problem of ion acceleration completely eliminating resonant beam depolarization. It...

  12. Proton isotropy boundaries as measured on mid- and low-altitude satellites

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2005-07-01

    Full Text Available Polar CAMMICE MICS proton pitch angle distributions with energies of 31-80 keV were analyzed to determine the locations where anisotropic pitch angle distributions (perpendicular flux dominating change to isotropic distributions. We compared the positions of these mid-altitude isotropic distribution boundaries (IDB for different activity conditions with low-altitude isotropic boundaries (IB observed by NOAA 12. Although the obtained statistical properties of IDBs were quite similar to those of IBs, a small difference in latitudes, most pronounced on the nightside and dayside, was found. We selected several events during which simultaneous observations in the same local time sector were available from Polar at mid-altitudes, and NOAA or DMSP at low-altitudes. Magnetic field mapping using the Tsyganenko T01 model with the observed solar wind input parameters showed that the low- and mid-altitude isotropization boundaries were closely located, which leads us to suggest that the Polar IDB and low-altitude IBs are related. Furthermore, we introduced a procedure to control the difference between the observed and model magnetic field to reduce the large scatter in the mapping. We showed that the isotropic distribution boundary (IDB lies in the region where Rc/ρ~6, that is at the boundary of the region where the non-adiabatic pitch angle scattering is strong enough. We therefore conclude that the scattering in the large field line curvature regions in the nightside current sheet is the main mechanism producing isotropization for the main portion of proton population in the tail current sheet. This mechanism controls the observed positions of both IB and IDB boundaries. Thus, this tail region can be probed, in its turn, with observations of these isotropy boundaries.

    Keywords. Magnetospheric physics (Energetic particles, Precipitating; Magnetospheric configuration and dynamics; Magnetotail

  13. A tow concept for the space shuttle orbiter approach and landing test

    Science.gov (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.

    1976-01-01

    The tow concept provides the means for evaluating the orbiter aerodynamic performance and handling qualities in the same configuration as expected in actual space shuttle flight operation. A Boeing 747-100 aircraft has engine-out capability to tow the orbiter to an altitude that permits a safe orbiter approach and landing. The tow concept also provides a means for conducting a comprehensive ground test program before proceeding into the actual ALT flight operations. The implementation of the tow concept requires only a minor structural modification in the nose section of the orbiter vehicle; requires minor modifications in the 747 cargo bay; and makes use of those orbiter onboard systems installed in the ALT orbiter vehicle. The 747 wake turbulence does not constitute a problem for the orbiter during take-off or climb to altitude. The impact that the tow concept would have on the cost and schedule of the space shuttle program was not evaluated in this study.

  14. Delayed appearance of high altitude retinal hemorrhages.

    Directory of Open Access Journals (Sweden)

    Daniel Barthelmes

    Full Text Available BACKGROUND: Retinal hemorrhages have been described as a component of high altitude retinopathy (HAR in association with altitude illness. In this prospective high altitude study, we aimed to gain new insights into the pathophysiology of HAR and explored whether HAR could be a valid early indicator of altitude illness. METHODOLOGY/PRINCIPAL FINDINGS: 28 mountaineers were randomly assigned to two ascent profiles during a research expedition to Mt. Muztagh Ata (7546 m/24,751 ft. Digital fundus photographs were taken prior to expedition at 490 m (1,607 ft, during expedition at 4497 m (14,750 ft = base camp, 5533 m (18,148 ft, 6265 m (20,549 ft, 6865 m (22,517 ft and 4.5 months thereafter at 490 m. Number, size and time of occurrence of hemorrhages were recorded. Oxygen saturation (SpO₂ and hematocrit were also assessed. 79% of all climbers exhibited retinal hemorrhages during the expedition. Number and area of retinal bleeding increased moderately to medium altitudes (6265 m. Most retinal hemorrhages were detected after return to base camp from a high altitude. No post-expeditional ophthalmic sequelae were detected. Significant negative (SpO₂ Beta: -0.4, p<0.001 and positive (hematocrit Beta: 0.2, p = 0.002, time at altitude Beta: 0.33, p = 0.003 correlations with hemorrhages were found. CONCLUSIONS/SIGNIFICANCE: When closely examined, a very large amount of climbers exhibit retinal hemorrhages during exposure to high altitudes. The incidence of retinal hemorrhages may be greater than previously appreciated as a definite time lag was observed between highest altitude reached and development of retinal bleeding. Retinal hemorrhages should not be considered warning signs of impending severe altitude illness due to their delayed appearance.

  15. Traveling Atmospheric Disturbances (TADs) in the thermosphere inferred from accelerometer data at three altitudes

    Science.gov (United States)

    Bruinsma, Sean; Forbes, Jeffrey

    2010-05-01

    Densities derived from accelerometer measurements on the GRACE, CHAMP and Air Force/SETA satellites near 490, 390, and 220 km, respectively, are used to elucidate global-scale characteristics of traveling atmospheric disturbances. The accelerometers on the CHAMP and GRACE satellites have made it possible to accumulate near-continuous records of thermosphere density between about 320 and 490 km since May 2001, and July 2002, respectively. They have recorded the response to virtually every significant geomagnetic storm during this period. CHAMP and GRACE are in (near) polar and quasi-circular orbits, sampling 24 hr local time approximately every 4 and 5 months, respectively. These capabilities offer unique opportunities to study the temporal and latitudinal responses of the thermosphere to geomagnetic disturbances. The Air Force/SETA accelerometer data have also been processed, but the analysis is more complicated due to data gaps. Significant and unambiguous TAD activity in the observed response of the thermosphere was detected for about 25 events with CHAMP and GRACE, and less than 10 with SETA. The atmospheric variability is evaluated by de-trending the data, allowing the extraction of specific ranges in horizontal scale, and analyzing density "residuals". The scale of the perturbation is decisive for its lifetime and relative amplitude. Sometimes the disturbances represent wave-like structures propagating far from the source, and these so-called ‘TADs' were detected and described for the May 2003 storm for the first time. Some TADs traveled over the pole into the opposite hemisphere; this was found in both CHAMP and GRACE data. Most TADs propagate equatorward, but poleward propagating TADs have on occasion been detected too. The estimated speeds and amplitudes of the observed TADs, and their dependence on altitude and solar and geomagnetic activity in particular, will be presented in this poster.

  16. Low-Altitude Magnetic Topology with MAVEN SWEA and MAG

    Science.gov (United States)

    Mitchell, David; Xu, Shaosui; Mazelle, Christian; Luhmann, Janet; McFadden, James; Connerney, John; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew

    2016-04-01

    The Solar Wind Electron Analyzer (SWEA) and Magnetometer (MAG) onboard the MAVEN spacecraft measure electron pitch angle and energy distributions at 2-second resolution (~8 km along the orbit track) to determine the topology of magnetic fields from both external and crustal sources. Electrons from different regions of the Mars environment can be distinguished by their energy distributions. Thus, pitch angle resolved energy spectra can be used to determine the plasma source regions sampled by a field line at large distances from the spacecraft. From 12/1/2014 to 2/15/2015, when periapsis was at high northern latitudes, SWEA observed ionospheric photoelectrons at low altitudes (140-200 km) and high solar zenith angles (120-145 degrees) on ~35% of the orbits. Since this electron population is unambiguously produced in the dayside ionosphere, these observations demonstrate that the deep Martian nightside is at times magnetically connected to the sunlit hemisphere. The BATS-R-US Mars multi-fluid MHD model suggests the presence of closed crustal magnetic field lines over the northern hemisphere that straddle the terminator and extend to high SZA. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron transport along such field lines can take place without significant attenuation. Precipitation of photoelectrons onto the night-side atmosphere should cause ionization and possibly auroral emissions in localized regions. On one orbit, the O2+ energy flux measured by STATIC correlates well with precipitating photoelectron fluxes.

  17. BLOCKING SUN WITH ORBITING BALLOONS

    Energy Technology Data Exchange (ETDEWEB)

    Chul Park [Department of Aerospace Engineering, Kor ea Advanced Institute of Science and Technology, Daejeon (Korea)

    2008-09-30

    Sun's radiation power reaching Earth's surface can be reduced by letting large balloons circle the Earth in orbits at approximately 1000 km altitude. These balloons, made of plastic films 1 mm in thickness, of a diameter of approximately 46 km, will weigh about 10,000 tons each. A balloon will consist of one hundred of 100 ton pieces. They are transported to the orbit piece by piece, and are assembled there into the spherical shape. They are kept inflated with the vapor pressure of potassium and the electrostatic forces. The inclination angles of these balloons with respect to the solar ecliptic plane can be varied from zero to 90 degrees, although efficiency is highest with the zero degree inclination. If zero degree inclination is chosen, twenty-three of these will reduce the average sun's radiation by 0.01%. In the 1000 km orbits, which are stable and are populated only by space debris, these balloons will serve also to remove the debris.

  18. Recolliding orbits in an intense laser field

    CERN Document Server

    Kamor, Adam; Chandre, Cristel; UZer, Turgay

    2013-01-01

    We show that a family of key periodic orbits drive the recollision process in a strong circulary polarized laser field. These orbits, coined recolliding periodic orbits, exist for a wide range of parameters and their relative influence changes as the laser and atomic parameters are varied. We find the necessary conditions for recollision-driven nonsequential double ionization to occur. The outlined mechanism is universal in that it applies equally well beyond atoms: The internal structure of the target species plays a minor role in the recollision process.

  19. POLAR Investigation of the Sun - POLARIS

    CERN Document Server

    Appourchaux, T; Watt, M; Alexander, D; Andretta, V; Auchere, F; D'Arrigo, P; Ayon, J; Corbard, T; Fineschi, S; Finsterle, W; Floyd, L; Garbe, G; Gizon, L; Hassler, D; Harra, L; Kosovichev, A; Leibacher, J; Leipold, M; Murphy, N; Maksimovic, M; Martínez-Pillet, V; Matthews, B S A; Mewaldt, R; Moses, D; Newmark, J; Régnier, S; Schmutz, W; Socker, D; Spadaro, D; Stuttard, M; Trosseille, C; Ulrich, R; Velli, M; Vourlidas, A; Wimmer-Schweingruber, C R; Zurbuchen, T

    2008-01-01

    The POLAR Investigation of the Sun (POLARIS) mission uses a combination of a gravity assist and solar sail propulsion to place a spacecraft in a 0.48 AU circular orbit around the Sun with an inclination of 75 degrees with respect to solar equator. This challenging orbit is made possible by the challenging development of solar sail propulsion. This first extended view of the high-latitude regions of the Sun will enable crucial observations not possible from the ecliptic viewpoint or from Solar Orbiter. While Solar Orbiter would give the first glimpse of the high latitude magnetic field and flows to probe the solar dynamo, it does not have sufficient viewing of the polar regions to achieve POLARIS' primary objective : determining the relation between the magnetism and dynamics of the Sun's polar regions and the solar cycle.

  20. ACCELERATING POLARIZED PROTONS TO 250 GEV

    Energy Technology Data Exchange (ETDEWEB)

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  1. Updates in Orbital Tumors

    Institute of Scientific and Technical Information of China (English)

    Nila; F.Moeloek

    1993-01-01

    Orbital anatomy, the clinical features of orbital tumors, the recent development of the diagnosis and management of orbital tumors were described. The incidence of orbital tumors in Dr. Cipto Mangunkusumo Hospital in the past years were introduced. The principle of management of orbital tumors and their prognosis were discussed.

  2. Small Orbits

    CERN Document Server

    Borsten, L; Ferrara, S; Marrani, A; Rubens, W

    2012-01-01

    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.

  3. [Sildenafil and exercise performance at altitude].

    Science.gov (United States)

    Peidro, Roberto M

    2015-01-01

    Barometric pressure and partial oxygen pressure decrease with increasing altitude. Hypobaric hypoxia produced is responsible for altitude-related diseases and it can cause severe decrements in exercise performance. The physiological adaptations to the altitude are multiple and they contribute to alter different athletic qualities. The VO2 worsening could be associated to increased pulmonary vascular resistance and nitric oxide diffusion alteration. Performance impairments at altitude can also be accentuated by hypoxia-induced elevations in pulmonary arterial pressure. Clinical studies have demonstrated the beneficial effects of sildenafil on the treatment of pulmonary hypertension. These effects have led to suggest that its indication for competitions at altitude might improve athletic performance. The investigations demonstrate different results depending on the altitude level and times and intensities of exercise. Some studies show performance improvements, although not in all participants. Individual responses vary widely between different athletes. This presentation examines the effects of altitude on exercise capacity and shows studies about the use of sildenafil to improve sport performance. This text also discusses the possible side effects and implications for the use of sildenafil in athletes, indication that is not the basic one of the drug. The physicians must know in each athlete the individual sildenafil side effects that could arise and that would influence negatively on health and performance. PMID:26339884

  4. Field-aligned currents in the dayside cusp and polar cap region during northward IMF

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Olsen, Nils;

    2002-01-01

    [1] The field-aligned currents in the dayside cusp and polar cap region are examined using magnetic data from the low-altitude polar-orbiting satellite Orsted. The study is confined to cases where the interplanetary magnetic field (IMF) has a steady northward component and to a rather narrow region...... spanning similar to 4 hours around magnetic noon. We examine individual passes using a maximum variance analysis method, and we complement, for a single event, with ground-based data from the Greenland meridian chain of magnetometers. We suggest that when an east-west component B-y of the IMF exists...... for positive IMF B-z, the two NBZ (northward B-z) field-aligned currents that prevail over the polar region rotate to form the two field-aligned currents equatorward and poleward of the east-west flowing ionospheric DPY current in the dayside. The high accuracy of the Orsted data makes it possible to uncover...

  5. Polarization, political

    NARCIS (Netherlands)

    M. Wojcieszak

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass pol

  6. Idiopathic sclerosing orbital inflammation

    NARCIS (Netherlands)

    J.D. Hsuan; D. Selva; A.A. McNab; T.J. Sullivan; P. Saeed; B.A. O'Donnell

    2006-01-01

    Objective: To perform a multicenter review of the clinical features and treatment of 31 patients with idiopathic sclerosing orbital inflammation. Methods: We included all patients with histologically confirmed idiopathic sclerosing orbital inflammation from 5 regional orbital centers. We reviewed th

  7. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication and...... characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  8. Saturn's Polar Atmosphere

    CERN Document Server

    Sayanagi, Kunio M; Dyudina, Ulyana A; Fletcher, Leigh N; Sánchez-Lavega, Agustin; West, Robert A

    2016-01-01

    This book chapter, Saturn's Polar Atmosphere, is to be published by Cambridge University Press as part of a multi-volume work edited by Kevin Baines, Michael Flasar, Norbert Krupp, and Thomas Stallard, entitled "Saturn in the 21st Century." This chapter reviews the state of our knowledge about Saturn's polar atmosphere that has been revealed through Earth- and space-based observation as well as theoretical and numerical modeling. In particular, the Cassini mission to Saturn, which has been in orbit around the ringed planet since 2004, has revolutionized our understanding of the planet. The current review updates a previous review by Del Genio et al (2009; Saturn Atmospheric Structure and Dynamics, Chapter 7 of "Saturn from Cassini-Huygens"), written after Cassini's primary mission phase that ended in 2008, by focusing on the north polar region of Saturn and comparing it to the southern high latitudes. Two prominent features in the northern high latitudes are the northern hexagon and the north polar vortex; we...

  9. Generation and detection of orbital angular momentum via metasurface

    OpenAIRE

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes a...

  10. Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    OpenAIRE

    Manni, Francesco; Lagoudakis, Konstantinos G.; Paraïso, Taofiq; Cerna, Roland; Léger, Yoan; Liew, Timothy Chi Hin; Shelykh, Ivan; Kavokin, Alexey V.; Morier-Genoud, François; Deveaud-Plédran, Benoît

    2011-01-01

    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems with no structural gyrotropy, semiconductor microcavities, because of the transverse-electric–transverse-magnetic polarization splitting that they feature, allow for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The proce...

  11. Achromatic orbital angular momentum generator

    International Nuclear Information System (INIS)

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed. (paper)

  12. Launch in orbit of the NINA-2 apparatus aboard the satellite MITA

    Science.gov (United States)

    Casolino, M.; NINA-2 Collaboration

    2001-08-01

    The satellite MITA was launched on July the 15th , 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. MITA carries the payload NINA-2 for the study of solar and galactic cosmic rays. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840 km sunsynchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. The scientific objectives of NINA are the study of cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin as well as the trapped component. In this work we present preliminary results concerning particle identification capabilities and nuclear differential spectra for helium, carbon and oxygen in the energy range between 10 and 50 MeV/n.

  13. Targeting Low-Energy Transfers to Low Lunar Orbit

    Science.gov (United States)

    Parker, Jeffrey S.; Anderson, Rodney L.

    2011-01-01

    A targeting scheme is presented to build trajectories from a specified Earth parking orbit to a specified low lunar orbit via a low-energy transfer and up to two maneuvers. The total transfer delta V (velocity) is characterized as a function of the Earth parking orbit inclination and the departure date for transfers to each given low lunar orbit. The transfer delta V (velocity) cost is characterized for transfers constructed to low lunar polar orbits with any longitude of ascending node and for transfers that arrive at the Moon at any given time during a month.

  14. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  15. A gloss of Chronic Hypoxia in normal and diseased individuals at high altitude

    Institute of Scientific and Technical Information of China (English)

    Zubieta-Castillo,G.; Zubieta-Calleja,G.R.; Zubieta-Calleja L.

    2004-01-01

    @@ Introduction Millenary populations that live at high altitude in different continents like Asia (1) and South America (8), have endured biological adaptation in very adverse environmental conditions, of which to our understanding, paradoxically, chronic hypoxia is the most tolerable. Patients with pulmonary diseases at high altitude tolerate tissue hypoxia with an arterial tension (PaO2) even as low as 30 mmHg. Current scientific knowledge has made progress in many areas, clarifying many doubts, however due to preconception and lack of broad social studies chronic hypoxia is still not fully understood. Beings that inhabit different areas of the planet earth have lived under a variety of different hostile conditions: intense cold in the polar regions,intense heat in Africa and in the Middle East desserts,great pressure in the depth of the oceans, intense darkness of the caves and naturally the hypoxia of extreme altitudes.

  16. Python Engine Installed in Altitude Wind Tunnel

    Science.gov (United States)

    1949-01-01

    An engine mechanic checks instrumentation prior to an investigation of engine operating characteristics and thrust control of a large turboprop engine with counter-rotating propellers under high-altitude flight conditions in the 20-foot-dianieter test section of the Altitude Wind Tunnel at the Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics, Cleveland, Ohio, now known as the John H. Glenn Research Center at Lewis Field.

  17. Reconstructing the orbit of the Chelyabinsk meteor using satellite observations

    DEFF Research Database (Denmark)

    Proud, Simon Richard

    2013-01-01

    The large number of objects in a range of orbits around the Sun means that some will inevitably intersect the Earth, becoming a meteor. These objects are commonly comet fragments or asteroids. To determine the type of a particular meteor requires knowledge of its trajectory and orbital path...... useful in areas where ground-based observations are sparse. Key Points Global satellite coverage allows rapid analysis of meteors Cloud/trail altitude can be determined by satellite Remote sensing data can be used to reconstruct meteor orbital elements ©2013. American Geophysical Union. All Rights...

  18. Parton Distributions and Spin-Orbital Correlations

    International Nuclear Information System (INIS)

    In this talk, I summarize a recent study showing that the large-x parton distributions contain important information on the quark orbital angular momentum of nucleon. This contribution could explain the conflict between the experimental data and the theory predictions for the polarized quark distributions. Future experiments at JLab shall provide further test for our predictions

  19. Child health and living at high altitude.

    Science.gov (United States)

    Niermeyer, S; Andrade Mollinedo, P; Huicho, L

    2009-10-01

    The health of children born and living at high altitude is shaped not only by the low-oxygen environment, but also by population ancestry and sociocultural determinants. High altitude and the corresponding reduction in oxygen delivery during pregnancy result in lower birth weight with higher elevation. Children living at high elevations are at special risk for hypoxaemia during infancy and during acute lower respiratory infection, symptomatic high-altitude pulmonary hypertension, persistence of fetal vascular connections, and re-entry high-altitude pulmonary oedema. However, child health varies from one population group to another due to genetic adaptation as well as factors such as nutrition, intercurrent infection, exposure to pollutants and toxins, socioeconomic status, and access to medical care. Awareness of the risks uniquely associated with living at high altitude and monitoring of key health indicators can help protect the health of children at high altitude. These considerations should be incorporated into the scaling-up of effective interventions for improving global child health and survival. PMID:19066173

  20. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  1. S-band transponder experiment. [measurement of lunar gravitational field during orbit of Apollo 17 spacecraft

    Science.gov (United States)

    Sjogren, W. L.; Wollenhaupt, W. R.; Wimberly, R. N.

    1973-01-01

    The purpose of this experiment was to measure the variations in the lunar gravitational field near the trajectory of orbiting space vehicles (the command and service module (CSM) and the small particles and fields subsatellites ejected from the Apollo 15 and 16 spacecraft). New information has been obtained from all Apollo orbiting spacecraft; however, this report shall be limited to the results from the Apollo 17 CSM and the Apollo 16 subsatellite. The data acquired are precise speed measurements of the orbiting spacecraft from which accelerations or gravity profiles may be inferred. Feature resolution is controlled by the spacecraft altitude and is almost a direct relationship (i.e., data taken from a 50-km altitude will resolve approximately a 50-km feature). Therefore, revolutions 3 to 12, when the CSM was in the low-altitude orbits, provided the clearest information.

  2. Mars orbiter redirected in bid to find Beagle

    CERN Multimedia

    2003-01-01

    "Mission controllers in Darmstadt, Germany, have successfully redirected Europe's Mars Express orbiter into a polar orbit, putting it on course for a last-ditch attempt to contact Beagle 2, the lander that has been missing since Christmas day when it should have touched down on the red planet" (1/2 page).

  3. Hermes Global Orbiter: A Discovery Mission in Gestation

    Science.gov (United States)

    Nelson, R. M.; Horn, L. J.; Weiss, J. R.; Smythe, W. D.

    1994-01-01

    The hermes Global Orbiter (HGO) is a Discovery class mission under study, which is investigating the possibility of placing a small spacecraft in highly elliptical polar orbit about mercury. The purpose of the mission is to conduct observations of the planet's surface, atmosphere and magnetosphere.

  4. Physiological aspects of altitude training and the use of altitude simulators

    Directory of Open Access Journals (Sweden)

    Ranković Goran

    2005-01-01

    Full Text Available Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training, live low and train high (training through hypoxia, and live high and train low (the new trend. In an effort to reduce the financial and logistical challenges of traveling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters. Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarized.

  5. Orbit Determination Toolbox

    Science.gov (United States)

    Carpenter, James R.; Berry, Kevin; Gregpru. Late; Speckman, Keith; Hur-Diaz, Sun; Surka, Derek; Gaylor, Dave

    2010-01-01

    The Orbit Determination Toolbox is an orbit determination (OD) analysis tool based on MATLAB and Java that provides a flexible way to do early mission analysis. The toolbox is primarily intended for advanced mission analysis such as might be performed in concept exploration, proposal, early design phase, or rapid design center environments. The emphasis is on flexibility, but it has enough fidelity to produce credible results. Insight into all flight dynamics source code is provided. MATLAB is the primary user interface and is used for piecing together measurement and dynamic models. The Java Astrodynamics Toolbox is used as an engine for things that might be slow or inefficient in MATLAB, such as high-fidelity trajectory propagation, lunar and planetary ephemeris look-ups, precession, nutation, polar motion calculations, ephemeris file parsing, and the like. The primary analysis functions are sequential filter/smoother and batch least-squares commands that incorporate Monte-Carlo data simulation, linear covariance analysis, measurement processing, and plotting capabilities at the generic level. These functions have a user interface that is based on that of the MATLAB ODE suite. To perform a specific analysis, users write MATLAB functions that implement truth and design system models. The user provides his or her models as inputs to the filter commands. The software provides a capability to publish and subscribe to a software bus that is compliant with the NASA Goddard Mission Services Evolution Center (GMSEC) standards, to exchange data with other flight dynamics tools to simplify the flight dynamics design cycle. Using the publish and subscribe approach allows for analysts in a rapid design center environment to seamlessly incorporate changes in spacecraft and mission design into navigation analysis and vice versa.

  6. Correlation of Lunar South Polar Epithermal Neutron Maps: Lunar Exploration Neutron Detector and Lunar Prospector Neutron Detector

    Science.gov (United States)

    McClanahan, Timothy P.; Mitrofanov, I. G.; Boynton, W. V.; Sagdeev, R.; Trombka, J. I.; Starr, R. D.; Evans, L. G.; Litvak, M. L.; Chin, G.; Garvin, J.; Sanin, A. B.; Malakhov, A.; Milikh, G. M.; Harshman, K.; Finch, M. J.; Nandikotkur, G.

    2010-01-01

    The Lunar Reconnaissance Orbiter's (LRO), Lunar Exploration Neutron Detector (LEND) was developed to refine the lunar surface hydrogen (H) measurements generated by the Lunar Prospector Neutron Spectrometer. LPNS measurements indicated a approx.4,6% decrease in polar epithermal fluxes equivalent to (1.5+/-0,8)% H concentration and are direct geochemical evidence indicating water /high H at the poles. Given the similar operational and instrumental objectives of the LEND and LPNS systems, an important science analysis step for LEND is to test correlation with existing research including LPNS measurements. In this analysis, we compare corrected low altitude epithermal rate data from LPNS available via NASA's Planetary Data System (PDS) with calibrated LEND epithermal maps using a cross-correlation technique

  7. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.;

    2012-01-01

    The internal energy flow in a light beam can be divided into the "orbital" and "spin" parts, associated with the spatial and polarization degrees of freedom of light. In contrast to the orbital one, experimental observation of the spin flow seems problematic because it is converted into an orbita...

  8. DKIST Polarization Modeling and Performance Predictions

    Science.gov (United States)

    Harrington, David

    2016-05-01

    Calibrating the Mueller matrices of large aperture telescopes and associated coude instrumentation requires astronomical sources and several modeling assumptions to predict the behavior of the system polarization with field of view, altitude, azimuth and wavelength. The Daniel K Inouye Solar Telescope (DKIST) polarimetric instrumentation requires very high accuracy calibration of a complex coude path with an off-axis f/2 primary mirror, time dependent optical configurations and substantial field of view. Polarization predictions across a diversity of optical configurations, tracking scenarios, slit geometries and vendor coating formulations are critical to both construction and contined operations efforts. Recent daytime sky based polarization calibrations of the 4m AEOS telescope and HiVIS spectropolarimeter on Haleakala have provided system Mueller matrices over full telescope articulation for a 15-reflection coude system. AEOS and HiVIS are a DKIST analog with a many-fold coude optical feed and similar mirror coatings creating 100% polarization cross-talk with altitude, azimuth and wavelength. Polarization modeling predictions using Zemax have successfully matched the altitude-azimuth-wavelength dependence on HiVIS with the few percent amplitude limitations of several instrument artifacts. Polarization predictions for coude beam paths depend greatly on modeling the angle-of-incidence dependences in powered optics and the mirror coating formulations. A 6 month HiVIS daytime sky calibration plan has been analyzed for accuracy under a wide range of sky conditions and data analysis algorithms. Predictions of polarimetric performance for the DKIST first-light instrumentation suite have been created under a range of configurations. These new modeling tools and polarization predictions have substantial impact for the design, fabrication and calibration process in the presence of manufacturing issues, science use-case requirements and ultimate system calibration

  9. Neutral Wind Observations below 200 km altitudes

    Science.gov (United States)

    Watanabe, S.; Abe, T.; Habu, H.; Kakinami, Y.; Larsen, M. F.; Pfaff, R. F., Jr.; Yamamoto, M.

    2015-12-01

    Neutral Wind Observations below 200 km altitudesS. Watanabe1, T. Abe2, H. Habu2, Y. Kakinami3, M. Larsen4, R. Pfaff5, M. Yamamoto6, M-Y. Yamamoto31Hokkaido University/Hokkaido Information University, 2JAXA/ISAS, 3Kochi University of Technology, 4Clemson University, 5NASA/Goddard Space Flight Center, 6Kyoto University, Neutral wind in the thermosphere is one of the key parameters to understand the ionosphere-thermosphere coupling process. JAXA/ISAS successfully launched sounding rockets from Uchinoura Space Center (USC) on September 2, 2007, January 12, 2012, and July 20, 2013, and NASA launched sounding rockets from Kwajalein on May 7, 2013 and from Wallops on July 4, 2013. The rockets installed Lithium and/or TMA canisters as well as instruments for plasma and electric and magnetic fields. The atomic Lithium gases were released at altitudes between 150 km and 300 km in the evening on September 2, 2007, at altitude of ~100 km in the morning on January 12, 2012, at altitude of ~120km in the midnight on July 20, 2013, at altitude between 150 km and 300 km in the evening on May 7, 2013 and at altitude of ~150 km in the noon on July 4, 2013. The Lithium atoms were scattering sunlight by resonance scattering with wavelength of 670nm. However, the Lithium atoms scattered moon light on July 20, 2013. The moon light scattering is the first time to use for thermospheric wind measurement in the midnight. The Lithium clouds/trails and TMA trails showed clearly the neutral wind shears and atmospheric waves at ~150 km altitude in the lower thermosphere for all local time.

  10. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  11. Generation and detection of orbital angular momentum via metasurface

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  12. Generation and detection of orbital angular momentum via metasurface.

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-04-07

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device.

  13. Arbitrary optical wavefront shaping via spin-to-orbit coupling

    CERN Document Server

    Larocque, Hugo; Bouchard, Frédéric; Fickler, Robert; Upham, Jeremy; Boyd, Robert W; Karimi, Ebrahim

    2016-01-01

    Converting spin angular momentum to orbital angular momentum has been shown to be a practical and efficient method for generating optical beams carrying orbital angular momentum and possessing a space-varying polarized field. Here, we present novel liquid crystal devices for tailoring the wavefront of optical beams through the Pancharatnam-Berry phase concept. We demonstrate the versatility of these devices by generating an extensive range of optical beams such as beams carrying $\\pm200$ units of orbital angular momentum along with Bessel, Airy and Ince-Gauss beams. We characterize both the phase and the polarization properties of the generated beams, confirming our devices' performance.

  14. Generation and detection of orbital angular momentum via metasurface.

    Science.gov (United States)

    Jin, Jinjin; Luo, Jun; Zhang, Xiaohu; Gao, Hui; Li, Xiong; Pu, Mingbo; Gao, Ping; Zhao, Zeyu; Luo, Xiangang

    2016-01-01

    Beams carrying orbital angular momentum possess a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. In this paper, we theoretically design and experimentally demonstrate an ultracompact array of elliptical nanoholes, which could convert the circularly polarized light into the cross-polarized vortex beam. To measure the topological charges of orbital angular momentum in a simple manner, another elliptical nanoholes array is designed to generate reference beam as a reference light. This approach may provide a new way for the generation and detection of orbital angular momentum in a compact device. PMID:27052796

  15. Patients with Obstructive Sleep Apnea at Altitude.

    Science.gov (United States)

    Bloch, Konrad E; Latshang, Tsogyal D; Ulrich, Silvia

    2015-06-01

    Bloch, Konrad E., Tsogyal D. Latshang, and Silvia Ulrich. Patients with obstructive sleep apnea at altitude. High Alt Med Biol 16:110-116, 2015.--Obstructive sleep apnea (OSA) is highly prevalent in the general population, in particular in men and women of older age. In OSA patients sleeping near sea level, the apneas/hypopneas associated with intermittent hypoxemia are predominantly due to upper airway collapse. When OSA patients stay at altitudes above 1600 m, corresponding to that of many tourist destinations, hypobaric hypoxia promotes frequent central apneas in addition to obstructive events, resulting in combined intermittent and sustained hypoxia. This induces strong sympathetic activation with elevated heart rate, cardiac arrhythmia, and systemic hypertension. There are concerns that these changes expose susceptible OSA patients, in particular those with advanced age and co-morbidities, to an excessive risk of cardiovascular and other adverse events during a stay at altitude. Based on data from randomized trials, it seems advisable for OSA patients to use continuous positive airway pressure treatment with computer controlled mask pressure adjustment (autoCPAP) in combination with acetazolamide during an altitude sojourn. If CPAP therapy is not feasible, acetazolamide alone is better than no treatment at all, as it improves oxygenation and sleep apnea and prevents excessive blood pressure rises of OSA patients at altitude. PMID:25973669

  16. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  17. Responses of the autonomic nervous system in altitude adapted and high altitude pulmonary oedema subjects

    Science.gov (United States)

    Mathew, Lazar; Purkayastha, S. S.; Jayashankar, A.; Radhakrishnan, U.; Sen Gupta, J.; Nayar, H. S.

    1985-06-01

    Studies were carried out to ascertain the role of sympatho-parasympathetic responses in the process of adaptation to altitude. The assessment of status of autonomic balance was carried out in a group of 20 young male subjects by recording their resting heart rate, blood pressure, oral temperature, mean skin temperature, extremity temperatures, pupillary diameter, cold pressor response, oxygen consumption, cardioacceleration during orthostasis and urinary excretion of catecholamines; in a thermoneutral laboratory. The same parameters were repeated on day 3 and at weekly intervals for a period of 3 weeks, after exposing them to 3,500 m; and also after return to sea level. At altitude, similar studies were carried out in a group of 10 acclimatized lowlanders, 10 high altitude natives and 6 patients who had recently recovered from high altitude pulmonary oedema. In another phase, similar studies were done in two groups of subjects, one representing 15 subjects who had stayed at altitude (3,500 4,000 m) without any ill effects and the other comprising of 10 subjects who had either suffered from high altitude pulmonary oedema (HAPO) or acute mountain sickness (AMS). The results revealed sympathetic overactivity on acute induction to altitude which showed gradual recovery on prolonged stay, the high altitude natives had preponderance to parasympathetic system. Sympathetic preponderance may not be an essential etiological factor for the causation of maladaptation syndromes.

  18. Estimation of Orbital Neutron Detector Spatial Resolution by Systematic Shifting of Differential Topographic Masks

    Science.gov (United States)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.

    2012-01-01

    We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.

  19. Modeling galactic cosmic rays at lunar orbit

    Science.gov (United States)

    Huang, Chia-Lin; Spence, Harlan; Kress, Brian; Shepherd, Simon

    High-energy particles such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs) have sufficient kinetic energy to produce undesirable biological effects in astronauts as well as environmental effects on spacecraft electronic systems. In low Earth orbit, such radiation effects are minimized owing to the strong geomagnetic cutoff from Earth's internal magnetic field. However, the risks increase at higher altitudes wherever shielding magnetic fields are weak, including at lunar orbit. In order to prepare for future robotic and human exploration on the Moon, characterizing the lunar radiation environment is essential. Because GCRs and SEPs are charged particles with large gyroradii, their trajectories are governed by magnetic fields present on large size scales. For example, at lunar orbit, both the external interplanetary magnetic field and Earth's internally complex magnetosphere could alter the energetic particle flux. We combine an empirical magnetic field model of Earth's magnetosphere with a fullyrelativistic charged particle trajectory code to model the access of GCRs and SEPs to the lunar surface. We follow ions with energies above 10 MeV/nucleon starting from an isotropic spatial distribution in interplanetary space and calculate particle flux in the different regions of the solar wind-magnetosphere system through which the Moon orbits. Finally, we determine the extent of magnetospheric shielding at the Moon as a function of incident particle energy and lunar position. These simulation results will eventually be compared to data from NASA's Lunar Reconnaissance Orbiter "Cosmic Ray Telescope for the Effects of Radiation" instrument after its launch in late 2008.

  20. Sleep of Andean high altitude natives.

    Science.gov (United States)

    Coote, J H; Stone, B M; Tsang, G

    1992-01-01

    The structure of sleep in lowland visitors to altitudes greater than 4000 m is grossly disturbed. There are no data on sleep in long-term residents of high altitudes. This paper describes an electroencephalographic study of sleep in high altitude dwellers who were born in and are permanent residents of Cerro de Pasco in the Peruvian Andes, situated at 4330 m. Eight healthy male volunteers aged between 18 and 69 years were studied. Sleep was measured on three consecutive nights for each subject. Electroencephalographs, submental electromyographs and electro-oculograms were recorded. Only data from the third night were used in the analysis. The sleep patterns of these subjects resembled the normal sleep patterns described by others in lowlanders at sea level. There were significant amounts of slow wave sleep in the younger subjects and rapid eye movement sleep seemed unimpaired.

  1. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity.

    In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  2. Correlation effects and orbital magnetism of Co clusters

    CERN Document Server

    Di Marco, L Peters I; Şaşıoğlu, E; Altun, A; Rossen, S; Friedrich, C; Blügel, S; Katsnelson, M I; Kirilyuk, A; Eriksson, O

    2016-01-01

    Recent experiments on isolated Co clusters have shown huge orbital magnetic moments in comparison with their bulk and surface counterparts. These clusters hence provide the unique possibility to study the evolution of the orbital magnetic moment with respect to the cluster size and how competing interactions contribute to the quenching of orbital magnetism. We investigate here different theoretical methods to calculate the spin and orbital moments of Co clusters, and assess the performances of the methods in comparison with experiments. It is shown that density functional theory in conventional local density or generalized gradient approximations, or even with a hybrid functional, severely underestimates the orbital moment. As natural extensions/corrections we considered the orbital polarization correction, the LDA+U approximation as well as the LDA+DMFT method. Our theory shows that of the considered methods, only the LDA+DMFT method provides orbital moments in agreement with experiment, thus emphasizing the...

  3. Entanglement of Vector-Polarization States of Photons

    CERN Document Server

    Kong, Ling-Jun; Si, Yu; Liu, Rui; Wang, Zhou-Xiang; Tu, Chenghou; Wang, Hui-Tian

    2015-01-01

    Photons may have homogeneous polarization and may carry quantized orbital angular momentum (OAM). Photon entanglement has been realized in various degrees of freedom such as polarization and OAM. Using a pair of orthogonally polarized states carrying opposite-handedness quantized OAMs could create "quantized" vector polarization states with space-variant polarization structures. It is thus possible to extend the polarization degree of freedom from two dimensional space to indefinite dimensional discrete Hilbert space. We present a class of vector-polarization entangled Bell states, which use the spatial modes of the vector fields with space-variant polarization structure. We propose a scheme of creating the vector-polarization entangled Bell states using a Sagnac interferometer. We also design an analyzer for identifying the vector-polarization entangled Bell states. Such a class of entanglement is important for quantum information science and technology, and fundamental issues of quantum theory, due to its a...

  4. Orbital transfer and release of tethered payloads. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers Martinez-Sanchez, Manuel

    Science.gov (United States)

    Colombo, G.; Grossi, M. D.; Arnold, D.

    1983-01-01

    The effect of reeling operations on the orbital altitude of the tether system and the development of control laws to minimize tether rebound upon payload release were studied. The use of the tether for LEO/GEO payload orbital transfer was also investigated. It was concluded that (1) reeling operations can contribute a significant amount of energy to the orbit of the system and should be considered in orbit calculations and predictions, (2) deployment of payloads, even very large payloads, using tethers is a practical and fully stable operation, (3) tether augmented LEO/GEO transfer operations yield useful payload gains under the practical constraint of fixed size OTV's, and (4) orbit to orbit satellite retrieval is limited by useful revisit times to orbital inclinations of less than forty-five degrees.

  5. Alternative Paths for Insertion of Probes in High Inclination Lunar Orbits

    Science.gov (United States)

    de Melo, C. F.; Winter, O. C.

    The dynamics of the circular planar restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1 From these orbits derive a group of paths that form links between the Earth and the Moon Moreover they are capable of carrying out transfers between terrestrial and lunar orbits of low altitudes When we considered more complex dynamical systems such as the three-dimensional full four-body Sun-Earth-Moon-probe problem which takes into account besides other factors the inclination of the orbit of the Moon these paths leaving terrestrial orbits of low altitudes LEO gain inclination when they penetrate in the sphere of lunar influence allowing the insertion of probes in lunar orbits of high inclinations and low altitudes We studied this property giving emphasis to two types of transfer maneuvers Firstly we investigated direct transfers by inserting probes in lunar orbits with inclinations varying between 29 o and 42 o Next we investigated directed transfers with the application of a Delta V along of the trajectory in order to lead the probe into lunar orbits with inclinations between 0 o and 180 o The results allowed the definition of a group of paths capable of carrying out Earth-moon transfers with flight time between 13 and 16 days with relatively low costs

  6. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  7. High-altitude physiology: lessons from Tibet

    Science.gov (United States)

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (Pcardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  8. Dietary Recommendations for Cyclists during Altitude Training

    Directory of Open Access Journals (Sweden)

    Małgorzata Michalczyk

    2016-06-01

    Full Text Available The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH, “live high, train low” (LH-TL or “intermittent hypoxic training” (IHT. Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  9. Dietary Recommendations for Cyclists during Altitude Training.

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-01-01

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented. PMID:27322318

  10. Time-domain inspiral templates for spinning compact binaries in quasi-circular orbits described by their orbital angular momenta

    International Nuclear Information System (INIS)

    We present a prescription to compute the time-domain gravitational wave (GW) polarization states associated with spinning compact binaries inspiraling along quasi-circular orbits. We invoke the orbital angular momentum L rather than its Newtonian counterpart LN to describe the binary orbits while the two spin vectors are freely specified in an inertial frame associated with the initial direction of the total angular momentum. We show that the use of L to describe the orbits leads to additional 1.5PN order amplitude contributions to the two GW polarization states compared to the LN-based approach and discuss few implications of our approach. Furthermore, we provide a plausible prescription for GW phasing based on certain theoretical considerations and which may be treated as the natural circular limit to GW phasing for spinning compact binaries in inspiraling eccentric orbits (Gopakumar A and Schäfer G 2011 Phys. Rev. D 84 124007). (paper)

  11. Polarized Spinoptics and Symplectic Physics

    CERN Document Server

    Duval, Christian

    2013-01-01

    We recall the groundwork of spinoptics based on the coadjoint orbits, of given color and spin, of the group of isometries of Euclidean three-space; this model has originally been put forward by Souriau in his treatise "Structure des Syst\\'emes Dynamiques", whose manuscript was initially entitled "Physique symplectique". We then set up a model of polarized spinoptics, namely an extension of geometrical optics accounting for elliptically polarized light rays in terms of a certain fibre bundle associated with the bundle of Euclidean frames of a given Riemannian three-manifold. The characteristic foliation of a natural presymplectic two-form introduced on this bundle via the Ansatz of minimal coupling is determined, yielding a set of differential equations governing the trajectory of light, as well as the evolution of polarization in this Riemannian manifold. Those equations, when specialized to the Fermat metric (for a slowly varying refractive index), enable us to recover, and justify, a set of differential equ...

  12. ASC Champ Orbit Model

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    This documents describes a test of the implementation of the ASC orbit model for the Champ satellite.......This documents describes a test of the implementation of the ASC orbit model for the Champ satellite....

  13. Lunar Orbiter Photo Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  14. Local orbitals in electron scattering calculations*

    Science.gov (United States)

    Winstead, Carl L.; McKoy, Vincent

    2016-05-01

    We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  15. Preliminary Analysis of Delta-V Requirements for a Lunar CubeSat Impactor with Deployment Altitude Variations

    Science.gov (United States)

    Song, Young-Joo; Ho, Jin; Kim, Bang-Yeop

    2015-09-01

    Characteristics of delta-V requirements for deploying an impactor from a mother-ship at different orbital altitudes are analyzed in order to prepare for a future lunar CubeSat impactor mission. A mother-ship is assumed to be orbiting the moon with a circular orbit at a 90 deg inclination and having 50, 100, 150, 200 km altitudes. Critical design parameters that are directly related to the success of the impactor mission are also analyzed including deploy directions, CubeSat flight time, impact velocity, and associated impact angles. Based on derived delta-V requirements, required thruster burn time and fuel mass are analyzed by adapting four different miniaturized commercial onboard thrusters currently developed for CubeSat applications. As a result, CubeSat impact trajectories as well as thruster burn characteristics deployed at different orbital altitudes are found to satisfy the mission objectives. It is concluded that thrust burn time should considered as the more critical design parameter than the required fuel mass when deducing the onboard propulsion system requirements. Results provided through this work will be helpful in further detailed system definition and design activities for future lunar missions with a CubeSat-based payload.

  16. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  17. Can aneroid sphygmomanometers be used at altitude?

    Science.gov (United States)

    Kametas, N A; McAuliffe, F; Krampl, E; Nicolaides, K H; Shennan, A H

    2006-07-01

    Mercury-independent devices are increasingly being used in clinical practice as mercury will soon be removed from clinical use as a result of environmental, health and safety concerns. The aim of this study was to evaluate the accuracy of a portable aneroid device in an adult population at high altitude by following the part of the protocol of the British Hypertension Society regarding comparison between device and observer. We examined 10 subjects in Cerro de Pasco, Peru, which is situated 4370 m above sea level. The aneroid device was initially calibrated at both high altitude and at sea level to ensure optimal function. Validation of the device was undertaken at high altitude by connecting it in parallel to two mercury sphygmomanometers. Eleven sequential same-arm measurements were taken from each subject by two trained observers, alternating between mercury sphygmomanometry and the aneroid device. Simultaneous mercury readings were also recorded for additional analysis. During calibration, all 60 comparisons between the aneroid and mercury sphygmomanometers were within 3 mm Hg both at sea level and at high altitude. At validation, the device achieved an A grade for both systolic and diastolic pressures and also fulfilled the requirements of the Association for the Advancement of Medical Instrumentation. The mean and standard deviation for systolic and diastolic pressures, respectively, were -1.32 (4.3) mm Hg and 3.7 (4.7) mm Hg in sequential analysis and -0.7 (2.6) mm Hg and -3.3 (2.7) mm Hg in simultaneous analysis. We conclude that the Riester-Exacta portable aneroid device can be recommended for use in an adult population at high altitude.

  18. EMIC waves observed by the low-altitude satellite DEMETER during the November 2004 magnetic storm

    Science.gov (United States)

    Píša, D.; Parrot, M.; Santolík, O.; Menietti, J. D.

    2015-07-01

    This paper presents an analysis of ULF (0-20 Hz) waves observed by the low-altitude satellite Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) during the magnetic storm of November 2004. Since these ULF waves are measured by both electric and magnetic antennas, they may be identified as electromagnetic ion cyclotron (EMIC) waves. While EMIC waves have been previously observed in the low-altitude ionosphere, this is the first time that they are observed for such extensive time periods and at such high frequencies. A common feature of these emissions is that their observation region in the low-altitude ionosphere extends continuously from the high-latitude southern trough in one side up to the high-latitude northern trough. The analysis of wave propagation points to the possible source region placed in the inner magnetosphere (L ˜ 2-3). Observed wave frequencies indicate that waves must be generated much farther from the Earth compared to the satellite orbit. Exceptionally high frequencies of about 10 Hz can be explained by the source region placed in the deep inner magnetosphere at L ˜ 2.5. We hypothesize that these waves are generated below the local helium gyrofrequency and propagate over a large range of wave normal angles to reach low altitudes at L ˜ 1.11. In order to investigate this scenario, a future study based on ray tracing simulations will be necessary.

  19. Lunar gravitational field estimation and the effects of mismodeling upon lunar satellite orbit prediction. M.S. Thesis

    Science.gov (United States)

    Davis, John H.

    1993-01-01

    Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.

  20. POLARBEAR-2: an instrument for CMB polarization measurements

    CERN Document Server

    Inoue, Y; Akiba, Y; Aleman, C; Arnold, K; Baccigalupi, C; Barch, B; Barron, D; Bender, A; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; de Haan, T; Dobbs, M A; Ducout, A; Dunner, R; Elleflot, T; Errard, J; Fabbian, G; Feeney, S; Feng, C; Fuller, G; Gilbert, A J; Goeckner-Wald, N; Groh, J; Hall, G; Halverson, N; Hamada, T; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Howe, L; Irie, F; Jaehnig, G; Jaffe, A; Jeongh, O; Katayama, N; Kaufman, J P; Kazemzadeh, K; Keating, B G; Kermish, Z; Keskital, R; Kisner, T; Kusaka, A; Jeune, M Le; Lee, A T; Leon, D; Linder, E V; Lowry, L; Matsuda, F; Matsumura, T; Miller, N; Mizukami, K; Montgomery, J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Raum, C R; Rebeiz, G M; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Segaw, Y; Sherwin, B D; Shirley, I; Siritanasak, P; Stebor, N; Suzuki, R Stompor A; Tajima, O; Takada, S; Takatori, S; Teply, G P; Tikhomirol, A; Tomaru, T; Whitehorn, N; Zahn, A; Zahn, O

    2016-01-01

    POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision {\\sigma}(r) < 0.01, and the sum of neutrino masses, {\\Sigma}m{\

  1. Aerodynamic Stability of Satellites in Elliptic Low Earth Orbits

    CERN Document Server

    Bailey, Matthew; Mancas, Stefan C; Udrea, Bogdan; Umeadi, Uchenna

    2013-01-01

    Topical observations of the thermosphere at altitudes below $200 \\, km$ are of great benefit in advancing the understanding of the global distribution of mass, composition, and dynamical responses to geomagnetic forcing, and momentum transfer via waves. The perceived risks associated with such low altitude and short duration orbits has prohibited the launch of Discovery-class missions. Miniaturization of instruments such as mass spectrometers and advances in the nano-satellite technology, associated with relatively low cost of nano-satellite manufacturing and operation, open an avenue for performing low altitude missions. The time dependent coefficients of a second order non-homogeneous ODE which describes the motion have a double periodic shape. Hence, they will be approximated using Jacobi elliptic functions. Through a change of variables the original ODE will be converted into Hill's ODE for stability analysis using Floquet theory. We are interested in how changes in the coefficients of the ODE affect the ...

  2. Why Are High-Altitude Natives So Strong at Altitude? Maximal Oxygen Transport to the Muscle Cell in Altitude Natives.

    Science.gov (United States)

    Lundby, Carsten; Calbet, Jose A L

    2016-01-01

    In hypoxia aerobic exercise performance of high-altitude natives is suggested to be superior to that of lowlanders; i.e., for a given altitude natives are reported to have higher maximal oxygen uptake (VO2max). The likely basis for this is a higher pulmonary diffusion capacity, which in turn ensures higher arterial O2 saturation (SaO2) and therefore also potentially a higher delivery of O2 to the exercising muscles. This review focuses on O2 transport in high-altitude Aymara. We have quantified femoral artery O2 delivery, arterial O2 extraction and calculated leg VO2 in Aymara, and compared their values with that of acclimatizing Danish lowlanders. All subjects were studied at 4100 m. At maximal exercise SaO2 dropped tremendously in the lowlanders, but did not change in the Aymara. Therefore arterial O2 content was also higher in the Aymara. At maximal exercise however, fractional O2 extraction was lower in the Aymara, and the a-vO2 difference was similar in both populations. The lower extraction levels in the Aymara were associated with lower muscle O2 conductance (a measure of muscle diffusion capacity). At any given submaximal exercise intensity, leg VO2 was always of similar magnitude in both groups, but at maximal exercise the lowlanders had higher leg blood flow, and hence also higher maximum leg VO2. With the induction of acute normoxia fractional arterial O2 extraction fell in the highlanders, but remained unchanged in the lowlanders. Hence high-altitude natives seem to be more diffusion limited at the muscle level as compared to lowlanders. In conclusion Aymara preserve very high SaO2 during hypoxic exercise (likely due to a higher lung diffusion capacity), but the effect on VO2max is reduced by a lower ability to extract O2 at the muscle level. PMID:27343089

  3. Orbit Software Suite

    Science.gov (United States)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  4. Nickel hydrogen low earth orbit life testing

    Science.gov (United States)

    Badcock, Charles C.; Haag, R. L.

    1988-02-01

    A program to demonstrate the long-term reliability of nickel hydrogen (NiH2) cells in low earth orbit (LEO) and support use in mid-altitude orbit (MAO) has been initiated. Both 3.5 and 4.5 in. diameter NiH2 cells are included in the test plan. Cells from all U.S. vendors are to be tested. The tests will be performed at -5 and 10 C at 40 and 60 percent depth of discharge (DOD) for LEO orbit and 10 C and 80 percent DOD for MAO orbit simulations. The goals of the testing are 20,000 cycles at 60 percent DOD and 30,000 cycles at 40 percent DOD. Cells are presently undergoing acceptance and characterization testing at Naval Weapons Support Center (NWSC), Crane, Indiana. Funding has been provided by the Air Force Space Technology Center (AFSTC) and two AF System Program Offices (SPO's) to initiate the testing, but additional funding must be acquired to complete the purchase of cells and to assure completion of the testing.

  5. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  6. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  7. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    Science.gov (United States)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  8. Painless orbital myositis

    Directory of Open Access Journals (Sweden)

    Rahul T Chakor

    2012-01-01

    Full Text Available Idiopathic orbital inflammation is the third most common orbital disease, following Graves orbitopathy and lymphoproliferative diseases. We present a 11 year old girl with 15 days history of painless diplopia. There was no history of fluctuation of symptoms, drooping of eye lids or diminished vision. She had near total restricted extra-ocular movements and mild proptosis of the right eye. There was no conjunctival injection, chemosis, or bulb pain. There was no eyelid retraction or lid lag. Rest of the neurological examination was unremarkable.Erythrocyte sedimentation rate was raised with eosinophilia. Antinuclear antibodies were positive. Liver, renal and thyroid functions were normal. Antithyroid, double stranded deoxyribonucleic acid and acetylcholine receptor antibodies were negative. Repetitive nerve stimulation was negative. Magnetic resonance imaging (MRI of the orbit was typical of orbital myositis. The patient responded to oral steroids. Orbital myositis can present as painless diplopia. MRI of orbit is diagnostic in orbital myositis.

  9. Solar Polar Rays Are Not Polar

    Science.gov (United States)

    Li, J.; Jewitt, D.; Labonte, B.; Acton, L.

    In this poster we discuss the nature of polar rays, based on limb synoptic images constructed from Yohkoh/SXT and SOHO/EIT data. In the literature, polar rays and polar plumes are often mentioned interchangably. We find that polar rays are projection effects caused by hot plasma from equatorial active areas and are not physically associated with the coronal polar holes. Instead, the rise in number and strength of polar rays toward solar activity maximum is responsible for hiding the polar holes and polar plumes. We will present the limb synoptic maps and simple physical models to lead to this result.

  10. The ESA earth observation polar platform programme

    Science.gov (United States)

    Rast, M.; Readings, C. J.

    1991-08-01

    The overall scenario of ESA earth observation polar platform program is reviewed with particular attention given to instruments currently being considered for flight on the first European polar platforms. The major objectives of the mission include monitoring the earth's environment on various scales; management and monitoring of the earth's resources; improvement of the service provided to the worldwide operational meteorological community, investigation of the structure and dynamics of the earth's crust and interior. The program encompasses four main elements: an ERS-1 follow-on mission (ERS-2), a solid earth gravity mission (Aristoteles), a Meteosat Second Generation, and a series of polar orbit earth observation missions.

  11. Improved Maneuver Reconstructions for the GRAIL Orbiters

    Science.gov (United States)

    Keck, Mason; You, Tung-Han; Antreasian, Peter

    2012-01-01

    Maneuver reconstructions for the Gravity Recovery and Interior Laboratory (GRAIL) A and B lunar orbiters were improved through updates to the orbit determination filter and dynamic models. Consistent reconstructions of the 27 GRAIL A and B maneuvers from the Trans-Lunar Cruise phase in the fall of 2011 through the Transition to Science Formation phase in February 2012 were performed. Standard methods of orbit determination were applied incorporating the latest dynamic models and filter strategies developed by the GRAIL Navigation and Science Teams, including a high resolution, 420 x 420 degree and order lunar spherical harmonic gravity field model. For Trans-Lunar Cruise for GRAIL-A (TLC-A), all maneuvers executed with delta V errors below 5.50 +/- 0.50 mm/s and pointing errors below 0.25 degrees. GRAIL-A lunar orbit maneuvers had delta V errors below 30.0 mm/s and pointing errors below 0.51 degrees. For TLC-B, all maneuvers executed with delta V errors below 8.60 +/- 1.41 mm/s and pointing errors below 0.300 degrees. GRAIL-B maneuvers in lunar orbit executed with maximum delta V errors of 25.0 mm/s and pointing error of 0.43 degrees. These maneuver reconstructions will enable the GRAIL Navigation Team to better characterize the main engine performance of each spacecraft. This will help the Navigation Team to navigate low (greater than 8 km) altitude orbits during the extended mission phase in the fall of 2012.

  12. Wigner distributions and quark orbital angular momentum

    OpenAIRE

    Cedric LorceOrsay, IPN and Orsay, LPT; Barbara Pasquini(Pavia U. and INFN, Pavia)

    2015-01-01

    We discuss the quark phase-space or Wigner distributions of the nucleon which combine in a single picture all the information contained in the generalized parton distributions and the transverse-momentum dependent parton distributions. In particular, we present results for the distribution of unpolarized quarks in a longitudinally polarized nucleon obtained in a light-front constituent quark model. We show how the quark orbital angular momentum can be extracted from the Wigner distributions a...

  13. PALOMA: A Magnetic CV between Polars and Intermediate Polars

    Science.gov (United States)

    Joshi, Arti; Pandey, J. C.; Singh, K. P.; Agrawal, P. C.

    2016-10-01

    We present analyses of archival X-ray data obtained from the XMM-Newton satellite and optical photometric data obtained from 1 m class telescopes of ARIES, Nainital of a magnetic cataclysmic variable (MCV) Paloma. Two persistent periods at 156 ± 1 minutes and 130 ± 1 minutes are present in the X-ray data, which we interpret as the orbital and spin periods, respectively. These periods are similar to those obtained from the previous as well as new optical photometric observations. The soft-X-ray excess seen in the X-ray spectrum of Paloma and the averaged X-ray spectra are well fitted by two-temperature plasma models with temperatures of {0.10}-0.01+0.02 and {13.0}-0.5+0.5 keV with an Fe Kα line and an absorbing column density of 4.6 × 1022 cm‑2. This material partially covers 60 ± 2% of the X-ray source. We also present the orbital and spin-phase-resolved spectroscopy of Paloma in the 0.3{--}10.0 {keV} energy band and find that the X-ray spectral parameters show orbital and spin-phase dependencies. New results obtained from optical and X-ray studies of Paloma indicate that it belongs to a class of a few magnetic CVs that seem to have the characteristics of both the polars and the intermediate polars.

  14. Drift-parallax determination of the altitude of traveling ionospheric disturbances observed with the Los Alamos radio-beacon interferometer

    International Nuclear Information System (INIS)

    From 1993 to 1997, the Los Alamos very long baseline interferometer was routinely employed to detect traveling ionospheric disturbances (TID) and inner plasmaspheric irregularities by measuring the change in the electrical phase of several satellite beacon signals that backlit the inner plasmasphere and ionosphere from geosynchronous orbit. The fortuitous placement of two satellite beacons nearly in the Los Alamos geographic meridian, in late 1995, permits us to infer the nominal altitude of each TID event by employing a novel parallax ranging technique. In the context of this paper, the nominal altitude of a TID refers to the altitude at which the slant-path averaged, amplitude-weighted phase perturbation existed along the lines of sight from the interferometer to the satellite. In this paper, we outline the method and present validation results. copyright 1998 American Geophysical Union

  15. Determining polar ionospheric electrojet currents from Swarm satellite constellation magnetic data

    DEFF Research Database (Denmark)

    Aakjær, Cecilie Drost; Olsen, Nils; Finlay, Chris

    2016-01-01

    ) and March 2015 (more disturbed conditions), respectively. Our orbit-by-orbit approach also allows the temporal evolution of the polar electrojets to be investigated. We find remarkable agreement of the ionospheric activity in Northern and Southern polar regions, with correlation exceeding 0.9 for periods...

  16. [Effect of altitude on iron absorption].

    Science.gov (United States)

    Pizarro, F; Zavaleta, N; Hertrampf, E; Berlanga, R; Camborda, L; Olivares, M

    1998-03-01

    Iron bioavailability was evaluated in people living in high altitudes. Absorption was estimated from a reference dose of ferrous ascorbate and from a standard diet of wheat flour, using extrinsic tag radioisotope technique of 55Fe and 59Fe. Twenty four volunteers, healthy women, with ages ranging from 28 to 45 years, participated. Of those, eleven lived at 3450 meters above sea level (m.a.s.l.) in Huancayo city-Peru (study group), and 13 lived in Santiago de Chile at 630 m.a.s.l. (control group). Iron absorption from reference dose of ferrous ascorbate was 32.0% and 31.1% in the study and control groups respectively. The geometric mean of iron absorption from the standard diet, corrected to 40% of absorption of reference dose, was 9.0% and 6.9% in the study and control groups respectively (NS). The results suggest that altitude does not produce a high iron absorption in highlander residents.

  17. Predator foraging altitudes reveal the structure of aerial insect communities

    OpenAIRE

    Helms, Jackson A.; Aaron P. Godfrey; Tayna Ames; Bridge, Eli S.

    2016-01-01

    The atmosphere is populated by a diverse array of dispersing insects and their predators. We studied aerial insect communities by tracking the foraging altitudes of an avian insectivore, the Purple Martin (Progne subis). By attaching altitude loggers to nesting Purple Martins and collecting prey delivered to their nestlings, we determined the flight altitudes of ants and other insects. We then tested hypotheses relating ant body size and reproductive ecology to flight altitude. Purple Martins...

  18. Pulmonary embolism in young natives of high altitude

    Directory of Open Access Journals (Sweden)

    Sanjay Singhal

    2016-01-01

    Full Text Available Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude.

  19. Neutral Barium Cloud Evolution at Different Altitudes

    Institute of Scientific and Technical Information of China (English)

    李磊; 徐荣栏

    2002-01-01

    Considering the joint effects of diffusion, collision, oxidation and photoionization, we study the evolution of the barium cloud at different altitudes in the space plasma active experiment. The results present the variation of the loss rate, number density distribution and brightness of the barium cloud over the range from 120 to 260km.This can be divided into oxidation, oxidation plus photoionization and photoionization regions.

  20. Cardiovascular Response to High Altitude Hypoxia

    OpenAIRE

    Manchanda, S C

    1984-01-01

    Normal and abnormal cardiovascular response to high altitude (HA) hypoxia were studied in 98 healthy subjects and in 15 patients with HA pulmonary oedema (HAPO) and acute mountain sickness (AMS) at an altitudeof 3,658 m. The healthy sea level (SL) residents showed marked blood volume changes during the first week with pulmonary hypotension and depression of left ventricular (LV) performance and physical work capacity (PWC). The HA natives, however, had better LV performance and PWC indicating...

  1. Central Sleep Apnea at High Altitude.

    Science.gov (United States)

    Burgess, Keith R; Ainslie, Philip N

    2016-01-01

    The discovery of central sleep apnea (CSA) at high altitude is usually attributed to Angelo Mosso who published in 1898. It can occur in susceptible individuals at altitude above 2000 m, but at very high altitude, say above 5000 m, it will occur in most subjects. Severity is correlated with ventilatory responsiveness, particularly to hypoxia. Theoretically, it should spontaneously improve with time and acclimatization. Although the time course of resolution is not well described, it appears to persist for more than a month at 5000 m.It occurs due to the interaction of hypocapnia with stages 1 and 2 NREM sleep, in the presence of increased loop-gain. The hypocapnia is secondary to hypoxic ventilatory drive. With acclimatization, one might expect that the increase in PaO2 and cerebral blood flow (CBF) would mitigate the CSA. However, over time, both the hypoxic and hypercapnic ventilatory responses increase, causing an increase in loop gain which is a counteracting force.The severity of the CSA can be reduced by descent, supplemental oxygen therapy, oral or intravenous acetazolamide. Recent studies suggest that acute further increases in cerebral blood flow will substantially, but temporarily, reduce central sleep apnea, without altering acid based balance. Very recently, bi-level noninvasive ventilation has also been shown to help (mechanism unknown). Sleep quality can be improved independent of the presence of CSA by the use of benzodiazepine sedation. PMID:27343103

  2. The effect of altitude hypoxia on glucose homeostasis in men

    DEFF Research Database (Denmark)

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal;

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...

  3. Nutritional Aspects of High Altitude and Snow Bound Areas

    OpenAIRE

    K. Sridharan; R. M. Rai

    1984-01-01

    The precise nutritional requirement of humans at high altitude area is not well defined. Further there are many conflicting reports on the effects of hypoxia on digestion, absorption and utilization of food at high altitude. In this review the nutritional requirements at high altitude and the effects of hypoxia on humans in relation to nutrition have been discussed.

  4. Nutritional Aspects of High Altitude and Snow Bound Areas

    Directory of Open Access Journals (Sweden)

    K. Sridharan

    1984-10-01

    Full Text Available The precise nutritional requirement of humans at high altitude area is not well defined. Further there are many conflicting reports on the effects of hypoxia on digestion, absorption and utilization of food at high altitude. In this review the nutritional requirements at high altitude and the effects of hypoxia on humans in relation to nutrition have been discussed.

  5. Optical coronal polarization and solar dust ring

    International Nuclear Information System (INIS)

    Observations of the outer solar corona on the Java island were carried out on June 11, 1983, at a 30-km altitude using a B-15 balloon. At 5325, 5965, 7200, and 8015 A, data on polarizations in a field of 5 deg x 5 deg centered nearly on the sun were obtained. Our contour maps of polarization are the first of the two-dimensional polarization distribution covering wide area. An excess of polarization at the four wavelengths was found in the ecliptic plane and at the location of a coronal streamer. High polarization at the coronal streamer is caused mainly by coronal electrons, but dust grains in the region out of the ecliptic plane contribute also in a few percent to the high polarization degree in this streamer. It is confirmed by additional data that there is a peak in the polarization excess in the ecliptic between 4(R solar) and 5(R solar) as already reported by Isobe et al. (1985; AAA 40.074.053). This excess is considered to be due to an enhanced distribution of dust in a ring or a thick wide band around the sun. (author)

  6. Europa Planetary Protection for Juno Jupiter Orbiter

    Science.gov (United States)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  7. Resonant orbitals in fluorinated epitaxial graphene.

    Science.gov (United States)

    Gunasinghe, R N; Samarakoon, D K; Arampath, A B; Shashikala, H B M; Vilus, J; Hall, J H; Wang, X-Q

    2014-09-21

    Fluorinated epitaxial graphene has potential applications in organic electronics. We present the calculation results by means of first-principles density-functional-theory for various fluorination patterns. Our results indicate that semi-fluorinated graphene conformations follow the same energetic order as the corresponding hydrogenated graphene counterparts. The distinctive electronic properties between semi-hydrogenated graphene and semi-fluorinated graphene are attributed to the polar covalent C-F bond in contrast to the covalent C-H bond. The partial ionic character of the C-F bond results in the hyperconjugation of C-F σ-bonds with an sp(2) network of graphene. Resonant orbitals stabilize the stirrup conformation via the gauche effect. Resonant orbitals also lead to electron doping of the sp(2) network and enhanced excitonic effect. The implications of resonant-orbital-induced doping for the electronic and magnetic properties of fluorinated epitaxial graphene are discussed.

  8. Effect of Polarization in (e, 2e) Ionization of Argon

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-Ying; ZHOU Ya-Jun

    2004-01-01

    @@ The triple differential cross section of the Ar 2p orbital in a highly asymmetric geometry is calculated by using a modified distorted wave Born approximation method. A short-range polarization potential via density-functional theory is included in our calculations. It is shown that polarization potential is particularly important for calculations of the triple differential cross section.

  9. Spin structure of constituent quark and polarized structure of hadrons

    International Nuclear Information System (INIS)

    Polarized parton distribution inside a constituent quark is calculated. This structure is universal for all hadrons and the polarized structure of any hadron is a convolution of polarized constituent quark distribution in the hadron with the polarized structure function of the constituent quark. This approach gives very good agreement with the experimental data on polarized proton, neutron, and deuteron. However, in order to assemble the components to build the spin the constituent quark we are forced to include a sizeable orbital angular momentum. (author)

  10. Polarized proton collisions at 205 GeV at RHIC.

    Science.gov (United States)

    Bai, M; Roser, T; Ahrens, L; Alekseev, I G; Alessi, J; Beebe-Wang, J; Blaskiewicz, M; Bravar, A; Brennan, J M; Bruno, D; Bunce, G; Courant, E; Drees, A; Fischer, W; Gardner, C; Gill, R; Glenn, J; Haeberli, W; Huang, H; Jinnouchi, O; Kewisch, J; Luccio, A; Luo, Y; Nakagawa, I; Okada, H; Pilat, F; Mackay, W W; Makdisi, Y; Montag, C; Ptitsyn, V; Satogata, T; Stephenson, E; Svirida, D; Tepikian, S; Trbojevic, D; Tsoupas, N; Wise, T; Zelenski, A; Zeno, K; Zhang, S Y

    2006-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions. PMID:16712305

  11. The potential for ozone depletion in the Arctic polar stratosphere

    Science.gov (United States)

    Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W.; Kawa, S. R.; Poole, L. R.

    1991-01-01

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (CHl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 thoroughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15 percent at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8 percent losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50 percent over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  12. Dual Polarization Stacked Microstrip Patch Antenna Array With Very Low Cross-Polarization

    DEFF Research Database (Denmark)

    Granholm, Johan; Woelders, Kim

    2001-01-01

    This paper describes the development and performance of a wideband dual linear polarization microstrip antenna array used in the Danish high-resolution airborne multifrequency polarimetric synthetic aperture radar, EMISAR. The antenna was designed for an operating frequency of 1.25 GHz±50 MHz...... and was built as an array of 8×2 probe-fed stacked microstrip patches. The feeding network is constructed in microstrip and is capable of handling 6 kW of peak input-power at an altitude of 45000 ft (unpressurized). The impedance bandwidth (return loss better than -14 dB) of the antenna is 10%, the isolation...... between the horizontal and the vertical ports of the array is 50 dB and the cross-polarization suppression is 40 dB. A new design principle for simultaneously achieving very low cross-polarization and low side lobes in dual linear polarization antenna arrays has been applied...

  13. Preseptal and Orbital Cellulitis

    OpenAIRE

    Emine Akçay; Gamze Dereli Can; Nurullah Çağıl

    2014-01-01

    Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneumoniae, S. epid...

  14. Orbital inflammation: Corticosteroids first.

    Science.gov (United States)

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  15. Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt Matthias

    2015-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...

  16. Pictorial essay: Orbital tuberculosis

    International Nuclear Information System (INIS)

    Tuberculosis of the orbit is rare, even in places where tuberculosis is endemic. The disease may involve soft tissue, the lacrimal gland, or the periosteum or bones of the orbital wall. Intracranial extension, in the form of extradural abscess, and infratemporal fossa extension has been described. This pictorial essay illustrates the imaging findings of nine histopathologically confirmed cases of orbital tuberculosis. All these patients responded to antituberculous treatment

  17. Neonatal orbital abscess

    Directory of Open Access Journals (Sweden)

    Khalil M Al-Salem

    2014-01-01

    Full Text Available Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases.

  18. Full simulation of the LUCID experiment in the Low Earth Orbit radiation environment

    Science.gov (United States)

    Whyntie, T.; Harrison, M. A.

    2015-03-01

    The Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment is a satellite-based device that uses five Timepix hybrid silicon pixel detectors to make measurements of the radiation environment at an altitude of approximately 630 km, i.e. in Low Earth Orbit (LEO) . The experiment launched aboard Surrey Satellite Technology Limited's (SSTL's) TechDemoSat-1 on Tuesday the 8th of July 2014. The Timepix detectors, developed by the Medipix2 Collaboration, are arranged to form the five sides of a cube enclosed by a 0.7 mm thick aluminium covering, and are operated in Time-over-Threshold (ToT) mode to allow the flux, energy and directionality of incident ionising radiation to be measured. To understand the expected detector performance with respect to these measurements, the LUCID experiment has been modelled using the Allpix software package, a generic simulation toolkit for silicon pixel detectors built upon the GEANT4 framework. The work presented here summarises studies completed using the GridPP Collaboration's computing grid infrastructure to perform the simulations, store the resultant datasets, and share that data with the LUCID Collaboration. The analysis of these datasets has given an indication of the expected performance in differing space radiation environments (for example, during passes of the polar regions or the South Atlantic Anomaly), and has allowed the LUCID Collaboration to prepare for when data is transmitted back to Earth in late 2014.

  19. Full simulation of the LUCID experiment in the Low Earth Orbit radiation environment

    International Nuclear Information System (INIS)

    The Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment is a satellite-based device that uses five Timepix hybrid silicon pixel detectors to make measurements of the radiation environment at an altitude of approximately 630 km, i.e. in Low Earth Orbit (LEO) . The experiment launched aboard Surrey Satellite Technology Limited's (SSTL's) TechDemoSat-1 on Tuesday the 8th of July 2014. The Timepix detectors, developed by the Medipix2 Collaboration, are arranged to form the five sides of a cube enclosed by a 0.7 mm thick aluminium covering, and are operated in Time-over-Threshold (ToT) mode to allow the flux, energy and directionality of incident ionising radiation to be measured. To understand the expected detector performance with respect to these measurements, the LUCID experiment has been modelled using the Allpix software package, a generic simulation toolkit for silicon pixel detectors built upon the GEANT4 framework. The work presented here summarises studies completed using the GridPP Collaboration's computing grid infrastructure to perform the simulations, store the resultant datasets, and share that data with the LUCID Collaboration. The analysis of these datasets has given an indication of the expected performance in differing space radiation environments (for example, during passes of the polar regions or the South Atlantic Anomaly), and has allowed the LUCID Collaboration to prepare for when data is transmitted back to Earth in late 2014

  20. Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking

    Science.gov (United States)

    Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.

    1989-07-01

    Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.

  1. Geometric orbit datum and orbit covers

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ke(

    2001-01-01

    [1]Vogan, D. , Dixmier algebras, sheets and representation theory (in Actes du colloque en I' honneur de Jacques Dixmier),Progress in Math. 92, Boston: Birkhauser Verlag, 1990, 333-397.[2]McGovern, W., Dixmier Algebras and Orbit Method, Operator Algebras, Unitary Representations and Invariant Theory,Boston: Birkhauser, 1990, 397-416.[3]Liang, K. , Parabolic inductions of nilpotent geometric orbit datum, Chinese Science Bulletin (in Chinese) , 1996, 41 (23):2116-2118.[4]Vogan, D., Representations of Real Reductive Lie Groups, Boston-Basel-Stuttgart: Birkhauser, 1981.[5]Lustig, G., Spaltenstein, N., Induced unipotent class, J. London Math. Soc., 1997, 19. 41-52.[6]Collingwood, D. H. , McGovern, W. M. , Nilpotent Orbits in Semisimple Lie Algebras, New York: Van Nostremt Reinhold,1993.

  2. Solar regenerative fuel cell system for high altitude airships

    International Nuclear Information System (INIS)

    'Full text': A closed-loop regenerative fuel cell (RFC) system that serves as an energy storage device for space activities is studied through dynamic simulations. The unique nature of the closed-loop RFC makes it an ideal power system for key applications in homeland defense and earth observatory systems such as high altitude aircrafts /airships, unmanned aerial vehicles, and in planetary exploration for flyer or for surface power. The RFC considered using the photovoltaic cells to produce electric power during the day, part of which is used to produce hydrogen and oxygen through electrolysis. The stored hydrogen and oxygen is used through a fuel cell to produce electric power during night hours. A MATLAB/SIMULINK model was developed for the components of the RFC that include a fuel cell, electrolyzer, photovoltaic solar array, power bus, humidifiers, compressor/motor assembly, expander, pumps, phase separators, storage tanks for hydrogen, oxygen and water, control valves and piping, electric grid system and controls. A proton exchange membrane (PEM) fuel cell and PEM electrolyzer were modeled in detail that included the mass momentum, energy, chemical reaction rates at cathode and anode. The PEM fuel cell voltage was modeled accounting cell activation and ohmic polarizations. A modular approach was used to develop models for each component. Component models were based on fundamental physics to the extent practical. Steady state and dynamic response of the RFC for different operational conditions including start-up, shut down, load changes and (accidental) transients was studied. (author)

  3. Impact of SWOT orbit subcycle on river studies

    Science.gov (United States)

    Biancamaria, Sylvain; Yamazaki, Dai; Pedinotti, Vanessa

    2013-04-01

    The future Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA and CNES, will provide over all continental surface 2D maps of water elevations, providing unprecedented observations of water fluxes over time. The current SWOT orbit has a 78° inclination and a 22 days repeat cycle. Given the 120km total swath of the main satellite payload (a Ka-band SAR Interferometer), every continental surfaces between 78°S and 78°N will be observed between two to seven times (depending of the latitudes) per repeat cycle. However, some variations in the orbit altitudes will not impact the global coverage of the instrument after a repeat period, but will change the way this coverage is done. Especially, different subcycles, i.e. the difference between local times when two adjacent ascending (or descending) tracks crosses the equator during a repeat period, can be considered. In this study, a 3 day subcycle (orbit with a 970km altitude) and a 1 day subcycle (873km and 841km altitude orbits) have selected and their impacts in observing rivers have been assessed, based on in-situ data, hydrology models and hydrodynamic models at global and basin scale. At a global scale, when considering only error on monthly average due to SWOT temporal sampling, an in-situ based study showed that the 3-day subcycle should have just few percent lower error than 1-day subcycle orbits. When a global hydrology model is used, there is almost no difference between the different subcycles. Besides, these two studies tend to show that 1-day subcycle orbits have lower error for equatorial rivers (SWOT between four to seven times per repeat cycle) shows that assimilation with a local Ensemble Kalman Filter of 3-day subcycle orbit SWOT observations is more effective to decrease model error than assimilation of 1-day subcycle orbit SWOT observations. Assimilation with a local Ensemble Kalman Smoother allows a much more important decrease in model error with almost no

  4. Undulator radiation carrying spin and orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigemi [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: sasaki@aps.anl.gov; McNulty, Ian; Dejus, Roger [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-11-11

    We show that the radiation from a helical undulator not only carries spin angular momentum (circular polarization) but also orbital angular momentum. This exotic property of the undulator radiation may be useful in coherent X-ray imaging and scattering experiments and to probe electronic transitions in matter by orbital dichroism spectroscopy. Also, we present that a new magnet configuration, similar to the structure of Figure-8 undulator or the PERA undulator, may generate right- and left-hand circularly polarized off-axis radiation simultaneously.

  5. Undulator radiation carrying spin and orbital angular momentum.

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S.; McNulty, I.; Dejus, R.; X-Ray Science Division

    2007-11-11

    We show that the radiation from a helical undulator not only carries spin angular momentum (circular polarization) but also orbital angular momentum. This exotic property of the undulator radiation may be useful in coherent X-ray imaging and scattering experiments and to probe electronic transitions in matter by orbital dichroism spectroscopy. Also, we present that a new magnet configuration, similar to the structure of Figure-8 undulator or the PERA undulator, may generate right- and left-hand circularly polarized off-axis radiation simultaneously.

  6. UoGAS - A Get Away Special Satellite with Orbit-Raising Capability

    OpenAIRE

    Lorenz, Ralph

    1988-01-01

    The low cost of satellite deployment from Shuttle GAS canister makes it an attractive launch option. However, the low deployment altitude severely constrains lifetime so the UoGAS (University of Surrey Get Away Special) spacecraft will incorporate a propulsion system. Lifetime extension methods are considered and a start-of-mission orbit-raising manoeuvre is selected. An orbit dynamics simulation method (taking into account the atmospheric drag) is discussed and results presented. Mission pro...

  7. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    Science.gov (United States)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  8. Polar Shapelets

    CERN Document Server

    Massey, R; Massey, Richard; Refregier, Alexandre

    2004-01-01

    The shapelets method for astronomical image analysis is based around the decomposition of localised objects into a series of orthogonal components with particularly convenient mathematical properties. We extend the "Cartesian shapelet" formalism from earlier work, and construct "polar shapelet" basis functions that separate an image into components with explicit rotational symmetries. This provides a more compact representation of typical galaxy shapes, and its physical interpretation is frequently more intuitive. Linear coordinate transformations can be simply expressed using this basis set, and shape measures (including object photometry, astrometry and galaxy morphology estimators) take a naturally elegant form. Particular attention is paid to the analysis of astronomical survey images, and we test shapelet techniques with real data from the Hubble Space Telescope. We present a practical method to automatically optimise the quality of an arbitrary shapelet decomposition in the presence of noise, pixellisat...

  9. Multi-agent Orbit Design for Visual Perception Enhancement Purpose

    Directory of Open Access Journals (Sweden)

    Hamidreza Nourzadeh

    2014-10-01

    Full Text Available This paper develops a robust optimization-based method to design orbits on which the sensory perception of the desired physical quantities are maximized. It also demonstrates how to incorporate various constraints imposed by many spacecraft missions, such as collision avoidance, co-orbital configuration, altitude and frozen orbit constraints along with Sun-synchronous orbit constraints. The paper specifically investigates designing orbits for constrained visual sensor planning applications as its case study. For this purpose, the key elements to form an image in such vision systems are considered and effective factors are taken into account to define a metric for perception quality. The method employs a max-min model to ensure robustness against possible perturbations and model uncertainties. While fulfilling the mission requirements, the algorithm devises orbits on which a higher level collective observation quality for the desired sides of the targets is available. The simulation results confirm the effectiveness of the proposed method for several scenarios involving low and medium Earth orbits as well as a challenging space-based space surveillance program application.

  10. Tether de-orbiting of satellites at end of mission

    Science.gov (United States)

    Sanmartin, Juan R.; Sánchez-Torres, Antonio

    2012-07-01

    The accumulation of space debris around the Earth has become critical for Space security. The BETs project, financed by the European Commission through its FP7-Space program, is focusing on preventing generation of new debris by de-orbiting satellites at end of mission. The de-orbiting system considered, involving an electrodynamic bare tape-tether, uses no propellant and no power supply, while generating power for on-board use during de-orbiting. As an example, preliminary results are here presented on a specific orbit/satellite case: 1300 km altitude and 65 degrees inclination, and 500 kg mass. Design tether dimensions are 8 km length, 1.5 cm width, and 0.05 mm thickness; subsystem masses are limited to twice tether mass. Simple calculations, using orbit-averaging, solar mid-cycle phase, and ionospheric and geomagnetic field models, yield 2.6 months time for de-orbiting down to 200 km, with a probability of about 1 percent of debris cutting the tape. References: Sanmartin, J.R., Lorenzini, E.C., and Martinez-Sanchez, M., Electrodynamic Tether Applications and Constraints, J. Space. Rockets 47, 442-456, 2010. Sanmartin, J.R. et al., A universal system to de-orbit satellites at end of life, Journal of Space Technology and Science, to appear.

  11. Fine orbit tuning to increase the accuracy of the gravity-field modelling

    Science.gov (United States)

    Bezdek, A.; Klokocnik, J.; Kostelecky, J.; Floberghagen, R.; Sebera, J.

    2010-12-01

    Fine orbit tuning will be presented as a tool to enhance the accuracy of the gravity-field parameters based on the data from satellite missions around the Earth or other planetary bodies. A slight variation in the satellite altitude of a few hundred metres or kilometres may dramatically change the pattern and density of the groundtracks, thus leading to a significant difference in the quality of the derived gravity-field parameters. This aspect is important not only to missions dedicated to the gravity-field mapping, but it can be applied to any planetary mission, whose orbital data may yield useful information on the particular gravity field. The geometry of satellite groundtracks is closely connected with the term orbital resonance or repeat orbit, which was intensively studied by the satellite geodesy community since the 1970s. In a systematic way, fine orbit tuning was first applied to altimetry missions for oceanographic purposes in the early 1990s, when it became clear that small changes in the satellite altitude might substantially influence the utility of the data from the onboard instruments. The monthly geopotential solutions from the GRACE mission (in orbit since 2002) displayed apparently worse precision in August-September 2004, which was later found to be caused by a sparser groundtrack pattern due to the passage of the GRACE satellites through the 61/4 orbit resonance. The lessons learned from GRACE were applied by ESA to its gravity field mission GOCE (in orbit since 2009). Here, the situation is different, as the GOCE onboard thrusters are capable of maintaining the satellite at a constant altitude. In order to fully use the measurement potential of the first space gradiometer ever flown, in the GOCE mission planning the influence of orbit geometry was taken into account, and a minimum 2-month repeat period for the orbit was specified. We analysed several orbital configurations of GOCE, as possible candidates for the gravity mapping phases. We

  12. A Future Polarized Drell-Yan Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kleinjan, David William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-04

    The topic is treated in a series of slides under the following headings: Motivation (Nucleon Spin Puzzle, Quark Orbital Momentum and the Sivers Function, Accessing Sivers via Polarized Drell-Yan (p+p↑ → μ+μ-)); Transition of Seaquest (E906 → E1039) (Building a Polarized proton Target, Status of Polarized Target); and Outlook. The nucleon spin puzzle: when the quark and gluon contributions to the proton spin are evaluated, nearly 50% of the measured spin is missing; lattice QCD calculations indicate as much as 50% may come from quark orbital angular momentum. Sea quarks should carry orbital angular momentum (O.A.M.). The E1039 Polarized Target Drell-Yan Experiment provides opportunity to study possible Sea Quark O.A.M. Data taking is expected to begin in the spring of 2017.

  13. A Future Polarized Drell-Yan Experiment at Fermilab

    International Nuclear Information System (INIS)

    The topic is treated in a series of slides under the following headings: Motivation (Nucleon Spin Puzzle, Quark Orbital Momentum and the Sivers Function, Accessing Sivers via Polarized Drell-Yan (p+p↑ → μ+μ-)); Transition of Seaquest (E906 → E1039) (Building a Polarized proton Target, Status of Polarized Target); and Outlook. The nucleon spin puzzle: when the quark and gluon contributions to the proton spin are evaluated, nearly 50% of the measured spin is missing; lattice QCD calculations indicate as much as 50% may come from quark orbital angular momentum. Sea quarks should carry orbital angular momentum (O.A.M.). The E1039 Polarized Target Drell-Yan Experiment provides opportunity to study possible Sea Quark O.A.M. Data taking is expected to begin in the spring of 2017.

  14. First climatology of polar mesospheric clouds from GOMOS/ENVISAT stellar occultation instrument

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2009-11-01

    Full Text Available GOMOS (Global Ozone Monitoring by Occultation of Stars, on board the European platform ENVISAT launched in 2002, is a stellar occultation instrument combining four spectrometers and two fast photometers which measure light at 1 kHz sampling rate in the two visible channels 470–520 nm and 650–700 nm. On the day side, GOMOS does not measure only the light from the star, but also the solar light scattered by the atmospheric molecules. In the summer polar days, Polar Mesospheric Clouds (PMC are clearly detected using the photometers signals, as the solar light scattered by the cloud particles in the instrument field of view. The sun-synchronous orbit of ENVISAT allows observing PMC in both hemispheres and the stellar occultation technique ensures a very good geometrical registration. Four years of data, from 2002 to 2006, are analyzed up to now. GOMOS data set consists of approximately 10 000 cloud observations all over the eight PMC seasons studied. The first climatology obtained by the analysis of this data set is presented, focusing on the seasonal and latitudinal coverage, represented by global maps. GOMOS photometers allow a very sensitive PMC detection, showing a frequency of occurrence of 100% in polar regions during the middle of the PMC season. According to this work mesospheric clouds seem to be more frequent in the Northern Hemisphere than in the Southern Hemisphere. The PMC altitude distribution was also calculated. The obtained median values are 82.7 km in the North and 83.2 km in the South.

  15. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Science.gov (United States)

    Lühr, H.; Rentz, S.; Ritter, P.; Liu, H.; Häusler, K.

    2007-06-01

    Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4-) but moderate solar flux level (F10.7=124). Our analysis reveals clear wind features in the summer (Northern) Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern) Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00-18:00 MLT). In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  16. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  17. High altitude balloon experiments at IIA

    Science.gov (United States)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  18. Auroral ion outflow: low altitude energization

    OpenAIRE

    Lynch, K.A.; Semeter, J. L.; Zettergren, M.; Kintner, P.; R. Arnoldy; Klatt, E.; J. LaBelle; Michell, R. G.; Macdonald, E. A.; Samara, M.

    2007-01-01

    International audience; The SIERRA nightside auroral sounding rocket made observations of the origins of ion upflow, at topside F-region altitudes (below 700 km), comparatively large topside plasma densities (above 20 000/cc), and low energies (10 eV). Upflowing ions with bulk velocities up to 2 km/s are seen in conjunction with the poleward edge of a nightside substorm arc. The upflow is limited within the poleward edge to a region (a) of northward convection, (b) where Alfvénic and Pedersen...

  19. Regression of altitude-produced cardiac hypertrophy.

    Science.gov (United States)

    Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.

    1973-01-01

    The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.

  20. Ascent schedules, acute altitude illness, and altitude acclimatization: Observations on the Yushu Earthquake

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Hou Shike; Li Shuzhi; Li Wenxiang; Gen Deng

    2013-01-01

    During the Yushu Earthquake on April 14,2010,a large number of rescuers from sea level or lowlands ascended to the quake areas very rapidly or rapidly less than 24 h.However,Yushu Earthquake is the highest quake in the world at altitudes between 3750 m and 4878 m where is a serious hypoxic environment.A high incidence of acute altitude illness was found in the unacclimatized rescuers; the mountain rescue operation changed as "rescue the rescuers".Lesson from the Yushu Earthquake is that the occurrence of acute altitude illness may be closely related to the ascent schedules.This prompted us to study the relationship between ascent rate and the incidence and severity of acute altitude illness; five different groups were compared.The first group was 42 sea level male young soldiers who ascended to quake area very rapidly within 8 h at 4000 m; the second group was 48 sea level male young soldiers who ascended to 4000 m rapidly less than 18 h; the third group was 66 acclimatized medical workers from 2261 m who ascended to 4000 m rapidly within 12 h; the fourth group was 56 Tibetan medical workers from 2800 m who ascended to 4000 m rapidly within 8 h; the fifth group was 50 male sea level workers who ascended to 4000 m gradually over a period of 4 d.The results showed that the sea level rescuers ascended to 4000 m very rapidly or rapidly had the highest incidence of acute mountain sickness (AMS) with the greatest AMS scores and the lowest arterial oxygen saturation (SaO2) ; the sea level workers ascended to 4000 m gradually had moderate incidence of AMS with moderate AMS scores and SaO2 values; whereas the acclimatized and adapted rescuers had the lowest incidence of AMS,lowest AMS scores and higher SaO2; especially none AMS occurred in Tibetan rescuers.AMS score is inversely related to the ascent rate (r=-0.24,p<0.001).Additionally,acute altitude illness is significantly influenced by altitude acclimatization.The ascent rate is inversely related to

  1. Semicircular Rashba arc spin polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Bin Siu, Zhuo, E-mail: a0018876@nus.edu.sg [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Advanced Concepts and Nanotechnology, Data Storage Institute, DSI Building, 5 Engineering Drive 1 (Off Kent Ridge Crescent, NUS), Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Ghee Tan, Seng [Advanced Concepts and Nanotechnology, Data Storage Institute, DSI Building, 5 Engineering Drive 1 (Off Kent Ridge Crescent, NUS), Singapore 117608 (Singapore)

    2014-05-07

    In this work, we study the generation of spin polarized currents using curved arcs of finite widths, in which the Rashba spin orbit interaction (RSOI) is present. Compared to the 1-dimensional RSOI arcs with zero widths studied previously, the finite width presents charge carriers with another degree of freedom along the transverse width of the arc, in addition to the longitudinal degree of freedom along the circumference of the arc. The asymmetry in the transverse direction due to the difference in the inner and outer radii of the arc breaks the antisymmetry of the longitudinal spin z current in a straight RSOI segment. This property can be exploited to generate spin z polarized current output from the RSOI arc by a spin unpolarized current input. The sign of the spin current can be manipulated by varying the arc dimensions.

  2. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    Science.gov (United States)

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  3. GPS Satellites Orbits: Resonance

    Directory of Open Access Journals (Sweden)

    Luiz Danilo Damasceno Ferreira

    2009-01-01

    Full Text Available The effects of perturbations due to resonant geopotential harmonics on the semimajor axis of GPS satellites are analyzed. For some GPS satellites, secular perturbations of about 4 m/day can be obtained by numerical integration of the Lagrange planetary equations considering in the disturbing potential the main secular resonant coefficients. Amplitudes for long-period terms due to resonant coefficients are also exhibited for some hypothetical satellites orbiting in the neighborhood of the GPS satellites orbits. The results are important to perform orbital maneuvers of GPS satellites such that they stay in their nominal orbits. Also, for the GPS satellites that are not active, the long-period effects due to the resonance must be taken into account in the surveillance of the orbital evolutions of such debris.

  4. Globally Polarized Quark-gluon Plasma in Non-central A+ACollisions

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zuo-tang; Wang, Xin-Nian

    2004-10-01

    Produced partons have large local relative orbital angular momentum along the direction opposite to the reaction plane in the early stage of non-central heavy-ion collisions. Parton scattering is shown to polarize quarks along the same direction due to spin-orbital coupling.Such global quark polarization will lead to many observable consequences,such as left-right asymmetry of hadron spectra, global transverse polarization of thermal photons, dileptons and hadrons. Hadrons from the decay of polarized resonances will have azimuthal asymmetry similar to the elliptic flow. Global hyperon polarization is predicted with indifferent hadronization scenarios and can be easily tested.

  5. Experimental Evidence for Partonic Orbital Angular Momentum at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Douglas E. [University of New Mexico, Department of Physics and Astronomy, Albuquerque, NM 871331 (United States)

    2011-12-14

    Although one might naively anticipate that the proton, being the lowest baryonic energy state, would be in a L = 0 state, the current theoretical understanding is that it must carry orbital angular momentum in order, for example, to have a non-zero anomalous magnetic moment. I will review the experimental evidence linked theoretically to orbital angular momentum of the proton's constituents from the RHIC experiments and summarize by presenting a challenge to the theory community--to develop a consistent framework which can explain the spin polarization asymmetries seen at RHIC and elsewhere, and give insight to the partonic wave-functions including orbital angular momentum.

  6. Venus gravity: New Magellan low altitude data

    Science.gov (United States)

    Sjogren, W. L.; KONOPLIV. A. S.; Borderies, N.; Batchelder, M.; Heirath, J.; Wimberly, R. N.

    1993-01-01

    Acquisition of a new high quality gravity data set has begun. The data set presently covers one third of the Venusian longitude. Better spatial resolution is obtained from a 60th degree and order spherical harmonic solution. Plans for aerobraking in May 1993 into a near circular orbit will provide excellent data for higher latitude regions.

  7. Strong-field ionization of polar molecules: Stark-shift-corrected strong-field approximation

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Martiny, Christian P. J.; Madsen, Lars Bojer

    2010-01-01

    of strong-field ionization of oriented polar molecules by circularly polarized laser pulses. The modification of the molecular orbitals in strong fields is also discussed and in cases of extreme polarization of inner electrons a simple model is devised. We find very good agreement between the results from...

  8. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  9. [Hormonal variation during physical exertion at high altitude].

    Science.gov (United States)

    Sutton, J; Garmendia, F

    1977-01-01

    The influence of the physical exercise at high altitude on the endocrine function was studied in 8 normal native men of sea level and in 8 natives men of high altitude. The sea level dwellers were studied both, at sea level, during an acute exposure to low barometric pressure and after 3 months of acclimatization to altitudes over 3,500 meters above the sea level. The experiments at high altitude were conducted at an altitude of 4,500 meters above the sea level. Two types of exercise were carried out, sub-maximal and maximal, at fasting state, between 8 and 10 a.m. During an acute exposure to altitude the physical exercise produced a marked rise of glucose, cortisol and growth hormone and a fall in the insulin content of plasma. In the sea level dwellers, acclimatized to altitude during 3 months, an elevation of growth hormone was observed only during maximal physical effort. Marked variation in glucose and cortisol were observed during both types of exercise. This shows that in these subjects some adaptative changes have ocurred but of lesser extent as those observed in altitude natives. In the high altitude native higher basal concentrations of growth hormone and glucagón as well as a lower glucose concentration in blood, were found. During exercise the high altitude dweller showed no significant changes in somatotropin, meanwhile an important elevation of cortisol occurred. These findings indicate that the high altitude native has metabolic and endocrine responses to exercise similar to those found in well fitted atletes of sea level. The exposure to altitude provoked a rise in glucagon concentration directly proportional to the time of exposition ot altitude. The physical exercise did not elucidate any change in the glucagon content of blood. PMID:753199

  10. PLANECHG: Earth orbit to lunar orbit delta V estimation program. User and technical documentation

    Science.gov (United States)

    1988-01-01

    The PLANECNG computer program calculates velocities for Earth-to-Mooon and Moon-to-Earth trajectories. The flight to be analyzed originates in a circular orbit of any inclination and altitude about one of the bodies, and culminates in a circular orbit of any inclination and altitude about the other body. An intermedate delta V and plane change occurs at the Lunar Sphere of Influence (SOI), the region where the vehicle is near its lowest velocity in the trajectory, and therefore where it is able to make the plane change with the lowest delta V. A given flight may penetrate the SOI at a number of points. Each point has associated with it a unique set of delta V's and total velocity. The program displays the velocities, in matrix form, for a representative set of SOI penetration points. An SOI point is identified by projecting Lunar latitude and longitude onto the SOI. The points recorded for a given flight are defined by the user, who provides a starting longitude and latitude, and an increment for each. A matrix is built with 10 longitudes forming the columns and 19 latitudes forming the rows. This matrix is presented in six reports, each containing different velocity or node information in the body of the matrix.

  11. THE HIGH ALTITUDE GAMMA RAY OBSERVATORY, HAWC

    Directory of Open Access Journals (Sweden)

    M. M. González

    2011-01-01

    Full Text Available El volcán Sierra Negra en Puebla, México fue seleccionado para albergar a HAWC (High Altitude Water Cherenkov, un observatorio de gran apertura (2Pi sr, único en el mundo, capaz de observar contínuamente el cielo a energías de 0.1 a 100 TeV. HAWC consiste en un arreglo a una altitud de 4100 m sobre el nivel del mar de 300 contenedores de 7.3 m de diámetro y 5 m de altura llenos de agua pura y sensores de luz que observan partículas sumamente energ´eticas provenientes de los eventos más violentos del universo y será 15 veces más sensible que su antecesor Milagro. Las aportaciones científicas de Milagro han demostrado las capacidades únicas de este tipo de observatorios. En este trabajo se presentará HAWC y se discutirá brevemente su caso científico y capacidades.

  12. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission

    Directory of Open Access Journals (Sweden)

    D. Tanré

    2011-04-01

    Full Text Available The aerosol remote sensing from space has started in the 1980's using observations provided by geostationary satellites or by polar orbiting platforms not specifically designed for observing aerosols. As a result, the number of retrieved parameters was limited and retrievals in the visible restricted over ocean. Over land, because of the important surface contribution, the aerosol detection was performed in the UV (or in the dark blue where most of the earth surfaces are dark enough but with overlap of multiple aerosols parameters, content, altitude and absorption. Instruments dedicated to aerosol monitoring are recently available and the POLDER instrument on board the PARASOL mission is one of them. By measuring the wavelength, angular and polarization properties of the radiance at the top of the atmosphere, in coordination with the other A-Train instruments, PARASOL can better quantify aerosol optical depths (AOD and improve the derivation of the radiative and physical properties. The instrument, the inversion schemes and the list of aerosol parameters are described. Examples of retrieved aerosol parameters are provided as well as innovative approaches and further inversion techniques.

  13. Effects of Geopotential and Atmospheric Drag Effects on Frozen Orbits Using Nonsingular Variables

    Directory of Open Access Journals (Sweden)

    Paula Cristiane Pinto Mesquita Pardal

    2014-01-01

    Full Text Available The concept of frozen orbit has been applied in space missions mainly for orbital tracking and control purposes. This type of orbit is important for orbit design because it is characterized by keeping the argument of perigee and eccentricity constant on average, so that, for a given latitude, the satellite always passes at the same altitude, benefiting the users through this regularity. Here, the system of nonlinear differential equations describing the motion is studied, and the effects of geopotential and atmospheric drag perturbations on frozen orbits are taken into account. Explicit analytical expressions for secular and long period perturbations terms are obtained for the eccentricity and the argument of perigee. The classical equations of Brouwer and Brouwer and Hori theories are used. Nonsingular variables approach is used, which allows obtaining more precise previsions for CBERS (China Brazil Earth Resources Satellite satellites family and similar satellites (SPOT, Landsat, ERS, and IRS orbital evolution.

  14. Kursk Magnetic Anomaly at Satellite Altitude: Revisited with the Orsted Satellite

    Science.gov (United States)

    Taylor, Patrick T.; VonFrese, Ralph R. B.; Kim, Hyung Rae

    2000-01-01

    The Kursk Magnetic Anomaly (KMA) of Russia (51 deg north, 37 deg east) has long been recognized as one of the largest magnetic anomalies on Earth. It is associated with the massive iron-ore formations of this region, however, model studies have revealed that the relationship between the two is not obvious. In an early effort to demonstrate the validity of Magsat data for crustal research a detailed study of the KMA, at an average altitude of 350 km and the surrounding region was made. They recorded a 27 nT high and a -9 nT low giving a 37 nT peak-to-trough anomaly over the immediate area of the KMA. Despite the much higher altitude of Orsted (620 to 850 km) we revisited the KMA to determine if this mission would also be able to record an associated anomalous crustal signature. The Orsted profiles we selected were from April to August 1999. From these data we chose those with an altitude range of 644 to 700 km and they were subsequently gridded, by least-squares collocation, to a mean elevation of 660 km. Both ascending and descending data were examined and signals common to both were extracted and averaged. A correlation coefficient between these two orbit orientations of 0.82 was computed. The quadrant-swapping method of Kim et al. was applied. Removal of the main geomagnetic field was accomplished with a polynomial fitting procedure. A positive anomaly of >2.5 nT with ari associated negative of 3 nT peak-to-trough range were computed. These Magsat and Orsted results are consistent with the decay of a dipole field over the studied altitude range. Significant differences between these two anomaly fields are due to the greater number of orbit profiles and therefore greater number of intersecting orbits (ascending and descending) available in the Orsted compilation. Of the four largest amplitude anomalies in the Orsted field three are present in the Magsat map. The fourth (>2.5 nT), however, is associated with the Belorussian-Lithuanian anteclise. This sugaests that

  15. Modeling the Exo-Brake and the Development of Strategies for De-Orbit Drag Modulation

    Science.gov (United States)

    Murbach, M. S.; Papadopoulos, P.; Glass, C.; Dwyer-Cianciolo, A.; Powell, R. W.; Dutta, S.; Guarneros-Luna, A.; Tanner, F. A.; Dono, A.

    2016-01-01

    The Exo-Brake is a simple, non-propulsive means of de-orbiting small payloads from orbital platforms such as the International Space Station (ISS). Two de-orbiting experiments with fixed surface area Exo-Brakes have been successfully conducted in the last two years on the TechEdSat-3 and -4 nano-satellite missions. The development of the free molecular flow aerodynamic data-base is presented in terms of angle of attack, projected front surface area variation, and altitude. Altitudes are considered ranging from the 400km ISS jettison altitude to 90km. Trajectory tools are then used to predict de-orbit/entry corridors with the inclusion of the key atmospheric and geomagnetic uncertainties. Control system strategies are discussed which will be applied to the next two planned TechEdSat-5 and -6 nano-satellite missions - thus increasing the targeting accuracy at the Von Karman altitude through the proposed drag modulation technique.

  16. On the evening time exosphere of Mars: Result from MENCA aboard Mars Orbiter Mission

    Science.gov (United States)

    Bhardwaj, Anil; Thampi, Smitha V.; Das, Tirtha Pratim; Dhanya, M. B.; Naik, Neha; Vajja, Dinakar Prasad; Pradeepkumar, P.; Sreelatha, P.; Supriya, G.; Abhishek J., K.; Mohankumar, S. V.; Thampi, R. Satheesh; Yadav, Vipin K.; Sundar, B.; Nandi, Amarnath; Padmanabhan, G. Padma; Aliyas, A. V.

    2016-03-01

    The Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Indian Mars Orbiter Mission (MOM) is a quadrupole mass spectrometer which provides in situ measurement of the composition of the low-latitude Martian neutral exosphere. The altitude profiles of the three major constituents, i.e., amu 44 (CO2), amu 28 (N2 + CO), and amu 16 (O) in the Martian exosphere during evening (close to sunset terminator) hours are reported using MENCA observations from four orbits of MOM during late December 2014, when MOM's periapsis altitude was the lowest. The altitude range of the observation encompasses the diffusively separated region much above the well-mixed atmosphere. The transition from CO2 to O-dominated region is observed near 270 km. The mean exospheric temperature derived using these three mass numbers is 271 ± 5 K. These first observations corresponding to the Martian evening hours would help to provide constraints to the thermal escape models.

  17. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    International Nuclear Information System (INIS)

    Using multilayer linear polarizers, we have characterized the polarization state of radiation from bend-magnet beamline 9.3.2 at the Advanced Light Source as a function of vertical opening angle at photon energies of 367 and 722 eV. Both a fine slit and a coarse semi-aperture were stepped across the beam to accept different portions of the vertical radiation fan. Polarimetry yields the degree of linear polarization directly and the degree of circular polarization indirectly assuming an immeasurably small amount of unpolarized radiation based on the close agreement of the theoretical and experimental results for linear polarization. The results are in good agreement with theoretical calculations, with departures from theory resulting from uncertainty in the effective aperture of the measured beam. The narrow 0.037-mrad aperture on the orbit plane transmits a beam whose degree of linear polarization exceeds 0.99 at these energies. The wide semi-aperture blocking the beam from above and below transmits a beam with a maximum figure of merit, given by the square root of flux times the degree of circular polarization, when the aperture edge is on the orbit plane thus blocking only half of the total available flux. copyright 1996 American Institute of Physics

  18. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    International Nuclear Information System (INIS)

    Using multilayer linear polarizers, we have studied the polarization state of radiation from bend magnet beamline 9.3.2 at Advanced Light Source as function of vertical oping angle at photon energies 367 and 722 eV. Both a fine slit and a coarse semi-aperture were stepped across the beam to accept different parts of the vertical radiation fan. Polarimetry yields the degree of linear polarization directly and the degree of circular polarization indirectly assuming an immeasurably small amount of unpolarized radiation based on close agreement of theory and experiment for linear polarization. Results are in good agreement with theoretical calculations, with departures from theory owing to uncertainty in effective aperture of the measured beam. The narrow 0.037 mrad aperture on the orbit plane transmits a beam whose degree of linear polarization exceeds 0.99 at these energies. The wide semi-aperture blocking the beam from above and below transmits a beam with a max figure of merit, given by the square root of flux times degree of circular polarization, when the aperture edge is on the orbit plane thus blocking only half of the total available flux

  19. Imaging of orbital disorders.

    Science.gov (United States)

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  20. Harmonically excited orbital variations

    International Nuclear Information System (INIS)

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs

  1. Observation of polar vortices in oxide superlattices.

    Science.gov (United States)

    Yadav, A K; Nelson, C T; Hsu, S L; Hong, Z; Clarkson, J D; Schlepütz, C M; Schlepüetz, C M; Damodaran, A R; Shafer, P; Arenholz, E; Dedon, L R; Chen, D; Vishwanath, A; Minor, A M; Chen, L Q; Scott, J F; Martin, L W; Ramesh, R

    2016-02-11

    The complex interplay of spin, charge, orbital and lattice degrees of freedom provides a plethora of exotic phases and physical phenomena. In recent years, complex spin topologies have emerged as a consequence of the electronic band structure and the interplay between spin and spin-orbit coupling in materials. Here we produce complex topologies of electrical polarization--namely, nanometre-scale vortex-antivortex (that is, clockwise-anticlockwise) arrays that are reminiscent of rotational spin topologies--by making use of the competition between charge, orbital and lattice degrees of freedom in superlattices of alternating lead titanate and strontium titanate layers. Atomic-scale mapping of the polar atomic displacements by scanning transmission electron microscopy reveals the presence of long-range ordered vortex-antivortex arrays that exhibit nearly continuous polarization rotation. Phase-field modelling confirms that the vortex array is the low-energy state for a range of superlattice periods. Within this range, the large gradient energy from the vortex structure is counterbalanced by the corresponding large reduction in overall electrostatic energy (which would otherwise arise from polar discontinuities at the lead titanate/strontium titanate interfaces) and the elastic energy associated with epitaxial constraints and domain formation. These observations have implications for the creation of new states of matter (such as dipolar skyrmions, hedgehog states) and associated phenomena in ferroic materials, such as electrically controllable chirality. PMID:26814971

  2. Preliminary Planning for NEAR's Low-Altitude Operations at 433 Eros

    Science.gov (United States)

    Antreasian, P. G.; Helfrich, C. L.; Miller, J. K.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.; Scheeres, D. J.; Dunham, D. W.; Farquhar, R. W.; McAdams, J. V.

    1999-01-01

    On February 14, 2000, an orbit insertion burn will place NASA's Near Earth Asteroid Rendezvous (NEAR) spacecraft (S/C) into orbit around asteroid 433 Eros. NEAR will initially orbit Eros with distances ranging from 500 to 100 km in order to characterize the shape, gravity and spin of Eros. Once the physical parameters of Eros are determined reasonably well, the plan is to establish an orbit of the NEAR S/C with increasingly lower altitudes as the one year orbital mission progresses while further characterizing the gravity and shape of Eros. Towards the end of the NEAR mission, after the shape, gravity and spin of Eros have been well characterized, the scientific interest of obtaining very close observations (Eros, and onboard optical imaging of landmarks on Eros. This paper will provide preliminary plans for mission design and navigation during the last two months of the orbit phase, where several close passes to the surface will be incorporated to enhance the science return. The culmination of these close passes will result in the eventual landing of the S/C on the surface of Eros. Several considerations for these plans are given by Antreasian, et at. [1998]. The objective for the end of the mission will be to land the S/C autonomously using the surface relative information obtained from the onboard LIDAR instrument. The goal will be to soft land the S/C in such a way as to keep it operational. With the use of an onboard LIDAR landing algorithm as discussed by Antreasian et at. [1998], it is believed that the S/C impact velocity can be kept well under 7 m/s which is a requirement for allowing the S/C to remain operational.

  3. Orbital and spin variability of the Intermediate Polar BG CMi

    CERN Document Server

    Kim, Y G; Park, S S; Jeon, Y B

    2005-01-01

    Results of a CCD study of the variability of the cataclysmic variable BG CMi obtained at the Korean 1.8m telescope in 2002-2005 are presented. The "multi-comparison star" method had been applied for better accuracy estimates. The linear ephemeris based on 19 mean maxima for 2002--2005 is HJD 2453105.31448(6)+0.01057257716(198)(E-764707). The period differs from that predicted by the quadratic ephemeris by Pych et al. (1996) leading to a possible cycle miscount. The statistically optimal ephemeris is a fourth-order polynomial, as a quadratic or even a cubic ephemeris leads to unaceptably large residuals: Min.HJD=$ 2445020.28095(28)+0.0105729609(57)E -1.58(32)\\cdot10^{-13}E^2-5.81(64)\\cdot10^{-19}E^3+4.92(41)\\cdot10^{-25}E^4.$ Thus the rate of the spin-up of the white dwarf is decreasing. An alternative explanation is that the spin-up has been stopped during recent years. The deviations between the amplutudes of the spin variability in V and R, as well as between phases are not statistically significant. Howeve...

  4. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  5. Helioseismology with Solar Orbiter

    OpenAIRE

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Rodríguez, Julián Blanco; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2014-01-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21 deg (up to 34 deg by the end of the extended mission) and thus will enable the first local helioseismol...

  6. Cassini observations of Saturn's southern polar cusp

    CERN Document Server

    Arridge, C S; Achilleos, N; Bogdanova, Y V; Bunce, E J; Cowley, S W H; Fazakerley, A N; Khurana, K K; Lamy, L; Leisner, J S; Roussos, E; Russell, C T; Zarka, P; Coates, A J; Dougherty, M K; Jones, G H; Krimigis, S M; Krupp, N

    2016-01-01

    The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptune's cusp in 1989 but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly studying the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturn's southern polar magnetosphere. Our main findings are that i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and iii) double cusp morphologies are...

  7. Spin Orbit Torque in Ferromagnetic Semiconductors

    KAUST Repository

    Li, Hang

    2016-06-21

    Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall

  8. Work at high altitude and oxidative stress: antioxidant nutrients.

    Science.gov (United States)

    Askew, E W

    2002-11-15

    A significant portion of the world's geography lies above 10,000 feet elevation, an arbitrary designation that separates moderate and high altitude. Although the number of indigenous people living at these elevations is relatively small, many people travel to high altitude for work or recreation, exposing themselves to chronic or intermittent hypoxia and the associated risk of acute mountain sickness (AMS) and less frequently, high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). The symptoms of AMS (headache, nausea, anorexia, fatigue, lassitude) occur in those who travel too high, too fast. Some investigators have linked the development of these symptoms with the condition of altered blood-brain barrier permeability, possibly related to hypoxia induced free radical formation. The burden of oxidative stress increases during the time spent at altitude and may even persist for some time upon return to sea level. The physiological and medical consequences of increased oxidative stress engendered by altitude is unclear; indeed, hypoxia is believed to be the trigger for the cascade of signaling events that ultimately leads to adaptation to altitude. These signaling events include the generation of reactive oxygen species (ROS) that may elicit important adaptive responses. If produced in excess, however, these ROS may contribute to impaired muscle function and reduced capillary perfusion at altitude or may even play a role in precipitating more serious neurological and pulmonary crisis. Oxidative stress can be observed at altitude without strenuous physical exertion; however, environmental factors other than hypoxia, such as exercise, UV light exposure and cold exposure, can also contribute to the burden. Providing antioxidant nutrients via the diet or supplements to the diet can reduce oxidative stress secondary to altitude exposure. In summary, the significant unanswered question concerning altitude exposure and antioxidant supplementation is

  9. The physiology and biomechanics of avian flight at high altitude

    OpenAIRE

    Altshuler, Douglas L.; Dudley, Robert

    2006-01-01

    Many birds fly at high altitude, either during long-distance flights or by virtue of residence in high-elevation habitats. Among the many environmental features that vary systematically with altitude, five have significant consequences for avian flight performance: ambient wind speeds, air temperature, humidity, oxygen availability, and air density. During migratory flights, birds select flight altitudes that minimize energy expenditure via selection of advantageous tail- and cross-winds. Oxy...

  10. Common High Altitudes Illnesses a Primer for Healthcare Provider

    OpenAIRE

    Mohsenin, Vahid

    2015-01-01

    Exposure to high altitude imposes significant strain on cardiopulmonary system and the brain. As a consequence, sojourners to high altitude frequently experience sleep disturbances, often reporting restless and sleepless nights. At altitudes above 3,000 meters (9,800 ft) almost all healthy subjects develop periodic breathing especially during NREM sleep. Sleep architecture gradually improves with increased NREM and REM sleep despite persistence of periodic breathing. The primary reason for pe...

  11. Plasticity of the muscle proteome to exercise at altitude

    OpenAIRE

    Flueck, Martin

    2009-01-01

    The ascent of humans to the summits of the highest peaks on Earth initiated a spurt of explorations into the physiological consequences of physical activity at altitude. The past three decades have demonstrated that the resetting of respiratory and cardiovascular control with chronic exposure to altitudes above 4000 m is accompanied by important structural-functional adjustments of skeletal muscle. The fully altitude-adapted phenotype preserves energy charge at reduced aerobic capacity throug...

  12. Bell's measure and implementing quantum Fourier transform with orbital angular momentum of classical light.

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-09-15

    We perform Bell's measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell's inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally.

  13. Orbital surveys of solar stimulated luminescence

    Science.gov (United States)

    Hemphill, W. R.; Theisen, A. F.; Tyson, R. M.; Granata, J. S.

    The Fraunhofer line discriminator (FLD) is an electro-optical device for imaging natural and manmade materials which have been stimulated to luminesce by the sun. An airborne FLD has been used to detect geochemically stressed vegetation, drought-stressed agricultural crops, industrial and residential pollution effluents, marine oil seeps, phosphate rock, uranium-bearing sandstone, and bioluminescent ocean plankton. Three-dimensional perspective plots of excitation and emission spectra, measured with a laboratory spectrometer, graphically depict similarities and differences in luminescence properties between sample materials. The laboratory data also include luminescence intensities at six Fraunhofer lines in the visible and near-infrared regions of the electromagnetic spectrum. Both the airborne and laboratory data suggest the feasibility of delineating and monitoring at least some of these luminescing materials from orbital altitude, such as a test flight aboard the Space Shuttle using an improved third-generation FLD.

  14. Mercury's Crustal Magnetic Field from Low-Altitude Measurements by MESSENGER.

    Science.gov (United States)

    Johnson, C. L.; Phillips, R. J.; Purucker, M. E.; Anderson, B. J.; Byrne, P. K.; Denevi, B. W.; Fan, K. A.; Feinberg, J. M.; Hauck, S. A., II; Head, J. W., III; Korth, H.; James, P. B.; Mazarico, E.; Neumann, G. A.; Philpott, L. C.; Siegler, M. A.; Strauss, B. E.; Tsyganenko, N. A.; Solomon, S. C.

    2015-12-01

    Magnetized rocks can record the history of a planet's magnetic field, a key constraint for understanding interior evolution. From orbital vector magnetic field measurements of Mercury taken by the MESSENGER spacecraft at altitudes below 150 km, we have detected fields indicative of crustal magnetization. Fields from non-crustal sources, which dominate the observations even at low altitudes, were estimated and subtracted from the observations using both magnetospheric models and signal filtering. The resulting high-pass filtered fields have amplitudes of a few to 20 nT. The first low-altitude signals were detected over the Suisei Planitia region and were confirmed by upward continuation to be of crustal origin. At least some contribution from thermoremanent magnetization is required to account for these signals, and we infer a lower bound on the average age of magnetization of 3.7-3.9 Ga on the basis of correlation of crustal magnetic fields with volcanic units of that age range. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust derived from MESSENGER elemental composition data. Here, we extend these initial results with observations obtained at spacecraft altitudes below 60 km at all body-fixed longitudes from ~40°N to ~75°N. The strongest crustal fields occur in the region 120°E to 210°E, and weaker signals characterize the northern volcanic plains. We test the hypothesis that the longest-wavelength crustal field signals in this region reflect magnetization contrasts between the Caloris basin and the surrounding intercrater plains and circum-Caloris plains. We report the spatial distribution of observed crustal fields, together with magnetization models derived from them and the implications of these models, particularly for the depth distribution of sources compatible with the observations.

  15. Diabatic Descent In The Stratospheric Polar Vortex

    Science.gov (United States)

    Rosenfield, J.; Schoeberl, M.

    Polar regions experience diabatic cooling during the fall and winter months, resulting in a downward mass flux. An accurate measure of this fall and winter diabatic descent, as well as an understanding of the transport of air into and out of the winter polar vor- tices, is required for estimates of polar ozone depletion. We have calculated diabatic cooling rates using a radiative transfer code and U.K. Met Office (UKMO) tempera- tures for the years 1992-2000. These cooling rates, together with UKMO horizontal winds, have been used to compute three-dimensional forward and backward diabatic trajectories for the seven month fall to spring period in both the NH and the SH. The forward calculations estimate the maximum amount of descent that can occur. How- ever, they are not necessarily a good indicator of the origin of the springtime vortex air because more equatorward air from lower altitudes can be entrained within the vortex during its formation. The back trajectories, starting in the springtime lower middle stratosphere, show a complex final distribution of parcels. One population originates in the fall in the upper stratosphere and mesosphere and experiences considerable de- scent, while the remaining parcels originate at lower altitudes in the midlatitudes and are mixed into the polar regions during vortex formation. The amount of descent ex- perienced by the first population shows little variability from year to year, while the computed descent and mixing of the remaining parcels show considerable interannual variability due to the varying polar meteorology. Because of this complex parcel dis- tribution it is not meaningful to speak of a net amount of descent experienced over the entire winter period. We have also compared diabatic trajectories with kinematic tra- jectories, in which the vertical motion is given by the UKMO analysed omega fields. These show that the kinematic trajectory descent is much less than the diabatic tra- jectory descent and exhibits

  16. Neurophysiological Problems in Snow Bound High Altitude Areas

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1984-10-01

    Full Text Available A series of studies have been conducted to evaluate the neurophysiological responses in young healthy soldiers during acclimatization at 3,500m altitude in Western Himalayas. The responses of autonomic nervous system, electroencephalogram hypothalamic thermoregulatory efficiency, orthostatic tolerance, sleep profile and effects of sleep deprivation have been studied in fresh inductees during three to five weeks of acclimatization at high altitude and compared with those of one year acclimatized lowlanders and high altitude natives. Physiological significance of these neurophysiological responses in the process of altitude adaptation is discussed in the light of current knowledge in the field.

  17. The yak genome and adaptation to life at high altitude

    DEFF Research Database (Denmark)

    Qiu, Qiang; Zhang, Guojie; Ma, Tao;

    2012-01-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude...... of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have...... important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans....

  18. Hands-on Space Exploration through High Altitude Ballooning

    Science.gov (United States)

    Hammergren, Mark; Gyuk, G.

    2010-01-01

    The Adler Planetarium's "Far Horizons" high-altitude ballooning effort serves as the focus for a diverse set of educational activities, including middle school summer camps, a high school summer program (the Astro-Science Workshop), school-year internships for high school students, summer internships for undergraduates, a NSF-funded graduate fellowship, and a thriving public volunteer program. The relatively low costs of both the reusable hardware (less than $1000) and expendable supplies (around $150 per launch) allow us to mount frequent missions throughout the year - and make such a program ideal for replication at institutions of any size. The rapid development schedule for each individual mission permits the cradle-to-grave involvement of short-term participants, making it easy to draw in a wide audience. Students are involved literally in a hands-on manner in all aspects of the construction, launch, tracking, and recovery of simple experimental payloads, which typically include sensors for temperature, pressure, light intensity, and radiation. Stunning imagery provided by onboard cameras can attract significant media interest, which can bring outreach efforts to a very broad audience. Future plans include the design and construction of CubeSats - decimeter-sized picosatellites carried to orbit as secondary payloads. Our first satellite will be a relatively simple Earth-imager, built from commercial, off-the-shelf components. As in the ballooning program, students and volunteers will be involved in all stages of this effort. Once operational, imagery and other data from the satellite will be incorporated into a museum exhibit that will allow visitors to submit target requests. This material is based in part upon work supported by the National Science Foundation under Grant No. 0525995.

  19. Satellite de-orbiting via controlled solar radiation pressure

    Science.gov (United States)

    Deienno, Rogerio; Sanchez, Diogo Merguizo; de Almeida Prado, Antonio Fernando Bertachini; Smirnov, Georgi

    2016-06-01

    The goal of the present research was to study the use of solar radiation pressure to place a satellite in an orbit that makes it to re-enter the atmosphere of the Earth. This phase of the mission is usual, since the orbital space around the Earth is crowded and all satellites have to be discarded after the end of their lifetimes. The technique proposed here is based on a device that can increase and decrease the area-to-mass ratio of the satellite when it is intended to reduce its altitude until a re-entry point is reached. Equations that predict the evolution of the eccentricity and semi-major axis of the orbit of the satellite are derived and can be used to allow the evaluation of the time required for the decay of the satellite. Numerical simulations are made, and they show the time required for the decay as a function of the area-to-mass ratio and the evolution of the most important orbital elements. The results show maps that indicate regions of fast decays as a function of the area-to-mass ratio and the initial inclination of the orbit of the satellite. They also confirmed the applicability of the equations derived here. The numerical results showed the role played by the evection and the Sun-synchronous resonances in the de-orbiting time.

  20. Aviation fuel property effects on altitude relight

    Science.gov (United States)

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  1. Cardiovascular Response to High Altitude Hypoxia

    Directory of Open Access Journals (Sweden)

    S. C. Manchanda

    1984-10-01

    Full Text Available Normal and abnormal cardiovascular response to high altitude (HA hypoxia were studied in 98 healthy subjects and in 15 patients with HA pulmonary oedema (HAPO and acute mountain sickness (AMS at an altitudeof 3,658 m. The healthy sea level (SL residents showed marked blood volume changes during the first week with pulmonary hypotension and depression of left ventricular (LV performance and physical work capacity (PWC. The HA natives, however, had better LV performance and PWC indicating a better adaptation to HA hypoxia. HAPO subjects showed evidence of severe pulmonary hypertension with normal left atrial pressures but the exact mechanism of this condition is still not clear. AMS subjects showed no circulatory abnormalities 'but had relative hypercapnia and severe hypoxemia suggesting that AMS may be causcd by relative hyposensitiveness of the respiratory centre to hypoxia or hypercapnia.

  2. Sleep apneas and high altitude newcomers.

    Science.gov (United States)

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  3. Envelopes of Cometary Orbits

    Directory of Open Access Journals (Sweden)

    Mijajlović, Ž.

    2008-12-01

    Full Text Available We discuss cometary orbits from the standpoint of Nonstandard (Leibnitz analysis, a relatively new branch of mathematics. In particular, we consider parabolic cometary paths. It appears that, in a sense, every parabola is an ellipse.

  4. Altimetry, Orbits and Tides

    Science.gov (United States)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  5. Partonic orbital angular momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  6. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  7. Debris in the geostationary orbit ring, the endless shooting gallery: The necessity for a disposal policy

    Science.gov (United States)

    Suddeth, D. H.

    1985-03-01

    NASA is considering establishing a policy for the limitation of the physical crowding of the geostationary orbit. The proposed policy is intended to address the following issues: (1) deal only with geostationary altitudes; (2) illustrate the unique value and usefulness of the geostationary orbit ring; (3) describe the orbital dynamics as simply as possible; (4) describe the current spacecraft and debris situation; (5) briefly review current industry and agency policies; (6) project future trends of physical crowding with the present nonpolicy; (7) propose solutions that can be implemented in the near future; and (8) use previous work as much as desirable.

  8. Mapping enzymatic catalysis using the effective fragment molecular orbital method

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Fedorov, Dmitri G.; Jensen, Jan Halborg

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of ...

  9. Antisymmetric Orbit Functions

    Directory of Open Access Journals (Sweden)

    Anatoliy Klimyk

    2007-02-01

    Full Text Available In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space $E_n$ are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group $G$ of rank $n$. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group in the entire Euclidean space $E_n$. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in $E_n$, vanishing on the boundary of the fundamental domain $F$. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is closely related to expansions of central functions in characters of irreducible representations of the group $G$. They also determine a transform on a finite set of points of $F$ (the discrete antisymmetric orbit function transform. Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  10. Mechanisms of Altitude-Related Cough/Mécanismes de la Toux Liée à l’Altitude

    OpenAIRE

    Mason, Nicholas

    2012-01-01

    The original work presented in this thesis investigates some of the mechanisms that may be responsible for the aetiology of altitude-related cough. Particular attention is paid to its relationship to the long recognised, but poorly understood, changes in lung volumes that occur on ascent to altitude. The literature relevant to this thesis is reviewed in Chapter 1. Widespread reports have long existed of a debilitating cough affecting visitors to high altitude that can incapacitate the suff...

  11. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  12. Polarization of the 584- and 304-Angstrom emissions of helium in the geocorona and interplanetary medium

    Science.gov (United States)

    Kumar, S.; Bowyer, S.; Paresce, F.; Kumer, J. B.

    1973-01-01

    The polarization of the 584- and 304-A emissions of helium that have been resonantly scattered in the earth's atmosphere and in the interplanetary medium is discussed. It is shown that in the geocorona the simultaneous measurement of altitude profiles of the 584-A He dayglow intensity and polarization will test the hypothesis that the 584-A dayglow is excited by resonance scattering of sunlight from geocoronal helium. If this is indeed the major source of the 584-A dayglow emission, a simultaneous measurement of the polarization and the altitude profile of the intensity in the exosphere will uniquely determine the helium number density distribution as a function of altitude, and in the thermosphere it will alow a study of nondiffusive equilibrium processes. An attractive feature of this method is that the interpretation does not require a knowledge of the solar 584-A line center flux or line profile.

  13. Generalized probability model for calculation of interference to the Deep Space Network due to circularly Earth-orbiting satellites

    Science.gov (United States)

    Ruggier, C. J.

    1992-01-01

    The probability of exceeding interference power levels and the duration of interference at the Deep Space Network (DSN) antenna is calculated parametrically when the state vector of an Earth-orbiting satellite over the DSN station view area is not known. A conditional probability distribution function is derived, transformed, and then convolved with the interference signal uncertainties to yield the probability distribution of interference at any given instant during the orbiter's mission period. The analysis is applicable to orbiting satellites having circular orbits with known altitude and inclination angle.

  14. Classifying spaces of degenerating polarized Hodge structures

    CERN Document Server

    Kato, Kazuya

    2009-01-01

    In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem

  15. Notes on the orbital angular momentum of quarks in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Yoshitaka, E-mail: hatta@het.ph.tsukuba.ac.jp [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

    2012-02-14

    We discuss the orbital angular momentum of partons inside a longitudinally polarized proton in the recently proposed framework of spin decomposition. The quark orbital angular momentum defined by Ji can be decomposed into the 'canonical' and the 'potential' angular momentum parts, both of which are represented as the matrix element of a manifestly gauge invariant operator.

  16. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  17. Mesoscopic rings with spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto, E-mail: berche@lpm.u-nancy.f [Statistical Physics Group, Institut Jean Lamour, UMR CNRS No 7198, Universite Henri Poincare, Nancy 1, B.P. 70239, F-54506 Vandoeuvre les Nancy (France)

    2010-09-15

    A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin currents are derived following an intuitive definition, and then a more thorough derivation is built upon the canonical Lagrangian formulation that emphasizes the SU(2) gauge structure of the transport problem of spin-1/2 fermions in spin-orbit active media. The quantization conditions that follow from the constraint of single-valued Pauli spinors are also discussed. The targeted students are those of a graduate condensed matter physics course.

  18. Image Stacking Method Application for Low Earth Orbit Faint Objects

    Science.gov (United States)

    Tagawa, M.; Matsumoto, H.; Yanagisawa, T.; Kurosaki, H.; Oda, H.; Kitazawa, Y.; Hanada, T.

    2013-09-01

    telescopes conduct chasing observation for the estimated apparent trajectory and stack the images based on the relative apparent motion search for true object. Therefore accuracy evaluation for initial orbit estimation result means to verify that apparent motions of true object are able to being searched. The current image stacking method applied for geostationary orbit based on assumptions that apparent motion can be treated as straight lines. Thus the linearity and uniformity assessment of the apparent motion in ground-based tracking observation using initial orbit estimation result is required. This paper introduces the apparent motion prediction result with reasonably assumed orbit estimation errors. The ground observatories are assumed to be located around the polar regions. Then this paper discusses image stacking feasibility for the apparent motion based on space-based orbit estimation result.

  19. NMS Flows on Three-Dimensional Manifolds with One Saddle Periodic Orbit

    Institute of Scientific and Technical Information of China (English)

    B. CAMPOS; A. CORDERO; J. Mart(i)nez ALFARO; P. VINDEL

    2004-01-01

    The simplest NMS flow is a polar flow formed by an attractive periodic orbit and a repulsive periodic orbit as limit sets. In this paper we show that the only orientable, simple, compact,3-dimensional manifolds without boundary that admit an NMS flow with none or one saddle periodic orbit are lens spaces.We also see that when a fattened round handle is a connected sum of tori, the corresponding flow is also a trivial connected sum of flows.

  20. Cosmic-ray neutron albedo dose in low-earth orbits

    Science.gov (United States)

    Wilson, J. W.; Townsend, L. W.; Farhat, H.

    1989-01-01

    An earth albedo neutron environmental model is proposed which provides a way to estimate neutron exposure in low-earth orbit. It is shown that, in the predominantly low inclination orbits (i=28.5 deg) used in the U.S. space program, the neutron exposures are relatively low (0.7 cSv/y). The neutron exposures are more significant for polar orbital missions and even high inclination missions, such as Skylab (i=57 deg).

  1. Orbital angular momentum density of a general Lorentz–Gauss vortex beam

    Science.gov (United States)

    Zhou, Guoquan; Ji, Zhiyue; Ru, Guoyun

    2016-07-01

    Based on the vectorial Rayleigh–Sommerfeld integral formulae, the analytical expression of a general Lorentz–Gauss vortex beam with an arbitrary topological charge is derived in free space. By using the analytical expressions of the electromagnetic field beyond the paraxial approximation, the orbital angular momentum density of a general Lorentz–Gauss vortex beam can be calculated. The effects of the linearly polarized angle and the topological charge on the three components of the orbital angular momentum density are investigated in the reference plane. The two transversal components of the orbital angular momentum are composed of two lobes with the same areas and opposite signs. The longitudinal component of the orbital angular momentum density is composed of four lobes with the same areas. The sign of the orbital angular momentum density in a pair of lobes is positive, and that of the orbital angular momentum density in the other pair of lobes is negative. Moreover, the negative magnitude of the orbital angular momentum density is larger than the positive magnitude of the orbital angular momentum density. The linearly polarized angle affects not only the shape and the location of the lobes, but also the magnitude of the three components of the orbital angular momentum density. With increasing the topological charge, the distribution of the orbital angular momentum density expands, the magnitude of the orbital angular momentum density increases, and the shape of the lobe also slightly changes.

  2. Is TW Pictoris really an intermediate polar?

    CERN Document Server

    Norton, A J

    1998-01-01

    We present the results of a long ROSAT HRI observation of the candidate intermediate polar TW Pic. The power spectrum shows no sign of either the previously proposed white dwarf spin period or the proposed binary orbital period (1.996 hr and 6.06 hr respectively). The limits to the X-ray modulation are less than 0.3% in each case. In the absence of a coherent X-ray pulsation, the credentials of TW Pic for membership of the intermediate polar subclass must be suspect. We further suggest that the true orbital period of the binary may be the shorter of the two previously suggested, and that the longer period may represent a quasi-periodic phenomenon associated with the accretion disc.

  3. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    Science.gov (United States)

    Bradley, Ben K.

    orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.

  4. 14 CFR 91.177 - Minimum altitudes for IFR operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum altitudes for IFR operations. 91.177 Section 91.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Instrument Flight Rules § 91.177 Minimum altitudes for IFR operations. (a) Operation of aircraft at...

  5. 14 CFR 93.307 - Minimum flight altitudes.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum flight altitudes. 93.307 Section 93...) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.307 Minimum flight altitudes. Except in an emergency, or...

  6. Exercise and Training at Altitudes: Physiological Effects and Protocols

    Directory of Open Access Journals (Sweden)

    Olga Cecilia Vargas Pinilla

    2014-01-01

    Full Text Available An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.

  7. 14 CFR 121.661 - Initial approach altitude: Flag operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial approach altitude: Flag operations... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.661 Initial approach altitude: Flag operations. When making an initial approach to a...

  8. Increased resting bronchial tone in normal subjects acclimatised to altitude

    OpenAIRE

    Wilson, C.; Bakewell, S; M. Miller; Hart, N; McMorrow, R; BARRY, P.; Collier, D; Watt, S; Pollard, A.

    2002-01-01

    Background: Normal subjects frequently experience troublesome respiratory symptoms when acclimatised to altitude. Bronchial hyperresponsiveness (BHR) and full and partial flow-volume loops were measured before and after ascent to 5000 m altitude to determine if there are changes in resting bronchial tone and BHR that might explain the symptoms.

  9. An analysis of the orbital Evolution of a solar sail around Mercury

    Science.gov (United States)

    Vilhena de Moraes, Rodolpho; Prado, Antonio; Carvalho, Jean Paulo; Treasaco, Eva

    2016-07-01

    Solar sails are a new concept of spacecraft propulsion that uses solar radiation pressure to generate acceleration: this way the sail experiences a small but unlimited and continuous acceleration. This work presents a method for finding initial conditions for frozen orbits for a solar sail around Mercury Frozen orbits are those whose orbital elements remain constant on average. Thus, at a given latitude, the satellite always passes at the same altitude. The orbital dynamics of the solar sail is governed by the potential attraction of the main body and the Sun. Besides the J2, J3 and C22 of Mercury gravity field, the dynamical model also includes the eccentricity and inclination of the orbit of the third body (Sun) and the solar acceleration pressure. In order to remove short-period terms of the dynamical system, a double averaging technique is applied to the disturbig potential. This algorithm is a two-fold process which firstly averages over the period of the satellite and secondly averages with respect to the period of the third body. The double-averaged potential is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semi-major axis, eccentricity and inclination. These surfaces determine orbits ranging in altitude from 300 to 1000 km, which include the altitude values considered in future scientific missions around Mercury such as BepiColombo. Finally, this work delves into the influence on the dynamics of the spacecraft for different values of the sail area-to-mass ratio, which is a parameter related to the efficiency of the solar sail Sponsored by CNPq - Brazil. The author is grateful to CNPq- Brazil for contract 306953/2014-5.

  10. Orbital flux integrations: Parameter values for effective computer time reductions

    Science.gov (United States)

    Stassinopoulos, E. G.

    1974-01-01

    To improve computer utilization and to reduce the cost of orbital flux integrations, the effects of integration parameters 'duration' (T) and 'stepsize' (delta t) on integration results were investigated. Over given ranges of T and delta t, and within specified acceptable accuracy restraints, optimal values of these parameters were established for circular subsynchronous trajectories, in terms of the variables altitude (H) and inclination (i). It is shown that (1) above a certain statistically important value, duration is independent of both h and i; (2) stepsize has a relative altitude dependence; and (3) stepsize is not a function of inclination. The substantial savings in computer time are discussed along with the possibility of greater savings by relaxing accuracy restrictions while not exceeding the minimum model-associated uncertainty factors of the environments.

  11. Microgravity combustion experiment using high altitude balloon.

    Science.gov (United States)

    Kan, Yuji

    In JAXA, microgravity experiment system using a high altitude balloon was developed , for good microgravity environment and short turn-around time. In this publication, I give an account of themicrogravity experiment system and a combustion experiment to utilize the system. The balloon operated vehicle (BOV) as a microgravity experiment system was developed from 2004 to 2009. Features of the BOV are (1) BOV has double capsule structure. Outside-capsule and inside-capsule are kept the non-contact state by 3-axis drag-free control. (2) The payload is spherical shape and itsdiameter is about 300 mm. (3) Keep 10-4 G level microgravity environment for about 30 seconds However, BOV’s payload was small, and could not mount large experiment module. In this study, inherits the results of past, we established a new experimental system called “iBOV” in order toaccommodate larger payload. Features of the iBOV are (1) Drag-free control use for only vertical direction. (2) The payload is a cylindrical shape and its size is about 300 mm in diameter and 700 mm in height. (3) Keep 10-3-10-4 G level microgravity environment for about 30 seconds We have "Observation experiment of flame propagation behavior of the droplets column" as experiment using iBOV. This experiment is a theme that was selected first for technical demonstration of iBOV. We are conducting the flame propagation mechanism elucidation study of fuel droplets array was placed at regular intervals. We conducted a microgravity experiments using TEXUS rocket ESA and drop tower. For this microgravity combustion experiment using high altitude balloon, we use the Engineering Model (EM) for TEXUS rocket experiment. The EM (This payload) consists of combustion vessel, droplets supporter, droplets generator, fuel syringe, igniter, digital camera, high-speed camera. And, This payload was improved from the EM as follows. (1) Add a control unit. (2) Add inside batteries for control unit and heater of combustion

  12. Orbital Fluid Resupply Assessment

    Science.gov (United States)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  13. E-Orbit Functions

    Directory of Open Access Journals (Sweden)

    Jiri Patera

    2008-01-01

    Full Text Available We review and further develop the theory of $E$-orbit functions. They are functions on the Euclidean space $E_n$ obtained from the multivariate exponential function by symmetrization by means of an even part $W_{e}$ of a Weyl group $W$, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. They are closely related to symmetric and antisymmetric orbit functions which are received from exponential functions by symmetrization and antisymmetrization procedure by means of a Weyl group $W$. The $E$-orbit functions, determined by integral parameters, are invariant withrespect to even part $W^{aff}_{e}$ of the affine Weyl group corresponding to $W$. The $E$-orbit functions determine a symmetrized Fourier transform, where these functions serve as a kernel of the transform. They also determine a transform on a finite set of points of the fundamental domain $F^{e}$ of the group $W^{aff}_{e}$ (the discrete $E$-orbit function transform.

  14. Orbital spacecraft resupply technology

    Science.gov (United States)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  15. General introduction to altitude adaptation and mountain sickness

    DEFF Research Database (Denmark)

    Bartsch, P.; Saltin, B.

    2008-01-01

    over 24-48 h to improve the oxygen-carrying capacity of the blood, and is further improved during a prolonged sojourn at altitude through an enhanced erythropoiesis and larger Hb mass, allowing for a partial or full restoration of the blood volume and arterial oxygen content. Most of these adaptations...... are observed from quite low altitudes [approximately 1000 m above sea level (m a.s.l.)] and become prominent from 2000 m a.s.l. At these higher altitudes additional adaptations occur, one being a reduction in the maximal heart rate response and consequently a lower peak cardiac output. Thus, in spite....... The alteration at the muscle level at altitude is minor and so is the effect on the metabolism, although it is debated whether a possible reduction in blood lactate accumulation occurs during exercise at altitude. Transient acute mountain sickness (headache, anorexia, and nausea) is present in 10-30% of subjects...

  16. Polarization-balanced beamsplitter

    Science.gov (United States)

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  17. Cassini observations of Saturn's southern polar cusp

    OpenAIRE

    Arridge, Christopher Stephen; Jasinski, J. M.; Achilleos, Nicholas; Bogdanova, Y. V.; E. J. Bunce; Cowley, S. W. H; A. N. Fazakerley; Khurana, K K; Lamy, Laurent; J. S. Leisner; Roussos, E; Russell, C. T.; Zarka, P.; Coates, A. J.; Dougherty, M. K.

    2016-01-01

    The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptune’s cusp in 1989 but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunit...

  18. Climatic changes on orbital and sub-orbital time scale recorded by the Guliya ice core in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 徐柏青; 蒲健辰

    2001-01-01

    Based on ice core records in the Tibetan Plateau and Greenland, the features and possible causes of climatic changes on orbital and sub-orbital time scale were discussed. Orbital time scale climatic change recorded in ice core from the Tibetan Plateau is typically ahead of that from polar regions, which indicates that climatic change in the Tibetan Plateau might be earlier than polar regions. The solar radiation change is a major factor that dominates the climatic change on orbital time scale. However, climatic events on sub-orbital time scale occurred later in the Tibetan Plateau than in the Arctic Region, indicating a different mechanism. For example, the Younger Dryas and Heinrich events took place earlier in Greenland ice core record than in Guliya ice core record. It is reasonable to propose the hypothesis that these climatic events were affected possibly by the Laurentide Ice Sheet. Therefore, ice sheet is critically important to climatic change on sub-orbital time scale in some ice ages.

  19. Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming

    Science.gov (United States)

    Shi, Yun. Y.; Nelson, R. L.; Young, D. H.

    1990-01-01

    The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints.

  20. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    Science.gov (United States)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  1. Impact of Altitude on Power Output during Cycling Stage Racing.

    Directory of Open Access Journals (Sweden)

    Laura A Garvican-Lewis

    Full Text Available The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour.Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (3000 m according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin.Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005 during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001 while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001 during racing at moderate-high altitude compared with the race simulation near sea-level.A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.

  2. Increased oxidative stress following acute and chronic high altitude exposure.

    Science.gov (United States)

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  3. Accuracy of handheld blood glucose meters at high altitude.

    Directory of Open Access Journals (Sweden)

    Pieter de Mol

    Full Text Available BACKGROUND: Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking, reliable handheld blood glucose meters (BGMs are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. METHODOLOGY/PRINCIPAL FINDINGS: Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias 6.5 mmol/L and <1 mmol/L from reference glucose (when <6.5 mmol/L. No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. CONCLUSION: At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy.

  4. Endoscopic treatment of orbital tumors

    OpenAIRE

    Signorelli, Francesco; Anile, Carmelo; Rigante, Mario; Paludetti, Gaetano; Pompucci, Angelo; Mangiola, Annunziato

    2015-01-01

    Different orbital and transcranial approaches are performed in order to manage orbital tumors, depending on the location and size of the lesion within the orbit. These approaches provide a satisfactory view of the superior and lateral aspects of the orbit and the optic canal but involve risks associated with their invasiveness because they require significant displacement of orbital structures. In addition, external approaches to intraconal lesions may also require deinsertion of extraocular ...

  5. Towards an analytical theory of the third-body problem for highly elliptical orbits

    CERN Document Server

    Lion, Guillaume; Deleflie, Florent

    2016-01-01

    When dealing with satellites orbiting a central body on a highly elliptical orbit, it is necessary to consider the effect of gravitational perturbations due to external bodies. Indeed, these perturbations can become very important as soon as the altitude of the satellite becomes high, which is the case around the apocentre of this type of orbit. For several reasons, the traditional tools of celestial mechanics are not well adapted to the particular dynamic of highly elliptical orbits. On the one hand, analytical solutions are quite generally expanded into power series of the eccentricity and therefore limited to quasi-circular orbits [17, 25]. On the other hand, the time-dependency due to the motion of the third-body is often neglected. We propose several tools to overcome these limitations. Firstly, we have expanded the disturbing function into a finite polynomial using Fourier expansions of elliptic motion functions in multiple of the satellite's eccentric anomaly (instead of the mean anomaly) and involving...

  6. Deceleration Orbit Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  7. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  8. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  9. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  10. Electron correlation by polarization of interacting densities

    CERN Document Server

    Whitten, Jerry L

    2016-01-01

    Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus . A method of avoiding redundancy is described. Applications to atoms, negative ions and molecules representing different types of bonding and spin states are discussed.

  11. Orbital radionuclide examinations

    International Nuclear Information System (INIS)

    Orbital abnormalities can be evaluated by dynamic scintigraphy (radionuclide angiography) and static scintigraphy (radionuclide ''scanning''). The use of en face positioning improves the visualization of orbital details. Lesions can be detected and localized most accurately if multiple tracers are used for these studies. Abnormalities can be characterized by the recognition of various angiographic flow patterns, of distinct static distribution patterns, and of differences in the accumulation of multiple radiopharmaceuticals. The results of scintigraphic examination using technetium 99m sodium pertechnetate, mercury 197 chlormerodrin, and gallium 67 citrate in a series of 57 patients are reported. (U.S.)

  12. How Thick is the North Polar Ice Cap on Mars?

    Science.gov (United States)

    2008-01-01

    This map shows the thickness of the north polar layered deposits on Mars as measured by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter. The Shallow Radar instrument was provided by the Italian Space Agency. Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington

  13. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  14. Development of a spin polarized low energy electron diffraction system.

    Science.gov (United States)

    Pradeep, A V; Roy, Arnab; Kumar, P S Anil; Kirschner, J

    2016-02-01

    We have designed and constructed a spin polarized low energy electron diffraction system working in the reflected electron pulse counting mode. This system is capable of measuring asymmetries due to spin-orbit and exchange interactions. Photoemission from a strained GaAs/GaAsP super lattice is used as the source of spin polarized electrons. Spin-orbit asymmetry is evaluated for Ir(100) single crystal at various energies. Subsequently, exchange asymmetry has been evaluated on 40 monolayer Fe deposited on Ir(100). This instrument proves to be useful in understanding structure and magnetism at surfaces. PMID:26931865

  15. A Comparison of Catastrophic On-Orbit Collisions

    Science.gov (United States)

    Stansbery, G.; Matney, M.; Liou, J.; Whitlock, D.

    Orbital debris environment models, such as NASA's LEGEND model, show that accidental collisions between satellites will begin to be the dominant cause for future debris population growth within the foreseeable future. The collisional breakup models employed are obviously a critical component of the environment models. The Chinese Anti-Satellite (ASAT) test which destroyed the Fengyun-1C weather satellite provided a rare, but not unique, chance to compare the breakup models against an actual on-orbit collision. Measurements from the U.S. Space Surveillance Network (SSN), for debris larger than 10-cm, and from Haystack, for debris larger than 1-cm, show that the number of fragments created from Fengyun significantly exceeds model predictions using the NASA Standard Collision Breakup Model. However, it may not be appropriate to alter the model to match this one, individual case. At least three other on-orbit collisions have occurred which have produced significant numbers of debris fragments. In September 1985, the U.S. conducted an ASAT test against the Solwind P-78 spacecraft at an altitude of approximately 525 km. A year later, in September 1986, the Delta 180 payload was struck by its Delta II rocket body in a planned collision at 220 km altitude. And, in February 2008, the USA-193 satellite was destroyed by a ship launched missile in order to eliminate risk to humans on the ground from an on-board tank of frozen hydrazine. Although no Haystack data was available in 1985-6 and very few debris pieces were cataloged from Delta 180 due to its low altitude, measurements were collected sensors in the days after each test. This paper will examine the available data from each test and compare and contrast the results with model predictions and with the results from the more recent Fengyun ASAT test.

  16. A Comparison of Three Catastrophic On-Orbit Collisions

    Science.gov (United States)

    Stansbery, Gene; Matney, Mark; Liou, J. C.; Whitlock, Dave

    2007-01-01

    Orbital debris environment models, such as NASA's LEGEND model, show that accidental collisions between satellites will begin to be the dominant cause for future debris population growth within the foreseeable future. The collisional breakup models employed are obviously a critical component of the environment models. The Chinese Anti-Satellite (ASAT) test which destroyed the Fengyun-1C weather satellite provided a rare, but not unique, chance to compare the breakup models against an actual on-orbit collision. Measurements from the U.S. Space Surveillance Network (SSN), for debris larger than 10-cm, and from Haystack, for debris larger than 1-cm, show that the number of fragments created from Fengyun significantly exceeds model predictions using the NASA Standard Collisional Breakup Model. However, it may not be appropriate to alter the model to match this one, individual case. Two other on-orbit collisions have occurred in the past which have produced significant numbers of debris fragments. In September 1985, the U.S. conducted an ASAT test against the Solwind P-78 spacecraft at an altitude of approximately 525 km. A year later, in September 1986, the Delta 180 payload was struck by its Delta II rocket body in a planned collision at 220 km altitude. Although no Haystack data is available in 1985-6 and very few debris pieces were cataloged from Delta 180 due to its low altitude, measurements were collected in dedicated tests by phased array radars in the SSN in the days after each test. This paper will examine the available radar data from each test and compare and contrast the results with model predictions and with the results from the more recent Fengyun ASAT test.

  17. On-Orbit Asset Management System, September 1995. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-10

    Declining budgets have prompted the need to decrease launch cost, increase satellite lifetime, and accomplish more with each satellite. This study evaluates an OOAMS system for its ability to lengthen lifetime of on-orbit assets, decrease the number of satellites required to perform a mission, increase responsiveness, and provide increased mission capability/tactical advantage. Lifetime analysis suggest that the larger satellite systems (NASA and military communication systems, surveillance satellites and earth observing satellites) would benefit most from a nuclear bimodal OOAMS. Evaluation of satellite constellations indicate that a modest reduction in the number of satellites could be realized using OOAMS if the thermal restart capability was at least ten. An OOAMS could improve the responsiveness (launching of new assets) using on-orbit reconstitution of assets. A top level utility assessment was done to address system cost issues relating to funding profiles, first unit cost, and break-even analysis. From mission capture and orbital lifetime criteria, the recommended minimum orbital altitude is 900 km. The on-orbit thermal restart capability should be increased from five to ten. Analysis of total impulse vs propellant consumed for selected missions suggests that total impulse be increased from 40 million to 48 million Newton-seconds.

  18. Metasurface polarization splitter

    CERN Document Server

    Slovick, Brian A; Yu, Zhi Gang; Kravchenckou, Ivan I; Briggs, Dayrl P; Moitra, Parikshit; Krishnamurthy, Srini; Valentine, Jason

    2016-01-01

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are one of the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here we show that a subwavelength rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the two-fold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss, and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.

  19. Polarized targets and beams

    International Nuclear Information System (INIS)

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  20. Effects of high altitude and exercise on marksmanship.

    Science.gov (United States)

    Tharion, W J; Hoyt, R W; Marlowe, B E; Cymerman, A

    1992-02-01

    The effects of exercise and high altitude (3,700 m to 4,300 m) on marksmanship accuracy and sighting time were quantified in 16 experienced marksmen. Subjects dry-fired a disabled rifle equipped with a laser-based system from a free-standing position. The 2.3-cm circular target was at a distance of 5 m. Marksmanship was assessed under the following conditions: 1) at rest at sea level; 2) immediately after a 21-km run/walk ascent from 1,800 m to 4,300 m elevation; 3) at rest during days 1 to 3 at altitude; 4) at rest during days 14 to 16 at altitude; and 5) immediately after a second ascent after 17 d at altitude. Exercise reduced marksmanship accuracy (p less than 0.05) but did not affect sighting time. Acute altitude exposure reduced marksmanship accuracy, and decreased sighting time (p less than 0.05). However, after residence at altitude, accuracy and sighting time at rest returned to sea level values. Exercise and acute altitude exposure had similar but independent detrimental effects on marksmanship. PMID:1546938

  1. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  2. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation.

    Science.gov (United States)

    Luo, Yongjun; Yang, Xiaohong; Gao, Yuqi

    2013-08-01

    Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.

  3. Twilight Limb Observations of the Martian North Polar Hood by MAVEN IUVS

    Science.gov (United States)

    Lo, Daniel; Yelle, Roger; Schneider, Nicholas M.; Jain, Sonal Kumar; Stewart, Ian; Deighan, Justin; Stiepen, Arnaud; Evans, Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Clarke, John T.; Holsclaw, Gregory; Lefevre, Franck; Jacosky, Bruce

    2016-10-01

    In northern winter, a broad distribution of ice aerosols appears in the north polar atmosphere of Mars, commonly referred to as the North Polar Hood (NPH). The NPH is thought to be formed as a result of condensation from lowered temperatures associated with both seasonal and diurnal variations in solar heating. The spatial extent and density of the NPH is highly variable, with a maximum latitudinal extent spanning 30-80°N, and a maximum density at 10-30 km altitude.The NPH has been extensively observed by both ground-based telescopes and instruments in orbit around Mars. However, the majority of these observations are nadir-pointing. This observation geometry has two significant limitations. Firstly, they poorly probe the vertical structure of the NPH. Secondly, column densities are determined by monitoring the intensity of various spectral features associated with the ice composing the NPH, against a strong background with similar features from the frost that has condensed on the surface in the winter season, resulting in low sensitivities. Limb observations removes both limitations, allowing us to study the vertical distribution of the aerosols that make up the NPH at high sensitivities.We present new limb observations of the NPH by IUVS (Imaging Ultraviolet Spectrograph) on the MAVEN (Mars Atmospheric and Volatile Evolution) spacecraft. These observations represent the first ultraviolet limb observations of the NPH, opening a new window for understanding the structure and composition of the NPH. The observations are also of the twilight limb, with sunlight being scattered from the dayside into the nightside over large solar zenith angles. This illumination geometry allows us to avoid the high dayside intensities that would drown out the signal from the thinner sections of the NPH. We determine the latitudinal extent of the NPH to be 30-60°N. We also find that an exponential altitude distribution of aerosols is able to reproduce the observed intensities, with a

  4. Geostationary orbit Earth science platform concepts for global change monitoring

    Science.gov (United States)

    Farmer, Jeffery T.; Campbell, Thomas G.; Davis, William T.; Garn, Paul A.; King, Charles B.; Jackson, Cheryl C.

    1991-01-01

    Functionality of a geostationary spacecraft to support Earth science regional process research is identified. Most regional process studies require high spatial and temporal resolution. These high temporal resolutions are on the order of 30 minutes and may be achievable with instruments positioned in a geostationary orbit. A complement of typical existing or near term instruments are identified to take advantage of this altitude. This set of instruments is listed, and the requirements these instruments impose on a spacecraft are discussed. A brief description of the geostationary spacecraft concepts which support these instruments is presented.

  5. Sedna Orbit Animation

    Science.gov (United States)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  6. Can patients with coronary heart disease go to high altitude?

    Science.gov (United States)

    Dehnert, Christoph; Bärtsch, Peter

    2010-01-01

    Tourism to high altitude is very popular and includes elderly people with both manifest and subclinical coronary heart disease (CHD). Thus, risk assessment regarding high altitude exposure of patients with CHD is of increasing interest, and individual recommendations are expected despite the lack of sufficient scientific evidence. The major factor increasing cardiac stress is hypoxia. At rest and for a given external workload, myocardial oxygen demand is increased at altitude, particularly in nonacclimatized individuals, and there is some evidence that blood-flow reserve is reduced in atherosclerotic coronary arteries even in the absence of severe stenosis. Despite a possible imbalance between oxygen demand and oxygen delivery, studies on selected patients have shown that exposure and exercise at altitudes of 3000 to 3500 m is generally safe for patients with stable CHD and sufficient work capacity. During the first days at altitude, patients with stable angina may develop symptoms of myocardial ischemia at slightly lower heart rate x  blood-pressure products. Adverse cardiac events, however, such as unstable angina coronary syndromes, do not occur more frequently compared with sea level except for those who are unaccustomed to exercise. Therefore, training should start before going to altitude, and the altitude-related decrease in exercise capacity should be considered. Travel to 3500 m should be avoided unless patients have stable disease, preserved left ventricular function without residual capacity, and above-normal exercise capacity. CHD patients should avoid travel to elevations above 4500 m owing to severe hypoxia at these altitudes. The risk assessment of CHD patients at altitude should always consider a possible absence of medical support and that cardiovascular events may turn into disaster. PMID:20919884

  7. Experimental observation of polarization-dependent optical vortex beams

    CERN Document Server

    Srisuphaphon, S; Photia, T; Temnuch, W; Chiangga, S; Deachapunya, S

    2016-01-01

    We report the experimental demonstration of the induced polarization-dependent optical vortex beams. We use the Talbot configuration as a method to probe this effect. In particular, our simple experiment shows the direct measurement of this observation. Our experiment can exhibit clearly the combination between the polarization and orbital angular momentum (OAM) states of light. This implementation might be useful for further studies in the quantum system or quantum information.

  8. Polarization phenomena in hyperon-nucleon scattering

    CERN Document Server

    Ishikawa, S; Iseri, Y; Yamamoto, Y

    2004-01-01

    We investigate polarization observables in hyperon-nucleon scattering by decomposing scattering amplitudes into spin-space tensors, where each component describes scattering by corresponding spin-dependent interactions, so that contributions of the interactions in the observables are individually identified. In this way, for elastic scattering we find some linear combinations of the observables sensitive to particular spin-dependent interactions such as symmetric spin-orbit (LS) interactions and antisymmetric LS ones. These will be useful to criticize theoretical predictions of the interactions when the relevant observables are measured. We treat vector analyzing powers, depolarizations, and coefficients of polarization transfers and spin correlations, a part of which is numerically examined in $\\Sigma^{+} p$ scattering as an example. Total cross sections are studied for polarized beams and targets as well as for unpolarized ones to investigate spin dependence of imaginary parts of forward scattering amplitud...

  9. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  10. On the polarization effects in (p,n) reactions between the A=48 isobarical states

    OpenAIRE

    Isakov, V. I.

    2002-01-01

    Isotopical dependence of spin-orbit splitting discovered by us in spectra of heavy nuclei close to doubly magic ones is checked in polarization effects arising in charge exchange (p,n) reaction between the A=48 isobarical states.

  11. Orbital Fluid Transfer System

    Science.gov (United States)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  12. Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    International Nuclear Information System (INIS)

    In 1918, Lense and Thirring calculated that a moon orbiting a rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect to 1% with two counter-orbiting drag-free satellites in polar earth orbit. In addition to tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken near the poles. New geophysical information is inherent in the polar data

  13. [Orbital decompression for Graves' ophthalmopathy].

    Science.gov (United States)

    Boulétreau, P; Breton, P; Freidel, M

    2005-04-01

    Graves' ophthalmopathy is a complex orbital condition with a controversial pathogenesis. It is the clinical expression of a discordance between the inextensible orbit and hypertrophic muscular and fatty elements within the orbit responding to immunological stimulation. The relationship between the orbital and its content can be improved by surgical expansion which increases the useful volume of the orbit. This procedure can be combined with lipectomy to decrease the volume of the orbital contents. We briefly recall the history of surgical decompression techniques and present our experience with Graves' ophthalmopathy patients.

  14. Local orbitals by minimizing powers of the orbital variance

    DEFF Research Database (Denmark)

    Jansik, Branislav; Høst, Stinne; Kristensen, Kasper;

    2011-01-01

    It is demonstrated that a set of local orthonormal Hartree–Fock (HF) molecular orbitals can be obtained for both the occupied and virtual orbital spaces by minimizing powers of the orbital variance using the trust-region algorithm. For a power exponent equal to one, the Boys localization function...... is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C60, and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may be...... encountered. These disappear when the exponent is larger than one. For a small penalty, the occupied orbitals are more local than the virtual ones. When the penalty is increased, the locality of the occupied and virtual orbitals becomes similar. In fact, when increasing the cardinal number for Dunning...

  15. Interpretations of de-orbit, deactivation, and shutdown guidelines applicable to GEO satellites

    Science.gov (United States)

    Honda, L.; Perkins, J.; Sun, Sheng

    As the population of space debris in orbit around the Earth grows, the probability for catastrophic collisions increases. Many agencies such as the IADC, FCC, and UN have proposed space debris mitigation guidelines or recommendations. For example, a minimum increase in perigee altitude of 235km + (1000 Cr A / m) where Cr is the solar radiation pressure coefficient, A/m is the aspect area to dry mass ratio, and 235 km is the sum of the upper altitude of the geostationary orbit (GEO) protected region (200 km) and the maximum descent of a re-orbited spacecraft due to lunar-solar & geopotential perturbations (35 km) with an eccentricity less than or equal to 0.003. While this particular recommendation is reasonably straightforward, the assumptions an operator chooses may change the result by 25 km. Other recommendations are more ambiguous. For example, once the space vehicle has been de-orbited to the required altitude, all on-board stored energy sources must be discharged by venting propellants and pressurants, discharging batteries and disabling the ability to charge them, and performing other appropriate measures. “ Vented” is not usually defined. In addition, the broadcasting capability of the spacecraft must be disabled. Boeing and its customers are working together to devise de-orbit and deactivation sequences that meet the spirit of the recommendations. This paper derives and proposes a generic minimum deorbit altitude, appropriate depletion and venting pressures based on tank design, propellant and pressurant type, and an acceptable shutdown procedure and final configuration that avoid interference with those still in the GEO belt well into the future. The goal of this paper is to open a dialogue with the global community to establish reasonable guidelines that are straightforward, safe, and achievable before an absolute requirement is set.

  16. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    Directory of Open Access Journals (Sweden)

    Huseyin Toprak

    2014-01-01

    Full Text Available Idiopathic orbital pseudotumor (IOP is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI features that help to exclude other entities during differential diagnoses.

  17. Orbit correction algorithm for SSRF fast orbit feedback system

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; YIN Chongxian; LIU Dekang

    2009-01-01

    A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz.The SVD (Singular value decomposition) algorithm is applied to calculate the inverse response matrix in global orbit correction.The number of singular eigenvalues will influence orbit noise suppression and corrector strengths.The method to choose singular eigenvalue rejection threshold is studied in this paper,and the simulation and experiment results are also presented.

  18. High altitude airborne remote sensing mission using the advanced microwave precipitation radiometer (AMPR)

    Science.gov (United States)

    Galliano, J.; Platt, R. H.; Spencer, Roy; Hood, Robbie

    1991-01-01

    The advanced microwave precipitation radiometer (AMPR) is an airborne multichannel imaging radiometer used to better understand how the earth's climate structure works. Airborne data results from the October 1990 Florida thunderstorm mission in Jacksonville, FL, are described. AMPR data on atmospheric precipitation in mesoscale storms were retrieved at 10.7, 19.35, 37.1, and 85.5 GHz onboard the ER-2 aircraft at an altitude of 20 km. AMPR's three higher-frequency data channels were selected to operate at the same frequencies as the spaceborne special sensor microwave/imager (SSM/I) presently in orbit. AMPR uses two antennas to receive the four frequencies: the lowest frequency channel uses a 9.7-in aperture lens antennas, while the three higher-frequency channels share a separate 5.3-in aperture lens antenna. The radiometer's temperature resolution performance is summarized.

  19. The high altitude student platform (HASP) for student-built payloads

    Science.gov (United States)

    Guzik, T. Gregory; Wefel, John P.

    An outstanding issue with aerospace workforce development is what should be done at the university level to attract and prepare undergraduates for an aerospace career. One approach adopted by many institutions is to lead students through the design and development of small payloads (less than about 500 grams) that can be carried up to high altitude (around 30 km) by a latex sounding balloon. This approach has been very successful in helping students to integrate their content knowledge with practical skills and to understand the end-to-end process of aerospace project development. Sounding balloons, however, are usually constrained in flight duration (˜30 min above 24 km) and payload weight, limiting the kinds investigations that are possible. Student built picosatellites, such as CubeSats, can be placed in low Earth orbit removing the flight duration constraint, but the delays between satellite development and launch can be years. Here, we present the inexpensive high altitude student platform (HASP) that is designed to carry at least eight student payloads at a time to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This platform provides a flight capability greater than sounding balloons and can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. The HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. HASP is lightweight, has simple mission requirements providing flexibility in the launch schedule, will provide a flight test opportunity at the end of each academic year.

  20. NESDIS VIIRS Polar Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains the Level 3 Polar Winds Northern and Southern Hemisphere datasets. The Level 3 Polar Winds data from VIIRS for the Arctic and Antarctic from...

  1. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  2. Inducing elliptically polarized high-order harmonics from aligned molecules with linearly polarized femtosecond pulses

    DEFF Research Database (Denmark)

    Etches, Adam; Madsen, Christian Bruun; Madsen, Lars Bojer

    2010-01-01

    A recent paper reported elliptically polarized high-order harmonics from aligned N2 using a linearly polarized driving field [X. Zhou et al., Phys. Rev. Lett. 102, 073902 (2009)]. This observation cannot be explained in the standard treatment of the Lewenstein model and has been ascribed to many...... additional contributions, which can be interpreted as quantum orbits in which the active electron is ionized at one atomic center within the molecule and recombines at another. The associated exchange harmonics are responsible for the nonvanishing ellipticity and result from a correlation between the...

  3. Bumblebees Learn Polarization Patterns

    OpenAIRE

    Foster, James J.; Sharkey, Camilla R.; Gaworska, Alicia V.A.; Roberts, Nicholas W.; Whitney, Heather M.; Partridge, Julian C.

    2014-01-01

    Summary Foraging insect pollinators such as bees must find and identify flowers in a complex visual environment. Bees use skylight polarization patterns for navigation [1–3], a capacity mediated by the polarization-sensitive dorsal rim area (DRA) of their eye [4, 5]. While other insects use polarization sensitivity to identify appropriate habitats [6], oviposition sites, and food sources [7], to date no nonnavigational functions of polarization vision have been identified in bees. Here we inv...

  4. Cognitive performance in high altitude Andean residents compared to low altitude populations: from childhood to older age

    OpenAIRE

    Hill, Catherine M.; Dimitriou, Dagmara; Baya, Ana; Webster, Rebecca; Gavlak-Dingle, Johanna; Lesperance, Veline; Healthcote, Kate; Romola S Bucks

    2014-01-01

    Objectives: To assess cognition in populations born and living at high (3700m) and low altitude (500m) in Bolivia, who were similar for both socio-economic status and genetic ancestry. To determine whether high altitude hypoxia influences cognitive decline across the life-span. Method: In total, 191 healthy participants aged 4 to 85 years were assessed at high (N = 94; 33; 35% male) and low altitude (N = 97; 46, 47% male) on a battery of cognitive tasks: fluid intelligence, attention, s...

  5. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    Science.gov (United States)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  6. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    Science.gov (United States)

    Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.

  7. Spin-Orbit Splitting in Semiconductor Quantum Dots with a Two-Dimensional Ring Model

    Institute of Scientific and Technical Information of China (English)

    FENG Jun-Sheng; LIU Zheng

    2009-01-01

    We present a theoretical study of the energy levels with two-dimensional ring confining potential in the presence of the Rashba spin-orbit interaction.The features of some low-lying states in various strengths of the Rashba spin-orbit interaction are investigated.The Rashba spin-orbit splitting can also be influenced by the width of the potential barrier.The computed results show that the spin-polarized electronic states can be more easily achieved in a weakly confined dot when the confinement strength for the Rashba spin-orbit interaction is larger than a critical value.

  8. Biochemical Aspects of Acclimatization of Man to High Altitude Stress

    Directory of Open Access Journals (Sweden)

    K. K. Srivastava

    1975-07-01

    Full Text Available The paper reviews the biochemical aspects of acclimatization of human body to high altitude with particular reference to the adaptive changes in Skeletal muscles, hepatic function, adrenal function and carbohydrate metabolism.

  9. Altitude Compensating Nozzle Transonic Performance Flight Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Altitude compensating nozzles continue to be of interest for use on future launch vehicle boosters and upper stages because of their higher mission average Isp and...

  10. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  11. Investigation of Correction Method of the Spacecraft Low Altitude Ranging

    CERN Document Server

    Liu, Jing-Lei; Wu, Shi-Tong; Huang, Wei

    2015-01-01

    gamma ray altitude control system is an important equipment for deep space exploration and sample return mission, its main purpose is a low altitude measurement of the spacecraft based on Compton Effect at the moment when it lands on extraterrestrial celestial or sampling returns to the Earth land, and an ignition altitude correction of the spacecraft retrograde landing rocket at different landing speeds. This paper presents an ignition altitude correction method of the spacecraft at different landing speeds, based on the number of particles gamma ray reflected field gradient graded. Through the establishment of a theoretical model, its algorithm feasibility is proved by a mathematical derivation and verified by an experiment, and also the adaptability of the algorithm under different parameters is described. The method provides a certain value for landing control of the deep space exploration spacecraft landing the planet surface.

  12. Graphing Polar Curves

    Science.gov (United States)

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  13. Soldier at High Altitude: Problem & Preventive Measures

    Directory of Open Access Journals (Sweden)

    S.S Purkayastha

    2000-04-01

    Full Text Available Due to military and j trategic reasons, a large body of troops is being regularly dcployed in the snowbound areas through ut the Himalayan regions to guard Ihe Ironliers. Thc mountain environment at high 'allitude (HA consisls of several faclors alien lo plain dwellers, which evoke a series of physiological responses in human system. Some of the sea' level residents on induction to HA suffer from several unloward symploms of HA" ailmenls varying from mild-lo-severe degrees. Suddenexposure to HA is detrimental to physical and mental  performance of the low landers and  certain cases, may even lead to dreaded condition like high altitude pulmonary oedema (HAPO. These may make a man Jisturbed physically and mentally. So, there is a need lo prevent such hazards v(hich ispossible if the individual is aware of the problems and prevenlive measures ofHA ailments in advance, before going to HA for a safe and happy living there. Hence, a noble effort has been made to provide guidelines to create awareness about physical and physiological problems of life at HA and themethods of protection against its ill-effects for the soldiers, mountaineers and sojourners conducting scientific trials it HA. In th.:s revieJ, an attempt has been made to describe vital aspects of HA in a popular way, st~ing with its concept and various environmental factors which exert considerableettects on human body functions, heallh and performance on exposure to such environment, on the b¥is of a series of studies coitlucted at Ithe Defence Institute of Physiology & Allied Sciences, Delhi, oVer the years. The most important featurelof HA (3,000 m and above is hypoxia or deficiency ofoxygej1 in the body. Olher cnvironmental tactors are: scverc cold, high velocity wind, low rclalivc humidily, high solar radiatior, increased ultraviolet radialion and difficult terrain. These faclors are responsible for various HA cWtdc old syndromes, viz., acute mountain sickness, HAPO, dehydration,4

  14. Quark orbital-angular-momentum distribution in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Hoodbhoy, P.; Ji, X.; Lu, W. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)

    1999-01-01

    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {ital orbital} angular momentum distribution L{sub q}(x). The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution E(x) in the forward limit. We comment upon the evolution equations obeyed by this as well as other orbital distributions considered in the literature. {copyright} {ital 1998} {ital The American Physical Society}

  15. Pulmonary artery pressure limits exercise capacity at high altitude.

    OpenAIRE

    Naeije, Robert; Huez, Sandrine; Lamotte, Michel; Retailleau, Kathleen; Neupane, S; Abramowicz, Daniel; Faoro, Vitalie

    2010-01-01

    Altitude exposure is associated with decreased exercise capacity and increased pulmonary vascular resistance (PVR). Echocardiographic measurements of pulmonary haemodynamics and a cardiopulmonary exercise test were performed in 13 healthy subjects at sea level, in normoxia and during acute hypoxic breathing (1 h, 12% oxygen in nitrogen), and in 22 healthy subjects after acclimatisation to an altitude of 5,050 m. The measurements were obtained after randomisation, double-blinded to the intake ...

  16. Isothermal pumping analysis for high-altitude tethered balloons

    OpenAIRE

    Kuo, Kirsty A.; Hunt, Hugh E.M.

    2015-01-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal...

  17. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  18. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions, design scheme, the main performances and parameters of the test facilities, as well as...

  19. Aging, Tolerance to High Altitude, and Cardiorespiratory Response to Hypoxia.

    Science.gov (United States)

    Richalet, Jean-Paul; Lhuissier, François J

    2015-06-01

    Richalet, Jean-Paul, and François J. Lhuissier. Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt Med Biol. 16:117-124, 2015.--It is generally accepted that aging is rather protective, at least at moderate altitude. Some anecdotal reports even mention successful ascent of peaks over 8000 m and even Everest by elderly people. However, very few studies have explored the influence of aging on tolerance to high altitude and prevalence of acute high altitude related diseases, taking into account all confounding factors such as speed of ascent, altitude reached, sex, training status, and chemo-responsiveness. Changes in physiological responses to hypoxia with aging were assessed through a cross-sectional 20-year study including 4675 subjects (2789 men, 1886 women; 14-85 yrs old) and a longitudinal study including 30 subjects explored at a mean 10.4-year interval. In men, ventilatory response to hypoxia increased, while desaturation was less pronounced with aging. Cardiac response to hypoxia was blunted with aging in both genders. Similar results were found in the longitudinal study, with a decrease in cardiac and an increase in ventilatory response to hypoxia with aging. These adaptive responses were less pronounced or absent in post-menopausal untrained women. In conclusion, in normal healthy and active subjects, aging has no deleterious effect on cardiac and ventilatory responses to hypoxia, at least up to the eighth decade. Aging is not a contraindication for high altitude, as far as no pathological condition interferes and physical fitness is compatible with the intensity of the expected physical demand of one's individual. Physiological evaluation through hypoxic exercise testing before going to high altitude is helpful to detect risk factors of severe high altitude-related diseases. PMID:25946570

  20. Evolutionary adaptation to high altitude: a view from in utero

    OpenAIRE

    Julian, Colleen Glyde; Wilson, Megan J.; Moore, Lorna G.

    2009-01-01

    A primary focus within biological anthropology has been to elucidate the processes of evolutionary adaptation. A. Roberto Frisancho helped move anthropology towards more mechanistic explanations of human adaptation by drawing attention to the importance of the functional relevance of human variation. Using the natural laboratory of high altitude, he and others asked whether the unique physiology of indigenous high-altitude residents was the result of acclimatization, developmental plasticity ...