WorldWideScience

Sample records for altimeter system glas

  1. A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS)

    Science.gov (United States)

    Sean P. Healey; Paul L. Patterson; Sassan S. Saatchi; Michael A. Lefsky; Andrew J. Lister; Elizabeth A. Freeman

    2012-01-01

    Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return data were collected globally in spatially discrete full waveform "shots," which have been shown to be strongly correlated with aboveground forest...

  2. VERTICAL ACCURACY ASSESSMENT OF ZY-3 DIGITAL SURFACE MODEL USING ICESAT/GLAS LASER ALTIMETER DATA

    Directory of Open Access Journals (Sweden)

    G. Li

    2017-05-01

    Full Text Available The Ziyuan-3 (ZY-3 satellite, as the first civilian high resolution surveying and mapping satellite in China, has a very important role in national 1 : 50,000 stereo mapping project. High accuracy digital surface Model (DSMs can be generated from the three line-array images of ZY-3, and ZY-3 DSMs of China can be produced without using any ground control points (GCPs by selecting SRTM (Shuttle Radar Topography Mission and ICESat/GLAS (Ice, Cloud, and land Elevation Satellite, Geo-science Laser Altimeter System as the datum reference in the Satellite Surveying and Mapping Application Center, which is the key institute that manages and distributes ZY-3 products. To conduct the vertical accuracy evaluation of ZY-3 DSMs of China, three representative regions were chosen and the results were compared to ICESat/GLAS data. The experimental results demonstrated that the root mean square error (RMSE elevation accuracy of the ZY-3 DSMs was better than 5.0 m, and it even reached to less than 2.5 m in the second region of eastern China. While this work presents preliminary results, it is an important reference for expanding the application of ZY-3 satellite imagery to widespread regions. And the satellite laser altimetry data can be used as referenced data for wide-area DSM evaluation.

  3. LBA-ECO TG-07 Forest Structure Measurements for GLAS Validation: Santarem 2004

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the results of a GLAS (the Geoscience Laser Altimeter System) forest structure validation survey conducted in Santarem and Sao Jorge, Para...

  4. Slope Estimation from ICESat/GLAS

    Directory of Open Access Journals (Sweden)

    Craig Mahoney

    2014-10-01

    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  5. Forest above Ground Biomass Inversion by Fusing GLAS with Optical Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Xiaohuan Xi

    2016-03-01

    Full Text Available Forest biomass is an important parameter for quantifying and understanding biological and physical processes on the Earth’s surface. Rapid, reliable, and objective estimations of forest biomass are essential to terrestrial ecosystem research. The Geoscience Laser Altimeter System (GLAS produced substantial scientific data for detecting the vegetation structure at the footprint level. This study combined GLAS data with MODIS/BRDF (Bidirectional Reflectance Distribution Function and ASTER GDEM data to estimate forest aboveground biomass (AGB in Xishuangbanna, Yunnan Province, China. The GLAS waveform characteristic parameters were extracted using the wavelet method. The ASTER DEM was used to compute the terrain index for reducing the topographic influence on the GLAS canopy height estimation. A neural network method was applied to assimilate the MODIS BRDF data with the canopy heights for estimating continuous forest heights. Forest leaf area indices (LAIs were derived from Landsat TM imagery. A series of biomass estimation models were developed and validated using regression analyses between field-estimated biomass, canopy height, and LAI. The GLAS-derived canopy heights in Xishuangbanna correlated well with the field-estimated AGB (R2 = 0.61, RMSE = 52.79 Mg/ha. Combining the GLAS estimated canopy heights and LAI yielded a stronger correlation with the field-estimated AGB (R2 = 0.73, RMSE = 38.20 Mg/ha, which indicates that the accuracy of the estimated biomass in complex terrains can be improved significantly by integrating GLAS and optical remote sensing data.

  6. The GLAS Standard Data Products Specification-Data Dictionary, Version 1.0. Volume 15

    Science.gov (United States)

    Lee, Jeffrey E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document contains the data dictionary for the GLAS standard data products. It details the parameters present on GLAS standard data products. Each parameter is defined with a short name, a long name, units on product, type of variable, a long description and products that contain it. The term standard data products refers to those EOS instrument data that are routinely generated for public distribution. These products are distributed by the National Snow and Ice Data Center (NSDIC).

  7. The GLAS Algorithm Theoretical Basis Document for Precision Attitude Determination (PAD)

    Science.gov (United States)

    Bae, Sungkoo; Smith, Noah; Schutz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASAs Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas.

  8. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    Science.gov (United States)

    Nelson, Ross F.

    2010-01-01

    Ice, Cloud, and land Elevation Satellite (ICESat) / Geosciences Laser Altimeter System (GLAS) waveform data are used to estimate biomass and carbon on a 1.27 X 10(exp 6) square km study area in the Province of Quebec, Canada, below the tree line. The same input datasets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include non-stratified and stratified versions of a multiple linear model where either biomass or (biomass)(exp 0.5) serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial dry biomass estimates of up to 0.35 G, with a range of 4.94 +/- 0.28 Gt to 5.29 +/-0.36 Gt. The differences among model estimates are statistically non-significant, however, and the results demonstrate the degree to which carbon estimates vary strictly as a function of the model used to estimate regional biomass. Results also indicate that GLAS measurements become problematic with respect to height and biomass retrievals in the boreal forest when biomass values fall below 20 t/ha and when GLAS 75th percentile heights fall below 7 m.

  9. A method for separating Antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data

    OpenAIRE

    Velicogna, Isabella; Wahr, John

    2002-01-01

    Measurements of ice elevation from the Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud, and Land Elevation Satellite can be combined with time-variable geoid measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to learn about ongoing changes in polar ice mass and viscoelastic rebound of the lithosphere under the ice sheet. We estimate the accuracy in recovering the spatially varying ice mass trend and postglacial rebound signals for Antarctica...

  10. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    Science.gov (United States)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  11. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    Science.gov (United States)

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  12. Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data

    Directory of Open Access Journals (Sweden)

    S. O. Los

    2012-03-01

    Full Text Available We present new coarse resolution (0.5° × 0.5° vegetation height and vegetation-cover fraction data sets between 60° S and 60° N for use in climate models and ecological models. The data sets are derived from 2003–2009 measurements collected by the Geoscience Laser Altimeter System (GLAS on the Ice, Cloud and land Elevation Satellite (ICESat, the only LiDAR instrument that provides close to global coverage. Initial vegetation height is calculated from GLAS data using a development of the model of Rosette et al. (2008 with with further calibration on desert sites. Filters are developed to identify and eliminate spurious observations in the GLAS data, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. Filtered GLAS vegetation height estimates are aggregated in histograms from 0 to 70 m in 0.5 m intervals for each 0.5° × 0.5°. The GLAS vegetation height product is evaluated in four ways. Firstly, the Vegetation height data and data filters are evaluated using aircraft LiDAR measurements of the same for ten sites in the Americas, Europe, and Australia. Application of filters to the GLAS vegetation height estimates increases the correlation with aircraft data from r = 0.33 to r = 0.78, decreases the root-mean-square error by a factor 3 to about 6 m (RMSE or 4.5 m (68% error distribution and decreases the bias from 5.7 m to −1.3 m. Secondly, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. The changes in height estimates by applying different filters are, for the main part, smaller than the overall uncertainty of 4.5–6 m established from the site measurements. Thirdly, the GLAS global vegetation height product is compared with a

  13. Precise topography assessment of Lop Nur Lake Basin using GLAS altimeter

    International Nuclear Information System (INIS)

    Wang, Longfei; Gong, Huaze; Shao, Yun

    2014-01-01

    Lop Nur is a dried-up salt lake lying in the eastern part of Tarim basin, which used to be the second largest lagon in China. The ''ear'' rings in Lop Nur attract many interests and are regarded as the lake shorelines during its recession. The topography of the lake basin is important in understanding the formation of the ''ear'' rings. In this paper, elevation data along three transects obtained from laser altimeter were taken as the basic material of the topography in Lop Nur. Elevation data of laser altimeter show great consistency between adjacent passes. Orthometric height (OH) derived from altimetry data and the geoid model are used to analyze the elevation characteristic along ''ear'' rings. The result shows the ''ear'' rings are basically identical in elevation, supporting the statement that ''ear'' rings are former lake shorelines. A discrepancy of approximately 1 meter in OH is observed on the same ''ear'' ring, lower in the north and higher in the south, which is found for the first time. Possible explanations could be deformation of ground surface due to earthquake or tectonic movement after the ''ear'' rings are formed, or tilt of water surface due to wind stress or lake current during the formation of the rings

  14. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    Science.gov (United States)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and

  15. A New Method to Estimate Changes in Glacier Surface Elevation Based on Polynomial Fitting of Sparse ICESat—GLAS Footprints

    Directory of Open Access Journals (Sweden)

    Tianjin Huang

    2017-08-01

    Full Text Available We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona’nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.

  16. Realtime system for GLAS on WHT

    Science.gov (United States)

    Skvarč, Jure; Tulloch, Simon; Myers, Richard M.

    2006-06-01

    The new ground layer adaptive optics system (GLAS) on the William Herschel Telescope (WHT) on La Palma will be based on the existing natural guide star adaptive optics system called NAOMI. A part of the new developments is a new control system for the tip-tilt mirror. Instead of the existing system, built around a custom built multiprocessor computer made of C40 DSPs, this system uses an ordinary PC machine and a Linux operating system. It is equipped with a high sensitivity L3 CCD camera with effective readout noise of nearly zero. The software design for the tip-tilt system is being completely redeveloped, in order to make a use of object oriented design which should facilitate easier integration with the rest of the observing system at the WHT. The modular design of the system allows incorporation of different centroiding and loop control methods. To test the system off-sky, we have built a laboratory bench using an artificial light source and a tip-tilt mirror. We present results of tip-tilt correction quality using different centroiding algorithms and different control loop methods at different light levels. This system will serve as a testing ground for a transition to a completely PC-based real-time control system.

  17. Target Assembly to Check Boresight Alignment of Active Sensors

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael

    2011-01-01

    A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.

  18. Assessing the impact of multiple altimeter missions and Argo in a global eddy-permitting data assimilation system

    Science.gov (United States)

    Verrier, Simon; Le Traon, Pierre-Yves; Remy, Elisabeth

    2017-12-01

    A series of observing system simulation experiments (OSSEs) is carried out with a global data assimilation system at 1/4° resolution using simulated data derived from a 1/12° resolution free-run simulation. The objective is to not only quantify how well multiple altimeter missions and Argo profiling floats can constrain the global ocean analysis and 7-day forecast at 1/4° resolution but also to better understand the sensitivity of results to data assimilation techniques used in Mercator Ocean operational systems. The impact of multiple altimeter data is clearly evidenced even at a 1/4° resolution. Seven-day forecasts of sea level and ocean currents are significantly improved when moving from one altimeter to two altimeters not only on the sea level, but also on the 3-D thermohaline structure and currents. In high-eddy-energy regions, sea level and surface current 7-day forecast errors when assimilating one altimeter data set are respectively 20 and 45 % of the error of the simulation without assimilation. Seven-day forecasts of sea level and ocean currents continue to be improved when moving from one altimeter to two altimeters with a relative error reduction of almost 30 %. The addition of a third altimeter still improves the 7-day forecasts even at this medium 1/4° resolution and brings an additional relative error reduction of about 10 %. The error level of the analysis with one altimeter is close to the 7-day forecast error level when two or three altimeter data sets are assimilated. Assimilating altimeter data also improves the representation of the 3-D ocean fields. The addition of Argo has a major impact on improving temperature and demonstrates the essential role of Argo together with altimetry in constraining a global data assimilation system. Salinity fields are only marginally improved. Results derived from these OSSEs are consistent with those derived from experiments with real data (observing system evaluations, OSEs) but they allow for more

  19. GLAS: engineering a common-user Rayleigh laser guide star for adaptive optics on the William Herschel Telescope

    Science.gov (United States)

    Talbot, Gordon; Abrams, Don Carlos; Apostolakos, Nikolaos; Bassom, Richard; Blackburn, Colin; Blanken, Maarten; Cano Infantes, Diego; Chopping, Alan; Dee, Kevin; Dipper, Nigel; Elswijk, Eddy; Enthoven, Bernard; Gregory, Thomas; ter Horst, Rik; Humphreys, Ron; Idserda, Jan; Jolley, Paul; Kuindersma, Sjouke; McDermid, Richard; Morris, Tim; Myers, Richard; Pico, Sergio; Pragt, Johan; Rees, Simon; Rey, Jürg; Reyes, Marcos; Rutten, René; Schoenmaker, Ton; Skvarc, Jure; Tromp, Niels; Tulloch, Simon; Veninga, Auke

    2006-06-01

    The GLAS (Ground-layer Laser Adaptive-optics System) project is to construct a common-user Rayleigh laser beacon that will work in conjunction with the existing NAOMI adaptive optics system, instruments (near IR imager INGRID, optical integral field spectrograph OASIS, coronagraph OSCA) and infrastructure at the 4.2-m William Herschel Telescope (WHT) on La Palma. The laser guide star system will increase sky coverage available to high-order adaptive optics from ~1% to approaching 100% and will be optimized for scientific exploitation of the OASIS integral-field spectrograph at optical wavelengths. Additionally GLAS will be used in on-sky experiments for the application of laser beacons to ELTs. This paper describes the full range of engineering of the project ranging through the laser launch system, wavefront sensors, computer control, mechanisms, diagnostics, CCD detectors and the safety system. GLAS is a fully funded project, with final design completed and all equipment ordered, including the laser. Integration has started on the WHT and first light is expected summer 2006.

  20. Towards integration of GLAS data into a national fuels mapping program

    Science.gov (United States)

    Peterson, Birgit E.; Nelson, Kurtis; Wylie, Bruce

    2013-01-01

    Comprehensive canopy structure and fuel data are critical for understanding and modeling wildland fire. The LANDFIRE project produces such data nationwide based on a collection of field observations, Landsat imagery, and other geospatial data. Where field data are not available, alternate strategies are being investigated. In this study, vegetation structure data available from GLAS were used to fill this data gap for the Yukon Flats Ecoregion of interior Alaska. The GLAS-derived structure and fuel layers and the original LANDFIRE layers were subsequently used as inputs into a fire behavior model to determine what effect the revised inputs would have on the model outputs. The outputs showed that inclusion of the GLAS data enabled better landscape-level characterization of

  1. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  2. Biodiversiteit onder glas : voedsel voor luizenbestrijders

    NARCIS (Netherlands)

    Janmaat, L.; Bloemhard, C.M.J.; Kleppe, R.

    2014-01-01

    In het praktijknetwerk 'Biodiversiteit onder glas' is door glastuinders geëxperimenteerd met bloemen in en rond de kas. Al dan niet in combinatie met bankerplanten zoals granen. Deze brochure is gemaakt om kennis over bloemen en biologische bestrijders te geven en specifiek het nut van

  3. Concept selection and design considerations for compression facilities for FPSO Glas Dowr

    NARCIS (Netherlands)

    Roos, J. de; Eijk, A.; Gillis, J.

    2005-01-01

    As part of the modification of the Floating Production Storage and Offloading Unit (FPSO) Glas Dowr for operation on the Sable Field (offshore South Africa), a new gas compression system was installed. Associated gas is compressed for use as lift gas and re-injection back into the reservoir for

  4. The Algorithm Theoretical Basis Document for Tidal Corrections

    Science.gov (United States)

    Fricker, Helen A.; Ridgway, Jeff R.; Minster, Jean-Bernard; Yi, Donghui; Bentley, Charles R.`

    2012-01-01

    This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes.

  5. Retrieval of savanna vegetation canopy height from ICESat-GLAS spaceborne LiDAR with terrain correction

    CSIR Research Space (South Africa)

    Khalefa, E

    2013-11-01

    Full Text Available variability (slope) and canopy height within the GLAS footprints. The canopy height retrievals were validated with field observations in 23 GLAS footprints and show that the direct method works well over flat areas (Pearson correlation coefficient r = 0.70, p...

  6. Within-footprint roughness measurements using ICESat/GLAS waveform and LVIS elevation

    International Nuclear Information System (INIS)

    Li, Xiaolu; Xu, Kai; Xu, Lijun

    2016-01-01

    The surface roughness is an important characteristic over an ice sheet or glacier, since it is an identification of boundary-layer meteorology and is an important limiter on the accuracy of surface-height measurements. In this paper, we propose a simulation method to derive the within-footprint roughness (called simulation-derived roughness) using ICESat/GLAS echo waveform, laser vegetation imaging sensor (LVIS) elevations, and laser profile array (LPA) images of ICESat/GLAS. By dividing the within-footprint surface into several elements, a simulation echo waveform can be obtained as the sum of the elementary pulses reflected from each surface element. The elevation of the surface elements, which is utilized to get the return time of the elementary pulses, is implemented based on an LVIS interpolated elevation using a radial basis function (RBF) neural network. The intensity of the elementary pulses can be obtained from the thresholded LPA images. Based on the return time and the intensity of the elementary pulses, we used the particle swarm optimization (PSO) method to approximate the simulation waveform to the ICESat/GLAS echo waveform. The full width at half maximum) (FWHM) of the elementary pulse was extracted from the simulation waveform for estimating the simulation-derived roughness. By comparing with the elevation-derived roughness (derived from the elevation) and the waveform-derived roughness (derived from the ICESat/GLAS waveform), the proposed algorithm can exclude the slope effect from waveform width broadening for describing the roughness of the surface elements. (paper)

  7. A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand

    Science.gov (United States)

    Naksen, Didsaphan; Yang, Dong Kai

    2015-10-01

    Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.

  8. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  9. ZY3-02 Laser Altimeter On-orbit Geometrical Calibration and Test

    Directory of Open Access Journals (Sweden)

    TANG Xinming

    2017-06-01

    Full Text Available ZY3-02 is the first satellite equipped with a laser altimeter for earth observation in China .This laser altimeter is an experimental payload for land elevation measurement experiment. The ranging and pointing bias of the laser altimeter would change due to the launch vibration, the space environment difference or other factors, and that could bring plane and elevation errors of laser altimeter. In this paper, we propose an on-orbit geometric calibration method using a ground-based electro-optical detection system based on the analysis of ZY3-02 laser altimeter characteristic, and this method constructs the rigorous geometric calibration model, which consider the pointing and ranging bias as unknown systematic errors, and the unknown parameters are calibrated with laser spot's location captured by laser detectors and the minimum ranging error principle. With the ALOS-DSM data as reference, the elevation accuracy of the laser altimeter can be improved from 100~150 meters before calibration to 2~3 meters after calibration when the terrain slope is less than 2 degree. With several ground control points obtained with RTK in laser footprint for validation, the absolute elevation precision of laser altimeter in the flat area can reach about 1 meter after the calibration. The test results demonstrated the effectiveness and feasibility of the proposed method.

  10. De teelt van witte rammenas (rettich) onder glas (Raphanus sativus L.)

    NARCIS (Netherlands)

    Janssen, G.A.J.

    1979-01-01

    Informatie over teelt van witte rammenas (rettich), waarbij aandacht voor de rassen, de teelt onder glas, bemesting, zaadkwaliteit en opkweek, oogsten, sorteren en verpakken, ziekten en ziektebestrijding en recepten.

  11. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms.

    Science.gov (United States)

    Michael A. Lefskya; Michael Keller; Yong Panga; Plinio B. de Camargod; Maria O. Hunter

    2007-01-01

    The vertical extent of waveforms collected by the Geoscience Laser Altimeter System (onboard ICESat - the Ice, Cloud, and land Elevation Satellite) increases as a function of terrain slope and footprint size (the area on the ground that is illuminated by the laser). Over sloped terrain, returns from both canopy and ground surfaces can occur at the same elevation. As a...

  12. Hoe hoger de haze bij diffuus glas, hoe hoger de meerproductie (interview met Jan Janse en Sonny Moerenhout)

    NARCIS (Netherlands)

    Kierkels, T.; Janse, J.; Moerenhout, S.

    2012-01-01

    Een vroege komkommerteelt onder diffuus glas gaf vanaf het begin een grotere opbrengst dan onder gewoon glas. Jan Janse van Wageningen UR Glastuinbouw durft na de reeks proeven in de afgelopen jaren de conclusie te trekken: hoe hoger de haze, hoe hoger de meerproductie. Dus ook in een vroege teelt.

  13. GEOS-C altimeter attitude bias error correction. [gate-tracking radar

    Science.gov (United States)

    Marini, J. W.

    1974-01-01

    A pulse-limited split-gate-tracking radar altimeter was flown on Skylab and will be used aboard GEOS-C. If such an altimeter were to employ a hypothetical isotropic antenna, the altimeter output would be independent of spacecraft orientation. To reduce power requirements the gain of the altimeter antenna proposed is increased to the point where its beamwidth is only a few degrees. The gain of the antenna consequently varies somewhat over the pulse-limited illuminated region of the ocean below the altimeter, and the altimeter output varies with antenna orientation. The error introduced into the altimeter data is modeled empirically, but close agreements with the expected errors was not realized. The attitude error effects expected with the GEOS-C altimeter are modelled using a form suggested by an analytical derivation. The treatment is restricted to the case of a relatively smooth sea, where the height of the ocean waves are small relative to the spatial length (pulse duration times speed of light) of the transmitted pulse.

  14. GLAS/ICESat L1A Global Engineering Data (HDF5) V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 1A global engineering data (GLAH03) data granules contain approximately 190 minutes (2 orbits) of GLAS instrument housekeeping data including temperatures,...

  15. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1995-01-01

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  16. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-01-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This notice announces the FAA's intent to cancel TSO-C67, Airborne Radar Altimeter...

  17. Inference of Altimeter Accuracy on Along-track Gravity Anomaly Recovery

    Directory of Open Access Journals (Sweden)

    LI Yang

    2015-04-01

    Full Text Available A correlation model between along-track gravity anomaly accuracy, spatial resolution and altimeter accuracy is proposed. This new model is based on along-track gravity anomaly recovery and resolution estimation. Firstly, an error propagation formula of along-track gravity anomaly is derived from the principle of satellite altimetry. Then the mathematics between the SNR (signal to noise ratio and cross spectral coherence is deduced. The analytical correlation between altimeter accuracy and spatial resolution is finally obtained from the results above. Numerical simulation results show that along-track gravity anomaly accuracy is proportional to altimeter accuracy, while spatial resolution has a power relation with altimeter accuracy. e.g., with altimeter accuracy improving m times, gravity anomaly accuracy improves m times while spatial resolution improves m0.4644 times. This model is verified by real-world data.

  18. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  19. Glas Journal: Deep Mappings of a Harbour or the Charting of Fragments, Traces and Possibilities

    Directory of Open Access Journals (Sweden)

    Silvia Loeffler

    2015-09-01

    Full Text Available With reference to a hybrid ethnographic project entitled Glas Journal (2014–2016, this article invites readers to reflect on the cultural mapping of spaces we intimately inhabit. Developed with the participation of local inhabitants of Dún Laoghaire Harbour, Ireland, Glas Journal seeks to explore the maritime environment as a liminal space, whereby the character of buildings and an area’s economic implications determine our relationship to space as much as our daily spatial rhythms and feelings of safety. Deep mapping provides the methodological blueprint for Glas Journal. In order to create a heteroglossic narrative of place and belonging, I will contextualise the project with references to seminal works in the visual arts, literature, film and geography that emotionally map spaces. Chronotopes of the threshold will be used to elaborate on spatial and cultural phenomena that occur when crossings from public to private and interior to exterior take place. Touching upon questions such as “What is a space of protection?”, “Who am I in it?”, and “Who is the Other?”, this article traces forms of liquid mapping that do not strive to conquer but rather to gain insight into the inner landscapes that are reflected in outer space.

  20. Design and Performance Measurement of the Mercury Laser Altimeter

    Science.gov (United States)

    Sun, Xiao-Li; Cavanaugh, John F.; Smith, James C.; Bartels, Arlin E.

    2004-01-01

    We report the design and test results of the Mercury Laser Altimeter on MESSENGER mission to be launched in May 2004. The altimeter will provide planet surface topography measurements via laser pulse time of flight.

  1. Tillverkningsmetod för tillverkning av däcksluckor med glas

    OpenAIRE

    Gripenberg, Lars

    2010-01-01

    Arbetet går ut på att hitta ett system för att tillverka däcksluckor med glas internt på Nautor. Detta är idag en produkt som vi köper utifrån av en extern leverantör till höga priser därför att vi inte själva har ett fungerande koncept för dylika produkter. Arbetet består av att kartlägga vilka olika tillverkningsmetoder som finns som är lämpade för detta ändamål, (Handlaminat, Injecering, Prepreg, mm). En eller två tillverkningsmetoder väljs ut och därefter tillverkas ett provexemp...

  2. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    Science.gov (United States)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  3. Photogrammetry and altimetry. Part A: Apollo 16 laser altimeter

    Science.gov (United States)

    Wollenhaupt, W. R.; Sjogren, W. L.

    1972-01-01

    The laser altimeter measures precise altitudes of the command and service module above the lunar surface and can function either with the metric (mapping) camera or independently. In the camera mode, the laser altimeter ranges at each exposure time, which varies between 20 and 28 sec (i.e., 30 to 43 km on the lunar surface). In the independent mode, the laser altimeter ranges every 20 sec. These altitude data and the spacecraft attitudes that are derived from simultaneous stellar photography are used to constrain the photogrammetric reduction of the lunar surface photographs when cartographic products are generated. In addition, the altimeter measurements alone provide broad-scale topographic relief around the entire circumference of the moon. These data are useful in investigating the selenodetic figure of the moon and may provide information regarding gravitational anomalies on the lunar far side.

  4. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  5. A Stochastic Approach to Noise Modeling for Barometric Altimeters

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2013-11-01

    Full Text Available The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes, we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.

  6. The Algorithm Theoretical Basis Document for Level 1A Processing

    Science.gov (United States)

    Jester, Peggy L.; Hancock, David W., III

    2012-01-01

    The first process of the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software converts the Level 0 data into the Level 1A Data Products. The Level 1A Data Products are the time ordered instrument data converted from counts to engineering units. This document defines the equations that convert the raw instrument data into engineering units. Required scale factors, bias values, and coefficients are defined in this document. Additionally, required quality assurance and browse products are defined in this document.

  7. Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

    Directory of Open Access Journals (Sweden)

    Hyung-Chul Lim

    2016-09-01

    Full Text Available Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover, and an experimental orbiter (referred to as a lunar pathfinder. Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

  8. The influence of rain and clouds on a satellite dual frequency radar altimeter system operating at 13 and 35 GHz

    Science.gov (United States)

    Walsh, E. J.; Monaldo, F. M.; Goldhirsh, J.

    1983-01-01

    The effects of inhomogeneous spatial attenuation resulting from clouds and rain on the altimeter estimate of the range to mean sea level are modelled. It is demonstrated that typical cloud and rain attenuation variability at commonly expected spatial scales can significantly degrade altimeter range precision. Rain cell and cloud scale sizes and attenuations are considered as factors. The model simulation of altimeter signature distortion is described, and the distortion of individual radar pulse waveforms by different spatial scales of attenuation is considered. Examples of range errors found for models of a single cloud, a rain cell, and cloud streets are discussed.

  9. An overview of the laser ranging method of space laser altimeter

    Science.gov (United States)

    Zhou, Hui; Chen, Yuwei; Hyyppä, Juha; Li, Song

    2017-11-01

    Space laser altimeter is an active remote sensing instrument to measure topographic map of Earth, Moon and planetary. The space laser altimeter determines the range between the instrument and laser footprint by measuring round trip time of laser pulse. The return pulse reflected from ground surface is gathered by the receiver of space laser altimeter, the pulsewidth and amplitude of which are changeable with the variability of the ground relief. Meantime, several kinds of noise overlapped on the return pulse signal affect its signal-to-noise ratio. To eliminate the influence of these factors that cause range walk and range uncertainty, the reliable laser ranging methods need to be implemented to obtain high-precision range results. Based on typical space laser altimeters in the past few decades, various ranging methods are expounded in detail according to the operational principle of instruments and timing method. By illustrating the concrete procedure of determining time of flight of laser pulse, this overview provides the comparison of the employed technologies in previous and undergoing research programs and prospect innovative technology for space laser altimeters in future.

  10. ICESat-2 simulated data from airborne altimetery

    Science.gov (United States)

    Brunt, K. M.; Neumann, T.; Markus, T.; Brenner, A. C.; Barbieri, K.; Field, C.; Sirota, M.

    2010-12-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2015 and will carry onboard the Advanced Topographic Laser Altimeter System (ATLAS), which represents a new approach to spaceborne determination of surface elevations. Specifically, the current ATLAS design is for a micropulse, multibeam, photon-counting laser altimeter with lower energy, a shorter pulse width, and a higher repetition rate relative to the Geoscience Laser Altimeter (GLAS), the instrument that was onboard ICESat. Given the new and untested technology associated with ATLAS, airborne altimetry data is necessary (1) to test the proposed ATLAS instrument geometry, (2) to validate instrument models, and (3) to assess the atmospheric effects on multibeam altimeters. We present an overview of the airborne instruments and datasets intended to address the ATLAS instrument concept, including data collected over Greenland (July 2009) using an airborne SBIR prototype 100 channel, photon-counting, terrain mapping altimeter, which addresses the first of these 3 scientific concerns. Additionally, we present the plan for further simulator data collection over vegetated and ice covered regions using Multiple Altimeter Beam Experimental Lidar (MABEL), intended to address the latter two scientific concerns. As the ICESAT-2 project is in the design phase, the particular configuration of the ATLAS instrument may change. However, we expect this work to be relevant as long as ATLAS pursues a photon-counting approach.

  11. Measuring canopy structure with an airborne laser altimeter

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Evans, D.L.; Jacobs, D.; Everitt, J.H.; Weltz, M.A.

    1993-01-01

    Quantification of vegetation patterns and properties is needed to determine their role on the landscape and to develop management plans to conserve our natural resources. Quantifying vegetation patterns from the ground, or by using aerial photography or satellite imagery is difficult, time consuming, and often expensive. Digital data from an airborne laser altimeter offer an alternative method to quantify selected vegetation properties and patterns of forest and range vegetation. Airborne laser data found canopy heights varied from 2 to 6 m within even-aged pine forests. Maximum canopy heights measured with the laser altimeter were significantly correlated to measurements made with ground-based methods. Canopy shape could be used to distinguish deciduous and evergreen trees. In rangeland areas, vegetation heights, spatial patterns, and canopy cover measured with the laser altimeter were significantly related with field measurements. These studies demonstrate the potential of airborne laser data to measure canopy structure and properties for large areas quickly and quantitatively

  12. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    Science.gov (United States)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  13. Circular Microstrip Patch Array Antenna for C-Band Altimeter System

    Directory of Open Access Journals (Sweden)

    Asghar Keshtkar

    2008-01-01

    Full Text Available The purpose of this paper is to discuss the practical and experimental results obtained from the design, construction, and test of an array of circular microstrip elements. The aim of this antenna construction was to obtain a gain of 12 dB, an acceptable pattern, and a reasonable value of SWR for altimeter system application. In this paper, the cavity model was applied to analyze the patch and a proper combination of ordinary formulas; HPHFSS software and Microwave Office software were used. The array includes four circular elements with equal sizes and equal spacing and was planed on a substrate. The method of analysis, design, and development of this antenna array is explained completely here. The antenna is simulated and is completely analyzed by commercial HPHFSS software. Microwave Office 2006 software has been used to initially simulate and find the optimum design and results. Comparison between practical results and the results obtained from the simulation shows that we reached our goals by a great degree of validity.

  14. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    Science.gov (United States)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  15. Test Port for Fiber-Optic-Coupled Laser Altimeter

    Science.gov (United States)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  16. Building with green and glass. Innovations in the horticulture for living and working; Bouwen met groen en glas. Innovaties uit de glastuinbouw voor wonen en werken

    Energy Technology Data Exchange (ETDEWEB)

    Bergs, J.; Ter Haar, H.; Huisman, S.; Kristinsson, J.; Kruseman, I.; Oei, P.

    2007-07-01

    New technologies and insights from greenhouses, space technology and psychology are used for innovative applications in the building sector. Use is made of daylight, solar heat and vegetation. Architects can thus realize a clean, healthy and comfortable indoor climate in houses, school buildings, offices, health care centers, and also reduce the consumption of energy for cooling and heating. In particular attention is paid to the use of glass. [Dutch] Glastuinbouw, ruimtevaart en psychologie. Drie boeiende vakgebieden die op het eerste gezicht weinig met elkaar te maken hebben. Bouwen met groen en glas bewijst het tegendeel door gebruik te maken van nieuwe technieken en inzichten uit deze vakgebieden. Het concept maakt optimaal gebruik van daglicht, zonnewarmte en de weldaad van groen. Het toont de vele mogelijkheden die architecten met groen en glas kunnen aanboren. Waarom zou een architect dat doen? Omdat Bouwen met groen en glas de kern raakt van een uiterst actueel en tevens tijdloos thema: een schoon, gezond en prettig binnenklimaat in woningen, scholen, kantoren en zorginstellingen, gecombineerd met een substantieel lager energieverbruik voor koelen en verwarmen. Nieuwe technieken uit de glastuinbouw bieden nieuwe oplossingen. Bijvoorbeeld, in de zomer warmte oogsten en opslaan om die in de winter weer aan te boren. Veel glas stimuleert ook de toepassing van groen. Planten zijn meer dan versiering. Ze reinigen de lucht, zorgen voor bevochtiging en bieden mensen aangename omstandigheden om in te leren en te werken. Bouwen met groen en glas pleit dan ook voor gebouwen met een eigen ecosysteem, met planten als integraal onderdeel van het gebouw en de technische installaties.

  17. Energy-related renovation in the world heritage. Retrofitting 'Glas-Hoffmann' buildings, Berlin; Energetische Sanierung im Weltkulturerbe. Sanierung 'Glas-Hoffmann'-Bauten, Berlin

    Energy Technology Data Exchange (ETDEWEB)

    Brensing, Christian

    2012-11-01

    Between 1955 and 1959, the housing estate at the Schiller park in Berlin-Wedding (Federal Republic in Germany) established in the 1920ies was expanded by four-storey house lines, the so-called Glas-Hoffmann buildings. Since 2008, this ensemble belongs to the Unesco World Heritage. In improving the thermal insulation of the building envelope and the adaptation of the building services to today's standards, therefore the architectural aesthetics of these buildings should not be endangered. The retrofitting was a pilot project of the research project ''Monument and energy - Postwar Modernism''.

  18. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  19. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    Science.gov (United States)

    Nelson, Ross

    2008-01-01

    ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million sq km study area. the Province of Quebec, Canada, below treeline. The same input data sets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include nonstratified and stratified versions of a multiple linear model where either biomass or (square root of) biomass serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial biomass estimates of up to 0.35 Gt (range 4.942+/-0.28 Gt to 5.29+/-0.36 Gt). The results suggest that if different predictive models are used to estimate regional carbon stocks in different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in Quebec, due solely to the use of different predictive models. These findings argue for model consistency in future, LiDAR-based carbon monitoring programs. Regional biomass estimates from the four GLAS models are compared to ground estimates derived from an extensive network of 16,814 ground plots located in southern Quebec. Stratified models proved to be more accurate and precise than either of the two nonstratified models tested.

  20. ICESat-derived lithospheric flexure as caused by an endorheic lake's expansion on the Tibetan Plateau and the comparison to modeled flexural responses

    Science.gov (United States)

    Madson, Austin; Sheng, Yongwei; Song, Chunqiao

    2017-10-01

    A substantial and rapid expansion beginning in the late 1990s of Siling Co, the largest endorheic lake on the central Tibetan Plateau (TP), has caused a measurable lithospheric deflection in the region adjacent to the lake. Current broad-scale measuring of this flexural response is mainly derived from InSAR processing techniques or time-consuming field campaigns. The rheological constraints of the lithosphere from the underlying lithospheric response to large lake loads in this region are not well understood. This paper highlights a more efficient spaceborne LiDAR remote sensing technique to measure the deflection in the vicinity of Siling Co and to investigate the mechanisms of the observed lithospheric response in order to garner a better understanding of the local rheology. A lake-adjacent deflection rate and Siling Co water load variations are calculated utilizing the Geoscience Laser Altimeter System (GLAS) onboard NASA's Ice, Cloud and land Elevation Satellite (ICESat) and the joint NASA/USGS Landsat series of Earth observing satellites. A downward deflection rate of ∼5.6 mm/yr for the first 4 km of lake-adjacent land is calculated from the GLAS instrument, and this response is compared to the flexural outputs from a spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth model in order to better understand the underlying mechanisms of the lithospheric response to the rapid increase of Siling Co loads. The modeled elastic response is ∼6.9 times lower than the GLAS derived flexure, thereby providing further evidence that a purely elastic lithospheric response cannot explain the deflection in this region. The relationship between the modeled elastic response and the GLAS derived flexure is applied to a long-term lake load change dataset to create the longest-running flexural response curve as caused by the last ∼40 years of Siling Co load variations, and these results show an accumulated lake-adjacent flexure of ∼12.6 cm from an

  1. New Generation Lidar Technology and Applications

    Science.gov (United States)

    Spinhirne, James D.

    1999-01-01

    atmospheric structure from space. The Geoscience Laser Altimeter System (GLAS) of the Earth Observing System is scheduled for deployment in the 2001 time frame. GLAS is both a cloud and aerosol lidar and a surface altimeter, principally for monitoring of polar ice sheets. The GLAS instrument is based on all solid state lasers operating at 40 Hz and high efficiency, solid state detectors. The design lifetime is three to five years. Data from the GLAS mission is expected to revolutionize some aspects of our understanding of the global distribution of cloud and aerosols for global climate prediction.

  2. Using Satellite and Airborne LiDAR to Model Woodpecker Habitat Occupancy at the Landscape Scale

    Science.gov (United States)

    Vierling, Lee A.; Vierling, Kerri T.; Adam, Patrick; Hudak, Andrew T.

    2013-01-01

    Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR data from the Geoscience Laser Altimeter System (GLAS) relative to airborne-based LiDAR to model the north Idaho breeding distribution of a forest-dependent ecosystem engineer, the Red-naped sapsucker (Sphyrapicus nuchalis). GLAS data occurred within ca. 64 m diameter ellipses spaced a minimum of 172 m apart, and all occupancy analyses were confined to this grain scale. Using a hierarchical approach, we modeled Red-naped sapsucker occupancy as a function of LiDAR metrics derived from both platforms. Occupancy models based on satellite data were weak, possibly because the data within the GLAS ellipse did not fully represent habitat characteristics important for this species. The most important structural variables influencing Red-naped Sapsucker breeding site selection based on airborne LiDAR data included foliage height diversity, the distance between major strata in the canopy vertical profile, and the vegetation density near the ground. These characteristics are consistent with the diversity of foraging activities exhibited by this species. To our knowledge, this study represents the first to examine the utility of satellite-based LiDAR to model animal distributions. The large area of each GLAS ellipse and the non-contiguous nature of GLAS data may pose significant challenges for wildlife distribution modeling; nevertheless these data can provide useful information on ecosystem vertical structure, particularly in areas of gentle terrain. Additional work is thus warranted to utilize LiDAR datasets collected from both airborne and past and future satellite platforms (e.g. GLAS, and the planned IceSAT2

  3. Data Quality Assessment of In Situ and Altimeter Observations Through Two-Way Intercomparison Methods

    Science.gov (United States)

    Guinehut, Stephanie; Valladeau, Guillaume; Legeais, Jean-Francois; Rio, Marie-Helene; Ablain, Michael; Larnicol, Gilles

    2013-09-01

    This proceeding presents an overview of the two-way inter-comparison activities performed at CLS for both space and in situ observation agencies and why this activity is a required step to obtain accurate and homogenous data sets that can then be used together for climate studies or in assimilation/validation tools. We first describe the work performed in the frame of the SALP program to assess the stability of altimeter missions through SSH comparisons with tide gauges (GLOSS/CLIVAR network). Then, we show how the SSH comparison between the Argo array and altimeter time series allows the detection of drifts or jumps in altimeter (SALP program) but also for some Argo floats (Ifremer/Coriolis center). Lastly, we describe how the combine use of altimeter and wind observations helps the detection of drogue loss of surface drifting buoys (GDP network) and allow the computation of a correction term for wind slippage.

  4. Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Howat, I. M.; Tscherning, C. C.

    2013-01-01

    We combine the complementary characteristics of laser altimeter data and stereoscopic digital elevation models (DEMs) to construct high-resolution (_100 m) maps of surface elevations and elevation changes over rapidly changing outlet glaciers in Greenland. Measurements from spaceborne and airborne...... laser altimeters have relatively low errors but are spatially limited to the ground tracks, while DEMs have larger errors but provide spatially continuous surfaces. The principle of our method is to fit the DEM surface to the altimeter point clouds in time and space to minimize the DEM errors and use...... that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI...

  5. Reliability of Wind Speed Data from Satellite Altimeter to Support Wind Turbine Energy

    Science.gov (United States)

    Uti, M. N.; Din, A. H. M.; Omar, A. H.

    2017-10-01

    Satellite altimeter has proven itself to be one of the important tool to provide good quality information in oceanographic study. Nowadays, most countries in the world have begun in implementation the wind energy as one of their renewable energy for electric power generation. Many wind speed studies conducted in Malaysia using conventional method and scientific technique such as anemometer and volunteer observing ships (VOS) in order to obtain the wind speed data to support the development of renewable energy. However, there are some limitations regarding to this conventional method such as less coverage for both spatial and temporal and less continuity in data sharing by VOS members. Thus, the aim of this research is to determine the reliability of wind speed data by using multi-mission satellite altimeter to support wind energy potential in Malaysia seas. Therefore, the wind speed data are derived from nine types of satellite altimeter starting from year 1993 until 2016. Then, to validate the reliability of wind speed data from satellite altimeter, a comparison of wind speed data form ground-truth buoy that located at Sabah and Sarawak is conducted. The validation is carried out in terms of the correlation, the root mean square error (RMSE) calculation and satellite track analysis. As a result, both techniques showing a good correlation with value positive 0.7976 and 0.6148 for point located at Sabah and Sarawak Sea, respectively. It can be concluded that a step towards the reliability of wind speed data by using multi-mission satellite altimeter can be achieved to support renewable energy.

  6. GlasKon `99 - 7th Innovation Forum for Glass, Architecture, and Technology from January 18 to 23, 1999; GlasKon `99: 7. Innovations-Forum Glas, Architektur, Technik - Kongress und Ausstellung in Verbindung mit der Bau `99; GlasKon `99 - 7th Innovation Forum for Glass, Architecture, and Technology from January 18 to 23, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Krewinkel, H.W.; Seger, P.E.; Achenbach, J. [comps.

    1999-10-01

    Thanks to its basic properties, i.e. transparency, weather resistance, and easy recyclability, glass is very well suited as a ``solar radiation-trapping`` building material. This congress and exhibition report presents, amongst other things, a solar glass of variable light and energy transmission, possibilities of passivsolar energy recovery in non-transparent facades, glazing for intelligent daylight utilisation, and innovative facades with photovoltaics. Four contributions have been abstracted individually for the Energy Database. [Deutsch] Der Baustoff Glas mit seinen grundlegenden Eigenschaften - Transparenz, Wetterbestaendigkeit sowie problemlose Recyclebarkeit dient auch als `` solare Strahlenfalle``. Im Folgenden werden ein Sonnenschutzglas mit veraenderbarer Licht-und Energietransmission, Moeglichkeiten der passiven solaren Energiegewinnung im nicht-transparentern Fassadenbereich, Verglasungen fuer die intelligente Tageslichtnutzung sowie innovative Fassaden mit Photovoltaik vorgestellt. Fuer die Datenbank Energy wurden vier Beitraege einzeln aufgenommen.

  7. Single photon laser altimeter simulator and statistical signal processing

    Science.gov (United States)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  8. Laser altimeter measurements at Walnut Gulch Watershed, Arizona

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Humes, K.S.; Weltz, M.A.

    1995-01-01

    Measurements of landscape surface roughness properties are necessary for understanding many watershed processes. This paper reviews the use of an airborne laser altimeter to measure topography and surface roughness properties of the landscape at Walnut Gulch Watershed in Arizona. Airborne laser data were used to measure macro and micro topography as well as canopy topography, height, cover, and distribution. Macro topography of landscape profiles for segments up to 5 km (3 mi) were measured and were in agreement with available topographic maps but provided more detail. Gullies and stream channel cross-sections and their associated floodplains were measured. Laser measurements of vegetation properties (height and cover) were highly correlated with ground measurements. Landscape segments for any length can be used to measure these landscape roughness properties. Airborne laser altimeter measurements of landscape profiles can provide detailed information on watershed surface properties for improving the management of watersheds. (author)

  9. GLAS Long-Term Archive: Preservation and Stewardship for a Vital Earth Observing Mission

    Science.gov (United States)

    Fowler, D. K.; Moses, J. F.; Zwally, J.; Schutz, B. E.; Hancock, D.; McAllister, M.; Webster, D.; Bond, C.

    2012-12-01

    Data Stewardship, preservation, and reproducibility are fast becoming principal parts of a data manager's work. In an era of distributed data and information systems, it is of vital importance that organizations make a commitment to both current and long-term goals of data management and the preservation of scientific data. Satellite missions and instruments go through a lifecycle that involves pre-launch calibration, on-orbit data acquisition and product generation, and final reprocessing. Data products and descriptions flow to the archives for distribution on a regular basis during the active part of the mission. However there is additional information from the product generation and science teams needed to ensure the observations will be useful for long term climate studies. Examples include ancillary input datasets, product generation software, and production history as developed by the team during the course of product generation. These data and information will need to be archived after product data processing is completed. NASA has developed a set of Earth science data and information content requirements for long term preservation that is being used for all the EOS missions as they come to completion. Since the ICESat/GLAS mission was one of the first to end, NASA and NSIDC, in collaboration with the science team, are collecting data, software, and documentation, preparing for long-term support of the ICESat mission. For a long-term archive, it is imperative to preserve sufficient information about how products were prepared in order to ensure future researchers that the scientific results are accurate, understandable, and useable. Our experience suggests data centers know what to preserve in most cases. That is, the processing algorithms along with the Level 0 or Level 1a input and ancillary products used to create the higher-level products will be archived and made available to users. In other cases, such as pre-launch, calibration/validation, and test

  10. Defining the Levels of Adjustable Autonomy: A Means of Improving Resilience in an Unmanned Aerial System

    Science.gov (United States)

    2014-09-01

    implemented in a system, some level of human-operator involvement will be required in interacting with that system (Glas and Kanda 2012). This is the...September 23–24, 2010. Glas, Dylan F., Takayuki Kanda , Hiroshi Ishiguro, and Norihiro Hagita. 2012. Teleoperation of Multiple Social Robots." IEEE

  11. Large-scale Estimates of Leaf Area Index from Active Remote Sensing Laser Altimetry

    Science.gov (United States)

    Hopkinson, C.; Mahoney, C.

    2016-12-01

    Leaf area index (LAI) is a key parameter that describes the spatial distribution of foliage within forest canopies which in turn control numerous relationships between the ground, canopy, and atmosphere. The retrieval of LAI has demonstrated success by in-situ (digital) hemispherical photography (DHP) and airborne laser scanning (ALS) data; however, field and ALS acquisitions are often spatially limited (100's km2) and costly. Large-scale (>1000's km2) retrievals have been demonstrated by optical sensors, however, accuracies remain uncertain due to the sensor's inability to penetrate the canopy. The spaceborne Geoscience Laser Altimeter System (GLAS) provides a possible solution in retrieving large-scale derivations whilst simultaneously penetrating the canopy. LAI retrieved by multiple DHP from 6 Australian sites, representing a cross-section of Australian ecosystems, were employed to model ALS LAI, which in turn were used to infer LAI from GLAS data at 5 other sites. An optimally filtered GLAS dataset was then employed in conjunction with a host of supplementary data to build a Random Forest (RF) model to infer predictions (and uncertainties) of LAI at a 250 m resolution across the forested regions of Australia. Predictions were validated against ALS-based LAI from 20 sites (R2=0.64, RMSE=1.1 m2m-2); MODIS-based LAI were also assessed against these sites (R2=0.30, RMSE=1.78 m2m-2) to demonstrate the strength of GLAS-based predictions. The large-scale nature of current predictions was also leveraged to demonstrate large-scale relationships of LAI with other environmental characteristics, such as: canopy height, elevation, and slope. The need for such wide-scale quantification of LAI is key in the assessment and modification of forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network, in fulfilling their government issued mandates.

  12. Night and Day: The Opacity of Clouds Measured by the Mars Orbiter Laser Altimeter (MOLA)

    Science.gov (United States)

    Neumann, G. A.; Wilson, R. J.

    2006-01-01

    The Mars Orbiter Laser Altimeter (MOLA) [l] on the Mars Global Surveyor spacecraft ranged to clouds over the course of nearly two Mars years [2] using an active laser ranging system. While ranging to the surface, the instrument was also able to measure the product of the surface reflectivity with the two-way atmospheric transmission at 1064 nm. Furthermore, the reflectivity has now been mapped over seasonal cycles using the passive radiometric capability built into MOLA [3]. Combining these measurements, the column opacity may be inferred. MOLA uniquely provides these measurements both night and day. This study examines the pronounced nighttime opacity of the aphelion season tropical water ice clouds, and the indiscernibly low opacity of the southern polar winter clouds. The water ice clouds (Figure 1) do not themselves trigger the altimeter but have measured opacities tau > 1.5 and are temporally and spatially correlated with temperature anomalies predicted by a Mars Global Circulation Model (MGCM) that incorporates cloud radiative effects [4]. The south polar CO2 ice clouds trigger the altimeter with a very high backscatter cross-section over a thickness of 3-9 m and are vertically dispersed over several km, but their total column opacities lie well below the MOLA measurement limit of tau = 0.7. These clouds correspond to regions of supercooled atmosphere that may form either very large specularly reflecting particles [2] or very compact, dense concentrations (>5x10(exp 6)/cu m) of 100-p particles

  13. ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    A. I. A. Hamid

    2016-09-01

    Full Text Available Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS. Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  14. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    Science.gov (United States)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  15. IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Riegl Laser Altimeter L2 Geolocated Surface Elevation Triplets (ILUTP2) data set contains surface range values for Antarctica and Greenland derived...

  16. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

    Science.gov (United States)

    Legeais, Jean-François; Ablain, Michaël; Zawadzki, Lionel; Zuo, Hao; Johannessen, Johnny A.; Scharffenberg, Martin G.; Fenoglio-Marc, Luciana; Joana Fernandes, M.; Baltazar Andersen, Ole; Rudenko, Sergei; Cipollini, Paolo; Quartly, Graham D.; Passaro, Marcello; Cazenave, Anny; Benveniste, Jérôme

    2018-02-01

    Sea level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea level has been listed as an essential climate variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter standards were selected to produce new sea level products (called SL_cci v2.0) based on nine altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612; Legeais and the ESA SL_cci team, 2016c). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in detail in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared with the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties on different spatial and temporal scales. However, there

  17. Considerations in the Design of Future Planetary Laser Altimeters

    Science.gov (United States)

    Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.

    2017-12-01

    Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary

  18. Continental Scale Vegetation Structure Mapping Using Field Calibrated Landsat, ALOS Palsar And GLAS ICESat

    Science.gov (United States)

    Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.

    2015-12-01

    Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.

  19. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements

    Science.gov (United States)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois

    2017-03-01

    We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.

  20. Ocean current surface measurement using dynamic elevations obtained by the GEOS-3 radar altimeter

    Science.gov (United States)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1977-01-01

    Remote Sensing of the ocean surface from the GEOS-3 satellite using radar altimeter data has confirmed that the altimeter can detect the dynamic ocean topographic elevations relative to an equipotential surface, thus resulting in a reliable direct measurement of the ocean surface. Maps of the ocean dynamic topography calculated over a one month period and with 20 cm contour interval are prepared for the last half of 1975. The Gulf Stream is observed by the rapid slope change shown by the crowding of contours. Cold eddies associated with the current are seen as roughly circular depressions.

  1. Evaluation and adjustment of altimeter measurement and numerical hindcast in wave height trend estimation in China's coastal seas

    Science.gov (United States)

    Li, Shuiqing; Guan, Shoude; Hou, Yijun; Liu, Yahao; Bi, Fan

    2018-05-01

    A long-term trend of significant wave height (SWH) in China's coastal seas was examined based on three datasets derived from satellite measurements and numerical hindcasts. One set of altimeter data were obtained from the GlobWave, while the other two datasets of numerical hindcasts were obtained from the third-generation wind wave model, WAVEWATCH III, forced by wind fields from the Cross-Calibrated Multi-Platform (CCMP) and NCEP's Climate Forecast System Reanalysis (CFSR). The mean and extreme wave trends were estimated for the period 1992-2010 with respect to the annual mean and the 99th-percentile values of SWH, respectively. The altimeter wave trend estimates feature considerable uncertainties owing to the sparse sampling rate. Furthermore, the extreme wave trend tends to be overestimated because of the increasing sampling rate over time. Numerical wave trends strongly depend on the quality of the wind fields, as the CCMP waves significantly overestimate the wave trend, whereas the CFSR waves tend to underestimate the trend. Corresponding adjustments were applied which effectively improved the trend estimates from the altimeter and numerical data. The adjusted results show generally increasing mean wave trends, while the extreme wave trends are more spatially-varied, from decreasing trends prevailing in the South China Sea to significant increasing trends mainly in the East China Sea.

  2. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; pMODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  3. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud and Land Elevation Satellite (ICESat) Observations

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2016-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nanometers. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (approximately 300 microns) among the three, West Antarctica is the second (220 microns) and East Antarctica is the smallest (190 microns). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations.

  4. Initial development of a laser altimeter

    Science.gov (United States)

    Gilio, J. P.

    1985-09-01

    A design study was carried out of a small, expendable, self-contained laser altimeter for overwater operation at low altitude. A .904 micrometer Gallium Arsenide laser was used to build a prototype transmitter/ receiver at a cost of less than $600 and small enough to fit inside a 5 inch diameter cylinder, 5 inches long. Tests at a height of 120 feet above the surface of a lake resulted in a signal-to-noise ratio of 6, and validated the trade-off equation used in this study. A second test model, with design improvements incorporated, is predicted to yield a SNR of over 20 for an altitude of 150 meters.

  5. IceBridge Riegl Laser Altimeter L1B Time-Tagged Laser Ranges

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Riegl Laser Altimeter L1B Time-Tagged Laser Ranges (ILUTP1B) data set contains laser ranges, returned pulses, and deviation for returned pulses in...

  6. Findings of, and reflections on, the Gender, Lifelong Learning and Social Class (GLAS project. A UK partnership based perspective.

    Directory of Open Access Journals (Sweden)

    Sue Betts

    2014-06-01

    Full Text Available This paper describes the main findings of GLAS, a two-year, EC co-funded project to address potential barriers to lifelong learning. In considering the genesis of the project, its structure and partnership, we will discuss findings from the perspective of UK partners, Linking London. We will show that tackling complex issues of social inclusion requires the creative use of processes and strategies which already exist within higher education, and conclude by making recommendations for future research and action.

  7. Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data

    Directory of Open Access Journals (Sweden)

    Nan-Jung Kuo

    2008-06-01

    Full Text Available Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT in the South China Sea (SCS. Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.92 with a slope of 0.95 and an intercept of 6 m. The basin averaged ULT derived from altimeter is 160 m in winter and 171 m in summer which is similar to the in-situ measurements of 159 m in winter and 175 m in summer. Both results also show similar spatial patterns. It suggests that the sea surface height data derived from satellite sensors are usable for study the variation of ULT in the semi-closed SCS. Furthermore, we also use satellite derived ULT to detect the development of eddy. Interannual variability of two meso-scale cyclonic eddies and one anticyclonic eddy are strongly influenced by El Niño events. In most cases, there are highly positive correlations between ULT and sea surface temperature except the periods of El Niño. During the onset of El Niño event, ULT is deeper when sea surface temperature is lower.

  8. Initial Results From The Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Spinhirne, J. D.; Ginoux, P.

    2001-12-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for fulltime monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the desert regions of China, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data

  9. Initial Results from the Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Ginoux, Paul; Starr, David OC. (Technical Monitor)

    2001-01-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for full time monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the Gobi desert, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data products.

  10. The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.

    1998-01-01

    with airborne laser altimeter data an absolute accuracy typically in the range 2-10 cm +/- 10 cm. Comparison of differences between the radar and laser derived elevations, showed a correlation with surface slope. The difference between the two data sets ranged from 84 cm +/- 79 cm for slopes below 0.1 degrees......The 336 days of the geodetic phase of ERS-1 provides dense coverage, by satellite radar altimetry, of the whole of the Greenland ice sheet. These data have been used to produce a digital elevation model of the ice sheet. The errors present in the altimeter data were investigated via a comparison......, to 10.3 m +/- 8.4 m for a slope of 0.7 degrees ( the half power beam-width of the ERS-1 radar altimeter). An explanation for the behaviour of the difference as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet....

  11. SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal

    2006-01-01

    A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model is ...

  12. Meer proeven nodig om effect van hogere F-scatterwaarde te achterhalen : diffuus glas komt in de fase van fine-tuning (interview met Silke Hemming en Tom Dueck)

    NARCIS (Netherlands)

    Kierkels, T.; Hemming, S.; Dueck, T.A.

    2014-01-01

    Diffuus glas is over vijftien jaar de standaard. Wie nu nieuw bouwt, heeft veel goede redenen om voor diffuus te kiezen en vrijwel geen om het te laten, zeggen Silke Hemming en Tom Dueck van Wageningen UR Glastuinbouw. De inzichten in het nut van diffuus licht én de technische ontwikkelingen

  13. SPACE-BORNE LASER ALTIMETER GEOLOCATION ERROR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-05-01

    Full Text Available This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  14. Meer proeven nodig om effect van hogere F-scatterwaarde te achterhalen : diffuus glas komt in de fase van fine-tuning (interview met Silke Hemming en Tom Dueck)

    OpenAIRE

    Kierkels, T.; Hemming, S.; Dueck, T.A.

    2014-01-01

    Diffuus glas is over vijftien jaar de standaard. Wie nu nieuw bouwt, heeft veel goede redenen om voor diffuus te kiezen en vrijwel geen om het te laten, zeggen Silke Hemming en Tom Dueck van Wageningen UR Glastuinbouw. De inzichten in het nut van diffuus licht én de technische ontwikkelingen schrijden nog elk jaar voort. Een update.

  15. The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument

    Science.gov (United States)

    Daly, M. G.; Barnouin, O. S.; Dickinson, C.; Seabrook, J.; Johnson, C. L.; Cunningham, G.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Aslam, I.; Taylor, A.; Bierhaus, E. B.; Boynton, W.; Nolan, M.; Lauretta, D. S.

    2017-10-01

    The Canadian Space Agency (CSA) has contributed to the Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the OSIRIS-REx Laser Altimeter (OLA). The OSIRIS-REx mission will sample asteroid 101955 Bennu, the first B-type asteroid to be visited by a spacecraft. Bennu is thought to be primitive, carbonaceous, and spectrally most closely related to CI and/or CM meteorites. As a scanning laser altimeter, the OLA instrument will measure the range between the OSIRIS-REx spacecraft and the surface of Bennu to produce digital terrain maps of unprecedented spatial scales for a planetary mission. The digital terrain maps produced will measure ˜7 cm per pixel globally, and ˜3 cm per pixel at specific sample sites. In addition, OLA data will be used to constrain and refine the spacecraft trajectories. Global maps and highly accurate spacecraft trajectory estimates are critical to infer the internal structure of the asteroid. The global and regional maps also are key to gain new insights into the surface processes acting across Bennu, which inform the selection of the OSIRIS-REx sample site. These, in turn, are essential for understanding the provenance of the regolith sample collected by the OSIRIS-REx spacecraft. The OLA data also are important for quantifying any hazards near the selected OSIRIS-REx sample site and for evaluating the range of tilts at the sampling site for comparison against the capabilities of the sample acquisition device.

  16. Equipment for testing the indications accuracy of speedometers and altimeters existing on board aircraft and the tightness of the related pneumatic paths

    Directory of Open Access Journals (Sweden)

    Constantin PETRE

    2011-03-01

    Full Text Available The equipment is intended to testing the tightness of the catchment pneumatic system (Pitot tube, the transmission (pneumatic paths and the total and static air pressures processing (aircrafttype instruments in order to establish the main flight parameters and checking the correctness of the operation of related aircraft instruments: the altimeter and the speedometer.

  17. Laser altimeter observations from MESSENGER's first Mercury flyby.

    Science.gov (United States)

    Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K

    2008-07-04

    A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.

  18. Photon counting altimeter and lidar for air and spaceborne applications

    Science.gov (United States)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Kodet, Jan

    2011-06-01

    We are presenting the concept and preliminary design of modular multipurpose device for space segment: single photon counting laser altimeter, atmospheric lidar, laser transponder and one way laser ranging receiver. For all the mentioned purposes, the same compact configuration of the device is appropriate. Overall estimated device weight should not exceed 5 kg with the power consumption below 10 W. The device will consists of three main parts, namely, receiver, transmitter and control and processing unit. As a transmitter a commercial solid state laser at 532 nm wavelength with 10 mW power will be used. The transmitter optics will have a diameter at most of 50 mm. The laser pulse width will be of hundreds of picoseconds order. For the laser altimeter and atmospheric lidar application, the repetition rate of 10 kHz is planned in order to obtain sufficient number of data for a distance value computing. The receiver device will be composed of active quenched Single Photon Avalanche Diode module, tiny optics, and narrow-band optical filter. The core part of the control and processing unit including high precision timing unit is implemented using single FPGA chip. The preliminary device concept includes considerations on energy balance, and statistical algorithms to meet all the mentioned purposes. Recently, the bread board version of the device is under construction in our labs. The concept, construction, and timing results will be presented.

  19. Measurements of land surface features using an airborne laser altimeter: the HAPEX-Sahel experiment

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Menenti, M.; Weltz, M.A.

    1997-01-01

    An airborne laser profiling altimeter was used to measure surface features and properties of the landscape during the HAPEX-Sahel Experiment in Niger, Africa in September 1992. The laser altimeter makes 4000 measurements per second with a vertical resolution of 5 cm. Airborne laser and detailed field measurements of vegetation heights had similar average heights and frequency distribution. Laser transects were used to estimate land surface topography, gully and channel morphology, and vegetation properties ( height, cover and distribution). Land surface changes related to soil erosion and channel development were measured. For 1 km laser transects over tiger bush communities, the maximum vegetation height was between 4-5 and 6-5 m, with an average height of 21 m. Distances between the centre of rows of tiger bush vegetation averaged 100 m. For two laser transects, ground cover for tiger bush was estimated to be 225 and 301 per cent for vegetation greater than 0-5m tall and 190 and 25-8 per cent for vegetation greater than 10m tall. These values are similar to published values for tiger bush. Vegetation cover for 14 and 18 km transects was estimated to be 4 per cent for vegetation greater than 0-5 m tall. These cover values agree within 1-2 per cent with published data for short transects (⩾ 100 m) for the area. The laser altimeter provided quick and accurate measurements for evaluating changes in land surface features. Such information provides a basis for understanding land degradation and a basis for management plans to rehabilitate the landscape. (author)

  20. Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction

    Directory of Open Access Journals (Sweden)

    C. L. Keppenne

    2005-01-01

    Full Text Available To compensate for a poorly known geoid, satellite altimeter data is usually analyzed in terms of anomalies from the time mean record. When such anomalies are assimilated into an ocean model, the bias between the climatologies of the model and data is problematic. An ensemble Kalman filter (EnKF is modified to account for the presence of a forecast-model bias and applied to the assimilation of TOPEX/Poseidon (T/P altimeter data. The online bias correction (OBC algorithm uses the same ensemble of model state vectors to estimate biased-error and unbiased-error covariance matrices. Covariance localization is used but the bias covariances have different localization scales from the unbiased-error covariances, thereby accounting for the fact that the bias in a global ocean model could have much larger spatial scales than the random error.The method is applied to a 27-layer version of the Poseidon global ocean general circulation model with about 30-million state variables. Experiments in which T/P altimeter anomalies are assimilated show that the OBC reduces the RMS observation minus forecast difference for sea-surface height (SSH over a similar EnKF run in which OBC is not used. Independent in situ temperature observations show that the temperature field is also improved. When the T/P data and in situ temperature data are assimilated in the same run and the configuration of the ensemble at the end of the run is used to initialize the ocean component of the GMAO coupled forecast model, seasonal SSH hindcasts made with the coupled model are generally better than those initialized with optimal interpolation of temperature observations without altimeter data. The analysis of the corresponding sea-surface temperature hindcasts is not as conclusive.

  1. GAVDOS/west crete cal-val site: Over a decade calibrations for Jason series, SARAL/Altika, cryoSat-2, Sentinel-3 and HY-2 altimeter satellites

    DEFF Research Database (Denmark)

    Mertikas, Stelios; Tziavos, Ilias; Galanakis, Demitris

    This work presents and compares the latest altimeter calibration results for the Sentinel-3, Jason series, as well as the SARAL/AltiKa and the Chinese HY-2 missions, conducted at the Gavdos/Crete calibration/validation facilities. At first, the Jason altimeter calibration values will be given for...

  2. Dramatic and long-term lake level changes in the Qinghai-Tibet Plateau from Cryosat-2 altimeter: validation and augmentation by results from repeat altimeter missions and satellite imagery

    Science.gov (United States)

    Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin

    2017-04-01

    The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.

  3. Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data

    Science.gov (United States)

    Li, Ainong; Huang, Chengquan; Sun, Guoqing; Shi, Hua; Toney, Chris; Zhu, Zhiliang; Rollins, Matthew G.; Goward, Samuel N.; Masek, Jeffery G.

    2011-01-01

    Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat–lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, “young” forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS–VCT disturbance products. The height of “young” forest is then mapped based on the derived relationships and the LTSS–VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS–VCT method yielded the lowest cross validation error. The R2 and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing

  4. Modeling the Height of Young Forests Regenerating from Recent Disturbances in Mississippi using Landsat and ICESat data

    Science.gov (United States)

    Li, Ainong; Huang, Chengquan; Sun, Guoqing; Shi, Hua; Toney, Chris; Zhu, Zhiliang; Rollins, Matthew G.; Goward, Samuel N.; Masek, Jeffrey G.

    2011-01-01

    Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps over large areas. This paper describes a Landsat-lidar fusion approach for modeling the height of young forests by integrating historical Landsat observations with lidar data acquired by the Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation (ICESat) satellite. In this approach, "young" forests refer to forests reestablished following recent disturbances mapped using Landsat time-series stacks (LTSS) and a vegetation change tracker (VCT) algorithm. The GLAS lidar data is used to retrieve forest height at sample locations represented by the footprints of the lidar data. These samples are used to establish relationships between lidar-based forest height measurements and LTSS-VCT disturbance products. The height of "young" forest is then mapped based on the derived relationships and the LTSS-VCT disturbance products. This approach was developed and tested over the state of Mississippi. Of the various models evaluated, a regression tree model predicting forest height from age since disturbance and three cumulative indices produced by the LTSS-VCT method yielded the lowest cross validation error. The R(exp 2) and root mean square difference (RMSD) between predicted and GLAS-based height measurements were 0.91 and 1.97 m, respectively. Predictions of this model had much higher errors than indicated by cross validation analysis when evaluated using field plot data collected through the Forest Inventory and Analysis Program of USDA Forest Service. Much of these errors were due to a lack of separation between stand clearing and non-stand clearing disturbances in

  5. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    Science.gov (United States)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  6. Determination of ocean tides from the first year of TOPEX/POSEIDON altimeter measurements

    Science.gov (United States)

    Ma, X. C.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.

    1994-01-01

    An improved geocentric global ocean tide model has been determined using 1 year of TOPEX/POSEIDON altimeter measurements to provide corrections to the Cartwright and Ray (1991) model (CR91). The corrections were determined on a 3 deg x 3 deg grid using both the harmonic analysis method and the response method. The two approaches produce similar solutions. The effect on the tide solution of simultaneously adjusting radial orbit correction parameters using altimeter measurements was examined. Four semidiurnal (N(sub 2), M(sub 2), S(sub 2) and K(sub 2)), four diurnal (Q(sdub 1), O(sub 1), P(sub 1), and K(sub 1)), and three long-period (S(sub sa), M(sub m), and M(sub f)) constituents, along with the variations at the annual frequency, were included in the harmomnic analysis solution. The observed annual variations represents the first global measurement describing accurate seasonal changes of the ocean during an El Nino year. The corrections to the M(sub 2) constituent have an root mean square (RMS) of 3.6 cm and display a clear banding pattern with regional highs and lows reaching 8 cm. The improved tide model reduces the weighted altimeter crossover residual from 9.8 cm RMS, when the CR91 tide model is used, to 8.2 cm on RMS. Comparison of the improved model to pelagic tidal constants determined from 80 tide gauges gives RMS differences of 2.7 cm for M(sub 2) and 1.7 cm for K(sub 1). Comparable values when the CR91 model is used are 3.9 cm and 2.0 cm, respectively. Examination of TOPEX/POSEIDON sea level anomaly variations using the new tide model further confirms that the tide model has been improved.

  7. The Ganymede Laser Altimeter (GALA)

    Science.gov (United States)

    Hussmann, H.

    2015-12-01

    The Ganymede Laser Altimeter (GALA) is one of the instruments selected for ESA's Jupiter Icy Moons Explorer (JUICE). A fundamental goal of any exploratory space mission is to characterize and measure the shape, topography, and rotation of the target bodies. A state of the art tool for this task is laser altimetry because it can provide absolute topographic height and position with respect to a body centered reference system. With respect to Ganymede, the GALA instrument aims at mapping of global, regional and local topography; confirming the global subsurface ocean and further characterization of the water-ice/liquid shell by monitoring the dynamic response of the ice shell to tidal forces; providing constraints on the forced physical librations and spin-axis obliquity; determining Ganymede's shape; obtaining detailed topographic profiles across the linear features of grooved terrain, impact structures, possible cryo-volcanic features and other different surface units; providing information about slope, roughness and albedo (at 1064nm) of Ganymede's surface. GALA uses the direct-detection (classical) approach of laser altimetry. Laser pulses are emitted at a wavelength of 1064 nm by using an actively Q-switched Nd:Yag laser. The pulse energy and pulse repetition frequency are 17 mJ at 30 Hz, respectively. The emission time of each pulse is measured by the detector. The beam is reflected from the surface and received at a 25 cm diameter F/1 telescope. The returning laser pulse is refocused onto a silicon avalanche photodiode (APD) through back-end optics including a narrow bandpass interference filter for isolating the 1064 nm wavelength. The APD-signal is then amplified, sampled and fed to a digital range finder. The minimum acceptable SNR is approx. 1.2. This system determines the time of flight, pulse intensity, width and full shape. The GALA instrument is developed in collaboration of institutes and industry from Germany, Japan, Switzerland and Spain.

  8. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  9. Testing in a stratospheric balloon of a semiconductor detector altimeter

    International Nuclear Information System (INIS)

    Gilly, L.; Jourdan, P.

    1968-01-01

    An altimeter containing a semiconductor detector has been operated on flight. We have used a stratospheric balloon launched from AIRE-SUR-ADOUR with the C.N.E.S. collaboration. During this assay two apparatus have been used. The first allowed to follow the balloon during its ascension and descent, the second to follow its evolution at its maximum altitude. Informations transmitted by radio and recorded on Magnetophon, have been studied after the flight. Results are identical with these given by the barometer used by the C.N.E.S. in this essay. (authors) [fr

  10. Study of the Penetration Bias of ENVISAT Altimeter Observations over Antarctica in Comparison to ICESat Observations

    Directory of Open Access Journals (Sweden)

    Aurélie Michel

    2014-09-01

    Full Text Available The aim of this article is to characterize the penetration bias of the ENVIronmental SATellite (ENVISAT radar altimeter over the Antarctic ice sheet through comparison with the more accurate measurements of the Ice, Cloud and land Elevation Satellite (ICESat altimeter at crossover points. We studied the difference between ENVISAT and ICESat fluctuations over six years. We observed the same patterns between the leading edge width and the elevation difference. Both parameters are linked, and the major bias is due to the lengthening of the leading edge width due to the radar penetration. We show that the elevation difference between both altimeters and the leading edge width are linearly well-linked with a 0.8 Pearson correlation coefficient, whereas the slope effect over the coasts is difficult to analyze. When we analyze each crossover point temporal evolution locally, the linear correlation between the leading edge width and the elevation difference is between −0.6 and −1. Fitting a linear model between them, we find a reliability index greater than 0.7 for the Antarctic Plateau and Dronning Maud Land, which confirms that the penetration effect has a linear influence on the retrieved height. Moreover, we present results from SARAL/AltiKa (launched in February 2013 that confirm SARAL/AltiKa accuracy and the promising information it will provide.

  11. Signatures of Kelvin and Rossby wave propagation in the northern Indian Ocean from TOPEX/POSEIDON Altimeter

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Unnikrishnan, A.S.; Muraleedharan, P.M.

    The climatological monthly mean sea surface height (SSH) anomalies derived from T/P altimeter in the northern Indian Ocean, during 1993 to 1997, are used to prepare time-longitude plots. Along the equator they reveal strong semi-annual variability...

  12. Offshore limit of coastal ocean variability identified from hydrography and altimeter data in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Swamy, G.N.; Somayajulu, Y.K.

    In this communication, we describe a hitherto-unknown offshore limit to the coastal ocean variability signatures away from the continental shelf in the eastern Arabian Sea, based on hydrographic observations and satellite altimeter (TOPEX...

  13. Detection and characterization of ship targets using CryoSat-2 altimeter waveforms

    OpenAIRE

    G?mez-Enri, Jesus; Scozzari, Andrea; Soldovieri, Francesco; Coca, Josep; Vignudelli, Stefano

    2016-01-01

    This article describes an investigation of the new possibilities offered by SAR altimetry compared with conventional altimetry in the detection and characterization of non-ocean targets. We explore the capabilities of the first SAR altimeter installed on the European Space Agency satellite CryoSat-2 for the detection and characterization of ships. We propose a methodology for the detection of anomalous targets in the radar signals, based on the advantages of SAR/Doppler processing over conven...

  14. The ICESat-2 mission: design, status, applications and pre-launch performance assessments for monitoring cryopsheric changes

    Science.gov (United States)

    Neumann, T.; Markus, T.; Csatho, B. M.; Martino, A. J.

    2013-12-01

    NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is the next-generation orbiting laser altimeter, following the ICESat mission, which operated between 2003 and 2009. Its primary aim is to monitor sea-ice thickness and ice sheet elevation change at scales from outlet glaciers to the entire ice sheet, and enable global assessment of vegetation canopy height as established by ICESat. ICESat-2 is now in Phase C (Design and Development). It is scheduled to launch in 2016 on a Delta II rocket from Vandenberg Air Force Base in California. ICESat-2 will carry the Advanced Topographic Laser Altimeter System (ATLAS) and collect data to a latitudinal limit of 88 degrees. In contrast to Geoscience Laser Altimeter System (GLAS) on ICESat, ATLAS employs a 6-beam micro-pulse laser photon-counting approach. It uses a high repetition rate (10 kHz; resulting in 70 cm footprint spacing on the ground along the direction of travel) low-power laser in conjunction with single-photon sensitive detectors to measure ranges using 532 nm (green) laser light. In the polar regions, the 91-day repeat orbit pattern with a roughly monthly sub-cycle is designed to monitor seasonal and interannual variations of Greenland and Antarctic ice sheet elevations and monthly sea ice thickness changes. Dense ground-tracks over the rest of the globe achieved through a systematic sequence of off-nadir pointing (resulting in < 2 km ground-track spacing at the equator after two years) will enable measurements of land topography and vegetation canopy heights, allowing estimates of biomass and carbon in above-ground vegetation. While the ICESat-2 mission was optimized for cryospheric science, elevation measurements will be collected over land and oceans as well as histograms of backscatter from the atmosphere. These observations will provide a wealth of opportunities in addition to the primary science objectives, ranging from the retrieval of cloud properties, to river stages, to snow cover, to land

  15. Investigating the Potential Impact of the Surface Water and Ocean Topography (SWOT) Altimeter on Ocean Mesoscale Prediction

    Science.gov (United States)

    Carrier, M.; Ngodock, H.; Smith, S. R.; Souopgui, I.

    2016-02-01

    NASA's Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide sea surface height anomaly (SSHA) observations with a wider swath width and higher spatial resolution than current satellite altimeters. It is expected that this will help to further constrain ocean models in terms of the mesoscale circulation. In this work, this expectation is investigated by way of twin data assimilation experiments using the Navy Coastal Ocean Model Four Dimensional Variational (NCOM-4DVAR) data assimilation system using a weak constraint formulation. Here, a nature run is created from which SWOT observations are sampled, as well as along-track SSHA observations from simulated Jason-2 tracks. The simulated SWOT data has appropriate spatial coverage, resolution, and noise characteristics based on an observation-simulator program provided by the SWOT science team. The experiment is run for a three-month period during which the analysis is updated every 24 hours and each analysis is used to initialize a 96 hour forecast. The forecasts in each experiment are compared to the available nature run to determine the impact of the assimilated data. It is demonstrated here that the SWOT observations help to constrain the model mesoscale in a more consistent manner than traditional altimeter observations. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model analysis and forecast of mesoscale features and surface ocean transport.

  16. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  17. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    Science.gov (United States)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  18. Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar

    Science.gov (United States)

    Mahoney, C.; Hopkinson, C.; Held, A. A.

    2015-12-01

    Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.

  19. High Resolution Airborne InSAR DEM of Bagley Ice Valley, South-central Alaska: Geodetic Validation with Airborne Laser Altimeter Data

    Science.gov (United States)

    Muskett, R. R.; Lingle, C. S.; Echelmeyer, K. A.; Valentine, V. B.; Elsberg, D.

    2001-12-01

    Bagley Ice Valley, in the St. Elias and Chugach Mountains of south-central Alaska, is an integral part of the largest connected glacierized terrain on the North American continent. From the flow divide between Mt. Logan and Mt. St. Elias, Bagley Ice Valley flows west-northwest for some 90 km down a slope of less than 1o, at widths up to 15 km, to a saddle-gap where it turns south-west to become Bering Glacier. During 4-13 September 2000, an airborne survey of Bagley Ice Valley was performed by Intermap Technologies, Inc., using their Star-3i X-band SAR interferometer. The resulting digital elevation model (DEM) covers an area of 3243 km2. The DEM elevations are orthometric heights, in meters above the EGM96 geoid. The horizontal locations of the 10-m postings are with respect to the WGS84 ellipsoid. On 26 August 2000, 9 to 18 days prior to the Intermap Star-3i survey, a small-aircraft laser altimeter profile was acquired along the central flow line for validation. The laser altimeter data consists of elevations above the WGS84 ellipsoid and orthometric heights above GEOID99-Alaska. Assessment of the accuracy of the Intermap Star-3i DEM was made by comparison of both the DEM orthometric heights and elevations above the WGS84 ellipsoid with the laser altimeter data. Comparison of the orthometric heights showed an average difference of 5.4 +/- 1.0 m (DEM surface higher). Comparison of elevations above the WGS84 ellipsoid showed an average difference of -0.77 +/- 0.93 m (DEM surface lower). This indicates that the X-band Star-3i interferometer was penetrating the glacier surface by an expected small amount. The WGS84 comparison is well within the 3 m RMS accuracy quoted for GT-3 DEM products. Snow accumulation may have occurred, however, on Bagley Ice Valley between 26 August and 4-13 September 2000. This will be estimated using a mass balance model and used to correct the altimeter-derived surface heights. The new DEM of Bagley Ice Valley will provide a reference

  20. Straylight analysis of the BepiColombo Laser Altimeter

    Science.gov (United States)

    Weigel, T.; Rugi-Grond, E.; Kudielka, K.

    2008-09-01

    The BepiColombo Laser Altimeter (BELA) shall profile the surface of planet Mercury and operates on the day side as well as on the night side. Because of the high thermal loads, most interior surfaces of the front optics are highly reflective and specular, including the baffle. This puts a handicap on the straylight performance, which is needed to limit the solar background. We present the design measures used to reach an attenuation of about 10-8. We resume the method of backward straylight analysis which starts the rays at the detector and analyses the results in object space. The backward analysis can be quickly compiled and challenges computer resources rather than labor effort. This is very useful in a conceptual design phase when a design is iterated and trade-offs are to be performed. For one design, we compare the results with values obtained from a forward analysis.

  1. Demonstration of an Enhanced Vertical Magnetic Gradient System for UXO

    Science.gov (United States)

    2008-12-01

    fluxgate magnetometers , data recording console, laser altimeter, and acoustic altimeters were tested to ensure proper operation and performance. The VG...Simultaneous Electromagnetic Induction and Magnetometer System WAA wide area assessment ACKNOWLEDGEMENTS We wish to express our sincere...sensors. The benefits of vertical gradient (VG) configurations in magnetometer systems are common knowledge, and these configurations are routinely

  2. Active gust load alleviation system for flexible aircraft: Mixed feedforward/feedback approach

    DEFF Research Database (Denmark)

    Alam, Mushfiqul; Hromcik, Martin; Hanis, Tomas

    2015-01-01

    Lightweight flexible blended-wing-body (BWB) aircraft concept seems as a highly promising configuration for future high capacity airliners which suffers from reduced stiffness for disturbance loads such as gusts. A robust feedforward gust load alleviation system (GLAS) was developed to alleviate ...

  3. Revised coordinates of the Mars Orbiter Laser Altimeter (MOLA) footprints

    Science.gov (United States)

    Annibali, S.; Stark, A.; Gwinner, K.; Hussmann, H.; Oberst, J.

    2017-09-01

    We revised the Mars Orbiter Laser Altimeter (MOLA) footprint locations (i.e. areocentric body-fixed latitude and longitude), using updated trajectory models for the Mars Global Surveyor and updated rotation parameters of Mars, including precession, nutation and length-of-day variation. We assess the impact of these updates on the gridded MOLA maps. A first comparison reveals that even slight corrections to the rotational state of Mars can lead to height differences up to 100 m (in particular in regions with high slopes, where large interpolation effects are expected). Ultimately, we aim at independent measurements of the rotation parameters of Mars. We co-register MOLA profiles to digital terrain models from stereo images (stereo DTMs) and measure offsets of the two data sets.

  4. Absolute Sea Level Monitoring and Altimeter Calibration At Gavdos, Crete, Greece

    Science.gov (United States)

    Pavlis, E. C.; Gavdos Team

    We present the mean sea level (MSL) monitoring aspect of the altimeter calibration fa- cility under deployment on western Crete and the isle of Gavdos. The Eastern Mediter- ranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the im- portance of that area for the regional meteorological and climatological changes. Tide- gauge monitoring with GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long his- torical records can be used as satellite altimeter calibration sites for current and fu- ture missions (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA). Crete hosts two of the oldest tide-gauges in the regional network and our project will further ex- pand it to the south of the island with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the present T/P and JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. Our plans include the deployment of additional instrumentation at this site: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, etc., to ensure the best possible and most reliable results.

  5. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  6. Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Xiliang Ni

    2015-06-01

    Full Text Available Spatially-detailed forest height data are useful to monitor local, regional and global carbon cycle. LiDAR remote sensing can measure three-dimensional forest features but generating spatially-contiguous forest height maps at a large scale (e.g., continental and global is problematic because existing LiDAR instruments are still data-limited and expensive. This paper proposes a new approach based on an artificial neural network (ANN for modeling of forest canopy heights over the China continent. Our model ingests spaceborne LiDAR metrics and multiple geospatial predictors including climatic variables (temperature and precipitation, forest type, tree cover percent and land surface reflectance. The spaceborne LiDAR instrument used in the study is the Geoscience Laser Altimeter System (GLAS, which can provide within-footprint forest canopy heights. The ANN was trained with pairs between spatially discrete LiDAR metrics and full gridded geo-predictors. This generates valid conjugations to predict heights over the China continent. The ANN modeled heights were evaluated with three different reference data. First, field measured tree heights from three experiment sites were used to validate the ANN model predictions. The observed tree heights at the site-scale agreed well with the modeled forest heights (R = 0.827, and RMSE = 4.15 m. Second, spatially discrete GLAS observations and a continuous map from the interpolation of GLAS-derived tree heights were separately used to evaluate the ANN model. We obtained R of 0.725 and RMSE of 7.86 m and R of 0.759 and RMSE of 8.85 m, respectively. Further, inter-comparisons were also performed with two existing forest height maps. Our model granted a moderate agreement with the existing satellite-based forest height maps (R = 0.738, and RMSE = 7.65 m (R2 = 0.52, and RMSE = 8.99 m. Our results showed that the ANN model developed in this paper is capable of estimating forest heights over the China continent with a

  7. Nudging Satellite Altimeter Data Into Quasi-Geostrophic Ocean Models

    Science.gov (United States)

    Verron, Jacques

    1992-05-01

    This paper discusses the efficiency of several variants of the nudging technique (derived from the technique of the same name developed by meteorologists) for assimilating altimeter data into numerical ocean models based on quasi-geostrophic formulation. Assimilation experiments are performed with data simulated in the nominal sampling conditions of the Topex-Poseidon satellite mission. Under experimental conditions it is found that nudging on the altimetric sea level is as efficient as nudging on the vorticity (second derivative in space of the dynamic topography), the technique used thus far in studies of this type. The use of altimetric residuals only, instead of the total altimetric sea level signal, is also explored. The critical importance of having an adequate reference mean sea level is largely confirmed. Finally, the possibility of nudging only the signal of sea level tendency (i.e., the successive time differences of the sea level height) is examined. Apart from the barotropic mode, results are not very successful compared with those obtained by assimilating the residuals.

  8. Impact of ITRS 2014 realizations on altimeter satellite precise orbit determination

    Science.gov (United States)

    Zelensky, Nikita P.; Lemoine, Frank G.; Beckley, Brian D.; Chinn, Douglas S.; Pavlis, Despina E.

    2018-01-01

    This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l'Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1-2 mm RMS radial difference between 1992-2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3-4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual

  9. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  10. Measurement and stability of the pointing of the BepiColombo Laser Altimeter under thermal load

    Science.gov (United States)

    Gouman, J.; Beck, T.; Affolter, M.; Thomas, N.; Geissbühler, U.; Péteut, A.; Bandy, T.; Servonet, A.; Piazza, D.; Seiferlin, K.

    2014-04-01

    The first European laser altimeter, designed for interplanetary flight, BELA, (on BepiColombo mission to Mercury) will be launched in July 2016. This abstract describes the setup used to characterize the angular movements of BELA during the simulation of the environment that the instrument will encounter when orbiting Mercury. Tests performed using the Engineering Qualification Model (EQM) show that the setup is accurate enough to characterize angular movements of the instrument components with an accuracy of ≈ 10 μrad.

  11. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    Science.gov (United States)

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  12. Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Craig Mahoney

    2017-01-01

    Full Text Available Spaceborne laser altimetry waveform estimates of canopy Gap Fraction (GF vary with respect to discrete return airborne equivalents due to their greater sensitivity to reflectance differences between canopy and ground surfaces resulting from differences in footprint size, energy thresholding, noise characteristics and sampling geometry. Applying scaling factors to either the ground or canopy portions of waveforms has successfully circumvented this issue, but not at large scales. This study develops a method to scale spaceborne altimeter waveforms by identifying which remotely-sensed vegetation, terrain and environmental attributes are best suited to predicting scaling factors based on an independent measure of importance. The most important attributes were identified as: soil phosphorus and nitrogen contents, vegetation height, MODIS vegetation continuous fields product and terrain slope. Unscaled and scaled estimates of GF are compared to corresponding ALS data for all available data and an optimized subset, where the latter produced most encouraging results (R2 = 0.89, RMSE = 0.10. This methodology shows potential for successfully refining estimates of GF at large scales and identifies the most suitable attributes for deriving appropriate scaling factors. Large-scale active sensor estimates of GF can establish a baseline from which future monitoring investigations can be initiated via upcoming Earth Observation missions.

  13. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  14. Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest

  15. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    Science.gov (United States)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1

  16. Assimilation of radar altimeter data in numerical wave models: an impact study in two different wave climate regions

    Directory of Open Access Journals (Sweden)

    G. Emmanouil

    2007-03-01

    Full Text Available An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas.

  17. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: A study based on satellite altimeter data

    Digital Repository Service at National Institute of Oceanography (India)

    Hithin, N.K.; SanilKumar, V.; Shanas, P.R.

    The variability of annual maximum and annual mean significant wave height (SWH) and wave period in the Central Arabian Sea is studied using satellite altimeter data from 1996 to 2012 at a deep water (water depth~3500 m) buoy location (15.5°N, 69...

  18. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  19. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  20. Recovery Of Short Wavelength Geophysical Signals With Future Delay-Doppler Altimeters (Cryosat Ii And Sentinel Type)

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar

    2010-01-01

    altimetry: Factor of 20 improvements in along track resolution. An along-track footprint length that does not vary with wave height (sea state). Twice the precision in sea surface height measurements / sea surface slope measurements. These improvements are studied with respect to retrieval of short...... wavelength geophysical signal related to mainly bathymetric features. The combination of upward continuation from the sea bottom and smoothing the altimeter observations resulted in the best recovery of geophysical signal for simulated 5-Hz DD observations. Simulations carried out in this investigation...

  1. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

    DEFF Research Database (Denmark)

    Legeais, Jean-Francois; Ablain, Michael; Zawadzki, Lionel

    2018-01-01

    , the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed...... to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter...

  2. Performance Considerations for the SIMPL Single Photon, Polarimetric, Two-Color Laser Altimeter as Applied to Measurements of Forest Canopy Structure and Composition

    Science.gov (United States)

    Dabney, Philip W.; Harding, David J.; Valett, Susan R.; Vasilyev, Aleksey A.; Yu, Anthony W.

    2012-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over

  3. Characterising and improving the performance of the Sentinel-3 SRAL altimeter: A Report from SCOOP, SHAPE & SPICE Projects

    Science.gov (United States)

    Restano, Marco; Ambrózio, Américo; Cotton, David; Scoop Team; Fabry, Pierre; Shape Team; McMillan, Malcolm; Spice Team; Benveniste, Jérôme

    2017-04-01

    Under the ESA Scientific Exploitation of Operational Missions (SEOM) Programme, 3 Projects are currently underway to accurately characterise and improve the performance of the Sentinel-3 SRAL SAR mode altimeter. They are: 1) SCOOP (SAR Altimetry Coastal & Open Ocean Performance Exploitation and Roadmap Study) for Coastal and Open Ocean; 2) SHAPE (Sentinel-3 Hydrologic Altimetry PrototypE) for Inland Water; 3) SPICE (Sentinel-3 Performance improvement for ICE sheets) for Ice Sheets. As projects started before the launch of Sentinel-3 (a full SAR mission), calibrated Cryosat-2 data have been used as input to a processor replicating the Sentinel-3 baseline processing. For the SCOOP project, a first test dataset has been released to end users including data from 10 regions of interest. The successful SAMOSA retracker, adopted in the previous CP4O Project (CryoSat Plus for Oceans), has been readapted to re-track Sentinel-3 waveforms. An improved version of SAMOSA will be released at the end of the project. The SHAPE project is working towards the design and assessment of alternative/innovative techniques not implemented in the Sentinel-3 ground segment (performing no Inland Water dedicated processing). Both rivers and lakes will be studied. Amazon, Brahmaputra and Danube have been selected as rivers, whereas Titicaca and Vanern have been chosen as lakes. The study will include the assimilation of output products into hydrological models for all regions of interest. A final dataset will be provided to end users. The SPICE project is addressing four high level objectives: 1) Assess and improve the Delay-Doppler altimeter processing for ice sheets. 2) Assess and develop SAR waveform retrackers for ice sheets. 3) Evaluate the performance of SAR altimetry relative to conventional pulse limited altimetry. 4) Assess the impact on SAR altimeter measurements of radar wave interaction with the snowpack. Dataset used for validation include ICESat and IceBridge products. Vostok

  4. ICESat's First Year of Measurements Over the Polar Ice Sheets

    Science.gov (United States)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  5. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.B.

    2001-01-01

    were corrected for a slope-dependent bias that had been identified in a previous study. The radar altimetry was supplemented with stereophotogrammetric data sets, synthetic aperture radar interferometry, and digitized cartographic maps over regions of bare rock and where gaps in the satellite altimeter...... the bare rock areas the accuracy ranged from 20 to 200 m, dependent on the data source available. The new digital elevation model was used as an input data set for a positive degree day model of ablation. The new elevation model was found to reduce ablation by only 2% compared with using an older, 2.5-km...

  6. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    Science.gov (United States)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  7. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  8. Improved interpretation of satellite altimeter data using genetic algorithms

    Science.gov (United States)

    Messa, Kenneth; Lybanon, Matthew

    1992-01-01

    Genetic algorithms (GA) are optimization techniques that are based on the mechanics of evolution and natural selection. They take advantage of the power of cumulative selection, in which successive incremental improvements in a solution structure become the basis for continued development. A GA is an iterative procedure that maintains a 'population' of 'organisms' (candidate solutions). Through successive 'generations' (iterations) the population as a whole improves in simulation of Darwin's 'survival of the fittest'. GA's have been shown to be successful where noise significantly reduces the ability of other search techniques to work effectively. Satellite altimetry provides useful information about oceanographic phenomena. It provides rapid global coverage of the oceans and is not as severely hampered by cloud cover as infrared imagery. Despite these and other benefits, several factors lead to significant difficulty in interpretation. The GA approach to the improved interpretation of satellite data involves the representation of the ocean surface model as a string of parameters or coefficients from the model. The GA searches in parallel, a population of such representations (organisms) to obtain the individual that is best suited to 'survive', that is, the fittest as measured with respect to some 'fitness' function. The fittest organism is the one that best represents the ocean surface model with respect to the altimeter data.

  9. An Evaluation of Recent Gravity Models wrt. Altimeter Satellite Missions

    Science.gov (United States)

    Lemoine, Frank G.; Zelensky, N. P.; Luthcke, S. B.; Beckley, B. D.; Chinn, D. S.; Rowlands, D. D.

    2003-01-01

    With the launch of CHAMP and GRACE, we have entered a new phase in the history of satellite geodesy. For the first time, geopotential models are now available based almost exclusively on satellite-satellite tracking either with GPS in the case of the CHAMP-based geopotential models, or co-orbital intersatellite ultra-precise ranging in the case of GRACE. Different groups have analyzed these data, and produced a series of geopotential models (e.g., EIGENlS, EIGEN2, GGM0lS, GGMOlC) that incorporate the new data. We will compare the performance of these "newer" geopotential models with the standard models now used for computations, (e.g., JGM-3, BGM-96, PGS7727, and GRIMS-C1) for TOPEX, JASON, Geosat-Follow-On (GFO), and Envisat using standard metrics such as SLR RMS of fit, altimeter crossovers, and orbit overlaps. Where covariances are available we can evaluate the predicted geographically correlated orbit error. These predicted results can be compared with the Earth-fixed differences between dynamic and reduced-dynamic orbits to test the predictive accuracy of the covariances, as well as to calibrate the error of the solutions.

  10. On retrieving sea ice freeboard from ICESat laser altimeter

    Directory of Open Access Journals (Sweden)

    K. Khvorostovsky

    2016-10-01

    Full Text Available Sea ice freeboard derived from satellite altimetry is the basis for the estimation of sea ice thickness using the assumption of hydrostatic equilibrium. High accuracy of altimeter measurements and freeboard retrieval procedure are, therefore, required. As of today, two approaches for estimating the freeboard using laser altimeter measurements from Ice, Cloud, and land Elevation Satellite (ICESat, referred to as tie points (TP and lowest-level elevation (LLE methods, have been developed and applied in different studies. We reproduced these methods for the ICESat observation periods (2003–2008 in order to assess and analyse the sources of differences found in the retrieved freeboard and corresponding thickness estimates of the Arctic sea ice as produced by the Jet Propulsion Laboratory (JPL and Goddard Space Flight Center (GSFC. Three main factors are found to affect the freeboard differences when applying these methods: (a the approach used for calculation of the local sea surface references in leads (TP or LLE methods, (b the along-track averaging scales used for this calculation, and (c the corrections for lead width relative to the ICESat footprint and for snow depth accumulated in refrozen leads. The LLE method with 100 km averaging scale, as used to produce the GSFC data set, and the LLE method with a shorter averaging scale of 25 km both give larger freeboard estimates comparing to those derived by applying the TP method with 25 km averaging scale as used for the JPL product. Two factors, (a and (b, contribute to the freeboard differences in approximately equal proportions, and their combined effect is, on average, about 6–7 cm. The effect of using different methods varies spatially: the LLE method tends to give lower freeboards (by up to 15 cm over the thick multiyear ice and higher freeboards (by up to 10 cm over first-year ice and the thin part of multiyear ice; the higher freeboards dominate. We show that the

  11. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    to investigate sea ice volume changes on an Arctic wide scale. Freeboard retrieval requires precise radar range measurements to the ice surface, therefore we investigate the penetration of the Ku-Band radar waves into the overlying snow cover as well as the effects of sub-footprint-scale surface roughness using...... airborne radar and laser altimeters. We find regional variable penetration of the radar signal at late spring conditions, where the difference of the radar and the reference laser range measurement never agrees with the expected snow thickness. In addition, a rough surface can lead to biases...

  12. Modal recovery of sea-level variability in the South China Sea using merged altimeter data

    Science.gov (United States)

    Jiang, Haoyu; Chen, Ge

    2015-09-01

    Using 20 years (1993-2012) of merged data recorded by contemporary multi-altimeter missions, a variety of sea-level variability modes are recovered in the South China Sea employing three-dimensional harmonic extraction. In terms of the long-term variation, the South China Sea is estimated to have a rising sea-level linear trend of 5.39 mm/a over these 20 years. Among the modes extracted, the seven most statistically significant periodic or quasi-periodic modes are identified as principal modes. The geographical distributions of the magnitudes and phases of the modes are displayed. In terms of intraannual and annual regimes, two principal modes with strict semiannual and annual periods are found, with the annual variability having the largest amplitudes among the seven modes. For interannual and decadal regimes, five principal modes at approximately 18, 21, 23, 28, and 112 months are found with the most mode-active region being to the east of Vietnam. For the phase distributions, a series of amphidromes are observed as twins, termed "amphidrome twins", comprising rotating dipole systems. The stability of periodic modes is investigated employing joint spatiotemporal analysis of latitude/longitude sections. Results show that all periodic modes are robust, revealing the richness and complexity of sea-level modes in the South China Sea.

  13. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  14. Probing Small Lakes on Titan Using the Cassini RADAR Altimeter

    Science.gov (United States)

    Mastrogiuseppe, M.; Poggiali, V.; Hayes, A.; Lunine, J. I.; Seu, R.; Lorenz, R. D.; Mitri, G.; Mitchell, K. L.; Janssen, M. A.; Casarano, D.; Notarnicola, C.; Le Gall, A. A.

    2017-12-01

    The T126 Cassini's final flyby of Titan has offered a unique opportunity to observe an area in the Northern Polar terrain, where several small - medium size (10 - 50 km) hydrocarbon lakes are present and have been previously imaged by Cassini. The successful observation allowed the radar to operate at the closest approach over several small lakes, using its altimetry mode for the investigation of depth and liquid composition. Herein we present the result of a dedicate processing previously applied to altimetric data acquired over Ligeia Mare where the radar revealed the bathymetry and composition of the sea [1,2]. We show that, the optimal geometry condition met during the T126 fly-by allowed the radar to probe Titan's lakes revealing that such small liquid bodies can exceed one-hundred meters of depth. [1] M. Mastrogiuseppe et al. (2014, Mar.). The bathymetry of a Titan Sea. Geophysical Research Letters. [Online]. 41 (5), pp. 1432-1437. Available: http://dx.doi.org/10.1002/2013GL058618 [2] M.Mastrogiuseppe et al. (2016, Oct). Radar Sounding Using the Cassini Altimeter: Waveform Modeling and Monte Carlo Approach for Data Inversion of Observations of Titan's Seas, IEEE Transactions On Geoscience And Remote Sensing, Vol. 54, No. 10, doi: 10.1109/TGRS.2016.2563426.

  15. The OSIRIS-REx laser altimeter (OLA): Development progress

    Science.gov (United States)

    Daly, M.; Barnouin, O.; Johnson, C.; Bierhaus, E.; Seabrook, J.; Dickinson, C.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Cunningham, G.; Lauretta, D.; Boynton, W.; Beshore, E.

    2014-07-01

    Introduction: The NASA New Frontiers Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission will be the first to sample the B-type asteroid (101955) Bennu [1]. This asteroid is thought to be primitive and carbonaceous, and is probably closely related to CI and/or CM meteorites [2]. The OSIRIS-REx mission hopes to better understand both the physical and geochemical origin and evolution of carbonaceous asteroids through its investigation of Bennu. The OSIRIS-REx spacecraft will launch in September 2016, and arrive at Bennu two years later. The Canadian Space Agency is contributing a scanning lidar system known as the OSIRIS-REx Laser Altimeter (OLA), to the OSIRIS-REx Mission. The OLA instrument is part of suite of onboard instruments [3] including cameras (OCAMS) [4], a visible and near- infrared spectrometer (OVIRS) [5], a thermal emission spectrometer (OTES), and an X-ray imaging spectrometer (REXIS) [6]. OLA Objectives: The OLA instrument has a suite of scientific and mission operations purposes. At a global scale, it will update the shape and mass of Bennu to provide insights on the geological origin and evolution of Bennu, by, for example, further refining constraints on its bulk density. With a carefully undertaken geodesy campaign, OLA-based precision ranges, constraints from radio science (2-way tracking) data and stereo OCAMS images, it will yield broad-scale, quantitative constraints on any internal heterogeneity of Bennu and hence provide further clues to Bennu's origin and subsequent collisional evolution. OLA-derived global asteroid maps of slopes, elevation relative to the asteroid geoid, and vertical roughness will provide quantitative insights on how local-regional surfaces on Bennu evolved subsequent to the formation of the asteroid. In addition, OLA data and derived products support the assessment of the safety and sampleability of potential sample sites. At the sample-site scale, the OLA instrument

  16. Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.

    Science.gov (United States)

    Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.; hide

    2012-01-01

    Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.

  17. Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter (LOLA)

    Science.gov (United States)

    Barker, M. K.; Mazarico, E. M.; McClanahan, T. P.; Sun, X.; Smith, D. E.; Neumann, G. A.; Zuber, M. T.; Head, J. W., III

    2017-12-01

    The dust environment of the Moon is sensitive to the interplanetary meteoroid population and dust transport processes near the lunar surface, and this affects many aspects of lunar surface science and planetary exploration. The interplanetary meteoroid population poses a significant risk to spacecraft, yet it remains one of the more uncertain constituents of the space environment. Observed and hypothesized lunar dust transport mechanisms have included impact-generated dust plumes, electrostatic levitation, and dynamic lofting. Many details of the impactor flux and impact ejection process are poorly understood, a fact highlighted by recent discrepant estimates of the regolith mixing rate. Apollo-era observations of lunar horizon glow (LHG) were interpreted as sunlight forward-scattered by exospheric dust grains levitating in the top meter above the surface or lofted to tens of kilometers in altitude. However, recent studies have placed limits on the dust density orders of magnitude less than what was originally inferred, raising new questions on the time variability of the dust environment. Motivated by the need to better understand dust transport processes and the meteoroid population, the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) is conducting a campaign to search for LHG with the LOLA Laser Ranging (LR) system. Advantages of this LOLA LHG search include: (1) the LOLA-LR telescope can observe arbitrarily close to the Sun at any time during the year without damaging itself or the other instruments, (2) a long temporal baseline with observations both during and outside of meteor streams, which will improve the chances of detecting LHG, and (3) a focus on altitudes methodology, and preliminary results.

  18. Assimilation of Altimeter Data into a Quasigeostrophic Model of the Gulf Stream System. Part 2; Assimilation Results

    Science.gov (United States)

    Capotondi, Antonietta; Holland, William R.; Malanotte-Rizzoli, Paola

    1995-01-01

    The improvement in the climatological behavior of a numerical model as a consequence of the assimilation of surface data is investigated. The model used for this study is a quasigeostrophic (QG) model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height that have been obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. Comparisons of the assimilation results with available in situ observations show a significant improvement in the degree of realism of the climatological model behavior, with respect to the model in which no data are assimilated. The remaining discrepancies in the model mean circulation seem to be mainly associated with deficiencies in the mean component of the surface data that are assimilated. On the other hand, the possibility of building into the model more realistic eddy characteristics through the assimilation of the surface eddy field proves very successful in driving components of the mean model circulation that are in relatively good agreement with the available observations. Comparisons with current meter time series during a time period partially overlapping the Geosat mission show that the model is able to 'correctly' extrapolate the instantaneous surface eddy signals to depths of approximately 1500 m. The correlation coefficient between current meter and model time series varies from values close to 0.7 in the top 1500 m to values as low as 0.1-0.2 in the deep ocean.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    These include stereo camera and spectrometer imager,laser altimeter,microwave radiometer,gamma and X-ray spectrometers and space environment monitor system.In order to collect,process,store and transmit the scientific data of various payloads a special payload data management system is also included.In this paper ...

  20. Tracking the attenuation and nonbreaking dissipation of swells using altimeters

    Science.gov (United States)

    Jiang, Haoyu; Stopa, Justin E.; Wang, He; Husson, Romain; Mouche, Alexis; Chapron, Bertrand; Chen, Ge

    2016-02-01

    A method for systematically tracking swells across oceanic basins is developed by taking advantage of high-quality data from space-borne altimeters and wave model output. The evolution of swells is observed over large distances based on 202 swell events with periods ranging from 12 to 18 s. An empirical attenuation rate of swell energy of about 4 × 10-7 m-1 is estimated using these observations, and the nonbreaking energy dissipation rates of swells far away from their generating areas are also estimated using a point source model. The resulting acceptance range of nonbreaking dissipation rates is -2.5 to 5.0 × 10-7 m-1, which corresponds to a dissipation e-folding scales of at least 2000 km for steep swells, to almost infinite for small-amplitude swells. These resulting rates are consistent with previous studies using in-situ and synthetic aperture radar (SAR) observations. The frequency dispersion and angular spreading effects during swell propagation are discussed by comparing the results with other studies, demonstrating that they are the two dominant processes for swell height attenuation, especially in the near field. The resulting dissipation rates from these observations can be used as a reference for ocean engineering and wave modeling, and for related studies such as air-sea and wind-wave-turbulence interactions.

  1. Teacher educators' design and implementation of group learning activities

    NARCIS (Netherlands)

    De Hei, Miranda S.A.; Sjoer, Ellen; Admiraal, Wilfried; Strijbos, J.W.

    2016-01-01

    Group Learning Activities (GLAs) are a key ingredient of course designs in higher education. Various approaches for designing GLAs have been developed, featuring different design components. However, this has not yet resulted in clear guidelines for teachers on how to design GLAs. The purpose of

  2. Corrections for the effects of significant wave height and attitude on Geosat radar altimeter measurements

    Science.gov (United States)

    Hayne, G. S.; Hancock, D. W., III

    1990-01-01

    Range estimates from a radar altimeter have biases which are a function of the significant wave height (SWH) and the satellite attitude angle (AA). Based on results of prelaunch Geosat modeling and simulation, a correction for SWH and AA was already applied to the sea-surface height estimates from Geosat's production data processing. By fitting a detailed model radar return waveform to Geosat waveform sampler data, it is possible to provide independent estimates of the height bias, the SWH, and the AA. The waveform fitting has been carried out for 10-sec averages of Geosat waveform sampler data over a wide range of SWH and AA values. The results confirm that Geosat sea-surface-height correction is good to well within the original dm-level specification, but that an additional height correction can be made at the level of several cm.

  3. Collaborative learning in higher education : design, implementation and evaluation of group learning activities

    NARCIS (Netherlands)

    Hei, de M.S.A.

    2016-01-01

    In higher education, group learning activities (GLAs) are frequently implemented in online, blended or face-to-face educational contexts. A major problem for the design and implementation of good quality GLAs that lead to the desired learning outcomes is that many approaches to GLAs have been

  4. A fixed full-matrix method for determining ice sheet height change from satellite altimeter: an ENVISAT case study in East Antarctica with backscatter analysis

    Science.gov (United States)

    Yang, Yuande; Hwang, Cheinway; E, Dongchen

    2014-09-01

    A new method, called the fixed full-matrix method (FFM), is used to compute height changes at crossovers of satellite altimeter ground tracks. Using the ENVISAT data in East Antarctica, FFM results in crossovers of altimeter heights that are 1.9 and 79 times more than those from the fixed half method (FHM) and the one-row method (ORM). The mean standard error of height changes is about 14 cm from ORM, which is reduced to 7 cm by FHM and to 3 cm by FFM. Unlike FHM, FFM leads to uniform errors in the first-half and second-half height-change time series. FFM has the advantage in improving the accuracy of the change of height and backscattered power over ORM and FHM. Assisted by the ICESat-derived height changes, we determine the optimal threshold correlation coefficient (TCC) for a best correction for the backscatter effect on ENVISAT height changes. The TCC value of 0.92 yields an optimal result for FFM. With this value, FFM yields ENVISAT-derived height change rates in East Antarctica mostly falling between and 3 cm/year, and matching the ICESat result to 0.94 cm/year. The ENVISAT result will provide a constraint on the current mass balance result along the Chinese expedition route CHINARE.

  5. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    Science.gov (United States)

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  6. Design of pulsed laser diode drive power for ZY3(02) laser altimeter

    Science.gov (United States)

    Feng, Wen; Li, Mingshan; Meng, Peibei; Yan, Fanjiang; Li, Xu; Wang, Chunhui

    2017-11-01

    Solid laser pumped by semiconductor laser has the large value in the area of space laser technology, because of the advantages of high efficiency, small volume and long life. As the indispensable component of laser, laser power is also very important. Combined with ZY3(02) laser altimeter project, a high voltage(0-300V), high current(0-80A), long pulse width(0-230us) and high precision temperature semiconductor laser power is developed. IGBT is applied in the driving circuit as the switch to provide a current pulse for LD. The heating or cooling capacity of TEC is controlled by PID compensation circuit quickly adjusts the duty cycle of the UC1637 PWM signal, to realize the high accuracy controlling of LD working temperature. The tests in the external ambient temperature of 5°C, 20°C, 30°C show that the LD current pulse is stable and the stability of LD working temperature up to +/-0.1°C around the set point temperature, which ensure the highly stable operation of DPL.

  7. The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters

    Science.gov (United States)

    Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.

    2015-12-01

    Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the

  8. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  9. Using high sampling rate (10/20 Hz) altimeter data for the observation of coastal surface currents: A case study over the northwestern Mediterranean Sea

    Science.gov (United States)

    Birol, Florence; Delebecque, Caroline

    2014-01-01

    Satellite altimetry, measuring sea surface heights (SSHs), has unique capabilities to provide information about the ocean dynamics. In this paper, the skill of the original full rate (10/20 Hz) measurements, relative to conventional 1-Hz data, is evaluated in the context of coastal studies in the Northwestern Mediterranean Sea. The performance and the question of the measurement noise are quantified through a comparison with different tide gauge sea level time series. By applying a specific processing, closer than 30 km to the land, the number of valid data is higher for the 10/20-Hz than for the 1-Hz observations: + 4.5% for T/P, + 10.3 for Jason-1 and + 13% for Jason-2. By filtering higher sampling rate measurements (using a 30-km cut-off low-pass Lanczos filter), we can obtain the same level of sea level accuracy as we would using the classical 1-Hz altimeter data. The gain in near-shore data results in a better observation of the Liguro-Provençal-Catalan Current. The seasonal evolution of the currents derived from 20-Hz data is globally consistent with patterns derived from the corresponding 1-Hz observations. But the use of higher frequency altimeter measurements allows us to observe the variability of the regional flow closer to the coast (~ 10-15 km from land).

  10. Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results

    Science.gov (United States)

    Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.

    2017-01-01

    Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Altimeter data have been assimilated in an ocean general circulation model using the water property conserving scheme. Two runs of the model have been conducted for the year 2004. In one of the runs, altimeter data have been assimilated sequentially, while in another run, assimilation has been suppressed. Assimilation ...

  12. Gendered language attitudes: exploring language as a gendered construct using Rasch measurement theory.

    Science.gov (United States)

    Knisely, Kris A; Wind, Stefanie A

    2015-01-01

    Gendered language attitudes (GLAs) are gender-based perceptions of language varieties based on connections between gender-related and linguistic characteristics of individuals, including the perception of language varieties as possessing degrees of masculinity and femininity. This study combines substantive theory about language learning and gender with a model based on Rasch measurement theory to explore the psychometric properties of a new measure of GLAs. Findings suggest that GLAs is a unidimensional construct and that the items used can be used to describe differences among students in terms of the strength of their GLAs. Implications for research, theory, and practice are discussed. Special emphasis is given to the teaching and learning of languages.

  13. Global ocean tides through assimilation of oceanographic and altimeter satellite data in a hydrodynamic model

    Science.gov (United States)

    Leprovost, Christian; Mazzega, P.; Vincent, P.

    1991-01-01

    Ocean tides must be considered in many scientific disciplines: astronomy, oceanography, geodesy, geophysics, meteorology, and space technologies. Progress in each of these disciplines leads to the need for greater knowledge and more precise predictions of the ocean tide contribution. This is particularly true of satellite altimetry. On one side, the present and future satellite altimetry missions provide and will supply new data that will contribute to the improvement of the present ocean tide solutions. On the other side, tidal corrections included in the Geophysical Data Records must be determined with the maximum possible accuracy. The valuable results obtained with satellite altimeter data thus far have not been penalized by the insufficiencies of the present ocean tide predictions included in the geophysical data records (GDR's) because the oceanic processes investigated have shorter wavelengths than the error field of the tidal predictions, so that the residual errors of the tidal corrections are absorbed in the empirical tilt and bias corrections of the satellite orbit. For future applications to large-scale oceanic phenomena, however, it will no longer be possible to ignore these insufficiencies.

  14. South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data

    Science.gov (United States)

    Florenchie, P.; Verron, J.

    1998-10-01

    Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.

  15. Stratigraphy, Sequence, and Crater Populations of Lunar Impact Basins from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for the Late Heavy Bombardment

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    New measurements of the topography of the Moon from the Lunar Orbiter Laser Altimeter (LOLA)[1] provide an excellent base-map for analyzing the large crater population (D.20 km)of the lunar surface [2, 3]. We have recently used this data to calculate crater size-frequency distributions (CSFD) for 30 lunar impact basins, which have implications for their stratigraphy and sequence. These data provide an avenue for assessing the timing of the transitions between distinct crater populations characteristic of ancient and young lunar terrains, which has been linked to the late heavy bombardment (LHB). We also use LOLA data to re-examine relative stratigraphic relationships between key lunar basins.

  16. Waveform identification and retracking analyses of Jason-2 altimeter satellite data for improving sea surface height estimation in Southern Java Island Waters and Java Sea, Indonesia

    Science.gov (United States)

    Nababan, Bisman; Hakim, Muhammad R.; Panjaitan, James P.

    2018-05-01

    Indonesian waters containing many small islands and shallow waters leads to a less accurate of sea surface height (SSH) estimation from satellite altimetry. Little efforts are also given for the validation of SSH estimation from the satellite in Indonesian waters. The purpose of this research was to identify and retrack waveforms of Jason-2 altimeter satellite data in southern Java island waters and Java Sea using several retrackers and performed improvement percentage analyses for new SSH estimation. The study used data of the Sensor Geophysical Data Record type D (SGDR-D) of Jason-2 satellite altimeter of the year 2010 in the southern Java island waters and 2012-2014 in Java Sea. Waveform retracking analyses were conducted using several retrackers (Offset Center of Gravity, Ice, Threshold, and Improved Threshold) and examined using a world reference undulation geoid of EGM08 and Oceanic retracker. Result showed that shape and pattern of waveforms were varied in all passes, seasons, and locations specifically along the coastal regions. In general, non-Brownish and complex waveforms were identified along coastal region specifically within the distance of 0-10 km from the shoreline. In contrary, generally Brownish waveforms were found in offshore. However, Brownish waveform can also be found within coastal region and non-Brownish waveforms within offshore region. The results were also showed that the four retrackers produced a better SSH estimation in coastal region. However, there was no dominant retracker to improve the accuracy of the SSH estimate.

  17. Elektrochemischer Sensor und Verfahren zu seiner Herstellung

    OpenAIRE

    Vonau, W.; Kaden, H.; Kretzschmar, C.; Otschik, P.; Krabbes, I.; Woithe, W.; Grosse, M.

    2002-01-01

    Electro-chemical sensor for the detection of ion activity comprises a selective glas membrane (4) in direct contact with a metal electrode (3) or in direct contact with a variable conducting glas layer (4a), which is itself in contact with (3). (3), (4) and (4a) are plated onto a steel-ceramic substrate using screen-print technology. The thermal expansion coefficients of the steel-ceramic substrate and the glas layers differ by a maximum of = 6 multiply 10-7 K-1. USE - The sensor is especiall...

  18. Haze-factor maakt plaats voor F-scatter

    NARCIS (Netherlands)

    Swinkels, G.L.A.M.

    2014-01-01

    Uitgelicht licht & scherming - Wageningen UR Glastuinbouw deed vorig jaar onderzoek naar een methode om de lichtspreiding onder diffuus glas te karakteriseren. dit resulteerde in een nieuwe waarde, de zogenaamde F-scatter voor voorwaartse lichtspreiding. Leveranciers van glas en

  19. UV-straling in de kas: mogelijkheden en grenzen

    NARCIS (Netherlands)

    Hoffmann, S.

    2000-01-01

    Effect van UV-straling op kleuring van Coleus Blumei 'Wizzard Velvit Red'. Gegevens in bijgaande tabellen: 1) Indeling optische straling; 2) Transmisse voor UV-straling van verschillende dekmaterialen (folie UV, glas UV, glas normaal, folie normaal, folie UV-blok

  20. Low-Amplitude Topographic Features and Textures on the Moon: Initial Results from Detrended Lunar Orbiter Laser Altimeter (LOLA) Topography

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2016-01-01

    Global lunar topographic data derived from ranging measurements by the Lunar Orbiter Laser Altimeter (LOLA) onboard LRO mission to the Moon have extremely high vertical precision. We use detrended topography as a means for utilization of this precision in geomorphological analysis. The detrended topography was calculated as a difference between actual topography and a trend surface defined as a median topography in a circular sliding window. We found that despite complicated distortions caused by the non-linear nature of the detrending procedure, visual inspection of these data facilitates identification of low-amplitude gently-sloping geomorphic features. We present specific examples of patterns of lava flows forming the lunar maria and revealing compound flow fields, a new class of lava flow complex on the Moon. We also highlight the identification of linear tectonic features that otherwise are obscured in the images and topographic data processed in a more traditional manner.

  1. Coupled thermo-elastic and optical performance analyses of a reflective baffle for the BepiColombo laser altimeter (BELA) receiver

    Science.gov (United States)

    Heesel, E.; Weigel, T.; Lochmatter, P.; Rugi Grond, E.

    2017-11-01

    For the BepiColombo mission, the extreme thermal environment around Mercury requires good heat shields for the instruments. The BepiColombo Laser altimeter (BELA) Receiver will be equipped with a specular reflective baffle in order to limit the solar power impact. The design uses a Stavroudis geometry with alternating elliptical and hyperbolic vanes to reflect radiation at angles >38° back into space. The thermal loads on the baffle lead to deformations, and the resulting changes in the optical performance can be modeled by ray-tracing. Conventional interfaces, such as Zernike surface fitting, fail to provide a proper import of the mechanical distortions into optical models. We have studied alternative models such as free form surface representations and compared them to a simple modeling approach with straight segments. The performance merit is presented in terms of the power rejection ratio and the absence of specular stray-light.

  2. Intrinsic and extrinsic size in metallic glasses

    NARCIS (Netherlands)

    Kuzmin, Oleksii Volodymyrovych

    2014-01-01

    Structuur metallisch glas op nanoschaal in beeld gebracht Enkele jaren geleden zijn metaallegeringen gemaakt met een structuur die vergelijkbaar is met die van glas, d.w.z. amorf in plaats van kristallijn. Ze worden ‘metallisch glas’ genoemd en hebben unieke eigenschappen, ze zijn bijvoorbeeld zeer

  3. Sensitivity of Satellite Altimetry Data Assimilation on a Weapon Acoustic Preset Using MODAS

    National Research Council Canada - National Science Library

    Chu, Peter; Mancini, Steven; Gottshall, Eric; Cwalina, David; Barron, Charlie N

    2007-01-01

    ...) is analyzed with SSP derived from the modular ocean data assimilation system (MODAS). The MODAS fields differ in that one uses altimeter data assimilated from three satellites while the other uses no altimeter data...

  4. Instruments and Methods: A Low-Cost Glacier-Mapping System

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Reeh, Niels; Forsberg, René

    2000-01-01

    the capability of acquiring accurate data on location and ice-surface elevation, and adequate-quality data on ice thickness. The system has been applied successfully in mapping the Nioghalvfjerdsfjorden glacier, northeast Greenland, in spite of the difficult conditions with melting water on the glacier surface....... The measurements from the floating part of the glacier have been evaluated by comparison of radar data with laser-altimeter and in situ measurements....

  5. Integrating biogeochemistry and ecology into ocean data assimilation systems

    DEFF Research Database (Denmark)

    Brasseur, Pierre; Gruber, Nicolas; Barciela, Rosa

    2009-01-01

    that are not yet considered essential, such as upper-ocean vertical fluxes that are critically important to biological activity. Further, the observing systems will need to be expanded in terms of in situ platforms (with intensified deployments of sensors for O-2 and chlorophyll, and inclusion of new sensors...... for nutrients, zooplankton, micronekton biomass, and others), satellite missions (e.g., hyperspectral instruments for ocean color, lidar systems for mixed-layer depths, and wide-swath altimeters for coastal sea level), and improved methods to assimilate these new measurements....

  6. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; Torrence, Mark H.; Barker, Michael K.; Oberst, Juergen; Duxbury, Thomas C.; Mao, Dandan; Barnouin, Olivier S.; Jha, Kopal; Rowlands, David D.; Goossens, Sander; Baker, David; Bauer, Sven; Gläser, Philipp; Lemelin, Myriam; Rosenburg, Margaret; Sori, Michael M.; Whitten, Jennifer; Mcclanahan, Timothy

    2017-02-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  7. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  8. 14 CFR Appendix E to Part 43 - Altimeter System Test and Inspection

    Science.gov (United States)

    2010-01-01

    ... associated computing systems, or which incorporate air data correction internally, may be tested in a manner...) Automatic Pressure Altitude Reporting Equipment and ATC Transponder System Integration Test. The test must...). Measure the automatic pressure altitude at the output of the installed ATC transponder when interrogated...

  9. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  10. Error Characterization of Altimetry Measurements at Climate Scales

    Science.gov (United States)

    Ablain, Michael; Larnicol, Gilles; Faugere, Yannice; Cazenave, Anny; Meyssignac, Benoit; Picot, Nicolas; Benveniste, Jerome

    2013-09-01

    Thanks to studies performed in the framework of the SALP project (supported by CNES) since the TOPEX era and more recently in the framework of the Sea- Level Climate Change Initiative project (supported by ESA), strong improvements have been provided on the estimation of the global and regional mean sea level over the whole altimeter period for all the altimetric missions. Thanks to these efforts, a better characterization of altimeter measurements errors at climate scales has been performed and presented in this paper. These errors have been compared to user requirements in order to know if scientific goals are reached by altimeter missions. The main issue of this paper is the importance to enhance the link between altimeter and climate communities to improve or refine user requirements, to better specify future altimeter system for climate applications but also to reprocess older missions beyond their original specifications.

  11. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations

    Science.gov (United States)

    Ross Nelson; Hank Margolis; Paul Montesano; Guoqing Sun; Bruce Cook; Larry Corp; Hans-Erik Andersen; Ben deJong; Fernando Paz Pellat; Thaddeus Fickel; Jobriath Kauffman; Stephen Prisley

    2017-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar...

  12. National-scale estimation of gross forest aboveground carbon loss: a case study of the Democratic Republic of the Congo

    International Nuclear Information System (INIS)

    Tyukavina, A; Potapov, P V; Turubanova, S A; Hansen, M C; Stehman, S V; Baccini, A; Goetz, S J; Laporte, N T; Houghton, R A

    2013-01-01

    Recent advances in remote sensing enable the mapping and monitoring of carbon stocks without relying on extensive in situ measurements. The Democratic Republic of the Congo (DRC) is among the countries where national forest inventories (NFI) are either non-existent or out of date. Here we demonstrate a method for estimating national-scale gross forest aboveground carbon (AGC) loss and associated uncertainties using remotely sensed-derived forest cover loss and biomass carbon density data. Lidar data were used as a surrogate for NFI plot measurements to estimate carbon stocks and AGC loss based on forest type and activity data derived using time-series multispectral imagery. Specifically, DRC forest type and loss from the FACET (Forêts d’Afrique Centrale Evaluées par Télédétection) product, created using Landsat data, were related to carbon data derived from the Geoscience Laser Altimeter System (GLAS). Validation data for FACET forest area loss were created at a 30-m spatial resolution and compared to the 60-m spatial resolution FACET map. We produced two gross AGC loss estimates for the DRC for the last decade (2000–2010): a map-scale estimate (53.3 ± 9.8 Tg C yr −1 ) accounting for whole-pixel classification errors in the 60-m resolution FACET forest cover change product, and a sub-grid estimate (72.1 ± 12.7 Tg C yr −1 ) that took into account 60-m cells that experienced partial forest loss. Our sub-grid forest cover and AGC loss estimates, which included smaller-scale forest disturbances, exceed published assessments. Results raise the issue of scale in forest cover change mapping and validation, and subsequent impacts on remotely sensed carbon stock change estimation, particularly for smallholder dominated systems such as the DRC. (letter)

  13. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  14. Assessment of Current Estimates of Global and Regional Mean Sea Level from the TOPEX/Poseidon, Jason-1, and OSTM 17-Year Record

    Science.gov (United States)

    Beckley, Brian D.; Ray, Richard D.; Lemoine, Frank G.; Zelensky, N. P.; Holmes, S. A.; Desal, Shailen D.; Brown, Shannon; Mitchum, G. T.; Jacob, Samuel; Luthcke, Scott B.

    2010-01-01

    The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the International Terrestrial Reference Frame (ITRF) used to produce the precision orbits at different times cause systematic inconsistencies to appear in the multimission time-frame between TOPEX and Jason-1, and can affect the intermission calibration of these data. In an effort to adhere to cross mission consistency, we have generated the full time series of orbits for TOPEX/Poseidon (TP), Jason-1, and OSTM based on recent improvements in the satellite force models, reference systems, and modeling strategies. The recent release of the entire revised Jason-1 Geophysical Data Records, and recalibration of the microwave radiometer correction also

  15. Det politiske livs løsgående missiler

    DEFF Research Database (Denmark)

    Davidsen-Nielsen, Niels

    2017-01-01

    Eftertanken. Hvem ville De helst drikke et glas øl med, Donald Trump eller Mogens Glistrup? Selv ville jeg vælge Glistrup, selvom jeg næppe ville få indført et ord.......Eftertanken. Hvem ville De helst drikke et glas øl med, Donald Trump eller Mogens Glistrup? Selv ville jeg vælge Glistrup, selvom jeg næppe ville få indført et ord....

  16. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    International Nuclear Information System (INIS)

    Baccini, A; Laporte, N; Goetz, S J; Sun, M; Dong, H

    2008-01-01

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha -1 for a range of biomass between 0 and 454 Mg ha -1 . Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R 2 = 0.90) between the GLAS height metrics and predicted AGB.

  17. Effects of diffuse light in cultivation of roses; Effecten van diffuus licht in de rozenteelt

    Energy Technology Data Exchange (ETDEWEB)

    Schapendonk, A. [Plant-Dynamics, Englaan 8, 6703 EW Wageningen (Netherlands); Rappoldt, K. [EcoCurves, Kamperfoelieweg 17, 9753 ER Haren (Netherlands)

    2011-09-15

    An overview is given of the effects of diffuse glass and the rose production and the interactions with light, CO2 and Relative Humidity. Diffuse glass prevents peaks in the horizontal distribution of light and increases the average use of light [Dutch] Een overzicht wordt gegeven van de effecten van diffuus glas op de opbrengst van roos en de interacties met licht, CO2, en RV. Diffuus glas voorkomt pieken in de horizontale lichtverdeling en verhoogt de gemiddelde lichtbenutting.

  18. New evidence for surface water ice in small-scale cold traps and in three large craters at the north polar region of Mercury from the Mercury Laser Altimeter

    Science.gov (United States)

    Deutsch, Ariel N.; Neumann, Gregory A.; Head, James W.

    2017-09-01

    The Mercury Laser Altimeter (MLA) measured surface reflectance, rs, at 1064 nm. On Mercury, most water-ice deposits have anomalously low rs values indicative of an insulating layer beneath which ice is buried. Previous detections of surface water ice (without an insulating layer) were limited to seven possible craters. Here we map rs in three additional permanently shadowed craters that host radar-bright deposits. Each crater has a mean rs value >0.3, suggesting that water ice is exposed at the surface without an overlying insulating layer. We also identify small-scale cold traps (rs >0.3 and permanent shadows have biannual maximum surface temperatures <100 K. We suggest that a substantial amount of Mercury's water ice is not confined to large craters but exists within microcold traps, within rough patches and intercrater terrain.

  19. Precise mean sea level measurements using the Global Positioning System

    Science.gov (United States)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  20. MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development

    Science.gov (United States)

    Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.

    2016-01-01

    Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.

  1. Blue Carbon distribution in mangrove forests of the Americas

    Science.gov (United States)

    Simard, M.; Rivera-Monroy, V.; Fatoyinbo, T. E.; Roy Chowdhury, R.

    2013-12-01

    Globally, coastal ecosystems are critical to maintaining human livelihood and biodiversity. These ecosystems including mangroves, salt marshes, and sea grasses provide essential ecosystem services, such as supporting fisheries by providing important spawning grounds, filtering pollutants and contaminants from coastal waters, and protecting coastal development and communities against storms, floods and erosion. Additionally, recent research indicates that these vegetated coastal ecosystems are highly efficient carbon sinks (i.e. 'Blue Carbon') and can potentially play a significant role in ameliorating the effect of increasing global climate change by capturing significant amounts of carbon into sediments and plant biomass. The term blue carbon indicates the carbon stored in coastal vegetated wetlands (i.e., mangroves, intertidal marshes, and seagrass meadows). As a result of rapid global changes in coastal regions, it is crucial that we improve our understanding of the current and future state of the remaining coastal ecosystems and associated ecosystem services and their vulnerability to global climate change. In this study, we present a continental scale study of mangrove distribution and assess patterns of forest structural development associated to latitude and geomorphological setting. We produced a baseline map of mangrove canopy height and biomass for all mangrove forests of the Americas using data from the Shuttle Radar Topography Mission (SRTM) and publicly available land cover maps (Figure 1). The resulting canopy height map was calibrated using ICEsat/Geoscience Laser Altimeter system (GLAS). Biomass was derived from field data and allometry. The maps were validated with field data and results in accuracies that vary spatially around 2 to 3m in height and 20% in biomass. Figure 1: Global distribution of mangrove forests (green) and SRTM elevation data. These data were used to produce large scale maps of mangrove canopy height and biomass.

  2. CAWRES: A Waveform Retracking Fuzzy Expert System for Optimizing Coastal Sea Levels from Jason-1 and Jason-2 Satellite Altimetry Data

    Directory of Open Access Journals (Sweden)

    Nurul Hazrina Idris

    2017-06-01

    Full Text Available This paper presents the Coastal Altimetry Waveform Retracking Expert System (CAWRES, a novel method to optimise the Jason satellite altimetric sea levels from multiple retracking solutions. CAWRES’ aim is to achieve the highest possible accuracy of coastal sea levels, thus bringing measurement of radar altimetry data closer to the coast. The principles of CAWRES are twofold. The first is to reprocess altimeter waveforms using the optimal retracker, which is sought based on the analysis from a fuzzy expert system. The second is to minimise the relative offset in the retrieved sea levels caused by switching from one retracker to another using a neural network. The innovative system is validated against geoid height and tide gauges in the Great Barrier Reef, Australia for Jason-1 and Jason-2 satellite missions. The regional investigations have demonstrated that the CAWRES can effectively enhance the quality of 20 Hz sea level data and recover up to 16% more data than the standard MLE4 retracker over the tested region. Comparison against tide gauge indicates that the CAWRES sea levels are more reliable than those of Sensor Geophysical Data Records (SGDR products, because the former has a higher (≥0.77 temporal correlation and smaller (≤19 cm root mean square errors. The results demonstrate that the CAWRES can be applied to coastal regions elsewhere as well as other satellite altimeter missions.

  3. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands

    Science.gov (United States)

    Kim, J.-W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H.

    2009-01-01

    Interferometric Synthetic Aperture Radar (InSAR) has been used to detect relative water level changes in wetlands. We developed an innovative method to integrate InSAR and satellite radar altimetry for measuring absolute or geocentric water level changes and applied the methodology to remote areas of swamp forest in coastal Louisiana. Coherence analysis of InSAR pairs suggested that the HH polarization is preferred for this type of observation, and polarimetric analysis can help to identify double-bounce backscattering areas in the wetland. ENVISAT radar altimeter-measured 18-Hz (along-track sampling of 417 m) water level data processed with regional stackfile method have been used to provide vertical references for water bodies separated by levees. The high-resolution (~ 40 m) relative water changes measured from ALOS PALSAR L-band and Radarsat-1 C-band InSAR are then integrated with ENVISAT radar altimetry to obtain absolute water level. The resulting water level time series were validated with in situ gauge observations within the swamp forest. We anticipate that this new technique will allow retrospective reconstruction and concurrent monitoring of water conditions and flow dynamics in wetlands, especially those lacking gauge networks.

  4. Overview of the aerial radiological measuring system (ARMS) program

    International Nuclear Information System (INIS)

    Deal, L.J.; Doyle, J.F. III.

    1975-01-01

    Since 1960 EG and G, Inc. has developed and maintained for the U.S. Energy Research and Development Administration (ERDA) a state-of-the-art radiation surveillance program called the Aerial Radiological Measuring System (ARMS). Radiological surveys covering more than 300,000 square miles have been performed. In addition to the radiation detector gear, the system includes an inertial navigation system, radar altimeter, meteorological probes, air sampler, air sample analyzer, multispectral cameras, aerial mapping camera and infrared scanner. The recently improved data acquisition system, REDAR, records all inputs digitally on magnetic tape and is readily mounted in fixed-wing aircraft or helicopters. The data analysis system, REDAC, is mounted in a mobile processing laboratory which accompanies the aircraft on surveys. Radiation isopleth maps, both for gross counts and selected isotopes, can be prepared in the field. Special computer software enables the ARMS to detect changes of less than 1.0 μR/hr in exposure rates between successive surveys of a given site

  5. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    Science.gov (United States)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  6. The Comparison Of In-Flight Pitot Static Calibration Method By Using Radio Altimeter As Reference with GPS and Tower Fly By Methods On CN235-100 MPA

    Science.gov (United States)

    Derajat; Hariowibowo, Hindawan

    2018-04-01

    The new proposed In-Flight Pitot Static Calibration Method has been carried out during Development and Qualification of CN235-100 MPA (Military Patrol Aircraft). This method is expected to reduce flight hours, less human resources required, no additional special equipment, simple analysis calculation and finally by using this method it is expected to automatically minimized operational cost. At The Indonesian Aerospace (IAe) Flight Test Center Division, the development and updating of new flight test technique and data analysis method as specially for flight physics test subject are still continued to be developed as long as it safety for flight and give additional value for the industrial side. More than 30 years, Flight Test Data Engineers at The Flight Test center Division work together with the Air Crew (Test Pilots, Co-Pilots, and Flight Test Engineers) to execute the flight test activity with standard procedure for both the existance or development test techniques and test data analysis. In this paper the approximation of mathematical model, data reduction and flight test technique of The In-Flight Pitot Static Calibration by using Radio Altimeter as reference will be described and the test results had been compared with another methods ie. By using Global Position System (GPS) and the traditional method (Tower Fly By Method) which were used previously during this Flight Test Program (Ref. [10]). The flight test data case are using CN235-100 MPA flight test data during development and Qualification Flight Test Program at Cazaux Airport, France, in June-November 2009 (Ref. [2]).

  7. Microfluidics: Functionality Integration for Proteomic Applications

    DEFF Research Database (Denmark)

    Petersen, Daria

    2006-01-01

    , fabrikation og karakterisering af integrerede mikrochips til protein analyser med forøget detektionsgrænse; 2) en ny samleproces af glas-mikrosystemer til ’miniaturized total analysis systems’ (-TAS); og 3) design samt fabrikation af glas mikrosystemer til kapillær elektroforese (CE) separering integreret...... demonstration af ’on-chip’ protein koncentrering integreret med ’on-chip’, ikke-kovalent mærkning. I-kolonne og efter-kolonne protein mærkningsstrategier påvises i rapporten at være forenelig med protein koncentrering, ved brug af et ’sol-gel’ filter, efterfulgt af en ’sieving’ elektroforese (CSE...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The observations show that a seasonal cycle, including an annual cycle, is present in the West India Coastal Current (WICC); this seasonal cycle, which strengthens northward, shows considerable interannual variability and is not as strongly correlated along the coast as in climatologies based on ship drifts or the altimeter.

  9. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...

  10. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    Science.gov (United States)

    Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)

    1992-01-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.

  11. The future of spaceborne altimetry. Oceans and climate change: A long-term strategy

    International Nuclear Information System (INIS)

    Koblinsky, C.J.; Gaspar, P.; Lagerloef, G.

    1992-03-01

    The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments

  12. High-performance mirror for space applications using anodic bonding technology

    Science.gov (United States)

    Otto, W.; Fischer, E.; Kemper, J.; Koch, S.; Kolberg, J.; Kramer, C.; Kunde, J.; Läger, M.

    2017-11-01

    Berliner Glas developed and manufactured the plane elliptical shaped mirrors for the Synopta Coarse Pointing Assembly (CPA) being one of the key elements of the TESAT Spacecom Laser Communication Terminals (LCT's). The first TESAT LCT containing a Synopta CPA was embarked on Sentinel 1A and is in orbit since April 2014. TESAT Spacecom LCT's have been successfully tested in space since 2007 and are now operationally used in commercial satellite communication systems.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Volume 110 Issue 1 March 2001 pp 77-86. Retrieval of vertical wind profiles during monsoon from satellite observed winds over the Indian Ocean using complex EOF analysis ... Altimeter data assimilation in the tropical Indian Ocean using water property conserving scheme · Bhasha M Mankad Rashmi Sharma Sujit Basu ...

  14. Acoustic pressure oscillations induced by confined turbulent premixed natural glas flames

    NARCIS (Netherlands)

    van Kampen, J.F.

    2006-01-01

    The present study is concerned with the development and validation of efientt numerical algorithms to check combustion systems for their sensitivity to thermoacoustic instabilities. For this purpose, a good acoustic model is needed. Since the acoustics in combustion systems are essentially

  15. AltiKa: a Ka-band Altimetry Payload and System for Operational Altimetry during the GMES Period

    Directory of Open Access Journals (Sweden)

    Jacques Verron

    2006-03-01

    Full Text Available This paper describes the Ka-band altimetry payload and system that has beenstudied for several years by CNES, ALCATEL SPACE and some science laboratories.Altimetry is one of the major elements of the ocean observing system to be madesustainable through the GEOSS (Global Earth Observation System of Systems and GMES(Global Monitoring of the Environment and Security programs. A short review of somemission objectives to be fulfilled in terms of mesoscale oceanography in the frame of theGEOSS and GMES programs is performed. To answer the corresponding requirements, theapproach consisting in a constellation of nadir altimeter is discussed. A coupled Ka-bandaltimeter-radiometer payload is then described; technical items are detailed to explain howthis payload shall meet the science and operational requirements, and expectedperformances are displayed. The current status of the payload development and flightperspectives are given.

  16. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    Science.gov (United States)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  17. Estimation of Forest Biomass Based on Muliti-Source Remote Sensing Data Set - a Case Study of Shangri-La County

    Science.gov (United States)

    Feng, Wanwan; Wang, Leiguang; Xie, Junfeng; Yue, Cairong; Zheng, Yalan; Yu, Longhua

    2018-04-01

    Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.

  18. ESTIMATION OF FOREST BIOMASS BASED ON MULITI-SOURCE REMOTE SENSING DATA SET – A CASE STUDY OF SHANGRI-LA COUNTY

    Directory of Open Access Journals (Sweden)

    W. Feng

    2018-04-01

    Full Text Available Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.

  19. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  20. New satellite altimetry products for coastal oceans

    Science.gov (United States)

    Dufau, Claire; Mercier, F.; Ablain, M.; Dibarboure, G.; Carrere, L.; Labroue, S.; Obligis, E.; Sicard, P.; Thibaut, P.; Birol, F.; Bronner, E.; Lombard, A.; Picot, N.

    Since the launch of Topex-Poseidon in 1992, satellite altimetry has become one of the most essential elements of the Earth's observing system. Its global view of the ocean state has permitted numerous improvements in the environment understanding, particularly in the global monitoring of climate changes and ocean circulation. Near the coastlines where human activities have a major impact on the ocean, satellite altimeter techniques are unfortunately limited by a growth of their error budget. This quality loss is due to land contamination in the altimetric and radiometric footprints but also to inaccurate geophysical corrections (tides, high-frequency processes linked to atmospheric forcing).Despite instrumental perturbations by emerged lands until 10 km (altimeter) and 50 km (radiometer) off the coasts, measurements are made and may contain useful information for coastal studies. In order to recover these data close to the coast, the French Spatial Agency (CNES) has funded the development of the PISTACH prototype dedicated to Jason-2 altimeter processing in coastal ocean. Since November 2008, these new satellite altimeter products have been providing new retracking solutions, several state-of-the-art or with higher resolution corrections in addition to standard fields. This presentation will present and illustrate this new set of satellite data for the coastal oceans.

  1. A Fiducial Reference Stie for Satellite Altimetry in Crete, Greece

    Science.gov (United States)

    Mertikas, Stelios; Donlon, Craig; Mavrocordatos, Constantin; Bojkov, Bojan; Femenias, Pierre; Parrinello, Tommaso; Picot, Nicolas; Desjonqueres, Jean-Damien; Andersen, Ole Baltazar

    2016-08-01

    With the advent of diverse satellite altimeters and variant measuring techniques, it has become mature in the scientific community, that an absolute reference Cal/Val site is regularly maintained to define, monitor, control the responses of any altimetric system.This work sets the ground for the establishment of a Fiducial Reference Site for ESA satellite altimetry in Gavdos and West Crete, Greece. It will consistently and reliably determine (a) absolute altimeter biases and their drifts; (b) relative bias among diverse missions; but also (c) continuously and independently connect different missions, on a common and reliable reference and also to SI-traceable measurements. Results from this fiducial reference site will be based on historic Cal/Val site measurement records, and will be the yardstick for building up capacity for monitoring climate change. This will be achieved by defining and assessing any satellite altimeter measurements to known, controlled and absolute reference signals with different techniques, processes and instrumentation.

  2. IceBridge LVIS L0 Raw Ranges

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains raw laser altimeter, Inertial Measurement Unit (IMU), Global Positioning System (GPS), and camera data over Greenland and Antarctica taken...

  3. IceBridge LVIS L0 Raw Ranges

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains raw laser altimeter, Inertial Measurement Unit (IMU), Global Positioning System (GPS), and camera data over Greenland, Antarctica, and Alaska...

  4. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  5. Warm en koud gebogen glas

    NARCIS (Netherlands)

    Herwijnen, van F.

    2008-01-01

    In de glaswereld wordt onderscheid gemaakt tussen containergias (flessen) en vlakglas. In de bouwwereld wordt als basisproduct voor bouwkundige en constructieve toepassingen vooral vlakglas gebruikt. Voor dak- en gevelconstructies kunnen gebogen transparante delen gewenst z!jn ten behoeve van een

  6. Døden på glas

    DEFF Research Database (Denmark)

    Meyer, Ion

    2008-01-01

    Artiklen beskriver den eneste danske samling af præparerede fostre og børn, og hvorfor den blev fremstillet. Den var en del af Museum Saxtorphianum og artiklen diskuterer hvordan disse fostre blev til præparater. Musealiseringen, overgangen fra medicinske studieobjekter til museumsgenstande med s...

  7. Stikstofvoorziening in teelten onder glas

    NARCIS (Netherlands)

    Marcelis, L.F.M.

    2003-01-01

    WUR doet meerjarig onderzoek naar kritische succesfactoren voor het realiseren van een effectief management van organische stof op biologische glastuinbouwbedrijven. De organische-stofvoorziening speelt een belangrijke rol, zowel in relatie tot het bereiken van evenwichtsbemesting als in relatie tot

  8. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    Science.gov (United States)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  9. 3D Flow Field Measurements using Aerosol Correlation Velocimetry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroMancer Technology proposes to develop a 3D Lidar Global Airspeed Sensor (3D-GLAS) for remote optical sensing of three-component airspeeds in wind tunnel...

  10. A psychologist's view of validating aviation systems

    Science.gov (United States)

    Stein, Earl S.; Wagner, Dan

    1994-01-01

    All systems, no matter what they are designed to do, have shortcomings that may make them less productive than was hoped during the initial development. Such shortcomings can arise at any stage of development: from conception to the end of the implementation life cycle. While systems failure and errors of a lesser magnitude can occur as a function of mechanical or software breakdown, the majority of such problems, in aviation are usually laid on the shoulders of the human operator and, to a lesser extent, on human factors. The operator bears the responsibility and blame even though, from a human factors perspective, error may have been designed into the system. Human factors is not a new concept in aviation. The name may be new, but the issues related to operators in the loop date back to the industrial revolution of the nineteenth century and certainly to the aviation build-up for World War I. During this first global confrontation, military services from all sides discovered rather quickly that poor selection and training led to drastically increased personnel losses. While hardware design became an issue later, the early efforts were primarily focused on increased care in pilot selection and on their training. This actually involved early labor-intensive simulation, using such devices as sticks and chairs mounted on rope networks which could be manually moved in response to control input. The use of selection criteria and improved training led to more viable person-machine systems. More pilots survived training and their first ten missions in the air, a rule of thumb arrived at by experience which predicted ultimate survival better than any other. This rule was to hold through World War II. At that time, personnel selection and training became very sophisticated based on previous standards. Also, many psychologists were drafted into Army Air Corps programs which were geared towards refining the human factor. However, despite the talent involved in these programs

  11. Laser Technology in Interplanetary Exploration: The Past and the Future

    Science.gov (United States)

    Smith, David E.

    2000-01-01

    Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.

  12. Integrated Monitoring of the Soya Warm Current Using HF Ocean Radars, Satellite Altimeters, Coastal Tide Gauges, and a Bottom-Mounted ADCP

    Science.gov (United States)

    Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.

    2007-12-01

    The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.

  13. A web-system of virtual morphometric globes

    Science.gov (United States)

    Florinsky, Igor; Garov, Andrei; Karachevtseva, Irina

    2017-04-01

    Virtual globes — programs implementing interactive three-dimensional (3D) models of planets — are increasingly used in geo- and planetary sciences. We develop a web-system of virtual morphometric globes. As the initial data, we used the following global digital elevation models (DEMs): (1) a DEM of the Earth extracted from SRTM30_PLUS database; (2) a DEM of Mars extracted from the Mars Orbiter Laser Altimeter (MOLA) gridded data record archive; and (3) A DEM of the Moon extracted from the Lunar Orbiter Laser Altimeter (LOLA) gridded data record archive. From these DEMs, we derived global digital models of the following 16 local, nonlocal, and combined morphometric variables: horizontal curvature, vertical curvature, mean curvature, Gaussian curvature, minimal curvature, maximal curvature, unsphericity curvature, difference curvature, vertical excess curvature, horizontal excess curvature, ring curvature, accumulation curvature, catchment area, dispersive area, topographic index, and stream power index (definitions, formulae, and interpretations can be found elsewhere [1]). To calculate local morphometric variables, we applied a finite-difference method intended for spheroidal equal angular grids [1]. Digital models of a nonlocal and combined morphometric variables were derived by a method of Martz and de Jong adapted to spheroidal equal angular grids [1]. DEM processing was performed in the software LandLord [1]. The calculated morphometric models were integrated into the testing version of the system. The following main functions are implemented in the system: (1) selection of a celestial body; (2) selection of a morphometric variable; (3) 2D visualization of a calculated global morphometric model (a map in equirectangular projection); (4) 3D visualization of a calculated global morphometric model on the sphere surface (a globe by itself); (5) change of a globe scale (zooming); and (6) globe rotation by an arbitrary angle. The testing version of the system

  14. ATLAS LTCS Vertically Challenged System Lessons Learned

    Science.gov (United States)

    Patel, Deepak; Garrison, Matt; Ku, Jentung

    2014-01-01

    Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.

  15. Numerical analyses of the effect of SG-interlayer shear stiffness on the structural performance of reinforced glass beams

    DEFF Research Database (Denmark)

    Louter, C.; Nielsen, Jens Henrik

    2013-01-01

    This paper focuses on the numerical modelling of SentryGlas-laminated reinforced glass beams. In these beams, which have been experimentally investigated in preceding research, a stainless steel reinforcement section is laminated at the inner recessed edge of a triple-layer glass beam by means...... of SentryGlas (SG) interlayer sheets. The current contribution numerically investigates the effect of the SG-interlayer shear stiffness on the overall structural response of the beams. This is done by means of a 3D finite element model in which the individual glass layers, the SG......-interlayers and the reinforcement are incorporated. In the model, the glass parts are allowed to crack, but all other parts are assumed linear elastic throughout the analyses. By changing the shear modulus of the SG-interlayer in multiple analyses, its contribution to the overall structural performance of the beams - especially...

  16. Bestrijding schadelijke rupsensoorten in de glastuinbouw met sluipwespen : toetsing van Cotesia vanessae in het laboratorium en toetsing van Meteorus gyrator tegen turkse mot (Chrysodeixis chalcites) in komkommer

    NARCIS (Netherlands)

    Bloemhard, C.M.J.; Haaring, M.A.

    2005-01-01

    Zowel in groente- als sierteelten onder glas komen rupsen voor uit de families Noctuidae, Tortricidae en Pyralidae. Bestaande chemische middelen of biologische bestrijders voldoen vaak niet. Uit literatuuronderzoek zijn een aantal sluipwespsoorten gekomen die kandidaat zijn voor de bestrijding van

  17. Ontwikkeling en demonstratie van een geintegreerd bestrijdingssysteem voor de rode luis Myzus nicotianae

    NARCIS (Netherlands)

    Dijken, van M.J.

    1998-01-01

    De geïntegreerde plaagbestrijding van de paprikateelt onder glas, wordt sinds 1993 verstoord door de opkomst van de rode luis, Myzus nicotianae. Deze luis is namelijk resistent tegen het selectieve chemische correctiemiddel pirimicarb en een effectieve biologische bestrijding was onvoldoende

  18. Seasonal variation of the South Indian tropical gyre

    NARCIS (Netherlands)

    Aguiar-González, B.; Ponsoni, Leandro; Ridderinkhof, H.; van Aken, H.M.; de Ruijter, W.P.M.; Maas, L.R.M.

    2016-01-01

    Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles–Chagos Thermocline Ridge (SCTR).

  19. En storm i et glas vand?

    DEFF Research Database (Denmark)

    Lilja, Troels Michael; Quistgaard, Anders

    2011-01-01

    Der argumenteres for, at resthæftelsen på et selskabsindskud er underlagt den 3-årige forældelse, da betænkningen tager positivt stilling hertil. Kombineret med det faktum, at forældelsen afbrydes løbende gennem selskabsdeltagerens accept af skyldforholdet, jf. forældelseslovens § 15, medfører de...

  20. Effect of diffuse roof cover with anti-reflection coating for roses; Effect van diffuus kasdek met Anti Reflectie coating bij Roos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Victoria, N.; Kempkes, F.

    2012-10-15

    The rose Red Naomi was cultivated in two greenhouses at Wageningen UR Greenhouse Horticulture in Bleiswijk, Netherlands (August 2010 - September 2011). One greenhouse covered with normal float glass; the other with AR coated diffuse glass (70% haze). This Anti-Reflection coating on both glass sides compensated for the loss in light transmission caused by the diffusing structure in the glass. The diffuse AR glass lead to a 5.2% higher production (>6.1% fresh weight). Sunscreens were necessary in spring and summer to avoid high light levels on the flower buds, as they cause very high bud temperatures leading to quality problems (blue petal edges and burnt leaf tips). The diffuse greenhouse cover allowed a 100 W/m{sup 2} higher screening threshold than the reference glass. This caused a 2.7% higher daily light integral, able to explain part of the extra production obtained. Part of the extra production achieved can not be explained by the measured factors as no differences were found in the amount of light intercepted by the crop or in leaf photosynthesis under both cover types. The light under the diffuse AR cover was nevertheless much smoother, so the crop seemed to suffer less (lower bud temperatures and less burned leaf tips), and this should provide an explanation for the rest of the extra production. The cover properties did not influence disease development (powdery mildew). The obtained extra production makes the tempered, diffuse glass with Anti Reflection coating on both sides economically feasible [Dutch] Tussen augustus 2010 en september 2011 is bij Wageningen UR Glastuinbouw het effect van diffuus glas, met dubbelzijdige AR coating, op de productie en energiegebruik van roos 'Red Naomi' onderzocht. Onder het diffuse glas werden 5,2% meer bloemtakken geproduceerd, deze rozen waren ook iets langer en zwaarder (6,1% meer versgewicht). Dit verschil kan deels verklaard worden doordat er onder het diffuse glas pas bij hogere stralingsniveau

  1. Sea-level-rise trends off the Indian coasts during the last two decades

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Nidheesh, A.G.; Lengaigne, M.

    The present communication discusses sea-level-rise trends in the north Indian Ocean, particularly off the Indian coasts, based on estimates derived from satellite altimeter and tide-gauge data. Altimeter data analysis over the 1993–2012 period...

  2. Invloed van UV straling in de kas. Fors minder plaaginsecten bij kasdek dat geen UV-licht doorlaat

    NARCIS (Netherlands)

    Hemming, S.; Os, van E.

    2007-01-01

    Nieuwe energiebesparende kasdekmaterialen hebben een andere doorlatendheid voor UV-straling dan glas. Dat heeft niet alleen invloed op de groei van planten, maar ook op die van plaaginsecten, schimmels, predatoren en bestuivende insecten. In dit artikel komt het effect van UV op plaaginsecten,

  3. Geïntegreerde bestrijding van citruswolluis Planococcus citri in roos

    NARCIS (Netherlands)

    Pijnakker, J.; Leman, A.; Hennekam, M.

    2013-01-01

    Citruswolluis, Planococcus citri (Risso), is een van de belangrijkste plagen geworden in de rozenteelt onder glas. Er is inmiddels veel praktijkervaring met de toepassing van biologische bestrijders om haarden uit te roeien. Voor de professionele tuinbouw is de effectiviteit van deze aanpak

  4. Een arbeidersbuurt onder de rook van ‘De Sphinx’ : Een sociaal-ruimtelijke geschiedenis van het Boschstraatkwartier-Oost te Maastricht, 1829-1904

    NARCIS (Netherlands)

    Drs. Thijs van Vugt

    2015-01-01

    In 1834 legde Petrus Regout, gangmaker van de Maastrichtse industrialisatie, de grondslag voor zijn imperium van glas- en aardewerkfabrieken, waaruit later N.V. Sphinx is voortgekomen. Deze studie onderzoekt de sociaal-ruimtelijke effecten van de opkomst van de keramische industrie op het

  5. Coastal sea-level in Norway from CryoSat-2 SAR altimetry

    DEFF Research Database (Denmark)

    Idžanović, Martina; Ophaug, Vegard; Andersen, Ole Baltazar

    Conventional spaceborne altimeters determine the sea surface height with an accuracy of a few centimeters. Although satellite altimetry may be regarded as a mature technology, altimeter observations collected over coastal regions suffer from numerous effects which degrade their quality. For examp...

  6. Plant Physiology in Greenhouses

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2015-01-01

    Since 2004 Ep Heuvelink and Tijs Kierkels have been writing a continuing series of plant physiology articles for the Dutch horticultural journal Onder Glas and the international edition In Greenhouses. The book Plant Physiology in Greenhouses consists of 50 of their plant physiology articles. The

  7. Praktijkervaringen met de Venlow energy kas 2010-2012

    NARCIS (Netherlands)

    Kempkes, F.L.K.; Janse, J.

    2013-01-01

    NL De energiebesparing bij het nieuwe telen werd tot nu toe altijd bereikt door meer schermen te gebruiken. Een alternatief is toepassing van isolatieglas dat door de komst van coatings zoals Anti Refl ectie een vergelijkbare transmissie heeft als standaard enkel glas. Met een aangepast

  8. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    Science.gov (United States)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-12-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  9. A fiducial reference site for satellite altimetry in Crete, Greece

    DEFF Research Database (Denmark)

    Mertikas, Stelios; Donlon, Craig; Mavrokordatos, Constantin

    With the advent of diverse satellite altimeters and variant measuring techniques, it has become mature in the scientific community, that an absolute reference Cal/Val site is regularly maintained to define, monitor, control the responses of any altimetric system. This work sets the ground for the...

  10. First evaluation of MyOcean altimetric data in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2012-01-01

    The MyOcean V2 preliminary (V2p) data set of weekly gridded sea level anomaly (SLA) maps from 1993 to 2009 over the Arctic region is evaluated against existing altimetric data sets and tide gauge data. Compared with DUACS V3.0.0 (Data Unification and Altimeter Combination System) data set, MyOcean...... V2p data set improves spatial coverage and quality as well as maximum temporal correlation coefficient between altimetry and tide gauge data. The estimated amplitude of sea level annual signal and linear sea level trend from MyOcean data set are evaluated against altimetry from DUACS and RADS (Radar...... Altimeter Database System), the SODA (Simple Ocean Data Assimilation) ocean reanalysis and tide gauge data sets from PSMSL (Permanent Service for Mean Sea Level). The results show that the MyOcean data set fits in-situ measurements better than DUACS data set with respect to amplitude of annual signal...

  11. Treatment of Type 2 Diabetes: From "Guidelines" to "Position Statements" and Back: Recommendations of the Israel National Diabetes Council.

    Science.gov (United States)

    Mosenzon, Ofri; Pollack, Rena; Raz, Itamar

    2016-08-01

    Given the increased prevalence of type 2 diabetes worldwide, most patients are treated by their primary health care team (PHCT). PHCTs need guidance in choosing the best treatment regimen for patients, since the number of glucose-lowering agents (GLAs) is rapidly increasing, as is the amount of clinical data regarding these drugs. The American Diabetes Association/European Association for the Study of Diabetes Position Statement emphasizes the importance of personalized treatment and lists drug efficacy, risk of hypoglycemia, effect on weight, side effects, and cost as important parameters to consider when choosing GLAs. The suggested Israeli guidelines refocus earlier international recommendations from 2012 and 2015, based on emerging data from cardiovascular outcome trials as well as what we believe are important issues for patient care (i.e., durability, hypoglycemia risk, and weight gain). © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Recurring dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm, West Greenland

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjaer, K.H.; Korsgaard, N.J.

    2013-01-01

    elevation satellite laser altimeter data supplemented with altimeter surveys from NASA's Airborne Topographic Mapper during 2002 to 2010. To assess thinning prior to 2002, we analyze aerial photographs from 1985. We document at least two distinct periods of dynamically induced ice loss during 1985 to 2010...

  13. The reflection of airborne UV laser pulses from the ocean

    Science.gov (United States)

    Hoge, F. E.; Krabill, W. B.; Swift, R. N.

    1984-01-01

    It is experimentally shown here for the first time that the normalized laser backscatter cross-section of the sea surface is a function of elevation or height position on teh ocean wave. All data were taken off-nadir, resulting in incidence angles of about 6.5 deg measured relative to the normal to mean sea level (MSL). In the limited data sets analyzed to date, the normalized backscatter cross-section was found to be higher in wave crest regions and lower in wave troughs for a swell-dominated sea over which the wind speed was 5 m/s. The reverse was found to be the case for a sea that was driven by a 14 m/s wind. These isolated results show that the MSL, as measured by an off-nadir and/or multibeam type satellite laser altimeter, will be found above, at, or below the true MSL, depending on the local sea conditions existing in the footprint of the altimeter. Airborne nadir-pointed laser altimeter data for a wide variety of sea conditions are needed before a final determination can be made of the effect of sea state on the backscatter cross-section as measured by a down-looking satellite laser system.

  14. Numerical experiment with modelled return echo of a satellite

    Indian Academy of Sciences (India)

    Abstract. We have simulated the return echo of a satellite altimeter from a rough ocean surface using an analytical formula and have studied its sensitivity with respect to various oceanic and altimeter parameters. Our numerical expcriment shows that for normally observed significant wave heights (SWFI) the effect of ...

  15. Analysis of a general circulation model. II - Distribution of kinetic energy in the South Atlantic and Kuroshio/Oyashio systems

    Science.gov (United States)

    Garraffo, Zulema; Garzoli, Silvia L.; Haxby, William; Olson, Donald

    1992-01-01

    It was found (Garzoli et al., 1992) that the general circulation model of Semtner and Chervin (1992) provides accurate descriptions of the Brazil-Malvinas and the Kuroshio/Oyashio confluence systems, except for the fact that the model prediction shows less variability than that present in observations. This paper investigates the problem of model variability by analyzing the mean and the eddy kinetic energy from the model and comparing the values with the Geosat altimeter observations for the South Atlantic Ocean and for the Kuroshio system. It is found that, while the model shows transient eddy activity in the areas that overlap the Geosat observations, the energy level of the model transient motions is considerably smaller following an arch along the bottom topography. The same was found from the comparisons made with values obtained from FGGE and surface drifters. It is suggested that the model is poorly resolving instabilities in the confluence front, and is not resolving other transients appearing in regions of marked topography.

  16. Mapping ocean tides with satellites - A computer simulation

    Science.gov (United States)

    Won, I. J.; Kuo, J. T.; Jachens, R. C.

    1978-01-01

    As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.

  17. Structural Glass Beams with Embedded Glass Fibre Reinforcement

    NARCIS (Netherlands)

    Louter, P.C.; Leung, Calvin; Kolstein, M.H.; Vambersky, J.N.J.A.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates the possibilities of pultruded glass fibre rods as embedded reinforcement in SentryGlas (SG) laminated glass beams. To do so, a series of pullout tests, to investigate the bond strength of the rods to the laminate, and a series of beam tests, to investigate the post-breakage

  18. In-situ calibration and validation of Cryosat-2 observations over arctic sea ice north of Svalbard

    DEFF Research Database (Denmark)

    Gerland, Sebastian; Renner, Angelika H. H.; Spreen, Gunnar

    CryoSat-2's radar altimeter allows to observe the panArctic sea ice thickness up to 88°N on a monthly basis. However, calibration and validation are crucial to assess limitations and accuracy of the altimeter, and to better quantify the uncertainties involved in converting sea ice freeboard to th...

  19. Demonstration of Helicopter Multi-Sensor Towed Array Detection System (MTADS) Magnetometry Technology at Victorville Precision Bombing Range, California

    Science.gov (United States)

    2008-09-12

    measurement Fluxgate magnetometer 10 RS232- ASCII SerialDevice.fluxgate Provides redundant aircraft attitude measurement Acoustic altimeters 10 Analog...primarily by terrain, vegetation, and structural inhibitions to safe low-altitude flight. The magnetometer data can be analyzed to extract either...to validate the results of the magnetometer survey. ESTCP Victorville PBR WAA Final Report December 2008 Sky Research, Inc. 2 1.2. Objectives of

  20. ICESat Observations of Arctic Sea Ice: A First Look

    Science.gov (United States)

    Kwok, Ron; Zwally, H. Jay; Yi, Donghui

    2004-01-01

    Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm. Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice freeboard along the altimeter tracks. This step is necessitated by the large uncertainties in the sea surface topography compared to that required for accurate determination of freeboard. Unknown snow depth introduces the largest uncertainty in the conversion of freeboard to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track. Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint of approx. 70 m.

  1. Mineralogy and Iron Content of the Lunar Polar Regions Using the Kaguya Spectral Profiler and the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Lemelin, M.; Lucey, P. G.; Trang, D.; Jha, K.

    2016-12-01

    The lunar polar regions are of high scientific interest, but the extreme lighting conditions have made quantitative analyses using reflectance spectra difficult; some regions are in permanent shadow, and flat surfaces are difficult to correct photometrically due to the extreme grazing incidence and low signal available. Thus, most mineral maps derived from visible and near infrared reflectance spectra have been constrained to within 50° in latitude. The mineralogy of the polar regions, or 44% of the lunar surface, is almost entirely unknown. A few studies have provided compositional analysis based on the spectral shape (where strong absorption bands were present) of lithologies dominated by one or two minerals. In this study, we take a novel approach and use strong signal and well-calibrated reflectance acquired by two different instruments, the Kaguya Spectra Profiler (SP) and the Lunar Orbiter Laser Altimeter (LOLA), in order to derive the first FeO and mineral maps of the polar regions at a spatial resolution of 1 km per pixel. We use reflectance ratios from SP and calibrated reflectance data from LOLA to derive the first polar maps of FeO, which are within 2 wt.% of the FeO measured by the Lunar Prospector Gamma-Ray spectrometer up to 85° in latitude. We then use the reflectance data from SP and Hapke radiative transfer model to compute the abundance of olivine, low-calcium pyroxene, high-calcium pyroxene and plagioclase, using FeO as a constraint. The radiative transfer model yields an error in mineral abundances of 9 wt.%. We use the mineral maps to study the composition of 27 central peaks and 5 basin rings in the polar regions, and relate their composition to their depth of origin in the lunar crust. We find that the central peaks and basin rings in Feldspathic Highlands Terrane are mostly anorthositic in composition, with modal plagioclase content ranging between 66 and 92 wt.%. The central peaks and basin rings in the South Pole-Aitken basin are noritic

  2. How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis

    Science.gov (United States)

    Maydeu-Olivares, Alberto; Montano, Rosa

    2013-01-01

    We investigate the performance of three statistics, R [subscript 1], R [subscript 2] (Glas in "Psychometrika" 53:525-546, 1988), and M [subscript 2] (Maydeu-Olivares & Joe in "J. Am. Stat. Assoc." 100:1009-1020, 2005, "Psychometrika" 71:713-732, 2006) to assess the overall fit of a one-parameter logistic model…

  3. Evolution of Altimetry Calibration and Future Challenges

    Science.gov (United States)

    Fu, Lee-Lueng; Haines, Bruce J.

    2012-01-01

    Over the past 20 years, altimetry calibration has evolved from an engineering-oriented exercise to a multidisciplinary endeavor driving the state of the art. This evolution has been spurred by the developing promise of altimetry to capture the large-scale, but small-amplitude, changes of the ocean surface containing the expression of climate change. The scope of altimeter calibration/validation programs has expanded commensurately. Early efforts focused on determining a constant range bias and verifying basic compliance of the data products with mission requirements. Contemporary investigations capture, with increasing accuracies, the spatial and temporal characteristics of errors in all elements of the measurement system. Dedicated calibration sites still provide the fundamental service of estimating absolute bias, but also enable long-term monitoring of the sea-surface height and constituent measurements. The use of a network of island and coastal tide gauges has provided the best perspective on the measurement stability, and revealed temporal variations of altimeter measurement system drift. The cross-calibration between successive missions provided fundamentally new information on the performance of altimetry systems. Spatially and temporally correlated errors pose challenges for future missions, underscoring the importance of cross-calibration of new measurements against the established record.

  4. CryoSat SIRAL Calibration and Performance

    Science.gov (United States)

    Fornari, Marco; Scagliola, Michele; Tagliani, Nicolas; Parrinello, Tommaso

    2013-04-01

    The main payload of CryoSat is a Ku band pulse-width limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach an along track resolution of about 250 meters which is a significant improvement over traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed, including both an internal and external calibration. The internal calibration monitors the instrument impulse response and the transfer function, like traditional altimeters. In addition to that, the interferometer requires a special calibration developed ad hoc for SIRAL. The external calibration is performed with the use of a ground transponder, located in Svalbard, which receives SIRAL signal and sends the echo back to the satellite. Internal calibration data are processed on ground by the CryoSat Instrument Processing Facility (IPF1) and then applied to the science data. By April 2013, almost 3 years of calibration data will be available, which will be shown in this poster. The external calibration (transponder) data are processed and analyzed independently from the operational chain. The use of an external transponder has been very useful to determine instrument performance and for the tuning of the on-ground processor. This poster presents the transponder results in terms of range noise and datation error.

  5. Calibration of Automatically Generated Items Using Bayesian Hierarchical Modeling.

    Science.gov (United States)

    Johnson, Matthew S.; Sinharay, Sandip

    For complex educational assessments, there is an increasing use of "item families," which are groups of related items. However, calibration or scoring for such an assessment requires fitting models that take into account the dependence structure inherent among the items that belong to the same item family. C. Glas and W. van der Linden…

  6. Development of abrasion resistant glass-ceramics from industrial waste products. Final report

    Energy Technology Data Exchange (ETDEWEB)

    von Roode, M.

    1983-05-26

    Slag-ceramics were produced from glass compositions using pelletized slag as the major ingredient. The abrasion resistance, fracture toughness and microstructure of the prepared glass and glass-ceramics were evaluated. Glas-ceramics with good abrasion resistance were obtained when iron oxide in conjunction with carbon was used as a nucleating agent. 5 figs., 11 tabs.

  7. Arkitektur, materialer, teknologi

    DEFF Research Database (Denmark)

    2004-01-01

    En redigeret samling af bidrag til en "tænkt" lærebog om arkitektur, materialer og teknologi, udført af studerende i forbindelse med kursus 0.021. Bygning, produkt og projekt, september 2004. Består af ca. 100 artikler, inddelt efter materialer som tegl, træ, sten, beton, metal, glas, plast...

  8. Sub-Audio Magnetics: Miniature Sensor Technology for Simultaneous Magnetic and Electromagnetic Detection of UXO

    Science.gov (United States)

    2010-07-01

    inputs such as laser altimeters and fluxgate magnetometers to determine heading errors etc. 2.2 Technology Development Introduction The technology...hardware and software development, testing and performance evaluation. Initial funding saw the development of a fast sampling magnetometer (called the...Electromagnetic Induction TMI Total Magnetic Intensity TM-6 Magnetometer system developed for SAM applications Tx Transmitter UXO Unexploded

  9. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    Science.gov (United States)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  10. CRUCIAL: Cryosat-2 Success over Inland Water and Land

    DEFF Research Database (Denmark)

    Moore, Philip; Berry, Philippa; Balmbra, Robert

    2014-01-01

    CRUCIAL is an ESA/STSE funded project investigating innovative land and inland water applications from Cryosat-2 with a forward-look component to the future Sentinel-3 mission. The fact that the Earth’s land surface is, in general, a relatively poor reflector of Ku band energy, with the exceptions...... of inland water, salar and ice surfaces has enabled Earth-orbiting satellite radar altimeters to be used for land surface applications including mapping and measurement of river and lake systems. Research with EnviSat Burst Echoes has shown that substantial high frequency information content is present...... of Cryosat-2 altimeter in SAR mode (I8 KHz) offers the opportunity to recover high frequency signals over much of the Earth’s land surface, enhancing the inland water height retrieval capability. Constraining this application is the limited availability of SAR Full Bit Rate (FBR) data from Cryosat-2 over...

  11. Improved optical solutions for on-chip light scattering detection

    DEFF Research Database (Denmark)

    Jensen, Thomas Glasdam

    nødvendigt at udvikle LabVIEW programmet "RayLab" for at kunne simulere den optiske opførsel af forskellige bølgeleder og mikrolinse konfigurationer. Det første vellykkede eksperiment blev lavet med en mikrofluid enhed bestående af et glas substrat med et SU-8 og et polydimethylsiloxan (PDMS) lag. Enheden...

  12. Teknisk Ståbi

    DEFF Research Database (Denmark)

    Teknisk Ståbi er de bygningsprojekterendes og entreprenørers håndbog. Den dækker matematik, fysik, statestik, laster og sikkerhed samt beggematerialerne: beton, stål, træ, murværk, letbeton, glas og endelig fundering. Denne udgave er en næsten totalrevision, baseret på de nye Eurocodes, der afløs...

  13. Modernisierung von ERP-Systemen. Chance für digitale Geschäftsprozesse im Mittelstand

    OpenAIRE

    Röglinger, Maximilian; Urbach, Nils; Heinz, Carletta; Borowski, Dagmara; Sachs, Thomas; Trick, Rebecca; Püschel, Louis

    2017-01-01

    Die Digitalisierung beeinflusst bestehende Geschäftsmodelle, verändert die Ansprüche der Kunden und zwingt Unternehmen dazu, ihre Organisation und Prozesse anzupassen, um dauerhaft wettbewerbsfähig zu bleiben. In diesem Kontext führte die Projektgruppe Wirtschaftsinformatik des Fraunhofer FIT mit dem Glasflakon-Hersteller HEINZ-GLAS ein ERP-Auswahl- und Organisationsgestaltungsprojekt durch.

  14. Multifunctional. Glass system walls optimize acoustics, lighting and room climate in open offices; Multifunktional. Glas-Systemwaende optimieren Akustik, Beleuchtung und Klima in offenen Buerolandschaften

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, H.V. [Fraunhofer-Institut fuer Bauphysik (IBP), Stuttgart (Germany); Renz, J. [renz solutions GmbH, Aidlingen (Germany)

    2008-05-15

    Acoustics, light and climate are determining factors of thermal comfort in multiple office buildings. Internal structural elements used to take over these ergonomic functions until now; now, all three aspects can be integrated completely and at low cost in new types of glass wall systems. (orig.)

  15. CryoSat-2: Post launch performance of SIRAL-2 and its calibration/validation

    Science.gov (United States)

    Cullen, Robert; Francis, Richard; Davidson, Malcolm; Wingham, Duncan

    2010-05-01

    1. INTRODUCTION The main payload of CryoSat-2 [1], SIRAL (Synthetic interferometric radar altimeter), is a Ku band pulse-width limited radar altimeter which transmits pulses at a high pulse repetition frequency thus making received echoes phase coherent and suitable for azimuth processing [2]. The azimuth processing in conjunction with correction for slant range improves along track resolution to about 250 meters which is a significant improvement over traditional pulse-width limited systems such as Envisat RA-2, [3]. CryoSat-2 will be launched on 25th February 2010 and this paper describes the pre and post launch measures of CryoSat/SIRAL performance and the status of mission validation planning. 2. SIRAL PERFORMANCE: INTERNAL AND EXTERNAL CALIBRATION Phase coherent pulse-width limited radar altimeters such as SIRAL-2 pose a new challenge when considering a strategy for calibration. Along with the need to generate the well understood corrections for transfer function amplitude with respect to frequency, gain and instrument path delay there is also a need to provide corrections for transfer function phase with respect to frequency and AGC setting, phase variation across bursts of pulses. Furthermore, since some components of these radars are temperature sensitive one needs to be careful when the deciding how often calibrations are performed whilst not impacting mission performance. Several internal calibration ground processors have been developed to model imperfections within the CryoSat-2 radar altimeter (SIRAL-2) hardware and reduce their effect from the science data stream via the use of calibration correction auxiliary products within the ground segment. We present the methods and results used to model and remove imperfections and describe the baseline for usage of SIRAL-2 calibration modes during the commissioning phase and the operational exploitation phases of the mission. Additionally we present early results derived from external calibration of SIRAL via

  16. Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities

    Directory of Open Access Journals (Sweden)

    Pascal Bonnefond

    2018-01-01

    Full Text Available Initially developed to monitor the performance of TOPEX/Poseidon and to follow the Jason legacy satellite altimeters at Senetosa Cape, Corsica, this calibration/validation site has been extended to include a new location at Ajaccio. This addition enables the site to monitor Envisat and ERS missions, CryoSat-2 and, more recently, the SARAL/AltiKa mission and Sentinel-3A satellites. Sentinel-3A and CryoSat-2 carry altimeters that use a synthetic aperture radar (SAR mode that is different to the conventional pulse-bandwidth limited altimeters often termed “low resolution mode” (LRM. The aim of this study is to characterize the sea surface height (SSH bias of the new SAR altimeter instruments and to demonstrate the improvement of data quality close to the coast. Moreover, some passes of Sentinel-3A and CryoSat-2 overfly both Senetosa and Ajaccio with only a few seconds time difference, allowing us to evaluate the reliability and homogeneity of both ground sites in term of geodetic datum. The Sentinel-3A and CryoSat-2 SSH biases for the SAR mode are respectively +22 ± 7 mm and −73 ± 5 mm (for CryoSat-2 baseline C products. The results show that the stability of the SAR SSH bias time series is better than standard LRM altimetry. Moreover, compared to standard LRM data, for which the measurements closer than ~10 km from the coast were generally unusable, SAR mode altimeters provide measurements that are reliable at less than few hundred meters from the coast.

  17. CryoSat-2 SIRAL Calibration and Performance

    Science.gov (United States)

    Fornari, M.; Scagliola, M.; Tagliani, N.; Parrinello, T.

    2012-12-01

    The main payload of CryoSat-2 is a Ku band pulse-width limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach an along track resolution of about 250 meters which is a significant improvement over traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed, including both an internal and external calibration. The internal calibration monitors the instrument impulse response and the transfer function, like traditional altimeters. In addition to that, the interferometer requires a special calibration developed ad hoc for SIRAL. The external calibration is performed with the use of a ground transponder, located in Svalbard, which receives SIRAL signal and sends the echo back to the satellite. Internal calibration data are processed on ground by the CryoSat-2 Instrument Processing Facility (IPF1) and then applied to the science data. In December 2012, two and a half years of calibration data will be available, which will be shown in this poster. The external calibration (transponder) data are processed and analyzed independently from the operational chain. The use of an external transponder has been very useful to determine instrument performance and for the tuning of the on-ground processor. This poster presents the transponder results in terms of range noise and datation error.

  18. Insertion, Validation, and Application of Barotropic and Baroclinic Tides in 1/12 and 1/25 Degree Global HYCOM

    Science.gov (United States)

    2013-09-30

    implications for the development of the proposed wide-swath satellite altimeter (NASA/CNES SWOT mission). Three-dimensional maps of internal-wave driven...planned wide-swath satellite altimeter mission ( SWOT ). 4 --Conrad Luecke, graduate student in the UM Department of Earth and Environmental Sciences...harmonic analysis . If instead they are mostly non-stationary, then harmonic analysis will not suffice. In Figure 2 we display the non-stationarity as

  19. Development of a low cost unmanned aircraft system for atmospheric carbon dioxide leak detection

    Science.gov (United States)

    Mitchell, Taylor Austin

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. The sensor system included a Sensair K-30 FR CO2 sensor, GPS, and altimeter connected an Arduino microcontroller which logged data to an onboard SD card. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system for the quickest response time (4-8 seconds based upon flowrate). Tests were then conducted over a controlled release of CO 2 in addition to over controlled rangeland fires which released carbon dioxide over a large area as would be expected from a carbon sequestration source. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. These tests demonstrated the system's ability to detect increased carbon dioxide concentrations in the atmosphere.

  20. Comparison of Freeboard Retrieval and Ice Thickness Calculation From ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic to Field Measurements Made During the N-ICE2015 Expedition

    DEFF Research Database (Denmark)

    King, Jennifer; Skourup, Henriette; Hvidegaard, Sine M.

    2018-01-01

    We present freeboard measurements from airborne laser scanner (ALS), the Airborne Synthetic Aperture and Interferometric Radar Altimeter System (ASIRAS), and CryoSat‐2 SIRAL radar altimeter; ice thickness measurements from both helicopter‐borne and ground‐based electromagnetic‐sounding; and point...... measurements of ice properties. This case study was carried out in April 2015 during the N‐ICE2015 expedition in the area of the Arctic Ocean north of Svalbard. The region is represented by deep snow up to 1.12 m and a widespread presence of negative freeboards. The main scattering surfaces from both CryoSat‐2...... freeboard on a regional scale of tens of kilometers. We derived a modal sea‐ice thickness for the study region from CryoSat‐2 of 3.9 m compared to measured total thickness 1.7 m, resulting in an overestimation of sea‐ice thickness on the order of a factor 2. Our results also highlight the importance of year...

  1. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments.

    Science.gov (United States)

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M; Molinos, Eduardo J; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-04-08

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control.

  2. Altimeter data assimilation in the tropical Indian Ocean using water ...

    Indian Academy of Sciences (India)

    vide a state analysis of the system which is bet- ter than could be ... strated the power of the correlation technique of. Ezer and Mellor ... resolution has been set to nested grid with finer resolution of ... in the model for converting wind to wind stress using bulk aero- .... drostatic connection between change in surface. Figure 3.

  3. Calibration And Validation Of CryoSat-2 Low Resolution Mode Data

    Science.gov (United States)

    Naeije, M.; Schrama, E.; Scharroo, R.

    2011-02-01

    Running ahead of the continuously growing need for operational use of sea level products, TUDelft started off the Radar Altimeter Database System RADS many years ago. This system attends to a global international sea- level service. It supports, on one hand, science, like studies on ocean circulation, El Nio, sea level change, and ice topography, and on the other hand (offshore) operations, like delivery of ocean current information, wind and wave statistics, ice detection and ice classification. At present, the database is used by a large scientific community throughout the world, and is daily maintained and developed by Altimetrics LLC, TUDelft and NOAA. It contains all historic altimeter data, and now has to be up- dated with the data from ESAs ice mission CryoSat-2, which was launched successfully in April 2010. These new data are important to augment the data set and by that to improve the estimates of sea level change and its contributors. For this the data have to be validated and calibrated, necessary corrections added and improved (including modelling of corrections that are not directly available from the CryoSat-2 platform), and the orbit ac- curacy verified and if possible the orbits brushed up. Subsequently, value-added ocean and ice products need to be developed in synergy with all the other satellite altimeter data. During the commissioning phase we primarily looked at the sanity of the available level-1b and level-2 Low Resolution Mode (LRM) data. Here, for the 2011 CryoSat Validation Workshop, we present the results of our calibration and validation of LRM L2 data by internal comparison of CryoSat-2 and external comparison with other satellites. We have established a range bias of 3.77 (measurement range too long) and a timing bias of 8.2ms (measurement range too late).

  4. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Science.gov (United States)

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  5. Balance Mass Flux and Velocity Across the Equilibrium Line in Ice Drainage Systems of Greenland

    Science.gov (United States)

    Zwally, H. Jay; Giovinetto, Mario B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Estimates of balance mass flux and the depth-averaged ice velocity through the cross-section aligned with the equilibrium line are produced for each of six drainage systems in Greenland. (The equilibrium line, which lies at approximately 1200 m elevation on the ice sheet, is the boundary between the area of net snow accumulation at higher elevations and the areas of net melting at lower elevations around the ice sheet.) Ice drainage divides and six major drainage systems are delineated using surface topography from ERS (European Remote Sensing) radar altimeter data. The net accumulation rate in the accumulation zone bounded by the equilibrium line is 399 Gt/yr and net ablation rate in the remaining area is 231 Gt/yr. (1 GigaTon of ice is 1090 kM(exp 3). The mean balance mass flux and depth-averaged ice velocity at the cross-section aligned with the modeled equilibrium line are 0.1011 Gt kM(exp -2)/yr and 0.111 km/yr, respectively, with little variation in these values from system to system. The ratio of the ice mass above the equilibrium line to the rate of mass output implies an effective exchange time of approximately 6000 years for total mass exchange. The range of exchange times, from a low of 3 ka in the SE drainage system to 14 ka in the NE, suggests a rank as to which regions of the ice sheet may respond more rapidly to climate fluctuations.

  6. Constraining the thickness of polar ice deposits on Mercury using the Mercury Laser Altimeter and small craters in permanently shadowed regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Chabot, Nancy L.; Neumann, Gregory A.

    2018-05-01

    Radar-bright deposits at the poles of Mercury are located in permanently shadowed regions, which provide thermally stable environments for hosting and retaining water ice on the surface or in the near subsurface for geologic timescales. While the areal distribution of these radar-bright deposits is well characterized, their thickness, and thus their total mass and volume, remain poorly constrained. Here we derive thickness estimates for selected water-ice deposits using small, simple craters visible within the permanently shadowed, radar-bright deposits. We examine two endmember scenarios: in Case I, these craters predate the emplacement of the ice, and in Case II, these craters postdate the emplacement of the ice. In Case I, we find the difference between estimated depths of the original unfilled craters and the measured depths of the craters to find the estimated infill of material. The average estimated infilled material for 9 craters assumed to be overlain with water ice is ∼ 41-14+30 m, where 1-σ standard error of the mean is reported as uncertainty. Reported uncertainties are for statistical errors only. Additional systematic uncertainty may stem from georeferencing the images and topographic datasets, from the radial accuracy of the altimeter measurements, or from assumptions in our models including (1) ice is flat in the bowl-shaped crater and (2) there is negligible ice at the crater rims. In Case II, we derive crater excavation depths to investigate the thickness of the ice layer that may have been penetrated by the impact. While the absence of excavated regolith associated with the small craters observed suggests that impacts generally do not penetrate through the ice deposit, the spatial resolution and complex illumination geometry of images may limit the observations. Therefore, it is not possible to conclude whether the small craters in this study penetrate through the ice deposit, and thus Case II does not provide a constraint on the ice thickness

  7. Operational Test Instrumentation Guide.

    Science.gov (United States)

    1981-11-01

    System. A topographic, transit-level measuring system, instrumented with altimeter, clinometers, compasses , and an alidade, plane table, and stadia rod...dual hangar 250 x 135 feet with two door openings, 80 feet each. There is no compass swing base, no electronic landing aids, ro aircraft wash or...month) of SDG &E) Haybarn Canyon 15,000 6,183,870 Lan Pulgas 1,500 433,890 Las Pulgas Well #41621 100 4,258 Las Pulgas Well #41611 150 7,548 Las Flores

  8. Characterization and optimization of single-use bioreactors and biopharmaceutical production processes using computational fluid dynamics

    OpenAIRE

    Kaiser, Stephan Christian

    2015-01-01

    Durch die örtliche und zeitliche Modellierung der auftretenden Strömungen bietet die numerische Fluiddynamik (engl. Computational Fluid Dynamics, CFD) das Potenzial detaillierte Untersuchungen der Hydrodynamik in Bioreaktoren durchzuführen. Allerdings sind bisher nur wenige Studien in Verbindung mit Einwegbioreaktoren, die sich durch konstruktiven Besonderheiten von ihren klassischen Gegenspielern aus Glas und/oder Edelstahl unterscheiden, publiziert. Die vorliegende Arbeit soll daher geeigne...

  9. Surveying glacier bedrock topography with a helicopter-borne dual-polarization ground-penetrating radar system

    Science.gov (United States)

    Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.

    2017-12-01

    Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.

  10. Human Factors Workshop on Aviation (4th) Transcript Held at Atlantic City, New Jersey on 13-15 May 1981.

    Science.gov (United States)

    1982-05-01

    problems of altimeters being misread. Of course, the big bugaboo there is the three pointer altimeter. What we found was that there are many instances...development, higher sophistica- tion and technology, that I would like to caution the FAA that before we get too highly invested into any particular... investments are likely to buy smaller and smaller returns in safety, efficiency and productivity. I think we all know that that means that we are going to

  11. Progression of the 2011-2012 Surge of Bering Glacier and Bagley Ice Field, Alaska

    Science.gov (United States)

    Herzfeld, U. C.; McDonald, B.; Stachura, M.; Hale, R.; Trantow, T.; Weltman, A.; Chen, P.

    2012-12-01

    Bering Glacier, Alaska, started a surge in late spring 2011. The surge reached the ice front in May 2011 and extended into Bagley Ice Field by summer 2011. New surge-related crevassing was observed in July 2012. We collected aerial observations, including systematic videographic and photographic imagery, GPS data and laser altimeter data in September 2011 and in July 2012. In this talk, an analysis of surge progression and comparison to the early, mature and late stages of the 1993-1995 surge of Bering Glacier and Bagley Ice Field will be presented. A suite of approaches will be used to this end: Analysis of elevation changes based on CryoSat data, 2009 and 2010 IceBridge data and 2011 and 2012 laser altimeter data collected by our group, geostatistical classification of crevasse types based on imagery, classification of laser altimeter data and analysis of high-resolution satellite imagery (Worldview and GEOS).

  12. Validation of SARAL/AltiKa data in the Amazon basin

    Science.gov (United States)

    Santos da Silva, Joecila; Calmant, Stephane; Medeiros Moreira, Daniel; Oliveira, Robson; Conchy, Taina; Gennero, Marie-Claude; Seyler, Frederique

    2015-04-01

    SARAL/AltiKa is a link between past missions (since it flies on the ERS-ENVISAT orbit with Ku band nadir altimeters in LRM) and future missions such as SWOT's Ka band interferometry swaths. In the present study, we compare the capability of its altimeter AltiKa to that of previous missions working in the Ku band such as ENVISAT and Jason-2 in retrieving water levels over the Amazon basin. Same as for the aforementioned preceding missions, the best results were obtained with the ICE-1 retracking algorithm. We qualitatively analyze the impact of rainfalls in the loss of measurements. Since making long -multi mission- time series is of major importance either for hydro-climatic studies or for basin management, we also present an estimate of the altimeter bias in order that the SARAL series of water level can be appended to those of these previous missions.

  13. The Influence of the Terrestrial Reference Frame on Studies of Sea Level Change

    Science.gov (United States)

    Nerem, R. S.; Bar-Sever, Y. E.; Haines, B. J.; Desai, S.; Heflin, M. B.

    2015-12-01

    The terrestrial reference frame (TRF) provides the foundation for the accurate monitoring of sea level using both ground-based (tide gauges) and space-based (satellite altimetry) techniques. For the latter, tide gauges are also used to monitor drifts in the satellite instruments over time. The accuracy of the terrestrial reference frame (TRF) is thus a critical component for both types of sea level measurements. The TRF is central to the formation of geocentric sea-surface height (SSH) measurements from satellite altimeter data. The computed satellite orbits are linked to a particular TRF via the assumed locations of the ground-based tracking systems. The manner in which TRF errors are expressed in the orbit solution (and thus SSH) is not straightforward, and depends on the models of the forces underlying the satellite's motion. We discuss this relationship, and provide examples of the systematic TRF-induced errors in the altimeter derived sea-level record. The TRF is also crucial to the interpretation of tide-gauge measurements, as it enables the separation of vertical land motion from volumetric changes in the water level. TRF errors affect tide gauge measurements through GNSS estimates of the vertical land motion at each tide gauge. This talk will discuss the current accuracy of the TRF and how errors in the TRF impact both satellite altimeter and tide gauge sea level measurements. We will also discuss simulations of how the proposed Geodetic Reference Antenna in SPace (GRASP) satellite mission could reduce these errors and revolutionize how reference frames are computed in general.

  14. Fluxgate Magnetometer system mounted on UAS system: First field test at Dominga IOCG deposit, Chile

    Science.gov (United States)

    Yanez, G. A.; Banchero, L.; Marco, A.; Figueroa, R.

    2016-12-01

    With the support of Fundacion Chile (FCH) grant, we developed an airborne magnetic system (GeoMagDrone GFDAS) mounted on a UAS octodrone platform (DJI, S1000), based on a low cost/light-weight fluxgate magnetometer (FGM-301) and a robust/light-weight data logger for position, temperature, radar altimeter and 3 magnetic components at 16 Hz recording. Fluxgate magnetometer is hanging from the UAS platform at a distance of 2.5m where the EM noise is reduced to less than 2 nT. The whole geophysical system, including batteries, weights 650 gr., with an autonomy of 2 hours. Magnetometer calibration includes the 9 coefficients of amplitude, offset, and orthogonality, and temperature correction. We test the system over the IOCG deposit of Dominga-Chile, a magnetite ore (40%) (a block of 2x3 km with NS lines separated every 50m and a clearance of 40m, the mineral deposit buried 50-100m from the surface, where a ground magnetic survey was conducted previously. Ground conditions includes relatively rough topography with slopes of 10-20%, and some windy days. We use the digital terrain model SRTM30 to define the drape flight shape Average flight performance includes a mean speed of 35-40 km/hour, and an UAS battery consumption of 18-12 minutes depending on the wind conditions. A good correspondence was found between plan deployment and survey results in terms of line direction/separation/clearance. Line path were flown with errors less than 5 meters, whereas clearance of 40m was kept depending on the amount of control points used. The comparison between ground survey and GeoMagDrone results show a perfect match (anomaly amplitude/shape and noise envelope), validating in this way the system developed. Main concern for the productive application of this technology in unmanned geophysical platforms is the battery performance and the quality of digital terrain models to follow the topography.

  15. Fusion and direct reactions for strongly and weakly bound projectiles

    International Nuclear Information System (INIS)

    Hugi, M.; Lang, J.; Mueller, R.; Ungricht, E.; Bodek, K.; Jarczyk, L.; Kamys, B.; Magiera, A.; Strzalkowski, A.; Willim, G.

    1981-01-01

    The interaction of 6 Li, 9 Be and 12 C projectiles with a 28 Si target was investigated by measuring the angular distributions of the elasitcally scattered projectiles and of the emitted protons, deuterons and α-particles. The experiment was perfomred in order to deduce direct and compound nucleus process contributions to the total reaction cross section and to study the influence of the projectile structure on the relative importance of these two mechanisms. Optical model parameters and therefore the total reaction cross section are strongly influenced by the binding energy of the projectile. The parameters of the Glas-Mosel describing the fusion reaction vary smoothly with the atomic number. In the system 9 B + 28 Si around 50% of all reactions are direct processes even at energies near the Coulomb barrier, whereas in the other systeme the direct part amounts to 15% ( 12 C) and 30% ( 6 Li) only. (orig.)

  16. Photogrammetry of Apollo 15 photography, part C

    Science.gov (United States)

    Wu, S. S. C.; Schafer, F. J.; Jordan, R.; Nakata, G. M.; Derick, J. L.

    1972-01-01

    In the Apollo 15 mission, a mapping camera system and a 61 cm optical bar, high resolution panoramic camera, as well as a laser altimeter were used. The panoramic camera is described, having several distortion sources, such as cylindrical shape of the negative film surface, the scanning action of the lens, the image motion compensator, and the spacecraft motion. Film products were processed on a specifically designed analytical plotter.

  17. An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas

    Science.gov (United States)

    Ko, D. S.; Preller, R. H.; Martin, P. J.

    2003-04-01

    An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.

  18. Mycorrhiza-induced resistance against Thielaviopsis basicola in the ornemental crop Petunia hybrida

    OpenAIRE

    Hayek , Soukayna

    2012-01-01

    Wurzelpathogene zeigen bedeutenden Einfluss auf die Produktion von Zierpflanzen. Vor Allem in erdelosen Produktionssystemen unter Glas verursachen sie erhebliche Verluste und ihre Bekämpfung mit konventionellen Mitteln beinhaltet normalerweise ein hoher Einsatz an Pestiziden. Ein mehr nachhaltiger Gartenbau braucht alternative Methoden, um den Eintrag dieser Chemikalien zu vermeiden. Die Einführung arbuskulärer Mykorrhizapilze (AM Pilze) in das Produktionssystem könnte ein integraler Bestandt...

  19. The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates

    Science.gov (United States)

    Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.

    2018-02-01

    We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.

  20. CryoSat: ESA's Ice Explorer Mission: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Mardle, Nicola; Hoyos Ortega, Berta; Bouzinac, Catherine; Badessi, Stefano; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Cullen, Robert

    2013-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Experimental evidence have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. In April 2012, the first winter [2010 -2011] sea-ice variation map of the Arctic was released to the scientific community. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  1. CryoSat SIRAL: Instrument Performance After 5 Years of Operations

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2016-08-01

    CryoSat's Synthetic Interferometric Radar Altimeter (SIRAL) [1] is a Ku-band pulsewidth limited radar altimeter that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for Delay/Doppler processing [2]. Moreover SIRAL takes advantage of two antennas mounted across-track for interferometric capability, in order to determine the across-track direction from which the echo is received [3].The calibration strategy for SIRAL includes both internal calibrations and external calibration [1,7]. Due to the fact that SIRAL is an interferometric phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In this paper we will describe as first the internal calibration strategy and then the different calibration corrections that are applied to science data. The internal calibration results over more than five years of mission will be presented, analysing their temporal evolution in order to highlight the stability of the instrument over its life.

  2. Cryosat: ESA's ice Explorer Mission. 7 years in operations: status and future outlook

    Science.gov (United States)

    Parrinello, Tommaso

    2017-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. Since its launch, CryoSat data has been used by different scientific communities on a number of Earth Science topics also beyond its prime mission objectives, cryosphere. Scope of this paper is to describe the current mission status and provide programmatic highlights and information on the next development of the mission in its extended period of operations (2017-2019).

  3. Airborne campaigns for CryoSat prelaunch calibration and validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hanson, Susanne; Hvidegaard, Sine Munk

    2011-01-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite is planned for spring 2011. DTU Space has been involved in ESA’s CryoSat Validation Experiment (CryoVEx) with airborne activities since 2003. To validate the prelaunch performance...... of the CryoSat radar altimeter (SIRAL), an airborne version of the SIRAL altimeter (ASIRAS) has been flown together with a laser scanner in 2006 and 2008. Of particular interest is to study the penetration depth of the radar altimeter over both land- and sea ice. This can be done by comparing the radar...... and laser measurements with in situ observations. Here, an overview of the prelaunch airborne campaigns is given, together with results of the ASIRAS performance over land- and sea ice. The observations, used in this study, are obtained from the Greenland ice sheet and from both multiyear and first year sea...

  4. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    Science.gov (United States)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  5. 90Sr- 90Y and 89Sr beta radioactivity measurement in milk samples using a proportional counter

    International Nuclear Information System (INIS)

    Mananes, A.; Perez Santos, C.; Martinez Churiaque, F.

    1987-01-01

    A thin window glas flow proportional counter is used to measure the 90 Sr- 90 Y and 89 Sr beta radioactivity in milk samples. A chemical procedure is used to separate strontium-yttrium from the other radionuclides present in milk. A calculation of the total efficiency of the system is performed which includes an empirical estimation of the backscattering factor. The calibration of the whole process allows the determination of the 90 Sr activity within 10% relative error in spite of uncertainties in the recovery yields of strontium and yttrium. No 89 Sr activity has been detected, and the mean value obtained for the 90 Sr activity in nine milk samples of Cantabria is 0.115 Bq/1 with a minimum detectable activity of 0.0105 Bq. (author) 18 refs

  6. Determination and stabilization of the altitude of an aircraft in space using semi-conductor detectors

    International Nuclear Information System (INIS)

    Gilly, L.

    1967-01-01

    The device studied in this report can be used as altimeter or as altitude stabilizer (B.F. number PV 100-107, March 23, 1967). It includes essentially a 'surface barrier' semiconductor detector which counts alpha particles of a radioactive source. Two sources are used corresponding to two possible utilizations of the device. This report describes experiences made in laboratory which comprises electronic tests and a physic study. Systematic analysis of experimental errors is made comparatively with aneroid altimeters. An industrial device project is given. (author) [fr

  7. Absolute calibration of SARAL/AltiKa in Kavaratti during its initial calibration-validation phase

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, K.N.; Shukla, A.K.; Suchandra, A.B.; ArunKumar, S.V.V.; Bonnefond, P.; Testut, L.; Mehra, P.; Laurain, O.

    globally distributed region will offer assessment of the altimetry system, and allow us to check in specific conditions leading to different estimation of absolute bias of the instrument (Shum et al. 2003). In collaboration with National Institute... of Oceanography (NIO), Goa, Space Applica- tions Centre–Indian Space Research Organisation (SAC-ISRO) established a calibration- verification site in Kavaratti. This site offers a number of advantages as a calibration site for altimeters. Having very small land...

  8. Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft

    Science.gov (United States)

    Hayes, J.; Pierson, W. J.; Cardone, V. J.

    1975-01-01

    The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.

  9. CONTRIBUTION OF SATELLITE ALTIMETRY DATA IN GEOLOGICAL STRUCTURE RESEARCH IN THE SOUTH CHINA SEA

    Directory of Open Access Journals (Sweden)

    T. D. Tran

    2016-06-01

    Full Text Available The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  10. A new regional high-resolution map of basal and surface topography for the Greenland ice-sheet margin at Paakitsoq, West Greenland

    DEFF Research Database (Denmark)

    Mottram, R.; Nielsen, C.; Ahlstrøm, A. P.

    2009-01-01

    In 2005 an airborne survey was carried out from a Twin Otter aircraft at Pâkitsup Akuliarusersua (Paakitsoq) near Ilulissat in West Greenland. The survey aimed to measure ice thickness with a 60 MHz cohrent radar and surface elevation with a scanning laser altimeter.......In 2005 an airborne survey was carried out from a Twin Otter aircraft at Pâkitsup Akuliarusersua (Paakitsoq) near Ilulissat in West Greenland. The survey aimed to measure ice thickness with a 60 MHz cohrent radar and surface elevation with a scanning laser altimeter....

  11. Determination of a Jet Fuel Metal Deactivator by High Performance Liquid Chromatography

    Science.gov (United States)

    1983-06-01

    bonded phase chromatography (Reference 2). 73 AFWAL-TR-82-2128 Bonded phase packings offer distinct advantages over other packings: a. Irreversible...were then oven dried and placed in a dessicator for cooling and storage until use. The bottles were subsequently silanized with "Glas-TREET" ( Alltech ... advantages of a loop injector are: (1) The volume injected is far more repeatable since a fixed volume loop has a constant volume and is flushed with a

  12. A Facile Spectrophotometric Method for the Determination of Iodate ...

    African Journals Online (AJOL)

    NJD

    2006-12-06

    Dec 6, 2006 ... 8 V. Olgasi, P. Hedrich, J. Marta, D.P. Dejan, Glas. Hem. Drus, Beugrad,. 1971, 44, 567–569. 9 Y.M. Temerk, M.E. Ahmed and M.M. Kamal, Fresenius J. Anal Chim.,. 1980, 30, 414–417. 10 A.F. Gutierrez, A.M. Pena and J.A. Murillo, Anal. Lett., 1983, 16,. 759–762. 11 J.H. Mendez, M.A. Alonso, A. Parra, M.J. ...

  13. Refractive Index Measurement of Fibers Through Fizeau Interferometry

    Science.gov (United States)

    2013-08-01

    Ottawa, Canada) Infinity3-1 Strip heaters McMaster -Carr (Chicago, IL) 35475K722 Temperature controller Glas-Col, LLC (Terre-Haute, IN) DigiTrol II...optic coefficient was also measured for representative samples of both the PP monofilament and nylon ribbon fibers. The undrawn PP monofilament...nylon, the coefficient of thermal expansion of polymers can often be used to estimate their respective dn/dT (13). Using this method, the expected

  14. Development of a Carbon Nanotube-Based Touchscreen Capable of Multi-Touch and Multi-Force Sensing

    OpenAIRE

    Kim, Wonhyo; Oh, Haekwan; Kwak, Yeonhwa; Park, Kwangbum; Ju, Byeong-Kwon; Kim, Kunnyun

    2015-01-01

    A force sensing touchscreen, which detects touch point and touch force simultaneously by sensing a change in electric capacitance, was designed and fabricated. It was made with single-walled carbon nanotubes (SWCNTs) which have better mechanical and chemical characteristics than the indium-tin-oxide transparent electrodes used in most contemporary touchscreen devices. The SWCNTs, with a transmittance of about 85% and electric conductivity of 400 Ω per square; were coated and patterned on glas...

  15. Wave and Wind Model Performance Metrics Tools

    Science.gov (United States)

    Choi, J. K.; Wang, D. W.

    2016-02-01

    Continual improvements and upgrades of Navy ocean wave and wind models are essential to the assurance of battlespace environment predictability of ocean surface wave and surf conditions in support of Naval global operations. Thus, constant verification and validation of model performance is equally essential to assure the progress of model developments and maintain confidence in the predictions. Global and regional scale model evaluations may require large areas and long periods of time. For observational data to compare against, altimeter winds and waves along the tracks from past and current operational satellites as well as moored/drifting buoys can be used for global and regional coverage. Using data and model runs in previous trials such as the planned experiment, the Dynamics of the Adriatic in Real Time (DART), we demonstrated the use of accumulated altimeter wind and wave data over several years to obtain an objective evaluation of the performance the SWAN (Simulating Waves Nearshore) model running in the Adriatic Sea. The assessment provided detailed performance of wind and wave models by using cell-averaged statistical variables maps with spatial statistics including slope, correlation, and scatter index to summarize model performance. Such a methodology is easily generalized to other regions and at global scales. Operational technology currently used by subject matter experts evaluating the Navy Coastal Ocean Model and the Hybrid Coordinate Ocean Model can be expanded to evaluate wave and wind models using tools developed for ArcMAP, a GIS application developed by ESRI. Recent inclusion of altimeter and buoy data into a format through the Naval Oceanographic Office's (NAVOCEANO) quality control system and the netCDF standards applicable to all model output makes it possible for the fusion of these data and direct model verification. Also, procedures were developed for the accumulation of match-ups of modelled and observed parameters to form a data base

  16. Preparation and mass spectrometrical high temperature investigations on compounds of the quasi-ternary system Cs2O-Al2O3-SiO2

    International Nuclear Information System (INIS)

    Odoj, R.; Hilpert, K.; Nuernberg, H.W.

    1977-09-01

    Additions of aluminium oxide and silicen oxide to ceramic fuel for pyrocarbon-coated nuclear fuel paticles counteract a release of fission-cesium by compound formation. The vapourization tests carried out here using samples from the quasi-ternary system cesium-oxide-aluminium-oxide-silicon-oxide by means of high-temperature mass spectroscopy using a Knudsen cell served the optimization of this retention effect. The aim of the apparative changes on the knudsen cell were to shield heat radiation on the temperature measuring borehole through the tungsten wire cathode in order to be able to perform exact temperature measurements even below 1,000 0 C. A new method of preparation was developed to obtain defined cesium aluminium silicates whose composition was determined by Guinier and goniometer pictures as well as by microscopic investigations. According to the latter, 3 ternary compounds are present in the system investigated: CsAlSiO 4 , CsAlSi 2 O 6 and CsAlSi 5 O 12 . Their lattice constants were determined from goniometric measurements; the vapour pressure equection were set up from the measured cesium vapour pressure values over each sample and the enthalpies of the vapourization reactions were found to be 84 kcal for CsAlSiO 4 at 1,400 0 K, 100 kcal for CsAlSi 2 O 6 at 1,550 0 K and 122 kcal for CsAlSi 5 O 12 at 1,650 0 K. The cesium vapour pressures of the glas phases investigated of the system are above the Cs partial pressures of the solid crystalline phases of the same composition. The results of the work explain the causes of the reduction of the Cs release and show that the vapour pressure can be lowered by more than 10 orders of magnitude at reactor relevant temperatures by compound formation. (RB) [de

  17. Cryosat: ESA'S Ice Explorer Mission, 6 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Maestroni, Elia; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Davidson, Malcolm; Fornari, Marco; Scagliola, Michele

    2016-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 6th years of operational life in April 2016. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and its main scientific achievements. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  18. Cryosat: ESA'S Ice Explorer Mission. Five years in operations: status and achievements

    Science.gov (United States)

    Parrinello, Tommaso; Mardle, Nicola; Krassenburg, Mike; Badessi, Stefano; Bouffard, Jerome; Frommknecht, Bjorn; Fornari, Marco; Scagliola, Michele

    2015-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 5th years of operational life in April 2015. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  19. CryoSat: ESA's ice explorer mission. 4 years in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B.; Bouffard, J.; Badessi, S.; Frommknecht, B.; Davidson, M.

    2014-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. CryoSat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. The CryoSat mission reached its 4th years of operational life in April 2014. Since its launch has delivered high quality products to the worldwide cryospheric and marine community that is increasing every year. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on the next scientific development of the mission in its extended period of operations.

  20. Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data.

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.; Hithin, N.K.

    and studied the validity of these observations against ship-reported and buoy data. Many studies have been undertaken on how best to use the data available from satellite observation systems in wave models (Mastenbroek, 1994; Young and Glowacki, 1996... Sea wave model. Journal of Geophysical Research 10, 5829–5849. Young, I.R., 1994. Global ocean wave statistics obtained from satellite observations. Applied Ocean Research 16, 235-248. Young, I.R., Glowacki, T.J., 1996. Assimilation of altimeter...

  1. GLAS/ICESat L2 Ocean Altimetry Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — GLA15 contains the ocean elevation and small-scale roughness corrected for geodetic and atmospheric affects, calculated from algorithms fine-tuned for ocean returns....

  2. Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry

    Science.gov (United States)

    Bettadpur, Srinivas V.; Eanes, Richard J.

    1994-01-01

    In analogy to the geographical representation of the zeroth-order radial orbit perturbations due to the static geopotential, similar relationships have been derived for radial orbit perturbations due to the ocean tides. At each location these perturbations are seen to be coherent with the tide height variations. The study of this singularity is of obvious importance to the estimation of ocean tides from satellite altimeter data. We derive analytical expressions for the sensitivity of altimeter derived ocean tide models to the ocean tide force model induced errors in the orbits of the altimeter satellite. In particular, we focus on characterizing and quantifying the nonresonant tidal orbit perturbations, which cannot be adjusted into the empirical accelerations or radial perturbation adjustments commonly used during orbit determination and in altimeter data processing. As an illustration of the utility of this technique, we study the differences between a TOPEX/POSEIDON-derived ocean tide model and the Cartwright and Ray 1991 Geosat model. This analysis shows that nearly 60% of the variance of this difference for M(sub 2) can be explained by the Geosat radial orbit eror due to the omission of coefficients from the GEM-T2 background ocean tide model. For O(sub 1), K(sub 1), S(sub 2), and K(sub 2) the orbital effects account for approximately 10 to 40% of the variances of these differences. The utility of this technique to assessment of the ocean tide induced errors in the TOPEX/POSEIDON-derived tide models is also discussed.

  3. An Online Satellite Altimetry Data Processing System: Ads Central

    Science.gov (United States)

    Helm, A.; Braun, A.; Schöne, T.; Wen, H.; Reigber, C.

    To help solving important issues of climate change and sea level change and to un- derstand the complex system Earth, an interdisciplinary interpretation of various data sets is needed. Several groups on the national and international level are recently ac- tive in building up services to faciliate the access to geoscientific data to a broader community, especially the access to higher level products. In Germany, GFZ-Potsdam is currently building up the modular German Earth Science and Information System (GESIS). In the frame of GESIS the Altimeter Database System (ADS) has been com- pleted recently. This modul provides high quality data and processing capabilities for radar altimetry data to a wide range of users. The ADS modul can be accessed worldwide via the internet based user-interface "ADS Central" with a standard browser at (http://gesis.gfz-potsdam.de/ads). After a registra- tion process the system offers higher level standard products, calculated routinely from the harmonised and intercalibrated satellite database. Additionally, ADS allows to generate individual user specific products. The user is able to perform several processing and analysing steps, e.g. to generate mean sea sur- face height grids, to extract altimetry data time series around a given location, to anal- yse parameter variability, or to perform a crossover analysis. The user can specify general parameters like the satellite mission, time interval and region of the used data. Additionally, different available correction models can be choosen, which will be ap- plied to the data. It is further possible to enter several quality parameters to optimize the data for individual applications. These individual user defined products are au- tomatically processed by ADS at GFZ-Potsdam and are subsequently distributed via anonymous ftp. The system is an attempt to offer easy access to the daily growing satellite altime- try database and numerous correction models and orbits. Due to the effectiveness

  4. Synthesis of TiCuAg thick film inks for glass frit free metallization of aluminium nitride

    International Nuclear Information System (INIS)

    Adlassnig, A.; Schuster, J. C.; Smetana, W.; Reicher, R.

    1997-01-01

    A glas frit free screen printing ink for metallization of AIN was developed. Bonding to the substrate is achieved by active metal additives. The metallic component consists of Cu and Ag powder synthesized from inorganic salts by the polyol process, and Cu-Ti powder synthesized by arc melting, milling and ultracentrifugation. This ternary powder mixture was introduced to a specifically developed organic vehicle and screen printed onto AIN. The detailed development process and the results will be presented. (author)

  5. Effet des terres rares sur la structure et l'altération des verres borosilicatés

    OpenAIRE

    Molières , Estelle

    2012-01-01

    This work is related to the question of the geological deep repository of high-level waste glass. These wastes include fission products and minor actinides, elements which can be simulated by rare earths. As new glass compositions could enable increased rare earth concentrations, it is crucial to know and understand rare earth impact on glass structure on the one hand, and on glass alteration kinetics or their incorporation into an altered layer. This work studied simplified borosilicate glas...

  6. Self-reported health status of older adults in Malaysia and Singapore: evidence from the 2007 Global Ageing Survey

    OpenAIRE

    Khan, Hafiz T. A.; Flynn, Matthew

    2015-01-01

    The aim of this study is to investigate the correlates of self-reported health (SRH) among older adults in Malaysia and Singapore. The study uses data collected in the Global Ageing Study (GLAS) 2007, one of the largest surveys of its kind, specially designed to investigate attitudes towards later life, ageing and retirement. Data were collected from 1002 and 1004 respondents from Malaysia and Singapore respectively. The study found that Singaporeans report a healthier life than Malaysians. T...

  7. Optical Performance Measurements of the BELA EQM and FM Transmitter Laser during AIV

    Science.gov (United States)

    Althaus, C.; Michaelis, H.; Lingenauber, K.; Behnke, T.; Togno, S. d.; Kallenbach, R.; Wickhusen, K.; Althaus, C.

    2014-04-01

    The BepiColombo Laser Altimeter (BELA) onboard the Mercury Planetary Orbiter is Europe's first built Laser Altimeter for a planetary mission. Its main objectives are global mapping of Mercury's topography as well as measuring its tidal deformations to learn about the internal structure of this small terrestrial planet [1]. Crucial part of the instrument for this task is the transmitter laser. It must withstand all mission phases till operation in orbit and work within tight parameter margins. To ensure this a dedicated verification program has been performed at DLR Institute for Planetary Research Berlin which is described in the present paper.

  8. Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    DEFF Research Database (Denmark)

    Ricker, Robert; Hendricks, Stefan; Helm, Veit

    2012-01-01

    highly accurate range measurements. During the CryoSat Validation Experiment (CryoVEx) 2011 in the Lincoln Sea Cryosat-2 underpasses were accomplished with two aircraft which carried an airborne laser scanner, a radar altimeter and an electromagnetic induction device for direct sea ice thickness...... retrieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard distribution of laser scanner and radar altimeter measurements with the CryoSat-2 product within the multi-year sea ice region of the Lincoln Sea in spring...

  9. Scientific analysis of satellite ranging data

    Science.gov (United States)

    Smith, David E.

    1994-01-01

    A network of satellite laser ranging (SLR) tracking systems with continuously improving accuracies is challenging the modelling capabilities of analysts worldwide. Various data analysis techniques have yielded many advances in the development of orbit, instrument and Earth models. The direct measurement of the distance to the satellite provided by the laser ranges has given us a simple metric which links the results obtained by diverse approaches. Different groups have used SLR data, often in combination with observations from other space geodetic techniques, to improve models of the static geopotential, the solid Earth, ocean tides, and atmospheric drag models for low Earth satellites. Radiation pressure models and other non-conservative forces for satellite orbits above the atmosphere have been developed to exploit the full accuracy of the latest SLR instruments. SLR is the baseline tracking system for the altimeter missions TOPEX/Poseidon, and ERS-1 and will play an important role in providing the reference frame for locating the geocentric position of the ocean surface, in providing an unchanging range standard for altimeter calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. However, even with the many improvements in the models used to support the orbital analysis of laser observations, there remain systematic effects which limit the full exploitation of SLR accuracy today.

  10. Downscaling, 2-way Nesting, and Data Assimilative Modeling in Coastal and Shelf Waters of the U.S. Mid-Atlantic Bight and Gulf of Maine

    Science.gov (United States)

    Wilkin, J.; Levin, J.; Lopez, A.; Arango, H.

    2016-02-01

    Coastal ocean models that downscale output from basin and global scale models are widely used to study regional circulation at enhanced resolution and locally important ecosystem, biogeochemical, and geomorphologic processes. When operated as now-cast or forecast systems, these models offer predictions that assist decision-making for numerous maritime applications. We describe such a system for shelf waters of the Mid-Atlantic Bight (MAB) and Gulf of Maine (GoM) where the MARACOOS and NERACOOS associations of U.S. IOOS operate coastal ocean observing systems that deliver a dense observation set using CODAR HF-radar, autonomous underwater glider vehicles (AUGV), telemetering moorings, and drifting buoys. Other U.S. national and global observing systems deliver further sustained observations from moorings, ships, profiling floats, and a constellation of satellites. Our MAB and GoM re-analysis and forecast system uses the Regional Ocean Modeling System (ROMS; myroms.org) with 4-dimensional Variational (4D-Var) data assimilation to adjust initial conditions, boundary conditions, and surface forcing in each analysis cycle. Data routinely assimilated include CODAR velocities, altimeter satellite sea surface height (with coastal corrections), satellite temperature, in situ CTD data from AUGV and ships (NMFS Ecosystem Monitoring voyages), and all in situ data reported via the WMO GTS network. A climatological data assimilative analysis of hydrographic and long-term mean velocity observations specifies the regional Mean Dynamic Topography that augments altimeter sea level anomaly data and is also used to adjust boundary condition biases that would otherwise be introduced in the process of downscaling from global models. System performance is described with respect to the impact of satellite, CODAR and in situ observations on analysis skill. Results from a 2-way nested modeling system that adds enhanced resolution over the NSF OOI Pioneer Array in the central MAB are also

  11. Development of a light-weight beryllium Cassegrain telescope: from the optical design to the performance measurement

    Science.gov (United States)

    Viertl, Jacques; Greger, Ralf; Di Domenico, Maurizio; Francou, Laurent; Ellouzi, Marina; Blum, Steffen; Kudielka, Klaus; Weigel, Thomas; Rugi Grond, Elisabetta; Piazza, Daniele

    2012-12-01

    The BepiColombo Laser Altimeter (BELA) is selected to fly on board of the ESA's BepiColombo Mercury Planetary Orbiter (MPO). The instrument will be the first European planetary laser altimeter system. RUAG Space is the industrial prime for the Receiver part of the scientific instrument. The BELA Receiver is a joined effort of Swiss industries under the leading role of RUAG and University of Bern as co-Prime. A core element is the light weighted Receiver Telescope (RTL), to collect the laser pulse reflected from the planet's surface. An innovative design was required to deal with the very challenging Mercury's environmental conditions and with the very stringent instrument's mass budget. The Optothermo- mechanical analyses lead to the design of a 1250mm focal length Cassegrain telescope made of Beryllium. It provides an aperture of 204 mm diameter and a 2 mm thick primary mirror for a total mass of less than 600gr. The manufacturing and the integration needed special developments. This paper presents the design analyses and the major challenges which had to be solved. Discussing some aspects of the telescope integration and test campaign, the finally achieved performances and lessons learnt will be presented.

  12. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    Science.gov (United States)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  13. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    Science.gov (United States)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  14. Impact study of the Argo array definition in the Mediterranean Sea based on satellite altimetry gridded data

    Science.gov (United States)

    Sanchez-Roman, Antonio; Ruiz, Simón; Pascual, Ananda; Guinehut, Stéphanie; Mourre, Baptiste

    2016-04-01

    The existing Argo network provides essential data in near real time to constrain monitoring and forecasting centers and strongly complements the observations of the ocean surface from space. The comparison of Sea Level Anomalies (SLA) provided by satellite altimeters with in-situ Dynamic Heights Anomalies (DHA) derived from the temperature and salinity profiles of Argo floats contribute to better characterize the error budget associated with the altimeter observations. In this work, performed in the frame of the E-AIMS FP7 European Project, we focus on the Argo observing system in the Mediterranean Sea and its impact on SLA fields provided by satellite altimetry measurements in the basin. Namely, we focus on the sensitivity of specific SLA gridded merged products provided by AVISO in the Mediterranean to the reference depth (400 or 900 dbar) selected in the computation of the Argo Dynamic Height (DH) as an integration of the Argo T/S profiles through the water column. This reference depth will have impact on the number of valid Argo profiles and therefore on their temporal sampling and the coverage by the network used to compare with altimeter data. To compare both datasets, altimeter grids and synthetic climatologies used to compute DHA were spatially and temporally interpolated at the position and time of each in-situ Argo profile by a mapping method based on an optimal interpolation scheme. The analysis was conducted in the entire Mediterranean Sea and different sub-regions of the basin. The second part of this work is devoted to investigate which configuration in terms of spatial sampling of the Argo array in the Mediterranean will properly reproduce the mesoscale dynamics in this basin, which is comprehensively captured by new standards of specific altimeter products for this region. To do that, several Observing System Simulation Experiments (OSSEs) were conducted assuming that altimetry data computed from AVISO specific reanalysis gridded merged product for

  15. CryoSat/SIRAL Cal1 Calibration Orbits

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    The main payload of CryoSat is a Ku band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for SAR processing. This allows to reach an along track resolution that is significantly improved with respect to traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In fact, not only corrections for transfer function, gain and instrument path delay have to be computed (as in previous altimeters), but also corrections for phase (SAR/SARIn) and phase difference between the two receiving chains (SARIN only). Recalling that the CryoSat's orbit has a high inclination of 92° and it is non-sun-synchronous, the temperature of the SIRAL changes continuously along the orbit with a period of about 480 days and it is also function of the ascending/descending passes. By analysis of the CAL1 calibration corrections, it has been verified that the internal path delay and the instrument gain variation measured on the SIRAL are affected by the thermal status of the instrument and as a consequence they are expected to vary along the orbit. In order to gain knowledge on the calibration corrections (i.e. the instrument behavior) as function of latitude and temperature, it has been planned to command a few number of orbits where only CAL1 calibration acquisitions are continuously performed. The analysis of the CAL1 calibration corrections produced along the Calibration orbits can be also useful to verify whether the current calibration plan is able to provide sufficiently accurate corrections for the instrument acquisitions at any latitude. In 2016, the CryoSat/SIRAL Cal1 Calibration Orbits have been commanded two times, a first time the 20th of July 2016 and a second time the 24th of November 2016, and they

  16. Deep drivers of mesoscale circulation in the central Rockall Trough

    Science.gov (United States)

    Sherwin, T. J.; Alyenik, D.; Dumont, E.; Inall, M.

    2014-11-01

    Mesoscale variability in the central Rockall Trough between about 56 and 58° N has been investigated using a combination of ship-borne, underwater glider and gridded satellite altimeter measurements. Altimeter observations show that mesoscale features such as eddies and large scale circulation cells are ubiquitous phenomena. They have horizontal length scales of order 100 km with vertical scales of over 1000 m and are associated with mean current speeds (over the upper 1000 m) of 15 ± 7 cm s-1. Monthly area averaged surface Eddy Kinetic Energy (EKE) has substantial inter-annual variability, which at times can dominate a mean seasonal signal that varies from a maximum in May (74 cm2 s-2) to a minimum in October (52 cm2 s-2) and has increased gradually since 1992 at about 1.1 cm2 s-2 per year. A five month glider mission in the Trough showed that much of this energy comes from features that are located over 1000 m below the surface in the deep cold waters of the Trough (possibly from eddies associated the North Atlantic Current). The surface currents from altimeters had similar magnitude to the drift currents averaged over 1000 m from the glider in the stratified autumn, but were half the deep water speed during late winter. Although the mesoscale features move in an apparent random manner they may also be quasi-trapped by submarine topography such as seamounts. Occasionally anti-cyclonic and cyclonic cells combine to cause a coherent westward deflection of the European slope current that warms the Rockall side of the Trough. Such deflections contribute to the inter-annual variability in the observed temperature and salinity that are monitored in the upper 800 m of the Trough. By combining glider and altimeter measurements it is shown that altimeter measurements fail to observe a 15 cm s-1 northward flowing slope current on the eastern side and a small persistent southward current on the western side. There is much to be gained from the synergy between satellite

  17. Analysis and Validation of ZY-3 02 Satellite Laser Altimetry Data

    Directory of Open Access Journals (Sweden)

    LI Guoyuan

    2017-12-01

    Full Text Available ZY-3 02 satellite loaded with Chinese first earth observing satellite laser altimeter,and has been launched successfully on 30th May,2016. In this paper,the theoretical accuracy of the laser altimeter is analyzed,and several experimental areas are used to verify the actual accuracy. At the same time,the application of the laser altimetry data in the field of space-borne photogrammetry is tested. The laser altimetry theoretical accuracy of ZY-3 02 satellite in the flat area (slope less than 2 degrees is about 0.85 m and 14.2 m in the elevation and planimetry direction,respectively. The effective laser altimetry data account for about 23.89%,and near the calibration field the elevation accuracy is 0.89 m,and planimetry accuracy is about 14.76 m. Moreover,the verified elevation accuracy is 1.09 m in the North China by high precision DSM terrain data,and laser footprint points accuracy on the surface of the Bohai inland sea is about 0.47 m. When the laser foot print point is used as elevation control point,the elevation accuracy of the ZY-3 02 satellite stereo images in Shaanxi Weinan can be increased from 11.54 m to 1.90 m without GCPs. Although ZY3-02 satellite laser altimeter is just a test,the results proved that the domestic satellite laser altimetry data can effectively improve the stereo images without GCPs,which will be valuable in the global mapping project. It is suggest that operational laser altimeter equip on the next satellite of ZY-3 serials.

  18. CryoSat: ESA's ice explorer mission. One year in operations: status and achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Ortega, B. H.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Davidson, M.; Cullen, R.; Wingham, D.

    2012-04-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  19. Cryosat: Mission Status, Achievements and Data Access

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos Ortega, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Wingham, D.; CryoSat Mission Team

    2011-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Initial results have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. Scope of this paper is to describe the current mission status and the main scientific achievements since the start of the science phase. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  20. Esa Cryovex 2011 Airborne Campaign For Cryosat-2 Calibration And Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Einarsson, Indriði; Sørensen, Louise Sandberg

    of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done by comparing the radar and laser...... measurements, as the laser reflects on the surface, and by overflight of laser reflectors. In the spring of 2011 the DTU Space airborne team visited five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north...

  1. Local Marine Geoid Variations and Jason-2 Bias Determination using the Gavdos Permanent Cal/Val Facility

    DEFF Research Database (Denmark)

    Mertikas, S. P.; Daskalakis, A.; Tziavos, I. N.

    2012-01-01

    This work outlines how changes in steep bathymetry (from 200 m to 3500 m depth over a distance of 10 km) are reflected on the determined sea surface anomalies at the Gavdos site used for satellite altimeter calibration. After almost 4 years of Jason-2 calibration activities, it has been observed......, but others are related to under-sampling of the Earth's gravity field due to the resolution of the geoid model. New reference surfaces for calibration have thus emerged. Finally, new updated values for the Jason-2 altimeter bias have been determined as 191.81 ± 2.80 mm with the geoid model and as 181.51 ± 2...

  2. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Technical volume. Executive summary

    Science.gov (United States)

    Alvarado, U. R. (Editor); Chafaris, G.; Chestek, J.; Contrad, J.; Frippel, G.; Gulatsi, R.; Heath, A.; Hodara, H.; Kritikos, H.; Tamiyasu, K.

    1980-01-01

    The potential of space systems and technology for detecting and monitoring ocean oil spills and waste pollution was assessed as well as the impact of this application on communication and data handling systems. Agencies charged with responsibilities in this area were identified and their measurement requirements were ascertained in order to determine the spatial resolution needed to characterize operational and accidental discharges. Microwave and optical sensors and sensing techniques were evaluated as candidate system elements. Capabilities are described for the following: synthetic aperture radar, microwave scatterometer, passive microwave radiometer, microwave altimeter, electro-optical sensors currently used in airborne detection, existing space-based optical sensors, the thematic mapper, and the pointable optical linear array.

  3. Chemical Durability Improvement and Static Fatigue of Glasses.

    Science.gov (United States)

    1982-05-01

    Ss’n- 5cr.. Glassm. Union Scientifie. Contmentale de Verre , Belgium. 1962. 63 741 25 (1967). ’E. Orowan. "Fatigueueof Glas, Under Stress." Natre...PAGE 33703 CSILETmuE FORM . REPORT NUMER A2. DOV ACCRSION NOM S RECIPIENT’S CATALOG NUMER 4. TITLE (and sub.e.a S. TYPE OF REPORT 6 PERIOD COVERED...and J. S. Olcott, "Strengthening by Ion Exchange," J. this type of ion exchange is unlikely since Am. Ceram. Soc., 47 151 215-19 (1964). the alkali

  4. The Earth Gravitational Model 1996: The NCCS: Resource for Development, Resource for the Future

    Science.gov (United States)

    2002-01-01

    For centuries, men have attempted to understand the climate system through observations obtained from Earth's surface. These observations yielded preliminary understanding of the ocean currents, tides, and prevailing winds using visual observation and simple mechanical tools as their instruments. Today's sensitive, downward-looking radar systems, called altimeters, onboard satellites can measure globally the precise height of the ocean surface. This surface is largely that of the equipotential gravity surface, called the geoid - the level surface to which the oceans would conform if there were no forces acting on them apart from gravity, as well as having a significant 1-2- meter-level signal arising from the motion of the ocean's currents.

  5. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    Science.gov (United States)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  6. CryoSat: Mission Status, Achievements and New Results

    Science.gov (United States)

    Francis, R.; Wingham, D.; Cullen, R.; Parrinello, T.

    2010-12-01

    After 10 years of development and one failed launch attempt the CryoSat mission was successfully launched on 8 April 2010. The main payload instrument, the advanced SIRAL radar altimeter, was switched on just 3 days after launch and made its first measurements during a pass over Antarctica. Although data flow to the expert team at UCL was operational from the start, two more months were needed to iron out some system issues and bugs before data could be released to the calibration and validation teams. The process of further optimising the system performance as well as comparing measurements to known surface data has continued through the commissioning phase, ending in October 2010. The end of the commissioning phase marks the transition to routine operations and the release of data to registered Principal Investigators. The results from SIRAL are unlike those from previous altimeters. Representative results will be described, highlighting improvements and demonstrating the level of detail which can be observed and measured. In addition to its ‘design’ targets CryoSat has made measurements over various ocean and land areas. The ocean results, in particular, are indicative of the measurements which will be delivered by Sentinel-3’s SRAL instrument. These will also be described. The satellite in flight has proved to be using less propellant than foreseen and, based on the commissioning results, the prognosis for its future performance will be outlined.

  7. CryoSat Processing Prototype, how to generate LRM like echoes with SAR data and a Comparison to DUACS SLA over high latitudes

    Science.gov (United States)

    Picot, N.; Boy, F.; Desjonqueres, J.

    2012-12-01

    Like CryoSat, Sentinel3 embarks a doppler altimeter. While there is a long experience of LRM processing, SAR nadir looking data are new and will need in depth validation. Thanks to CryoSat data, the processing of SAR data can be experienced in orbit. The continuity to current altimeter data set (based on LRM acquisitions) has also to be analysed with details. A Cryosat Processing Prototype (C2P) has been developed on CNES side to prepare the CNES SAR ocean retracking study. this prototype allows to process SAR data in order to generate LRM like echoes on ground. Those CryoSat ocean products are routinely processed on CNES side and ingested in the SALP/DUACS system. CryoSat data have proved to be very accurate and very valuable for the ocean user community in the past monthes. For example, it has allowed to largely reduce the impact of the lost of the ESA ENVISAT mission as well as the long non availability of Jason-1 data. This paper will describe the system set up in place early 2012 to feed CryoSat data in the SALP/DUACS products and will present the routine data analysis . C2P CryoSat products will be compared with DUACS SLA estimates and a specific focus will be given over high latitudes knowing that CryoSat is the oinly mission providing sea surface estimates over latitudes above 66 degrees since the lost of the ESA ENVISAT mission.

  8. CryoSat-2 SIRAL Calibration: Strategy, Application and Results

    Science.gov (United States)

    Parrinello, T.; Fornari, M.; Bouzinac, C.; Scagliola, M.; Tagliani, N.

    2012-04-01

    The main payload of CryoSat-2 is a Ku band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach an along track resolution of about 250 meters which is an important improvement over traditional pulse-width limited altimeters. Due to the fact that SIRAL is a phase coherent pulse-width limited radar altimeter, a proper calibration approach has been developed. In fact, not only the corrections for transfer function amplitude with respect to frequency, gain and instrument path delay have to be computed but it is also needed to provide corrections for transfer function phase with respect to frequency and AGC setting as well as the phase variation across bursts of pulses. As a consequence, SIRAL performs regularly four types of calibrations: (1) CAL1 in order to calibrate the internal path delay and peak power variation, (2) CAL2 in order to compensate the instrument transfer function, (3) CAL4 to calibrate the interferometer and (4) AutoCal, a specific sequence in order to calibrate the gain and phase difference for each AGC setting. Commissioning phase results (April-December 2010) revealed high stability of the instrument, which made possible to reduce the calibration frequency during Operations. Internal calibration data are processed on ground by the CryoSat-2 Instrument Processing Facility (IPF1) and then applied to the science data. In this poster we will describe as first the calibration strategy and then how the four different types of calibration are applied to science data. Moreover the calibration results over almost 2 years of mission will be presented, analyzing their temporal evolution in order to highlight the stability of the instrument over its life.

  9. PIXE analysis of atmospheric particulate matter in glas fibre filters

    International Nuclear Information System (INIS)

    Tabacniks, M.H.; Orsini, C.Q.; Maenhaut, W.

    1993-01-01

    A 3-step extraction procedure was developed to allow particle-induced X-ray emission (PIXE) analysis of particulate matter in normal glass fibre filter samples. The detection limits, expressed in ng/m 3 of air, for the filter extracts were 5 to 30 times lower than those achieved by PIXE analysis or ordinary Nuclepore polycarbonate filter samples. The concentration results were compared with those obtained from routine atomic absorption spectrometry measurements and with the PIXE data from Nuclepore stacked filter unit samples taken in parallel. (orig.)

  10. GLAS/ICESat L2 Sea Ice Altimetry Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — GLA13 contains sea ice and open ocean elevations corrected for geodetic and atmospheric affects, calculated from algorithms fine-tuned for sea ice returns. Granules...

  11. Gland segmentation in colon histology images : The glas challenge contest

    NARCIS (Netherlands)

    Sirinukunwattana, Korsuk; Pluim, J.P.W.; Chen, Hao; Qi, Xiaojuan; Heng, Pheng Ann; Guo, Yun Bo; Wang, Li Yang; Matuszewski, Bogdan J.; Bruni, Elia; Sanchez, Urko; Böhm, Anton; Ronneberger, Olaf; Cheikh, Bassem Ben; Racoceanu, Daniel; Kainz, Philipp; Pfeiffer, Michael; Urschler, Martin; Snead, David R.J.; Rajpoot, Nasir M.

    2016-01-01

    Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer. In clinical practice, the morphology of intestinal glands, including architectural appearance and glandular formation, is used by pathologists to inform prognosis and plan the treatment

  12. Eindrapportage gele rozeluis in de teelt van aardbei onder glas

    NARCIS (Netherlands)

    Bloemhard, C.M.J.; Linden, van der A.

    2008-01-01

    Van de vele soorten bladluizen die op aardbei kunnen voorkomen is de gele rozeluis Rhodobium porosum het moeilijkst chemisch te bestrijden. Dit onderzoek richt zich op de biologische bestrijding van de luis met natuurlijke vijanden als de sluipwespen, gaas en zweefvliegen en insectpathogene

  13. Therapeutically interchangeable? A study of real-world outcomes associated with switching basal insulin analogues among US patients with type 2 diabetes mellitus using electronic medical records data.

    Science.gov (United States)

    Levin, P; Wei, W; Miao, R; Ye, F; Xie, L; Baser, O; Gill, J

    2015-03-01

    To evaluate real-world clinical outcomes for switching basal insulin analogues [insulin glargine (GLA) and insulin detemir (DET)] among US patients with type 2 diabetes mellitus (T2DM). Using the GE Centricity Electronic Medical Records database, this retrospective study examined two cohorts: cohort 1, comprising patients previously on GLA and then either switching to DET (DET-S) or continuing with GLA (GLA-C); and cohort 2, comprising patients previously on DET and then either switching to GLA (GLA-S) or continuing with DET (DET-C). Within each cohort, treatment groups were propensity-score-matched on baseline characteristics. At 1-year follow-up, insulin treatment patterns, glycated haemoglobin (HbA1c) levels, hypoglycaemic events, weight and body mass index (BMI) were evaluated. The analysis included 13 942 patients: cohort 1: n = 10 657 (DET-S, n = 1797 matched to GLA-C, n = 8860) and cohort 2: n = 3285 (GLA-S, n = 858 matched to DET-C, n = 2427). Baseline characteristics were similar between the treatment groups in each cohort. At 1-year follow-up, in cohort 1, patients in the DET-S subgroup were significantly less persistent with treatment, more likely to use a rapid-acting insulin analogue, had higher HbA1c values, lower HbA1c reductions and lower proportions of patients achieving HbA1c Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  14. Design and evaluation of a grid reciprocation scheme for use in digital breast tomosynthesis

    Science.gov (United States)

    Patel, Tushita; Sporkin, Helen; Peppard, Heather; Williams, Mark B.

    2016-03-01

    This work describes a methodology for efficient removal of scatter radiation during digital breast tomosynthesis (DBT). The goal of this approach is to enable grid image obscuration without a large increase in radiation dose by minimizing misalignment of the grid focal point (GFP) and x-ray focal spot (XFS) during grid reciprocation. Hardware for the motion scheme was built and tested on the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis (MBT) on a single gantry. The DMT scanner uses fully isocentric rotation of tube and x-ray detector for maintaining a fixed tube-detector alignment during DBT imaging. A cellular focused copper prototype grid with 80 cm focal length, 3.85 mm height, 0.1 mm thick lamellae, and 1.1 mm hole pitch was tested. Primary transmission of the grid at 28 kV tube voltage was on average 74% with the grid stationary and aligned for maximum transmission. It fell to 72% during grid reciprocation by the proposed method. Residual grid line artifacts (GLAs) in projection views and reconstructed DBT images are characterized and methods for reducing the visibility of GLAs in the reconstructed volume through projection image flat-field correction and spatial frequency-based filtering of the DBT slices are described and evaluated. The software correction methods reduce the visibility of these artifacts in the reconstructed volume, making them imperceptible both in the reconstructed DBT images and their Fourier transforms.

  15. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    Science.gov (United States)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  16. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  17. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    Science.gov (United States)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  18. M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry*

    Science.gov (United States)

    Ray, R. D.; Zaron, E. D.

    2015-01-01

    A near-global chart of surface elevations associated with the stationary M2 internal tide is empirically constructed from multi-mission satellite altimeter data. An advantage of a strictly empirical mapping approach is that results are independent of assumptions about ocean wave dynamics and, in fact, can be used to test such assumptions. A disadvantage is that present-day altimeter coverage is only marginally adequate to support mapping such short-wavelength features. Moreover, predominantly north-south ground-track orientations and contamination from nontidal oceanographic variability can lead to deficiencies in mapped tides. Independent data from Cryosphere Satellite-2 (CryoSat-2) and other altimeters are used to test the solutions and show positive reduction in variance except in regions of large mesoscale variability. The tidal fields are subjected to two-dimensional wavenumber spectral analysis, which allows for the construction of an empirical map of modal wavelengths. Mode-1 wavelengths show good agreement with theoretical wavelengths calculated from the ocean's mean stratification, with a few localized exceptions (e.g., Tasman Sea). Mode-2 waves are detectable in much of the ocean, with wavelengths in reasonable agreement with theoretical expectations, but their spectral signatures grow too weak to map in some regions.

  19. Altimetric signal and three-dimensional structure of the sea in the Channel of Sicily

    Science.gov (United States)

    Nardelli, Bruno Buongiorno; Santoleri, Rosalia; Iudicone, Daniele; Zoffoli, Simona; Marullo, Salvatore

    1999-09-01

    The 1996 Altimeter/Synoptic Mesoscale Plancton Experiment (ALT/SYMPLEX) was specifically designed to perform in situ measurements simultaneous with the passage of TOPEX/POSEIDON (T/P) and ERS 2 over selected tracks in the central and eastern Sicily Channel. This experiment made it possible to have, for the first time, a validation of altimetry with in situ data over the Mediterranean, where weak dynamics results in a modest sea elevation, rarely exceeding 10 cm. Historical infrared and altimetric satellite data were first analyzed in order to study the variability of the circulation in the area. The comparative and integrative analysis of simultaneous satellite data and in situ measurements permitted investigation of the relation between the altimeter-derived surface topography and the three-dimensional structure of the sea. The Pearson correlation coefficients between altimeter data and dynamic heights along track resulted to be 0.72-0.89 (T/P) and 0.88 (ERS 2) when using conventional repeat track analysis. For T/P, a correlation value of 0.87 was found for time differences computed basing on a collinear analysis technique. This analysis also led to the identification of a strong barotropic component of the velocity field located near the Sicilian continental shelf, where it is responsible for approximately 60% of the signal.

  20. OPERATION DOMINIC, FISH BOWL SERIES. Project Officer’s Report. Project 6.2. Gamma-Ray Scanning of Debris Cloud

    Science.gov (United States)

    1985-09-01

    payload consisted of an ogive fiber glass nose cone, a ground plane, antennas, a rocket adapter, electronic equipment, and a magnesium structure. The...No. 884 i. Nose Cone Structure (Descriptive^ Standard D-4 fiber glas nose cone. Nose cone will not be ejected during flight. Internal structure...4» O ki O ki u b b 0 <uo 0)0 14 u COCO e 9K c CM 41 (0 eg w U »4 u <rt & CA eg CA eg eg ■- eg *i eg

  1. Silver-activated radiophotoluminescence dosemeter glass with high sensitivity and good corrosion resistance, method of production and applications

    International Nuclear Information System (INIS)

    Kaes, H.H.; Staaden, H.

    1976-01-01

    Hitherto known radiophotoluminescent dosimeter glasses have an interfering maximum of energy dependence in the γ-energy region of 40-60 KeV. The glas according to the invention does not have this disadvantage as the metaphophate group has been replaced by fluorine. The glass is melted from a mixture which besides a silver compound (AgPO 3 , AgNO 3 , Ag 2 CO 3 or LiAg[PO 3 ] 2 ) consists of at least one fluoride. Detailed examples clarify the method and give the limits of possible deviations in the composition. (UWI) [de

  2. Historical crime novels and meta-reflective aesthetics

    DEFF Research Database (Denmark)

    Agger, Gunhild; Jacobsen, Michael Hviid

    2014-01-01

    layers with a contemporary setting. The second will be represented by the ‘literary’, meta-reflective novel involving crime and investigation, but in untraditional ways where various levels of reflection form a part of the plot. In various ways, both contribute to highlight the influence of fictitious...... (2009) Kerstin Ekman continued her exploration of the act of crime, inspired by, re-writing and commenting on Hjalmar Söderberg’s Doctor Glas (1905). This novel represents a peculiar way of combining a historical setting with a meta-reflective strategy, which is strongly appealing. This strategy has...

  3. Earth System Data Records of Mass Transport from Time-Variable Gravity Data

    Science.gov (United States)

    Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.

    2014-12-01

    Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.

  4. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    Science.gov (United States)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  5. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods

    Directory of Open Access Journals (Sweden)

    J. L. Bamber

    2009-05-01

    Full Text Available Digital elevation models (DEMs of the whole of Antarctica have been derived, previously, from satellite radar altimetry (SRA and limited terrestrial data. Near the ice sheet margins and in other areas of steep relief the SRA data tend to have relatively poor coverage and accuracy. To remedy this and to extend the coverage beyond the latitudinal limit of the SRA missions (81.5° S we have combined laser altimeter measurements from the Geosciences Laser Altimeter System onboard ICESat with SRA data from the geodetic phase of the ERS-1 satellite mission. The former provide decimetre vertical accuracy but with poor spatial coverage. The latter have excellent spatial coverage but a poorer vertical accuracy. By combining the radar and laser data using an optimal approach we have maximised the vertical accuracy and spatial resolution of the DEM and minimised the number of grid cells with an interpolated elevation estimate. We assessed the optimum resolution for producing a DEM based on a trade-off between resolution and interpolated cells, which was found to be 1 km. This resulted in just under 32% of grid cells having an interpolated value. The accuracy of the final DEM was assessed using a suite of independent airborne altimeter data and used to produce an error map. The RMS error in the new DEM was found to be roughly half that of the best previous 5 km resolution, SRA-derived DEM, with marked improvements in the steeper marginal and mountainous areas and between 81.5 and 86° S. The DEM contains a wealth of information related to ice flow. This is particularly apparent for the two largest ice shelves – the Filchner-Ronne and Ross – where the surface expression of flow of ice streams and outlet glaciers can be traced from the grounding line to the calving front. The surface expression of subglacial lakes and other basal features are also illustrated. We also use the DEM to derive new estimates of balance velocities and ice divide locations.

  6. Sealing of ceramic SOFC-components with glass seals; Fuegen von keramischen Komponenten der Hochtemperatur-Brennstoffzellen mittels Glas- und Glaskeramikloten

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, Cora

    2012-07-10

    The solid oxide fuel cell (SOFC) converts chemical energy of a fuel directly into electrical energy. However, for the implementation of SOFC-technology in competition to conventional power plants costs have to be reduced. The use of an alternative tubular cell design without closed end would allow reducing costs during cell manufacturing. However, this change in design makes a gastight sealing inside the generator near the gas inlet necessary. Different ceramic materials with varying coefficients of thermal expansion have to be sealed gastight and electrical insulating at temperatures between 850 C and 1000 C to prevent the gases from mixing and an electrical shortcut between the cells. This work comprises analysis of commercially available glass and glass-ceramic systems manufactured by Schott Electronic Packaging, Areva T and D and Ferro Corporation. Additionally new developed sealing glass and glass-ceramic systems were investigated and all systems were characterized fundamentally for the use as sealing material in SOFC generators. Therefore different test assemblies and series were conducted. Essential characteristics of a suitable sealing system are a thermal expansion coefficient between 9,5 and 12 . 10{sup -6}K{sup -1}, a viscosity in the range between 10{sup 4} to 10{sup 6} dPa{sup *}s and a wetting angle smaller than 90 during the sealing process. Also unwanted chemical side reactions between the sealing partners must be prevented, because a change in the phase composition or the creation of new phases in the sealing material could endanger the stability of the seal. Heat cycles, particularly those during generator operation, cause deterioration of the sealing material and subsequent reduction in its ability to prevent mixing of the gases. Sealant leaks can drastically impact efficiency of the generator. In order to ensure optimum operation low leak rates around 2,3 . 10{sup -4} mbar l/sec/cm{sup 2} must be maintained. Especially glass and glass

  7. MESSENGER E/V/H MLA 3/4 CDR/RDR DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Mercury Laser Altimeter (MLA) Calibrated Data Record (CDR) and Reduced Data Record (RDR) products. The MLA...

  8. Reflectance of Mercury's Polar Regions: Calibration and Implications for Mercury's Volatiles

    Science.gov (United States)

    Neumann, G. A.; Sun, X.; Cao, A.; Deutsch, A. N.; Head, J. W.

    2018-05-01

    Calibration of laser altimeter reflectances under widely varying conditions is supported by laboratory data from an engineering simulator to address the distribution of volatile deposits in Mercury's polar cold traps.

  9. MOLA PRECISION RADIOMETRY DATA RECORD

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Orbiter Laser Altimeter not only provides surface topography from the laser pulse time-of-flight, but also two radiometric measurements, the active...

  10. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  11. Evaluating the Impact of the Number of Satellite Altimeters Used in an Assimilative Ocean Prediction System

    Science.gov (United States)

    2010-01-01

    indicates the scaled MB, MB95 MB 1 N N j51 (O j O)2 2 4 3 5 1/2 , (12) or the biweight version, MBbw9 5 MBbw hhO j iibw , (13) and the x axis denotes...RMSEbwunbiased hhO j iibw . (15) To investigate the impact of outliers, results from both the Gaussian statistics [Eqs. (12) and (14)] and the non- parametric

  12. Performance and Quality Assessment of the Forthcoming Copernicus Marine Service Global Ocean Monitoring and Forecasting Real-Time System

    Science.gov (United States)

    Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.

    2016-02-01

    Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.

  13. MGN V RDRS 5 GLOBAL DATA RECORD TOPOGRAPHIC V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the Magellan Global Topographic Data Record (GTDR). The range to surface is derived by fitting altimeter echoes from the fan-beam altimetry...

  14. MGN V RDRS 5 GLOBAL DATA RECORD SLOPE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the Magellan Global Slope Data Record (GSDR). The surface meter-scale slopes are derived by fitting altimeter echoes from the fan-beam...

  15. Cryosat: Esa's Ice Explorer Mission. Two YEARs in Operations: Status and Achievements

    Science.gov (United States)

    Parrinello, T.; Mardle, N.; Hoyos, B.; Bouzinac, C.; Badessi, S.; Frommknecht, B.; Cullen, R.; Fornari, M.; Davidson, M.; Laxon, S.

    2012-12-01

    CryoSat-2 was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat-2 carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL) with two antennas and with extended capabilities to meet the measurement requirements for ice-sheets elevation and sea-ice freeboard. Experimental evidence have shown that data is of high quality thanks to an altimeter that is behaving exceptional well within its design specifications. After an intensive but rewarding six months of commissioning, the CryoSat mission entered the science phase in November last year. Data was released to the scientific community in February 2011 and since then, products have been systematically distributed to more than 150 Principal Investigators and used by more than 400 scientists worldwide. This community is increasing every day. In April 2012, the first winter [2010 -2011] sea-ice variation map of the Arctic was released to the scientific community. Scope of this paper is to describe the current mission status and the main scientific achievements in the last twelve months. Topics will also include programmatic highlights and information on accessing Cryosat products following the new ESA Earth Observation Data Policy.

  16. High Pass Filtering of Satellite Altimeter Data,

    Science.gov (United States)

    1982-10-01

    bathymetry [7] and filtered data tracks (N = 3, X = 200 km) near the Clipperton Fracture Zone just East of the Christmas Island Ridge. Along the multiple...We also notice a negative signature associated with the Clipperton Fracture Zone and extending over all the tracks. It may indicate a trough covered...in Mid-Pacific Seamount Province..Mid-Iat tic and near the Western Clipperton Fracture Zone respectively. These charts arc to he overlaid by Figures

  17. GEOSAT Follow-On (GFO): Geophysical Data Record (NODC Accession 0085960)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GEOSAT Follow-On (GFO) program is the Navy's initiative to develop an operational series of radar altimeter satellites to maintain continuous ocean observation...

  18. GEOSAT Follow-On (GFO): Operational Orbit Determination Data for 1998-2008 (NODC Accession 0085961)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GEOSAT Follow-On (GFO) program is the Navy's initiative to develop an operational series of radar altimeter satellites to maintain continuous ocean observation...

  19. GEOSAT Follow-On (GFO): Housekeeping Telemetry, Calibration and Waveform Data (NODC Accession 0085962)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GEOSAT Follow-On (GFO) program is the Navy's initiative to develop an operational series of radar altimeter satellites to maintain continuous ocean observation...

  20. Preface to the Special Issue on "Geophysical and Climate Change Studies in Tibet, Xinjiang, and Siberia (TibXS from Satellite Geodesy"

    Directory of Open Access Journals (Sweden)

    Cheinway Hwang

    2013-01-01

    Full Text Available This special issue publishes papers on recent results in geophysical and climate change studies over Tibet, Xinjiang and Siberia (TibXS based upon some of the key sensors used in satellite geodesy, including satellite gravimetric sensors (GRACE and GOCE, satellite altimeters (TOPEX, Jason-1 and -2, and ENVISAT, and Global Positioning System satellites. Results from ground- and airborne-based geodetic observations, notably those based on airborne gravimeter, superconducting gravimeter (SG and seismometers are also included in the special issue. In all, 22 papers were submitted for this special issue; 17 papers were accepted.

  1. Status of Precise Orbit Determination for Jason-2 Using GPS

    Science.gov (United States)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Pavlis, D. E.

    2011-01-01

    The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD.

  2. CryoSat-2 science algorithm status, expected future improvements and impacts concerning Sentinel-3 and Jason-CS missions

    Science.gov (United States)

    Cullen, R.; Wingham, D.; Francis, R.; Parrinello, T.

    2011-12-01

    With CryoSat-2 soon to enter its second year of post commissioning operations there is now sufficient experience and evidence showing improvements of the SIRAL's (Synthetic interferometric radar altimeter) SAR and SARIn modes over conventional pulse-width limited altimeters for both the targeted marine/land ice fields but also for non mission relevant surfaces such as the ocean, for example. In the process of understanding the CryoSat data some side effects of the end-to-end platform measurement and ground retrieval system have been identified and whilst those key to mission success are understood and are being handled others, remain open and pave the way to longer term fine-tuning. Of interest to the session will be a summary of the manditory changes made during 2011 to all the modes of CryoSat-2 science processing with a view to longer term algorithm improvements that could benefit the planned mid-to-late nominal operations re-processing. Since some of the science processor improvements have direct implication to the SAR mode processing of Sentinel-3 and Jason-CS science then these will also be highlighted. Finally a summary of the CryoSat-2 in-orbit platform and payload performances and their stability will also be provided. Expectations of the longer term uses of CryoSat's primary sensor (SIRAL) and its successors will be discussed.

  3. Guide to Magellan image interpretation

    Science.gov (United States)

    Ford, John P.; Plaut, Jeffrey J.; Weitz, Catherine M.; Farr, Tom G.; Senske, David A.; Stofan, Ellen R.; Michaels, Gregory; Parker, Timothy J.; Fulton, D. (Editor)

    1993-01-01

    An overview of Magellan Mission requirements, radar system characteristics, and methods of data collection is followed by a description of the image data, mosaic formats, areal coverage, resolution, and pixel DN-to-dB conversion. The availability and sources of image data are outlined. Applications of the altimeter data to estimate relief, Fresnel reflectivity, and surface slope, and the radiometer data to derive microwave emissivity are summarized and illustrated in conjunction with corresponding SAR image data. Same-side and opposite-side stereo images provide examples of parallax differences from which to measure relief with a lateral resolution many times greater than that of the altimeter. Basic radar interactions with geologic surfaces are discussed with respect to radar-imaging geometry, surface roughness, backscatter modeling, and dielectric constant. Techniques are described for interpreting the geomorphology and surface properties of surficial features, impact craters, tectonically deformed terrain, and volcanic landforms. The morphologic characteristics that distinguish impact craters from volcanic craters are defined. Criteria for discriminating extensional and compressional origins of tectonic features are discussed. Volcanic edifices, constructs, and lava channels are readily identified from their radar outlines in images. Geologic map units are identified on the basis of surface texture, image brightness, pattern, and morphology. Superposition, cross-cutting relations, and areal distribution of the units serve to elucidate the geologic history.

  4. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  5. GEOSAT 44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  6. GEOSAT44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  7. Evidensgraderingssystemet GRADE : Ett sätt att granska vetenskaplig kunskap om metoder och arbetssätt i hälso- och sjukvården

    OpenAIRE

    Roback, Kerstin; Carlsson, Per

    2009-01-01

    Beslut om införande av nya behandlingsmetoder och arbetssätt i sjukvården präglas alltid av en viss grad av osäkerhet. De studier som gjorts av metodens för- och nackdelar kan vara av olika god kvalitet och därmed ge mer eller mindre säkra resultat. Efter att användningen av systematiska litteraturstudier vid medicinsk teknologiutvärdering tog fart på 1980-talet började man efterfråga ett beslutsunderlag som även tar hänsyn till olika studiers kvalitet. Detta initierade utvecklingen av flera ...

  8. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    Science.gov (United States)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  9. Non-Stationary Internal Tides Observed with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2011-01-01

    Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.

  10. On the unification of geodetic leveling datums using satellite altimetry

    Science.gov (United States)

    Mather, R. S.; Rizos, C.; Morrison, T.

    1978-01-01

    Techniques are described for determining the height of Mean Sea Level (MSL) at coastal sites from satellite altimetry. Such information is of value in the adjustment of continental leveling networks. Numerical results are obtained from the 1977 GEOS-3 altimetry data bank at Goddard Space Flight Center using the Bermuda calibration of the altimeter. Estimates are made of the heights of MSL at the leveling datums for Australia and a hypothetical Galveston datum for central North America. The results obtained are in reasonable agreement with oceanographic estimates obtained by extrapolation. It is concluded that all gravity data in the Australian bank AUSGAD 76 and in the Rapp data file for central North America refer to the GEOS-3 altimeter geoid for 1976.0 with uncertainties which do not exceed + or - 0.1 mGal.

  11. Validation of ERS-1 and high-resolution satellite gravity with in-situ shipborne gravity over the Indian offshore regions: Accuracies and implications to subsurface modeling

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, S.; Bhattacharyya, R.; Michael, L.; Krishna, K.S.; Majumdar, T.J.

    Geoid and gravity anomalies derived from satellite altimetry are gradually gaining importance in marine geoscientific investigations. Keeping this in mind, we have validated ERS-1 (168 day repeat) altimeter data and very high-resolution free...

  12. Determining the Applicability of the Barotropic Approximation to the Mean Seasonal Flow Through the Tsushima/Korean Strait using Variational Assimilation

    National Research Council Canada - National Science Library

    Smith, S. R; Jacobs, G. A; Leben, R. R

    2005-01-01

    .... The velocity measurements are from two lines of moored acoustic Doppler Current profilers (ADCPs) spanning the Tsushima/Korean strait just north and south of Tsushima island and the SSHA measurements are from the TOPEX altimeter...

  13. A granular refillable filter for glas-flows contaminated by radioactive impurities

    International Nuclear Information System (INIS)

    Bonn, J.W.

    1975-01-01

    Description is given of a granular charcoal refillable filter adapted to adsorb the radioactive impurities of a gaseous flow. That flow comprises a number of filtering layers, the consumed charcoal of which can be discharged by a pneumatic device without exposing the personnel to radioactivity. This can be applied to emergency devices in nuclear facilities [fr

  14. GLAS/ICESat L2 Global Land Surface Altimetry Data V033

    Data.gov (United States)

    National Aeronautics and Space Administration — GLA14 contains the land elevation and elevation distribution corrected for geodetic and atmospheric affects calculated from algorithms fine-tuned for over land...

  15. Umur glas eel (Anguilla spp. yang masuk muara Sungai Progo Yogyakarta

    Directory of Open Access Journals (Sweden)

    Agung Budiharjo

    2017-03-01

    Full Text Available The leptocephalus drift with sea currents and moving from spawning area into coastal area near mouth of Progo River. In thecoastal area, leptocephalus metamorfosed into glass eel, after that glass eel migrated to river. The aims of this research were to estimate glass eels age and predict hatching dates. Glass eels sampled on new moon during Februari 2007-Mei 2009 at mouth of Progo River.Glass eel ages estimated using their otolith micro structure. Hatching dates predicted with back calculation of glass eels age. We collected 1.082 glass eels. The ages of glass eel at recruit ranged from 58 to 190 days, and divided into 5 age groups. Glass eels are migrated to river hatched on a "new moon" from July to January. Glass eels are migrated to river during October-January hatched during July-October. Glass eels are migrated to river during February-Juny hatched during November-January.

  16. Development of a GSI-Based, 2D-VAR Data Assimilation System for Operational Wave Guidance at the National Weather Service

    Science.gov (United States)

    Flampouris, S.; Alves, H.; Pondeca, M.

    2016-02-01

    The US National Centers for Environmental Prediction (NCEP) provides wave guidance to the National Weather Service (NWS) via a suite of operational wave models, which include three global-scale systems. An approach is being developed to include data assimilation into the global wave models using a 2D version of NCEP's grid-point statistical interpolation (2D-GSI), as described in Derber & Rosatti (1989), and Pondeca et al (2011). As a first step to the global implementation of a wave DA system, a prototype is being developed that will consist of adding wave heights as an analysis variable to the operational Real-Time Mesoscale Analysis (RTMA), which provides hourly analyses of several near sea-surface meteorological parameters, and supports a variety of applications within the NWS. The core of the RTMA is a 2D version of the GSI, which is a variational data assimilation system, and the first guess for the wave-height analysis is provided by NCEP's global wave models. For the new application, the RTMA will be modified to reflect background error covariances consistent with wave-height fields for regional and nearshore applications. In addition, quality control modules for in situ and altimeter significant wave height have been developed and integrated into the system. The strengths and the performance of the 2D-GSI are illustrated with both in situ and satellite measurements of significant wave height in the NW Atlantic and the Gulf of Mexico. The validation of follows the typical cross-validation procedure of RTMA products, based on 10% of the observations, for a period of 15 days. The error statistics (mean, root-mean-square) of the wave-height analysis shows significant improvement, relative to the first guess.

  17. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  18. High-Rate Data-Capture for an Airborne Lidar System

    Science.gov (United States)

    Valett, Susan; Hicks, Edward; Dabney, Philip; Harding, David

    2012-01-01

    A high-rate data system was required to capture the data for an airborne lidar system. A data system was developed that achieved up to 22 million (64-bit) events per second sustained data rate (1408 million bits per second), as well as short bursts (less than 4 s) at higher rates. All hardware used for the system was off the shelf, but carefully selected to achieve these rates. The system was used to capture laser fire, single-photon detection, and GPS data for the Slope Imaging Multi-polarization Photo-counting Lidar (SIMPL). However, the system has applications for other laser altimeter systems (waveform-recording), mass spectroscopy, xray radiometry imaging, high-background- rate ranging lidar, and other similar areas where very high-speed data capture is needed. The data capture software was used for the SIMPL instrument that employs a micropulse, single-photon ranging measurement approach and has 16 data channels. The detected single photons are from two sources those reflected from the target and solar background photons. The instrument is non-gated, so background photons are acquired for a range window of 13 km and can comprise many times the number of target photons. The highest background rate occurs when the atmosphere is clear, the Sun is high, and the target is a highly reflective surface such as snow. Under these conditions, the total data rate for the 16 channels combined is expected to be approximately 22 million events per second. For each photon detection event, the data capture software reads the relative time of receipt, with respect to a one-per-second absolute time pulse from a GPS receiver, from an event timer card with 0.1-ns precision, and records that information to a RAID (Redundant Array of Independent Disks) storage device. The relative time of laser pulse firings must also be read and recorded with the same precision. Each of the four event timer cards handles the throughput from four of the channels. For each detection event, a flag is

  19. Sound Propagation from the Continental Slope to the Continental Shelf: Remote Sensing Component

    National Research Council Canada - National Science Library

    Kelly, Kathryn

    2000-01-01

    ... along the East Coast of North America. The AVHRR images were used to show the location and orientation of the shelf I/slope front and the altimeter was used to study the fluctuations of the geostrophic currents...

  20. Gravity and Nonconservative Force Model Tuning for the GEOSAT Follow-On Spacecraft

    Science.gov (United States)

    Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Chinn, Douglas S.; Marr, Gregory C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Three radar altimeter calibration campaigns have been conducted in 1999 and 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler beacons and a limited amount of data have been obtained from the Global Positioning Receiver (GPS) on board the satellite. Even with EGM96, the predicted radial orbit error due to gravity field mismodelling (to 70x70) remains high at 2.61 cm (compared to 0.88 cm for TOPEX). We report on the preliminary gravity model tuning for GFO using SLR, and altimeter crossover data. Preliminary solutions using SLR and GFO/GFO crossover data from CalVal campaigns I and II in June-August 1999, and January-February 2000 have reduced the predicted radial orbit error to 1.9 cm and further reduction will be possible when additional data are added to the solutions. The gravity model tuning has improved principally the low order m-daily terms and has reduced significantly the geographically correlated error present in this satellite orbit. In addition to gravity field mismodelling, the largest contributor to the orbit error is the non-conservative force mismodelling. We report on further nonconservative force model tuning results using available data from over one cycle in beta prime.

  1. CryoSat SAR/SARin Level1b products: assessment of BaselineC and improvements towards BaselineD

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvements in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. The current IPF, Baseline C, was released in operation in April 2015 and the second CryoSat reprocessing campaign was jointly initiated, taking benefit of the upgrade implemented in the IPF1 processing chain but also of some specific configurations for the calibration corrections. In particular, the CryoSat Level1b BaselineC products generated in the framework of the second reprocessing campaign include refined information for what concerns the mispointing angles and the calibration corrections. This poster will thus detail thus the evolutions that are currently planned for the CryoSat BaselineD SAR/SARin Level1b products and the corresponding quality improvements that are expected.

  2. Improving modeling of tides on the continental shelf off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Testut, L.; Unnikrishnan, A.S.

    : modern insights from FES2004.Ocean Dynamics, 56, 394-415. Lyard, F.;Roblou, L., and Birol,F., 2009.Precise error budget for the altimeter-derived tidal constantsin shelf and coastal seas.Ocean Surface Topography Science Team (OSTST), (Seattle...

  3. Lithospheric stretching and the long wavelength free-air gravity anomaly of the Eastern Continental margin of India and the 85 degree E Ridge, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rajesh, S.; Majumdar, T.J.; Krishna, K.S.

    Or as envisaged, was it originated from the Crozet hotspot We address these issues by using satellite altimeter-derived gravity anomaly and its analytical upward continuation anomalies with forward modeling of ship-borne data. Results on analytical continuation...

  4. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    Science.gov (United States)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  5. G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.

    Science.gov (United States)

    Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.

    2017-12-01

    G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.

  6. AN ASSESSMENT OF SPACEBORNE NEAR-NADIR INTERFEROMETRIC SAR PERFORMANCE OVER INLAND WATERS WITH REAL

    Directory of Open Access Journals (Sweden)

    H. Tan

    2018-04-01

    Full Text Available Elevation measurements of the continental water surface have been poorly collected with in situ measurements or occasionally with conventional altimeters with low accuracy. Techniques using InSAR at near-nadir angles to measure the inland water elevation with large swath and with high accuracy have been proposed, for instance, the WSOA on Jason 2 and the KaRIn on SWOT. However, the WSOA was abandoned unfortunately and the SWOT is planned to be launched in 2021. In this paper, we show real acquisitions of the first spaceborne InSAR of such kind, the Interferometric Imaging Radar Altimeter (InIRA, which has been working on Tiangong II spacecraft since 2016. We used the 90-m SRTM DEM as a reference to estimate the phase offset, and then an empirical calibration model was used to correct the baseline errors.

  7. The Impact of Temporal Geopotential Variations on GPS

    Science.gov (United States)

    Melachroinos, Stavros; Lemoine, Frank G.; Zelensky, Nikita P.; Beckley, Brian D.; Chinn, Douglas S.; Nicholas, Joseph B.; McCarthy, John J.; Pennington, Teresa; Luthcke, Scott B.

    2012-01-01

    Lemoine et al. (2006) and Lemoine et al. (2010) showed that applying more detailed models of time-variable gravity (TVG) improved the quality of the altimeter satellite orbits (e.g. TOPEX/Poseidon, Jason-1, Jason-2). This modeling include application of atmospheric gravity derived from 6-hrly pressure fields obtained from the ECMWF and annual gravity variations to degree & order 20x20 in spherical harmonics derived from GRACE data. This approach allowed the development of a consistent geophysical model for application to altimeter satellite orbit determination from 1993 to 2011. In addition, we have also evaluated the impact of TVG modeling on the POD of Jason-1 and Jason-2 by application of a weekly degree & order four gravity coefficient time series developed using data from ten SLR & DORIS-tracked satellites from 1993 to 2011 (Lemoine et al., 2011).

  8. Surface elevation changes of the greenland ice sheet - results from ESA'S ice sheet CCI

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovky, Kirill; Meister, Rakia

    2013-01-01

    In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Climate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find...... the most optimal method, a Round Robin exercise was conducted in which the scientific community was asked to provide their best SEC estimate over the Jakobshavn Isbr drainage basin. The participants used both repeat-track (RT), overlapping footprints, and the cross-over (XO) methods, and both ICESat laser...... and Envisat radar altimeter data were used. Based on this and feedback sheets describing their methods we found that a combination of the RT and XO techniques yielded the best results. In the following, the obtained results will be presented and discussed....

  9. An Assessment of State-of-the-Art Mean Sea Surface and Geoid Models of the Arctic Ocean: Implications for Sea Ice Freeboard Retrieval

    DEFF Research Database (Denmark)

    Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan

    2017-01-01

    in a given model in the high frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean......State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors...... geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multi-sensor oceanographic time-series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04, DTU15...

  10. An Assessment of Spaceborne Near-Nadir Interferometric SAR Performance Over Inland Waters with Real

    Science.gov (United States)

    Tan, H.; Li, S. Y.; Liu, Z. W.

    2018-04-01

    Elevation measurements of the continental water surface have been poorly collected with in situ measurements or occasionally with conventional altimeters with low accuracy. Techniques using InSAR at near-nadir angles to measure the inland water elevation with large swath and with high accuracy have been proposed, for instance, the WSOA on Jason 2 and the KaRIn on SWOT. However, the WSOA was abandoned unfortunately and the SWOT is planned to be launched in 2021. In this paper, we show real acquisitions of the first spaceborne InSAR of such kind, the Interferometric Imaging Radar Altimeter (InIRA), which has been working on Tiangong II spacecraft since 2016. We used the 90-m SRTM DEM as a reference to estimate the phase offset, and then an empirical calibration model was used to correct the baseline errors.

  11. Application of CryoSat-2 altimetry data for river analysis and modelling

    DEFF Research Database (Denmark)

    Schneider, Raphael; Godiksen, Peter Nygaard; Villadsen, Heidi

    2017-01-01

    , satellite altimeters are used in various ways to provide information about such river basins. Most missions provide virtual station time series of water levels at locations where their repeat orbits cross rivers. CryoSat-2 is equipped with a new type of altimeter, providing estimates of the actual ground....... This allowed extraction of river water levels over previously unmonitored narrow stretches of the river. In the Assam Valley section of the Brahmaputra River, CryoSat-2 data and Envisat virtual station data were combined to calibrate cross sections in a 1-D hydrodynamic model of the river. The hydrologic......Availability of in situ river monitoring data, especially of data shared across boundaries, is decreasing, despite growing challenges for water resource management across the entire globe. This is especially valid for the case study of this work, the Brahmaputra Basin in South Asia. Commonly...

  12. NASA's Long-Term Archive (LTA) of ICESat Data at the National Snow and Ice Data Center (NSIDC)

    Science.gov (United States)

    Fowler, D. K.; Moses, J. F.; Dimarzio, J. P.; Webster, D.

    2011-12-01

    Data Stewardship, preservation, and reproducibility are becoming principal parts of a data manager's work. In an era of distributed data and information systems, where the host location ought to be transparent to the internet user, it is of vital importance that organizations make a commitment to both current and long-term goals of data management and the preservation of scientific data. NASA's EOS Data and Information System (EOSDIS) is a distributed system of discipline-specific archives and mission-specific science data processing facilities. Satellite missions and instruments go through a lifecycle that involves pre-launch calibration, on-orbit data acquisition and product generation, and final reprocessing. Data products and descriptions flow to the archives for distribution on a regular basis during the active part of the mission. However there is additional information from the product generation and science teams needed to ensure the observations will be useful for long term climate studies. Examples include ancillary input datasets, product generation software, and production history as developed by the team during the course of product generation. These data and information will need to be archived after product data processing is completed. Using inputs from the USGCRP Workshop on Long Term Archive Requirements (1998), discussions with EOS instrument teams, and input from the 2011 ESIPS Federation meeting, NASA is developing a set of Earth science data and information content requirements for long term preservation that will ultimately be used for all the EOS missions as they come to completion. Since the ICESat/GLAS mission is one of the first to come to an end, NASA and NSIDC are preparing for long-term support of the ICESat mission data now. For a long-term archive, it is imperative that there is sufficient information about how products were prepared in order to convince future researchers that the scientific results are accurate, understandable

  13. System of the Wind Wave Operational Forecast by the Black Sea Marine Forecast Center

    Directory of Open Access Journals (Sweden)

    Yu.B. Ratner

    2017-10-01

    Full Text Available System of the wind wave operational forecast in the Black Sea based on the SWAN (Simulating Waves Nearshore numerical spectral model is represented. In the course of the system development the SWAN model was adapted to take into account the features of its operation at the Black Sea Marine Forecast Center. The model input-output is agreed with the applied nomenclature and the data representation formats. The user interface for rapid access to simulation results was developed. The model adapted to wave forecast in the Black Sea in a quasi-operational mode, is validated for 2012–2015. Validation of the calculation results was carried out for all five forecasting terms based on the analysis of two-dimensional graphs of the wave height distribution derived from the data of prognostic calculations and remote measurements obtained with the altimeter installed on the Jason-2 satellite. Calculation of the statistical characteristics of the deviations between the wave height prognostic values and the data of their measurements from the Jason-2 satellite, as well as a regression analysis of the relationship between the forecasted and measured wave heights was additionally carried out. A comparison of the results obtained with the similar results reported in the works of other authors published in 2009–2016 showed their satisfactory compliance with each other. The forecasts carried out by the authors for the Black Sea as well as those obtained for the other World Ocean regions show that the current level of numerical methods for sea wave forecasting is in full compliance with the requirements of specialists engaged in studying and modeling the state of the ocean and the atmosphere, as well as the experts using these results for solving applied problems.

  14. Regional Files of GEOS3/SEASAT/GEOSAT Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gravity anomalies and sea surface heights have been computed on a 0.125 degree grid in the ocean areas from a combined GEOS3/SEASAT/GEOSAT altimeter data set. This...

  15. Planetary maps - Passports for the mind

    International Nuclear Information System (INIS)

    Anderson, C.M.

    1990-01-01

    The various types of planetary maps are reviewed. Included are basic descriptions of planimetric, topographic, geologic, and digital maps. It is noted that planimetric maps are pictorial representations of a planet's round surface flattened into a plane, such as controlled photomosaic maps and shaded relief maps. Topographic maps, those usually made with data from altimeters and stereoscopic images, have contour lines indicating the shapes and elevations of landforms. Geologic maps carry additional information about landforms, such as rock types, the processes that formed them, and their relative ages. The International Astronomical Union nomenclature system is briefly discussed, pointing out that the Union often assigns themes to areas to be mapped

  16. Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data

    DEFF Research Database (Denmark)

    Tølbøll, R.J.; Christensen, N.B.

    2006-01-01

    but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...... of test flights were performed using a frequency-domain, helicopter-borne electromagnetic (HEM) system. We perform a theoretical examination of the resolution capabilities of the applied system. Quantitative model parameter analyses show that the system only weakly resolves conductive, near-surface layers...... supported by datamisfit parameters and a quantitative model-parameter analysis. The backbone of the scheme is the removal of cultural coupling effects followed by a multilayer inversion that in turn provides reliable starting models for a subsequent few-layer inversion. A new procedure for correlation...

  17. A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry

    Science.gov (United States)

    Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.

    2017-12-01

    Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions

  18. Interannual variability of the Equatorial Jets in the Indian Ocean from the merged altimetry data

    Digital Repository Service at National Institute of Oceanography (India)

    Somayajulu, Y.K.; Murty, V.S.N.; Neelima, C.; Jagadeesh, P.S.V.

    The merged ERS-1/2, TOPEX/Poseidon and Jason-1 altimeter weekly sea level anomalies (SLAs) for the period 1997- 2005 were analyzed to study the variability of sea level and computed geostrophic currents in relation to the equatorial jets...

  19. Large-scale analysis and forecast experiments with wind data from the Seasat A scatterometer

    Science.gov (United States)

    Baker, W. E.; Atlas, R.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.; Edelmann, D.

    1984-01-01

    A series of data assimilation experiments is performed to assess the impact of Seasat A satellite scatterometer (SASS) wind data on Goddard Laboratory for Atmospheric Sciences (GLAS) model forecasts. The SASS data are dealiased as part of an objective analysis system utilizing a three-pass procedure. The impact of the SASS data is evaluated with and without temperature soundings from the NOAA 4 Vertical Temperature Profile Radiometer (VTPR) instrument in order to study possible redundancy between surface wind data and upper air temperature data. In the northern hemisphere the SASS data are generally found to have a negligible effect on the forecasts. In the southern hemisphere the forecast impact from SASS data is somewhat larger and primarily beneficial in the absence of VTPR data. However, the inclusion of VTPR data effectively eliminates the positive impact over Australia and South America. This indicates that SASS data can be beneficial for numerical weather prediction in regions with large data gaps, but in the presence of satellite soundings the usefulness of SASS data is significantly reduced.

  20. Observational-numerical Study of Maritime Extratropical Cyclones Using FGGE Data

    Science.gov (United States)

    Wash, C. H.; Elsberry, R. L.

    1984-01-01

    The accomplishments, current research, and future plans of a study investigating the development, maturation, and decay of maritime extratropical cyclones are reported. Three cases of explosive cyclogenesis during the first GARP global experiment (FGGE) DOP-1 were studied diagnostically using storm-following budgets derived from the ECMWF and GLAS level III-b analyses. Mass, vorticity and angular momentum budgets for the moving storm environment were computed for each case. Key results from these studies include: (1) demonstration that the FGGE analyses can be used to explore oceanic circulations; (2) isolation of the role of upper level jet streaks in the initiation of the explosive period in all three cases; and (3) illustration of the lower tropospheric destabilization during each rapid deepening period, which is primarily due to sensible heating of the cold air by the warmer ocean surface. The physics package of the Navy global forecast model was successfully utilized in a semi-prognostic mode to estimate diabatic components of oceanic cyclone systems. Fields of sensible and latent heat fluxes, radiational heating and inferred cloud structures were also computed.

  1. Flygande mat - kabinpersonals måltidssituation

    OpenAIRE

    Johansson, Johanna; Hugosson, Ellen

    2015-01-01

    Inledning Yrket som kabinanställd inom flyget präglas av serviceanda och ansvar för passagerares säkerhet. Arbetsmiljön innebär fysiska påfrestningar vad gäller till exempel kabintryck och låg syrenivå. Mat och måltider intas under olika tider på dygnet och infaller sällan på normala måltidstider. Kabinpersonalens måltider regleras av regler, avtal och policyer rörande arbetstidens längd. Syfte Syftet var att undersöka kabinpersonalens måltider under arbetstid, med fokus på riktlinjer och pol...

  2. Influence of temperature, mixing and time of residue on the degradation of organic trace materials during thermal treatment of waste wood; Einfluss von Temperatur, Durchmischung und Verweilzeit auf den Abbau organischer Spurenstoffe bei der thermischen Behandlung von Abfallholz

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M [Clausthaler Umwelttechnik-Institut GmbH (CUTEC), Clausthal-Zellerfeld (Germany); Griebel, H [Fels-Werke GmbH, Goslar (Germany); Scholz, R [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Energieverfahrenstechnik und Brennstofftechnik

    1998-09-01

    Waste wood, e.g. window frames or sleepers treated with coal tar pitch, are usually incinerated after crushing and removal of foreign materials (glass, metal etc.). Organic trace elements, e.g. PAH, PCB, chlorobenzenes, PCDD and PCDF must be removed after combustion. (orig./SR) [Deutsch] Abfallhoelzer, wie z.B. Fensterrahmen oder mit Steinkohlenteerpech behandelte Eisenbahnschwellen, werden nach Zerkleinerung und Abtrennung von Wert- und Stoerstoffen (Glas, Metalle usw.) haeufig in Rostsystemen thermisch behandelt. Bei der Diskussion der Prozessbedingungen liegt ein besonderer Schwerpunkt in der Fragestellung nach geeigneten Abbaubedingungen fuer organische Spurenstoffe wie polyaromatische Kohlenwasserstoffe (PAK), polychlorierte Biphenyle (PCB), Chlorbenzole, polychlorierte Dibenzodioxine (PCDD) und polychlorierte Dibenzofurane (PCDF) im Nachverbrennungsprozess. (orig./SR)

  3. Mean dynamic topography over Peninsular Malaysian seas using multimission satellite altimetry

    Science.gov (United States)

    Abazu, Isaac Chidi; Din, Ami Hassan Md; Omar, Kamaludin Mohd

    2017-04-01

    The development of satellite altimeters (SALTs) has brought huge benefits, among which is the ability to more adequately sense ocean-surface topography. The radar altimeter database system was used to capture and process ENVISAT, CRYOSAT-2, SARAL, JASON-1, and JASON-2 SALT data of 5 years between 2011 and 2015. The time series of monthly multimission SALT data showed an estimated sea level trend of 1.0, 2.4, 2.4, 3.6, and 12.0 mm/year at Gelang, Port Kelang, Kukup, Cendering, and Keling. The correlation analysis for the selected tide gauge stations produced satisfying results of R-squared with 0.86, 0.89, 0.91, and 0.97 for Cendering, Sedili, Gelang, and Geting, respectively. The ITG-Grace2010s geoid model was used to compute the mean dynamic topography (MDT) and plot to a grid of 0.25 deg for the Malacca Strait and South China Sea of Peninsular Malaysia, with Keling, Port Kelang, Geting, Sedili, and Johor Bahru tide gauge stations having values determined by interpolation to be 1.14, 1.19, 1.26, 1.88, and 2.91 m, respectively. MDT is computed from the SALT with respect to Port Kelang, the north-south sea slope ranges between -0.64 and 0.29 m/50 km and -0.01 and 0.52 m/50 km along the east and west coasts of Peninsular Malaysia, respectively.

  4. Quantifying Seasonal Skill In Coupled Sea Ice Models Using Freeboard Measurements From Spaceborne Laser Altimeters

    Science.gov (United States)

    2016-06-01

    Data collection periods during the ICESat mission were influenced by the presence of atmospheric clouds and aerosols, and also LASER malfunctions. Upon...measurements after that satellite is launched next year. 14. subject terms Arctic, climate change, Regional Arctic System Model, altimetry...measurements, sea ice, sea ice thickness, freeboard, ICESat, ICESat-2, climate model, coupled model, Operation IceBridge 15. NUMBER OF PAGES 147 16

  5. Propagation of Atlantic Ocean swells in the north Indian Ocean: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Vethamony, P.; Aboobacker, V.M.; Rashmi, R.

    An analysis of altimeter significant wave height data of May 2007 revealed the occurrence of an extreme weather event off southern tip of South Africa in the Atlantic Ocean, and generation of a series of very high swells at 40 degrees S...

  6. Migrating swans profit from favourable changes in wind conditions at low altitude

    NARCIS (Netherlands)

    Klaassen, M; Beekman, JH; Kontiokorpi, J; Mulder, RJW; Nolet, BA

    Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewick's swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern

  7. Migrating swans profit from favourable changes in wind conditions at low altitude

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Beekman, J.H.; Kontiokorpi, J.; Mulder, R.J.W.; Nolet, B.A.

    2004-01-01

    Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewicks swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern

  8. Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data

    NARCIS (Netherlands)

    Verrelst, J.; Geerling, G.W.; Sykora, K.V.; Clevers, J.G.P.W.

    2009-01-01

    Combined optical and laser altimeter data offer the potential to map and monitor plant communities based on their spectral and structural characteristics. A problem unresolved is, however, that narrowly defined plant communities, i.e. plant communities at a low hierarchical level of classification

  9. Bottom Pressure Tides Along a Line in the Southeast Atlantic Ocean and Comparisons with Satellite Altimetry

    Science.gov (United States)

    Ray, Richard D.; Byrne, Deidre A.

    2010-01-01

    Seafloor pressure records, collected at 11 stations aligned along a single ground track of the Topex/Poseidon and Jason satellites, are analyzed for their tidal content. With very low background noise levels and approximately 27 months of high-quality records, tidal constituents can be estimated with unusually high precision. This includes many high-frequency lines up through the seventh-diurnal band. The station deployment provides a unique opportunity to compare with tides estimated from satellite altimetry, point by point along the satellite track, in a region of moderately high mesoscale variability. That variability can significantly corrupt altimeter-based tide estimates, even with 17 years of data. A method to improve the along-track altimeter estimates by correcting the data for nontidal variability is found to yield much better agreement with the bottom-pressure data. The technique should prove useful in certain demanding applications, such as altimetric studies of internal tides.

  10. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Wahr, J.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  11. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation

    DEFF Research Database (Denmark)

    Ricker, R.; Hendricks, S.; Helm, V.

    2014-01-01

    In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the K-u band synthetic aperture radar altimeter SIRAL (Synthetic Aperture Interferometric Radar Altimeter), which we use to derive sea-ice freeboard defined...... knowledge of ice and snow properties, the composition of radar backscatter and therefore the interpretation of radar echoes is crucial. This has consequences in the selection of retracker algorithms which are used to track the main scattering horizon and assign a range estimate to each CryoSat-2 measurement...... of sea-ice freeboard and higher-level products that arise from the choice of the retracker threshold only, independent of the uncertainties related to snow and ice properties. Our study shows that the choice of retracker thresholds does have a significant impact on magnitudes of estimates of sea...

  12. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle

    Science.gov (United States)

    Roma-Dollase, David; Hernández-Pajares, Manuel; Krankowski, Andrzej; Kotulak, Kacper; Ghoddousi-Fard, Reza; Yuan, Yunbin; Li, Zishen; Zhang, Hongping; Shi, Chuang; Wang, Cheng; Feltens, Joachim; Vergados, Panagiotis; Komjathy, Attila; Schaer, Stefan; García-Rigo, Alberto; Gómez-Cama, José M.

    2018-06-01

    In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers have developed different techniques to provide global ionospheric maps (GIMs) of vertical total electron content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, WHU). To assess the quality of them in fair and completely independent ways, two assessment methods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations.

  13. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model

    DEFF Research Database (Denmark)

    Schneider, Raphael; Tarpanelli, Angelica; Nielsen, Karina

    2018-01-01

    Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has...... two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track...... pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2...

  14. Spaceborne Sensors Track Marine Debris Circulation in the Gulf of Mexico

    Science.gov (United States)

    Reahard, Ross; Mitchell, Brandie; Lee, Lucas; Pezold, Blaise; Brook, Chris; Mallett, Candis; Barrett, Shelby; Albin, Aaron

    2011-01-01

    Marine debris is a problem for coastal areas throughout the world, including the Gulf of Mexico. To aid the NOAA Marine Debris Program in monitoring marine debris dispersal and regulating marine debris practices, sea surface height and height anomaly data provided by the Colorado Center for Astrodynamics Research at the University of Colorado, Boulder, were utilized to help assess trash and other discarded items that routinely wash ashore in southeastern Texas, at Padre Island National Seashore. These data were generated from the NASA radar altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2, as well as the European altimeter satellites ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). Sea surface temperature data from MODIS were used to study of the dynamics of the Loop Current. Sea surface height and MODIS data analysis were used to show that warm water in the core of eddies, which periodically separate from the Loop Current, can be as high as 30 cm above the surrounding water. These eddies are known to directly transfer marine debris to the western continental shelf and the elevated area of water can be tracked using satellite radar altimeter data. Additionally, using sea surface height, geostrophic velocity, and particle path data, foretracking and backtracking simulations were created. These simulation runs demonstrated that marine debris on Padre Island National Seashore may arise from a variety of sources, such as commercial fishing/shrimping, the oil and gas industry, recreational boaters, and from rivers that empty into the Gulf of Mexico.

  15. Satellite altimetry and GRACE gravimetry for studies of annual water storage variations in Bangladesh

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Berry, P.; Freeman, J.

    2008-01-01

    Four different data sources have been compared with respect to observations of the annual water storage variations in the region of Bangladesh. Data from satellite altimeters and river gauges estimates the variation in surface water storage in the major rivers of Bangladesh. The GRACE satellites ...

  16. The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data

    DEFF Research Database (Denmark)

    Featherstone, W.E.; Kirby, J.F.; Kearsley, A.H.W.

    2001-01-01

    The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on ...

  17. Increasing the resolution of marine gravity from CryoSat-2 using 20 and 80Hz altimetry

    DEFF Research Database (Denmark)

    Abulaitijiang, Adili; Andersen, Ole Baltazar

    Achieving a high resolution marine gravity field is essential for the derivation of bathymetry, exploring the ocean tectonics, and practically, safe navigation of ships in the poorly surveyed regions. The accuracy of marine gravity can be improved by the improved altimeter range and dense track...

  18. An atlast of XBT thermal structures and TOPEX/POSEIDON sea surface heights in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Ali, M.M.; Araligidad, N.; Shenoi, S.S.C.; Shum, C.K.; Yi, Y.

    the Indian XBT Program were used to plot the sub-surface thermal structures of the Indian Ocean for 1993 to 2003. Since these in situ measurements are just along the ship tracks, sea surface height observations from the TOPEX altimeter were also plotted over...

  19. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A; Basu, S.K.; Kumar, R.; Sarkar, A

    prediction when NCMRWF winds blended with MSMR winds are utilised in the wave model. A comparison between buoy and TOPEX wave heights of May 2000 at 4 buoy locations provides a good match, showing the merit of using altimeter data, wherever it is difficult...

  20. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Rajesh, S.; Majumdar, T.J.; Rao, G.S.; Radhakrishna, M.; Krishna, K.S.; Rajawat, A.S.

    ') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites is presented. The geoid map of the Indian Ocean is dominated by a...

  1. 14 CFR 91.205 - Powered civil aircraft with standard category U.S. airworthiness certificates: Instrument and...

    Science.gov (United States)

    2010-01-01

    ... type of operation, and those instruments and items of equipment are in operable condition. (b) Visual... required instruments and equipment; and (7) Radar altimeter. (i) Exclusions. Paragraphs (f) and (g) of this... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC...

  2. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  3. GLAS/ICESat L2 Sea Ice Altimetry Data (HDF5) V034

    Data.gov (United States)

    National Aeronautics and Space Administration — GLAH13 contains sea ice and open ocean elevations corrected for geodetic and atmospheric affects, calculated from algorithms fine-tuned for sea ice returns. Granules...

  4. Detectie en bestrijding van wol- en schildluis in de sierteelt onder glas

    NARCIS (Netherlands)

    Messelink, G.J.; Leman, A.; Vijverberg, R.; Kruidhof, H.M.; Woning, J.; Bruin, de A.; Mumm, R.; Kogel, de W.J.

    2015-01-01

    Mealybugs and armoured scales are major pest species in ornamental crops in greenhouses. The first part of this report focuses on mealybug detection. The research presented here builds on previous study in which it was shown on laboratory scale that the odour profile released by plants after damage

  5. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS

    Directory of Open Access Journals (Sweden)

    Nicholas A. Forfinski-Sarkozi

    2016-09-01

    Full Text Available In 2018, the National Aeronautics and Space Administration (NASA is scheduled to launch the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2, with a new six-beam, green-wavelength, photon-counting lidar system, Advanced Topographic Laser Altimeter System (ATLAS. The primary objectives of the ICESat-2 mission are to measure ice-sheet elevations, sea-ice thickness, and global biomass. However, if bathymetry can be reliably retrieved from ATLAS data, this could assist in addressing a key data need in many coastal and inland water body areas, including areas that are poorly-mapped and/or difficult to access. Additionally, ATLAS-derived bathymetry could be used to constrain bathymetry derived from complementary data, such as passive, multispectral imagery and synthetic aperture radar (SAR. As an important first step in evaluating the ability to map bathymetry from ATLAS, this study involves a detailed assessment of bathymetry from the Multiple Altimeter Beam Experimental Lidar (MABEL, NASA’s airborne ICESat-2 simulator, flown on the Earth Resources 2 (ER-2 high-altitude aircraft. An interactive, web interface, MABEL Viewer, was developed and used to identify bottom returns in Keweenaw Bay, Lake Superior. After applying corrections for refraction and channel-specific elevation biases, MABEL bathymetry was compared against National Oceanic and Atmospheric Administration (NOAA data acquired two years earlier. The results indicate that MABEL reliably detected bathymetry in depths of up to 8 m, with a root mean square (RMS difference of 0.7 m, with respect to the reference data. Additionally, a version of the lidar equation was developed for predicting bottom-return signal levels in MABEL and tested using the Keweenaw Bay data. Future work will entail extending these results to ATLAS, as the technical specifications of the sensor become available.

  6. The climatology of the Red Sea - part 2: the waves

    KAUST Repository

    Langodan, Sabique

    2017-05-09

    The wave climatology of the Red Sea is described based on a 30-year hindcast generated using WAVEWATCH III configured on a 5-km resolution grid and forced by Red Sea reanalysis surface winds from the advanced Weather Research and Forecasting model. The wave simulations have been validated using buoy and altimeter data. The four main wind systems in the Red Sea characterize the corresponding wave climatology. The dominant ones are the two opposite wave systems with different genesis, propagating along the axis of the basin. The highest waves are generated at the centre of the Red Sea as a consequence of the strong seasonal winds blowing from the Tokar Gap on the African side. There is a general long-term trend toward lowering the values of the significant wave height over the whole basin, with a decreasing rate depending on the genesis of the individual systems.

  7. Absolute Navigation Performance of the Orion Exploration Fight Test 1

    Science.gov (United States)

    Zanetti, Renato; Holt, Greg; Gay, Robert; D'Souza, Christopher; Sud, Jastesh

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to stress the system by placing the un-crewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs UDU factorization. The performance of the navigation system during flight is presented to substantiate the design.

  8. Evaluation of global monitoring and forecasting systems at Mercator Océan

    Directory of Open Access Journals (Sweden)

    J.-M. Lellouche

    2013-01-01

    Full Text Available Since December 2010, the MyOcean global analysis and forecasting system has consisted of the Mercator Océan NEMO global 1/4° configuration with a 1/12° nested model over the Atlantic and the Mediterranean. The open boundary data for the nested configuration come from the global 1/4° configuration at 20° S and 80° N.

    The data are assimilated by means of a reduced-order Kalman filter with a 3-D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. A 3-D-Var scheme provides a correction for the slowly evolving large-scale biases in temperature and salinity. Altimeter data, satellite sea surface temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. In addition to the quality control performed by data producers, the system carries out a proper quality control on temperature and salinity vertical profiles in order to minimise the risk of erroneous observed profiles being assimilated in the model.

    This paper describes the recent systems used by Mercator Océan and the validation procedure applied to current MyOcean systems as well as systems under development. The paper shows how refinements or adjustments to the system during the validation procedure affect its quality. Additionally, we show that quality checks (in situ, drifters and data sources (satellite sea surface temperature have as great an impact as the system design (model physics and assimilation parameters. The results of the scientific assessment are illustrated with diagnostics over the year 2010 mainly, assorted with time series over the 2007–2011 period. The validation procedure demonstrates the accuracy of MyOcean global products, whose quality is stable over time. All monitoring systems are close to altimetric observations with a forecast RMS difference of 7 cm. The update of the mean

  9. Improved ice loss estimate of the northwestern Greenland ice sheet

    NARCIS (Netherlands)

    Kjeldsen, K.K.; Khan, S.A.; van den Broeke, M.R.; van Angelen, J.H.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change

  10. The Impact of DEM Resolution on Relocating Radar Altimetry Data Over Ice Sheets

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    2016-01-01

    for correcting for such mispointing errors. Here, two techniques are applied to observations near Jakobshavn Isbræ, acquired with Envisat’s Radar Altimeter(RA-2). The apriori knowledge on the surface topography is obtained from a digital elevation model. The methods relocate the measurement location horizontally...

  11. SAT-WIND project. Final report

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Astrup, Poul; Nielsen, Niels Morten

    microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data...

  12. Gore-tex® versus resolut adapt® GTR membranes with perioglas® in periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Amit Wadhawan

    2012-01-01

    Full Text Available Background: Successful reconstruction of periodontal tissues destroyed due to periodontitis has been an evasive goal for the periodontists. Several GTR materials and bone grafts have been tried with varied success rates. Aims and Objectives: The aim of the present study was to evaluate and compare the efficacy of non-resorbable (GoreTex® and bioabsorbable (Resolut Adapt® membranes in combination with bioactive glass (PerioGlas® in the treatment of periodontal intrabony defects. Materials and Methods: Ten chronic periodontitis patients having bilateral matched intrabony defects were treated with non-resorbable membrane (GoreTex® and bioactive glass or the bioresorbable membrane (Resolut Adapt® and bioactive glass in split mouth design. Clinical parameters like plaque index, gingival index, probing pocket depth, clinical attachment level, and gingival recession were recorded at baseline and 9 months post-operatively. Similarly, radiographic (linear CADIA and intra-surgical (re-entry measurements were evaluated at baseline and 9 months post-operatively. Results: Both the membrane groups showed clinically and statistically significant improvement in clinical parameters i.e., reduction in probing depth (4.6 ± 1.4 mm vs. 3.7 ± 1.3 mm and gain in clinical attachment level (4.6 + 1.6 vs. 3.2 ± 1.5 mm for non-resorbable and bioresorbable membrane groups, respectively. Similar trend was observed when radiographical and intra-surgical (re-entry measurements were evaluated and compared, pre- and post-operatively at 9 months. However, on comparison between the two groups, the difference was statistically not significant. Conclusion: Both the barrier membranes i.e., non-resorbable (Gore-Tex® and bioabsorbable (Resolut Adapt® membranes in combination with bioactive glass (PerioGlas® were equally effective in enhancing the periodontal regeneration.

  13. The study of the ocean from space

    Energy Technology Data Exchange (ETDEWEB)

    Novogrudskii, B V; Skliarov, V E; Fedorov, K N; Shifrin, K S

    1978-01-01

    The application of earth satellites and manned spacecraft to the study of the world's oceans is reviewed. Attention is given to the atmospheric transfer function in the visible, near-IR, middle-IR and microwave regions and the use of satellites in ocean data acquisition and transmission systems. The measurement of sea level and the topography of the ocean surface by means of orbital radar altimeters is discussed, together with IR and microwave measurements of ocean surface temperature and the study of surface roughness, surface evidence of internal waves, oil pollution and ice fields. Consideration is also given to the determination of ocean chlorophyll content and color distribution, coastal region characteristics, ocean salinity and other biological parameters from space.

  14. One-Centimeter Orbits in Near-Real Time: The GPS Experience on OSTM/JASON-2

    Science.gov (United States)

    Haines, Bruce; Armatys, Michael; Bar-Sever, Yoaz; Bertiger, Willy; Desai, Shailen; Dorsey, Angela; Lane, Christopher; Weiss, Jan

    2010-01-01

    The advances in Precise Orbit Determination (POD) over the past three decades have been driven in large measure by the increasing demands of satellite altimetry missions. Since the launch of Seasat in 1978, both tracking-system technologies and orbit modeling capabilities have evolved considerably. The latest in a series of precise (TOPEX-class) altimeter missions is the Ocean Surface Topography Mission (OSTM, also Jason-2). GPS-based orbit solutions for this mission are accurate to 1-cm (radial RMS) within 3-5 hrs of real time. These GPS-based orbit products provide the basis for a near-real time sea-surface height product that supports increasingly diverse applications of operational oceanography and climate forecasting.

  15. Time series for water levels in virtual gauge stations in the Amazon basin using satellite radar altimetry

    Directory of Open Access Journals (Sweden)

    Juan Gabriel León Hernández

    2009-01-01

    Full Text Available Using satellite altimeter radar technology for monitoring changes in water levels at continental scale is a relatively recent ad- vance. Several studies have demonstrated the interest being shown in applying this technology to monitoring the hydrographic patterns of large-scale basins worldwide. The current study presents the inference of time series representing changes in water le- vel for bodies of water by defining virtual gauge stations deduced for two very different rivers in terms of their biophysical and to- pographic characteristics; the two rivers were the Rio Negro in the Brazilian Amazon Basin and the Caqueta River on the Colombian side. The differences between the two rivers revealed the limits of satellite radar altimeter when applied to continental waters (±20cm and ±40 cm precision for Río Negro and Río Caquetá, respectively. However, applying this technology seems very promising, since new missions have been scheduled to be put into orbit by the end of 2008.

  16. Coastal Sea Level from CryoSat-2 SARIn Altimetry in Norway

    DEFF Research Database (Denmark)

    Idžanović, Martina; Ophaug, Vegard; Andersen, Ole Baltazar

    2017-01-01

    Conventional (pulse-limited) altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Sea surface heights and tide-gauge sea level serve as each other’s buddy check. However, in coastal areas, altimetry suffers from numerous effects, which degrade its...... conventional altimeters. In this study, we explore the potential of CryoSat-2 to provide valid observations in the Norwegian coastal zone. We do this by comparing time series of CryoSat-2 sea level anomalies with time series of in situ sea level at 22 tide gauges, where the CryoSat-2 sea level anomalies...... are averaged in a 45-km area around each tide gauge. For all tide gauges, CryoSat-2 shows standard deviations of differences and correlations of 16 cm and 61%, respectively. We further identify the ocean tide and inverted barometer geophysical corrections as the most crucial, and note that a large amount...

  17. Altimetry, bathymetry and geoid variations at the Gavdos permanent Cal/Val facility

    DEFF Research Database (Denmark)

    Mertikas, Stelios P.; Daskalakis, Antonis; Tziavos, Ilias N.

    2013-01-01

    The aim of this work has been to examine the relationship of steep bathymetry in the coastal areas around the permanent Cal/Val facility of Gavdos, and their influence on the produced calibration values for the Jason-2 satellite altimeter. The paper describes how changes in seafloor topography...... (from 200 to 3500m depth over a distance of 10km) are reflected on the determined altimeter parameters using different reference surfaces for satellite calibration. Finally, it describes the relation between these parameter trends and the region’s local characteristics.Using 3.5years of Jason-2...... to be related to the general oceanographic circulation, but others of short wavelength (in the order of 1km) are because of the insufficient geoid model resolution. Along Pass No. 109, the concealed effect of bathymetry on the geoid has produced a slope of 3.1cm over 14–21km from Gavdos. Along the other Pass No...

  18. CryoSat-2 Validation using CryoVEX 2011-12 Airborne Campaigns

    DEFF Research Database (Denmark)

    Skourup, Henriette; Forsberg, René; Kildegaard Rose, Stine

    Sat-2 by comparison to airborne and ground measurements. This is possible only through a major effort involving a large group of international partners. DTU Space has been involved in the CryoVEx campaigns with airborne activities since 2003. To validate the performance of the CryoSat-2 radar altimeter...... (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. The campaigns are focused on five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice...... north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. This presentation summarizes the 2011-12 airborne campaigns...

  19. CryoVEx 2011-12 Airborne Campaigns for CryoSat Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hvidegaard, Sine Munk; Forsberg, René

    2013-01-01

    After the successful launch of CryoSat-2 in April 2010, the first direct validation campaign of the satellite was carried out in the April-May 2011. Part of this was repeated in Spring 2012. DTU Space has been involved in ESA’s CryoSat Validation Experiment (CryoVEx) with airborne activities since...... 2003. To validate the performance of the CryoSat-2 radar altimeter (SIRAL), the aircraft is equipped with an airborne version of the SIRAL altimeter (ASIRAS) together with a laser scanner. Of particular interest is to study the penetration depth of SIRAL into both land- and sea ice. This can be done...... of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the AlfredWegener Institute (AWI) Polar- 5 carrying an EM induction sounder. The paper presents an overview of the 2011-12 airborne campaigns...

  20. Evaluation of electrostatic charge effects on the data processing system and the orbiter communication and tracking receivers

    Science.gov (United States)

    Lawton, R. M.

    1975-01-01

    An analysis of radiated interference test results obtained from frictionally charged Orbiter TPS tile was presented. The tests included the measurement of noise pick-up by Orbiter S-band, L-band, C-band, and Ku-band antennas located beneath the tiles in a manner simulating their installation on Orbiter. In addition, the radiated field characteristics resulting from the static discharge was determined. The results are analyzed as to their effect on data bus equipment and on Orbiter Communications and Tracking (C&T) receivers. It was concluded that the radiated interference should have no effect on MDM's. However the CPU, IOP and PMU enclosures require some minor modification to assure immunity from P-static interference. Orbiter antenna tests indicate that the S-band receiver should not be affected by P-static noise. The TACAN and Radar Altimeter performance appears to be adequate but with a small margin. MSBLS performance is uncertain because laboratory instrumentation cannot approach the MSBLS sensitivity.

  1. Influence of surface roughness of a desert

    Science.gov (United States)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    A numerical simulation study, using the current GLAS climate GCM, was carried out to examine the influence of low bulk aerodynamic drag parameter in the deserts. The results illustrate the importance of yet another feedback effect of a desert on itself, that is produced by the reduction in surface roughness height of land once the vegetation dies and desert forms. Apart from affecting the moisture convergence, low bulk transport coefficients of a desert lead to enhanced longwave cooling and sinking which together reduce precipitation by Charney's (1975) mechanism. Thus, this effect, together with albedo and soil moisture influence, perpetuate a desert condition through its geophysical feedback effect. The study further suggests that man made deserts is a viable hypothesis.

  2. Sambandet mellan Theory of Mind, språkliga förmågor och exekutiva funktioner hos barn i treårsåldern

    OpenAIRE

    Nilsson, Anna; Sirén, Ellen

    2015-01-01

    Barns fem första levnadsår präglas av en omfattande utveckling av språkliga förmågor och exekutiva funktioner, vilka är färdigheter som visat sig ha en stor påverkan på hur barn utvecklar förståelse för sina egna och andras tankar, det vill säga deras Theory of Mind. En central aspekt inom forskning har varit att undersöka hur förmågorna samvarierar vid olika åldrar. Syftet i föreliggande studie var att undersöka sambandet mellan Theory of Mind, språkliga förmågor och exekutiva funktioner hos...

  3. A Physics Road Rally

    Science.gov (United States)

    Ilyes, Mark A.; Ortman-Link, Whitney

    2009-02-01

    Our school recently acquired Vernier's Wireless Dynamics Sensor System (WDSS). The WDSS consists of a three-axis accelerometer, altimeter, and force sensor that has the ability to remotely collect data for later transfer to a computer.2 While our primary purpose for acquiring the WDSS was to enhance our amusement park physics experiments, we decided to test one of the WDSS units by using it to collect data during the drive home from school one day, since measuring the acceleration of a car is one of the experiments suggested in the Vernier Wireless Dynamics Sensor System User Manual. We taped the device to the floor of the car with its +x-axis pointed forward and its +y-axis pointed to the left. The WDSS was configured to take five samples per second for a total time period of 10 minutes.

  4. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean

    Science.gov (United States)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.

    2018-03-01

    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  5. A global high resolution mean sea surface from multi mission satellite altimetry

    DEFF Research Database (Denmark)

    Knudsen, Per

    1999-01-01

    Satellite altimetry from the GEOSAT and the ERS-1 geodetic missions provide altimeter data with a very dense coverage. Hence, the heights of the sea surface may be recovered very detailed. Satellite altimetry from the 35 days repeat cycle mission of the ERS satellites and, especially, from the 10...

  6. Improved oceanographic measurements fom SAR altimetry: Results and scientific roadmap from ESA cryosat plus for oceans project

    DEFF Research Database (Denmark)

    Cotton, P. D.; Andersen, Ole Baltazar; Stenseng, Lars

    The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. It thus provides the first opportunity to test and evaluate, using real data, the significant potential benefits of SAR altimetry for ocean applications. The obje...

  7. 14 CFR Appendix A to Part 91 - Category II Operations: Manual, Instruments, Equipment, and Maintenance

    Science.gov (United States)

    2010-01-01

    ... June 26, 1979, two sensitive altimeters adjustable for barometric pressure, having markings at 20-foot... date of submission— (1) The ILS localizer and glide slope equipment were bench checked according to the... that are listed in the proposed maintenance program were bench checked and found to meet the...

  8. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    Science.gov (United States)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  9. CryoSat Level1b SAR/SARin: quality improvements towards BaselineC

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouzinac, Catherine; Tagliani, Nicolas; Parrinello, Tommaso

    2014-05-01

    CryoSat was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvement in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. Towards the release of the BaselineC of the CryoSat Level1b SAR/SARin products, that is expected during 2014, several improvements have been identified: • a datation bias of about -0.5195 ms will be corrected • a range bias of about -0.6730 m will be corrected • the waveform length in the Level1b product will be doubled with respect to BaselineB • improved processing for 1Hz echoes to have sharper waveforms • surface sample stack weighting to filter out the single look echoes acquired at highest look angle, that results in a sharpening of the 20Hz waveforms This poster details the main improvements that are foreseen to be included in the CryoSat Level1b SAR/SARin products in BaselineC.

  10. Estimation of wind stress using dual-frequency TOPEX data

    Science.gov (United States)

    Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand

    1998-10-01

    The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.

  11. Seasonal and Interannual Variability of Eddy Field and Surface Circulation in the Gulf of Aden

    Science.gov (United States)

    Al Saafani, M. A.; Shenoi, S. S. C.

    2006-07-01

    The circulation in the Gulf of Aden is inferred from three different data sets: h istorical sh ip drifts , hydrography , and satellite altimeter derived sea level (Topex/Poseidon, Jason and ERS) . The circulation in th is semi-enclosed basin is marked with strong seasonality with reversals in the direction of flows twice a year follow ing the reversal in mon soonal winds. During the win ter mon soon (November - February) there is an inflow from Arabian Sea; an extension of Arabian Coastal Current (ACC) . During sou thwest mon soon (June - August) the flow is generally towards east especially along the northern coast of Gulf of Aden. The geostrophic currents also show that the circulation in the gulf is embedded with mesoscale eddies. These westward propagating eddies appear to enter the Gulf of Aden from the western Arabian Sea in win ter. The relative contribu tion of mesoscale eddies to the circulation in the gulf were estimated using altimeter derived Sea level anomaly (SLA) for the years 1993 to 2003 . The effect of these mesoscale eddies extend over the entire water colu mn . The propagation speeds, of these eddies, estimated using weekly spaced altimeter derived SLA (2002 - 2003) is ~ 4 .0 - 5 .3 cm s . The sum of the speeds of second mode Ro ssby wave and the mean current (4.8 cm s ) matches with the propagation speeds of eddies estimated using SLA . Hence, second mode baroclin ic Rossby waves appear to be responsib le for the westward propagation of eddies in the Gulf of Aden. The presence of these eddies in the temperaturesalin ity climato logy confirms that they are no t transient features.

  12. Untitled

    Indian Academy of Sciences (India)

    The Modular Ocean Model (MOM) is perhaps the most versatile ocean model available today for the simulation of the large scale circulation of the ocean. The Topex/ Poseidon altimeter which has been operating since September 1992 has been providing sea surface heights (SSH) of the accuracy of 5—10 cms.

  13. Wave attenuation over the Great Barrier Reef matrix

    NARCIS (Netherlands)

    Gallop, S.; Young, I.; Ranasinghe, Ranasinghe W M R J B; Durrant, T.; Haigh, I.; Mynett, Arthur

    2015-01-01

    This is the first large-scale study of the influence of an offshore reef matrix on wave transmission. The focus was on the Great Barrier Reef (GBR), Australia, utilizing a 16 yr-record of wave height, from seven satellite altimeters. Within the GBR matrix, wave height is not strongly dependent on

  14. 14 CFR 31.85 - Required basic equipment.

    Science.gov (United States)

    2010-01-01

    ... following equipment is required: (a) For all balloons: (1) [Reserved] (2) An altimeter. (3) A rate of climb indicator. (b) For hot air balloons: (1) A fuel quantity gauge. If fuel cells are used, means must be... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Operating Limitations and Information § 31.85 Required basic...

  15. 14 CFR 61.68 - Category III pilot authorization requirements.

    Science.gov (United States)

    2010-01-01

    ...) The addition of another type of aircraft to the applicant's Category III pilot authorization. (2) To... height, as applicable, including use of a radar altimeter; (iii) Recognition of and proper reaction to... an aircraft of the same category and class, and type, as applicable, as the aircraft for which the...

  16. 47 CFR 87.107 - Station identification.

    Science.gov (United States)

    2010-10-01

    ... station. Identify by one of the following means: (1) Aircraft radio station call sign. (2) The type of... type of aircraft followed by the last three characters of the registration marking. Notwithstanding any... of stations are exempted from the use of a call sign: Airborne weather radar, radio altimeter, air...

  17. The role of biomass and CCS in China in a climate mitigation perspective

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Karlsson, Kenneth Bernard; Gregg, Jay Sterling

    2011-01-01

    As the world’s largest emitter of greenhouse gasses (GHGs), China plays a central role in the suite of options for climate change mitigation. To analyze the importance of biomass and carbon capture and storage (CCS) availability in China, varying levels of these parameters are created and then gl......As the world’s largest emitter of greenhouse gasses (GHGs), China plays a central role in the suite of options for climate change mitigation. To analyze the importance of biomass and carbon capture and storage (CCS) availability in China, varying levels of these parameters are created...... and then global climate scenarios are simulated using TIAM (TIMES Integrated Assessment Model). TIAM is a 16-region global energy system optimization model that includes a climate module that calculates the global concentrations of GHGs in the atmosphere. We analyze the potential for using biomass, CCS......, and bioenergy CCS (BECCS) in China under the constraint of meeting a climate stabilization target such that dangerous climate change (as defined by the Copenhagen Accord) is avoided. When considering hypothetical scenarios where GHG emissions are constrained, China consumes all available domestic biomass...

  18. Component-Level Selection and Qualification for the Global Ecosystem Dynamics Investigation (GEDI) Laser Altimeter Transmitter

    Science.gov (United States)

    Frese, Erich A.; Chiragh, Furqan L.; Switzer, Robert; Vasilyev, Aleksey A.; Thomes, Joe; Coyle, D. Barry; Stysley, Paul R.

    2018-01-01

    Flight quality solid-state lasers require a unique and extensive set of testing and qualification processes, both at the system and component levels to insure the laser's promised performance. As important as the overall laser transmitter design is, the quality and performance of individual subassemblies, optics, and electro-optics dictate the final laser unit's quality. The Global Ecosystem Dynamics Investigation (GEDI) laser transmitters employ all the usual components typical for a diode-pumped, solid-state laser, yet must each go through their own individual process of specification, modeling, performance demonstration, inspection, and destructive testing. These qualification processes and results for the laser crystals, laser diode arrays, electro-optics, and optics, will be reviewed as well as the relevant critical issues encountered, prior to their installation in the GEDI flight laser units.

  19. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    Science.gov (United States)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    pulse-limited radar altimeter that has a footprint that varies from a few meters to a few tens of meters depending on altitude and roughness of the reflective surface. Intercalibration of the two instruments was accomplished at leads in the ice and by multiple over-flights of four radar corner-cubes set ~ 2 m above the snow along the ground-truth line. Direct comparison of successive flights of the ground-truth line to flights done in a grid pattern over and adjacent to the line was complicated by the ~ 20-30 m drift of the ice-floe between successive flight-lines. This rapid ice movement required the laser and radar data be translated into an ice-fixed, rather than a geographic reference frame. This was facilitated by geodetic GPS receiver measurements at the ice-camp and Pt. Barrow. The NRL data set, in combination with the ground-truth line and submarine upward-looking sonar data, will aid in understanding the error budgets of our systems, the ICEBRIDGE airborne measurements (also flown over the ground-truth line), and the CRYOSAT-2 data over a wide range of ice types.

  20. Constrained Inversion Of Aem Data For Mapping Of Bathymetry, Seabed Sediments And Aquifers

    DEFF Research Database (Denmark)

    Viezzoli, Andrea; Auken, Esben; Christiansen, Anders Vest

    A shallow (depth sediments and bedrock along the world's coastlines, rivers, lakes, and lagoons. Thesegeological units are extremely important, both environmentally and economically. Airborneelectromagnetic (AEM) data...... along the Murray river inAustralia. In both cases bird height was included as an inversion parameter, allowingcompensating for errors in laser altimeter reading over water....

  1. Lessons Learned from Assimilating Altimeter Data into a Coupled General Circulation Model with the GMAO Augmented Ensemble Kalman Filter

    Science.gov (United States)

    Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin

    2011-01-01

    Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly

  2. Towards worldwide height unification using ocean information

    Directory of Open Access Journals (Sweden)

    P. L. Woodworth

    2015-03-01

    Full Text Available This paper describes how we are contributing to worldwide height system unification (WHSU by using ocean models together with sea level (tide gauge and altimeter information, geodetic (GPS and levelling data, and new geoid models based on information from the GRACE and GOCE gravity missions, to understand how mean sea level (MSL varies from place to place along the coast. For the last two centuries, MSL has been used to define datums for national levelling systems. However, there are many problems with this. One consequence of WHSU will be the substitution of conventional datums as a reference for heights with the use of geoid, as the only true "level" or datum. This work is within a number of GOCE-related activities funded by the European Space Agency. The study is focused on the coastlines of North America and Europe where the various datasets are most copious.

  3. GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5) V034

    Data.gov (United States)

    National Aeronautics and Space Administration — GLAH14 contains the land elevation and elevation distribution corrected for geodetic and atmospheric affects calculated from algorithms fine-tuned for over land...

  4. Light Detection and Ranging (LIDAR) From Space - Laser Altimeters

    Science.gov (United States)

    Sun, Xiaoli

    2016-01-01

    Light detection and ranging, or lidar, is like radar but atoptical wavelengths. The principle of operation and theirapplications in remote sensing are similar. Lidars havemany advantages over radars in instrument designs andapplications because of the much shorter laser wavelengthsand narrower beams. The lidar transmitters and receiveroptics are much smaller than radar antenna dishes. Thespatial resolution of lidar measurement is much finer thanthat of radar because of the much smaller footprint size onground. Lidar measurements usually give a better temporalresolution because the laser pulses can be much narrowerthan radio frequency (RF) signals. The major limitation oflidar is the ability to penetrate clouds and ground surfaces.

  5. Cryosat Level1b SAR/Sarin: Improving the Quality of the Baseline C Products

    Science.gov (United States)

    Scagliola, M.; Fornari, M.; Tagliani, N.; Frommknecht, B.; Bouffard, J.; Parrinello, T.

    2014-12-01

    CryoSat was launched on the 8th April 2010 and it is the first European ice mission dedicated to monitoring precise changes in the thickness of polar ice sheets and floating sea ice over a 3-year period. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvement in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. Towards the release of the BaselineC of the CryoSat Level1b SAR/SARin products, that is expected at the end of 2014, several improvements have been identified: a datation bias of about -0.5195 ms will be corrected a range bias of about 0.6730 m will be corrected The range window size will be doubled with respect to BaselineB, so that the in Level1b products the waveforms will be doubled too Improved processing for 1Hz echoes to have sharper waveforms Surface sample stack weighting to filter out the single look echoes acquired at highest look angle, that results in a sharpening of the 20Hz waveforms Additional auxiliary information related to the mispointing angles of the instrument as well as to the stacks of single look echoes will be added This poster details the main quality improvements that are foreseen to be included in the CryoSat Level1b SAR/SARin products in BaselineC.

  6. Sentinel-3 SAR Altimetry over Coastal and Open Ocean: performance assessment and improved retrieval methods in the ESA SCOOP Project.

    Science.gov (United States)

    Benveniste, J.; Cotton, D.; Moreau, T.; Raynal, M.; Varona, E.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Lazaro, C.; Restano, M.; Ambrózio, A.

    2017-12-01

    The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. The SRAL is operated in SAR mode over the whole ocean and promises increased performance w.r.t. conventional altimetry. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. In this presentation we present results from the SCOOP project that demonstrate the excellent performance of SRAL in terms of measurement precision, and we illustrate the development and testing of new processing approaches designed specifically to improve performance close to the coast. The SCOOP test data sets and relevant documentation are available to external researchers on application to the project team. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap.

  7. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    Science.gov (United States)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  8. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    Science.gov (United States)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  9. Global Ocean Data Quality Assessment of SARAL/AltiKa GDR products

    Science.gov (United States)

    Picot, Nicolas; Prandi, Pierre; desjonqueres, jean-damien

    2015-04-01

    The SARAL mission was successfully launched on February, 5th 2013 and cycle 1 started a few days later on March 14th. For more than 2 years, the Ka-band altimeter and dual frequency radiometer on board have been collecting high quality ocean topography measurements. Within the first months of the mission, a first patch (P1) was developed to correct some small anomalies detected in the products and to account for in-flight calibration data. At the beginning of year 2014, a second patch (P2) was produced (applied from cycle 10 pass 407 on OGDR data and from pass 566 on IGDR data) and the all GDR produced before this were reprocessed in order to deliver a consistent dataset to users. This new version of the products provides, among other changes, important improvements regarding radiometer data processing, sea-state bias and wind speed. Since the beginning of the mission, data quality assessment of OGDR, IGDR and GDR data has been routinely performed at CNES and CLS (as part of the CNES SALP project). We will present the main results of the data quality assessment over ocean based on SARAL/AltiKa GDR data reprocessed using the homogeneous P2 version. The main data quality metrics presented will include: Data availability and validity, Monitoring of the main altimeter and radiometer parameters and comparisons to other altimeter missions such as OSTM/Jason-2, Mission performance through mono-mission crossovers analysis, Investigation of inter-mission biases and large-scale regional differences from multi-mission crossovers between SARAL and Jason-2. Monitoring of the global mean SLA and comparison to Jason-2 Finally, we will present the new product version standard that is currently under development on CNES side.

  10. A generalized linear factor model approach to the hierarchical framework for responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Tuerlinckx, Francis; van der Maas, Han L J

    2015-05-01

    We show how the hierarchical model for responses and response times as developed by van der Linden (2007), Fox, Klein Entink, and van der Linden (2007), Klein Entink, Fox, and van der Linden (2009), and Glas and van der Linden (2010) can be simplified to a generalized linear factor model with only the mild restriction that there is no hierarchical model at the item side. This result is valuable as it enables all well-developed modelling tools and extensions that come with these methods. We show that the restriction we impose on the hierarchical model does not influence parameter recovery under realistic circumstances. In addition, we present two illustrative real data analyses to demonstrate the practical benefits of our approach. © 2014 The British Psychological Society.

  11. ACE2 Global Digital Elevation Model : User Analysis

    Science.gov (United States)

    Smith, R. G.; Berry, P. A. M.; Benveniste, J.

    2013-12-01

    Altimeter Corrected Elevations 2 (ACE2), first released in October 2009, is the Global Digital Elevation Model (GDEM) created by fusing the high accuracy of over 100 million altimeter retracked height estimates, derived primarily from the ERS-1 Geodetic Mission, with the high frequency content available within the near-global Shuttle Radar Topography Mission. This novel ACE2 GDEM is freely available at 3”, 9”, 30” and 5' and has been distributed via the web to over 680 subscribers. This paper presents the results of a detailed analysis of geographical distribution of subscribed users, along with fields of study and potential uses. Investigations have also been performed to determine the most popular spatial resolutions and the impact these have on the scope of data downloaded. The analysis has shown that, even though the majority of users have come from Europe and America, a significant number of website hits have been received from South America, Africa and Asia. Registered users also vary widely, from research institutions and major companies down to individual hobbyists looking at data for single projects.

  12. An improved model for the Earth's gravity field

    Science.gov (United States)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  13. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    Science.gov (United States)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  14. Regional sea level projections with observed gauge, altimeter and reconstructed data along China coast

    Science.gov (United States)

    Du, L.; Shi, H.; Zhang, S.

    2017-12-01

    Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.

  15. Numerical experiments of dynamical processes during the 2011-2013 surge of the Bering-Bagley Glacier System, using a full-Stokes finite element model

    Science.gov (United States)

    Trantow, Thomas

    The Bering-Bagley Glacial System (BBGS) is the largest glacier system outside of the Greenland and Antarctic ice sheets, and is the Earth's largest surge-type glacier. Surging is one of three types of glacial acceleration and the least understood one. Understanding glacial acceleration is paramount when trying to explain ice discharge to the oceans and the glacial contribution to sea-level rise, yet there are currently no numerical glacial models that account for surging. The recent 2011-2013 surge of the BBGS provides a rare opportunity to study the surge process through observations and the subsequent data analysis and numerical modeling. Using radar, altimeter, and image data collected from airborne and satellite missions, various descriptions of ice geometry are created at different times throughout the surge. Using geostatistical estimation techniques including variography and ordinary kriging, surface and bedrock Digital Elevation Maps (DEMs) are derived. A time series analysis of elevation change during the current surge is then conducted and validated using a complete error analysis along with airborne observations. The derived DEMs are then used as inputs to a computer simulated model of glacier dynamics in the BBGS. Using the Finite Element software Elmer/Ice, a full-Stokes simulation, with Glen's flow law for temperate ice, is created for numerical experiments. With consideration of free surface evolution, glacial hydrology and surface mass balance, the model is able to predict a variety of field variables including velocity, stress, strain-rate, pressure and surface elevation change at any point forward in time. These outputs are compared and validated using observational data such as CryoSat-2 altimetry, airborne field data, imagery and previous detailed analysis of the BBGS. Preliminary results reveal that certain surge phenomena such as surface elevation changes, surge progression and locations at which the surge starts, can be recreated using the

  16. Orion Exploration Flight Test-l (EFT -1) Absolute Navigation Design

    Science.gov (United States)

    Sud, Jastesh; Gay, Robert; Holt, Greg; Zanetti, Renato

    2014-01-01

    Scheduled to launch in September 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion Multi-Purpose-Crew-Vehicle (MPCV's) maiden flight dubbed "Exploration Flight Test -1" (EFT-1) intends to stress the system by placing the uncrewed vehicle on a high-energy parabolic trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. Unique challenges associated with designing the navigation system for EFT-1 are presented in the narrative with an emphasis on how redundancy and robustness influenced the architecture. Two Inertial Measurement Units (IMUs), one GPS receiver and three barometric altimeters (BALTs) comprise the navigation sensor suite. The sensor data is multiplexed using conventional integration techniques and the state estimate is refined by the GPS pseudorange and deltarange measurements in an Extended Kalman Filter (EKF) that employs the UDUT decomposition approach. The design is substantiated by simulation results to show the expected performance.

  17. Spatial Mapping of NEO 2008 EV5 Using Small Satellite Formation Flying and Steresoscopic Technology

    Science.gov (United States)

    Gonzalez, Juan; Singh Derewa, Chrishma

    2016-10-01

    NASA is currently developing the first-ever robotic Asteroid Redirect Robotic Mission (ARRM) to the near-Earth asteroid 2008 EV5 with the objective to capture a multi-ton boulder from the asteroids surface and use its mass to redirect its parent into a CIS lunar orbit where astronauts will study its physical and chemical composition.A critical step towards achieving this mission is to effectively map the target asteroid, identify the candidate boulder for retrieval and characterize its critical parameters. Currently, ARRM utilizes a laser altimeter to characterize the height of the boulders and mapping for final autonomous control of the capture. The proposed Lava-Kusha mission provides the increased of stereoscopic imaging and mapping, not only the Earthward side of the asteroid which has been observed for possible landing sites, but mapping the whole asteroid. LKM will enhance the fidelity of the data collected by the laser altimeter and gather improved topographic data for future Orion missions to 2008 EV5 once in cis lunar space.LKM consists of two low cost small satellites (6U) as a part of the ARRM. They will launch with ARRM as an integrated part of the system. Once at the target, this formation of pathfinder satellites will image the mission critical boulder to ensure the system design can support its removal. LKM will conduct a series of flybys prior to ARRM's rendezvous. LKMs stereoscopic cameras will provide detailed surveys of the boulder's terrain and environment to ensure ARRM can operate safely, reach the location and interface with the boulder. The LKM attitude control and cold gas propulsion system will enable formation maintenance maneuvers for global mapping of asteroid 2008 EV5 at an altitude of 100 km to a high-spatial resolution imaging altitude of 5 km.LKM will demonstrate formation flying in deep space and the reliability of stereoscopic cameras to precisely identify a specific target and provide physical characterization of an asteroid. An

  18. ULF/VLF (0.001 to 50 Hz) Seismo-Acoustic Noise in the Ocean. Proceedings of a Workshop Held at Austin, Texas on November 29-December 1, 1988

    Science.gov (United States)

    1989-08-03

    holes drilled in the seafloor from the D/V JOIDES Resolution through petrological , geochemical and paleomagnetic studies of the samples and logging...seismome- ters and/or hydrophones (or differential pressure gauges , DPG). Testing of the new instruments at very early stages is important to ensure...resolved using ocean bottom seismometers, suspended hydrophones and differential pressure gauges assisted by an orbiting radar altimeter (GEOSAT

  19. Do Assimilated Drifter Velocities Improve Lagrangian Predictability in an Operational Ocean Model?

    Science.gov (United States)

    2015-05-01

    extended Kalman filter . Molcard et al. (2005) used a statistical method to cor- relate model and drifter velocities. Taillandier et al. (2006) describe the... temperature and salinity observations. Trajectory angular differ- ences are also reduced. 1. Introduction The importance of Lagrangian forecasts was seen... Temperature , salinity, and sea surface height (SSH, measured along-track by satellite altimeters) observa- tions are typically assimilated in

  20. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.