WorldWideScience

Sample records for alters respiratory phenotype

  1. Oral Probiotics Alter Healthy Feline Respiratory Microbiota.

    Science.gov (United States)

    Vientós-Plotts, Aida I; Ericsson, Aaron C; Rindt, Hansjorg; Reinero, Carol R

    2017-01-01

    Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding

  2. Oral Probiotics Alter Healthy Feline Respiratory Microbiota

    Directory of Open Access Journals (Sweden)

    Aida I. Vientós-Plotts

    2017-07-01

    Full Text Available Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP, bronchoalveolar lavage fluid (BALF, rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs were determined. Hierarchical and principal component analyses (PCA demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the

  3. Environment Changes Genetic Effects on Respiratory Conditions and Allergic Phenotypes

    DEFF Research Database (Denmark)

    Song, Yong; Schwager, Michelle J; Backer, Vibeke

    2017-01-01

    The prevalence of asthma and allergic diseases is disproportionately distributed among different populations, with an increasing trend observed in Western countries. Here we investigated how the environment affected genotype-phenotype association in a genetically homogeneous, but geographically...... separated population. We evaluated 18 single nucleotide polymorphisms (SNPs) corresponding to 8 genes (ADAM33, ALOX5, LT-α, LTC4S, NOS1, ORMDL3, TBXA2R and TNF-α), the lung function and five respiratory/allergic conditions (ever asthma, bronchitis, rhinitis, dermatitis and atopy) in two populations of Inuit......-phenotype associations relating to bronchitis and allergy susceptibility are dependent on the environment and that environmental factors/lifestyles modify genetic predisposition and change the genetic effects on diseases....

  4. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.

    Science.gov (United States)

    Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina

    2017-04-01

    Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  5. Respiratory Phenotypes for Preterm Infants, Children, and Adults: Bronchopulmonary Dysplasia and More.

    Science.gov (United States)

    Collaco, Joseph M; McGrath-Morrow, Sharon A

    2018-05-01

    Ongoing advancements in neonatal care since the late 1980s have led to increased numbers of premature infants surviving well beyond the neonatal period. As a result of increased survival, many individuals born preterm manifest chronic respiratory symptoms throughout infancy, childhood, and adult life. The archetypical respiratory disease of prematurity, bronchopulmonary dysplasia, is the second most common chronic pediatric respiratory disease after asthma. However, there are several commonly held misconceptions. These misconceptions include that bronchopulmonary dysplasia is rare, that bronchopulmonary dysplasia resolves within the first few years of life, and that bronchopulmonary dysplasia does not impact respiratory health in adult life. This focused review describes a spectrum of respiratory conditions that individuals born prematurely may experience throughout their lifespan. Specifically, this review provides quantitative estimates of the number of individuals with alveolar, airway, and vascular phenotypes associated with bronchopulmonary dysplasia, as well as non-bronchopulmonary dysplasia respiratory phenotypes such as airway malacia, obstructive sleep apnea, and control of breathing issues. Furthermore, this review illustrates what is known about the potential for progression and/or lack of resolution of these respiratory phenotypes in childhood and adult life. Recognizing the spectrum of respiratory phenotypes associated with individuals born preterm and providing comprehensive and personalized care to these individuals may help to modulate adverse respiratory outcomes in later life.

  6. New insights on the maternal diet induced-hypertension: potential role of the phenotypic plasticity and sympathetic-respiratory overactivity

    Directory of Open Access Journals (Sweden)

    JOAO HENRIQUE eDA COSTA SILVA

    2015-11-01

    Full Text Available Systemic arterial hypertension (SAH is an important risk factor for cardiovascular disease and affects worldwide population. Current environment including life style coupled with genetic programming have been attributed to the rising incidence of hypertension. Besides, environmental conditions during perinatal development such as maternal malnutrition can program changes in the integration among renal, neural and endocrine system leading to hypertension. This phenomenon is termed phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel or unusual input during development. Human and animal studies indicate that fetal exposure to an adverse maternal environment may alter the renal morphology and physiology that contribute to the development of hypertension. Recently, it has been shown that the maternal protein restriction alter the central control of SAH by a mechanism that include respiratory dysfunction and enhanced sympathetic-respiratory coupling at early life, which may contribute to adult hypertension. This review will address the new insights on the maternal diet induced-hypertension that include the potential role of the phenotypic plasticity, specifically the perinatal protein malnutrition, and sympathetic-respiratory overactivity.

  7. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

    Science.gov (United States)

    Evstatiev, Rayko; Bukaty, Adam; Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Surman, Lidia; Schmid, Werner; Eferl, Robert; Lippert, Kathrin; Scheiber-Mojdehkar, Barbara; Kvasnicka, Hans Michael; Khare, Vineeta; Gasche, Christoph

    2014-05-01

    Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Copyright © 2014 Wiley Periodicals, Inc.

  8. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  9. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition.

    Science.gov (United States)

    Juss, Jatinder K; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M L; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M; Condliffe, Alison; Chilvers, Edwin R

    2016-10-15

    Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease's complex pathophysiology, yet these cells have been little studied. To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase-dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of evaluating novel therapeutic strategies in patient-derived cells.

  10. Does Exercise Alter Immune Function and Respiratory Infections?

    Science.gov (United States)

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  11. Altered Resting and Exercise Respiratory Physiology in Obesity

    OpenAIRE

    Sood, Akshay

    2009-01-01

    Obesity, particularly severe obesity, affects both resting and exercise-related respiratory physiology. Severe obesity classically produces a restrictive ventilatory abnormality, characterized by reduced expiratory reserve volume. However, obstructive ventilatory abnormality may also be associated with abdominal obesity. Decreased peak work rates are usually seen among obese subjects in a setting of normal or decreased ventilatory reserve and normal cardiovascular response to exercise. Weight...

  12. Intervention in gene regulatory networks with maximal phenotype alteration.

    Science.gov (United States)

    Yousefi, Mohammadmahdi R; Dougherty, Edward R

    2013-07-15

    A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior. We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN. Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b. edward@ece.tamu.edu Supplementary data are available at Bioinformatics online.

  13. Phenotypic and genetic characterization of NAD-dependent Pasteurellaceae from the respiratory tract of pigs and their possible pathogenetic importance

    DEFF Research Database (Denmark)

    Kielstein, P.; Wuthe, H.H.; Angen, Øystein

    2001-01-01

    . In the present study, 107 of these NAD-dependent isolates from the porcine respiratory tract, primarily from lungs with pathological changes, were investigated. On the basis of phenotypic criteria, such as haemolysis, urease, catalase, and indole formation as well as other fermentative activities, 50...

  14. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Isabel Miranda

    Full Text Available BACKGROUND: The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG(Ser. We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS: We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE: Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.

  15. Respiratory infectious phenotypes in acute exacerbation of COPD: an aid to length of stay and COPD Assessment Test

    Directory of Open Access Journals (Sweden)

    Dai MY

    2015-10-01

    Full Text Available Meng-Yuan Dai,1 Jin-Ping Qiao,2 Yuan-Hong Xu,2 Guang-He Fei1 1Pulmonary Department, 2Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China Purpose: To investigate the respiratory infectious phenotypes and their impact on length of stay (LOS and the COPD Assessment Test (CAT Scale in acute exacerbation of COPD (AECOPD. Patients and methods: We categorized 81 eligible patients into bacterial infection, viral infection, coinfection, and non-infectious groups. The respiratory virus examination was determined by a liquid bead array xTAG Respiratory Virus Panel in pharyngeal swabs, while bacterial infection was studied by conventional sputum culture. LOS and CAT as well as demographic information were recorded. Results: Viruses were detected in 38 subjects, bacteria in 17, and of these, seven had both. Influenza virus was the most frequently isolated virus, followed by enterovirus/rhinovirus, coronavirus, bocavirus, metapneumovirus, parainfluenza virus types 1, 2, 3, and 4, and respiratory syncytial virus. Bacteriologic analyses of sputum showed that Pseudomonas aeruginosa was the most common bacteria, followed by Acinetobacter baumannii, Klebsiella, Escherichia coli, and Streptococcus pneumoniae. The longest LOS and the highest CAT score were detected in coinfection group. CAT score was positively correlated with LOS. Conclusion: Respiratory infection is a common causative agent of exacerbations in COPD. Respiratory coinfection is likely to be a determinant of more severe acute exacerbations with longer LOS. CAT score may be a predictor of longer LOS in AECOPD. Keywords: COPD, acute exacerbation, respiratory infectious, phenotypes, LOS, CAT

  16. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  17. Respiratory

    Science.gov (United States)

    The words "respiratory" and "respiration" refer to the lungs and breathing. ... Boron WF. Organization of the respiratory system. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 26.

  18. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice.

    Directory of Open Access Journals (Sweden)

    Yogesh Saini

    Full Text Available Hypoxia is a state of decreased oxygen reaching the tissues of the body. During prenatal development, the fetus experiences localized occurrences of hypoxia that are essential for proper organogenesis and survival. The response to decreased oxygen availability is primarily regulated by hypoxia-inducible factors (HIFs, a family of transcription factors that modulate the expression of key genes involved in glycolysis, angiogenesis, and erythropoiesis. HIF-1α and HIF-2α, two key isoforms, are important in embryonic development, and likely are involved in lung morphogenesis. We have recently shown that the inducible loss of Hif-1α in lung epithelium starting at E4.5 leads to death within an hour of parturition, with symptoms similar to neonatal respiratory distress syndrome (RDS. In addition to Hif-1α, Hif-2α is also expressed in the developing lung, although the overlapping roles of Hif-1α and Hif-2α in this context are not fully understood. To further investigate the independent role of Hif-2α in lung epithelium and its ability to alter Hif-1α-mediated lung maturation, we generated two additional lung-specific inducible Hif-α knockout models (Hif-2α and Hif-1α+Hif-2α. The intrauterine loss of Hif-2α in the lungs does not lead to decreased viability or observable phenotypic changes in the lung. More interestingly, survivability observed after the loss of both Hif-1α and Hif-2α suggests that the loss of Hif-2α is capable of rescuing the neonatal RDS phenotype seen in Hif-1α-deficient pups. Microarray analyses of lung tissue from these three genotypes identified several factors, such as Scd1, Retlnγ, and Il-1r2, which are differentially regulated by the two HIF-α isoforms. Moreover, network analysis suggests that modulation of hormone-mediated, NF-κB, C/EBPα, and c-MYC signaling are central to HIF-mediated changes in lung development.

  19. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  20. Changes in insulin-like growth factor signaling alter phenotypes in Fragile X Mice.

    Science.gov (United States)

    Wise, T L

    2017-02-01

    Fragile X syndrome (FXS) is an inherited form of intellectual disability that is usually caused by expansion of a polymorphic CGG repeat in the 5' untranslated region of the X-linked FMR1 gene, which leads to hypermethylation and transcriptional silencing. Two non-neurological phenotypes of FXS are enlarged testes and connective tissue dysplasia, which could be caused by alterations in a growth factor signaling pathway. FXS patients also frequently have autistic-like symptoms, suggesting that the signaling pathways affected in FXS may overlap with those affected in autism. Identifying these pathways is important for both understanding the effects of FMR1 inactivation and developing treatments for both FXS and autism. Here we show that decreasing the levels of the insulin-like growth factor (Igf) receptor 1 corrects a number of phenotypes in the mouse model of FXS, including macro-orchidism, and that increasing the levels of IGF2 exacerbates the seizure susceptibility phenotype. These results suggest that the pathways altered by the loss of the FMR1-encoded protein (FMRP) may overlap with the pathways affected by changes in Igf signaling or that one or more of the proteins that play a role in Igf signaling could interact with FMRP. They also indicate a new set of potential targets for drug treatment of FXS and autism spectrum disorders. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    Science.gov (United States)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J.C.; Biessen, Erik A.L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-polarized, macrophage-conditioned medium inhibited IGF-1 signaling by ablating IGF-1 and increasing IGF-binding protein 3, increased vSMC apoptosis, and decreased proliferation. Expression of α-actin and col3a1 genes was strongly attenuated by macrophage-conditioned medium, whereas expression of matrix-degrading enzymes was increased. Importantly, all of these effects could be corrected by supplementation with IGF-1. In vivo, treatment with the stable IGF-1 analog Long R3 IGF-1 in apolipoprotein E knockout mice reduced stenosis and core size, and doubled cap/core ratio in early atherosclerosis. In advanced plaques, Long R3 IGF-1 increased the vSMC content of the plaque by more than twofold and significantly reduced the rate of intraplaque hemorrhage. We believe that IGF-1 in atherosclerotic plaques may have a role in preventing plaque instability, not only by modulating smooth muscle cell turnover, but also by altering smooth muscle cell phenotype. PMID:21281823

  2. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Helmut Fuchs

    2016-12-01

    Full Text Available The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K, which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC. Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB, associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.

  3. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    Science.gov (United States)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3 N294K/N294K ), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3 N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3 N294K/N294K mice. The Scube3 N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  4. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2018-04-01

    Full Text Available Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF diet and a methionine choline-deficient (MCD diet. The results showed that the dwarf Jingxing-Huang (JXH chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL and local Beijing-You (BJY breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1. This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.

  5. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken

    Science.gov (United States)

    Zhang, Yonghong; Liu, Zhen; Liu, Ranran; Wang, Jie; Zheng, Maiqing; Li, Qinghe; Cui, Huanxian; Zhao, Guiping; Wen, Jie

    2018-01-01

    Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers. PMID:29642504

  6. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken.

    Science.gov (United States)

    Zhang, Yonghong; Liu, Zhen; Liu, Ranran; Wang, Jie; Zheng, Maiqing; Li, Qinghe; Cui, Huanxian; Zhao, Guiping; Wen, Jie

    2018-04-08

    Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism ( ACACA , FASN , SCD , ACSL5 , FADS2 , FABP1 , APOA4 and ME1 ). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.

  7. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    Science.gov (United States)

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  8. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    Science.gov (United States)

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  9. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis.

    Science.gov (United States)

    Bos, L D; Schouten, L R; van Vught, L A; Wiewel, M A; Ong, D S Y; Cremer, O; Artigas, A; Martin-Loeches, I; Hoogendijk, A J; van der Poll, T; Horn, J; Juffermans, N; Calfee, C S; Schultz, M J

    2017-10-01

    We hypothesised that patients with acute respiratory distress syndrome (ARDS) can be clustered based on concentrations of plasma biomarkers and that the thereby identified biological phenotypes are associated with mortality. Consecutive patients with ARDS were included in this prospective observational cohort study. Cluster analysis of 20 biomarkers of inflammation, coagulation and endothelial activation provided the phenotypes in a training cohort, not taking any outcome data into account. Logistic regression with backward selection was used to select the most predictive biomarkers, and these predicted phenotypes were validated in a separate cohort. Multivariable logistic regression was used to quantify the independent association with mortality. Two phenotypes were identified in 454 patients, which we named 'uninflamed' (N=218) and 'reactive' (N=236). A selection of four biomarkers (interleukin-6, interferon gamma, angiopoietin 1/2 and plasminogen activator inhibitor-1) could be used to accurately predict the phenotype in the training cohort (area under the receiver operating characteristics curve: 0.98, 95% CI 0.97 to 0.99). Mortality rates were 15.6% and 36.4% (p<0.001) in the training cohort and 13.6% and 37.5% (p<0.001) in the validation cohort (N=207). The 'reactive phenotype' was independent from confounders associated with intensive care unit mortality (training cohort: OR 1.13, 95% CI 1.04 to 1.23; validation cohort: OR 1.18, 95% CI 1.06 to 1.31). Patients with ARDS can be clustered into two biological phenotypes, with different mortality rates. Four biomarkers can be used to predict the phenotype with high accuracy. The phenotypes were very similar to those found in cohorts derived from randomised controlled trials, and these results may improve patient selection for future clinical trials targeting host response in patients with ARDS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  10. Respiratory alterations due to urban air pollution: An experimental study in rats

    International Nuclear Information System (INIS)

    Saldiva, P.H.N.; King, M.; Delmonte, V.L.C.; Macchione, M.; Parada, M.A.C.; Daliberto, M.L.; Sakae, R.S.; Criado, P.M.P.; Silveira, P.L.P.; Zin, W.A.; Boehm, G.M.

    1992-01-01

    In order to assess the adverse effects of urban levels of air pollution, rats were used as biological indicators in a chronic exposure experiment. Animals were housed for 6 months in the center of Sao Paulo and were compared to controls kept for the same period in a clean area. Pollution levels were obtained from a State air pollution monitoring station, 200 m distant from the exposure place, which provided the levels of CO, SO 2 , particulates, and ozone. The animals were submitted to several tests focusing on the respiratory system, comprising pulmonary function tests, studies on mucociliary clearance and mucus rheology, histochemical evaluation of airways, bronchoalveolar lavage, and ultrastructural studies of the epithelium of the airways. Rats exposed to air pollution developed secretory cell hyperplasia in the airways, ultrastructural ciliary alterations, and a more rigid mucus, changes that caused mucociliary clearance impairment. In addition, nasal resistance and the number of inflammatory cells recovered by bronchoalveolar lavage were increased in air pollution exposed animals. The results obtained in the present investigation suggest that chronic exposure to urban levels of air pollution may cause respiratory lesions in rats

  11. The importance of environment on respiratory genotype/phenotype relationships in the Inuit

    DEFF Research Database (Denmark)

    Candelaria, P V; Backer, Vibeke; Khoo, S-K

    2010-01-01

    Genetic and environmental influences and their interactions are central to asthma pathogenesis. This study aimed to investigate the effects of different macro-environments on asthma genotype-phenotype associations in two geographically separated populations with common ancestry....

  12. The importance of environment on respiratory genotype/phenotype relationships in the Inuit

    DEFF Research Database (Denmark)

    Candelaria, P V; Backer, V; Khoo, S-K

    2010-01-01

    Genetic and environmental influences and their interactions are central to asthma pathogenesis. This study aimed to investigate the effects of different macro-environments on asthma genotype-phenotype associations in two geographically separated populations with common ancestry.......Genetic and environmental influences and their interactions are central to asthma pathogenesis. This study aimed to investigate the effects of different macro-environments on asthma genotype-phenotype associations in two geographically separated populations with common ancestry....

  13. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  14. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  15. Alterations in Skin Temperature and Sleep in the Fear of Harm Phenotype of Pediatric Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Patricia J. Murphy

    2014-08-01

    Full Text Available In children diagnosed with pediatric bipolar disorder (PBD, disturbances in the quality of sleep and wakefulness are prominent. A novel phenotype of PBD called Fear of Harm (FOH associated with separation anxiety and aggressive obsessions is associated with sleep onset insomnia, parasomnias (nightmares, night-terrors, enuresis, REM sleep-related problems, and morning sleep inertia. Children with FOH often experience thermal discomfort (e.g., feeling hot, excessive sweating in neutral ambient temperature conditions, as well as no discomfort during exposure to the extreme cold, and alternate noticeably between being excessively hot in the evening and cold in the morning. We hypothesized that these sleep- and temperature-related symptoms were overt symptoms of an impaired ability to dissipate heat, particularly in the evening hours near the time of sleep onset. We measured sleep/wake variables using actigraphy, and nocturnal skin temperature variables using thermal patches and a wireless device, and compared these data between children with PBD/FOH and a control sample of healthy children. The results are suggestive of a thermoregulatory dysfunction that is associated with sleep onset difficulties. Further, they are consistent with our hypothesis that alterations in neural circuitry common to thermoregulation and emotion regulation underlie affective and behavioral symptoms of the FOH phenotype.

  16. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring.

    Science.gov (United States)

    Enes-Marques, Silvia; Giusti-Paiva, Alexandre

    2018-01-27

    Maternal behavior has a substantial impact on the behavioral, endocrine, and neural development of the pups. This study investigated the effect of altering the neonatal nutritional environment by modifying the litter size on maternal care and anxiety- and fear-like behaviors in rats during adulthood. On postnatal day (PND) 2, litters were adjusted to a small litter (SL) size of three pups per dam or normal litter (NL) size of 12 pups per dam. Maternal behaviors were scored daily during lactation (PND2-21). The weight gain, food intake, adiposity, and biochemical landmarks of offspring rats were evaluated. On PND60, performances in the open field, elevated plus-maze (EPM), and fear conditioning test were measured. The reduction of the litter size enhanced maternal care in lactating rats, increasing the arched-back posture and licking pups. SL offspring exhibited accelerated weight gain, hyperphagia, increased visceral fat mass, dyslipidemia, and hyperleptinemia in adulthood. The SL offspring of both sexes showed an increase in the anti-thigmotactic effect in the open field, an intact anxious-phenotype in the EPM, and a decrease in the time spent freezing during the fear-conditioning test, compared to NL. The neonatal environment as determined by litter size plays a crucial role in programming the adult metabolic phenotype as well as behavioral responses to stressful stimuli, with an impact on anxiety-like and fear behaviors. These behavioral changes in offspring may be, at least in part, a result of increased maternal care.

  17. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  18. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity.

    Science.gov (United States)

    Bellance, N; Benard, G; Furt, F; Begueret, H; Smolková, K; Passerieux, E; Delage, J P; Baste, J M; Moreau, P; Rossignol, R

    2009-12-01

    Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1alpha (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy.

  19. Kenny Caffey syndrome with severe respiratory and gastrointestinal involvement: expanding the clinical phenotype.

    Science.gov (United States)

    Christodoulou, Loucas; Krishnaiah, Anil; Spyridou, Christina; Salpietro, Vincenzo; Hannan, Siobhan; Saggar, Anand; Mankad, Kshitij; Deep, Akash; Kinali, Maria

    2015-06-01

    Kenny Caffey syndrome (KCS) is a rare syndrome reported almost exclusively in Middle Eastern populations. It is characterized by severe growth retardation-short stature, dysmorphic features, episodic hypocalcaemia, hypoparathyroidism, seizures, and medullary stenosis of long bones with thickened cortices. We report a 10-year-old boy with KCS with an unusually severe respiratory and gastrointestinal system involvement-features not previously described in the literature. He had severe psychomotor retardation and regressed developmentally from walking unaided to sitting with support. MRI brain showed bilateral hippocampal sclerosis, marked supra-tentorial volume loss and numerous calcifications. A 12 bp deletion of exon 2 of tubulin-specific chaperone E (TBCE) gene was identified and the diagnosis of KCS was confirmed. Hypercarbia following a sleep study warranted nocturnal continuous positive airway pressure (CPAP) when aged 6. When boy aged 8, persistent hypercarbia with increasing oxygen requirement and increased frequency and severity of lower respiratory tract infections led to progressive respiratory failure. He became fully dependent on non-invasive ventilation and by 9 years he had a tracheotomy and was established on long-term ventilation. He developed retching, vomiting and diarrhea. Chest CT showed changes consistent with chronic aspiration, but no interstitial pulmonary fibrosis. He died aged 10 from respiratory complications.

  20. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Martin

    2015-10-01

    Full Text Available Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability, and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo and central memory (CD62Lhi cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit

  1. Altered Functional Subnetwork During Emotional Face Processing: A Potential Intermediate Phenotype for Schizophrenia.

    Science.gov (United States)

    Cao, Hengyi; Bertolino, Alessandro; Walter, Henrik; Schneider, Michael; Schäfer, Axel; Taurisano, Paolo; Blasi, Giuseppe; Haddad, Leila; Grimm, Oliver; Otto, Kristina; Dixson, Luanna; Erk, Susanne; Mohnke, Sebastian; Heinz, Andreas; Romanczuk-Seiferth, Nina; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Cichon, Sven; Noethen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2016-06-01

    Although deficits in emotional processing are prominent in schizophrenia, it has been difficult to identify neural mechanisms related to the genetic risk for this highly heritable illness. Prior studies have not found consistent regional activation or connectivity alterations in first-degree relatives compared with healthy controls, suggesting that a more comprehensive search for connectomic biomarkers is warranted. To identify a potential systems-level intermediate phenotype linked to emotion processing in schizophrenia and to examine the psychological association, task specificity, test-retest reliability, and clinical validity of the identified phenotype. The study was performed in university research hospitals from June 1, 2008, through December 31, 2013. We examined 58 unaffected first-degree relatives of patients with schizophrenia and 94 healthy controls with an emotional face-matching functional magnetic resonance imaging paradigm. Test-retest reliability was analyzed with an independent sample of 26 healthy participants. A clinical association study was performed in 31 patients with schizophrenia and 45 healthy controls. Data analysis was performed from January 1 to September 30, 2014. Conventional amygdala activity and seeded connectivity measures, graph-based global and local network connectivity measures, Spearman rank correlation, intraclass correlation, and gray matter volumes. Among the 152 volunteers included in the relative-control sample, 58 were unaffected first-degree relatives of patients with schizophrenia (mean [SD] age, 33.29 [12.56]; 38 were women), and 94 were healthy controls without a first-degree relative with mental illness (mean [SD] age, 32.69 [10.09] years; 55 were women). A graph-theoretical connectivity approach identified significantly decreased connectivity in a subnetwork that primarily included the limbic cortex, visual cortex, and subcortex during emotional face processing (cluster-level P corrected for familywise error =

  2. Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Directory of Open Access Journals (Sweden)

    Maria C. Lopez

    2005-01-01

    Full Text Available In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- and mature (CD3+ single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection.

  3. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.

    Science.gov (United States)

    Henricsson, C; de Jesus Ferreira, M C; Hedfalk, K; Elbing, K; Larsson, C; Bill, R M; Norbeck, J; Hohmann, S; Gustafsson, L

    2005-10-01

    The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.

  4. Network science meets respiratory medicine for OSAS phenotyping and severity prediction

    Directory of Open Access Journals (Sweden)

    Stefan Mihaicuta

    2017-05-01

    Full Text Available Obstructive sleep apnea syndrome (OSAS is a common clinical condition. The way that OSAS risk factors associate and converge is not a random process. As such, defining OSAS phenotypes fosters personalized patient management and population screening. In this paper, we present a network-based observational, retrospective study on a cohort of 1,371 consecutive OSAS patients and 611 non-OSAS control patients in order to explore the risk factor associations and their correlation with OSAS comorbidities. To this end, we construct the Apnea Patients Network (APN using patient compatibility relationships according to six objective parameters: age, gender, body mass index (BMI, blood pressure (BP, neck circumference (NC and the Epworth sleepiness score (ESS. By running targeted network clustering algorithms, we identify eight patient phenotypes and corroborate them with the co-morbidity types. Also, by employing machine learning on the uncovered phenotypes, we derive a classification tree and introduce a computational framework which render the Sleep Apnea Syndrome Score (SASScore; our OSAS score is implemented as an easy-to-use, web-based computer program which requires less than one minute for processing one individual. Our evaluation, performed on a distinct validation database with 231 consecutive patients, reveals that OSAS prediction with SASScore has a significant specificity improvement (an increase of 234% for only 8.2% sensitivity decrease in comparison with the state-of-the-art score STOP-BANG. The fact that SASScore has bigger specificity makes it appropriate for OSAS screening and risk prediction in big, general populations.

  5. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    Science.gov (United States)

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability.

    Science.gov (United States)

    Allaman, Igor; Gavillet, Mathilde; Bélanger, Mireille; Laroche, Thierry; Viertl, David; Lashuel, Hilal A; Magistretti, Pierre J

    2010-03-03

    Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

  7. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  8. Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model

    Directory of Open Access Journals (Sweden)

    Danielle Botelho

    2018-03-01

    Full Text Available Here we examine the organ level toxicology of both carbon black (CB and silver nanoparticles (AgNP. We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF. C57Bl6/J male mice were intratracheally instilled with saline (control, low (0.05 μg/g or high (0.5 μg/g doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.

  9. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  10. Interspecific competition alters natural selection on shade avoidance phenotypes in Impatiens capensis.

    Science.gov (United States)

    McGoey, Brechann V; Stinchcombe, John R

    2009-08-01

    Shade avoidance syndrome is a known adaptive response for Impatiens capensis growing in dense intraspecific competition. However, I. capensis also grow with dominant interspecific competitors in marshes. Here, we compare the I. capensis shade-avoidance phenotypes produced in the absence and presence of heterospecific competitors, as well as selection on those traits. Two treatments were established in a marsh; in one treatment all heterospecifics were removed, while in the other, all competitors remained. We compared morphological traits, light parameters, seed output and, using phenotypic selection analysis, examined directional and nonlinear selection operating in the different competitive treatments. Average phenotypes, light parameters and seed production all varied depending on competitive treatment. Phenotypic selection analyses revealed different directional, disruptive, stabilizing and correlational selection. The disparities seen in both phenotypes and selection between the treatments related to the important differences in elongation timing depending on the presence of heterospecifics, although environmental covariances between traits and fitness could also contribute. Phenotypes produced by I. capensis depend on their competitive environment, and differing selection on shade-avoidance traits between competitive environments could indirectly select for increased plasticity given gene flow between populations in different competitive contexts.

  11. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  12. Weight loss alters severity of individual nocturnal respiratory events depending on sleeping position

    International Nuclear Information System (INIS)

    Kulkas, A; Leppänen, T; Tiihonen, P; Mervaala, E; Töyräs, J; Sahlman, J; Seppä, J; Kokkarinen, J; Randell, J; Tuomilehto, H

    2014-01-01

    Weight loss is an effective treatment for obstructive sleep apnea (OSA). The mechanisms of how weight loss affects nocturnal breathing are not fully understood. The severity of OSA is currently estimated by the number of respiratory events per hour of sleep (i.e. apnea-hypopnea-index, AHI). AHI neglects duration and morphology of individual respiratory events, which describe the severity of individual events. In the current paper, we investigate the novel Adjusted-AHI parameter (incorporating individual event severity) and AHI after weight loss in relation to sleeping position. It was hypothesised that there are positional differences in individual event severity changes during weight loss. Altogether, 32 successful (> 5% of weight) and 34 unsuccessful weight loss patients at baseline and after 1 year follow-up were analysed. The results revealed that individual respiratory event severity was reduced differently in supine and non-supine positions during weight loss. During weight loss, AHI was reduced by 54% (p = 0.004) and 74% (p < 0.001), while Adjusted-AHI was reduced by 14% (p = 0.454) and 48% (p = 0.003) in supine and non-supine positions, respectively. In conclusion, the severity of individual respiratory events decreased more in the non-supine position. The novel Adjusted-AHI parameter takes these changes into account and might therefore contribute additional information to the planning of treatment of OSA patients. (paper)

  13. Advancement of Phenotype Transformation of Cancer-associated Fibroblasts: 
from Genetic Alterations to Epigenetic Modification

    Directory of Open Access Journals (Sweden)

    Dali CHEN

    2015-02-01

    Full Text Available In the field of human cancer research, even though the vast majority attentions were paid to tumor cells as “the seeds”, the roles of tumor microenvironments as “the soil” are gradually explored in recent years. As a dominant compartment of tumor microenvironments, cancer-associated fibroblasts (CAFs were discovered to correlated with tumorigenesis, tumor progression and prognosis. And the exploration of the mechanisms of CAF phenotype transformation would conducive to the further understand of the CAFs function in human cancers. As we known that CAFs have four main origins, including epithelial cells, endothelial cells, mesenchymal stem cells (MSCs and local mesenchymal cells. However, researchers found that all these origins finally conduct similiar phenotypes from intrinsic to extrinsic ones. Thus, what and how a mechanism can conduct the phenotype transformation of CAFs with different origins? Two viewpoints are proposed to try to answer the quetsion, involving genetic alterations and epigenetic modifications. This review will systematically summarize the advancement of mechanisms of CAF phenotype transformations in the aspect of genentic and epigenetic modifications.

  14. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    Science.gov (United States)

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  15. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis

    Directory of Open Access Journals (Sweden)

    Héctor Rincón-Arévalo

    2016-06-01

    Full Text Available Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE−/− mice fed or not with high-fat diet (HFD, by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410 [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia.

  16. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A.; Ramírez-Pineda, José R.; Yassin, Lina M.

    2016-01-01

    Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE−/−) mice fed or not with high-fat diet (HFD), by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410) [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia. PMID:27081674

  17. Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal β-hexamer structure

    International Nuclear Information System (INIS)

    Wispelaere, Melissanne de; Chaturvedi, Sonali; Wilkens, Stephan; Rao, A.L.N.

    2011-01-01

    The first 45 amino acid region of brome mosaic virus (BMV) capsid protein (CP) contains RNA binding and structural domains that are implicated in the assembly of infectious virions. One such important structural domain encompassing amino acids 28 QPVIV 32 , highly conserved between BMV and cowpea chlorotic mottle virus (CCMV), exhibits a β-hexamer structure. In this study we report that alteration of the β-hexamer structure by mutating 28 QPVIV 32 to 28 AAAAA 32 had no effect either on symptom phenotype, local and systemic movement in Chenopodium quinoa and RNA profile of in vivo assembled virions. However, sensitivity to RNase and assembly phenotypes distinguished virions assembled with CP subunits having β-hexamer from those of wild type. A comparison of 3-D models obtained by cryo electron microscopy revealed overall similar structural features for wild type and mutant virions, with small but significant differences near the 3-fold axes of symmetry.

  18. Structures of Rotavirus Reassortants Demonstrate Correlation of Altered Conformation of the VP4 Spike and Expression of Unexpected VP4-Associated Phenotypes

    Science.gov (United States)

    Pesavento, Joseph B.; Billingsley, Angela M.; Roberts, Ed J.; Ramig, Robert F.; Prasad, B. V. Venkataram

    2003-01-01

    Numerous prior studies have indicated that viable rotavirus reassortants containing structural proteins of heterologous parental origin may express unexpected phenotypes, such as changes in infectivity and immunogenicity. To provide a structural basis for alterations in phenotypic expression, a three-dimensional structural analysis of these reassortants was conducted. The structures of the reassortants show that while VP4 generally maintains the parental structure when moved to a heterologous protein background, in certain reassortants, there are subtle alterations in the conformation of VP4. The alterations in VP4 conformation correlated with expression of unexpected VP4-associated phenotypes. Interactions between heterologous VP4 and VP7 in reassortants expressing unexpected phenotypes appeared to induce the conformational alterations seen in VP4. PMID:12584352

  19. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype

    NARCIS (Netherlands)

    von der Thüsen, Jan H.; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; van Berkel, Theo J. C.; Biessen, Erik A. L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic

  20. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  1. A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.

    Science.gov (United States)

    Rouzier, Cécile; Moore, David; Delorme, Cécile; Lacas-Gervais, Sandra; Ait-El-Mkadem, Samira; Fragaki, Konstantina; Burté, Florence; Serre, Valérie; Bannwarth, Sylvie; Chaussenot, Annabelle; Catala, Martin; Yu-Wai-Man, Patrick; Paquis-Flucklinger, Véronique

    2017-05-01

    Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency. Here, we report on a novel homozygous CISD2 mutation (c.215A > G; p.Asn72Ser) in a Moroccan patient with an overlapping phenotype suggesting that Wolfram syndrome type 1 and type 2 form a continuous clinical spectrum with genetic heterogeneity. The present study provides strong evidence that this particular CISD2 mutation disturbs cellular Ca2+ homeostasis with enhanced Ca2+ flux from the ER to mitochondria and cytosolic Ca2+ abnormalities in patient-derived fibroblasts. This Ca2+ dysregulation was associated with increased ER-mitochondria contact, a swollen ER lumen and a hyperfused mitochondrial network in the absence of overt ER stress. Although there was no marked alteration in mitochondrial bioenergetics under basal conditions, culture of patient-derived fibroblasts in glucose-free galactose medium revealed a respiratory chain defect in complexes I and II, and a trend towards decreased ATP levels. Our results provide important novel insight into the potential disease mechanisms underlying the neurodegenerative consequences of CISD2 mutations and the subsequent development of multisystemic disease. © The Author 2017. Published by Oxford University Press.

  2. Rib cage deformities alter respiratory muscle action and chest wall function in patients with severe osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Antonella LoMauro

    Full Text Available BACKGROUND: Osteogenesis imperfecta (OI is an inherited connective tissue disorder characterized by bone fragility, multiple fractures and significant chest wall deformities. Cardiopulmonary insufficiency is the leading cause of death in these patients. METHODS: Seven patients with severe OI type III, 15 with moderate OI type IV and 26 healthy subjects were studied. In addition to standard spirometry, rib cage geometry, breathing pattern and regional chest wall volume changes at rest in seated and supine position were assessed by opto-electronic plethysmography to investigate if structural modifications of the rib cage in OI have consequences on ventilatory pattern. One-way or two-way analysis of variance was performed to compare the results between the three groups and the two postures. RESULTS: Both OI type III and IV patients showed reduced FVC and FEV(1 compared to predicted values, on condition that updated reference equations are considered. In both positions, ventilation was lower in OI patients than control because of lower tidal volume (p<0.01. In contrast to OI type IV patients, whose chest wall geometry and function was normal, OI type III patients were characterized by reduced (p<0.01 angle at the sternum (pectus carinatum, paradoxical inspiratory inward motion of the pulmonary rib cage, significant thoraco-abdominal asynchronies and rib cage distortions in supine position (p<0.001. CONCLUSIONS: In conclusion, the restrictive respiratory pattern of Osteogenesis Imperfecta is closely related to the severity of the disease and to the sternal deformities. Pectus carinatum characterizes OI type III patients and alters respiratory muscles coordination, leading to chest wall and rib cage distortions and an inefficient ventilator pattern. OI type IV is characterized by lower alterations in the respiratory function. These findings suggest that functional assessment and treatment of OI should be differentiated in these two forms of the

  3. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  4. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  5. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  6. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  7. Altered GPM6A/M6 dosage impairs cognition and causes phenotypes responsive to cholesterol in human and Drosophila.

    Science.gov (United States)

    Gregor, Anne; Kramer, Jamie M; van der Voet, Monique; Schanze, Ina; Uebe, Steffen; Donders, Rogier; Reis, André; Schenck, Annette; Zweier, Christiane

    2014-12-01

    Glycoprotein M6A (GPM6A) is a neuronal transmembrane protein of the PLP/DM20 (proteolipid protein) family that associates with cholesterol-rich lipid rafts and promotes filopodia formation. We identified a de novo duplication of the GPM6A gene in a patient with learning disability and behavioral anomalies. Expression analysis in blood lymphocytes showed increased GPM6A levels. An increase of patient-derived lymphoblastoid cells carrying membrane protrusions supports a functional effect of this duplication. To study the consequences of GPM6A dosage alterations in an intact nervous system, we employed Drosophila melanogaster as a model organism. We found that knockdown of Drosophila M6, the sole member of the PLP family in flies, in the wing, and whole organism causes malformation and lethality, respectively. These phenotypes as well as the protrusions of patient-derived lymphoblastoid cells with increased GPM6A levels can be alleviated by cholesterol supplementation. Notably, overexpression as well as loss of M6 in neurons specifically compromises long-term memory in the courtship conditioning paradigm. Our findings thus indicate a critical role of correct GPM6A/M6 levels for cognitive function and support a role of the GPM6A duplication for the patient's phenotype. Together with other recent findings, this study highlights compromised cholesterol homeostasis as a recurrent feature in cognitive phenotypes. © 2014 WILEY PERIODICALS, INC.

  8. Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect.

    Science.gov (United States)

    Peca, Donatella; Petrini, Stefania; Tzialla, Chryssoula; Boldrini, Renata; Morini, Francesco; Stronati, Mauro; Carnielli, Virgilio P; Cogo, Paola E; Danhaive, Olivier

    2011-08-25

    Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1)--critical for lung, thyroid and central nervous system morphogenesis and function--causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH). Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC) were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled (2)H(2)O and (13)C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry (2)H and (13)C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human and was not found in two healthy controls and

  9. Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    Directory of Open Access Journals (Sweden)

    Carnielli Virgilio P

    2011-08-01

    Full Text Available Abstract Background Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1 - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. Methods The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH. Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Results Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human

  10. Research on alteration of neurons in vagal nuclei in medulla oblongata in newborns with respiratory distress.

    Science.gov (United States)

    Islami, Hilmi; Shabani, Ragip; Shabani, Driton; Dacaj, Ramadan; Manxhuka, Suzana; Azemi, Mehmedali; Krasniqi, Shaip; Kurtishi, Ilir

    2011-01-01

    Neuronal and axonal degenerative changes in motor vagal neurons (DMNV) and sensory vagal neurons (nTS) in the medulla oblongata in newborns were studied. Material was taken from the autopsies of newborns, live and dead newborns, in different gestational weeks (aborted, immature, premature and mature). 46 cases were studied. Material for research was taken from the medulla oblongata and lung tissue. Serial horizontal incisions were made in the medulla oblongata (± 4 mm), commencing from the obex, where the DMNV and nTS vagal nuclei were explored. Fixed cuttings in buffered formalin (10%) were used for histochemical staining. Serial cuttings were done with a microtome (7 µm). Pulmonary infections, being significant (p medulla oblongata in newborns in different gestational weeks are more emphasized in matures in comparison to aborted and immature (p < 0.05). Depending on the lifetime of dead newborns, neuronal morphological changes in vagus nerve nuclei are significant (p < 0.05). Therefore, it can be concluded that pulmonary infections are often caused due to dramatic respiratory distress in newborns, while hypoxaemic changes in the population of vagus nerve neurons in respiratory distress are more emphasized in matures.

  11. Altered genotypic and phenotypic frequencies of aphid populations under enriched CO2 and O3 atmospheres

    Science.gov (United States)

    Edward B. Mondor; Michelle N. Tremblay; Caroline S. Awmack; Richard L. Lindroth

    2005-01-01

    Environmental change is anticipated to negatively affect both plant and animal populations. As abiotic factors rapidly change habitat suitability, projections range from altered genetic diversity to wide-spread species loss. Here, we assess the degree to which changes in atmospheric composition associated with environmental change will influence not only the abundance...

  12. The dynamics of carbon dioxide equilibration after alterations in the respiratory rate

    International Nuclear Information System (INIS)

    Buehler, Sarah; Jensen, Marie C; Gottlieb, Dominik; Eckle, Daniel; Szczyrba, Marc; Schumann, Stefan; Guttmann, Josef; Lozano-Zahonero, Sara; Moeller, Knut

    2013-01-01

    Manual or automated control of mechanical ventilation can be realized as an open or closed-loop system for which the regulation of the ventilation parameters ideally is tuned to the dynamics and equilibration time of the biological system. We investigated the dynamic, transient state and equilibration time (t eq ) of the CO 2 partial pressure (PCO 2 ) after changes in the respiratory rate (ΔRR). In 17 anaesthetized patients without known history of lung disease, respiratory rate was alternately increased and decreased and end-tidal CO 2 partial pressures (PetCO 2 ) were measured. Linear relations were found between ΔRR and PetCO 2 changes (ΔPetCO 2 = 0.3 − 1.1 · ΔRR) and between ΔRR and t eq for increasing and decreasing RR (t eq(hypervent) = 0.5 · |ΔRR|, t eq(hypovent) = 0.7 · |ΔRR|). Extrapolation of the transition between two PCO 2 steady-states allowed for the prediction of the new PCO 2 steady-state as early as 0.5 · t eq with an error <4 mmHg. At bedside or in automated ventilation systems, the linear dependencies between ΔRR and ΔPCO 2 and between ΔRR and t eq as well as early steady-state prediction of PCO 2 could be used as a guidance towards a timing and step size regulation of RR that is well adapted to the biological system. (paper)

  13. Even mild respiratory distress alters tissue oxygenation significantly in preterm infants during neonatal transition

    International Nuclear Information System (INIS)

    Schwaberger, Bernhard; Pichler, Gerhard; Binder, Corinna; Pocivalnik, Mirjam; Urlesberger, Berndt; Avian, Alexander

    2014-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive measurements of regional oxygen saturation (rSO 2 ). The aim was to evaluate the dynamics of rSO 2 of the brain, preductal and postductal tissues during postnatal transition in preterm infants with and without respiratory support (RS). This single-centre study was designed as an exploratory prospective observational study. Fifty one preterm infants (≥ 30 + 0 and < 37 + 0 weeks) delivered by caesarean section were included. RS using a T-Piece-Resuscitator and supplemental oxygen were given according to guidelines. NIRS measurements were carried out by using Invos Monitor (Covidien; USA) for the first 15 min of life. Three NIRS transducers were attached on the forehead (rSO 2 brain), the right forearm (rSO 2 arm) and the left lower leg (rSO 2 leg). Two groups were compared based on need for RS: normal transition (NT) and RS group. Results: In NT group rSO 2 brain increased over time and was significantly higher than rSO 2 arm, whereas in RS group rSO 2 brain and rSO 2 arm increased without significant differences. Courses of rSO 2 arm and rSO 2 leg increased over time and showed a converging pattern with initially lower values of rSO 2 leg in NT group and a diverging pattern with lower levels of rSO 2 leg in RS group. Overall, rSO 2 levels were higher in NT compared to RS group. Conclusion: Our findings indicate that the decreased rSO 2 levels in RS group compared to NT group are not only caused by lower arterial oxygen saturation levels, but also by a compromised perfusion even in infants with only mild respiratory distress. (paper)

  14. Hereditary rickets. How genetic alterations explain the biochemical and clinical phenotypes.

    Science.gov (United States)

    Papadopoulou, Anna; Gole, Evaggelia; Nicolaidou, Polyxeni

    2013-12-01

    The reemergence of vitamin D deficiency in the industrialized countries resurrects the "threat" of nutritional rickets, especially among pediatric populations, a fact that may lead to underdiagnosis of hereditary rickets. Today, hereditary rickets may be subdivided into two main groups according to their biochemical profile: the one associated with defects in vitamin D synthesis and action and the second associated with abnormal phosphorus metabolism. The classification of the patients in a particular group of hereditary rickets is determinative of the treatment to follow. This review, through the recent advances on vitamin D and P metabolism, discusses the molecular and biochemical defects associated to each group of inherited rickets, as well as the clinical phenotypes and the recommended therapeutic approaches.

  15. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice

    DEFF Research Database (Denmark)

    Møller-Kristensen, Mette; Hamblin, Michael R; Thiel, Steffen

    2007-01-01

    Burn injury destroys skin, the second largest innate immune organ in the body, and triggers chaotic immune and inflammatory responses. The pattern recognition molecule, mannan-binding lectin (MBL), plays an important role in the first-line host defense against infectious agents. MBL initiates...... the lectin complement pathway and acts as an opsonin. Recent studies suggest that MBL also modulates inflammatory responses. We report that local responses after burn in MBL null mice differ from those found in wild-type (WT) mice in the following important biological markers: spontaneous eschar separation......, thinned epidermis and dermis, upregulation of soluble factors including cytokines, chemokines, cell adhesion molecules, a growth factor-binding protein, and matrix metalloproteinases. Mice lacking C1q, C4, or C3 did not show the lack of eschar separation seen in MBL null-burn phenotype. These findings...

  16. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    Energy Technology Data Exchange (ETDEWEB)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S. (Montreal Neurological Institute, McGill University, Quebec (Canada))

    1991-07-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy.

  17. Exploring the phenotypic expression of a regulatory proteome- altering gene by spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Munck, L.; Nielsen, J.P.; Møller, B.

    2001-01-01

    electrophoresis, resulting in a radically changed amino acid and chemical composition. A synergy interval partial least squares regression model (si-PLSR) is tested to select combinations of spectral segments which have a high correlation to defined chemical components indicative of the lys3a gene, such as direct...... effects of the changed proteome, for example, the amide content, or indirect effects due to changes in carbohydrate and fat composition. It is concluded that the redundancy of biological information on the DNA sequence level is also represented at the phenotypic level in the dataset read by the NIR...... spectroscopic sensor from the chemical physical fingerprint. The PLS algorithm chooses spectral intervals: which combine both direct and indirect proteome effects. This explains the robustness of NIR spectral predictions by PLSR for a wide range of chemical components. The new option of using spectroscopy...

  18. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles

    International Nuclear Information System (INIS)

    Weller, B.; Karpati, G.; Lehnert, S.; Carpenter, S.

    1991-01-01

    Two thousand rads of gamma irradiation delivered to the lower legs of ten day old normal and x-chromosome linked muscular dystrophy (mdx) mice caused significant inhibition of tibial bone and soleus muscle fiber growth. In the irradiated mdx solei, there was a major loss of muscle fibers, lack of central nucleation, and some endomysial fibrosis. These features were caused by a failure of regeneration of muscle fibers due to impaired proliferative capacity of satellite cells. Gamma irradiation transforms the late pathological phenotype of mdx muscles, so that in one major aspect (muscle fiber loss) they resemble muscles in Duchenne muscular dystrophy. However, extensive endomysial fibrosis which is another characteristic feature of Duchenne muscular dystrophy did not develop. This experimental model could be useful for the functional investigation of possible beneficial effects of therapeutic interventions in mdx dystrophy

  19. Identification of viral genes associated with the interferon-inducing phenotype of a synthetic porcine reproductive and respiratory syndrome virus strain.

    Science.gov (United States)

    Sun, Haiyan; Pattnaik, Asit K; Osorio, Fernando A; Vu, Hiep L X

    2016-12-01

    We recently generated a fully synthetic porcine reproductive and respiratory syndrome virus strain (designated as PRRSV-CON), which confers unprecedented levels of heterologous protection. We report herein that the synthetic PRRSV-CON possesses a unique phenotype in that it induces type-I interferons (IFNs) instead of suppressing these cytokines as most of the naturally occurring PRRSV isolates do. Through gain- and loss- of-function studies, the IFN-inducing phenotype of PRRSV-CON was mapped to the 3.3kb genomic fragment encoding three viral nonstructural proteins: nsp1α, nsp1β and the N-terminal part of nsp2. Further studies indicated that a cooperation among these 3 proteins was required for effective induction of IFNs. Collectively, this study constitutes the first step toward understanding the mechanisms by which the synthetic PRRSV-CON confers heterologous protection. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype.

    Science.gov (United States)

    Malgoyre, Alexandra; Chabert, Clovis; Tonini, Julia; Koulmann, Nathalie; Bigard, Xavier; Sanchez, Hervé

    2017-03-01

    We investigated the effects of chronic hypoxia on the maximal use of and sensitivity of mitochondria to different substrates in rat slow-oxidative (soleus, SOL) and fast-glycolytic (extensor digitorum longus, EDL) muscles. We studied mitochondrial respiration in situ in permeabilized myofibers, using pyruvate, octanoate, palmitoyl-carnitine (PC), or palmitoyl-coenzyme A (PCoA). The hypophagia induced by hypoxia may also alter metabolism. Therefore, we used a group of pair-fed rats (reproducing the same caloric restriction, as observed in hypoxic animals), in addition to the normoxic control fed ad libitum. The resting respiratory exchange ratio decreased after 21 days of exposure to hypobaric hypoxia (simulated elevation of 5,500 m). The respiration supported by pyruvate and octanoate were unaffected. In contrast, the maximal oxidative respiratory rate for PCoA, the transport of which depends on carnitine palmitoyltransferase 1 (CPT-1), decreased in the rapid-glycolytic EDL and increased in the slow-oxidative SOL, although hypoxia improved affinity for this substrate in both muscle types. PC and PCoA were oxidized similarly in normoxic EDL, whereas chronic hypoxia limited transport at the CPT-1 step in this muscle. The effects of hypoxia were mediated by caloric restriction in the SOL and by hypoxia itself in the EDL. We conclude that improvements in mitochondrial affinity for PCoA, a physiological long-chain fatty acid, would facilitate fatty-acid use at rest after chronic hypoxia independently of quantitative alterations of mitochondria. Conversely, decreasing the maximal oxidation of PCoA in fast-glycolytic muscles would limit fatty-acid use during exercise. NEW & NOTEWORTHY Affinity for low concentrations of long-chain fatty acids (LCFA) in mitochondria skeletal muscles increases after chronic hypoxia. Combined with a lower respiratory exchange ratio, this suggests facility for fatty acid utilization at rest. This fuel preference is related to caloric

  1. Fibrocytes in the Fibrotic Lung: Altered Phenotype Detected by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Charles eReese

    2014-06-01

    Full Text Available Fibrocytes are bone marrow hematopoietic-derived cells that also express a mesenchymal cell marker (commonly collagen I and participate in fibrotic diseases of multiple organs. Given their origin, they or their precursors must be circulating cells before recruitment into target tissues. While most previous studies focused on circulating fibrocytes, here we focus on the fibrocyte phenotype in fibrotic tissue. The study’s relevance to human disease is heightened by use of a model in which bleomycin is delivered systemically, recapitulating several features of human scleroderma including multi-organ fibrosis not observed when bleomycin is delivered directly into the lungs. Using flow cytometry, we find in the fibrotic lung a large population of CD45high fibrocytes (called Region I rarely found in vehicle-treated control mice. A second population of CD45+ fibrocytes (called Region II is observed in both control and fibrotic lung. The level of CD45 in circulating fibrocytes is far lower than in either Region I or II lung fibrocytes. The chemokine receptors CXCR4 and CCR5 are expressed at higher levels in Region I than in Region II and are present at very low levels in all other lung cells including CD45+/collagen I- leucocytes. The collagen chaperone HSP47 is present at similar high levels in both Regions I and II, but at a higher level in fibrotic lung than in control lung. There is also a major population of HSP47high/CD45- cells in fibrotic lung not present in control lung. CD44 is present at higher levels in Region I than in Region II and at much lower levels in all other cells including CD45+/collagen I- leucocytes. When lung fibrosis is inhibited by restoring caveolin-1 activity using a caveolin-1 scaffolding domain peptide (CSD, a strong correlation is observed between fibrocyte number and fibrosis score. In summary, the distinctive phenotype of fibrotic lung fibrocytes suggests that fibrocyte differentiation occurs primarily within the

  2. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  3. Leaf micro-environment influence the altered foliar phenotype of columnar apple (Malus x domestica Borkh.) trees

    DEFF Research Database (Denmark)

    Talwara, Susheela; Grout, Brian William Wilson; Toldam-Andersen, Torben Bo

    2015-01-01

    in the phenotype of the leaves in the leaf clusters that subtend the fruits of CATs, compared to their standard counterparts. This initial investigation considers standard and columnar trees at different levels of genetic relatedness and records significant increases in leaf area, leaf mass per unit area......Columnar apple trees (CATs) have radically-altered architecture (significantly shorter internodes and lateral branches) when compared to standard apple trees, attributed to a mutation of the Co gene involved in apical dominance. These changes in architecture have been associated with changes......, chlorophyll content and competitive shading in the fruiting leaf clusters of columnar cultivars. Additionally, significant increases in intercepted light have been shown to be associated with the columnar structure, and carbon fixation is also increased. We propose that leaf micro-environment of columnar...

  4. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver.

    Science.gov (United States)

    Riedel, S; Abel, S; Swanevelder, S; Gelderblom, W C A

    2015-04-01

    Changes in lipid metabolism have been associated with tumor promotion in rat liver. Similarities and differences of lipid parameters were investigated using the mycotoxin fumonisin B1 (FB1) and the 2-acetylaminofluorene/partial hepatectomy (AAF/PH) treatments as cancer promoters in rat liver. A typical lipid phenotype was observed, including increased membranal phosphatidylethanolamine (PE) and cholesterol content, increased levels of C16:0 and monounsaturated fatty acids in PE and phosphatidylcholine (PC), as well as a decrease in C18:0 and long-chained polyunsaturated fatty acids in the PC fraction. The observed lipid changes, which likely resulted in changes in membrane structure and fluidity, may represent a growth stimulus exerted by the cancer promoters that could provide initiated cells with a selective growth advantage. This study provided insight into complex lipid profiles induced by two different cancer promoting treatments and their potential role in the development of hepatocyte nodules, which can be used to identify targets for the development of chemopreventive strategies against cancer promotion in the liver. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Alteration of Lymphocyte Phenotype and Function in Sickle Cell Anemia: Implications for Vaccine Responses

    Science.gov (United States)

    Balandya, Emmanuel; Reynolds, Teri; Obaro, Stephen; Makani, Julie

    2016-01-01

    Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper : CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27+IgMhighIgDlow memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. PMID:27237467

  6. Neuropsychiatry phenotype in asthma: Psychological stress-induced alterations of the neuroendocrine-immune system in allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Isao Ohno

    2017-09-01

    Full Text Available Since the recognition of asthma as a syndrome with complex pathophysiological signs and symptoms, recent research has sought to classify asthma phenotypes based on its clinical and molecular pathological features. Psychological stress was first recognized as a potential immune system modulator of asthma at the end of the 19th century. The activation of the central nervous system (CNS upon exposure to psychological stress is integral for the initiation of signal transduction processes. The stress hormones, including glucocorticoids, epinephrine, and norepinephrine, which are secreted following CNS activation, are involved in the immunological alterations involved in psychological stress-induced asthma exacerbation. The mechanisms underlying this process may involve a pathological series of events from the brain to the lungs, which is attracting attention as a conceptually advanced phenotype in asthma pathogenesis. This review presents insights into the critical role of psychological stress in the development and exacerbation of allergic asthma, with a special focus on our own data that emphasizes on the continuity from the central sensing of psychological stress to enhanced eosinophilic airway inflammation.

  7. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection

    Science.gov (United States)

    Kamaladasa, A.; Wickramasinghe, N.; Adikari, T. N.; Gomes, L.; Shyamali, N. L. A.; Salio, M.; Cerundolo, V.; Ogg, G. S.

    2016-01-01

    Summary Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)‐γ and interleukin (IL)−4 ex‐vivo enzyme‐linked immunospot (ELISPOT) assays following stimulation with alpha‐galactosyl‐ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4+ subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus‐specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl‐6 (P = 0·0003) and both Bcl‐6 and inducible T cell co‐stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4+ iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  8. Phenotypic alteration of CD8+ T cells in chronic lymphocytic leukemia is associated with epigenetic reprogramming.

    Science.gov (United States)

    Wu, Jiazhu; Xu, Xiaojing; Lee, Eun-Joon; Shull, Austin Y; Pei, Lirong; Awan, Farrukh; Wang, Xiaoling; Choi, Jeong-Hyeon; Deng, Libin; Xin, Hong-Bo; Zhong, Wenxun; Liang, Jinhua; Miao, Yi; Wu, Yujie; Fan, Lei; Li, Jianyong; Xu, Wei; Shi, Huidong

    2016-06-28

    Immunosuppression is a prevalent clinical feature in chronic lymphocytic leukemia (CLL) patients, with many patients demonstrating increased susceptibility to infections as well as increased failure of an antitumor immune response. However, much is currently not understood regarding the precise mechanisms that attribute to this immunosuppressive phenotype in CLL. To provide further clarity to this particular phenomenon, we analyzed the T-cell profile of CLL patient samples within a large cohort and observed that patients with an inverted CD4/CD8 ratio had a shorter time to first treatment as well as overall survival. These observations coincided with higher expression of the immune checkpoint receptor PD-1 in CLL patient CD8+ T cells when compared to age-matched healthy donors. Interestingly, we discovered that increased PD-1 expression in CD8+ T cells corresponds with decreased DNA methylation levels in a distal upstream locus of the PD-1 gene PDCD1. Further analysis using luciferase reporter assays suggests that the identified PDCD1 distal upstream region acts as an enhancer for PDCD1 transcription and this region becomes demethylated during activation of naïve CD8+ T cells by anti-CD3/anti-CD28 antibodies and IL2. Finally, we conducted a genome-wide DNA methylation analysis comparing CD8+ T cells from CLL patients against healthy donors and identified additional differentially methylated genes with known immune regulatory functions including CCR6 and KLRG1. Taken together, our findings reveal the occurrence of epigenetic reprogramming taking place within CLL patient CD8+ T cells and highlight the potential mechanism of how immunosuppression is accomplished in CLL.

  9. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice.

    Science.gov (United States)

    Ryman, K D; Xie, H; Ledger, T N; Campbell, G A; Barrett, A D

    1997-04-14

    The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.

  10. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations.

    Directory of Open Access Journals (Sweden)

    Chitra Upadhyay

    2018-01-01

    Full Text Available HIV-1 envelope glycoprotein (Env mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP that directs the nascent Env to the endoplasmic reticulum (ER where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody

  11. Adverse respiratory health and hematological alterations among agricultural workers occupationally exposed to organophosphate pesticides: a cross-sectional study in North India.

    Directory of Open Access Journals (Sweden)

    Mohd Fareed

    count were significantly altered (p<0.001 in pesticide sprayers than controls. CONCLUSION: This study shows that the unsafe occupational exposure of OP pesticides causes respiratory illness, decreased lung functions and hematological alterations among pesticide sprayers.

  12. Altered Pathogenesis of Porcine Respiratory Coronavirus in Pigs due to Immunosuppressive Effects of Dexamethasone: Implications for Corticosteroid Use in Treatment of Severe Acute Respiratory Syndrome Coronavirus▿

    OpenAIRE

    Jung, Kwonil; Alekseev, Konstantin P.; Zhang, Xinsheng; Cheon, Doo-Sung; Vlasova, Anastasia N.; Saif, Linda J.

    2007-01-01

    The pathogenesis and optimal treatments for severe acute respiratory syndrome (SARS) are unclear, although corticosteroids were used to reduce lung and systemic inflammation. Because the pulmonary pathology of porcine respiratory coronavirus (PRCV) in pigs resembles SARS, we used PRCV as a model to clarify the effects of the corticosteroid dexamethasone (DEX) on coronavirus (CoV)-induced pneumonia. Conventional weaned pigs (n = 130) in one of four groups (PRCV/phosphate-buffered saline [PBS] ...

  13. Sequence and ionomic analysis of divergent strains of maize inbred line B73 with an altered growth phenotype.

    Science.gov (United States)

    Mascher, Martin; Gerlach, Nina; Gahrtz, Manfred; Bucher, Marcel; Scholz, Uwe; Dresselhaus, Thomas

    2014-01-01

    Maize (Zea mays) is the most widely grown crop species in the world and a classical model organism for plant research. The completion of a high-quality reference genome sequence and the advent of high-throughput sequencing have greatly empowered re-sequencing studies in maize. In this study, plants of maize inbred line B73 descended from two different sets of seed material grown for several generations either in the field or in the greenhouse were found to show a different growth phenotype and ionome under phosphate starvation conditions and moreover a different responsiveness towards mycorrhizal fungi of the species Glomus intraradices (syn: Rhizophagus irregularis). Whole genome re-sequencing of individuals from both sets and comparison to the B73 reference sequence revealed three cryptic introgressions on chromosomes 1, 5 and 10 in the line grown in the greenhouse summing up to a total of 5,257 single-nucleotide polymorphisms (SNPs). Transcriptome sequencing of three individuals from each set lent further support to the location of the introgression intervals and confirmed them to be fixed in all sequenced individuals. Moreover, we identified >120 genes differentially expressed between the two B73 lines. We thus have found a nearly-isogenic line (NIL) of maize inbred line B73 that is characterized by an altered growth phenotype under phosphate starvation conditions and an improved responsiveness towards symbiosis with mycorrhizal fungi. Through next-generation sequencing of the genomes and transcriptomes we were able to delineate exact introgression intervals. Putative de novo mutations appeared approximately uniformly distributed along the ten maize chromosomes mainly representing G:C -> A:T transitions. The plant material described in this study will be a valuable tool both for functional studies of genes differentially expressed in both B73 lines and for research on growth behavior especially in response to symbiosis between maize and mycorrhizal fungi.

  14. Sequence and ionomic analysis of divergent strains of maize inbred line B73 with an altered growth phenotype.

    Directory of Open Access Journals (Sweden)

    Martin Mascher

    Full Text Available Maize (Zea mays is the most widely grown crop species in the world and a classical model organism for plant research. The completion of a high-quality reference genome sequence and the advent of high-throughput sequencing have greatly empowered re-sequencing studies in maize. In this study, plants of maize inbred line B73 descended from two different sets of seed material grown for several generations either in the field or in the greenhouse were found to show a different growth phenotype and ionome under phosphate starvation conditions and moreover a different responsiveness towards mycorrhizal fungi of the species Glomus intraradices (syn: Rhizophagus irregularis. Whole genome re-sequencing of individuals from both sets and comparison to the B73 reference sequence revealed three cryptic introgressions on chromosomes 1, 5 and 10 in the line grown in the greenhouse summing up to a total of 5,257 single-nucleotide polymorphisms (SNPs. Transcriptome sequencing of three individuals from each set lent further support to the location of the introgression intervals and confirmed them to be fixed in all sequenced individuals. Moreover, we identified >120 genes differentially expressed between the two B73 lines. We thus have found a nearly-isogenic line (NIL of maize inbred line B73 that is characterized by an altered growth phenotype under phosphate starvation conditions and an improved responsiveness towards symbiosis with mycorrhizal fungi. Through next-generation sequencing of the genomes and transcriptomes we were able to delineate exact introgression intervals. Putative de novo mutations appeared approximately uniformly distributed along the ten maize chromosomes mainly representing G:C -> A:T transitions. The plant material described in this study will be a valuable tool both for functional studies of genes differentially expressed in both B73 lines and for research on growth behavior especially in response to symbiosis between maize and

  15. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  16. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment

    Directory of Open Access Journals (Sweden)

    Jean-Paul Vernot

    2017-02-01

    Full Text Available An understanding of the cell interactions occurring in the leukemic microenvironment and their functional consequences for the different cell players has therapeutic relevance. By co-culturing mesenchymal stem cells (MSC with the REH acute lymphocytic leukemia (ALL cell line, we have established an in vitro leukemic niche for the functional evaluation of hematopoietic stem/progenitor cells (HSPC, CD34+ cells. We showed that the normal homeostatic control exerted by the MSC over the HSPC is considerably lost in this leukemic microenvironment: HSPC increased their proliferation rate and adhesion to MSC. The adhesion molecules CD54 and CD44 were consequently upregulated in HSPC from the leukemic niche. Consequently, with this adhesive phenotype, HSPC showed less Stromal derived factor-1 (SDF-1-directed migration. Interestingly, multipotency was severely affected with an important reduction in the absolute count and the percentage of primitive progenitor colonies. It was possible to simulate most of these HSPC alterations by incubation of MSC with a REH-conditioned medium, suggesting that REH soluble factors and their effect on MSC are important for the observed changes. Of note, these HSPC alterations were reproduced when primary leukemic cells from an ALL type B (ALL-B patient were used to set up the leukemic niche. These results suggest that a general response is induced in the leukemic niche to the detriment of HSPC function and in favor of leukemic cell support. This in vitro leukemic niche could be a valuable tool for the understanding of the molecular events responsible for HSPC functional failure and a useful scenario for therapeutic evaluation.

  17. Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3−/− mice, but not wildtype mice

    Science.gov (United States)

    Martynhak, Bruno Jacson; Hogben, Alexandra L.; Zanos, Panos; Georgiou, Polymnia; Andreatini, Roberto; Kitchen, Ian; Archer, Simon N.; von Schantz, Malcolm; Bailey, Alexis; van der Veen, Daan R.

    2017-01-01

    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are ‘direct’ effects of light on affect, an ‘indirect’ pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3−/− mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3−/−) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2–3 of dim light at night, whereas WT mice did not. Per3−/− mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3−/− nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3−/− phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light. PMID:28071711

  18. Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3-/- mice, but not wildtype mice.

    Science.gov (United States)

    Martynhak, Bruno Jacson; Hogben, Alexandra L; Zanos, Panos; Georgiou, Polymnia; Andreatini, Roberto; Kitchen, Ian; Archer, Simon N; von Schantz, Malcolm; Bailey, Alexis; van der Veen, Daan R

    2017-01-10

    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are 'direct' effects of light on affect, an 'indirect' pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3 -/- mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3 -/- ) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2-3 of dim light at night, whereas WT mice did not. Per3 -/- mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3 -/- nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3 -/- phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light.

  19. Sex-dependent differences in the in vivo respiratory phenotype of the TASK-1 potassium channel knockout mouse.

    Science.gov (United States)

    Jungbauer, Stefan; Buehler, Philipp Karl; Neubauer, Jacqueline; Haas, Cordula; Heitzmann, Dirk; Tegtmeier, Ines; Sterner, Christina; Barhanin, Jacques; Georgieff, Michael; Warth, Richard; Thomas, Jörg

    2017-11-01

    TASK-1 potassium channels have been implicated in central and peripheral chemoreception; however, the precise contribution of TASK-1 for the control of respiration is still under debate. Here, we investigated the respiration of unrestrained adult and neonatal TASK-1 knockout mice (TASK-1 -/- ) using a plethysmographic device. Respiration in adult female TASK-1 -/- mice under control (21% O 2 ), hypoxia and hypercapnia was unaffected. Under acute hypoxia male TASK-1 -/- mice exhibited a reduced increase of the respiratory frequency (f R ) compared to wildtypes. However, the tidal volume (V T ) of male TASK-1 -/- mice was strongly enhanced. The volatile anesthetic isoflurane induced in male TASK-1 -/- and male wild type mice (TASK-1 +/+ ) a similar respiratory depression. Neonatal TASK-1 -/- mice demonstrated a 30-40% decrease of the minute volume, caused by a reduction of the f R under control condition (21% O 2 ). Under hypoxia, neonatal TASK-1 -/- mice more frequently stopped breathing (apnea>3s) suggesting an increased hypoxia-sensitivity. As reported before, this increased hypoxia sensitivity had no influence on the survival rate of neonatal TASK-1 -/- mice. In adult and neonatal mice, TASK-1 gene deletion induced a significant prolongation of the relaxation time (R T ), which is a parameter for expiration kinetics. Additionally, screening for mutations in the human TASK-1 gene in 155 cases of sudden infant death syndrome (SIDS) was inconclusive. In conclusion, these data are suggestive for an increased hypoxia-sensitivity of neonatal TASK-1 -/- mice, however, without causing an increase in neonatal lethality. In adult female TASK-1 -/- mice respiration was unaffected, whereas adult male TASK-1 -/- mice showed a modified breathing pattern. These results are suggestive for sex-specific mechanisms for compensating the inactivation of TASK-1 in mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Altered intestinal microbiota and blood T cell phenotype are shared by patients with Crohn's disease and their unaffected siblings.

    Science.gov (United States)

    Hedin, Charlotte R; McCarthy, Neil E; Louis, Petra; Farquharson, Freda M; McCartney, Sara; Taylor, Kirstin; Prescott, Natalie J; Murrells, Trevor; Stagg, Andrew J; Whelan, Kevin; Lindsay, James O

    2014-10-01

    Crohn's disease (CD) is associated with intestinal dysbiosis, altered blood T cell populations, elevated faecal calprotectin (FC) and increased intestinal permeability (IP). CD-associated features present in siblings (increased risk of CD) but not in healthy controls, provide insight into early CD pathogenesis. We aimed to (1) Delineate the genetic, immune and microbiological profile of patients with CD, their siblings and controls and (2) Determine which factors discriminate between groups. Faecal microbiology was analysed by quantitative PCR targeting 16S ribosomal RNA, FC by ELISA, blood T cell phenotype by flow cytometry and IP by differential lactulose-rhamnose absorption in 22 patients with inactive CD, 21 of their healthy siblings and 25 controls. Subject's genotype relative risk was determined by Illumina Immuno BeadChip. Strikingly, siblings shared aspects of intestinal dysbiosis with patients with CD (lower concentrations of Faecalibacterium prausnitzii (p=0.048), Clostridia cluster IV (p=0.003) and Roseburia spp. (p=0.09) compared with controls). As in CD, siblings demonstrated a predominance of memory T cells (p=0.002) and elevated naïve CD4 T cell β7 integrin expression (p=0.01) compared with controls. FC was elevated (>50 μg/g) in 8/21 (38%) siblings compared with 2/25 (8%) controls (p=0.028); whereas IP did not differ between siblings and controls. Discriminant function analysis determined that combinations of these factors significantly discriminated between groups (χ(2)=80.4, df=20, pmicrobiological variables. Healthy siblings of patients with CD manifest immune and microbiological abnormalities associated with CD distinct from their genotype-related risk and provide an excellent model in which to investigate early CD pathogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. HIV infection is associated with preservation of MAIT cells in the lungs but alteration of their phenotype and T cell receptor repertoire

    DEFF Research Database (Denmark)

    Wong, E. B.; Xulu, B.; Prakadan, S.

    2016-01-01

    Tuberculosis remains the leading cause of death in HIV-positive people. A better understanding of the impact of HIV on lung immunity may lead to novel immunotherapeutic interventions. MAIT cells are tissue-homing donor-unrestricted T cells with broad anti-microbial activity. HIV infection causes ...... to determine the mechanisms underlying the altered phenotypes of lung-resident MAITs and whether these can be targeted to improve anti-microbial lung immunity in people living with HIV....

  2. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.

    Science.gov (United States)

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko; Kanai, Yae

    2015-12-01

    CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs.

  3. Identification of a new cell line permissive to porcine reproductive and respiratory syndrome virus infection and replication which is phenotypically distinct from MARC-145 cell line

    Directory of Open Access Journals (Sweden)

    Provost Chantale

    2012-11-01

    Full Text Available Abstract Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV, need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are

  4. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Science.gov (United States)

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  5. Altered pathogenesis of porcine respiratory coronavirus in pigs due to immunosuppressive effects of dexamethasone: implications for corticosteroid use in treatment of severe acute respiratory syndrome coronavirus.

    Science.gov (United States)

    Jung, Kwonil; Alekseev, Konstantin P; Zhang, Xinsheng; Cheon, Doo-Sung; Vlasova, Anastasia N; Saif, Linda J

    2007-12-01

    The pathogenesis and optimal treatments for severe acute respiratory syndrome (SARS) are unclear, although corticosteroids were used to reduce lung and systemic inflammation. Because the pulmonary pathology of porcine respiratory coronavirus (PRCV) in pigs resembles SARS, we used PRCV as a model to clarify the effects of the corticosteroid dexamethasone (DEX) on coronavirus (CoV)-induced pneumonia. Conventional weaned pigs (n = 130) in one of four groups (PRCV/phosphate-buffered saline [PBS] [n = 41], PRCV/DEX [n = 41], mock/PBS [n = 23], and mock/DEX [n = 25]) were inoculated intranasally and intratracheally with the ISU-1 strain of PRCV (1 x 10(7) PFU) or cell culture medium. DEX was administered (once daily, 2 mg/kg of body weight/day, intramuscularly) from postinoculation day (PID) 1 to 6. In PRCV/DEX pigs, significantly milder pneumonia, fewer PRCV-positive cells, and lower viral RNA titers were present in lungs early at PID 2; however, at PID 4, 10, and 21, severe bronchointerstitial pneumonia, significantly higher numbers of PRCV-positive cells, and higher viral RNA titers were observed compared to results for PRCV/PBS pigs. Significantly lower numbers of CD2(+), CD3(+), CD4(+), and CD8(+) T cells were also observed in lungs of PRCV/DEX pigs than in those of PRCV/PBS pigs at PID 8 and 10, coincident with fewer gamma interferon (IFN-gamma)-secreting cells in the tracheobronchial lymph nodes as determined by enzyme-linked immunospot assay. Our results confirm that DEX treatment alleviates PRCV pneumonia early (PID 2) in the infection but continued use through PID 6 exacerbates later stages of infection (PID 4, 10, and 21), possibly by decreasing cellular immune responses in the lungs (IFN-gamma-secreting T cells), thereby creating an environment for more-extensive viral replication. These data have potential implications for corticosteroid use with SARS-CoV patients and suggest a precaution against prolonged use based on their unproven efficacy in humans

  6. Effect of a Health Care System Respiratory Fluoroquinolone Restriction Program To Alter Utilization and Impact Rates of Clostridium difficile Infection.

    Science.gov (United States)

    Shea, Katherine M; Hobbs, Athena L V; Jaso, Theresa C; Bissett, Jack D; Cruz, Christopher M; Douglass, Elizabeth T; Garey, Kevin W

    2017-06-01

    Fluoroquinolones are one of the most commonly prescribed antibiotic classes in the United States despite their association with adverse consequences, including Clostridium difficile infection (CDI). We sought to evaluate the impact of a health care system antimicrobial stewardship-initiated respiratory fluoroquinolone restriction program on utilization, appropriateness of quinolone-based therapy based on institutional guidelines, and CDI rates. After implementation, respiratory fluoroquinolone utilization decreased from a monthly mean and standard deviation (SD) of 41.0 (SD = 4.4) days of therapy (DOT) per 1,000 patient days (PD) preintervention to 21.5 (SD = 6.4) DOT/1,000 PD and 4.8 (SD = 3.6) DOT/1,000 PD posteducation and postrestriction, respectively. Using segmented regression analysis, both education (14.5 DOT/1,000 PD per month decrease; P = 0.023) and restriction (24.5 DOT/1,000 PD per month decrease; P cost of moxifloxacin, the formulary respiratory fluoroquinolone, was observed postrestriction compared to preintervention within the health care system ($123,882 versus $12,273; P = 0.002). Implementation of a stewardship-initiated respiratory fluoroquinolone restriction program can increase appropriate use while reducing overall utilization, acquisition cost, and CDI rates within a health care system. Copyright © 2017 American Society for Microbiology.

  7. Zinc source and concentration altered physiological responses of beef heifers during a combined viral-bacterial respiratory challenge

    Science.gov (United States)

    Three treatments were evaluated in feedlot heifers to determine the effects of zinc supplementation on the immune response to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (255+/-15 kg) were subjected to a 30d period of Zn depletion, then randomly assigned to one ...

  8. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation.

    Science.gov (United States)

    Gao, Lexuan; Geng, Yupeng; Li, Bo; Chen, Jiakuan; Yang, Ji

    2010-11-01

    Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome-wide methylation profiling using methylation-sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome-wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors. © 2010 Blackwell Publishing Ltd.

  9. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43.

    Directory of Open Access Journals (Sweden)

    Merlin Nanayakkara

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP gene was identified as strongly associated with CD using genome-wide association studies (GWAS. The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD and controls, without and with treatment with A-gliadin peptide P31-43. We observed a "CD cellular phenotype" in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

  10. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats.

    Science.gov (United States)

    Zamberletti, Erica; Gabaglio, Marina; Grilli, Massimo; Prini, Pamela; Catanese, Alberto; Pittaluga, Anna; Marchi, Mario; Rubino, Tiziana; Parolaro, Daniela

    2016-09-01

    Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its

  11. Expanding the phenotypic spectrum of ARID1B-mediated disorders and identification of altered cell-cycle dynamics due to ARID1B haploinsufficiency.

    Science.gov (United States)

    Sim, Joe C H; White, Susan M; Fitzpatrick, Elizabeth; Wilson, Gabrielle R; Gillies, Greta; Pope, Kate; Mountford, Hayley S; Torring, Pernille M; McKee, Shane; Vulto-van Silfhout, Anneke T; Jhangiani, Shalini N; Muzny, Donna M; Leventer, Richard J; Delatycki, Martin B; Amor, David J; Lockhart, Paul J

    2014-03-27

    Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin remodeling complex have recently been shown to contribute to multiple syndromes characterised by developmental delay and intellectual disability. ARID1B mutations have been identified as the predominant cause of Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability. Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual disability, plantar fat pads and facial dysmorphism. High density microarray analysis of the patient demonstrated a heterozygous deletion at 6q25.3, which resulted in the loss of four genes including AT Rich Interactive Domain 1B (ARID1B). Subsequent quantitative real-time PCR analysis revealed ARID1B haploinsufficiency in the patient. Analysis of both patient-derived and ARID1B knockdown fibroblasts after serum starvation demonstrated delayed cell cycle re-entry associated with reduced cell number in the S1 phase. Based on the patient's distinctive phenotype, we ascertained four additional patients and identified heterozygous de novo ARID1B frameshift or nonsense mutations in all of them. This study broadens the spectrum of ARID1B associated phenotypes by describing a distinctive phenotype including plantar fat pads but lacking the hypertrichosis or fifth nail hypoplasia associated with Coffin-Siris syndrome. We present the first direct evidence in patient-derived cells that alterations in cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency.

  12. Alterations in the rate of limb movement using a lower body positive pressure treadmill do not influence respiratory rate or phase III ventilation.

    Science.gov (United States)

    Buono, Michael J; Burnsed-Torres, Marissa; Hess, Bethany; Lopez, Kristine; Ortiz, Catherine; Girodo, Ariel; Lolli, Karen; Bloom, Brett; Bailey, David; Kolkhorst, Fred W

    2015-01-01

    The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200). The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (V CO2 ). Naturally, to match the V CO2 while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from 3.0 ± 0.1 to 4.1 ± 0.2 mph, which resulted in a significant (P body weight) to 133 ± 6 at 4.1 mph (i.e., 50% of body weight). The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled.

  13. Alterations in the Rate of Limb Movement Using a Lower Body Positive Pressure Treadmill Do Not Influence Respiratory Rate or Phase III Ventilation

    Directory of Open Access Journals (Sweden)

    Michael J. Buono

    2015-01-01

    Full Text Available The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200. The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (VCO2. Naturally, to match the VCO2 while reducing the body weight up to 50% of normal required a significant increase in the treadmill speed from 3.0±0.1 to 4.1±0.2 mph, which resulted in a significant (P<0.05 increase in the mean step frequency (steps per minute from 118±10 at 3 mph (i.e., 100% of body weight to 133±6 at 4.1 mph (i.e., 50% of body weight. The most important finding was that significant increases in step frequency did not significantly alter minute ventilation or respiratory rate. Such results do not support an important role for the rate of limb movement in Phase III ventilation during submaximal exercise, when metabolic rate, gait style, and treadmill incline are controlled.

  14. Chronic intermittent hypoxia alters local respiratory circuit function at the level of the preBötzinger complex

    Directory of Open Access Journals (Sweden)

    Alfredo J Garcia

    2016-02-01

    Full Text Available Chronic intermittent hypoxia (CIH is a common state experienced in several breathing disorders, including obstructive sleep apnea (OSA and apneas of prematurity. Unraveling how CIH affects the CNS, and in turn how the CNS contributes to apneas is perhaps the most challenging task. The preBötzinger complex (preBötC is a pre-motor respiratory network critical for inspiratory rhythm generation. Here, we test the hypothesis that CIH increases irregular output from the isolated preBötC, which can be mitigated by antioxidant treatment. Electrophysiological recordings from brainstem slices revealed that CIH enhanced burst-to-burst irregularity in period and/or amplitude. Irregularities represented a change in individual fidelity among preBötC neurons, and changed transmission from preBötC to the hypoglossal motor nucleus (XIIn, which resulted in increased transmission failure to XIIn. CIH increased the degree of lipid peroxidation in the preBötC and treatment with the antioxidant, 5,10,15,20-Tetrakis (1-methylpyridinium-4-yl-21H,23H-porphyrin manganese(III pentachloride (MnTMPyP, reduced CIH-mediated irregularities on the network rhythm and improved transmission of preBötC to the XIIn. These findings suggest that CIH promotes a pro-oxidant state that destabilizes rhythmogenesis originating from the preBötC and changes the local rhythm generating circuit which in turn, can lead to intermittent transmission failure to the XIIn. We propose that these CIH-mediated effects represent a part of the central mechanism that may perpetuate apneas and respiratory instability, which are hallmark traits in several dysautonomic conditions.

  15. 23 Lung Metastases Treated by Radiofrequency Ablation Over 10 Years in a Single Patient: Successful Oncological Outcome of a Metastatic Cancer Without Altered Respiratory Function

    Energy Technology Data Exchange (ETDEWEB)

    Crombé, Amandine, E-mail: amandine.crombe@ens-lyon.fr; Buy, Xavier [Institut Bergonié, Department of Radiology (France); Godbert, Yann [Institut Bergonié, Department of Nuclear Medicine (France); Alberti, Nicolas [Centre Hospitalier Alpes-Léman, Department of Radiology (France); Kind, Michèle [Institut Bergonié, Department of Radiology (France); Bonichon, Françoise [Institut Bergonié, Department of Nuclear Medicine (France); Palussière, Jean [Institut Bergonié, Department of Radiology (France)

    2016-12-15

    An 82-year-old man, who was diagnosed in 2002 with an oncocytic (Hürthle cell) thyroid carcinoma, was initially treated by local surgery and was refractory to radioiodine treatment. The patient had successive secondary recurrences from 2006 onwards. Metastases were suspected due to an elevation of thyroglobulin in serum. Hypermetabolic nodules were targeted using FDG PET as well as CT-guided radiofrequency ablations. Thyroglobulin levels decreased following each procedure. 10 years later, tolerance and efficacy are excellent; 23 lung metastases have been treated during 11 sessions without current relapse. Respiratory function and quality of life are not altered. This report illustrates how radiofrequency ablation can be efficiently integrated into the long-term management of poorly aggressive oligometastatic cancer, in combination with other local and/or systemic therapies.

  16. 23 Lung Metastases Treated by Radiofrequency Ablation Over 10 Years in a Single Patient: Successful Oncological Outcome of a Metastatic Cancer Without Altered Respiratory Function

    International Nuclear Information System (INIS)

    Crombé, Amandine; Buy, Xavier; Godbert, Yann; Alberti, Nicolas; Kind, Michèle; Bonichon, Françoise; Palussière, Jean

    2016-01-01

    An 82-year-old man, who was diagnosed in 2002 with an oncocytic (Hürthle cell) thyroid carcinoma, was initially treated by local surgery and was refractory to radioiodine treatment. The patient had successive secondary recurrences from 2006 onwards. Metastases were suspected due to an elevation of thyroglobulin in serum. Hypermetabolic nodules were targeted using FDG PET as well as CT-guided radiofrequency ablations. Thyroglobulin levels decreased following each procedure. 10 years later, tolerance and efficacy are excellent; 23 lung metastases have been treated during 11 sessions without current relapse. Respiratory function and quality of life are not altered. This report illustrates how radiofrequency ablation can be efficiently integrated into the long-term management of poorly aggressive oligometastatic cancer, in combination with other local and/or systemic therapies.

  17. Medial prefrontal cortex: genes linked to bipolar disorder and schizophrenia have altered expression in the highly social maternal phenotype

    Directory of Open Access Journals (Sweden)

    Brian E Eisinger

    2014-04-01

    Full Text Available The transition to motherhood involves CNS changes that modify sociability and affective state. However, these changes also put females at risk for postpartum depression and psychosis, which impairs parenting abilities and adversely affects children. Thus, changes in expression and interactions in a core subset of genes may be critical for emergence of a healthy maternal phenotype, but inappropriate changes of the same genes could put women at risk for postpartum disorders. This study evaluated microarray gene expression changes in medial prefrontal cortex (mPFC, a region implicated in both maternal behavior and psychiatric disorders. Postpartum mice were compared to virgin controls housed with females and isolated for identical durations. Using the Modular Single-set Enrichment Test (MSET, we found that the genetic landscape of maternal mPFC bears statistical similarity to gene databases associated with schizophrenia (5 of 5 sets and bipolar disorder (BPD, 3 of 3 sets. In contrast to previous studies of maternal lateral septum and medial preoptic area, enrichment of autism and depression-linked genes was not significant (2 of 9 sets, 0 of 4 sets. Among genes linked to multiple disorders were fatty acid binding protein 7 (Fabp7, glutamate metabotropic receptor 3 (Grm3, platelet derived growth factor, beta polypeptide (Pdgfrb, and nuclear receptor subfamily 1, group D, member 1 (Nr1d1. RT-qPCR confirmed these gene changes as well as FMS-like tyrosine kinase 1 (Flt1 and proenkephalin (Penk. Systems-level methods revealed involvement of developmental gene networks in establishing the maternal phenotype and indirectly suggested a role for numerous microRNAs and transcription factors in mediating expression changes. Together, this study suggests that a subset of genes involved in shaping the healthy maternal brain may also be dysregulated in mental health disorders and put females at risk for postpartum psychosis with aspects of schizophrenia and BPD.

  18. Adiposity Indexes as Phenotype-Specific Markers of Preclinical Metabolic Alterations and Cardiovascular Risk in Polycystic Ovary Syndrome: A Cross-Sectional Study.

    Science.gov (United States)

    Mario, Fernanda Missio; Graff, Scheila Karen; Spritzer, Poli Mara

    2017-05-01

    Polycystic ovary syndrome (PCOS) is a common condition in women of reproductive age. 2 PCOS phenotypes (classic and ovulatory) are currently recognized as the most prevalent, with important differences in terms of cardiometabolic features. We studied the performance of different adiposity indexes to predict preclinical metabolic alterations and cardiovascular risk in 234 women with PCOS (173 with classic and 61 with ovulatory PCOS) and 129 controls. Performance of waist circumference, waist-to-height ratio, conicity index, lipid accumulation product, and visceral adiposity index was assessed based on HOMA-IR ≥ 3.8 as reference standard for screening preclinical metabolic alterations and cardiovascular risk factors in each group. Lipid accumulation product had the best accuracy for classic PCOS, and visceral adiposity index had the best accuracy for ovulatory PCOS. By applying the cutoff point of lipid accumulation productcardiometabolic alterations (Prisk for hypertension, dyslipidemia, and impaired glucose tolerance. In ovulatory PCOS, visceral adiposity index ≥ 1.32 was capable of detecting women with significantly higher blood pressure and less favorable glycemic and lipid variables as compared to ovulatory PCOS with lower visceral adiposity index (Pcardiometabolic risk and secure early interventions. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene.

    Science.gov (United States)

    Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André

    2003-08-01

    Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.

  20. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Moonil Son

    2016-08-01

    Full Text Available The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1 strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence of its fungal host. To characterize function(s of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s in FgV1 induced phenotype alteration such as delayed vegetative growth.

  1. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Diniz, Marcio A; Gwin, William R; Hartman, Zachary; Wei, Junping; Guo, Hongtao; Yang, Xiao-Yi; Liu, Cong-Xiao; Kaneko, Kensuke; Broadwater, Gloria; Lyerly, H Kim

    2017-01-01

    Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8 + T cells and regulatory CD4 + T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8 + T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.

  2. Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use

    Science.gov (United States)

    Hastie, Annette T; Wu, Min; Foster, Gayle C; Hawkins, Gregory A; Batra, Vikas; Rybinski, Katherine A; Cirelli, Rosemary; Zangrilli, James G; Peters, Stephen P

    2006-01-01

    Background Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased

  3. Alterations in vasodilator-stimulated phosphoprotein (VASP phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use

    Directory of Open Access Journals (Sweden)

    Cirelli Rosemary

    2006-02-01

    Full Text Available Abstract Background Vasodilator-stimulated phosphoprotein (VASP mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1 injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2 regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to

  4. Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment

    Science.gov (United States)

    Hosseini-Beheshti, Elham; Choi, Wendy; Weiswald, Louis-Bastien; Kharmate, Geetanjali; Ghaffari, Mazyar; Roshan-Moniri, Mani; Hassona, Mohamed D.; Chan, Leslie; Chin, Mei Yieng; Tai, Isabella T.; Rennie, Paul S.; Fazli, Ladan; Guns, Emma S. Tomlinson

    2016-01-01

    Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Current research on tumour-related extracellular vesicles (EVs) suggests that exosomes play a significant role in paracrine signaling pathways, thus potentially influencing cancer progression via multiple mechanisms. In fact, during the last decade numerous studies have revealed the role of EVs in the progression of various pathological conditions including cancer. Moreover, differences in the proteomic, lipidomic, and cholesterol content of exosomes derived from PCa cell lines versus benign prostate cell lines confirm that exosomes could be excellent biomarker candidates. As such, as part of an extensive proteomic analysis using LCMS we previously described a potential role of exosomes as biomarkers for PCa. Current evidence suggests that uptake of EV's into the local tumour microenvironment encouraging us to further examine the role of these vesicles in distinct mechanisms involved in the progression of PCa and castration resistant PCa. For the purpose of this study, we hypothesized that exosomes play a pivotal role in cell-cell communication in the local tumour microenvironment, conferring activation of numerous survival mechanisms during PCa progression and development of therapeutic resistance. Our in vitro results demonstrate that PCa derived exosomes significantly reduce apoptosis, increase cancer cell proliferation and induce cell migration in LNCaP and RWPE-1 cells. In conjunction with our in vitro findings, we have also demonstrated that exosomes increased tumor volume and serum PSA levels in vivo when xenograft bearing mice were administered DU145 cell derived exosomes intravenously. This research suggests that, regardless of androgen receptor phenotype, exosomes derived from PCa cells significantly enhance multiple mechanisms that contribute to PCa progression. PMID:26840259

  5. Alterations in growth phenotype and radiosensitivity after fractionated irradiation of breast carcinoma cells from a single patient

    International Nuclear Information System (INIS)

    Wazer, D.E.; Joyce, M.; Jung, L.; Band, V.

    1993-01-01

    The purpose was to investigate growth regulation and radiosensitivity in surviving clonogens after fractionated irradiation. Four breast carcinoma cell lines isolated from the primary tumor (21NT, 21PT) and metastases (21MT-1, 21MT-2) of a single patient were exposed to cumulative radiation doses of 30 Gy yielding cell lines designated -IR with respect to their parent. The irradiated lines were then compared to their parent for serum- and growth factor-requirements under defined media conditions, ability to proliferate in soft agar, concentration of TGF-alpha in conditioned medium, and radiosensitivity. The irradiated lines showed no change in proliferative doubling times under serum- and growth factor-supplemented media conditions. A single line, 21MT-1-IR, acquired a limited ability to proliferate in serum- and growth factor-deplete medium with a day 2-4 doubling time of 44.5 hr. Three lines, 21MT-1-IR, 21MT-2-IR, and 21NT-IR, formed colonies in soft agar in contrast to none of the unirradiated parent lines. There were significant 6-8 fold increases in conditioned media TGF-alpha concentrations for 21MT-2-IR and 21NT-IR cells. The 21MT-1-IR and 21NT-IR cells were significantly less radiosensitive than their respective parent lines. This decrease in radiosensitivity appeared to be at least partially mediated by a released factor as the radiosensitivity of 21MT-1 cells was significantly decreased by pre-incubation with conditioned medium from 21MT-1-IR cells. Radiation-induced changes in growth phenotype vary with respect to clonal origin of the cell line and may influence the radiosensitivity of surviving clonogens after fractionated treatment. 18 refs., 4 figs., 3 tabs

  6. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Root phenotypic differences across a historical gradient of wheat genotypes alter soil rhizosphere communities and their impact on nitrogen cycling

    Science.gov (United States)

    Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.

    2017-12-01

    Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (Psoil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts

  8. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Respiratory acidosis

    Science.gov (United States)

    Ventilatory failure; Respiratory failure; Acidosis - respiratory ... Causes of respiratory acidosis include: Diseases of the airways (such as asthma and COPD ) Diseases of the lung tissue (such as ...

  10. Effects of Aging on the Respiratory System.

    Science.gov (United States)

    Levitzky, Michael G.

    1984-01-01

    Relates alterations in respiratory system functions occurring with aging to changes in respiratory system structure during the course of life. Main alterations noted include loss of alveolar elastic recoil, alteration in chest wall structure and decreased respiratory muscle strength, and loss of surface area and changes in pulmonary circulation.…

  11. Genotype and phenotype correlation in von Hippel-Lindau disease based on alteration of the HIF-α binding site in VHL protein.

    Science.gov (United States)

    Liu, Sheng-Jie; Wang, Jiang-Yi; Peng, Shuang-He; Li, Teng; Ning, Xiang-Hui; Hong, Bao-An; Liu, Jia-Yuan; Wu, Peng-Jie; Zhou, Bo-Wen; Zhou, Jing-Cheng; Qi, Nie-Nie; Peng, Xiang; Zhang, Jiu-Feng; Ma, Kai-Fang; Cai, Lin; Gong, Kan

    2018-03-29

    PurposeVon Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that reduces life expectancy. We aimed to construct a more valuable genotype-phenotype correlation based on alterations in VHL protein (pVHL).MethodsVHL patients (n = 339) were recruited and grouped based on mutation types: HIF-α binding site missense (HM) mutations, non-HIF-α binding site missense (nHM) mutations, and truncating (TR) mutations. Age-related risks of VHL-associated tumors and patient survival were compared.ResultsMissense mutations conferred an increased risk of pheochromocytoma (HR = 1.854, p = 0.047) compared with truncating mutations. The risk of pheochromocytoma was lower in the HM group than in the nHM group (HR = 0.298, p = 0.003) but was similar between HM and TR groups (HR = 0.901, p = 0.810). Patients in the nHM group had a higher risk of pheochromocytoma (HR = 3.447, p counseling and pathogenesis studies.Genetics in Medicine advance online publication, 29 March 2018; doi:10.1038/gim.2017.261.

  12. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    Science.gov (United States)

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP

  13. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair.

    Directory of Open Access Journals (Sweden)

    Yong Jun Choi

    Full Text Available Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS to repair DNA double strand breaks (DSBs through the nonhomologous end joining (NHEJ pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70(-/- cells and ku80(-/- cells also appeared to have a defect in base excision repair (BER. BER corrects base lesions, apurinic/apyrimidinic (AP sites and single stand breaks (SSBs utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1 and DNA Polymerase β (Pol β. In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80 and/or free Ku80 (not bound to Ku70 possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80(-/- mice had a shorter life span than dna-pkcs(-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT, an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.

  14. Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype

    International Nuclear Information System (INIS)

    Kowara, Renata; Karaczyn, Aldona; Cheng, Robert Y.S.; Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    B200 cells are Ni(II)-transformed mouse BALB/c-3T3 fibroblasts displaying a malignant phenotype and increased resistance to Ni(II) toxicity. In an attempt to find genes whose expression has been altered by the transformation, the Atlas Mouse Stress/Toxicology cDNA Expression Array (Clontech Laboratories, Inc., Palo Alto, CA) was used to analyze the levels of gene expression in both parental and Ni(II)-transformed cells. Comparison of the results revealed a significant up- or downregulation of the expression of 62 of the 588 genes present in the array (approximately 10.5%) in B200 cells. These genes were assigned to different functional groups, including transcription factors and oncogenes (9/14; fractions in parentheses denote the number of up-regulated versus the total number of genes assigned to this group), stress and DNA damage response genes (11/12), growth factors and hormone receptors (6/9), metabolism (7/7), cell adhesion (2/7), cell cycle (3/6), apoptosis (3/4), and cell proliferation (2/3). Among those genes, overexpression of beta-catenin and its downstream targets c-myc and cyclin D1, together with upregulated cyclin G, points at the malignant character of B200 cells. While the increased expression of glutathione (GSH) synthetase, glutathione-S-transferase A4 (GSTA4), and glutathione-S-transferase theta (GSTT), together with high level of several genes responding to oxidative stress, suggests the enforcement of antioxidant defenses in Ni-transformed cells

  15. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology.

    Science.gov (United States)

    Wong, Terianne M; Petrovsky, Nikolai; Bissel, Stephanie J; Wiley, Clayton A; Ross, Ted M

    2016-08-02

    Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which Advax TM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either Advax TM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with Advax TM was similar to Imject Alum. Overall, RSV vaccine formulated with Advax TM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared

  16. Respiratory alkalosis

    Science.gov (United States)

    Alkalosis - respiratory ... leads to shortness of breath can also cause respiratory alkalosis (such as pulmonary embolism and asthma). ... Treatment is aimed at the condition that causes respiratory alkalosis. Breathing into a paper bag -- or using ...

  17. The cytochrome b p.278Y>C mutation causative of a multisystem disorder enhances superoxide production and alters supramolecular interactions of respiratory chain complexes

    DEFF Research Database (Denmark)

    Ghelli, Anna; Tropeano, Concetta V; Calvaruso, Maria Antonietta

    2013-01-01

    , the examination of respiratory supercomplexes revealed that the amounts of CIII dimer and III2IV1 were reduced, whereas those of I1III2IVn slightly increased. We therefore suggest that the deleterious effects of p.278Y>C mutation on cytochrome b are palliated when CIII is assembled into the supercomplexes I1III2......IVn, in contrast to when it is found alone. These findings underline the importance of supramolecular interactions between complexes for maintaining a basal respiratory chain activity and shed light to the molecular basis of disease manifestations associated with this mutation.......Cytochrome b is the only mtDNA-encoded subunit of the mitochondrial complex III (CIII), the functional bottleneck of the respiratory chain. Previously, the human cytochrome b missense mutation m.15579A>G, which substitutes the Tyr 278 with Cys (p.278Y>C), was identified in a patient with severe...

  18. The Central Conserved Region (CCR) of Respiratory Syncytial Virus (RSV) G Protein Modulates Host miRNA Expression and Alters the Cellular Response to Infection.

    Science.gov (United States)

    Bakre, Abhijeet A; Harcourt, Jennifer L; Haynes, Lia M; Anderson, Larry J; Tripp, Ralph A

    2017-07-03

    Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182-186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting.

  19. Respiratory Failure

    Science.gov (United States)

    Respiratory failure happens when not enough oxygen passes from your lungs into your blood. Your body's organs, ... brain, need oxygen-rich blood to work well. Respiratory failure also can happen if your lungs can' ...

  20. Respiratory system

    Science.gov (United States)

    Bartlett, R. G., Jr.

    1973-01-01

    The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

  1. Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia

    Directory of Open Access Journals (Sweden)

    Francesca Managò

    2016-08-01

    Full Text Available Human genetic studies have recently suggested that the postsynaptic activity-regulated cytoskeleton-associated protein (Arc complex is a convergence signal for several genes implicated in schizophrenia. However, the functional significance of Arc in schizophrenia-related neurobehavioral phenotypes and brain circuits is unclear. Here, we find that, consistent with schizophrenia-related phenotypes, disruption of Arc in mice produces deficits in sensorimotor gating, cognitive functions, social behaviors, and amphetamine-induced psychomotor responses. Furthermore, genetic disruption of Arc leads to concomitant hypoactive mesocortical and hyperactive mesostriatal dopamine pathways. Application of a D1 agonist to the prefrontal cortex or a D2 antagonist in the ventral striatum rescues Arc-dependent cognitive or psychomotor abnormalities, respectively. Our findings demonstrate a role for Arc in the regulation of dopaminergic neurotransmission and related behaviors. The results also provide initial biological support implicating Arc in dopaminergic and behavioral abnormalities related to schizophrenia.

  2. Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z.; Bissell, M.J.

    1997-08-11

    Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, and progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.

  3. BINDING OF THE RESPIRATORY CHAIN INHIBITOR ANTIMYCIN TO THE MITOCHONDRIAL bc1 COMPLEX: A NEW CRYSTAL STRUCTURE REVEALS AN ALTERED INTRAMOLECULAR HYDROGEN-BONDING PATTERN.

    OpenAIRE

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-01-01

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Tw...

  4. Alterations in the Rate of Limb Movement Using a Lower Body Positive Pressure Treadmill Do Not Influence Respiratory Rate or Phase III Ventilation

    OpenAIRE

    Michael J. Buono; Marissa Burnsed-Torres; Bethany Hess; Kristine Lopez; Catherine Ortiz; Ariel Girodo; Karen Lolli; Brett Bloom; David Bailey; Fred W. Kolkhorst

    2015-01-01

    The purpose of this study was to determine the effect of alterations in rate of limb movement on Phase III ventilation during exercise, independent of metabolic rate, gait style, and treadmill incline. Subjects completed five submaximal exercise bouts on a lower body positive pressure treadmill (AlterG P 200). The percent body weight for the five exercise bouts was 100, 87, 75, 63, and 50% and each was matched for carbon dioxide production (V CO2 ). Naturally, to match the V CO2 while reducin...

  5. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern.

    Science.gov (United States)

    Huang, Li-Shar; Cobessi, David; Tung, Eric Y; Berry, Edward A

    2005-08-19

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28 A resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cytochrome b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density, the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alphaA helix.

  6. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  7. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype--an X-ray diffraction study.

    Science.gov (United States)

    Boote, Craig; Hayes, Sally; Jones, Simon; Quantock, Andrew J; Hocking, Paul M; Inglehearn, Chris F; Ali, Manir; Meek, Keith M

    2008-01-01

    An investigation into the collagenous structure of the mature avian cornea is presented. Wide-angle X-ray diffraction is employed to assess collagen organization in 9-month-old chicken corneas. The central 2-4mm corneal region features a preponderance of fibrils directed along the superior-inferior and nasal-temporal orthogonal meridians. More peripherally the orientation of fibrils alters in favor of a predominantly tangential arrangement. The chicken cornea appears to be circumscribed by an annulus of fibrils that extends into the limbus. The natural arrangement of collagen in the chicken cornea is discussed in relation to corneal shape and the mechanical requirements of avian corneal accommodation. Equivalent data are also presented from age-matched blind chickens affected with the retinopathy, globe enlarged (rge) mutation, characterized by an abnormally thick and flat cornea. The data indicate considerable realignment and redistribution of collagen lamellae in the peripheral rge cornea. In contrast to normal chickens, no obvious tangential collagen alignment was evident in the periphery of rge corneas. In mammals, the presence of a limbal fibril annulus is believed to be important in corneal shape preservation. We postulate that corneal flattening in rge chickens may be related to biomechanical changes brought about by an alteration in collagen arrangement at the corneal periphery.

  8. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  9. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid.

    Directory of Open Access Journals (Sweden)

    Robert A Hirst

    Full Text Available The diagnosis of primary ciliary dyskinesia (PCD requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns.We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n  111 was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture.Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced.The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia.

  10. Clinical diagnostic exome evaluation for an infant with a lethal disorder: genetic diagnosis of TARP syndrome and expansion of the phenotype in a patient with a newly reported RBM10 alteration.

    Science.gov (United States)

    Powis, Zöe; Hart, Alexa; Cherny, Sara; Petrik, Igor; Palmaer, Erika; Tang, Sha; Jones, Carolyn

    2017-06-02

    Diagnostic Exome Sequencing (DES) has been shown to be an effective tool for diagnosis individuals with suspected genetic conditions. We report a male infant born with multiple anomalies including bilateral dysplastic kidneys, cleft palate, bilateral talipes, and bilateral absence of thumbs and first toes. Prenatal testing including chromosome analysis and microarray did not identify a cause for the multiple congenital anomalies. Postnatal diagnostic exome studies (DES) were utilized to find a molecular diagnosis for the patient. Exome sequencing of the proband, mother, and father showed a previously unreported maternally inherited RNA binding motif protein 10 (RBM10) c.1352_1353delAG (p.E451Vfs*66) alteration. Mutations in RBM10 are associated with TARP syndrome, an X-linked recessive disorder originally described with cardinal features of talipes equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava. DES established a molecular genetic diagnosis of TARP syndrome for a neonatal patient with a poor prognosis in whom traditional testing methods were uninformative and allowed for efficient diagnosis and future reproductive options for the parents. Other reported cases of TARP syndrome demonstrate significant variability in clinical phenotype. The reported features in this infant including multiple hemivertebrae, imperforate anus, aplasia of thumbs and first toes have not been reported in previous patients, thus expanding the clinical phenotype for this rare disorder.

  11. Increased CD56(bright) NK cells in HIV-HCV co-infection and HCV mono-infection are associated with distinctive alterations of their phenotype.

    Science.gov (United States)

    Bhardwaj, Suvercha; Ahmad, Fareed; Wedemeyer, Heiner; Cornberg, Marcus; Schulze Zur Wiesch, Julian; van Lunzen, Jan; Sarin, Shiv K; Schmidt, Reinhold E; Meyer-Olson, Dirk

    2016-04-18

    HIV-HCV co-infection is associated with accelerated progression to hepatic fibrosis, cirrhosis and hepatocellular carcinoma than HCV mono-infection. The contribution of innate immunity during HIV-HCV co-infection has been a relatively under-investigated area. Natural killer (NK) cells are pivotal sentinels of innate immunity against viruses and tumour cells. In this study we evaluated the effect of HIV-HCV co-infection on peripheral blood NK cell subsets with emphasis on the phenotype of CD56(bright) NK cells. Sixty patients were included in the study; HIV mono-infected (n = 12), HCV mono-infected (n = 15), HCV-HIV co-infected (n = 21) and healthy controls (n = 16). PBMCs were isolated and immunophenotyping of NK cells was performed by flowcytometry. We observed an expansion of CD56(bright) NK cell subset in HIV-HCV co-infection as compared to healthy controls and HIV mono-infected group. All the infected groups had an upregulated expression of the activating receptor NKG2D on CD56(bright) NK cells in comparison to healthy controls while not differing amongst themselves. The expression of NKp46 in HIV-HCV co-infected group was significantly upregulated as compared to both HIV as well as HCV mono-infections while NKp30 expression in the HIV-HCV co-infected group significantly differed as compared to HIV mono-infection. The CD56(bright) NK cell subset was activated in HIV-HCV co-infection as assessed by the expression of CD69 as compared to healthy controls but was significantly downregulated in comparison to HIV mono-infection. CD95 expression on CD56(bright) NK cells followed the same pattern where there was an increased expression of CD95 in HIV mono-infection and HIV-HCV co-infection as compared to healthy controls. In contrast to CD69 expression, CD95 expression in HCV mono-infection was decreased when compared to HIV mono-infection and HIV-HCV co-infection. Finally, expression of CXCR3 on CD56(bright) NK cells was increased in HIV-HCV co-infection in comparison

  12. AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening

    Science.gov (United States)

    Weeks, Jon W.; Celaya-Kolb, Teresa; Pecora, Sara; Misra, Rajeev

    2010-01-01

    Summary In Escherichia coli, the TolC–AcrAB complex forms a major antibiotic efflux system with broad substrate specificity. During the complex assembly, the periplasmic helices and bottom turns of TolC are thought to interact with a hairpin helix of AcrA and hairpin loops of AcrB respectively. In the present study we show that a four-residue substitution in TolC’s turn 1, which connects outer helices 3 and 4 proximal to TolC’s periplasmic aperture, confers antibiotic hypersensitivity without affecting TolC-mediated phage or colicin infection. However, despite the null-like drug sensitivity phenotype, chemical cross-linking analysis revealed no apparent defects in the ability of the mutant TolC protein to physically interact with AcrA and AcrB. A role for TolC turn 1 residues in the functional assembly of the tripartite efflux pump complex was uncovered through isolating suppressor mutations of the mutant TolC protein that mapped within acrA and by utilizing a labile AcrA protein. The data showed that AcrA-mediated suppression of antibiotic sensitivity was achieved by dilating the TolC aperture/channel in an AcrB-dependent manner. The results underscore the importance of the periplasmic turn 1 of TolC in the functional assembly of the tripartite efflux complex and AcrA in transitioning TolC from its closed to open state. PMID:20132445

  13. Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin.

    Directory of Open Access Journals (Sweden)

    Nobuaki Ozeki

    Full Text Available Methods for differentiating induced pluripotent stem (iPS cells into odontoblasts generally require epithelial-mesenchymal interactions. Here, we sought to characterize the cells produced by a 'hanging drop' technique for differentiating mouse iPS cells into odontoblast-like cells that requires no such interaction. Cells were cultured by the hanging drop method on a collagen type-I (Col-I scaffold (CS combined with bone morphogenetic protein (BMP-4 (CS/BMP-4 without an epithelial-mesenchymal interaction. We evaluated the expression of odontoblast-related mRNA and protein, and the proliferation rate of these cells using reverse-transcription polymerase chain reaction, immunofluorescence staining, and BrdU cell proliferation enzyme-linked immunosorbent assay, respectively. The differentiated cells strongly expressed the mRNA for dentin sialophosphoprotein (DSPP and dentin matrix protein-1 (Dmp-1, which are markers of mature odontoblasts. Osteopontin and osteocalcin were not expressed in the differentiated cells, demonstrating that the differentiated iPS cells bore little resemblance to osteoblasts. Instead, they acquired odontoblast-specific properties, including the adoption of an odontoblastic phenotype, typified by high alkaline phosphatase (ALP activity and calcification capacity. The cell-surface expression of proteins such as integrins α2, α6, αV and αVβ3 was rapidly up-regulated. Interestingly, antibodies and siRNAs against integrin α2 suppressed the expression of DSPP and Dmp-1, reduced the activity of ALP and blocked calcification, suggesting that integrin α2 in iPS cells mediates their differentiation into odontoblast-like cells. The adhesion of these cells to fibronectin and Col-I, and their migration on these substrata, was significantly increased following differentiation into odontoblast-like cells. Thus, we have demonstrated that integrin α2 is involved in the differentiation of mouse iPS cells into odontoblast-like cells

  14. TU-CD-BRB-07: Identification of Associations Between Radiologist-Annotated Imaging Features and Genomic Alterations in Breast Invasive Carcinoma, a TCGA Phenotype Research Group Study

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A; Net, J [University of Miami, Miami, Florida (United States); Brandt, K [Mayo Clinic, Rochester, Minnesota (United States); Huang, E [National Cancer Institute, NIH, Bethesda, MD (United States); Freymann, J; Kirby, J [Leidos Biomedical Research Inc., Frederick, MD (United States); Burnside, E [University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Morris, E; Sutton, E [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Bonaccio, E [Roswell Park Cancer Institute, Buffalo, NY (United States); Giger, M; Jaffe, C [Univ Chicago, Chicago, IL (United States); Ganott, M; Zuley, M [University of Pittsburgh Medical Center - Magee Womens Hospital, Pittsburgh, Pennsylvania (United States); Le-Petross, H [MD Anderson Cancer Center, Houston, TX (United States); Dogan, B [UT MDACC, Houston, TX (United States); Whitman, G [UTMDACC, Houston, TX (United States)

    2015-06-15

    Purpose: To determine associations between radiologist-annotated MRI features and genomic measurements in breast invasive carcinoma (BRCA) from the Cancer Genome Atlas (TCGA). Methods: 98 TCGA patients with BRCA were assessed by a panel of radiologists (TCGA Breast Phenotype Research Group) based on a variety of mass and non-mass features according to the Breast Imaging Reporting and Data System (BI-RADS). Batch corrected gene expression data was obtained from the TCGA Data Portal. The Kruskal-Wallis test was used to assess correlations between categorical image features and tumor-derived genomic features (such as gene pathway activity, copy number and mutation characteristics). Image-derived features were also correlated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) status. Multiple hypothesis correction was done using Benjamini-Hochberg FDR. Associations at an FDR of 0.1 were selected for interpretation. Results: ER status was associated with rim enhancement and peritumoral edema. PR status was associated with internal enhancement. Several components of the PI3K/Akt pathway were associated with rim enhancement as well as heterogeneity. In addition, several components of cell cycle regulation and cell division were associated with imaging characteristics.TP53 and GATA3 mutations were associated with lesion size. MRI features associated with TP53 mutation status were rim enhancement and peritumoral edema. Rim enhancement was associated with activity of RB1, PIK3R1, MAP3K1, AKT1,PI3K, and PIK3CA. Margin status was associated with HIF1A/ARNT, Ras/ GTP/PI3K, KRAS, and GADD45A. Axillary lymphadenopathy was associated with RB1 and BCL2L1. Peritumoral edema was associated with Aurora A/GADD45A, BCL2L1, CCNE1, and FOXA1. Heterogeneous internal nonmass enhancement was associated with EGFR, PI3K, AKT1, HF/MET, and EGFR/Erbb4/neuregulin 1. Diffuse nonmass enhancement was associated with HGF/MET/MUC20/SHIP

  15. Pathological alterations in respiratory system during co-infection with low pathogenic avian influenza virus (H9N2 and Escherichia coli in broiler chickens

    Directory of Open Access Journals (Sweden)

    Jaleel Shahid

    2017-09-01

    Full Text Available Introduction: Despite the advancements in the field, there is a lack of data when it comes to co-infections in poultry. Therefore, this study was designed to address this issue. Material and Methods: Broiler birds were experimentally infected with E. coli (O78 and low pathogenic avian influenza (LPAI strain, alone or in combination. The experimental groups were negative control. Results: The infected birds showed most severe clinical signs in E. coli+LPAI group along with a significant decrease in weight and enhanced macroscopic and microscopic pathological lesions. The survival rate was 60%, 84%, and 100% in birds inoculated with E. coli+LPAI, E. coli, and LPAI virus alone, respectively. The results showed that experimental co-infection with E. coli and H9N2 strain of LPAI virus increased the severity of clinical signs, mortality rate, and gross lesions. The HI titre against LPAI virus infection in the co-infected group was significantly higher than the HI titre of LPAI group, which may indicate that E. coli may promote propagation of H9N2 LPAI virus by alteration of immune response. Conclusion: The present study revealed that co-infection with E. coli and H9N2 LPAI virus caused more serious synergistic pathogenic effects and indicates the role of both pathogens as complicating factors in poultry infections.

  16. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  17. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A.

    Science.gov (United States)

    Ravera, Silvia; Vaccaro, Daniele; Cuccarolo, Paola; Columbaro, Marta; Capanni, Cristina; Bartolucci, Martina; Panfoli, Isabella; Morelli, Alessandro; Dufour, Carlo; Cappelli, Enrico; Degan, Paolo

    2013-10-01

    Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Climate Change and Respiratory Infections.

    Science.gov (United States)

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  19. Targeted inactivation of the murine Abca3 gene leads to respiratory failure in newborns with defective lamellar bodies

    International Nuclear Information System (INIS)

    Hammel, Markus; Michel, Geert; Hoefer, Christina; Klaften, Matthias; Mueller-Hoecker, Josef; Angelis, Martin Hrabe de; Holzinger, Andreas

    2007-01-01

    Mutations in the human ABCA3 gene, encoding an ABC-transporter, are associated with respiratory failure in newborns and pediatric interstitial lung disease. In order to study disease mechanisms, a transgenic mouse model with a disrupted Abca3 gene was generated by targeting embryonic stem cells. While heterozygous animals developed normally and were fertile, individuals homozygous for the altered allele (Abca3-/-) died within one hour after birth from respiratory failure, ABCA3 protein being undetectable. Abca3-/- newborns showed atelectasis of the lung in comparison to a normal gas content in unaffected or heterozygous littermates. Electron microscopy demonstrated the absence of normal lamellar bodies in type II pneumocytes. Instead, condensed structures with apparent absence of lipid content were found. We conclude that ABCA3 is required for the formation of lamellar bodies and lung surfactant function. The phenotype of respiratory failure immediately after birth corresponds to the clinical course of severe ABCA3 mutations in human newborns

  20. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    Science.gov (United States)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  1. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    International Nuclear Information System (INIS)

    Ford, N L; Martin, E L; Lewis, J F; Veldhuizen, R A W; Holdsworth, D W; Drangova, M

    2009-01-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  2. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Ford, N L [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Martin, E L; Lewis, J F; Veldhuizen, R A W [Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2 (Canada); Holdsworth, D W; Drangova, M [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada)], E-mail: nlford@ryerson.ca

    2009-04-07

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  3. Respiratory Home Health Care

    Science.gov (United States)

    ... Us Home > Healthy Living > Living With Lung Disease > Respiratory Home Health Care Font: Aerosol Delivery Oxygen Resources ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Respiratory Home Health Care Respiratory care at ...

  4. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  5. Dysrhythmias of the respiratory oscillator

    Science.gov (United States)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  6. Alterações histopatológicas pulmonares em pacientes com insuficiência respiratória aguda: um estudo em autopsias Pulmonary histopathological alterations in patients with acute respiratory failure: an autopsy study

    Directory of Open Access Journals (Sweden)

    Alexandre de Matos Soeiro

    2008-02-01

    patients with acute respiratory failure (ARF and determine whether underlying diseases and certain associated risk factors increase the incidence of these histopathological patterns. METHODS: Final autopsy reports were reviewed, and 3030 autopsies of patients > 1 year of age with an underlying disease and associated risk factors were selected. All had developed diffuse infiltrates and died of ARF-related pulmonary alterations. RESULTS: The principal pulmonary histopathological alterations resulting in immediate death were diffuse alveolar damage (DAD, pulmonary edema, lymphocytic interstitial pneumonia (LIP and alveolar hemorrhage. The principal underlying diseases were AIDS, bronchopneumonia, sepsis, liver cirrhosis, pulmonary thromboembolism, acute myocardial infarction (AMI, cerebrovascular accident, tuberculosis, cancer, chronic kidney failure and leukemia. The principal associated risk factors were as follows: age > 50 years; arterial hypertension; congestive heart failure; chronic obstructive pulmonary disease; and diabetes mellitus. These risk factors and AIDS correlated with a high risk of developing LIP; these same risk factors, if concomitant with sepsis or liver cirrhosis, correlated with a risk of developing DAD; thromboembolism and these risk factors correlated with a risk of developing alveolar hemorrhage; these risk factors and AMI correlated with a risk of developing pulmonary edema. CONCLUSION: Pulmonary findings in patients who died of ARF presented four histopathological patterns: DAD, pulmonary edema, LIP and alveolar hemorrhage. Underlying diseases and certain associated risk factors correlated positively with specific histopathological findings on autopsy.

  7. Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control

    NARCIS (Netherlands)

    GROSSMAN, P.; Karemaker, J.; Wieling, W.

    1991-01-01

    Respiratory sinus arrhythmia (RSA) has received much attention in recent years due to the large body of evidence indicating that variations in this phenomenon represent alterations in parasympathetic cardiac control. Although it appears that respiratory sinus arrhythmia is mediated by vagal

  8. Childhood asthma-predictive phenotype.

    Science.gov (United States)

    Guilbert, Theresa W; Mauger, David T; Lemanske, Robert F

    2014-01-01

    Wheezing is a fairly common symptom in early childhood, but only some of these toddlers will experience continued wheezing symptoms in later childhood. The definition of the asthma-predictive phenotype is in children with frequent, recurrent wheezing in early life who have risk factors associated with the continuation of asthma symptoms in later life. Several asthma-predictive phenotypes were developed retrospectively based on large, longitudinal cohort studies; however, it can be difficult to differentiate these phenotypes clinically as the expression of symptoms, and risk factors can change with time. Genetic, environmental, developmental, and host factors and their interactions may contribute to the development, severity, and persistence of the asthma phenotype over time. Key characteristics that distinguish the childhood asthma-predictive phenotype include the following: male sex; a history of wheezing, with lower respiratory tract infections; history of parental asthma; history of atopic dermatitis; eosinophilia; early sensitization to food or aeroallergens; or lower lung function in early life. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Lungs and Respiratory System

    Science.gov (United States)

    ... Videos for Educators Search English Español Lungs and Respiratory System KidsHealth / For Parents / Lungs and Respiratory System ... ll have taken at least 600 million breaths. Respiratory System Basics All of this breathing couldn't ...

  10. Neonatal respiratory distress syndrome

    Science.gov (United States)

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... improves slowly after that. Some infants with severe respiratory distress syndrome will die. This most often occurs ...

  11. Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency.

    Directory of Open Access Journals (Sweden)

    Arne Björn Potthast

    Full Text Available Sirtuins are NAD+ dependent deacetylases, which regulate mitochondrial energy metabolism as well as cellular response to stress. The NAD/NADH-system plays a crucial role in oxidative phosphorylation linking sirtuins and the mitochondrial respiratory chain. Furthermore, sirtuins are able to directly deacetylate and activate different complexes of the respiratory chain. This prompted us to analyse sirtuin levels in skin fibroblasts from patients with cytochrome c-oxidase (COX deficiency and to test the impact of different pharmaceutical activators of sirtuins (SRT1720, paeonol to modulate sirtuins and possibly respiratory chain enzymes in patient cells in vitro.We assayed intracellular levels of sirtuin 1 and the mitochondrial sirtuins SIRT3 and SIRT4 in human fibroblasts from patients with COX- deficiency. Furthermore, sirtuins were measured after inhibiting complex IV in healthy control fibroblasts by cyanide and after incubation with activators SRT1720 and paeonol. To determine the effect of sirtuin inhibition at the cellular level we measured total cellular acetylation (control and patient cells, with and without treatment by Western blot.We observed a significant decrease in cellular levels of all three sirtuins at the activity, protein and transcriptional level (by 15% to 50% in COX-deficient cells. Additionally, the intracellular concentration of NAD+ was reduced in patient cells. We mimicked the biochemical phenotype of COX- deficiency by incubating healthy fibroblasts with cyanide and observed reduced sirtuin levels. A pharmacological activation of sirtuins resulted in normalized sirtuin levels in patient cells. Hyper acetylation was also reversible after treatment with sirtuin activators. Pharmacological modulation of sirtuins resulted in altered respiratory chain complex activities.We found inhibition of situins 1, 3 and 4 at activity, protein and transcriptional levels in fibroblasts from patient with COX-deficiency. Pharmacological

  12. Middle East Respiratory Syndrome

    Centers for Disease Control (CDC) Podcasts

    2014-07-07

    This podcast discusses Middle East Respiratory Syndrome, or MERS, a viral respiratory illness caused by Middle East Respiratory Syndrome Coronavirus—MERS-CoV.  Created: 7/7/2014 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 7/7/2014.

  13. The respiratory microbiome and respiratory infections

    NARCIS (Netherlands)

    Unger, Stefan A.; Bogaert, Debby

    2017-01-01

    Despite advances over the past ten years lower respiratory tract infections still comprise around a fifth of all deaths worldwide in children under five years of age with the majority in low- and middle-income countries. Known risk factors for severe respiratory infections and poor chronic

  14. Respiratory challenge MRI: Practical aspects

    Directory of Open Access Journals (Sweden)

    Fiona C. Moreton

    2016-01-01

    Full Text Available Respiratory challenge MRI is the modification of arterial oxygen (PaO2 and/or carbon dioxide (PaCO2 concentration to induce a change in cerebral function or metabolism which is then measured by MRI. Alterations in arterial gas concentrations can lead to profound changes in cerebral haemodynamics which can be studied using a variety of MRI sequences. Whilst such experiments may provide a wealth of information, conducting them can be complex and challenging. In this paper we review the rationale for respiratory challenge MRI including the effects of oxygen and carbon dioxide on the cerebral circulation. We also discuss the planning, equipment, monitoring and techniques that have been used to undertake these experiments. We finally propose some recommendations in this evolving area for conducting these experiments to enhance data quality and comparison between techniques.

  15. Respiratory Syncytial Virus

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Respiratory Syncytial Virus (RSV) Credit: CDC This is the ... the United States. Why Is the Study of Respiratory Syncytial Virus (RSV) a Priority for NIAID? In ...

  16. Respiratory syncytial virus (RSV)

    Science.gov (United States)

    RSV; Palivizumab; Respiratory syncytial virus immune globulin; Bronchiolitis - RSV ... Crowe JE. Respiratory syncytial virus. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ...

  17. Respiratory Issues in OI

    Science.gov (United States)

    Respiratory Issues in Osteogenesis Imperfecta \\ Introduction The respiratory system’s job is to bring oxygen into the body and remove carbon dioxide, the waste product of breathing. Because oxygen is the fuel ...

  18. Acute respiratory distress syndrome

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000103.htm Acute respiratory distress syndrome To use the sharing features on this page, please enable JavaScript. Acute respiratory distress syndrome (ARDS) is a life-threatening lung ...

  19. Upper respiratory tract (image)

    Science.gov (United States)

    The major passages and structures of the upper respiratory tract include the nose or nostrils, nasal cavity, mouth, throat (pharynx), and voice box (larynx). The respiratory system is lined with a mucous membrane that ...

  20. Avian respiratory system disorders

    Science.gov (United States)

    Olsen, Glenn H.

    1989-01-01

    Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.

  1. Lansoprazole Is Associated with Worsening Asthma Control in Children with the CYP2C19 Poor Metabolizer Phenotype.

    Science.gov (United States)

    Lang, Jason E; Holbrook, Janet T; Mougey, Edward B; Wei, Christine Y; Wise, Robert A; Teague, W Gerald; Lima, John J

    2015-06-01

    Gastric acid blockade in children with asymptomatic acid reflux has not improved asthma control in published studies. There is substantial population variability regarding metabolism of and response to proton pump inhibitors based on metabolizer phenotype. How metabolizer phenotype affects asthma responses to acid blockage is not known. To determine how metabolizer phenotype based on genetic analysis of CYP2C19 affects asthma control among children treated with a proton pump inhibitor. Asthma control as measured by the Asthma Control Questionnaire (ACQ) and other questionnaires from a 6-month clinical trial of lansoprazole in children with asthma was analyzed for associations with surrogates of lansoprazole exposure (based on treatment assignment and metabolizer phenotype). Groups included placebo-treated children; lansoprazole-treated extensive metabolizers (EMs); and lansoprazole-treated poor metabolizers (PMs). Metabolizer phenotypes were based on CYP2C19 haplotypes. Carriers of the CYP2C19*2, *3, *8, *9, or *10 allele were PMs; carriers of two wild-type alleles were extensive metabolizers (EMs). Asthma control through most of the treatment period was unaffected by lansoprazole exposure or metabolizer phenotype. At 6 months, PMs displayed significantly worsened asthma control compared with EMs (+0.16 vs. -0.13; P = 0.02) and placebo-treated children (+0.16 vs. -0.23; P lansoprazole-treated PMs. Children with the PM phenotype developed worse asthma control after 6 months of lansoprazole treatment for poorly controlled asthma. Increased exposure to proton pump inhibitor may worsen asthma control by altering responses to respiratory infections. Clinical trial registered with www.clinicaltrials.gov (NCT00604851).

  2. What Is Respiratory Distress Syndrome?

    Science.gov (United States)

    ... Home / Respiratory Distress Syndrome Respiratory Distress Syndrome Also known as What Is Respiratory ... This condition is called apnea (AP-ne-ah). Respiratory Distress Syndrome Complications Depending on the severity of ...

  3. Severe acute respiratory syndrome (SARS)

    Science.gov (United States)

    SARS; Respiratory failure - SARS ... Complications may include: Respiratory failure Liver failure Heart failure ... 366. McIntosh K, Perlman S. Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). ...

  4. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Patnaik

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNAs (ribonucleic acids that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls. CONCLUSIONS/SIGNIFICANCE: Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.

  5. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.

    Science.gov (United States)

    Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z

    2017-07-17

    Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.

  6. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  7. The benefit of pulmonary rehabilitation against quality of life alteration and functional capacity of chronic obstructive pulmonary disease patient assessed using St George’s respiratory questionnaire and 6 minutes walking distance test

    Directory of Open Access Journals (Sweden)

    Wiwien H. Wiyono

    2006-09-01

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD have been shown to be benefit from pulmonary rehabilitation programs. We assessed an entirely outpatient-based program of pulmonary rehabilitation in patients with COPD, using the St George’s Respiratory Questionnaire (SGRQ and six minutes walking distance test (6MWD (which measures health-related quality of life and functional exercise tolerance as the primary outcome measure. We undertook a randomized, opened, prospective, parallel-group controlled study of outpatient rehabilitation program in 56 patients with COPD (52 men and 4 women. The active group (n=27 took part in a 6-weeks program of education and exercise. The control group (n=29 were reviewed routinely as medical outpatients. The SGRQ and 6MWD were administered at study entry and after 6 weeks. Outcome with SGRQ and 6MWD before and after therapy was performed. Decrease score SGRQ and increase 6MWD in both groups of study, it was analyzed by statistic study and in active group the decrease of SGRQ and the increase of 6MWD was statistically significant. In conclusion 6-weeks outpatient-based program significantly improved quality of life and functional capacity in mild-to-moderate COPD patient. (Med J Indones 2006; 15:165-72 Keywords: COPD, pulmonary rehabilitation, SGRQ, 6MWD

  8. IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis.

    Science.gov (United States)

    Tarantini, Stefano; Giles, Cory B; Wren, Jonathan D; Ashpole, Nicole M; Valcarcel-Ares, M Noa; Wei, Jeanne Y; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the

  9. Neurological Respiratory Failure

    Directory of Open Access Journals (Sweden)

    Mohan Rudrappa

    2018-01-01

    Full Text Available West Nile virus infection in humans is mostly asymptomatic. Less than 1% of neuro-invasive cases show a fatality rate of around 10%. Acute flaccid paralysis of respiratory muscles leading to respiratory failure is the most common cause of death. Although the peripheral nervous system can be involved, isolated phrenic nerve palsy leading to respiratory failure is rare and described in only two cases in the English literature. We present another case of neurological respiratory failure due to West Nile virus-induced phrenic nerve palsy. Our case reiterates the rare, but lethal, consequences of West Nile virus infection, and the increase of its awareness among physicians.

  10. Diversity of respiratory impedance based on quantitative computed tomography in patients with COPD.

    Science.gov (United States)

    Wada, Yosuke; Kitaguchi, Yoshiaki; Yasuo, Masanori; Ueno, Fumika; Kawakami, Satoshi; Fukushima, Kiyoyasu; Fujimoto, Keisaku; Hanaoka, Masayuki

    2018-01-01

    This study was conducted in order to investigate the diversity of respiratory physiology, including the respiratory impedance and reversibility of airway obstruction, based on quantitative computed tomography (CT) in patients with COPD. Medical records of 174 stable COPD patients were retrospectively reviewed to obtain the patients' clinical data, including the pulmonary function and imaging data. According to the software-based quantification of the degree of emphysema and airway wall thickness, the patients were classified into the "normal by CT" phenotype, the airway-dominant phenotype, the emphysema-dominant phenotype, and the mixed phenotype. The pulmonary function, including the respiratory impedance evaluated by using the forced oscillation technique (FOT) and the reversibility of airway obstruction in response to inhaled short-acting β 2 -agonists, was then compared among the four phenotypes. The respiratory system resistance at 5 and 20 Hz (R5 and R20) was significantly higher, and the respiratory system reactance at 5 Hz (X5) was significantly more negative in the airway-dominant and mixed phenotypes than in the other phenotypes. The within-breath changes of X5 (ΔX5) were significantly greater in the mixed phenotype than in the "normal by CT" and emphysema-dominant phenotypes. The FOT parameters (R5, R20, and X5) were significantly correlated with indices of the degree of airway wall thickness and significantly but weakly correlated with the reversibility of airway obstruction. There was no significant correlation between the FOT parameters (R5, R20, and X5) and the degree of emphysema. There is a diversity of respiratory physiology, including the respiratory impedance and reversibility of airway obstruction, based on quantitative CT in patients with COPD. The FOT measurements may reflect the degree of airway disease and aid in detecting airway remodeling in patients with COPD.

  11. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  12. History of mechanical ventilation may affect respiratory mechanics evolution in acute respiratory distress syndrome.

    Science.gov (United States)

    Koutsoukou, Antonia; Perraki, Helen; Orfanos, Stylianos E; Koulouris, Nikolaos G; Tromaropoulos, Andreas; Sotiropoulou, Christina; Roussos, Charis

    2009-12-01

    The aim of this study was to investigate the effect of mechanical ventilation (MV) before acute respiratory distress syndrome (ARDS) on subsequent evolution of respiratory mechanics and blood gases in protectively ventilated patients with ARDS. Nineteen patients with ARDS were stratified into 2 groups according to ARDS onset relative to the onset of MV: In group A (n = 11), MV was applied at the onset of ARDS; in group B (n = 8), MV had been initiated before ARDS. Respiratory mechanics and arterial blood gas were assessed in early (protectively ventilated patients with ARDS, late alteration of respiratory mechanics occurs more commonly in patients who have been ventilated before ARDS onset, suggesting that the history of MV affects the subsequent progress of ARDS even when using protective ventilation.

  13. Investigation of GRIN2A in common epilepsy phenotypes

    NARCIS (Netherlands)

    Lal, Dennis; Steinbrücker, Sandra; Schubert, Julian; Sander, Thomas; Becker, Felicitas; Weber, Yvonne; Lerche, Holger; Thiele, Holger; Krause, Roland; Lehesjoki, Anna Elina; Nürnberg, Peter; Palotie, Aarno; Neubauer, Bernd A.; Muhle, Hiltrud; Stephani, Ulrich; Helbig, Ingo; Becker, Albert J.; Schoch, Susanne; Hansen, Jörg; Dorn, Thomas; Hohl, Christin; Lüscher, Nicole; von Spiczak, Sarah; Lemke, Johannes R.; Zimprich, Fritz; Feucht, Martha; Suls, Arvid; Weckhuysen, Sarah; Claes, Lieve; Deprez, Liesbet; Smets, Katrien; Dyck, Tine Van; Deconinck, Tine; De Jonghe, Peter; Møller, Rikke S.; Klitten, Laura L.; Hjalgrim, Helle; Campus, Kiel; Ostertag, Philipp; Trucks, Hol ger; Elger, Christian E.; Kleefuß-Lie, Ailing A.; Kunz, Wolfram S.; Surges, Rainer; Gaus, Verena; Janz, Dieter; Schmitz, Bettina; Klein, Karl Martin; Reif, Philipp S.; Oertel, Wolfgang H.; Hamer, Hajo M.; Rosenow, Felix; Kapser, Claudia; Schankin, Christoph J.; Koeleman, Bobby P C; de Kovel, Carolien; Lindhout, Dick; Reinthaler, Eva M.; Steinboeck, Hannelore; Neo-phytou, Birgit; Geldner, Julia; Gruber-Sedlmayr, Ursula; Haberlandt, Edda; Ronen, Gabriel M.; Altmueller, Janine; Nuernberg, Peter; Neubauer, Bernd; Sirén, Auli

    2015-01-01

    Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A

  14. Investigation of GRIN2A> in common epilepsy phenotypes

    DEFF Research Database (Denmark)

    Lal, Dennis; Steinbrücker, Sandra; Schubert, Julian

    2015-01-01

    Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A muta...

  15. Extended phenotype: nematodes turn ants into bird-dispersed fruits

    DEFF Research Database (Denmark)

    Hughes, D P; Kronauer, D J C; Boomsma, J J

    2008-01-01

    A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs.......A recent study has discovered a novel extended phenotype of a nematode which alters its ant host to resemble ripe fruit. The infected ants are in turn eaten by frugivorous birds that disperse the nematode's eggs....

  16. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region.

    Science.gov (United States)

    Allegrucci, M; Newman, B A; Young-Cooper, G O; Alexander, C B; Meier, D; Kelus, A S; Mage, R G

    1990-07-01

    Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression.

  17. Lung tissue remodeling in the acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Souza Alba Barros de

    2003-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is characterized by diffuse alveolar damage, and evolves progressively with three phases: exsudative, fibroproliferative, and fibrotic. In the exudative phase, there are interstitial and alveolar edemas with hyaline membrane. The fibropro­liferative phase is characterized by exudate organization and fibroelastogenesis. There is proliferation of type II pneumocytes to cover the damaged epithelial surface, followed by differentiation into type I pneumocytes. The fibroproliferative phase starts early, and its severity is related to the patient?s prognosis. The alterations observed in the phenotype of the pulmonary parenchyma cells steer the tissue remodeling towards either progressive fibrosis or the restoration of normal alveolar architecture. The fibrotic phase is characterized by abnormal and excessive deposition of extracellular matrix proteins, mainly collagen. The dynamic control of collagen deposition and degradation is regulated by metalloproteinases and their tissular regulators. The deposition of proteoglycans in the extracellular matrix of ARDS patients needs better study. The regulation of extracellular matrix remodeling, in normal conditions or in several pulmonary diseases, such as ARDS, results from a complex mechanism that integrate the transcription of elements that destroy the matrix protein and produce activation/inhibition of several cellular types of lung tissue. This review article will analyze the ECM organization in ARDS, the different pulmonary parenchyma remodeling mechanisms, and the role of cytokines in the regulation of the different matrix components during the remodeling process.

  18. Clinical and inflammatory markers in asthma and COPD phenotyping

    NARCIS (Netherlands)

    de Nijs, S.B.

    2013-01-01

    Based on the studies described in this thesis, we conclude that adult-onset respiratory diseases (asthma and COPD) are heterogeneous conditions characterized by different clinical features and inflammatory characteristics. The first part of the thesis focused on phenotypes of adult-onset asthma. We

  19. Asthma phenotypes in childhood.

    Science.gov (United States)

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  20. Gene editing as a promising approach for respiratory diseases.

    Science.gov (United States)

    Bai, Yichun; Liu, Yang; Su, Zhenlei; Ma, Yana; Ren, Chonghua; Zhao, Runzhen; Ji, Hong-Long

    2018-03-01

    Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Sarcopenia and frailty in chronic respiratory disease

    Science.gov (United States)

    Bone, Anna E; Hepgul, Nilay; Kon, Samantha

    2017-01-01

    Sarcopenia and frailty are geriatric syndromes characterized by multisystem decline, which are related to and reflected by markers of skeletal muscle dysfunction. In older people, sarcopenia and frailty have been used for risk stratification, to predict adverse outcomes and to prompt intervention aimed at preventing decline in those at greatest risk. In this review, we examine sarcopenia and frailty in the context of chronic respiratory disease, providing an overview of the common assessments tools and studies to date in the field. We contrast assessments of sarcopenia, which consider muscle mass and function, with assessments of frailty, which often additionally consider social, cognitive and psychological domains. Frailty is emerging as an important syndrome in respiratory disease, being strongly associated with poor outcome. We also unpick the relationship between sarcopenia, frailty and skeletal muscle dysfunction in chronic respiratory disease and reveal these as interlinked but distinct clinical phenotypes. Suggested areas for future work include the application of sarcopenia and frailty models to restrictive diseases and population-based samples, prospective prognostic assessments of sarcopenia and frailty in relation to common multidimensional indices, plus the investigation of exercise, nutritional and pharmacological strategies to prevent or treat sarcopenia and frailty in chronic respiratory disease. PMID:27923981

  2. Respiratory medicine of reptiles.

    Science.gov (United States)

    Schumacher, Juergen

    2011-05-01

    Noninfectious and infectious causes have been implicated in the development of respiratory tract disease in reptiles. Treatment modalities in reptiles have to account for species differences in response to therapeutic agents as well as interpretation of diagnostic findings. Data on effective drugs and dosages for the treatment of respiratory diseases are often lacking in reptiles. Recently, advances have been made on the application of advanced imaging modalities, especially computed tomography for the diagnosis and treatment monitoring of reptiles. This article describes common infectious and noninfectious causes of respiratory disease in reptiles, including diagnostic and therapeutic regimen. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Clinical phenotypes of asthma

    NARCIS (Netherlands)

    Bel, Elisabeth H.

    2004-01-01

    PURPOSE OF REVIEW: Asthma is a phenotypically heterogeneous disorder and, over the years, many different clinical subtypes of asthma have been described. A precise definition of asthma phenotypes is now becoming more and more important, not only for a better understanding of pathophysiologic

  4. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    2016-08-01

    Full Text Available The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β. Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  5. Phenotype of normal spirometry in an aging population.

    Science.gov (United States)

    Vaz Fragoso, Carlos A; McAvay, Gail; Van Ness, Peter H; Casaburi, Richard; Jensen, Robert L; MacIntyre, Neil; Gill, Thomas M; Yaggi, H Klar; Concato, John

    2015-10-01

    In aging populations, the commonly used Global Initiative for Chronic Obstructive Lung Disease (GOLD) may misclassify normal spirometry as respiratory impairment (airflow obstruction and restrictive pattern), including the presumption of respiratory disease (chronic obstructive pulmonary disease [COPD]). To evaluate the phenotype of normal spirometry as defined by a new approach from the Global Lung Initiative (GLI), overall and across GOLD spirometric categories. Using data from COPDGene (n = 10,131; ages 45-81; smoking history, ≥10 pack-years), we evaluated spirometry and multiple phenotypes, including dyspnea severity (Modified Medical Research Council grade 0-4), health-related quality of life (St. George's Respiratory Questionnaire total score), 6-minute-walk distance, bronchodilator reversibility (FEV1 % change), computed tomography-measured percentage of lung with emphysema (% emphysema) and gas trapping (% gas trapping), and small airway dimensions (square root of the wall area for a standardized airway with an internal perimeter of 10 mm). Among 5,100 participants with GLI-defined normal spirometry, GOLD identified respiratory impairment in 1,146 (22.5%), including a restrictive pattern in 464 (9.1%), mild COPD in 380 (7.5%), moderate COPD in 302 (5.9%), and severe COPD in none. Overall, the phenotype of GLI-defined normal spirometry included normal adjusted mean values for dyspnea grade (0.8), St. George's Respiratory Questionnaire (15.9), 6-minute-walk distance (1,424 ft [434 m]), bronchodilator reversibility (2.7%), % emphysema (0.9%), % gas trapping (10.7%), and square root of the wall area for a standardized airway with an internal perimeter of 10 mm (3.65 mm); corresponding 95% confidence intervals were similarly normal. These phenotypes remained normal for GLI-defined normal spirometry across GOLD spirometric categories. GLI-defined normal spirometry, even when classified as respiratory impairment by GOLD, included adjusted mean values in the

  6. Respiratory Pathogens Adopt a Chronic Lifestyle in Response to Bile

    Science.gov (United States)

    Reen, F. Jerry; Woods, David F.; Mooij, Marlies J.; Adams, Claire; O'Gara, Fergal

    2012-01-01

    Chronic respiratory infections are a major cause of morbidity and mortality, most particularly in Cystic Fibrosis (CF) patients. The recent finding that gastro-esophageal reflux (GER) frequently occurs in CF patients led us to investigate the impact of bile on the behaviour of Pseudomonas aeruginosa and other CF-associated respiratory pathogens. Bile increased biofilm formation, Type Six Secretion, and quorum sensing in P. aeruginosa, all of which are associated with the switch from acute to persistent infection. Furthermore, bile negatively influenced Type Three Secretion and swarming motility in P. aeruginosa, phenotypes associated with acute infection. Bile also modulated biofilm formation in a range of other CF-associated respiratory pathogens, including Burkholderia cepacia and Staphylococcus aureus. Therefore, our results suggest that GER-derived bile may be a host determinant contributing to chronic respiratory infection. PMID:23049911

  7. Respiratory Syncytial Virus (RSV)

    Centers for Disease Control (CDC) Podcasts

    2013-02-04

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.  Created: 2/4/2013 by National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases (DVD).   Date Released: 2/13/2013.

  8. Obesity and respiratory diseases

    OpenAIRE

    Zammit, Christopher; Liddicoat, Helen; Moonsie, Ian; Makker, Himender

    2010-01-01

    Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ produ...

  9. Acute respiratory distress syndrome

    OpenAIRE

    Confalonieri, Marco; Salton, Francesco; Fabiano, Francesco

    2017-01-01

    Since its first description, the acute respiratory distress syndrome (ARDS) has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foste...

  10. Respiratory Syncytial Virus Vaccines

    OpenAIRE

    Dudas, Robert A.; Karron, Ruth A.

    1998-01-01

    Respiratory syncytial virus (RSV) is the most important cause of viral lower respiratory tract illness (LRI) in infants and children worldwide and causes significant LRI in the elderly and in immunocompromised patients. The goal of RSV vaccination is to prevent serious RSV-associated LRI. There are several obstacles to the development of successful RSV vaccines, including the need to immunize very young infants, who may respond inadequately to vaccination; the existence of two antigenically d...

  11. Managing respiratory problems in athletes.

    Science.gov (United States)

    Hull, James H; Ansley, Les; Robson-Ansley, Paula; Parsons, Jonathan P

    2012-08-01

    Respiratory problems are common in athletes of all abilities and can significantly impact upon their health and performance. In this article, we provide an overview of respiratory physiology in athletes. We also discuss the assessment and management of common clinical respiratory conditions as they pertain to athletes, including airways disease, respiratory tract infection and pneumothorax. We focus on providing a pragmatic approach and highlight important caveats for the physician treating respiratory conditions in this highly specific population.

  12. ACE phenotyping in Gaucher disease.

    Science.gov (United States)

    Danilov, Sergei M; Tikhomirova, Victoria E; Metzger, Roman; Naperova, Irina A; Bukina, Tatiana M; Goker-Alpan, Ozlem; Tayebi, Nahid; Gayfullin, Nurshat M; Schwartz, David E; Samokhodskaya, Larisa M; Kost, Olga A; Sidransky, Ellen

    2018-04-01

    Gaucher disease is characterized by the activation of splenic and hepatic macrophages, accompanied by dramatically increased levels of angiotensin-converting enzyme (ACE). To evaluate the source of the elevated blood ACE, we performed complete ACE phenotyping using blood, spleen and liver samples from patients with Gaucher disease and controls. ACE phenotyping included 1) immunohistochemical staining for ACE; 2) measuring ACE activity with two substrates (HHL and ZPHL); 3) calculating the ratio of the rates of substrate hydrolysis (ZPHL/HHL ratio); 4) assessing the conformational fingerprint of ACE by evaluating the pattern of binding of monoclonal antibodies to 16 different ACE epitopes. We show that in patients with Gaucher disease, the dramatically increased levels of ACE originate from activated splenic and/or hepatic macrophages (Gaucher cells), and that both its conformational fingerprint and kinetic characteristics (ZPHL/HHL ratio) differ from controls and from patients with sarcoid granulomas. Furthermore, normal spleen was found to produce high levels of endogenous ACE inhibitors and a novel, tightly-bound 10-30 kDa ACE effector which is deficient in Gaucher spleen. The conformation of ACE is tissue-specific. In Gaucher disease, ACE produced by activated splenic macrophages differs from that in hepatic macrophages, as well as from macrophages and dendritic cells in sarcoid granulomas. The observed differences are likely due to altered ACE glycosylation or sialylation in these diseased organs. The conformational differences in ACE may serve as a specific biomarker for Gaucher disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Obesity and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Christopher Zammit

    2010-10-01

    Full Text Available Christopher Zammit, Helen Liddicoat, Ian Moonsie, Himender MakkerSleep and Ventilation Unit, Department of Respiratory Medicine, North Middlesex University Hospital, London, UKAbstract: The obesity epidemic is a global problem, which is set to increase over time. However, the effects of obesity on the respiratory system are often underappreciated. In this review, we will discuss the mechanical effects of obesity on lung physiology and the function of adipose tissue as an endocrine organ producing systemic inflammation and effecting central respiratory control. Obesity plays a key role in the development of obstructive sleep apnea and obesity hypoventilation syndrome. Asthma is more common and often harder to treat in the obese population, and in this study, we review the effects of obesity on airway inflammation and respiratory mechanics. We also discuss the compounding effects of obesity on chronic obstructive pulmonary disease (COPD and the paradoxical interaction of body mass index and COPD severity. Many practical challenges exist in caring for obese patients, and we highlight the complications faced by patients undergoing surgical procedures, especially given the increased use of bariatric surgery. Ultimately, a greater understanding of the effects of obesity on the respiratory disease and the provision of adequate health care resources is vital in order to care for this increasingly important patient population.Keywords: obesity, lung function, obstructive sleep apnea, obesity hypoventilation syndrome, anesthesia

  14. Bidirectional Cardio-Respiratory Interactions in Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikola N. Radovanović

    2018-03-01

    Full Text Available We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin, with sinus rhythm and ventricular extrasystoles (HF-VES, and with permanent atrial fibrillation (HF-AF. We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF there is no coherence between signals (p < 0.01, while in HF-Sin it is reduced (p < 0.05, compared with control subjects. In all heart failure groups causality between signals is diminished, but with significantly stronger causality of RR signal in respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the

  15. Bidirectional Cardio-Respiratory Interactions in Heart Failure.

    Science.gov (United States)

    Radovanović, Nikola N; Pavlović, Siniša U; Milašinović, Goran; Kirćanski, Bratislav; Platiša, Mirjana M

    2018-01-01

    We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals) and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin), with sinus rhythm and ventricular extrasystoles (HF-VES), and with permanent atrial fibrillation (HF-AF). We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF) there is no coherence between signals ( p respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the presence of atrial/ventricular arrhythmias and it could be revealed by complementary methods of time series analysis.

  16. Respiratory manifestations of hypothyroidism

    DEFF Research Database (Denmark)

    Sorensen, Jesper Roed; Winther, Kristian Hillert; Bonnema, Steen Joop

    2016-01-01

    BACKGROUND: Hypothyroidism has been associated with increased pulmonary morbidity and overall mortality. We conducted a systematic review to identify the prevalence and underlying mechanisms of respiratory problems among patients with thyroid insufficiency. METHODS: PubMed and EMBASE databases were...... searched for relevant literature from January 1950 through January 2015 with study eligibility criteria: English-language publications; Adult subclinical or overt hypothyroid patients; Intervention, observational or retrospective studies; and respiratory manifestations. We followed the PRISMA statement...... and used the Cochrane's risk of bias tool. RESULTS: A total of 1699 papers were screened by two independent authors for relevant titles. Of 109 relevant abstracts, 28 papers underwent full text analyses, of which 22 were included in the review. We identified possible mechanisms explaining respiratory...

  17. Respiratory care manpower issues.

    Science.gov (United States)

    Mathews, Paul; Drumheller, Lois; Carlow, John J

    2006-03-01

    Although respiratory care is a relatively new profession, its practitioners are deeply involved in providing patient care in the critical care. In preparation for writing this article, we sought to explore the respiratory therapy manpower needs and activities designed to fulfill those needs in critical care practice. We began by delineating the historical development of respiratory care as a profession, the development of its education, and the professional credentialing system. We then conducted several literature reviews with few articles generated. We requested and received data from the American Association for Respiratory Care (AARC), The National Board for Respiratory Care (NBRC), and the Committee on Accreditation of Respiratory Care education (CoARC) relative to their membership, number of credentialed individuals, and educational program student and graduate data for 2000 through 2004. We then conducted two electronic surveys. Survey 1 was a six-item survey that examined the use of mandatory overtime in respiratory care departments. We used a convenience sample of 30 hospitals stratified by size (or=500 beds). Survey 2 was a five-item instrument distributed by blast E-mail to the Society of Critical Care Medicine's Respiratory Care Section members and members of the RC_World list serve. This survey elicited 51 usable and non-duplicative responses from geographically and size-varied institutions. We analyzed these data in several ways from distribution analysis to one-way analysis of variance procedure and appropriate post hoc analysis techniques. Where appropriate, a matched-pairs analysis was performed and these were compared across the variables intensive care unit (ICU) beds per actual number of respiratory care practitioners (RCPs) and ICU beds per preferred number of RCPs. The data gathered from the professional organizations indicated a relatively stable attrition rate (35.2%+/-1.7-3.1%), even in the face of varying enrollments (6,231 in 2004 vs. 4

  18. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  19. Emerging ciliopathies: are respiratory cilia compromised in Usher syndrome?

    Science.gov (United States)

    Piatti, G; De Santi, M M; Brogi, M; Castorina, P; Ambrosetti, U

    2014-01-01

    Usher syndrome is a ciliopathy involving photoreceptors and cochlear hair cells (sensory cilia): since sensory and motor ciliopathies can overlap, we analysed the respiratory cilia (motile) in 17 patients affected by Usher syndrome and 18 healthy control subject. We studied the mucociliary transport time with the saccharine test, ciliary motility and ultrastructure of respiratory cilia obtained by nasal brushing; we also recorded the classical respiratory function values by spirometry. All enrolled subjects showed normal respiratory function values. The mean mucociliary transport time with saccharine was 22.33 ± 17.96 min, which is in the range of normal values. The mean ciliary beat frequency of all subjects was 8.81 ± 2.18 Hz, which is a value approaching the lower physiological limit. None of the classical ciliary alterations characterizing the "ciliary primary dyskinesia" was detected, although two patients showed alterations in number and arrangement of peripheral microtubules and one patient had abnormal ciliary roots. Respiratory cilia in Usher patients don't seem to have evident ultrastructural alterations, as expected, but the fact that the ciliary motility appeared slightly reduced could emphasize that a rigid distinction between sensory and motor ciliopathies may not reflect what really occurs. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The microbiota of the respiratory tract : Gatekeeper to respiratory health

    NARCIS (Netherlands)

    Man, Wing Ho; De Steenhuijsen Piters, Wouter A.A.; Bogaert, Debby

    2017-01-01

    The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts

  1. Adult respiratory distress syndrome

    International Nuclear Information System (INIS)

    Svendsen, J.; Jespersen, J.; Skjoedt, T.

    1986-01-01

    Our present-day knowledge concerning the clinico-chemical and radiological findings in adult respiratory distress syndrome are described. Three typical case histories have been selected to illustrate this condition; they were due to multiple trauma or sepsis. It is stressed that radiology is in a key position for making the diagnosis and for observing the course of the illness. (orig) [de

  2. European Respiratory Society statement

    DEFF Research Database (Denmark)

    Miravitlles, Marc; Dirksen, Asger; Ferrarotti, Ilaria

    2017-01-01

    lung disease. A large proportion of individuals affected remain undiagnosed and therefore without access to appropriate care and treatment.The most recent international statement on AATD was published by the American Thoracic Society and the European Respiratory Society in 2003. Since then there has...

  3. Respiratory Syncytial Virus (RSV)

    Centers for Disease Control (CDC) Podcasts

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.

  4. Respiratory problems in foals.

    Science.gov (United States)

    Beech, J

    1985-04-01

    Despite major advances in our knowledge and ability to treat respiratory diseases in neonatal foals, neonatal respiratory medicine is still in its infancy. It is hoped that this article may serve as a guideline for diagnosis and treatment. Specific antibiotic regimens and emergency procedures are covered in other articles in this symposium. Because management factors play a critical role in the pathogenesis of respiratory disease, education of clients as to their importance would help both prophylactically and therapeutically. The necessity of very careful monitoring of neonates, which is critical to early detection of disease, should be stressed. As respiratory diseases can be fulminant and rapidly fatal, it is imperative not to delay diagnosis and therapy. Thorough examination and implementation of appropriate diagnostic techniques, as well as prompt early referral to a more sophisticated facility when indicated, would prevent many deaths. Although sophisticated support systems are vital for survival of some of these foals, good basic intensive nursing care combined with selection of appropriate drug therapy very early in the course of the disease is all that many foals require and can significantly improve survival rates.

  5. Respiratory Symptoms in Firefighters

    NARCIS (Netherlands)

    Greven, Frans E.; Rooyackers, Jos M.; Kerstjens, Huib A. M.; Heederik, Dick J.

    Background The aim of the present study was to determine the prevalence and risk factors associated with respiratory symptoms in common firefighters in the Netherlands. Methods A total of 1,330 firefighters from the municipal fire brigades of three provinces of the Netherlands were included in the

  6. Textbook of respiratory medicine

    International Nuclear Information System (INIS)

    Murray, J.F.; Nadel, J.

    1987-01-01

    This book presents a clinical reference of respiratory medicine. It also details basic science aspects of pulmonary physiology and describes recently developed, sophisticated diagnostic tools and therapeutic methods. It also covers anatomy, physiology, pharmacology, and pathology; microbiologic, radiologic, nuclear medicine, and biopsy methods for diagnosis

  7. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris.

    Science.gov (United States)

    Pellny, Till K; Van Aken, Olivier; Dutilleul, Christelle; Wolff, Tonja; Groten, Karin; Bor, Melike; De Paepe, Rosine; Reyss, Agnès; Van Breusegem, Frank; Noctor, Graham; Foyer, Christine H

    2008-06-01

    Mitochondrial electron transport pathways exert effects on carbon-nitrogen (C/N) relationships. To examine whether mitochondria-N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered 'nitrate-sensing' phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots.

  8. ARDS (Acute Respiratory Distress Syndrome)

    Science.gov (United States)

    ... Also known as What Is ARDS, or acute respiratory distress syndrome, is a lung condition that leads ... treat ARDS. Other Names Acute lung injury Adult respiratory distress syndrome Increased-permeability pulmonary edema Noncardiac pulmonary ...

  9. Respiratory gating in cardiac PET

    DEFF Research Database (Denmark)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. METHODS AND RESULTS: Forty-eight patients were randomized to adenosine or dipyridamole cardiac...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4...

  10. Middle East Respiratory Syndrome (MERS)

    Science.gov (United States)

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... for Disease Control and Prevention website. Middle East Respiratory Syndrome (MERS): Frequently asked questions and answers. www. ...

  11. Acute respiratory infections at children

    OpenAIRE

    Delyagin, V.

    2009-01-01

    The common signs of virus respiratory diseases, role of pathological inclination to infections, value of immunodeficiency are presented at lecture. Features of most often meeting respiratory virus infections are given.

  12. Quality Control Test for Sequence-Phenotype Assignments

    Science.gov (United States)

    Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel

    2015-01-01

    Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273

  13. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  14. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    Science.gov (United States)

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  15. COPD: Definition and Phenotypes

    DEFF Research Database (Denmark)

    Vestbo, J.

    2014-01-01

    particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients. The evolution of this definition and the diagnostic criteria currently in use are discussed. COPD is increasingly divided in subgroups or phenotypes based on specific features and association...

  16. Climate change and respiratory disease: European Respiratory Society position statement.

    Science.gov (United States)

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  17. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  18. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    International Nuclear Information System (INIS)

    Korreman, Stine S.; Juhler-Nottrup, Trine; Boyer, Arthur L.

    2008-01-01

    Purpose/objective: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. Materials/methods: The study is based on data for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were compared to those of ungated data, to assess potential margin reductions. Results: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1 mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7 mm, with a mean reduction of 0.3 mm (6%). Gated distributions were more skewed than ungated, and in a few cases a marginal miss of gated respiration would be found even if no margin reduction was applied. Regularization of breathing amplitude to simulate coaching did not alter these results significantly. Simulation of varying phase shifts between internal and external respiratory signals showed that the SDs of gated distributions were the same as for the ungated or smaller, but the median values were markedly shifted

  19. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    Science.gov (United States)

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  20. Respiratory guiding system for respiratory motion management in respiratory gated radiotherapy

    International Nuclear Information System (INIS)

    Kang, Seong Hee; Kim, Dong Su; Kim, Tae Ho; Suh, Tae Suk

    2013-01-01

    Respiratory guiding systems have been shown to improve the respiratory regularity. This, in turn, improves the efficiency of synchronized moving aperture radiation therapy, and it reduces the artifacts caused by irregular breathing in imaging techniques such as four-dimensional computed tomography (4D CT), which is used for treatment planning in RGRT. We have previously developed a respiratory guiding system that incorporates an individual-specific guiding waveform, which is easy to follow for each volunteer, to improve the respiratory regularity. The present study evaluates the application of this system to improve the respiratory regularity for respiratory-gated radiation therapy (RGRT). In this study, we evaluated the effectiveness of an in-house-developed respiratory guiding system incorporating an individual specific guiding waveform to improve the respiratory regularity for RGRT. Most volunteers showed significantly less residual motion at each phase during guided breathing owing to the improvement in respiratory regularity. Therefore, the respiratory guiding system can clearly reduce the residual, or respiratory, motion in each phase. From the result, the CTV and the PTV margins during RGRT can be reduced by using the respiratory guiding system, which reduces the residual motions, thus improving the accuracy of RGRT

  1. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; van Heerde, Marc; Twisk, Jos W. R.; Plotz, Frans B.; Markhors, Dick G.

    2009-01-01

    Introduction Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  2. Heliox reduces respiratory system resistance in respiratory syncytial virus induced respiratory failure

    NARCIS (Netherlands)

    Kneijber, M.C.J.; van Heerde, M.; Twisk, J.W.R.; Plotz, F.; Markhorst, D.G.

    2009-01-01

    Introduction: Respiratory syncytial virus (RSV) lower respiratory tract disease is characterised by narrowing of the airways resulting in increased airway resistance, air-trapping and respiratory acidosis. These problems might be overcome using helium-oxygen gas mixture. However, the effect of

  3. Ocular Tropism of Respiratory Viruses

    Science.gov (United States)

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  4. Nanotechnology in respiratory medicine.

    Science.gov (United States)

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  5. Adult respiratory distress syndrome

    International Nuclear Information System (INIS)

    Murphy, C.H.; Colvin, R.S.

    1987-01-01

    Due to improved emergency resuscitation procedures, and with advancing medical technology in the field of critical care, an increasing number of patients survive the acute phase of shock and catastrophic trauma. Patients who previously died of massive sepsis, hypovolemic or hypotensive shock, multiple fractures, aspiration, toxic inhalation, and massive embolism are now surviving long enough to develop previously unsuspected and unrecognized secondary effects. With increasing frequency, clinicians are recognizing the clinical and radiographic manifestations of pathologic changes in the lungs occurring secondary to various types of massive insult. This paper gives a list of diseases that have been shown to precipitate or predispose to diffuse lung damage. Various terms have been used to describe the lung damage and respiratory failure secondary to these conditions. The term adult respiratory distress syndrome (ARDS) is applied to several cases of sudden respiratory failure in patients with previously healthy lungs following various types of trauma or shock. Numerous investigations and experiments have studied the pathologic changes in ARDS, and, while there is still no clear indication of why it develops, there is now some correlation of the sequential pathologic developments with the clinical and radiographic changes

  6. Expanding the phenotype of congenital central hypoventilation syndrome impacts management decisions.

    Science.gov (United States)

    Byers, Heather M; Chen, Maida; Gelfand, Andrew S; Ong, Bruce; Jendras, Marisa; Glass, Ian A

    2018-04-25

    Congenital central hypoventilation syndrome (CCHS) is a neurocristopathy caused by pathogenic heterozygous variants in the gene paired-like homeobox 2b (PHOX2B). It is characterized by severe infantile alveolar hypoventilation. Individuals may also have diffuse autonomic nervous system dysfunction, Hirschsprung disease and neural crest tumors. We report three individuals with CCHS due to an 8-base pair duplication in PHOX2B; c.691_698dupGGCCCGGG (p.Gly234Alafs*78) with a predominant enteral and neural crest phenotype and a relatively mild respiratory phenotype. The attenuated respiratory phenotype reported here and elsewhere suggests an emergent genotype:phenotype correlation which challenges the current paradigm of invoking mechanical ventilation for all infants diagnosed with CCHS. Best treatment requires careful clinical judgment and ideally the assistance of a care team with expertise in CCHS. © 2018 Wiley Periodicals, Inc.

  7. The expanding phenotype of mitochondrial myopathy.

    Science.gov (United States)

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  8. Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood

    KAUST Repository

    Al-Garawi, A

    2011-08-31

    The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c + CD11b + inflammatory dendritic cell and CD8α + plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.

  9. Genetic associations with viral respiratory illnesses and asthma control in children

    DEFF Research Database (Denmark)

    Loisel, D A; Du, G; Ahluwalia, T S

    2016-01-01

    of asthma control phenotypes was performed in 2128 children in the Copenhagen Prospective Study on Asthma in Childhood (COPSAC). Significant associations in RhinoGen were further validated using virus-induced wheezing illness and asthma phenotypes in an independent sample of 122 children enrolled...... in the Childhood Origins of Asthma (COAST) birth cohort study. RESULTS: A significant excess of P values smaller than 0.05 was observed in the analysis of the 10 RhinoGen phenotypes. Polymorphisms in 12 genes were significantly associated with variation in the four phenotypes showing a significant enrichment...... differences in childhood viral respiratory illnesses and virus-induced exacerbations of asthma. Defining mechanisms of these associations may provide insight into the pathogenesis of viral respiratory infections and virus-induced exacerbations of asthma....

  10. Delineation of C12orf65-related phenotypes: a genotype-phenotype relationship.

    Science.gov (United States)

    Spiegel, Ronen; Mandel, Hanna; Saada, Ann; Lerer, Issy; Burger, Ayala; Shaag, Avraham; Shalev, Stavit A; Jabaly-Habib, Haneen; Goldsher, Dorit; Gomori, John M; Lossos, Alex; Elpeleg, Orly; Meiner, Vardiella

    2014-08-01

    C12orf65 participates in the process of mitochondrial translation and has been shown to be associated with a spectrum of phenotypes, including early onset optic atrophy, progressive encephalomyopathy, peripheral neuropathy, and spastic paraparesis.We used whole-genome homozygosity mapping as well as exome sequencing and targeted gene sequencing to identify novel C12orf65 disease-causing mutations in seven affected individuals originating from two consanguineous families. In four family members affected with childhood-onset optic atrophy accompanied by slowly progressive peripheral neuropathy and spastic paraparesis, we identified a homozygous frame shift mutation c.413_417 delAACAA, which predicts a truncated protein lacking the C-terminal portion. In the second family, we studied three affected individuals who presented with early onset optic atrophy, peripheral neuropathy, and spastic gait in addition to moderate intellectual disability. Muscle biopsy in two of the patients revealed decreased activities of the mitochondrial respiratory chain complexes I and IV. In these patients, we identified a homozygous splice mutation, g.21043 T>A (c.282+2 T>A) which leads to skipping of exon 2. Our study broadens the phenotypic spectrum of C12orf65 defects and highlights the triad of optic atrophy, axonal neuropathy and spastic paraparesis as its key clinical features. In addition, a clear genotype-phenotype correlation is anticipated in which deleterious mutations which disrupt the GGQ-containing domain in the first coding exon are expected to result in a more severe phenotype, whereas down-stream C-terminal mutations may result in a more favorable phenotype, typically lacking cognitive impairment.

  11. Perinatal respiratory infections and long term consequences

    Directory of Open Access Journals (Sweden)

    Luciana Indinnimeo

    2015-10-01

    Full Text Available Respiratory syncytial virus (RSV is the most important pathogen in the etiology of respiratory infections in early life. 50% of children are affected by RSV within the first year of age, and almost all children become infected within two years. Numerous retrospective and prospective studies linking RSV and chronic respiratory morbidity show that RSV bronchiolitis in infancy is followed by recurrent wheezing after the acute episod. According to some authors a greater risk of wheezing in children with a history of RSV bronchiolitis would be limited to childhood, while according to others this risk would be extended into adolescence and adulthood. To explain the relationship between RSV infection and the development of bronchial asthma or the clinical pathogenetic patterns related to a state of bronchial hyperreactivity, it has been suggested that RSV may cause alterations in the response of the immune system (immunogenic hypothesis, activating directly mast cells and basophils and changing the pattern of differentiation of immune cells present in the bronchial tree as receptors and inflammatory cytokines. It was also suggested that RSV infection can cause bronchial hyperreactivity altering nervous airway modulation, acting on nerve fibers present in the airways (neurogenic hypothesis.The benefits of passive immunoprophylaxis with palivizumab, which seems to represent an effective approach in reducing the sequelae of RSV infection in the short- and long-term period, strengthen the implementation of prevention programs with this drug, as recommended by the national guidelines of the Italian Society of Neonatology. Proceedings of the 11th International Workshop on Neonatology and Satellite Meetings · Cagliari (Italy · October 26th-31st, 2015 · From the womb to the adultGuest Editors: Vassilios Fanos (Cagliari, Italy, Michele Mussap (Genoa, Italy, Antonio Del Vecchio (Bari, Italy, Bo Sun (Shanghai, China, Dorret I. Boomsma (Amsterdam, the

  12. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region.

    Directory of Open Access Journals (Sweden)

    Véronique Brault

    2015-03-01

    Full Text Available The trisomy of human chromosome 21 (Hsa21, which causes Down syndrome (DS, is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21 of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.

  13. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region.

    Science.gov (United States)

    Brault, Véronique; Duchon, Arnaud; Romestaing, Caroline; Sahun, Ignasi; Pothion, Stéphanie; Karout, Mona; Borel, Christelle; Dembele, Doulaye; Bizot, Jean-Charles; Messaddeq, Nadia; Sharp, Andrew J; Roussel, Damien; Antonarakis, Stylianos E; Dierssen, Mara; Hérault, Yann

    2015-03-01

    The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.

  14. Respiratory mechanics and fluid dynamics after lung resection surgery.

    Science.gov (United States)

    Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria

    2010-08-01

    Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur. Published by Elsevier Inc.

  15. Genetic Testing for Respiratory Disease: Are We There Yet?

    Directory of Open Access Journals (Sweden)

    Peter D Paré

    2012-01-01

    Full Text Available The human genome project promised a revolution in health care – the development of ‘personalized medicine’, where knowledge of an individual’s genetic code enables the prediction of risk for specific diseases and the potential to alter that risk based on preventive measures and lifestyle modification. The present brief review provides a report card on the progress toward that goal with respect to respiratory disease. Should generalized population screening for genetic risk factors for respiratory disease be instituted? Or not?

  16. Folic acid supplements in pregnancy and early childhood respiratory health.

    Science.gov (United States)

    Håberg, S E; London, S J; Stigum, H; Nafstad, P; Nystad, W

    2009-03-01

    Folate supplementation is recommended for pregnant women to reduce the risk of congenital malformations. Maternal intake of folate supplements during pregnancy might also influence childhood immune phenotypes via epigenetic mechanisms. To investigate the relationship between folate supplements in pregnancy and risk of lower respiratory tract infections and wheeze in children up to 18 months of age. In the Norwegian Mother and Child Cohort Study, questionnaire data collected at several time points during pregnancy and after birth on 32,077 children born between 2000 and 2005 were used to assess the effects of folate supplements during pregnancy on respiratory outcomes up to 18 months of age, while accounting for other supplements in pregnancy and supplementation in infancy. Folate supplements in the first trimester were associated with increased risk of wheeze and respiratory tract infections up to 18 months of age. Adjusting for exposure later in pregnancy and in infancy, the relative risk for wheeze for children exposed to folic acid supplements in the first trimester was 1.06 (95% CI 1.03 to 1.10), the relative risk for lower respiratory tract infections was 1.09 (95% CI 1.02 to 1.15) and the relative risk for hospitalisations for lower respiratory tract infections was 1.24 (95% CI 1.09 to 1.41). Folic acid supplements in pregnancy were associated with a slightly increased risk of wheeze and lower respiratory tract infections up to 18 months of age. The results suggest that methyl donors in the maternal diet during pregnancy may influence respiratory health in children consistent with epigenetic mechanisms.

  17. Submersion and acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Yu-Jang Su

    2014-01-01

    Conclusions: Submersion patients who are hypothermic on arrival of emergency department (ED are risky to respiratory failure and older, more hypothermic, longer hospital stay in suicidal submersion patients.

  18. Management of Postoperative Respiratory Failure.

    Science.gov (United States)

    Mulligan, Michael S; Berfield, Kathleen S; Abbaszadeh, Ryan V

    2015-11-01

    Despite best efforts, postoperative complications such as postoperative respiratory failure may occur and prompt recognition of the process and management is required. Postoperative respiratory failure, such as postoperative pneumonia, postpneumonectomy pulmonary edema, acute respiratory distress-like syndromes, and pulmonary embolism, are associated with high morbidity and mortality. The causes of these complications are multifactorial and depend on preoperative, intraoperative, and postoperative factors, some of which are modifiable. The article identifies some of the risk factors, causes, and treatment strategies for successful management of the patient with postoperative respiratory failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Respiratory mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Mostert, J.W. (Pretoria Univ. (South Africa). Dept. of Anesthesiology)

    1983-06-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M/sup 2/ body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O/sub 2/ consumption of less than 50 ml O/sub 2//min/M/sup 2/) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery.

  20. The respiratory mass spectrometer

    International Nuclear Information System (INIS)

    Mostert, J.W.

    1983-01-01

    The high degree of technical perfection of the respiratory mass spectrometer has rendered the instrument feasible for routine monitoring of anesthetized patients. It is proposed that the difference between inspired and expired oxygen tension in mm Hg be equated with whole body oxygen consumption in ml/min/M 2 body-surface area at STPD, by the expedient of multiplying tension-differences by a factor of 2. Years of experience have confirmed the value of promptly recognizing sudden drops in this l/E tension difference below 50 mm Hg indicative of metabolic injury from hypovolemia or respiratory depression. Rises in l/E tension-differences were associated with shivering as well as voluntary muscle activity. Tension differences of less than 25 mm Hg (equated with a whole-body O 2 consumption of less than 50 ml O 2 /min/M 2 ) occurred in a patient in the sitting position for posterior fossa exploration without acidosis, hypoxia or hypotension for several hours prior to irreversible cardiac arrest. The value of clinical monitoring by mass spectrometry is especially impressive in open-heart surgery

  1. Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    Carmen Sílvia Valente Barbas

    2012-01-01

    Full Text Available This paper, based on relevant literature articles and the authors' clinical experience, presents a goal-oriented respiratory management for critically ill patients with acute respiratory distress syndrome (ARDS that can help improve clinicians' ability to care for these patients. Early recognition of ARDS modified risk factors and avoidance of aggravating factors during hospital stay such as nonprotective mechanical ventilation, multiple blood products transfusions, positive fluid balance, ventilator-associated pneumonia, and gastric aspiration can help decrease its incidence. An early extensive clinical, laboratory, and imaging evaluation of “at risk patients” allows a correct diagnosis of ARDS, assessment of comorbidities, and calculation of prognostic indices, so that a careful treatment can be planned. Rapid administration of antibiotics and resuscitative measures in case of sepsis and septic shock associated with protective ventilatory strategies and early short-term paralysis associated with differential ventilatory techniques (recruitment maneuvers with adequate positive end-expiratory pressure titration, prone position, and new extracorporeal membrane oxygenation techniques in severe ARDS can help improve its prognosis. Revaluation of ARDS patients on the third day of evolution (Sequential Organ Failure Assessment (SOFA, biomarkers and response to infection therapy allows changes in the initial treatment plans and can help decrease ARDS mortality.

  2. Respiratory symptoms of megaesophagus

    Directory of Open Access Journals (Sweden)

    Fabio Di Stefano

    2013-03-01

    Full Text Available Megaesophagus as the end result of achalasia is the consequence of disordered peristalsis and the slow decompensation of the esophageal muscular layer. The main symptoms of achalasia are dysphagia, regurgitation, chest pain and weight loss, but respiratory symptoms, such as coughing, particularly when patients lie in a horizontal position, may also be common due to microaspiration. A 70-year old woman suffered from a nocturnal cough and shortness of breath with stridor. She reported difficulty in swallowing food over the past ten years, but had adapted by eating a semi-liquid diet. Chest X-ray showed right hemithorax patchy opacities projecting from the posterior mediastinum. Chest computed tomography scan showed a marked dilatation of the esophagus with abundant food residues. Endoscopy confirmed the diagnosis of megaesophagus due to esophageal achalasia, excluding other causes of obstruction, such as secondary esophagitis, polyps, leiomyoma or leiomyosarcoma. In the elderly population, swallowing difficulties due to esophageal achalasia are often underestimated and less troublesome than the respiratory symptoms that are caused by microaspiration. The diagnosis of esophageal achalasia, although uncommon, should be considered in patients with nocturnal chronic coughs and shortness of breath with stridor when concomitant swallowing difficulties are present.

  3. Acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Marco Confalonieri

    2017-04-01

    Full Text Available Since its first description, the acute respiratory distress syndrome (ARDS has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foster geographic variability and contrasting outcome data. A large international multicentre prospective cohort study including 50 countries across five continents reported that ARDS is underdiagnosed, and there is potential for improvement in its management. Furthermore, epidemiological data from low-income countries suggest that a revision of the current definition of ARDS is needed in order to improve its recognition and global clinical outcome. In addition to the well-known risk-factors for ARDS, exposure to high ozone levels and low vitamin D plasma concentrations were found to be predisposing circumstances. Drug-based preventive strategies remain a major challenge, since two recent trials on aspirin and statins failed to reduce the incidence in at-risk patients. A new disease-modifying therapy is awaited: some recent studies promised to improve the prognosis of ARDS, but mortality and disabling complications are still high in survivors in intensive care.

  4. Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure

    Directory of Open Access Journals (Sweden)

    Torrentino-Madamet M

    2011-09-01

    Full Text Available Marylin Torrentino-Madamet1, Lionel Almeras2, Christelle Travaillé1, Véronique Sinou1, Matthieu Pophillat3, Maya Belghazi4, Patrick Fourquet3, Yves Jammes5, Daniel Parzy11UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 2Unité de Recherche en Biologie et Epidémiologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 3Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, 4Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, 5UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxygénations Extrêmes, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Marseille, FranceObjectives: Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a “branched respiratory chain.” This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM, showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure.Design: A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed.Results: After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins

  5. Metabolic profiles to define the genome: can we hear the phenotypes?

    OpenAIRE

    Griffin, Julian L

    2004-01-01

    There is an increased reliance on genetically modified organisms as a functional genomic tool to elucidate the role of genes and their protein products. Despite this, many models do not express the expected phenotype thought to be associated with the gene or protein. There is thus an increased need to further define the phenotype resultant from a genetic modification to understand how the transcriptional or proteomic network may conspire to alter the expected phenotype. This is best typified ...

  6. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Basanta Maria

    2012-08-01

    Full Text Available Abstract Background Non-invasive phenotyping of chronic respiratory diseases would be highly beneficial in the personalised medicine of the future. Volatile organic compounds can be measured in the exhaled breath and may be produced or altered by disease processes. We investigated whether distinct patterns of these compounds were present in chronic obstructive pulmonary disease (COPD and clinically relevant disease phenotypes. Methods Breath samples from 39 COPD subjects and 32 healthy controls were collected and analysed using gas chromatography time-of-flight mass spectrometry. Subjects with COPD also underwent sputum induction. Discriminatory compounds were identified by univariate logistic regression followed by multivariate analysis: 1. principal component analysis; 2. multivariate logistic regression; 3. receiver operating characteristic (ROC analysis. Results Comparing COPD versus healthy controls, principal component analysis clustered the 20 best-discriminating compounds into four components explaining 71% of the variance. Multivariate logistic regression constructed an optimised model using two components with an accuracy of 69%. The model had 85% sensitivity, 50% specificity and ROC area under the curve of 0.74. Analysis of COPD subgroups showed the method could classify COPD subjects with far greater accuracy. Models were constructed which classified subjects with ≥2% sputum eosinophilia with ROC area under the curve of 0.94 and those having frequent exacerbations 0.95. Potential biomarkers correlated to clinical variables were identified in each subgroup. Conclusion The exhaled breath volatile organic compound profile discriminated between COPD and healthy controls and identified clinically relevant COPD subgroups. If these findings are validated in prospective cohorts, they may have diagnostic and management value in this disease.

  7. TOXICOPATHOLOGICAL IMPACT OF CADMIUM CHLORIDE ON THE ACCESSORY RESPIRATORY ORGAN OF THE AIR-BREATHING CATFISH HETEROPNEUSTES FOSSILIS

    Directory of Open Access Journals (Sweden)

    N. Susithra, N. Jothivel, P. Jayakumar, V. I. Paul

    2007-01-01

    Full Text Available Sublethal cadmium chloride (0.3 ppm toxicity induced stress related morphopathological alterations in the accessory respiratory organ of the air-breathing catfish Heteropneustes fossilis (Siluriformes; Heteropneustidae have been investigated at various intervals of exposure. The histopathological manifestation of the cadmium toxicity includes bulging of the hyperemic secondary lamellae into the lumen of the accessory respiratory organ, necrosis and sloughing of the respiratory epithelium leading to haemorrhage and fusion of SL at various stages of the exposure. Periodic alterations in the densities of epithelial cells and mucous cells along with the development of non-tissue spaces have also been noticed at different exposure periods leading to alterations in the thickness of the respiratory epithelia. The heavy metal salt exposure has affected the mucogenic activity of the respiratory epithelium not only quantitatively but qualitatively also, indicating the probable ameliorative role fish mucus in cadmium toxicity.

  8. 10 CFR 850.28 - Respiratory protection.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Respiratory protection. 850.28 Section 850.28 Energy... Respiratory protection. (a) The responsible employer must establish a respiratory protection program that complies with the respiratory protection program requirements of 29 CFR 1910.134, Respiratory Protection...

  9. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    Directory of Open Access Journals (Sweden)

    Tanaka Daisuke

    2008-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice with heteroplasmy for wild-type and pathogenically deleted (Δ mtDNA; the "low" group carried 50% or less ΔmtDNA, and the "high" group carried more than 50% ΔmtDNA. Results Both groups had normal phenotypes for not only spatial learning, but also memory at short retention delays, indicating that ΔmtDNA load did not affect learning and temporal memory. The high group, however, showed severe impairment of memory at long retention delays. In the visual cortex and dentate gyrus of these mice, we observed mitochondrial respiration deficiencies, and reduced Ca2+/calmodulin-dependent kinase II-α (α-CaMKII, a protein important for the establishment of spatial remote memory. Conclusion Our results indicated that normal mitochondrial respiratory function is necessary for retention and consolidation of memory trace; deficiencies in this function due to high loads of pathogenically mutated mtDNA are responsible for the preferential impairment of spatial remote memory.

  10. Dissecting phenotypic variation among AIS patients

    International Nuclear Information System (INIS)

    Wang Minghua; Wang Jiucun; Zhang Zhen; Zhao Zhimin; Zhang Rongmei; Hu Xiaohua; Tan Tao; Luo Shijing; Luo Zewei

    2005-01-01

    We have created genital skin fibroblast cell lines directly from three patients in a Chinese family affected by androgen insensitivity syndrome (AIS). All patients in the family share an identical AR Arg 840 Cys mutant but show different disease phenotypes. By using the cell lines, we find that the mutation has not influenced a normal androgen-binding capacity at 37 deg C but has reduced the affinity for androgens and may cause thermolability of the androgen-receptor complex. The impaired nuclear trafficking of the androgen receptor in the cell lines is highly correlated with the severity of donors' disease phenotype. The transactivity of the mutant is substantially weakened and the extent of the reduced transactivity reflects severity of the donors' disease symptom. Our data reveal that although etiology of AIS is monogenic and the mutant may alter the major biological functions of its wild allele, the function of the mutant AR can also be influenced by the different genetic backgrounds and thus explains the divergent disease phenotypes

  11. Doping and respiratory system.

    Science.gov (United States)

    Casali, L; Pinchi, G; Puxeddu, E

    2007-03-01

    Historically many different drugs have been used to enhance sporting performances. The magic elixir is still elusive and the drugs are still used despite the heavy adverse effects. The respiratory system is regularly involved in this research probably because of its central location in the body with several connections to the cardiovascular system. Moreover people are aware that O2 consumption and its delivery to mitochondria firstly depend on ventilation and on the respiratory exchanges. The second step consists in the tendency to increase V'O2 max and to prolong its availability with the aim of improving the endurance time and to relieve the fatigue. Many methods and substances had been used in order to gain an artificial success. Additional oxygen, autologous and homologous transfusion and erythropoietin, mainly the synthetic type, have been administered with the aim of increasing the amount of oxygen being delivered to the tissues. Some compounds like stimulants and caffeine are endowed of excitatory activity on the CNS and stimulate pulmonary ventilation. They did not prove to have any real activity in supporting the athletic performances. Beta-adrenergic drugs, particularly clenbuterol, when administered orally or parenterally develop a clear illicit activity on the myosin fibres and on the muscles as a whole. Salbutamol, terbutaline, salmeterol and formoterol are legally admitted when administrated by MDI in the treatment of asthma. The prevalence of asthma and bronchial hyperactivity is higher in athletes than amongst the general population. This implies that clear rules must be provided to set a correct diagnosis of asthma in the athletes and a correct therapy to align with the actual guidelines according to the same rights of the "other" asthmatic patients.

  12. From metabolome to phenotype

    DEFF Research Database (Denmark)

    Khakimov, Bekzod; Rasmussen, Morten Arendt; Kannangara, Rubini Maya

    2017-01-01

    for ideal vegetable protein production and for augmented β-glucan production. Seeds from three barley lines (Bomi, lys3.a and lys5.f) were sampled eight times during grain filling and analysed for metabolites using gas chromatography-mass spectrometry (GC-MS). The lys3.a mutation disrupts a regulator gene...... their successful application to link genetic and environmental factors with the seed phenotype of unique and agro-economically important barley models for optimal vegetable protein and dietary fibre production......., causing an increase in proteins rich in the essential amino acid lysine, while lys5.f carries a mutation in an ADP-glucose transporter gene leading to a significant increase in production of mixed-linkage β-glucan at the expense of α-glucan. Unique metabolic patterns associated with the tricarboxylic acid...

  13. Deep Learning for Plant Phenotyping

    OpenAIRE

    Mori, Matteo

    2016-01-01

    Plant Phenotyping is an emerging science which provides us the knowledge to better understand plants. Indeed, the study of the link between genetic background and environment in which plants develop can help us to determine cures for plants’ sicknesses and new ways to improve yields using limited resources. In this regard, one of the main aspects of Plant Phenotyping that were studied in the past, was Root Phenotyping, which is based on the study of the root architectures. In particular, toda...

  14. Photodynamic therapy for recurrent respiratory papillomatosis.

    Science.gov (United States)

    Lieder, Anja; Khan, Muhammad K; Lippert, Burkard M

    2014-06-05

    participants. This study was at high risk of bias. None of our primary outcomes and only one of our secondary outcomes (reduction in volume of disease, assessed endoscopically) was measured in the study. There was no significant difference between the groups (very low-quality evidence). Adverse effects reported included airway swelling requiring intubation in a child with severe RRP a few hours after photodynamic therapy. There is insufficient evidence from high-quality randomised controlled trials to determine whether photodynamic therapy alters the course of disease or provides an added benefit to surgery in patients with recurrent respiratory papillomatosis. Multicentre randomised controlled trials with appropriate sample sizes and long-term follow-up are required to evaluate whether photodynamic therapy is of benefit. Outcomes such as improvement in symptoms (respiratory function and voice quality) and quality of life should be measured in future trials.

  15. Recurrent Respiratory Papillomatosis or Laryngeal Papillomatosis

    Science.gov (United States)

    ... Home » Health Info » Voice, Speech, and Language Recurrent Respiratory Papillomatosis or Laryngeal Papillomatosis On this page: What ... find additional information about RRP? What is recurrent respiratory papillomatosis? Recurrent respiratory papillomatosis (RRP) is a disease ...

  16. Is recurrent respiratory infection associated with allergic respiratory disease?

    Science.gov (United States)

    de Oliveira, Tiago Bittencourt; Klering, Everton Andrei; da Veiga, Ana Beatriz Gorini

    2018-03-13

    Respiratory infections cause high morbidity and mortality worldwide. This study aims to estimate the relationship between allergic respiratory diseases with the occurrence of recurrent respiratory infection (RRI) in children and adolescents. The International Study of Asthma and Allergies in Childhood questionnaire and a questionnaire that provides data on the history of respiratory infections and the use of antibiotics were used to obtain data from patients. The relationship between the presence of asthma or allergic rhinitis and the occurrence of respiratory infections in childhood was analyzed. We interviewed the caregivers of 531 children aged 0 to 15 years. The average age of participants was 7.43 years, with females accounting for 52.2%. This study found significant relationship between: presence of asthma or allergic rhinitis with RRI, with prevalence ratio (PR) of 2.47 (1.51-4.02) and 1.61 (1.34-1.93), respectively; respiratory allergies with use of antibiotics for respiratory problems, with PR of 5.32 (2.17-13.0) for asthma and of 1.64 (1.29-2.09) for allergic rhinitis; asthma and allergic rhinitis with diseases of the lower respiratory airways, with PR of 7.82 (4.63-13.21) and 1.65 (1.38-1.96), respectively. In contrast, no relationship between upper respiratory airway diseases and asthma and allergic rhinitis was observed, with PR of 0.71 (0.35-1.48) and 1.30 (0.87-1.95), respectively. RRI is associated with previous atopic diseases, and these conditions should be considered when treating children.

  17. Connectomic intermediate phenotypes for psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Alex eFornito

    2012-04-01

    Full Text Available Psychiatric disorders are phenotypically heterogeneous entities with a complex genetic basis. To mitigate this complexity, many investigators study so-called intermediate phenotypes that putatively provide a more direct index of the physiological effects of candidate genetic risk variants than overt psychiatric syndromes. Magnetic resonance imaging (MRI is a particularly popular technique for measuring such phenotypes because it allows interrogation of diverse aspects of brain structure and function in vivo. Much of this work however, has focused on relatively simple measures that quantify variations in the physiology or tissue integrity of specific brain regions in isolation, contradicting an emerging consensus that most major psychiatric disorders do not arise from isolated dysfunction in one or a few brain regions, but rather from disturbed interactions within and between distributed neural circuits; i.e., they are disorders of brain connectivity. The recent proliferation of new MRI techniques for comprehensively mapping the entire connectivity architecture of the brain, termed the human connectome, has provided a rich repertoire of tools for understanding how genetic variants implicated in mental disorder impact distinct neural circuits. In this article, we review research using these connectomic techniques to understand how genetic variation influences the connectivity and topology of human brain networks. We highlight recent evidence from twin and imaging genetics studies suggesting that the penetrance of candidate risk variants for mental illness, such as those in SLC6A4, MAOA, ZNF804A and APOE, may be higher for intermediate phenotypes characterised at the level of distributed neural systems than at the level of spatially localised brain regions. The findings indicate that imaging connectomics provides a powerful framework for understanding how genetic risk for psychiatric disease is expressed through altered structure and function of

  18. Biological monitoring of toxic metals - steel workers respiratory health survey

    International Nuclear Information System (INIS)

    Pinheiro, T.; Almeida, A. Bugalho de; Alves, L.; Freitas, M.C.; Moniz, D.; Alvarez, E.; Monteiro, P.; Reis, M.

    1999-01-01

    The aim of this work is to search for respiratory system aggressors to which workers are submitted in their labouring activity. Workers from one sector of a steel plant in Portugal, Siderurgia Nacional (SN), were selected according to the number of years of exposure and labouring characteristics. The work reports on blood elemental content alterations and lung function tests to determine an eventual bronchial hyper-reactivity. Aerosol samples collected permit an estimate of indoor air quality and airborne particulate matter characterisation to further check whether the elemental associations and alterations found in blood may derive from exposure. Blood and aerosol elemental composition was determined by PIXE and INAA. Respiratory affections were verified for 24% of the workers monitored. There are indications that the occurrence of affections can be associated with the total working years. The influence of long-term exposure, health status parameters, and lifestyle factors in blood elemental variations found was investigated

  19. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

    Directory of Open Access Journals (Sweden)

    Jonathan D Mosley

    Full Text Available A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1 non-synonymous SNPs (nsSNPs associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1 thrombosis, evaluated in a population of 1,655 African Americans; and (2 four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs, and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03, driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03 (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005 (KIF25, PINX1. We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.

  20. Respiratory muscle involvement in sarcoidosis.

    Science.gov (United States)

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  1. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S.; Rouchka, Eric C.; Hill, Bradford G.; Klinge, Carolyn M.

    2016-01-01

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  2. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S. [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Rouchka, Eric C. [Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292 (United States); Hill, Bradford G. [Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Klinge, Carolyn M., E-mail: carolyn.klinge@louisville.edu [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States)

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  3. Estudo comparativo de sintomas respiratórios e função pulmonar em pacientes com doença pulmonar obstrutiva crônica relacionada à exposição à fumaça de lenha e de tabaco Comparative study of respiratory symptoms and lung function alterations in patients with chronic obstructive pulmonary disease related to the exposure to wood and tobacco smoke

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora Carmo Moreira

    2008-09-01

    Full Text Available OBJETIVO: Descrever e analisar sintomas respiratórios e alterações espirométricas em pacientes portadores de doença pulmonar obstrutiva crônica (DPOC, com história de exposição à fumaça de lenha e de tabaco. MÉTODOS: Foram avaliados retrospectivamente dados de 170 pacientes distribuídos em 3 grupos: 34 pacientes expostos somente à fumaça de lenha, 59 pacientes, somente à de tabaco e 77 pacientes expostos a ambas. RESULTADOS: Os grupos não diferiram quanto a idade (p = 0,225 e grau de exposição, considerando cada tipo de exposição isoladamente ou em associação (p = 0,164 e p = 0,220, respectivamente. No grupo exposto à fumaça de lenha predominou o sexo feminino.Não houve diferença entre os grupos quanto à freqüência dos sintomas respiratórios (p > 0,05, e houve predominância de grau moderado de dispnéia nos três grupos (p = 0,141. O grupo exposto à fumaça de lenha apresentou melhores percentuais da relação volume expiratório forçado no primeiro segundo/capacidade vital forçada e de volume expiratório forçado no primeiro segundo (p OBJECTIVE: To describe and analyze clinical symptoms and spirometric alterations of patients with chronic obstructive pulmonary disease (COPD and history of exposure to wood and tobacco smoke. METHODS: We retrospectively evaluated data related to 170 patients distributed into 3 groups: 34 exposed only to wood smoke, 59 patients exposed only to tobacco smoke and 77 patients exposed to both. RESULTS: The groups did not differ significantly in terms of age (p = 0.225 or degree of exposure, considering each type of exposure in isolation or in combination (p = 0.164 and p = 0.220, respectively. Females predominated in the group exposed to wood smoke. There were no differences among the groups regarding respiratory symptoms (p > 0.05, and moderate dyspnea predominated in the three groups (p = 0.141. The group exposed to wood smoke presented higher percentages of forced expiratory

  4. Respiratory effort from the photoplethysmogram.

    Science.gov (United States)

    Addison, Paul S

    2017-03-01

    The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (poximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper airway dynamics indicative of the effort to breathe. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Hereditary myopathies with early respiratory insufficiency in adults.

    Science.gov (United States)

    Naddaf, Elie; Milone, Margherita

    2017-11-01

    Hereditary myopathies with early respiratory insufficiency as a predominant feature of the clinical phenotype are uncommon and underestimated in adults. We reviewed the clinical and laboratory data of patients with hereditary myopathies who demonstrated early respiratory insufficiency before the need for ambulatory assistance. Only patients with disease-causing mutations or a specific histopathological diagnosis were included. Patients with cardiomyopathy were excluded. We identified 22 patients; half had isolated respiratory symptoms at onset. The diagnosis of the myopathy was often delayed, resulting in delayed ventilatory support. The most common myopathies were adult-onset Pompe disease, myofibrillar myopathy, multi-minicore disease, and myotonic dystrophy type 1. Single cases of laminopathy, MELAS (mitochondrial encephalomyopathy with lactic acidosis and strokelike events), centronuclear myopathy, and cytoplasmic body myopathy were identified. We highlighted the most common hereditary myopathies associated with early respiratory insufficiency as the predominant clinical feature, and underscored the importance of a timely diagnosis for patient care. Muscle Nerve 56: 881-886, 2017. © 2017 Wiley Periodicals, Inc.

  6. Maneuvering in the Complex Path from Genotype to Phenotype

    Science.gov (United States)

    Strohman, Richard

    2002-04-01

    Human disease phenotypes are controlled not only by genes but by lawful self-organizing networks that display system-wide dynamics. These networks range from metabolic pathways to signaling pathways that regulate hormone action. When perturbed, networks alter their output of matter and energy which, depending on the environmental context, can produce either a pathological or a normal phenotype. Study of the dynamics of these networks by approaches such as metabolic control analysis may provide new insights into the pathogenesis and treatment of complex diseases.

  7. Auscultation of the respiratory system

    Science.gov (United States)

    Sarkar, Malay; Madabhavi, Irappa; Niranjan, Narasimhalu; Dogra, Megha

    2015-01-01

    Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion. PMID:26229557

  8. Auscultation of the respiratory system

    Directory of Open Access Journals (Sweden)

    Malay Sarkar

    2015-01-01

    Full Text Available Auscultation of the lung is an important part of the respiratory examination and is helpful in diagnosing various respiratory disorders. Auscultation assesses airflow through the trachea-bronchial tree. It is important to distinguish normal respiratory sounds from abnormal ones for example crackles, wheezes, and pleural rub in order to make correct diagnosis. It is necessary to understand the underlying pathophysiology of various lung sounds generation for better understanding of disease processes. Bedside teaching should be strengthened in order to avoid erosion in this age old procedure in the era of technological explosion.

  9. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines.

    Science.gov (United States)

    ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D

    2015-09-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.

  10. Respiratory Viruses in Febrile Neutropenic Patients with Respiratory Symptoms

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2018-01-01

    Full Text Available Background: Respiratory infections are a frequent cause of fever in neutropenic patients, whereas respiratory viral infections are not frequently considered as a diagnosis, which causes high morbidity and mortality in these patients. Materials and Methods: This prospective study was performed on 36 patients with neutropenia who admitted to hospital were eligible for inclusion with fever (single temperature of >38.3°C or a sustained temperature of >38°C for more than 1 h, upper and lower respiratory symptoms. Sampling was performed from the throat of the patient by the sterile swab. All materials were analyzed by quantitative real-time multiplex polymerase chain reaction covering the following viruses; influenza, parainfluenza virus (PIV, rhinovirus (RV, human metapneumovirus, and respiratory syncytial virus (RSV. Results: RV was the most frequently detected virus and then RSV was the most. PIV was not present in any of the tested samples. Furthermore, no substantial differences in the distribution of specific viral species were observed based on age, sex, neutropenia duration, hematological disorder, and respiratory tract symptoms and signs (P > 0.05. Conclusion: Our prospective study supports the hypothesis that respiratory viruses play an important role in the development of neutropenic fever, and thus has the potential to individualize infection treatment and to reduce the extensive use of antibiotics in immunocompromised patients with neutropenia.

  11. [Cannabis use and impairment of respiratory function].

    Science.gov (United States)

    Underner, M; Urban, T; Perriot, J; Peiffer, G; Meurice, J-C

    2013-04-01

    Cannabis is the most commonly smoked illicit substance in many countries including France. It can be smoked alone in plant form (marijuana) but in our country it is mainly smoked in the form of cannabis resin mixed with tobacco. The technique of inhaling cannabis differs from that of tobacco, increasing the time that the smoke spends in contact with the bronchial mucosal and its impact on respiratory function. One cigarette composed of cannabis and tobacco is much more harmful than a cigarette containing only tobacco. In cannabis smokers there is an increased incidence of respiratory symptoms and episodes of acute bronchitis. Cannabis produces a rapid bronchodilator effect; chronic use provokes a reduction in specific conductance and increase in airways resistance. Studies on the decline of Forced Expiratory Volume are discordant. Cannabis smoke and tetrahydrocannabinol irritate the bronchial tree. They bring about histological signs of airways inflammation and alter the fungicidal and antibacterial activity of alveolar macrophages. Inhalation of cannabis smoke is a risk factor for lung cancer. Stopping smoking cannabis will bring about important benefits for lung function. This should encourage clinicians to offer patients support in quitting smoking. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  12. [Congenital diaphragmatic hernia: respiratory and vascular outcomes].

    Science.gov (United States)

    Pennaforte, T; Rakza, T; Sfeir, R; Aubry, E; Bonnevalle, M; Fayoux, P; Deschildre, A; Thumerelle, C; de Lagausie, P; Benachi, A; Storme, L

    2012-02-01

    Congenital diaphragmatic hernia (CDH) is a life-threatening anomaly associated with a variable degree of pulmonary hypoplasia (PH) and persistent pulmonary hypertension (PPH). Despite remarkable advances in neonatal resuscitation and intensive care, and new postnatal treatment strategies, the rates of mortality and morbidity in the newborn with CDH remain high as the result of severe respiratory failure secondary to PH and PPH. Later, lung function assessments show obstructive and restrictive impairments due to altered lung structure and lung damage due to prolonged ventilatory support. The long-term consequences of pulmonary hypertension are unknown. Other problems include chronic pulmonary aspiration caused by gastro-oesophageal reflux and respiratory manifestations of allergy such as asthma or rhinitis. Finally, failure to thrive may be caused by increased caloric requirements due to pulmonary morbidity. Follow-up studies that systematically assess long-term sequelae are needed. Based on such studies, a more focused approach for routine multidisciplinary follow-up programs could be established. It is the goal of the French Collaborative Network to promote exchange of knowledge, future research and development of treatment protocols. Copyright © 2012. Published by Elsevier Masson SAS.

  13. Neurochemical phenotypes of cardiorespiratory neurons.

    Science.gov (United States)

    Pilowsky, Paul M

    2008-12-10

    Interactions between the cardiovascular and respiratory systems have been known for many years but the functional significance of the interactions is still widely debated. Here I discuss the possible role of metabotropic receptors in regulating cardiorespiratory neurons in the brainstem and spinal cord. It is clear that, although much has been discovered, cardiorespiratory regulation is certainly one area that still has a long way to go before its secrets are fully divulged and their function in controlling circulatory and respiratory function is revealed.

  14. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  15. Sex hormone binding globulin phenotypes

    DEFF Research Database (Denmark)

    Cornelisse, M M; Bennett, Patrick; Christiansen, M

    1994-01-01

    Human sex hormone binding globulin (SHBG) is encoded by a normal and a variant allele. The resulting SHBG phenotypes (the homozygous normal SHBG, the heterozygous SHBG and the homozygous variant SHBG phenotype) can be distinguished by their electrophoretic patterns. We developed a novel detection....... This method of detection was used to determine the distribution of SHBG phenotypes in healthy controls of both sexes and in five different pathological conditions characterized by changes in the SHBG level or endocrine disturbances (malignant and benign ovarian neoplasms, hirsutism, liver cirrhosis...... on the experimental values. Differences in SHBG phenotypes do not appear to have any clinical significance and no sex difference was found in the SHBG phenotype distribution....

  16. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    Directory of Open Access Journals (Sweden)

    Matthew J Fogarty

    Full Text Available Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E day 13 and birth (postnatal day 0. Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study. For respiratory-based motor neurons (hypoglossal and phrenic motor pools, we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic and muscle innervations (55% decrease. By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase and muscle innervations (99% increase; however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to

  17. Pathogenesis of Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2012-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is a common complication of many diseases. Its polyetiological pattern determines the specific features of lung morphological changes and the clinical course of ARDS. Objective: to analyze the pathogenesis of ARDS in the context of the general pathological processes underlying its development. Material and methods. More than 200 lungs from the people who had died from severe concomitant injury or ARDS-complicated pneumonia were investigated. More than 150 rat experiments simulated various types of lung injury: ventilator-induced lung injury with different ventilation parameters; reperfusion injuries (systemic circulation blockade due to 12-minute vascular fascicle ligation, followed by the recovery of cardiac performance and breathing; microcirculatory disorder (injection of a thromboplastin solution into the jugular vein; blood loss; betaine-pepsin aspiration; and closed chest injury. Different parts of the right and left lungs were histologically examined 1 and 3 hours and 1 and 3 days after initiation of the experiment. Lung pieces were fixed in 10% neutral formalin solution and embedded in paraffin. Histological sections were stained with hematoxylin and eosin and using the van Gieson and Weigert procedures; the Schiff test was used. Results. The influence of aggression factors (trauma, blood loss, aspiration, infection, etc. results in damage to the lung and particularly air-blood barrier structures (endothelium, alveolar epithelium, their basement membrane. In turn the alteration of cellular and extracellular structures is followed by the increased permeability of hemomicrocirculatory bed vessels, leading to the development of non-cardiogenic (interstitial, alveolar pulmonary edema that is a central component in the pathogenesis of ARDS. Conclusion. The diagnosis of the early manifestations of ARDS must account for the nature of an aggression factor, the signs confirming the alteration of the lung

  18. House Dust Mite Respiratory Allergy

    DEFF Research Database (Denmark)

    Calderón, Moisés A; Kleine-Tebbe, Jörg; Linneberg, Allan

    2015-01-01

    Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence on the e......Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence...... not extend beyond the end of treatment. Finally, allergen immunotherapy has a poor but improving evidence base (notably on sublingual tablets) and its benefits last after treatment ends. This review identifies needs for deeper physician knowledge on the extent and impact of HDM allergy in respiratory disease...... and therapy of HDM respiratory allergy in practice....

  19. Employee guide to respiratory protection

    International Nuclear Information System (INIS)

    Wright, E.M.

    1982-01-01

    This employee guide discusses use of respiratory protective equipment for particulates, gases, vapors, supplied air, and self-contained breathing apparatus. It also covers equipment selection medical factors, fitting criteria; care; and employee responsibilities

  20. Alterations in physiology and anatomy during pregnancy.

    Science.gov (United States)

    Tan, Eng Kien; Tan, Eng Loy

    2013-12-01

    Pregnant women undergo profound anatomical and physiological changes so that they can cope with the increased physical and metabolic demands of their pregnancies. The cardiovascular, respiratory, haematological, renal, gastrointestinal and endocrine systems all undergo important physiological alterations and adaptations needed to allow development of the fetus and to allow the mother and fetus to survive the demands of childbirth. Such alterations in anatomy and physiology may cause difficulties in interpreting signs, symptoms, and biochemical investigations, making the clinical assessment of a pregnant woman inevitably confusing but challenging. Understanding these changes is important for every practicing obstetrician, as the pathological deviations from the normal physiological alterations may not be clear-cut until an adverse outcome has resulted. Only with a sound knowledge of the physiology and anatomy changes can the care of an obstetric parturient be safely optimized for a better maternal and fetal outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Predictable Phenotypes of Antibiotic Resistance Mutations.

    Science.gov (United States)

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  2. 33 CFR 142.39 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Respiratory protection. 142.39... Respiratory protection. (a) Personnel in an atmosphere specified under ANSI Z88.2, requiring the use of respiratory protection equipment shall wear the type of respiratory protection equipment specified in ANSI Z88...

  3. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  4. Deep Phenotyping: Deep Learning For Temporal Phenotype/Genotype Classification

    OpenAIRE

    Najafi, Mohammad; Namin, Sarah; Esmaeilzadeh, Mohammad; Brown, Tim; Borevitz, Justin

    2017-01-01

    High resolution and high throughput, genotype to phenotype studies in plants are underway to accelerate breeding of climate ready crops. Complex developmental phenotypes are observed by imaging a variety of accessions in different environment conditions, however extracting the genetically heritable traits is challenging. In the recent years, deep learning techniques and in particular Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and Long-Short Term Memories (LSTMs), h...

  5. Particularities of COPD exacerbations in different phenotypes of the disease in Tunisia.

    Science.gov (United States)

    Zendah, Ines; Ayed, Khadija; Kwas, Hamida; Khattab, Amel; Ghédira, Habib

    2016-03-01

    Chronic Obstructive Pulmonary Disease is defined by a limitation of airflow. This disease is characterized by exacerbations that threaten the patient's life and worsens his prognosis. Moreover, COPD patients are different according to many parameters that define different phenotypes. Characteristics of exacerbations may depend on these phenotypes according to few recent studies. To determine the characteristics and the prognosis of the exacerbations in each phenotype of COPD patients phenotype in Tunisia. Retrospective study including 153 male patients hospitalized for COPD exacerbation from January 2009 to June 2012. Patients were classified into 4 phenotypes according to Burgel's classification. Patients were divided into four phenotypes: phenotype (PH)1: (n=68), PH2: (n=33), PH3: (n=25) and PH4: (n=27). Mean age for PH1, 2, 3 and 4 was: 61, 74, 56 and 72 years. The number of exacerbations per year was higher in PH1. Dyspnea was more important in PH1 and 4. Hypercapnia on admission was higher in PH4. Non invasive ventilation and transfer to resuscitation unit were more frequently mandatory in PH3 and 4.   Death occurred 2% of PH1 and 5% of PH4. Hospitalization duration was more important in PH4. COPD patients are heterogenous and belong to different phenotypes. The characteristics of the exacerbations and their prognosis widely differ according to these different groups. In Tunisia, it seems that patients who had moderate respiratory functional tests impairment are the lowest responders to treatment with a higher frequency of resuscitation unit transfer.

  6. Respiratory care management information systems.

    Science.gov (United States)

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  7. The phenotypic plasticity of developmental modules

    Directory of Open Access Journals (Sweden)

    Aabha I. Sharma

    2016-08-01

    Full Text Available Abstract Background Organisms develop and evolve in a modular fashion, but how individual modules interact with the environment remains poorly understood. Phenotypically plastic traits are often under selection, and studies are needed to address how traits respond to the environment in a modular fashion. In this study, tissue-specific plasticity of melanic spots was examined in the large milkweed bug, Oncopeltus fasciatus. Results Although the size of the abdominal melanic bands varied according to rearing temperatures, wing melanic bands were more robust. To explore the regulation of abdominal pigmentation plasticity, candidate genes involved in abdominal melanic spot patterning and biosynthesis of melanin were analyzed. While the knockdown of dopa decarboxylase (Ddc led to lighter pigmentation in both the wings and the abdomen, the shape of the melanic elements remained unaffected. Although the knockdown of Abdominal-B (Abd-B partially phenocopied the low-temperature phenotype, the abdominal bands were still sensitive to temperature shifts. These observations suggest that regulators downstream of Abd-B but upstream of DDC are responsible for the temperature response of the abdomen. Ablation of wings led to the regeneration of a smaller wing with reduced melanic bands that were shifted proximally. In addition, the knockdown of the Wnt signaling nuclear effector genes, armadillo 1 and armadillo 2, altered both the melanic bands and the wing shape. Thus, the pleiotropic effects of Wnt signaling may constrain the amount of plasticity in wing melanic bands. Conclusions We propose that when traits are regulated by distinct pre-patterning mechanisms, they can respond to the environment in a modular fashion, whereas when the environment impacts developmental regulators that are shared between different modules, phenotypic plasticity can manifest as a developmentally integrated system.

  8. Ocean acidification challenges copepod phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    A. Vehmaa

    2016-11-01

    Full Text Available Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC as a function of acidification (fCO2  ∼  365–1231 µatm and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm or quality (C : N weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  9. Ocean acidification challenges copepod phenotypic plasticity

    Science.gov (United States)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  10. Catalase deletion promotes prediabetic phenotype in mice.

    Science.gov (United States)

    Heit, Claire; Marshall, Stephanie; Singh, Surrendra; Yu, Xiaoqing; Charkoftaki, Georgia; Zhao, Hongyu; Orlicky, David J; Fritz, Kristofer S; Thompson, David C; Vasiliou, Vasilis

    2017-02-01

    Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat -/- ) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat -/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat -/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation. Copyright © 2016. Published by Elsevier Inc.

  11. PHENOTYPIC CORRELATIONS AND BODY WEIGHTS ...

    African Journals Online (AJOL)

    Dr Osondu

    Ethiopian Journal of Environmental Studies and Management Vol. 4 No.3 2011. PHENOTYPIC ... because of its high meat quality and acceptance by her populace. The meat is ... commands high price in the restaurants and markets than other ...

  12. [Respiratory treatments in neuromuscular disease].

    Science.gov (United States)

    Martínez Carrasco, C; Cols Roig, M; Salcedo Posadas, A; Sardon Prado, O; Asensio de la Cruz, O; Torrent Vernetta, A

    2014-10-01

    In a previous article, a review was presented of the respiratory pathophysiology of the patient with neuromuscular disease, as well as their clinical evaluation and the major complications causing pulmonary deterioration. This article presents the respiratory treatments required to preserve lung function in neuromuscular disease as long as possible, as well as in special situations (respiratory infections, spinal curvature surgery, etc.). Special emphasis is made on the use of non-invasive ventilation, which is changing the natural history of many of these diseases. The increase in survival and life expectancy of these children means that they can continue their clinical care in adult units. The transition from pediatric care must be an active, timely and progressive process. It may be slightly stressful for the patient before the adaptation to this new environment, with multidisciplinary care always being maintained. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Red hair is the null phenotype of MC1R.

    Science.gov (United States)

    Beaumont, Kimberley A; Shekar, Sri N; Cook, Anthony L; Duffy, David L; Sturm, Richard A

    2008-08-01

    The Melanocortin-1 Receptor (MC1R) is a G-protein coupled receptor, which is responsible for production of the darker eumelanin pigment and the tanning response. The MC1R gene has many polymorphisms, some of which have been linked to variation in pigmentation phenotypes within human populations. In particular, the p.D84E, p.R151C, p.R160W and p.D294 H alleles have been strongly associated with red hair, fair skin and increased skin cancer risk. These red hair colour (RHC) variants are relatively well described and are thought to result in altered receptor function, while still retaining varying levels of signaling ability in vitro. The mouse Mc1r null phenotype is yellow fur colour, the p.R151C, p.R160W and p.D294 H alleles were able to partially rescue this phenotype, leading to the question of what the true null phenotype of MC1R would be in humans. Due to the rarity of MC1R null alleles in human populations, they have only been found in the heterozygous state until now. We report here the first case of a homozygous MC1R null individual, phenotypic analysis indicates that red hair and fair skin is found in the absence of MC1R function.

  14. Mutations and phenotype in isolated glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.P.; Muscatelli, F.; Stafford, A.N.; Monaco, A.P. [Inst. of Molecular Medicine, Oxford (United Kingdom)] [and others

    1996-06-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. 36 refs., 4 figs., 1 tab.

  15. Musculoskeletal phenotype through the life course: the role of nutrition.

    Science.gov (United States)

    Ward, Kate

    2012-02-01

    This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.

  16. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  17. Acute renal response to rapid onset respiratory acidosis.

    Science.gov (United States)

    Ramadoss, Jayanth; Stewart, Randolph H; Cudd, Timothy A

    2011-03-01

    Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.

  18. Respiratory tract infection during Hajj

    Directory of Open Access Journals (Sweden)

    Alzeer Abdulaziz

    2009-01-01

    Full Text Available Respiratory tract infection during Hajj (pilgrimage to Mecca is a common illness, and it is responsible for most of the hospital admissions. Influenza virus is the leading cause of upper respiratory tract infection during Hajj, and pneumonia can be serious. Taking into account the close contacts among the pilgrims, as well as the crowding, the potential for transmission of M. tuberculosis is expected to be high. These pilgrims can be a source for spreading infection on their return home. Although vaccination program for influenza is implemented, its efficacy is uncertain in this religious season. Future studies should concentrate on prevention and mitigation of these infections.

  19. Respiratory correlated cone beam CT

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  20. Thresholds in chemical respiratory sensitisation.

    Science.gov (United States)

    Cochrane, Stella A; Arts, Josje H E; Ehnes, Colin; Hindle, Stuart; Hollnagel, Heli M; Poole, Alan; Suto, Hidenori; Kimber, Ian

    2015-07-03

    There is a continuing interest in determining whether it is possible to identify thresholds for chemical allergy. Here allergic sensitisation of the respiratory tract by chemicals is considered in this context. This is an important occupational health problem, being associated with rhinitis and asthma, and in addition provides toxicologists and risk assessors with a number of challenges. In common with all forms of allergic disease chemical respiratory allergy develops in two phases. In the first (induction) phase exposure to a chemical allergen (by an appropriate route of exposure) causes immunological priming and sensitisation of the respiratory tract. The second (elicitation) phase is triggered if a sensitised subject is exposed subsequently to the same chemical allergen via inhalation. A secondary immune response will be provoked in the respiratory tract resulting in inflammation and the signs and symptoms of a respiratory hypersensitivity reaction. In this article attention has focused on the identification of threshold values during the acquisition of sensitisation. Current mechanistic understanding of allergy is such that it can be assumed that the development of sensitisation (and also the elicitation of an allergic reaction) is a threshold phenomenon; there will be levels of exposure below which sensitisation will not be acquired. That is, all immune responses, including allergic sensitisation, have threshold requirement for the availability of antigen/allergen, below which a response will fail to develop. The issue addressed here is whether there are methods available or clinical/epidemiological data that permit the identification of such thresholds. This document reviews briefly relevant human studies of occupational asthma, and experimental models that have been developed (or are being developed) for the identification and characterisation of chemical respiratory allergens. The main conclusion drawn is that although there is evidence that the

  1. Stem cells and respiratory diseases

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Investigacao]. E-mail: prmrocco@biof.ufrj.br

    2008-12-15

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  2. Stem cells and respiratory diseases

    International Nuclear Information System (INIS)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2008-01-01

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  3. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 76 FR 4471 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Science.gov (United States)

    2011-01-25

    ... 1974; Report of Modified or Altered System of Records AGENCY: Division of Respiratory Disease Studies... System of Records. SUMMARY: The Department of Health and Human Services proposes to alter System of... System of Records will be effective 40 days from the date submitted to the OMB, unless NIOSH receives...

  5. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    Science.gov (United States)

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  6. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  7. Climate change and respiratory health.

    Science.gov (United States)

    Gerardi, Daniel A; Kellerman, Roy A

    2014-10-01

    To discuss the nature of climate change and both its immediate and long-term effects on human respiratory health. This review is based on information from a presentation of the American College of Chest Physicians course on Occupational and Environmental Lung Disease held in Toronto, Canada, June 2013. It is supplemented by a PubMed search for climate change, global warming, respiratory tract diseases, and respiratory health. It is also supplemented by a search of Web sites including the Environmental Protection Agency, National Oceanic and Atmospheric Administration, World Meteorological Association, National Snow and Ice Data Center, Carbon Dioxide Information Analysis Center, Inter-Governmental Panel on Climate Change, and the World Health Organization. Health effects of climate change include an increase in the prevalence of certain respiratory diseases, exacerbations of chronic lung disease, premature mortality, allergic responses, and declines in lung function. Climate change, mediated by greenhouse gases, causes adverse health effects to the most vulnerable patient populations-the elderly, children, and those in distressed socioeconomic strata.

  8. [Undernutrition in chronic respiratory diseases].

    Science.gov (United States)

    Zielonka, Tadeusz M; Hadzik-Błaszczyk, Małgorzata

    2015-01-01

    Respiratory diseases such as asthma, COPD, lung cancer, infections, including also tuberculosis constitute the most frequent diseases in the word. Undernutrition frequently accompanies these diseases. Early diagnosis of malnutrition and implementation of appropriate treatment is very important. A nutritional interview and anthropometric examinations, such as body mass index, fat free mass and fat mass are used to diagnose it. Nutritional therapy affects the course and prognosis of these diseases. Diet should be individually adjusted to the calculated caloric intake that increases during exacerbation of disease, because of increased respiratory effort. Too large supply of energy can cause increase metabolism, higher oxygen consumption and PaCO2 increase each dangerous for patients with respiratory insufficiency. Main source of carbohydrates for these patients should be products with low glycemic index and with high dietary fiber contents. Large meals should be avoided since they cause rapid satiety, abdominal discomfort and have negative impact on the work of the respiratory muscles, especially of the diaphragm. Dietary supplements can be used in case of ineffectiveness of diet or for the patients with severe undernutrition.

  9. Respiratory effects of borax dust.

    Science.gov (United States)

    Garabrant, D H; Bernstein, L; Peters, J M; Smith, T J; Wright, W E

    1985-12-01

    The relation of respiratory symptoms, pulmonary function, and abnormalities of chest radiographs to estimated exposures of borax dust has been investigated in a cross sectional study of 629 actively employed borax workers. Ninety three per cent of the eligible workers participated in the study and exposures ranged from 1.1 mg/m3 to 14.6 mg/m3. Symptoms of acute respiratory irritation such as dryness of the mouth, nose, or throat, dry cough, nose bleeds, sore throat, productive cough, shortness of breath, and chest tightness were related to exposures of 4.0 mg/m3 or more, and were infrequent at exposures of 1.1 mg/m3. Symptoms of persistent respiratory irritation meeting the definition of chronic simple bronchitis were related to exposure among non-smokers. Decrements in the FEV1 as a percentage of predicted were seen among smokers who had heavy cumulative borax exposures (greater than or equal to 80 mg/m3 years) but were not seen among less exposed smokers or among non-smokers. Radiographic abnormalities were uncommon and were not related to dust exposure. Borax dust appears to act as a simple respiratory irritant and perhaps causes small changes in the FEV1 among smokers who are heavily exposed.

  10. Guide to industrial respiratory protection

    International Nuclear Information System (INIS)

    Pritchard, J.A.

    1977-03-01

    The Occupational Safety and Health Act of 1970 has increased the emphasis on proper selection and use of respirators in situations where engineering controls are not feasible or are being implemented. Although a great deal of information on respiratory protection has been published, most of it is more technical than necessary for the average user faced with day-to-day problems of respiratory protection in industrial environments. This Guide is to provide the industrial user a single reference source containing enough information for establishing and maintaining a respirator program that meets the OSHA requirements outlined in 29 CFR Part 1910.134. It includes chapters on respirator selection, use, maintenance, and inspection, a complete description of all types of respirators and their advantages and limitations, and chapters on respirator fitting and wearer training, respiratory physiology, respiratory hazards, and physiological and psychological limitations. Also included are samples of the decision logic used in respirator selection, guidance on setting up an adequate respirator program through formulation of written standard operating procedures, and discussion of the meaning of the approved respirator

  11. Respiratory reviews in asthma 2013.

    Science.gov (United States)

    Kim, Tae-Hyung

    2014-03-01

    From January 2012 up until March 2013, many articles with huge clinical importance in asthma were published based on large numbered clinical trials or meta-analysis. The main subjects of these studies were the new therapeutic plan based on the asthma phenotype or efficacy along with the safety issues regarding the current treatment guidelines. For efficacy and safety issues, inhaled corticosteroid tapering strategy or continued long-acting beta agonists use was the major concern. As new therapeutic trials, monoclonal antibodies or macrolide antibiotics based on inflammatory phenotypes have been under investigation, with promising preliminary results. There were other issues on the disease susceptibility or genetic background of asthma, particularly for the "severe asthma" phenotype. In the era of genome and pharmacogenetics, there have been extensive studies to identify susceptible candidate genes based on the results of genome wide association studies (GWAS). However, for severe asthma, which is where most of the mortality or medical costs develop, it is very unclear. Moreover, there have been some efforts to find important genetic information in order to predict the possible disease progression, but with few significant results up until now. In conclusion, there are new on-going aspects in the phenotypic classification of asthma and therapeutic strategy according to the phenotypic variations. With more pharmacogenomic information and clear identification of the "severe asthma" group even before disease progression from GWAS data, more adequate and individualized therapeutic strategy could be realized in the future.

  12. [Respiratory diseases in metallurgy production workers].

    Science.gov (United States)

    Shliapnikov, D M; Vlasova, E M; Ponomareva, T A

    2012-01-01

    The authors identified features of respiratory diseases in workers of various metallurgy workshops. Cause-effect relationships are defined between occupational risk factors and respiratory diseases, with determining the affection level.

  13. Assessment of respiratory involvement in children with ...

    African Journals Online (AJOL)

    Background: Mucopolysaccharidosis (MPS) are classified into seven clinical types based on eleven known lysosomal enzyme deficiencies of glycosaminoglycan (GAG) metabolism. Respiratory involvement seen in most MPS types includes recurrent respiratory infections, upper and lower airway obstruction, tracheomalacia ...

  14. Coal Mining-Related Respiratory Diseases

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  15. Respiratory physiology during early life.

    Science.gov (United States)

    Stocks, J

    1999-08-01

    Despite the rapid adaptation to extrauterine life, the respiratory system of an infant is not simply a miniaturized version of that of an adult, since the rapid somatic growth that occurs during the first year of life is accompanied by major developmental changes in respiratory physiology. The highly compliant chest wall of the infant results in relatively low transpulmonary pressures at end expiration with increased tendency of the small peripheral airways to close during tidal breathing. This not only impairs gas exchange and ventilation-perfusion balance, particularly in dependent parts of the lung, but, together with the small absolute size of the airways, renders the infant and young child particularly susceptible to airway obstruction. Premature airways are highly compliant structures compared with those of mature newborns or adults. This increased compliance can cause airway collapse, resulting in increased airways resistance, flow limitation, poor gas exchange and increased work of breathing. Although there is clear evidence that airway reactivity is present from birth, its role in wheezing lower respiratory tract illnesses in young infants may be overshadowed by pre-existing abnormalities of airway geometry and lung mechanics, or by pathological changes such as airway oedema and mucus hypersecretion. Attempts to assess age-related changes in airway reactivity or response to aerosol therapy in the very young is confounded by changes in breathing patterns and the fact that infants are preferential nose breathers. There is increasing evidence that pre-existing abnormalities of respiratory function, associated with adverse events during foetal life (including maternal smoking during pregnancy), and familial predisposition to wheezing are important determinants of wheezing illnesses during the first years of life. This emphasizes the need to identify and minimize any factors that threaten the normal development of the lung during this critical period if

  16. Respiratory symptoms in insect breeders.

    Science.gov (United States)

    Harris-Roberts, J; Fishwick, D; Tate, P; Rawbone, R; Stagg, S; Barber, C M; Adisesh, A

    2011-08-01

    A number of specialist food suppliers in the UK breed and distribute insects and insect larvae as food for exotic pets, such as reptiles, amphibians and invertebrates. To investigate the extent of work-related (WR) symptoms and workplace-specific serum IgE in workers potentially exposed to a variety of biological contaminants, including insect and insect larvae allergens, endotoxin and cereal allergens at a UK specialist insect breeding facility. We undertook a study of respiratory symptoms and exposures at the facility, with subsequent detailed clinical assessment of one worker. All 32 workers were assessed clinically using a respiratory questionnaire and lung function. Eighteen workers consented to provide serum for determination of specific IgE to workplace allergens. Thirty-four per cent (11/32) of insect workers reported WR respiratory symptoms. Sensitization, as judged by specific IgE, was found in 29% (4/14) of currently exposed workers. Total inhalable dust levels ranged from 1.2 to 17.9 mg/m(3) [mean 4.3 mg/m(3) (SD 4.4 mg/m(3)), median 2.0 mg/m(3)] and endotoxin levels of up to 29435 EU/m(3) were recorded. Exposure to organic dusts below the levels for which there are UK workplace exposure limits can result in respiratory symptoms and sensitization. The results should alert those responsible for the health of similarly exposed workers to the potential for respiratory ill-health and the need to provide a suitable health surveillance programme.

  17. Dosimetry of the respiratory tract

    International Nuclear Information System (INIS)

    Roy, M.

    1996-01-01

    A new dosimetric model of the human respiratory tract has been recently recommended by the International Commission on Radiological Protection, in ICRP Publication 66. This model was intended to update the previous lung model of the Task Group on Lung Dynamics that was adopted by ICRP in Publication 30. With this aim, extensive reviews of the available knowledge were made for anatomy and physiology of the respiratory tract and for deposition, clearance and biological effects of inhaled radionuclides. Finally, expanded dosimetry requirements resulted in a widely different approach from the former model. The main features of the new model are the followings: instead of calculating the average dose to the total mass of blood filled lung, the model takes account of differences in radiosensitivity of the venous respiratory tract tissues. It applies not only to adult workers but also to all members of the population, and provides reference values for children aged 3 months, 1, 5, 10, and 15 years, and adults. Deposition modelling of airborne gases and aerosols associates age dependent breathing rates, airway dimensions and physical activity, to particle size, density and chemical form of inhaled material. Clearance results of competition between mechanical transport clearance and absorption to blood. At each step of the calculation, adjustment guidance is provided to account for use of exact values of particle sizes and specific dissolution rates of inhaled material in order to calculate their own parameter of retention in the airways, and to assess accurately doses to the respiratory tract. Possible influence of smoking, of respiratory tract diseases and of eventual exposure to airborne toxicants is also addressed. (author)

  18. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups.

    Science.gov (United States)

    Ricciardi, A; Ianniello, R G; Parente, E; Zotta, T

    2015-09-01

    Members of the Lactobacillus casei and Lactobacillus plantarum groups are capable of aerobic and respiratory growth. However, they grow poorly in aerobiosis in the currently available chemically defined media, suggesting that aerobic and respiratory growth require further supplementation. The effect of Tween 80, L-alanine, L-asparagine, L-aspartate, L-proline and L-serine on anaerobic and respiratory growth of Lact. casei N87 was investigated using a 2(5) factorial design. The effectiveness of modified CDM (mCDM) was validated on 21 strains of Lact. casei and Lact. plantarum groups. Tween 80 supplementation did not affect anaerobic growth, but improved respiratory growth. L-asparagine, L-proline and L-serine were stimulatory for respiring cells, while the presence of L-aspartate, generally, impaired biomass production. mCDM promoted the growth of Lact. casei and Lact. plantarum, with best results for strains showing a respiratory phenotype. The nutritional requirements of anaerobic and respiratory cultures of members of the Lact. casei and Lact. plantarum groups differ. Tween 80 and selected amino acids derived from pathways related to TCA cycle, pyruvate conversion and NADH recycling are required for respiration. The availability of mCDM will facilitate the study of aerobic metabolism of lactobacilli under controlled conditions. © 2015 The Society for Applied Microbiology.

  19. Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults

    Directory of Open Access Journals (Sweden)

    Daly Melissa

    2006-08-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma. Methods To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 105 TCID50/g body weight and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined. Results RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV. Conclusion Neonatal RSV exposure results in long term

  20. Phenotypic Progression of Stargardt Disease in a Large Consanguineous Tunisian Family Harboring New ABCA4 Mutations

    Directory of Open Access Journals (Sweden)

    Yousra Falfoul

    2018-01-01

    Full Text Available To assess the progression of Stargardt (STGD disease over nine years in two branches of a large consanguineous Tunisian family. Initially, different phenotypes were observed with clinical intra- and interfamilial variations. At presentation, four different retinal phenotypes were observed. In phenotype 1, bull’s eye maculopathy and slight alteration of photopic responses in full-field electroretinography were observed in the youngest child. In phenotype 2, macular atrophy and yellow white were observed in two brothers. In phenotype 3, diffuse macular, peripapillary, and peripheral RPE atrophy and hyperfluorescent dots were observed in two sisters. In phenotype 4, Stargardt disease-fundus flavimaculatus phenotype was observed in two cousins with later age of onset. After a progression of 9 years, all seven patients displayed the same phenotype 3 with advanced stage STGD and diffuse atrophy. WES and MLPA identified two ABCA4 mutations M1: c.[(?_4635_(5714+?dup; (?_6148_(6479_+? del] and M2: c.[2041C>T], p.[R681∗]. In one branch, the three affected patients had M1/M1 causal mutations and in the other branch the two affected patients had M1/M2 causal mutations. After 9-year follow-up, all patients showed the same phenotypic evolution, confirming the progressive nature of the disease. Genetic variations in the two branches made no difference to similar end-stage disease.

  1. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  2. Prevention of Respiratory Distress After Laparoscopic Cholecystectomy

    Directory of Open Access Journals (Sweden)

    O. A. Dolina

    2005-01-01

    Full Text Available The paper presents the results of a comparative study of different methods for preventing respiratory distress after laparoscopic cholecystectomy. It shows the advantages of use of noninvasive assisted ventilation that ensures excessive positive pressure in the respiratory contour, its impact on external respiratory function, arterial blood gases, oxygen transport and uptake. A scheme for the prevention of respiratory diseases applying noninvasive assisted ventilation is given.

  3. Comparison of phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis.

    Science.gov (United States)

    Barbour, Elie K; Hajj, Zahi G; Hamadeh, Shadi; Shaib, Houssam A; Farran, Mohamad T; Araj, George; Faroon, Obaid; Barbour, Kamil E; Jirjis, Faris; Azhar, Esam; Kumosani, Taha; Harakeh, Steve

    2012-10-01

    The objective of this work is to compare the phenotypic and virulence genes characteristics in human and chicken isolates of Proteus mirabilis. The bacterial examination of 50 livers of individual broilers, marketed by four major outlets, revealed a high recovery of P. mirabilis (66%), and a low recovery frequency of Salmonella spp. (4%), Serratia odorifera (2%), Citrobacter brakii (2%), and Providencia stuartii (2%). The phenotypic biochemical characterization of the recovered 33 chicken isolates of P. mirabilis were compared to 30 human isolates (23 urinary and six respiratory isolates). The comparison revealed significant differences in the presence of gelatinase enzyme (100% presence in chicken isolates versus 91.3 and 83.3% presence in human urinary and respiratory isolates, respectively, P,0.05). The H(2)S production occurred in 100% of chicken isolates versus 95.6 and 66.7% presence in human urinary and respiratory isolates, respectively, P,0.05). The other 17 biochemical characteristics did not differ significantly among the three groups of isolates (P.0.05). Two virulence genes, the mrpA and FliL, were having a typical 100% presence in randomly selected isolates of P. mirabilis recovered from chicken livers (N510) versus isolates recovered from urinary (N55) and respiratory specimens of humans (N55) (P.0.05). The average percentage similarity of mrpA gene nucleotide sequence of poultry isolates to human urinary and respiratory isolates was 93.2 and 97.5-%, respectively. The high similarity in phenotypic characteristics, associated with typical frequency of presence of two virulence genes, and high similarity in sequences of mrpA gene among poultry versus human P. mirabilis isolates justifies future investigations targeting the evaluation of adaptable pathogenicity of avian Proteus mirabilis isolates to mammalian hosts.

  4. Phytotherapy of Acute Respiratory Viral Diseases

    Directory of Open Access Journals (Sweden)

    I.B. Ershova

    2016-11-01

    symptoms (nausea, vomiting, itching, altered defecation after receiving medicinal plant its use should be discontinued; pediatricians should not recommend using herbs with potential toxic effects (for example, high concentrations or prolonged use of shoots of wild rosemary, tansy and other. The dosage is a very important question, which depends on the age of a child. The scheme proposed by N.P. Menshikova et al. is convenient for practice. The daily dose in terms of dry plant material is: for сhildren under 1 year old — 1/2 teaspoon, from 1 to 3 years — 1 teaspoon, 3 to 6 years — 1 dessert spoon, 6 to 10 years — 1 tablespoon, 10 and older — 1–2 tablespoons. In case of the appointment of herbal me­dicine pediatrician should take into account the characteristics of the therapeutic effects of medicinal plants, their dosing and possible side effects; it is necessary to monitor treatment to assess its efficacy and safety. In the treatment of respiratory diseases inhalation is effective, using inhalation devices. Aerosol inhalation for treatment of respiratory disease may have different effects: antiseptic, anti-inflammatory, a bronchodilator, and may promote the liquefaction of sputum evacuation, improve the function of the ciliated epithelium. For the purpose of inhalations medicinal plants containing essential oils are used: Calendula, Peppermint, Chamomile, Salvia, Eucalyptus, Thyme, birch, Plantain. The first inhalation lasts for 1–2 minu­tes and later 5–10 minutes. Also ready officinal herbal drugs can be used in pediatric practice: essential oils, teas, juices. A good effect of essential oil of Peppermint, Eucalyptus, Salvia and others, tincture of Calendula, Eucalyptus, Salvia, Peppermint. Relative contraindications are considered: a allergic conditions in children, b acute, life-threatening conditions and diseases, c pregnancy — for medicinal plants causing changes in hormonal balance. In pediatric practice, taking into account the characteristics

  5. When can stress facilitate divergence by altering time to flowering?

    OpenAIRE

    Jordan, Crispin Y.; Ally, Dilara; Hodgins, Kathryn A.

    2015-01-01

    Abstract Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce ...

  6. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  7. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  8. 46 CFR 154.1405 - Respiratory protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Respiratory protection. 154.1405 Section 154.1405... Equipment § 154.1405 Respiratory protection. When Table 4 references this section, a vessel carrying the listed cargo must have: (a) Respiratory protection equipment for each person on board that protects the...

  9. 46 CFR 197.550 - Respiratory protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Respiratory protection. 197.550 Section 197.550 Shipping... GENERAL PROVISIONS Benzene § 197.550 Respiratory protection. (a) General. When the use of respirators in... section that is appropriate for the exposure. Table 197.550(b)—Respiratory Protection for Benzene Airborne...

  10. 29 CFR 1915.154 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1915.154 Section 1915.154 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... (PPE) § 1915.154 Respiratory protection. Respiratory protection for shipyard employment is covered by...

  11. 33 CFR 127.1209 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Respiratory protection. 127.1209... Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1209 Respiratory protection. Each waterfront facility handling LHG must provide equipment for respiratory protection for each employee of the...

  12. Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.

    Science.gov (United States)

    Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth

    2016-03-31

    Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.

  13. Respiratory diphtheria in an asylum seeker from Afghanistan arriving to Finland via Sweden, December 2015.

    Science.gov (United States)

    Sane, Jussi; Sorvari, Tiina; Widerström, Micael; Kauma, Heikki; Kaukoniemi, Ulla; Tarkka, Eveliina; Puumalainen, Taneli; Kuusi, Markku; Salminen, Mika; Lyytikäinen, Outi

    2016-01-01

    In December 2015, an asylum seeker originating from Afghanistan was diagnosed with respiratory diphtheria in Finland. He arrived in Finland from Sweden where he had already been clinically suspected and tested for diphtheria. Corynebacterium diphtheriae was confirmed in Sweden and shown to be genotypically and phenotypically toxigenic. The event highlights the importance of early case detection, rapid communication within the country and internationally as well as preparedness plans of diphtheria antitoxin availability.

  14. SUSCEPTIBILITY OF RESPIRATORY ISOLATES OF STREPTOCOCCUS PNEUMONIAE ISOLATED FROM CHILDREN HOSPITALIZED IN THE CLINICAL CENTER NIS.

    Science.gov (United States)

    Dinić, Marina M; Mladenović Antić, Snezana; Kocić, Branislava; Stanković Dordević, Dobrila; Vrbić, Miodrag; Bogdanović, Milena

    2016-01-01

    Streptococcus pneumoniae is one of the most common causes of respiratory infections. The aim was to study the susceptibility to antimicrobial agents of respiratory isolates ofStreptococcus pneumoniae obtained from hospitalized children. A total of 190 respiratory pneumococcal isolates obtained from children aged from 0 to 14 years were isolated and identified by using standard microbiological methods. Susceptibility to oxacillin, erythromycin, clindamycin, tetracycline, cotrimoxazole, ofloxacin and rifampicin was tested by disc diffusion method. Minimal inhibitory concentrations for amoxicillin and ceftriaxone were determined by means of E test. The macrolide-resistant phenotype was detected by double disc diffusion test. All tested isolates were susceptible to amoxicillin and ceftriaxone. The minimal amoxicillin concentration inhibiting the growth of 50% of isolates and of 90% of isolates was 0.50 microg/ml and 1.0 microg/ml, respectively and the minimal ceftriaxone concentration inhibiting the growth of 50% of isolates and of 90% of isolates was 0.25 microg/ml and 0.50 microg/ml, respectively. Susceptibility to erythromycin and clindamycin was observed in 21.6% and 29.47% of isolates, respectively. The resistence to macrolides-M phenotype was detected in 10.07% of isolates and constitutive macrolide-lincosamide-streptogramin phenotype (constitutive MLS phenotype) was found in 89.93% of isolates. All tested isolates were susceptible to ofloxacin and rifampicin. Amoxicillin could be the therapy of choice in pediatric practice. The macrolides should not be recommended for the empirical therapy of pneumococcal respiratory tract infection in our local area.

  15. Phenotypic spectrum of GABRA1

    DEFF Research Database (Denmark)

    Johannesen, Katrine; Marini, Carla; Pfeffer, Siona

    2016-01-01

    OBJECTIVE: To delineate phenotypic heterogeneity, we describe the clinical features of a cohort of patients with GABRA1 gene mutations. METHODS: Patients with GABRA1 mutations were ascertained through an international collaboration. Clinical, EEG, and genetic data were collected. Functional analy...

  16. Leaf segmentation in plant phenotyping

    NARCIS (Netherlands)

    Scharr, Hanno; Minervini, Massimo; French, Andrew P.; Klukas, Christian; Kramer, David M.; Liu, Xiaoming; Luengo, Imanol; Pape, Jean Michel; Polder, Gerrit; Vukadinovic, Danijela; Yin, Xi; Tsaftaris, Sotirios A.

    2016-01-01

    Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape

  17. Delineating SPTAN1 associated phenotypes

    DEFF Research Database (Denmark)

    Syrbe, Steffen; Harms, Frederike L; Parrini, Elena

    2017-01-01

    De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutati...

  18. Partnering for optimal respiratory home care: physicians working with respiratory therapists to optimally meet respiratory home care needs.

    Science.gov (United States)

    Spratt, G; Petty, T L

    2001-05-01

    The need for respiratory care services continues to increase, reimbursement for those services has decreased, and cost-containment measures have increased the frequency of home health care. Respiratory therapists are well qualified to provide home respiratory care, reduce misallocation of respiratory services, assess patient respiratory status, identify problems and needs, evaluate the effect of the home setting, educate the patient on proper equipment use, monitor patient response to and complications of therapy, monitor equipment functioning, monitor for appropriate infection control procedures, make recommendations for changes to therapy regimen, and adjust therapy under the direction of the physician. Teamwork benefits all parties and offers cost and time savings, improved data collection and communication, higher job satisfaction, and better patient monitoring, education, and quality of life. Respiratory therapists are positioned to optimize treatment efficacy, maximize patient compliance, and minimize hospitalizations among patients receiving respiratory home care.

  19. Interoperability between phenotype and anatomy ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  20. A Quick Reference on Respiratory Acidosis.

    Science.gov (United States)

    Johnson, Rebecca A

    2017-03-01

    Respiratory acidosis, or primary hypercapnia, occurs when carbon dioxide production exceeds elimination via the lung and is mainly owing to alveolar hypoventilation. Concurrent increases in Paco 2 , decreases in pH and compensatory increases in blood HCO 3 - concentration are associated with respiratory acidosis. Respiratory acidosis can be acute or chronic, with initial metabolic compensation to increase HCO 3 - concentrations by intracellular buffering. Chronic respiratory acidosis results in longer lasting increases in renal reabsorption of HCO 3 - . Alveolar hypoventilation and resulting respiratory acidosis may also be associated with hypoxemia, especially evident when patients are inspiring room air (20.9% O 2 ). Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Assessment of aerobic and respiratory growth in the Lactobacillus casei group.

    Directory of Open Access Journals (Sweden)

    Teresa Zotta

    Full Text Available One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS, in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM. Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM and most tolerated pyrogallol (50 mM, while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications.

  2. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group

    Science.gov (United States)

    Zotta, Teresa; Ricciardi, Annamaria; Ianniello, Rocco G.; Parente, Eugenio; Reale, Anna; Rossi, Franca; Iacumin, Lucilla; Comi, Giuseppe; Coppola, Raffaele

    2014-01-01

    One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS), in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM). Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM) and most tolerated pyrogallol (50 mM), while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions) and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications. PMID:24918811

  3. Hypnosis in paediatric respiratory medicine.

    Science.gov (United States)

    McBride, Joshua J; Vlieger, Arine M; Anbar, Ran D

    2014-03-01

    Hypnotherapy is an often misunderstood yet effective therapy. It has been reported to be useful within the field of paediatric respiratory medicine as both a primary and an adjunctive therapy. This article gives a brief overview of how hypnotherapy is performed followed by a review of its applications in paediatric patients with asthma, cystic fibrosis, dyspnea, habit cough, vocal cord dysfunction, and those requiring non-invasive positive pressure ventilation. As the available literature is comprised mostly of case series, retrospective studies, and only a single small randomized study, the field would be strengthened by additional randomized, controlled trials in order to better establish the effectiveness of hypnosis as a treatment, and to identify the processes leading to hypnosis-induced physiologic changes. As examples of the utility of hypnosis and how it can be taught to children with respiratory disease, the article includes videos that demonstrate its use for patients with cystic fibrosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Vitamin D and respiratory disorder

    Directory of Open Access Journals (Sweden)

    Mahnaz Hushmand

    2015-09-01

    Full Text Available The active form of vitamin D is synthesized in some body organs following sun exposure and dietary intake. Vitamin D exhibits its major and critical effects not only through regulation of calcium and phosphate metabolism but also by influencing on respiratory and immune system. Serum concentrations of 25-hydroxyvitamin D below the optimum limit lead to vitamin D insufficiency or maybe deficiency. These inappropriate concentrations of vitamin D lead to different types of pulmonary diseases such as viral and bacterial respiratory infection, asthma, chronic obstructive pulmonary disease, and cancer. In this review we described the association between vitamin D deficiency and severe therapy resistant asthma. We also reviewed the underlying molecular mechanism of vitamin D deficiency in children with severe- therapy resistant asthma. Based on current information, future clinical trial are needed to study the role of vitamin D supplementation on different groups of patients with severe asthma including infants, children of school age, and ethnic minorities.

  5. Extensive upper respiratory tract sarcoidosis

    Science.gov (United States)

    Soares, Mafalda Trindade; Sousa, Carolina; Garanito, Luísa; Freire, Filipe

    2016-01-01

    Sarcoidosis is a chronic granulomatous disease of unknown aetiology. It can affect any part of the organism, although the lung is the most frequently affected organ. Upper airway involvement is rare, particularly if isolated. Sarcoidosis is a diagnosis of exclusion, established by histological evidence of non-caseating granulomas and the absence of other granulomatous diseases. The authors report a case of a man with sarcoidosis manifesting as a chronic inflammatory stenotic condition of the upper respiratory tract and trachea. PMID:27090537

  6. Recurrent Respiratory Infections in Children

    Directory of Open Access Journals (Sweden)

    F. Yurochko

    2012-02-01

    Full Text Available The paper covers a problem of recurrent respiratory infections (RRI in children. Their description, risk factors, diagnostic algorithm have been dwelt. A special attention is paid to the treatment. An optimal antibiotic in RRI of bacterial genesis is a high-dose amoxicillin/clavulanate (registered as Augmentin™ ES in Ukraine, the efficacy of which is 94.6–96.3 % according to different data.

  7. Acute respiratory failure in asthma

    OpenAIRE

    Soubra Said; Guntupalli Kalapalatha

    2005-01-01

    Although asthma is a condition that is managed in the outpatient setting in most patients, the poorly controlled and severe cases pose a major challenge to the health-care team. Recognition of the more common insidious and the less common rapid onset "acute asphyxic" asthma are important. The intensivist needs to be familiar with the factors that denote severity of the exacerbation. The management of respiratory failure in asthma, including pharmacologic and mechanical ventilation, are discus...

  8. Zonography in acute respiratory diseases

    International Nuclear Information System (INIS)

    Druzhinina, V.S.; Fetisova, V.M.; Kozorez, A.G.

    1984-01-01

    Radiography was performed in 94 patients whose initial condition was assessed as acute respiratory disease. Radioscopy with x-ray image amplifier, roentgenography and zonography were used. Pulmonary changes were found in 61 persons. In 45 of them acute pneumonia was revealed, in 16 changes in the pulmonary pattern assessed as residual manifestations of pneumonia. Changes in 30 patients with pneumonia and 16 patients with residual manifestations were detected by zonography only

  9. Respiratory failure due to tracheobronchomalacia.

    Science.gov (United States)

    Collard, P.; Freitag, L.; Reynaert, M. S.; Rodenstein, D. O.; Francis, C.

    1996-01-01

    A case is described of tracheobronchomegaly progressing to extensive tracheomalacia, complicated by episodic choking, recurrent pulmonary infections, and irreversible hypercapnic respiratory failure. A Y-shaped tracheobronchial stent was placed endoscopically to splint the trachea open, with excellent clinical and physiological improvement. New stent designs may provide long term palliation in selected cases of diffuse tracheal collapse or stenosis, and offer an alternative to surgical repair. PMID:8711665

  10. Respiratory failure due to tracheobronchomalacia.

    OpenAIRE

    Collard, P.; Freitag, L.; Reynaert, M. S.; Rodenstein, D. O.; Francis, C.

    1996-01-01

    A case is described of tracheobronchomegaly progressing to extensive tracheomalacia, complicated by episodic choking, recurrent pulmonary infections, and irreversible hypercapnic respiratory failure. A Y-shaped tracheobronchial stent was placed endoscopically to splint the trachea open, with excellent clinical and physiological improvement. New stent designs may provide long term palliation in selected cases of diffuse tracheal collapse or stenosis, and offer an alternative to surgical repair.

  11. Respiratory manifestations in endocrine diseases

    OpenAIRE

    LENCU, CODRU?A; ALEXESCU, TEODORA; PETRULEA, MIRELA; LENCU, MONICA

    2016-01-01

    The control mechanisms of respiration as a vital function are complex: voluntary ? cortical, and involuntary ? metabolic, neural, emotional and endocrine. Hormones and hypothalamic neuropeptides (that act as neurotrasmitters and neuromodulators in the central nervous system) play a role in the regulation of respiration and in bronchopulmonary morphology. This article presents respiratory manifestations in adult endocrine diseases that evolve with hormone deficit or hypersecretion. In hyperthy...

  12. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    Science.gov (United States)

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  13. A Review on Human Respiratory Modeling.

    Science.gov (United States)

    Ghafarian, Pardis; Jamaati, Hamidreza; Hashemian, Seyed Mohammadreza

    2016-01-01

    Input impedance of the respiratory system is measured by forced oscillation technique (FOT). Multiple prior studies have attempted to match the electromechanical models of the respiratory system to impedance data. Since the mechanical behavior of airways and the respiratory system as a whole are similar to an electrical circuit in a combination of series and parallel formats some theories were introduced according to this issue. It should be noted that, the number of elements used in these models might be less than those required due to the complexity of the pulmonary-chest wall anatomy. Various respiratory models have been proposed based on this idea in order to demonstrate and assess the different parts of respiratory system related to children and adults data. With regard to our knowledge, some of famous respiratory models in related to obstructive, restrictive diseases and also Acute Respiratory Distress Syndrome (ARDS) are reviewed in this article.

  14. Sulfur mustard and respiratory diseases.

    Science.gov (United States)

    Tang, Feng Ru; Loke, Weng Keong

    2012-09-01

    Victims exposed to sulfur mustard (HD) in World War I and Iran-Iraq war, and those suffered occupational or accidental exposure have endured discomfort in the respiratory system at early stages after exposure, and marked general physical deterioration at late stages due to pulmonary fibrosis, bronchiolitis obliterans or lung cancer. At molecule levels, significant changes of cytokines and chemokines in bronchoalveolar lavage and serum, and of selectins (in particular sE-selectin) and soluble Fas ligand in the serum have been reported in recent studies of patients exposed to HD in Iran-Iraq war, suggesting that these molecules may be associated with the pathophysiological development of pulmonary diseases. Experimental studies in rodents have revealed that reactive oxygen and nitrogen species, their product peroxynitrite (ONOO(-)), nitric oxide synthase, glutathione, poly (adenosine diphosphate-ribose) polymerase, activating protein-1 signaling pathway are promising drug targets for preventing HD-induced toxicity, whereas N-acetyl cysteine, tocopherols, melatonin, aprotinin and many other molecules have been proved to be effective in prevention of HD-induced damage to the respiratory system in different animal models. In this paper, we will systemically review clinical and pathophysiological changes of respiratory system in victims exposed to HD in the last century, update clinicians and researchers on the mechanism of HD-induced acute and chronic lung damages, and on the relevant drug targets for future development of antidotes for HD. Further research directions will also be proposed.

  15. Respiratory analysis system and method

    Science.gov (United States)

    Liu, F. F. (Inventor)

    1973-01-01

    A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.

  16. Synchrony - Cyberknife Respiratory Compensation Technology

    International Nuclear Information System (INIS)

    Ozhasoglu, Cihat; Saw, Cheng B.; Chen Hungcheng; Burton, Steven; Komanduri, Krishna; Yue, Ning J.; Huq, Saiful M.; Heron, Dwight E.

    2008-01-01

    Studies of organs in the thorax and abdomen have shown that these organs can move as much as 40 mm due to respiratory motion. Without compensation for this motion during the course of external beam radiation therapy, the dose coverage to target may be compromised. On the other hand, if compensation of this motion is by expansion of the margin around the target, a significant volume of normal tissue may be unnecessarily irradiated. In hypofractionated regimens, the issue of respiratory compensation becomes an important factor and is critical in single-fraction extracranial radiosurgery applications. CyberKnife is an image-guided radiosurgery system that consists of a 6-MV LINAC mounted to a robotic arm coupled through a control loop to a digital diagnostic x-ray imaging system. The robotic arm can point the beam anywhere in space with 6 degrees of freedom, without being constrained to a conventional isocenter. The CyberKnife has been recently upgraded with a real-time respiratory tracking and compensation system called Synchrony. Using external markers in conjunction with diagnostic x-ray images, Synchrony helps guide the robotic arm to move the radiation beam in real time such that the beam always remains aligned with the target. With the aid of Synchrony, the tumor motion can be tracked in three-dimensional space, and the motion-induced dosimetric change to target can be minimized with a limited margin. The working principles, advantages, limitations, and our clinical experience with this new technology will be discussed

  17. Sleep Bruxism in Respiratory Medicine Practice.

    Science.gov (United States)

    Mayer, Pierre; Heinzer, Raphael; Lavigne, Gilles

    2016-01-01

    Sleep bruxism (SB) consists of involuntary episodic and repetitive jaw muscle activity characterized by occasional tooth grinding or jaw clenching during sleep. Prevalence decreases from 20% to 14% in childhood to 8% to 3% in adulthood. Although the causes and mechanisms of idiopathic primary SB are unknown, putative candidates include psychologic risk factors (eg, anxiety, stress due to life events, hypervigilance) and sleep physiologic reactivity (eg, sleep arousals with autonomic activity, breathing events). Although certain neurotransmitters (serotonin, dopamine, noradrenalin, histamine) have been proposed to play an indirect role in SB, their exact contribution to rhythmic masticatory muscle activity (RMMA) (the electromyography marker of SB) genesis remains undetermined. No specific gene is associated with SB; familial environmental influence plays a significant role. To date, no single explanation can account for the SB mechanism. Secondary SB with sleep comorbidities that should be clinically assessed are insomnia, periodic limb movements during sleep, sleep-disordered breathing (eg, apnea-hypopnea), gastroesophageal reflux disease, and neurologic disorders (eg, sleep epilepsy, rapid eye movement behavior disorder). SB is currently quantified by scoring RMMA recordings in parallel with brain, respiratory, and heart activity recordings in a sleep laboratory or home setting. RMMA confirmation with audio-video recordings is recommended for better diagnostic accuracy in the presence of neurologic conditions. Management strategies (diagnostic tests, treatment) should be tailored to the patient's phenotype and comorbidities. In the presence of sleep-disordered breathing, a mandibular advancement appliance or CPAP treatment is preferred over single occlusal splint therapy on the upper jaw. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Carotenoid production and phenotypic variation in Azospirillum brasilense.

    Science.gov (United States)

    Brenholtz, Gal Reem; Tamir-Ariel, Dafna; Okon, Yaacov; Burdman, Saul

    2017-06-01

    We assessed the occurrence of phenotypic variation in Azospirillum brasilense strains Sp7, Cd, Sp245, Az39 and phv2 during growth in rich media, screening for variants altered in colony pigmentation or extracellular polysaccharide (EPS) production. Previous studies showed that EPS-overproducing variants of Sp7 appear frequently following starvation or growth in minimal medium. In contrast, no such variants were detected during growth in rich media in the tested strains except for few variants of phv2. Regarding alteration in colony pigmentation (from pink to white in strain Cd and from white to pink in the others), strain Sp7 showed a relatively high frequency of variation (0.009-0.026%). Strain Cd showed a lower frequency of alteration in pigmentation (0-0.008%), and this type of variation was not detected in the other strains. In A. brasilense, carotenoid synthesis is controlled by two RpoE sigma factors and their cognate ChrR anti-sigma factors, the latter acting as negative regulators of carotenoid synthesis. Here, all tested (n = 28) pink variants of Sp7 carried mutations in one of the anti-sigma factor genes, chrR1. Our findings indicate that, in A. brasilense, phenotypic variation is strain- and environment-dependent and support the central role of ChrR1 in regulation of carotenoid production. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. IDH Mutations: Genotype-Phenotype Correlation and Prognostic Impact

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Wang

    2014-01-01

    Full Text Available IDH1/2 mutation is the most frequent genomic alteration found in gliomas, affecting 40% of these tumors and is one of the earliest alterations occurring in gliomagenesis. We investigated a series of 1305 gliomas and showed that IDH mutation is almost constant in 1p19q codeleted tumors. We found that the distribution of IDH1R132H, IDH1nonR132H, and IDH2 mutations differed between astrocytic, mixed, and oligodendroglial tumors, with an overrepresentation of IDH2 mutations in oligodendroglial phenotype and an overrepresentation of IDH1nonR132H in astrocytic tumors. We stratified grade II and grade III gliomas according to the codeletion of 1p19q and IDH mutation to define three distinct prognostic subgroups: 1p19q and IDH mutated, IDH mutated—which contains mostly TP53 mutated tumors, and none of these alterations. We confirmed that IDH mutation with a hazard ratio = 0.358 is an independent prognostic factor of good outcome. These data refine current knowledge on IDH mutation prognostic impact and genotype-phenotype associations.

  20. Role of GLI2 in hypopituitarism phenotype.

    Science.gov (United States)

    Arnhold, Ivo J P; França, Marcela M; Carvalho, Luciani R; Mendonca, Berenice B; Jorge, Alexander A L

    2015-06-01

    GLI2 is a zinc-finger transcription factor involved in the Sonic Hedgehog pathway. Gli2 mutant mice have hypoplastic anterior and absent posterior pituitary glands. We reviewed the literature for patients with hypopituitarism and alterations in GLI2. Twenty-five patients (16 families) had heterozygous truncating mutations, and the phenotype frequently included GH deficiency, a small anterior pituitary lobe and an ectopic/undescended posterior pituitary lobe on magnetic resonance imaging and postaxial polydactyly. The inheritance pattern was autosomal dominant with incomplete penetrance and variable expressivity. The mutation was frequently inherited from an asymptomatic parent. Eleven patients had heterozygous non-synonymous GLI2 variants that were classified as variants of unknown significance, because they were either absent from or had a frequency lower than 0.001 in the databases. In these patients, the posterior pituitary was also ectopic, but none had polydactyly. A third group of variants found in patients with hypopituitarism were considered benign because their frequency was ≥ 0.001 in the databases. GLI2 is a large and polymorphic gene, and sequencing may identify variants whose interpretation may be difficult. Incomplete penetrance implies in the participation of other genetic and/or environmental factors. An interaction between Gli2 mutations and prenatal ethanol exposure has been demonstrated in mice dysmorphology. In conclusion, a relatively high frequency of GLI2 mutations and variants were identified in patients with congenital GH deficiency without other brain defects, and most of these patients presented with combined pituitary hormone deficiency and an ectopic posterior pituitary lobe. Future studies may clarify the relative role and frequency of GLI2 alterations in the aetiology of hypopituitarism. © 2015 Society for Endocrinology.

  1. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  2. Automated phenotyping of permanent crops

    Science.gov (United States)

    McPeek, K. Thomas; Steddom, Karl; Zamudio, Joseph; Pant, Paras; Mullenbach, Tyler

    2017-05-01

    AGERpoint is defining a new technology space for the growers' industry by introducing novel applications for sensor technology and data analysis to growers of permanent crops. Serving data to a state-of-the-art analytics engine from a cutting edge sensor platform, a new paradigm in precision agriculture is being developed that allows growers to understand the unique needs of each tree, bush or vine in their operation. Autonomous aerial and terrestrial vehicles equipped with multiple varieties of remote sensing technologies give AGERpoint the ability to measure key morphological and spectral features of permanent crops. This work demonstrates how such phenotypic measurements combined with machine learning algorithms can be used to determine the variety of crops (e.g., almond and pecan trees). This phenotypic and varietal information represents the first step in enabling growers with the ability to tailor their management practices to individual plants and maximize their economic productivity.

  3. Phenotypic deconstruction of gene circuitry.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2013-06-01

    It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.

  4. Phenotypic deconstruction of gene circuitry

    Science.gov (United States)

    Lomnitz, Jason G.; Savageau, Michael A.

    2013-06-01

    It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.

  5. Wine Expertise Predicts Taste Phenotype.

    Science.gov (United States)

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  6. From plant genomes to phenotypes

    OpenAIRE

    Bolger, Marie; Gundlach, Heidrun; Scholz, Uwe; Mayer, Klaus; Usadel, Björn; Schwacke, Rainer; Schmutzer, Thomas; Chen, Jinbo; Arend, Daniel; Oppermann, Markus; Weise, Stephan; Lange, Matthias; Fiorani, Fabio; Spannagl, Manuel

    2017-01-01

    Recent advances in sequencing technologies have greatly accelerated the rate of plant genome and applied breeding research. Despite this advancing trend, plant genomes continue to present numerous difficulties to the standard tools and pipelines not only for genome assembly but also gene annotation and downstream analysis.Here we give a perspective on tools, resources and services necessary to assemble and analyze plant genomes and link them to plant phenotypes.

  7. Nasopharyngeal Protein Biomarkers of Acute Respiratory Virus Infection

    Directory of Open Access Journals (Sweden)

    Thomas W. Burke

    2017-03-01

    Full Text Available Infection of respiratory mucosa with viral pathogens triggers complex immunologic events in the affected host. We sought to characterize this response through proteomic analysis of nasopharyngeal lavage in human subjects experimentally challenged with influenza A/H3N2 or human rhinovirus, and to develop targeted assays measuring peptides involved in this host response allowing classification of acute respiratory virus infection. Unbiased proteomic discovery analysis identified 3285 peptides corresponding to 438 unique proteins, and revealed that infection with H3N2 induces significant alterations in protein expression. These include proteins involved in acute inflammatory response, innate immune response, and the complement cascade. These data provide insights into the nature of the biological response to viral infection of the upper respiratory tract, and the proteins that are dysregulated by viral infection form the basis of signature that accurately classifies the infected state. Verification of this signature using targeted mass spectrometry in independent cohorts of subjects challenged with influenza or rhinovirus demonstrates that it performs with high accuracy (0.8623 AUROC, 75% TPR, 97.46% TNR. With further development as a clinical diagnostic, this signature may have utility in rapid screening for emerging infections, avoidance of inappropriate antibacterial therapy, and more rapid implementation of appropriate therapeutic and public health strategies.

  8. Effect of Intermittent Hypercapnia on Respiratory Control in Rat Pups

    Science.gov (United States)

    Steggerda, Justin A.; Mayer, Catherine A.; Martin, Richard J.; Wilson, Christopher G.

    2010-01-01

    Preterm infants are subject to fluctuations in blood gas status associated with immature respiratory control. Intermittent hypoxia during early postnatal life has been shown to increase chemoreceptor sensitivity and destabilize the breathing pattern; however, intermittent hypercapnia remains poorly studied. Therefore, to test the hypothesis that intermittent hypercapnia results in altered respiratory control, we examined the effects of daily exposure to intermittent hypercapnia on the ventilatory response to subsequent hypercapnic and hypoxic exposure in neonatal rat pups. Exposure cycles consisted of 5 min of intermittent hypercapnia (5% CO2, 21% O2, balance N2) followed by 10 min of normoxia. Rat pups were exposed to 18 exposure cycles each day for 1 week, from postnatal day 7 to 14. We analyzed diaphragm electromyograms (EMGs) from pups exposed to subsequent acute hypercapnic (5% CO2) and hypoxic (12% O2) challenges. In response to a subsequent hypercapnia challenge, there was no significant difference in the ventilatory response between control and intermittent hypercapnia-exposed groups. In contrast, intermittent hypercapnia-exposed rat pups showed an enhanced ventilatory response to hypoxic challenge with an increase in minute EMG to 118 ± 14% of baseline versus 107 ± 13% for control pups (p < 0.05). We speculate that prior hypercapnic exposure may increase peripheral chemoreceptor response to subsequent hypoxic exposures and result in perturbed neonatal respiratory control. PMID:19752577

  9. Emergence of respiratory Streptococcus agalactiae isolates in cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Vera Eickel

    Full Text Available Streptococcus agalactiae is a well-known pathogen for neonates and immunocompromized adults. Beyond the neonatal period, S. agalactiae is rarely found in the respiratory tract. During 2002-2008 we noticed S. agalactiae in respiratory secretions of 30/185 (16% of cystic fibrosis (CF patients. The median age of these patients was 3-6 years older than the median age CF patients not harboring S. agalactiae. To analyze, if the S. agalactiae isolates from CF patients were clonal, further characterization of the strains was achieved by capsular serotyping, surface protein determination and multilocus sequence typing (MLST. We found a variety of sequence types (ST among the isolates, which did not substantially differ from the MLST patterns of colonizing strains from Germany. However serotype III, which is often seen in colonizing strains and invasive infections was rare among CF patients. The emergence of S. agalactiae in the respiratory tract of CF patients may represent the adaptation to a novel host environment, supported by the altered surfactant composition in older CF patients.

  10. A simple algorithm for the identification of clinical COPD phenotypes

    DEFF Research Database (Denmark)

    Burgel, Pierre-Régis; Paillasseur, Jean-Louis; Janssens, Wim

    2017-01-01

    This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses. Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification...... of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative...... International Assessment (3CIA) initiative. Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated...

  11. Phenotypic covariance at species' borders.

    Science.gov (United States)

    Caley, M Julian; Cripps, Edward; Game, Edward T

    2013-05-28

    Understanding the evolution of species limits is important in ecology, evolution, and conservation biology. Despite its likely importance in the evolution of these limits, little is known about phenotypic covariance in geographically marginal populations, and the degree to which it constrains, or facilitates, responses to selection. We investigated phenotypic covariance in morphological traits at species' borders by comparing phenotypic covariance matrices (P), including the degree of shared structure, the distribution of strengths of pair-wise correlations between traits, the degree of morphological integration of traits, and the ranks of matricies, between central and marginal populations of three species-pairs of coral reef fishes. Greater structural differences in P were observed between populations close to range margins and conspecific populations toward range centres, than between pairs of conspecific populations that were both more centrally located within their ranges. Approximately 80% of all pair-wise trait correlations within populations were greater in the north, but these differences were unrelated to the position of the sampled population with respect to the geographic range of the species. Neither the degree of morphological integration, nor ranks of P, indicated greater evolutionary constraint at range edges. Characteristics of P observed here provide no support for constraint contributing to the formation of these species' borders, but may instead reflect structural change in P caused by selection or drift, and their potential to evolve in the future.

  12. Adaptive evolution of molecular phenotypes

    International Nuclear Information System (INIS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-01-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak. (paper)

  13. Surfactant Protein D in Respiratory and Non-Respiratory Diseases

    Science.gov (United States)

    Sorensen, Grith L.

    2018-01-01

    Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases

  14. Air pollution and multiple acute respiratory outcomes.

    Science.gov (United States)

    Faustini, Annunziata; Stafoggia, Massimo; Colais, Paola; Berti, Giovanna; Bisanti, Luigi; Cadum, Ennio; Cernigliaro, Achille; Mallone, Sandra; Scarnato, Corrado; Forastiere, Francesco

    2013-08-01

    Short-term effects of air pollutants on respiratory mortality and morbidity have been consistently reported but usually studied separately. To more completely assess air pollution effects, we studied hospitalisations for respiratory diseases together with out-of-hospital respiratory deaths. A time-stratified case-crossover study was carried out in six Italian cities from 2001 to 2005. Daily particulate matter (particles with a 50% cut-off aerodynamic diameter of 10 μm (PM10)) and nitrogen dioxide (NO2) associations with hospitalisations for respiratory diseases (n = 100 690), chronic obstructive pulmonary disease (COPD) (n = 38 577), lower respiratory tract infections (LRTI) among COPD patients (n = 9886) and out-of-hospital respiratory deaths (n = 5490) were estimated for residents aged ≥35 years. For an increase of 10 μg·m(-3) in PM10, we found an immediate 0.59% (lag 0-1 days) increase in hospitalisations for respiratory diseases and a 0.67% increase for COPD; the 1.91% increase in LRTI hospitalisations lasted longer (lag 0-3 days) and the 3.95% increase in respiratory mortality lasted 6 days. Effects of NO2 were stronger and lasted longer (lag 0-5 days). Age, sex and previous ischaemic heart disease acted as effect modifiers for different outcomes. Analysing multiple rather than single respiratory events shows stronger air pollution effects. The temporal relationship between the pollutant increases and hospitalisations or mortality for respiratory diseases differs.

  15. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system.

    Science.gov (United States)

    Hur, Matthew; Gistelinck, Charlotte A; Huber, Philippe; Lee, Jane; Thompson, Marjorie H; Monstad-Rios, Adrian T; Watson, Claire J; McMenamin, Sarah K; Willaert, Andy; Parichy, David M; Coucke, Paul; Kwon, Ronald Y

    2017-09-08

    Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.

  16. Visible light alters yeast metabolic rhythms by inhibiting respiration

    OpenAIRE

    Robertson, James Brian; Davis, Chris R.; Johnson, Carl Hirschie

    2013-01-01

    In some organisms, respiration fluctuates cyclically, and these rhythms can be a sensitive gauge of metabolism. Constant or pulsatile exposure of yeast to visible wavelengths of light significantly alters and/or initiates these respiratory oscillations, revealing a further dimension of the challenges to yeast living in natural environments. Our results also have implications for the use of light as research tools—e.g., for excitation of fluorescence microscopically—even in organisms such as y...

  17. Visual aided pacing in respiratory maneuvers

    Energy Technology Data Exchange (ETDEWEB)

    Rambaudi, L R [Laboratorio de Biofisica y Fisiologia ' Antonio Sadi Frumento' (Argentina); Rossi, E [Catedra de Bioingenieria II (Argentina); Mantaras, M C [Catedra de Bioingenieria II (Argentina); Perrone, M S [Laboratorio de Biofisica y Fisiologia ' Antonio Sadi Frumento' (Argentina); Siri, L Nicola [Catedra de Bioingenieria II (Argentina)

    2007-11-15

    A visual aid to pace self-controlled respiratory cycles in humans is presented. Respiratory manoeuvres need to be accomplished in several clinic and research procedures, among others, the studies on Heart Rate Variability. Free running respiration turns to be difficult to correlate with other physiologic variables. Because of this fact, voluntary self-control is asked from the individuals under study. Currently, an acoustic metronome is used to pace respiratory frequency, its main limitation being the impossibility to induce predetermined timing in the stages within the respiratory cycle. In the present work, visual driven self-control was provided, with separate timing for the four stages of a normal respiratory cycle. This visual metronome (ViMet) was based on a microcontroller which power-ON and -OFF an eight-LED bar, in a four-stage respiratory cycle time series handset by the operator. The precise timing is also exhibited on an alphanumeric display.

  18. Visual aided pacing in respiratory maneuvers

    International Nuclear Information System (INIS)

    Rambaudi, L R; Rossi, E; Mantaras, M C; Perrone, M S; Siri, L Nicola

    2007-01-01

    A visual aid to pace self-controlled respiratory cycles in humans is presented. Respiratory manoeuvres need to be accomplished in several clinic and research procedures, among others, the studies on Heart Rate Variability. Free running respiration turns to be difficult to correlate with other physiologic variables. Because of this fact, voluntary self-control is asked from the individuals under study. Currently, an acoustic metronome is used to pace respiratory frequency, its main limitation being the impossibility to induce predetermined timing in the stages within the respiratory cycle. In the present work, visual driven self-control was provided, with separate timing for the four stages of a normal respiratory cycle. This visual metronome (ViMet) was based on a microcontroller which power-ON and -OFF an eight-LED bar, in a four-stage respiratory cycle time series handset by the operator. The precise timing is also exhibited on an alphanumeric display

  19. Effects of acute respiratory and metabolic acidosis on diaphragm muscle obtained from rats.

    Science.gov (United States)

    Michelet, Pierre; Carreira, Serge; Demoule, Alexandre; Amour, Julien; Langeron, Olivier; Riou, Bruno; Coirault, Catherine

    2015-04-01

    Acute respiratory acidosis is associated with alterations in diaphragm performance. The authors compared the effects of respiratory acidosis and metabolic acidosis in the rat diaphragm in vitro. Diaphragmatic strips were stimulated in vitro, and mechanical and energetic variables were measured, cross-bridge kinetics calculated, and the effects of fatigue evaluated. An extracellular pH of 7.00 was obtained by increasing carbon dioxide tension (from 25 to 104 mmHg) in the respiratory acidosis group (n = 12) or lowering bicarbonate concentration (from 24.5 to 5.5 mM) in the metabolic acidosis group (n = 12) and the results compared with a control group (n = 12, pH = 7.40) after 20-min exposure. Respiratory acidosis induced a significant decrease in maximum shortening velocity (-33%, P Respiratory acidosis impaired more relaxation than contraction, as shown by impairment in contraction-relaxation coupling under isotonic (-26%, P acidosis group. In rat diaphragm, acute (20 min) respiratory acidosis induced a marked decrease in the diaphragm contractility, which was not observed in metabolic acidosis.

  20. Electrically Insulated Sensing of Respiratory Rate and Heartbeat Using Optical Fibers

    Directory of Open Access Journals (Sweden)

    Ernesto Suaste-Gómez

    2014-11-01

    Full Text Available Respiratory and heart rates are among the most important physiological parameters used to monitor patients’ health. It is important to design devices that can measure these parameters without risking or altering the subject’s health. In this context, a novel sensing method to monitor simultaneously the heartbeat and respiratory rate signals of patients within an electrically safety environment was developed and tested. An optical fiber-based sensor was used in order to detect two optical phenomena. Photo-plethysmography and the relation between bending radius and attenuation of optical fiber were coupled through a single beam light traveling along this fiber.

  1. Phenotypic, Genotypic, and Antibiotic Sensitivity Patterns of Strains Isolated from the Cholera Epidemic in Zimbabwe

    NARCIS (Netherlands)

    Islam, Mohammad S.; Mahmud, Zahid H.; Ansaruzzaman, Mohammad; Faruque, Shah M.; Talukder, Kaisar A.; Qadri, Firdausi; Alam, Munirul; Islam, Shafiqul; Bardhan, Pradip K.; Mazumder, Ramendra N.; Khan, Azharul I.; Ahmed, Sirajuddin; Iqbal, Anwarul; Chitsatso, Owen; Mudzori, James; Patel, Sheetal; Midzi, Stanley M.; Charimari, Lincoln; Endtz, Hubert P.; Cravioto, Alejandro

    This paper details the phenotypic, genotypic, and antibiotic sensitivity patterns of 88 Vibrio cholerae strains from Zimbabwe. Of the 88 strains, 83 were classified as "altered El Tor" and 5 as "hybrid El Tor" strains. All of the strains were susceptible to tetracycline, doxycycline, ciprofloxacin,

  2. Genotype-phenotype correlation in patients suspected of having Sotos syndrome

    NARCIS (Netherlands)

    de Boer, Lonneke; Kant, Sarina G.; Karperien, Marcel; van Beers, Lotte; Tjon, Jennifer; Vink, Geraldine R.; van Tol, Dewy; Dauwerse, Hans; le Cessie, Saskia; Beemer, Frits A.; van der Burgt, Ineke; Hamel, Ben C. J.; Hennekam, Raoul C.; Kuhnle, Ursula; Mathijssen, Inge B.; Veenstra-Knol, Hermine E.; Stumpel, Connie T. Schrander; Breuning, Martijn H.; Wit, Jan M.

    2004-01-01

    Background: Deletions and mutations in the NSD1 gene are the major cause of Sotos syndrome. We wanted to evaluate the genotype-phenotype correlation in patients suspected of having Sotos syndrome and determine the best discriminating parameters for the presence of a NSD1 gene alteration. Methods:

  3. Genotype-phenotype correlation in patients suspected of having sotos syndrome.

    NARCIS (Netherlands)

    Boer, L. de; Kant, S.; Karperien, M.; Beers, L. van; Tjon, J.; Vink, G.R.; Tol, D. van; Dauwerse, H.G.; Cessie, S. le; Beemer, F.A.; Burgt, C.J.A.M. van der; Hamel, B.C.J.; Hennekam, R.C.M.; Kuhnle, U.; Mathijssen, I.B.; Veenstra-Knol, H.E.; Stumpel, C.T.; Breuning, M.H.; Wit, J.M.

    2004-01-01

    BACKGROUND: Deletions and mutations in the NSD1 gene are the major cause of Sotos syndrome. We wanted to evaluate the genotype-phenotype correlation in patients suspected of having Sotos syndrome and determine the best discriminating parameters for the presence of a NSD1 gene alteration. METHODS:

  4. Knowledge-based analysis of phenotypes

    KAUST Repository

    Hoendorf, Robert

    2016-01-27

    Phenotypes are the observable characteristics of an organism, and they are widely recorded in biology and medicine. To facilitate data integration, ontologies that formally describe phenotypes are being developed in several domains. I will describe a formal framework to describe phenotypes. A formalized theory of phenotypes is not only useful for domain analysis, but can also be applied to assist in the diagnosis of rare genetic diseases, and I will show how our results on the ontology of phenotypes is now applied in biomedical research.

  5. Year in Review 2015: Neonatal Respiratory Care.

    Science.gov (United States)

    Courtney, Sherry E

    2016-04-01

    Neonatal respiratory care practices have changed with breathtaking speed in the past few years. It is critical for the respiratory therapist and others caring for neonates to be up to date with current recommendations and evolving care practices. The purpose of this article is to review papers of particular note that were published in 2015 and address important aspects of newborn respiratory care. Copyright © 2016 by Daedalus Enterprises.

  6. Measurements of respiratory illness among construction painters.

    OpenAIRE

    White, M C; Baker, E L

    1988-01-01

    The prevalence of different measurements of respiratory illness among construction painters was examined and the relation between respiratory illness and employment as a painter assessed in a cross sectional study of current male members of two local affiliates of a large international union of painters. Respiratory illness was measured by questionnaire and spirometry. Longer employment as a painter was associated with increased prevalence of chronic obstructive disease and an interactive eff...

  7. Does Viral Co-Infection Influence the Severity of Acute Respiratory Infection in Children?

    Science.gov (United States)

    Cebey-López, Miriam; Herberg, Jethro; Pardo-Seco, Jacobo; Gómez-Carballa, Alberto; Martinón-Torres, Nazareth; Salas, Antonio; Martinón-Sánchez, José María; Justicia, Antonio; Rivero-Calle, Irene; Sumner, Edward; Fink, Colin; Martinón-Torres, Federico

    2016-01-01

    Multiple viruses are often detected in children with respiratory infection but the significance of co-infection in pathogenesis, severity and outcome is unclear. To correlate the presence of viral co-infection with clinical phenotype in children admitted with acute respiratory infections (ARI). We collected detailed clinical information on severity for children admitted with ARI as part of a Spanish prospective multicenter study (GENDRES network) between 2011-2013. A nested polymerase chain reaction (PCR) approach was used to detect respiratory viruses in respiratory secretions. Findings were compared to an independent cohort collected in the UK. 204 children were recruited in the main cohort and 97 in the replication cohort. The number of detected viruses did not correlate with any markers of severity. However, bacterial superinfection was associated with increased severity (OR: 4.356; P-value = 0.005), PICU admission (OR: 3.342; P-value = 0.006), higher clinical score (1.988; P-value = 0.002) respiratory support requirement (OR: 7.484; P-value respiratory distress (OR: 2.917; P-value = 0.035), PICU admission (OR: 0.301; P-value = 0.011), lower clinical score (-1.499; P-value = 0.021) respiratory support requirement (OR: 0.324; P-value = 0.016) and oxygen necessity (OR: 0.328; P-value = 0.001). All these findings were replicated in the UK cohort. The presence of more than one virus in hospitalized children with ARI is very frequent but it does not seem to have a major clinical impact in terms of severity. However bacterial superinfection increases the severity of the disease course. On the contrary, pneumococcal vaccination plays a protective role.

  8. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.

    Science.gov (United States)

    Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H

    2012-10-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses.

  9. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  10. Functional and histopathological identification of the respiratory failure in a DMSXL transgenic mouse model of myotonic dystrophy

    Directory of Open Access Journals (Sweden)

    Petrica-Adrian Panaite

    2013-05-01

    Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1. Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding

  11. Respiratory disease mortality among uranium miners

    International Nuclear Information System (INIS)

    Archer, V.E.; Gillam, J.D.; Wagoner, J.K.

    1976-01-01

    A mortality analysis of a group of white and Indian uranium miners was done by a life-table method. A significant excess of respiratory cancer among both whites and Indians was found. Nonmalignant respiratory disease deaths among the whites are approaching cancer in importance as a cause of death, probably as a result of diffuse parenchymal radiation damage. Exposure-response curves for nonsmokers are linear for both respiratory cancer and ''other respiratory disease''. Cigaret smoking elevates and distorts that curve. Light cigaret smokers appear to be most vulnerable to lung parenchymal damage. The predominant histologic cancer among nonsmokers is small-cell undifferentiated, just as it is among cigaret smokers

  12. Bovine respiratory syncytial virus (BRSV): A review

    DEFF Research Database (Denmark)

    Larsen, Lars Erik

    2000-01-01

    Bovine respiratory syncytial virus (BRSV) infection is the major cause of respiratory disease in calves during the first year of life. The study of the virus has been difficult because of its lability and very poor growth in cell culture. However, during the last decade, the introduction of new...... complex and unpredictable which makes the diagnosis and subsequent therapy very difficult. BRSV is closely related to human respiratory syncytial virus (HRSV) which is an important cause of respiratory disease in young children. In contrast to BRSV, the recent knowledge of HRSV is regularly extensively...

  13. Respiratory monitoring with an acceleration sensor

    International Nuclear Information System (INIS)

    Ono, Tomohiro; Takegawa, Hideki; Ageishi, Tatsuya; Takashina, Masaaki; Numasaki, Hodaka; Matsumoto, Masao; Teshima, Teruki

    2011-01-01

    Respiratory gating radiotherapy is used to irradiate a local area and to reduce normal tissue toxicity. There are certain methods for the detection of tumor motions, for example, using internal markers or an external respiration signal. However, because some of these respiratory monitoring systems require special or expensive equipment, respiratory monitoring can usually be performed only in limited facilities. In this study, the feasibility of using an acceleration sensor for respiratory monitoring was evaluated. The respiratory motion was represented by means of a platform and measured five times with the iPod touch (registered) at 3, 4 and 5 s periods of five breathing cycles. For these three periods of the reference waveform, the absolute means ± standard deviation (SD) of displacement were 0.45 ± 0.34 mm, 0.33 ± 0.24 mm and 0.31 ± 0.23 mm, respectively. On the other hand, the corresponding absolute means ± SD for the periods were 0.04 ± 0.09 s, 0.04 ± 0.02 s and 0.06 ± 0.04 s. The accuracy of respiratory monitoring using the acceleration sensor was satisfactory in terms of the absolute means ± SD. Using the iPod touch (registered) for respiratory monitoring does not need special equipment and makes respiratory monitoring easier. For these reasons, this system is a viable alternative to other respiratory monitoring systems.

  14. A Quick Reference on Respiratory Alkalosis.

    Science.gov (United States)

    Johnson, Rebecca A

    2017-03-01

    Respiratory alkalosis, or primary hypocapnia, occurs when alveolar ventilation exceeds that required to eliminate the carbon dioxide produced by tissues. Concurrent decreases in Paco 2 , increases in pH, and compensatory decreases in blood HCO 3 - levels are associated with respiratory alkalosis. Respiratory alkalosis can be acute or chronic, with metabolic compensation initially consisting of cellular uptake of HCO 3 - and buffering by intracellular phosphates and proteins. Chronic respiratory alkalosis results in longer-lasting decreases in renal reabsorption of HCO 3 - ; the arterial pH can approach near-normal values. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Human Respiratory Syncytial Virus and Human Metapneumovirus

    OpenAIRE

    Luciana Helena Antoniassi da Silva; Fernando Rosado Spilki; Adriana Gut Lopes Riccetto; Emilio Elias Baracat; Clarice Weis Arns

    2009-01-01

    The human respiratory syncytial virus (hRSV) and the human metapneumovírus (hMPV) are main etiological agents of acute respiratory infections (ARI). The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV) is the best characterized agent viral of this group, associated with respiratory diseases in...

  16. The Human Phenotype Ontology in 2017

    International Nuclear Information System (INIS)

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie

    2016-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  17. Heterogeneous Pulmonary Phenotypes Associated With Mutations in the Thyroid Transcription Factor Gene NKX2-1

    Science.gov (United States)

    Deterding, Robin R.; Wert, Susan E.; White, Frances V.; Dishop, Megan K.; Alfano, Danielle N.; Halbower, Ann C.; Planer, Benjamin; Stephan, Mark J.; Uchida, Derek A.; Williames, Lee D.; Rosenfeld, Jill A.; Lebel, Robert Roger; Young, Lisa R.; Cole, F. Sessions; Nogee, Lawrence M.

    2013-01-01

    Background: Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease. Methods: Retrospective and prospective approaches identified infants and children with unexplained diffuse lung disease for NKX2-1 sequencing. Histopathologic results and electron micrographs were assessed, and immunohistochemical analysis for surfactant-associated proteins was performed in a subset of 10 children for whom lung tissue was available. Results: We identified 16 individuals with heterozygous missense, nonsense, and frameshift mutations and five individuals with heterozygous, whole-gene deletions of NKX2-1. Neonatal RDS was the presenting pulmonary phenotype in 16 individuals (76%), interstitial lung disease in four (19%), and pulmonary fibrosis in one adult family member. Altogether, 12 individuals (57%) had the full triad of neurologic, thyroid, and respiratory manifestations, but five (24%) had only pulmonary symptoms at the time of presentation. Recurrent respiratory infections were a prominent feature in nine subjects. Lung histopathology demonstrated evidence of disrupted surfactant homeostasis in the majority of cases, and at least five cases had evidence of disrupted lung growth. Conclusions: Patients with mutations in NKX2-1 may present with pulmonary manifestations in the newborn period or during childhood when thyroid or neurologic abnormalities are not apparent. Surfactant dysfunction and, in more severe cases, disrupted lung development are likely mechanisms for the respiratory disease. PMID:23430038

  18. The influence of respiratory motion on CT image volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid (Spain)

    2014-04-15

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath

  19. Phenotypic variability in Meesmann's dystrophy

    DEFF Research Database (Denmark)

    Ehlers, Niels; Hjortdal, Jesper; Nielsen, Kim

    2008-01-01

    symptoms often include blurred vision and ocular irritation. Typical cases may be entirely free of complaints. Intermittent pain episodes, such as occur in recurrent erosion syndrome, are not the rule. Genetic sequencing indicated a familial relationship with the originally described Meesmann family......'s dystrophy occurs worldwide. The largest family described is the original German one, now supplemented with a Danish branch. Despite the presence of an identical genetic defect, the clinical phenotype varies. This suggests that non-KRT12-related mechanisms are responsible for the variation....

  20. The thrifty phenotype hypothesis revisited

    DEFF Research Database (Denmark)

    Vaag, A A; Grunnet, L G; Arora, G P

    2012-01-01

    Twenty years ago, Hales and Barker along with their co-workers published some of their pioneering papers proposing the 'thrifty phenotype hypothesis' in Diabetologia (4;35:595-601 and 3;36:62-67). Their postulate that fetal programming could represent an important player in the origin of type 2...... of the underlying molecular mechanisms. Type 2 diabetes is a multiple-organ disease, and developmental programming, with its idea of organ plasticity, is a plausible hypothesis for a common basis for the widespread organ dysfunctions in type 2 diabetes and the metabolic syndrome. Only two among the 45 known type 2...

  1. Monozygotic twins discordant for ROHHAD phenotype.

    Science.gov (United States)

    Patwari, Pallavi P; Rand, Casey M; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Weese-Mayer, Debra E

    2011-09-01

    Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) falls within a group of pediatric disorders with both respiratory control and autonomic nervous system dysregulation. Children with ROHHAD typically present after 1.5 years of age with rapid weight gain as the initial sign. Subsequently, they develop alveolar hypoventilation, autonomic nervous system dysregulation, and, if untreated, cardiorespiratory arrest. To our knowledge, this is the first report of discordant presentation of ROHHAD in monozygotic twins. Twin girls, born at term, had concordant growth and development until 8 years of age. From 8 to 12 years of age, the affected twin developed features characteristic of ROHHAD including obesity, alveolar hypoventilation, scoliosis, hypothalamic dysfunction (central diabetes insipidus, hypothyroidism, premature pubarche, and growth hormone deficiency), right paraspinal/thoracic ganglioneuroblastoma, seizures, and autonomic dysregulation including altered pain perception, large and sluggishly reactive pupils, hypothermia, and profound bradycardia that required a cardiac pacemaker. Results of genetic testing for PHOX2B (congenital central hypoventilation syndrome disease-defining gene) mutations were negative. With early recognition and conservative management, the affected twin had excellent neurocognitive outcome that matched that of the unaffected twin. The unaffected twin demonstrated rapid weight gain later in age but not development of signs/symptoms consistent with ROHHAD. This discordant twin pair demonstrates key features of ROHHAD including the importance of early recognition (especially hypoventilation), complexity of signs/symptoms and clinical course, and importance of initiating comprehensive, multispecialty care. These cases confound the hypothesis of a monogenic etiology for ROHHAD and indicate alternative etiologies including autoimmune or epigenetic phenomenon or a combination of genetic

  2. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  3. Effect of training and rest on respiratory mechanical properties in racing sled dogs.

    Science.gov (United States)

    Davis, Michael; Williamson, Katherine; McKenzie, Erica; Royer, Christopher; Payton, Mark; Nelson, Stuart

    2005-02-01

    Racing Alaskan sled dogs develop exercise-induced airway inflammation, similar to that reported for elite human athletes participating in cold-weather sports. These human athletes also have airway hyperresponsiveness, but airway function in sled dogs has not been measured. To compare respiratory mechanical properties in trained, rested Alaskan sled dogs with typical laboratory hounds, and to determine whether subsequent training alters respiratory mechanical properties. Nineteen healthy adult Alaskan sled dogs were compared with five healthy adult mixed-breed laboratory hounds. All dogs were rested for at least 4 months before examination. Respiratory mechanical properties were measured while the dogs were anesthetized and ventilated with a piston ventilator. The mean respiratory resistance and compliance measurements for 20 consecutive breaths were used as baseline values immediately before measurement of respiratory reactivity. Respiratory reactivity was the mean of 20 consecutive breaths immediately after the administration of aerosol histamine, expressed as the percentage change in prehistamine measurements. After the initial examinations, the sled dogs were divided into exercised and controls. Exercised dogs were trained for competitive endurance racing. Both groups were examined after 2 and 4 months of training. Alaskan sled dogs had greater respiratory compliance reactivity to histamine (77.47 +/- 8.58% baseline) compared with laboratory dogs (87.60 +/- 9.22% baseline). There was no effect of training on respiratory mechanical properties detected in racing sled dogs. Racing Alaskan sled dogs have airway dysfunction similar to "ski asthma" that persists despite having 4 months of rest. These findings suggest that repeated exercise in cold conditions can lead to airway disease that does not readily resolve with cessation of exercise.

  4. Postperfusion lung syndrome: Respiratory mechanics, respiratory indices and biomarkers

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2015-01-01

    Full Text Available Postperfusion lung syndrome is rare but lethal. Secondary inflammatory response was the popularly accepted theory for the underlying etiology. Respiratory index (RI and arterial oxygen tension/fractional inspired oxygen can be reliable indices for the diagnosis of this syndrome as X-ray appearance is always insignificant at the early stage of the onset. Evaluations of extravascular lung water content and pulmonary compliance are also helpful in the definite diagnosis. Multiorgan failure and triple acid-base disturbances that might develop secondary to postperfusion lung syndrome are responsible for the poor prognosis and increased mortality rather than postperfusion lung syndrome itself. Mechanical ventilation with low tidal volume (TV and proper positive end-expiratory pressure can be an effective treatment strategy. Use of ulinastatin and propofol may benefit the patients through different mechanisms.

  5. Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus

    DEFF Research Database (Denmark)

    White, Mitchell R; Crouch, Erika; Vesona, Jenny

    2005-01-01

    of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms...... of IAV while reducing the respiratory burst response to virus....

  6. Quantitation of respiratory viruses in relation to clinical course in children with acute respiratory tract infections

    NARCIS (Netherlands)

    Jansen, Rogier R.; Schinkel, Janke; dek, Irene; Koekkoek, Sylvie M.; Visser, Caroline E.; de Jong, Menno D.; Molenkamp, Richard; Pajkrt, Dasja

    2010-01-01

    Quantitation of respiratory viruses by PCR could potentially aid in clinical interpretation of PCR results. We conducted a study in children admitted with acute respiratory tract infections to study correlations between the clinical course of illness and semiquantitative detection of 14 respiratory

  7. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    Science.gov (United States)

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  8. Cortical plasticity within and across lifetimes: How can development inform us about phenotypic transformations?

    Directory of Open Access Journals (Sweden)

    James C Dooley

    2013-10-01

    Full Text Available The neocortex is the part of the mammalian brain that is involved in perception, cognition, and volitional motor control. It is a highly dynamic structure that is dramatically altered within the lifetime of an animal and in different lineages throughout the course of evolution. These alterations account for the remarkable variations in behavior that species exhibit. Of particular interest is how these cortical phenotypes change within the lifetime of the individual and eventually evolve in species over time. Because we cannot study the evolution of the neocortex directly we use comparative analysis to appreciate the types of changes that have been made to the neocortex and the similarities that exist across taxa. Developmental studies inform us about how these phenotypic transitions may arise by alterations in developmental cascades or changes in the physical environment in which the brain develops. Both genes and the sensory environment contribute to aspects of the phenotype and similar features, such as the size of a cortical field, can be altered in a variety of ways. Although both genes and the laws of physics place constraints on the evolution of the neocortex, mammals have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution.

  9. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.

    Science.gov (United States)

    Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M

    2018-01-17

    Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Two distinct phenotypes of asthma in elite athletes identified by latent class analysis.

    Science.gov (United States)

    Couto, Mariana; Stang, Julie; Horta, Luís; Stensrud, Trine; Severo, Milton; Mowinckel, Petter; Silva, Diana; Delgado, Luís; Moreira, André; Carlsen, Kai-Håkon

    2015-01-01

    Clusters of asthma in athletes have been insufficiently studied. Therefore, the present study aimed to characterize asthma phenotypes in elite athletes using latent class analysis (LCA) and to evaluate its association with the type of sport practiced. In the present cross-sectional study, an analysis of athletes' records was carried out in databases of the Portuguese National Anti-Doping Committee and the Norwegian School of Sport Sciences. Athletes with asthma, diagnosed according to criteria given by the International Olympic Committee, were included for LCA. Sports practiced were categorized into water, winter and other sports. Of 324 files screened, 150 files belonged to asthmatic athletes (91 Portuguese; 59 Norwegian). LCA retrieved two clusters: "atopic asthma" defined by allergic sensitization, rhinitis and allergic co-morbidities and increased exhaled nitric oxide levels; and "sports asthma", defined by exercise-induced respiratory symptoms and airway hyperesponsiveness without allergic features. The risk of developing the phenotype "sports asthma" was significantly increased in athletes practicing water (OR = 2.87; 95% CI [1.82-4.51]) and winter (OR = 8.65; 95% CI [2.67-28.03]) sports, when compared with other athletes. Two asthma phenotypes were identified in elite athletes: "atopic asthma" and "sports asthma". The type of sport practiced was associated with different phenotypes: water and winter sport athletes had three- and ninefold increased risk of "sports asthma". Recognizing different phenotypes is clinically relevant as it would lead to distinct targeted treatments.

  11. Increased entropy of signal transduction in the cancer metastasis phenotype

    Directory of Open Access Journals (Sweden)

    Teschendorff Andrew E

    2010-07-01

    Full Text Available Abstract Background The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Results Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may

  12. Respiratory muscle training in Duchenne muscular dystrophy.

    OpenAIRE

    Rodillo, E; Noble-Jamieson, C M; Aber, V; Heckmatt, J Z; Muntoni, F; Dubowitz, V

    1989-01-01

    Twenty two boys with Duchenne muscular dystrophy were entered into a randomised double blind crossover trial to compare respiratory muscle training with a Triflow II inspirometer and 'placebo' training with a mini peak flow meter. Supine posture was associated with significantly impaired lung function, but respiratory muscle training showed no benefit.

  13. Housing and respiratory health at older ages.

    Science.gov (United States)

    Webb, E; Blane, D; de Vries, Robert

    2013-03-01

    A large proportion of the population of England live in substandard housing. Previous research has suggested that poor-quality housing, particularly in terms of cold temperatures, mould, and damp, poses a health risk, particularly for older people. The present study aimed to examine the association between housing conditions and objectively measured respiratory health in a large general population sample of older people in England. Data on housing conditions, respiratory health and relevant covariates were obtained from the second wave of the English Longitudinal Study of Ageing. Multivariate regression methods were used to test the association between contemporary housing conditions and respiratory health while accounting for the potential effect of other factors; including social class, previous life-course housing conditions and childhood respiratory health. Older people who were in fuel poverty or who did not live in a home they owned had significantly worse respiratory health as measured by peak expiratory flow rates. After accounting for covariates, these factors had no effect on any other measures of respiratory health. Self-reported housing problems were not consistently associated with respiratory health. The housing conditions of older people in England, particularly those associated with fuel poverty and living in rented accommodation, may be harmful to some aspects of respiratory health. This has implications for upcoming UK government housing and energy policy decisions.

  14. Respiratory difficulties and breathing disorders in achondroplasia.

    Science.gov (United States)

    Afsharpaiman, S; Saburi, A; Waters, Karen A

    2013-12-01

    Respiratory difficulties and breathing disorders in achondroplasia are thought to underlie the increased risk for sudden infant death and neuropsychological deficits seen in this condition. This review evaluates literature regarding respiratory dysfunctions and their sequelae in patients with achondroplasia. The limited number of prospective studies of respiratory disease in achondroplasia means that observational studies and case series provide a large proportion of the data regarding the spectrum of respiratory diseases in achondroplasia and their treatments. Amongst clinical respiratory problems described, snoring is the commonest observed abnormality, but the reported incidence of obstructive sleep apnoea (OSA) shows wide variance (10% to 75%). Reported treatments of OSA include adenotonsillectomy, the use of CPAP, and surgical improvement of the airway, including mid-face advancement. Otolaryngologic manifestations are also common. Respiratory failure due to small thoracic volumes is reported, but uncommon. Mortality rate at all ages was 2.27 (CI: 1.7-3.0) with age-specific mortality increased at all ages. Sudden death was most common in infants and children. Cardiovascular events are the main cause of mortality in adults. Despite earlier recognition and treatment of respiratory complications of achondroplasia, increased mortality rates and other complications remain high. Future and ongoing evaluation of the prevalence and impact of respiratory disorders, particularly OSA, in achondroplasia is recommended. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Nanotechnology: Advancing the translational respiratory research

    OpenAIRE

    Dua, Kamal; Shukla, Shakti Dhar; de Jesus Andreoli Pinto, Terezinha; Hansbro, Philip Michael

    2017-01-01

    Considering the various limitations associated with the conventional dosage forms, nanotechnology is gaining increased attention in drug delivery particularly in respiratory medicine and research because of its advantages like targeting effects, improved pharmacotherapy, and patient compliance. This paper provides a quick snapshot about the recent trends and applications of nanotechnology to various translational and formulation scientists working on various respiratory diseases, which can he...

  16. Fabry disease, respiratory symptoms, and airway limitation

    DEFF Research Database (Denmark)

    Svensson, Camilla Kara; Feldt-Rasmussen, Ulla; Backer, Vibeke

    2015-01-01

    . The remaining 27 articles were relevant for this review. RESULTS: The current literature concerning lung manifestations describes various respiratory symptoms such as dyspnoea or shortness of breath, wheezing, and dry cough. These symptoms are often related to cardiac involvement in Fabry disease as respiratory...

  17. Respiratory bacterial infections in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Hansen, Christine R; Høiby, Niels

    2013-01-01

    PURPOSE OF REVIEW: Bacterial respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa remains the main pathogen in adults, but other Gram-negative bacteria such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia...... respiratory tract (nasal sampling) should be investigated and both infection sites should be treated....

  18. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)

    DEFF Research Database (Denmark)

    Kvisgaard, Lise Kirstine

    This PhD thesis presents the diversity of Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) circulating in the Danish pig population. PRRS is a disease in pigs caused by the PRRS virus resulting in reproductive failures in sows and gilts and respiratory diseases in pigs . Due to genetic...

  19. 29 CFR 1917.92 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1917.92 Section 1917.92 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Personal Protection § 1917.92 Respiratory protection. (See § 1917.1(a)(2)(x...

  20. 29 CFR 1926.103 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Respiratory protection. 1926.103 Section 1926.103 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1926.103 Respiratory protection. Note: The requirements applicable to construction work under this...

  1. 29 CFR 1918.102 - Respiratory protection.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Respiratory protection. 1918.102 Section 1918.102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Respiratory protection. (See § 1918.1(b)(8)). [65 FR 40946, June 30, 2000] ...

  2. Perceived Competence and Comfort in Respiratory Protection

    Science.gov (United States)

    Burgel, Barbara J.; Novak, Debra; Burns, Candace M.; Byrd, Annette; Carpenter, Holly; Gruden, MaryAnn; Lachat, Ann; Taormina, Deborah

    2015-01-01

    In response to the Institute of Medicine (2011) report Occupational Health Nurses and Respiratory Protection: Improving Education and Training, a nationwide survey was conducted in May 2012 to assess occupational health nurses’ educational preparation, roles, responsibilities, and training needs in respiratory protection. More than 2,000 occupational health nurses responded; 83% perceived themselves as competent, proficient, or expert in respiratory protection, reporting moderate comfort with 12 respiratory program elements. If occupational health nurses had primary responsibility for the respiratory protection program, they were more likely to perceive higher competence and more comfort in respiratory protection, after controlling for occupational health nursing experience, highest education, occupational health nursing certification, industry sector, Association of Occupational Health Professionals in Healthcare membership, taking a National Institute for Occupational Safety and Health spirometry course in the prior 5 years, and perceiving a positive safety culture at work. These survey results document high perceived competence and comfort in respiratory protection. These findings support the development of targeted educational programs and interprofessional competencies for respiratory protection. PMID:23429638

  3. Air pollution and respiratory illness

    Energy Technology Data Exchange (ETDEWEB)

    Indra, G. [DIET, Uttamasolapuram, Salem (India)

    2005-07-01

    This presentation provides an overview of air pollution and impacts on public health. It provides a definition of pollution according to the Oxford English dictionary and categorizes the different types of pollution according to air, water, land and noise. It discusses air pollution and its pollutants (gaseous and particulate pollutants) as well as the diameter of the pollutant (dust, smoke, and gas). The paper also illustrates the formation of acid rain and discusses the amount of pollutants in the atmosphere per year. It presents occupational diseases, discusses radio active pollutants, respiratory illnesses as well as pollution prevention and control. The paper concluded that more research is needed to obtain information on ways to reduce the quantity of pollutants being discharged from special processes. 3 refs., 2 figs., 2 tabs.

  4. Perioperative modifications of respiratory function.

    LENUS (Irish Health Repository)

    Duggan, Michelle

    2012-01-31

    Postoperative pulmonary complications contribute considerably to morbidity and mortality, especially after major thoracic or abdominal surgery. Clinically relevant pulmonary complications include the exacerbation of underlying chronic lung disease, bronchospasm, atelectasis, pneumonia and respiratory failure with prolonged mechanical ventilation. Risk factors for postoperative pulmonary complications include patient-related risk factors (e.g., chronic obstructive pulmonary disease (COPD), tobacco smoking and increasing age) as well as procedure-related risk factors (e.g., site of surgery, duration of surgery and general vs. regional anaesthesia). Careful history taking and a thorough physical examination may be the most sensitive ways to identify at-risk patients. Pulmonary function tests are not suitable as a general screen to assess risk of postoperative pulmonary complications. Strategies to reduce the risk of postoperative pulmonary complications include smoking cessation, inspiratory muscle training, optimising nutritional status and intra-operative strategies. Postoperative care should include lung expansion manoeuvres and adequate pain control.

  5. The respiratory system in equations

    CERN Document Server

    Maury, Bertrand

    2013-01-01

    The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.

  6. Prevention of Nosocomial Respiratory Infections

    Directory of Open Access Journals (Sweden)

    N. A. Karpun

    2007-01-01

    Full Text Available Objective: to evaluate the efficiency of an extended package of preventive measures on the incidence of nosocomial respiratory infections in surgical patients at an intensive care unit (ICU. Subjects and methods. The study included 809 patients aged 35 to 80 years. A study group comprised 494 patients in whom an extended package of preventive measures was implemented during 7 months (March-September. A control group consisted of 315 patients treated in 2004 in the same period of time (March-September. The groups were stratified by age, gender, underlying diseases, and APACHE-2 and SOFA scores. The extended package of anti-infectious measures involved a high air purification in ICUs («Flow-M» technology, routine use of ventilatory filters, closed aspiration systems with a built-in antibacterial filter under artificial ventilation for over 2 days. Results. The proposed technologies could reduce the frequency of tracheobronchitis and ventilator-associated pneumonias in the groups of patients at high risk for nosocomial infections substantially (by more than twice. Conclusion. The findings have led to the conclusion that the extended package of preventive measures is effective in preventing respiratory infections in ICU patients. Of special note is the proper prevention of upper airway contamination with pathogenic microorganisms, by employing the closed aspiration systems with a built-in antibacterial filter. The routine use of high-tech consumables in the intensive care of surgical patients causes a considerable decrease in the incidence of nosocomial pneumonia, ventilator-associated pneumonia, and purulent tracheobronchitis and a reduction in the number of microbiological studies. Key words: ventilator-associated pneumonia, prevention of nosocomial infections, closed aspiration system.

  7. Stem cells and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Soraia Carvalho Abreu

    2008-12-01

    Full Text Available Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases.As células-tronco têm uma infinidade de implicações clínicas no pulmão. Este artigo é uma revisão crítica que inclui estudos clínicos e experimentais advindos do banco de dados do MEDLINE e SciElo nos últimos 10 anos, onde foram destacados os efeitos da terapia celular na síndrome do desconforto respiratório agudo ou doenças mais crônicas, como fibrose pulmonar e enfisema. Apesar de muitos estudos demonstrarem os efeitos benéficos das células-tronco no desenvolvimento, reparo e remodelamento pulmonar; algumas questões ainda precisam ser respondidas para um melhor entendimento dos mecanismos que controlam a divisão celular e diferenciação, permitindo o uso da terapia celular nas doenças respiratórias.

  8. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    Science.gov (United States)

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  9. Music and Alterity Processes

    Directory of Open Access Journals (Sweden)

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  10. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  11. Respiratory neuroplasticity - Overview, significance and future directions.

    Science.gov (United States)

    Fuller, David D; Mitchell, Gordon S

    2017-01-01

    Neuroplasticity is an important property of the neural system controlling breathing. However, our appreciation for its importance is still relatively new, and we have much to learn concerning different forms of plasticity, their underlying mechanisms, and their biological and clinical significance. In this brief review, we discuss several well-studied models of respiratory plasticity, including plasticity initiated by inactivity in the respiratory system, intermittent and sustained hypoxia, and traumatic injury to the spinal cord. Other aspects of respiratory plasticity are considered in other contributions to this special edition of Experimental Neurology on respiratory plasticity. Finally, we conclude with discussions concerning the biological and clinical significance of respiratory motor plasticity, and areas in need of future research effort. Copyright © 2016. Published by Elsevier Inc.

  12. Refined Phenotyping of Modic Changes

    Science.gov (United States)

    Määttä, Juhani H.; Karppinen, Jaro; Paananen, Markus; Bow, Cora; Luk, Keith D.K.; Cheung, Kenneth M.C.; Samartzis, Dino

    2016-01-01

    Abstract Low back pain (LBP) is the world's most disabling condition. Modic changes (MC) are vertebral bone marrow changes adjacent to the endplates as noted on magnetic resonance imaging. The associations of specific MC types and patterns with prolonged, severe LBP and disability remain speculative. This study assessed the relationship of prolonged, severe LBP and back-related disability, with the presence and morphology of lumbar MC in a large cross-sectional population-based study of Southern Chinese. We addressed the topographical and morphological dimensions of MC along with other magnetic resonance imaging phenotypes (eg, disc degeneration and displacement) on the basis of axial T1 and sagittal T2-weighted imaging of L1-S1. Prolonged severe LBP was defined as LBP lasting ≥30 days during the past year, and a visual analog scale severest pain intensity of at least 6/10. An Oswestry Disability Index score of 15% was regarded as significant disability. We also assessed subject demographics, occupation, and lifestyle factors. In total, 1142 subjects (63% females, mean age 53 years) were assessed. Of these, 282 (24.7%) had MC (7.1% type I, 17.6% type II). MC subjects were older (P = 0.003), had more frequent disc displacements (P disability. The strength of the associations increased with the number of MC. This large-scale study is the first to definitively note MC types and specific morphologies to be independently associated with prolonged severe LBP and back-related disability. This proposed refined MC phenotype may have direct implications in clinical decision-making as to the development and management of LBP. Understanding of these imaging biomarkers can lead to new preventative and personalized therapeutics related to LBP. PMID:27258491

  13. Asthmatic/wheezing phenotypes in preschool children: Influential factors, health care and urban-rural differences.

    Science.gov (United States)

    Kutzora, Susanne; Weber, Alisa; Heinze, Stefanie; Hendrowarsito, Lana; Nennstiel-Ratzel, Uta; von Mutius, Erika; Fuchs, Nina; Herr, Caroline

    2018-03-01

    Different wheezing and asthmatic phenotypes turned out to indicate differences in etiology, risk factors and health care. We examined influential factors and urban-rural differences for different phenotypes. Parents of 4732 children filled out a questionnaire concerning children's health and environmental factors administered within the Health Monitoring Units (GME) in a cross-sectional study in Bavaria, Germany (2014/2015). To classify respiratory symptoms, five phenotype groups were built: episodic, unremitting and frequent wheeze, ISAAC (International Study of Asthma and Allergies in Children) - asthma and physician-diagnosed asthma (neither of the groups are mutually exclusive). For each phenotype, health care variables were presented and stratified for residence. Urban-rural differences were tested by Pearson's chi-squared tests. Multivariable logistic regression was performed to analyze associations between influential factors and belonging to a phenotype group, and to compare groups with regard to health care variables as outcome. Risk factors for wheezing phenotypes were male gender (OR = 2.02, 95%-CI = [1.65-2.48]), having older siblings (OR = 1.24, 95%-CI = [1.02-1.51]), and preterm delivery (OR = 1.61, 95%-CI = [1.13-2.29]) (ORs for unremitting wheeze). 57% of children with ISAAC asthma and 74% with physician-diagnosed asthma had performed allergy tests. Medication intake among all groups was more frequent in rural areas, and physician's asthma diagnoses were more frequent in urban areas. In accordance with previous research this study confirms that male gender, older siblings and preterm delivery are associated with several wheezing phenotypes. Overall, low numbers of allergy tests among children with physician's diagnoses highlight a discrepancy between common practice and current knowledge and guidelines. Residential differences in health care might encourage further research and interventions strategies. Copyright © 2017

  14. The phenotypic variance gradient - a novel concept.

    Science.gov (United States)

    Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton

    2014-11-01

    Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.

  15. A phenotypic profile of the Candida albicans regulatory network.

    Directory of Open Access Journals (Sweden)

    Oliver R Homann

    2009-12-01

    Full Text Available Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of

  16. A phenotypic profile of the Candida albicans regulatory network.

    Science.gov (United States)

    Homann, Oliver R; Dea, Jeanselle; Noble, Suzanne M; Johnson, Alexander D

    2009-12-01

    Candida albicans is a normal resident of the gastrointestinal tract and also the most prevalent fungal pathogen of humans. It last shared a common ancestor with the model yeast Saccharomyces cerevisiae over 300 million years ago. We describe a collection of 143 genetically matched strains of C. albicans, each of which has been deleted for a specific transcriptional regulator. This collection represents a large fraction of the non-essential transcription circuitry. A phenotypic profile for each mutant was developed using a screen of 55 growth conditions. The results identify the biological roles of many individual transcriptional regulators; for many, this work represents the first description of their functions. For example, a quarter of the strains showed altered colony formation, a phenotype reflecting transitions among yeast, pseudohyphal, and hyphal cell forms. These transitions, which have been closely linked to pathogenesis, have been extensively studied, yet our work nearly doubles the number of transcriptional regulators known to influence them. As a second example, nearly a quarter of the knockout strains affected sensitivity to commonly used antifungal drugs; although a few transcriptional regulators have previously been implicated in susceptibility to these drugs, our work indicates many additional mechanisms of sensitivity and resistance. Finally, our results inform how transcriptional networks evolve. Comparison with the existing S. cerevisiae data (supplemented by additional S. cerevisiae experiments reported here) allows the first systematic analysis of phenotypic conservation by orthologous transcriptional regulators over a large evolutionary distance. We find that, despite the many specific wiring changes documented between these species, the general phenotypes of orthologous transcriptional regulator knockouts are largely conserved. These observations support the idea that many wiring changes affect the detailed architecture of the circuit, but

  17. Hypoxia‐induced alterations of G2 checkpoint regulators

    OpenAIRE

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G.

    2016-01-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage‐induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting o...

  18. Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection.

    Science.gov (United States)

    Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V; Mansfield, Kathleen D; Parkhouse, Kaela; Mistry, Rakesh D; Alpern, Elizabeth R; Hensley, Scott E; Sullivan, Kathleen E; Coffin, Susan E; Wherry, E John

    2018-01-09

    Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Management of respiratory symptoms in ALS.

    LENUS (Irish Health Repository)

    Hardiman, Orla

    2012-02-01

    Respiratory insufficiency is a frequent feature of ALS and is present in almost all cases at some stage of the illness. It is the commonest cause of death in ALS. FVC is used as important endpoint in many clinical trials, and in decision-making events for patients with ALS, although there are limitations to its predictive utility. There are multiple causes of respiratory muscle failure, all of which act to produce a progressive decline in pulmonary function. Diaphragmatic fatigue and weakness, coupled with respiratory muscle weakness, lead to reduced lung compliance and atelectasis. Increased secretions increase the risk of aspiration pneumonia, which further compromises respiratory function. Bulbar dysfunction can lead to nutritional deficiency, which in turn increases the fatigue of respiratory muscles. Early recognition of respiratory decline and symptomatic intervention, including non-invasive ventilation can significantly enhance both quality of life and life expectancy in ALS. Patients with respiratory failure should be advised to consider an advance directive to avoid emergency mechanical ventilation.

  20. Management of respiratory symptoms in ALS.

    LENUS (Irish Health Repository)

    Hardiman, Orla

    2011-03-01

    Respiratory insufficiency is a frequent feature of ALS and is present in almost all cases at some stage of the illness. It is the commonest cause of death in ALS. FVC is used as important endpoint in many clinical trials, and in decision-making events for patients with ALS, although there are limitations to its predictive utility. There are multiple causes of respiratory muscle failure, all of which act to produce a progressive decline in pulmonary function. Diaphragmatic fatigue and weakness, coupled with respiratory muscle weakness, lead to reduced lung compliance and atelectasis. Increased secretions increase the risk of aspiration pneumonia, which further compromises respiratory function. Bulbar dysfunction can lead to nutritional deficiency, which in turn increases the fatigue of respiratory muscles. Early recognition of respiratory decline and symptomatic intervention, including non-invasive ventilation can significantly enhance both quality of life and life expectancy in ALS. Patients with respiratory failure should be advised to consider an advance directive to avoid emergency mechanical ventilation.

  1. SMART phones and the acute respiratory patient.

    LENUS (Irish Health Repository)

    Gleeson, L

    2012-05-01

    Definition of Respiratory Failure using PaO2 alone is confounded when patients are commenced on oxygen therapy prior to arterial blood gas (ABG) measurement. Furthermore, classification of Respiratory Failure as Type 1 or Type 2 using PaCO2 alone can give an inaccurate account of events as both types can co-exist. 100 consecutive presentations of acute respiratory distress were assessed initially using PaO2, and subsequently PaO2\\/FiO2 ratio, to diagnose Respiratory Failure. Respiratory Failure cases were classified as Type 1 or Type 2 initially using PaCO2, and subsequently alveolar-arterial (A-a) gradient. Any resultant change in management was documented. Of 100 presentations, an additional 16 cases were diagnosed as Respiratory Failure using PaO2\\/FiO2 ratio in place of PaO2 alone (p = 0.0338). Of 57 cases of Respiratory Failure, 22 cases classified as Type 2 using PaCO2 alone were reclassified as Type 1 using A-a gradient (p < 0.001). Of these 22 cases, management changed in 18.

  2. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Directory of Open Access Journals (Sweden)

    Luciana Helena Antoniassi da Silva

    2009-08-01

    Full Text Available The human respiratory syncytial virus (hRSV and the human metapneumovírus (hMPV are main etiological agents of acute respiratory infections (ARI. The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV is the best characterized agent viral of this group, associated with respiratory diseases in lower respiratory tract. Recently, a new human pathogen belonging to the subfamily Pneumovirinae was identified, the human metapneumovirus (hMPV, which is structurally similar to the hRSV, in genomic organization, viral structure, antigenicity and clinical symptoms.  The subfamily Pneumovirinae contains two genera: genus Pneumovirus contains hRSV, the bovine (bRSV, as well as the ovine and caprine respiratory syncytial virus and pneumonia virus of mice, the second genus Metapneumovirus, consists of avian metapneumovirus (aMPV and human metapneumovirus (hMPV. In this work, we present a brief narrative review of the literature on important aspects of the biology, epidemiology and clinical manifestations of infections by two respiratory viruses.

  3. Cattle phenotypes can disguise their maternal ancestry.

    Science.gov (United States)

    Srirattana, Kanokwan; McCosker, Kieren; Schatz, Tim; St John, Justin C

    2017-06-26

    Cattle are bred for, amongst other factors, specific traits, including parasite resistance and adaptation to climate. However, the influence and inheritance of mitochondrial DNA (mtDNA) are not usually considered in breeding programmes. In this study, we analysed the mtDNA profiles of cattle from Victoria (VIC), southern Australia, which is a temperate climate, and the Northern Territory (NT), the northern part of Australia, which has a tropical climate, to determine if the mtDNA profiles of these cattle are indicative of breed and phenotype, and whether these profiles are appropriate for their environments. A phylogenetic tree of the full mtDNA sequences of different breeds of cattle, which were obtained from the NCBI database, showed that the mtDNA profiles of cattle do not always reflect their phenotype as some cattle with Bos taurus phenotypes had Bos indicus mtDNA, whilst some cattle with Bos indicus phenotypes had Bos taurus mtDNA. Using D-loop sequencing, we were able to contrast the phenotypes and mtDNA profiles from different species of cattle from the 2 distinct cattle breeding regions of Australia. We found that 67 of the 121 cattle with Bos indicus phenotypes from NT (55.4%) had Bos taurus mtDNA. In VIC, 92 of the 225 cattle with Bos taurus phenotypes (40.9%) possessed Bos indicus mtDNA. When focusing on oocytes from cattle with the Bos taurus phenotype in VIC, their respective oocytes with Bos indicus mtDNA had significantly lower levels of mtDNA copy number compared with oocytes possessing Bos taurus mtDNA (P cattle with a Bos taurus phenotype. The phenotype of cattle is not always related to their mtDNA profiles. MtDNA profiles should be considered for breeding programmes as they also influence phenotypic traits and reproductive capacity in terms of oocyte quality.

  4. Targeting MicroRNA Function in Respiratory Diseases: Mini-review

    Directory of Open Access Journals (Sweden)

    Steven eMaltby

    2016-02-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNA molecules that modulate expression of the majority of genes by inhibiting protein translation. Growing literature has identified functional roles for miRNAs across a broad range of biological processes. As such, miRNAs are recognised as potential disease biomarkers and novel targets for therapies. While several miRNA-targeted therapies are currently in clinical trials (e.g. for the treatment of hepatitis C virus infection and cancer, no therapies have targeted miRNAs in respiratory diseases in the clinic. In this mini-review, we review the current knowledge on miRNA expression and function in respiratory diseases, intervention strategies to target miRNA function and considerations specific to respiratory diseases. Altered miRNA expression profiles have been reported in a number of respiratory diseases, including asthma, chronic obstructive pulmonary disease, cystic fibrosis and idiopathic pulmonary fibrosis. These include alterations in isolated lung tissue, as well as sputum, bronchoalveolar lavage fluids and peripheral blood or serum. The observed alterations in easily accessible body fluids (e.g. serum have been proposed as new biomarkers that may inform disease diagnosis and patient management. In a subset of studies, miRNA-targeted interventions also improved disease outcomes, indicating functional roles for altered miRNA expression in disease pathogenesis. In fact, direct administration of miRNA-targeting molecules to the lung has yielded promising results in a number of animal models. The ability to directly administer compounds to the lung holds considerable promise and may limit potential off-target effects and side effects caused by the systemic administration required to treat other diseases.

  5. Impaired cortical processing of inspiratory loads in children with chronic respiratory defects

    Directory of Open Access Journals (Sweden)

    Clément Annick

    2007-09-01

    Full Text Available Abstract Background Inspiratory occlusion evoked cortical potentials (the respiratory related-evoked potentials, RREPs bear witness of the processing of changes in respiratory mechanics by the brain. Their impairment in children having suffered near-fatal asthma supports the hypothesis that relates asthma severity with the ability of the patients to perceive respiratory changes. It is not known whether or not chronic respiratory defects are associated with an alteration in brain processing of inspiratory loads. The aim of the present study was to compare the presence, the latencies and the amplitudes of the P1, N1, P2, and N2 components of the RREPs in children with chronic lung or neuromuscular disease. Methods RREPs were recorded in patients with stable asthma (n = 21, cystic fibrosis (n = 32, and neuromuscular disease (n = 16 and in healthy controls (n = 11. Results The 4 RREP components were significantly less frequently observed in the 3 groups of patients than in the controls. Within the patient groups, the N1 and the P2 components were significantly less frequently observed in the patients with asthma (16/21 for both components and cystic fibrosis (20/32 and 14/32 than in the patients with neuromuscular disease (15/16 and 16/16. When present, the latencies and amplitudes of the 4 components were similar in the patients and controls. Conclusion Chronic ventilatory defects in children are associated with an impaired cortical processing of afferent respiratory signals.

  6. Metabolic alkalosis contributes to acute hypercapnic respiratory failure in adult cystic fibrosis.

    Science.gov (United States)

    Holland, Anne E; Wilson, John W; Kotsimbos, Thomas C; Naughton, Matthew T

    2003-08-01

    and study objectives: Patients with end-stage cystic fibrosis (CF) develop respiratory failure and hypercapnia. In contrast to COPD patients, altered electrolyte transport and malnutrition in CF patients may predispose them to metabolic alkalosis and, therefore, may contribute to hypercapnia. The aim of this study was to determine the prevalence of metabolic alkalosis in adults with hypercapnic respiratory failure in the setting of acute exacerbations of CF compared with COPD. Levels of arterial blood gases, plasma electrolytes, and serum albumin from 14 consecutive hypercapnic CF patients who had been admitted to the hospital with a respiratory exacerbation were compared with 49 consecutive hypercapnic patients with exacerbations of COPD. Hypercapnia was defined as a PaCO(2) of > or = 45 mm Hg. Despite similar PaCO(2) values, patients in the CF group were significantly more alkalotic than were those in the COPD group (mean [+/- SD] pH, 7.43 +/- 0.03 vs 7.37 +/- 0.05, respectively; p respiratory acidosis and metabolic alkalosis was evident in 71% of CF patients and 22% of COPD patients (p alkalosis contributes to hypercapnic respiratory failure in adults with acute exacerbations of CF. This acid-base disturbance occurs in conjunction with reduced total body salt levels and hypoalbuminemia.

  7. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.

    Science.gov (United States)

    Wang, Edwin; Zaman, Naif; Mcgee, Shauna; Milanese, Jean-Sébastien; Masoudi-Nejad, Ali; O'Connor-McCourt, Maureen

    2015-02-01

    Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment. To meet these challenges, we discuss a cancer hallmark network framework for modeling genome sequencing data to predict cancer clonal evolution and associated clinical phenotypes. The framework includes: (1) cancer hallmarks that can be represented by a few molecular/signaling networks. 'Network operational signatures' which represent gene regulatory logics/strengths enable to quantify state transitions and measures of hallmark traits. Thus, sets of genomic alterations which are associated with network operational signatures could be linked to the state/measure of hallmark traits. The network operational signature transforms genotypic data (i.e., genomic alterations) to regulatory phenotypic profiles (i.e., regulatory logics/strengths), to cellular phenotypic profiles (i.e., hallmark traits) which lead to clinical phenotypic profiles (i.e., a collection of hallmark traits). Furthermore, the framework considers regulatory logics of the hallmark networks under tumor evolutionary dynamics and therefore also includes: (2) a self-promoting positive feedback loop that is dominated by a genomic instability network and a cell survival/proliferation network is the main driver of tumor clonal evolution. Surrounding tumor stroma and its host immune systems shape the evolutionary paths; (3) cell motility initiating metastasis is a byproduct of the above self-promoting loop activity during tumorigenesis; (4) an emerging hallmark network which triggers genome duplication dominates a feed-forward loop which in turn could act as a rate-limiting step for tumor formation; (5) mutations and other genomic alterations have

  8. Respiratory Depression Caused by Heroin Use

    Directory of Open Access Journals (Sweden)

    Kadir Hakan Cansiz

    2012-04-01

    Full Text Available Summary Heroin is a semisynthetic narcotic analgesic and heroin abuse is common due to its pleasure-inducing effect. For the last 30 years heroin abuse has become an important worldwide public health problem. Heroin can be administered in many different ways as preferred. Heroin affects many systems including respiratory system, cardiovascular system and particulary the central nervous system. Overdose use of heroin intravenously can be fatal due to respiratory depression. In this letter, we wanted to engage attention to respiratory depression caused by heroin abuse and potential benefits of using naloxone. [TAF Prev Med Bull 2012; 11(2.000: 248-250

  9. Evaluation and treatment of respiratory alkalosis.

    Science.gov (United States)

    Palmer, Biff F

    2012-11-01

    Respiratory alkalosis is the most frequent acid-base disturbance encountered in clinical practice. This is particularly true in critically ill patients, for whom the degree of hypocapnia directly correlates with adverse outcomes. Although this acid-base disturbance often is considered benign, evidence suggests that the alkalemia of primary hypocapnia can cause clinically significant decreases in tissue oxygen delivery. Mild respiratory alkalosis often serves as a marker of an underlying disease and may not require therapeutic intervention. In contrast, severe respiratory alkalosis should be approached with a sense of urgency and be aggressively corrected. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. Environmental allergies and respiratory morbidities in cystic fibrosis.

    Science.gov (United States)

    Collaco, Joseph M; Morrow, Christopher B; Green, Deanna M; Cutting, Garry R; Mogayzel, Peter J

    2013-09-01

    Cystic fibrosis (CF) is characterized by recurrent respiratory infections and progressive lung disease. Although environmental factors account for 50% of the variation in CF lung function, few specific exposures have been identified. Studies using small study samples focusing on environmental allergies in CF have had inconsistent results. Our objective was to examine the role of environmental allergies in upper and lower respiratory tract morbidities in CF. A total of 1,321 subjects with CF were recruited through the U.S. CF Twin-Sibling Study. Questionnaires were used to determine the presence/absence of environmental allergies. Questionnaires, chart review, and U.S. CF Foundation Patient Registry data were used to track outcomes. Within the study sample 14% reported environmental allergies. Environmental allergies were associated with a higher risk of sinus disease (adjusted OR: 2.68; P allergies were also associated with a more rapid decline in lung function (additional -1.1%/year; P = 0.001). However, allergies were associated with a later median age of acquisition of Pseudomonas aeruginosa (6.6 years vs. 4.4 years; log rank P = 0.027). The reported use of common allergy medications, anti-histamines and leukotriene inhibitors, did not alter the frequency of respiratory morbidities. Environmental allergies are associated with an increased risk of sinus disease and nasal polyps and a more rapid decline in CF lung function, but may have a protective effect against the acquisition of P. aeruginosa. Prospective studies are needed to confirm these associations which have implications for more aggressive management of allergies. Copyright © 2012 Wiley Periodicals, Inc.

  11. Dynamic upper respiratory abnormalities in Thoroughbred racehorses in South Africa

    Directory of Open Access Journals (Sweden)

    Javier E. Mirazo

    2014-11-01

    Full Text Available Upper airway endoscopy at rest has been the diagnostic method of choice for equine upper respiratory tract (URT conditions. Development of high-speed treadmill endoscopy improved the sensitivity of URT endoscopy by allowing observation of the horse’s nasopharynx and larynx during exercise. However, treadmill exercise may not always accurately represent the horse’s normal exercise as track surface, rider, tack and environmental variables are altered. Recently, the development of dynamic overground endoscopy (DOE has addressed some of these shortcomings. A retrospective study was undertaken to describe the URT abnormalities detected during DOE in racehorses presenting with poor performance and/or abnormal respiratory noise. Patient records of Thoroughbred racehorses undergoing DOE from November 2011 to August 2012 were reviewed. Data collected included signalment, primary complaint, distance exercised, maximum speed and dynamic airway abnormalities detected. Fifty-two horses underwent DOE for investigation of poor performance and/or abnormal respiratory noise. The main abnormalities detected included axial deviation of the aryepiglottic folds (40%, vocal cord collapse (35%, abnormal arytenoid function (33% and dorsal displacement of the soft palate (25%. A total of 40 horses were diagnosed with one or more abnormalities of the URT (77%. Fifteen horses (29% had a single abnormality and 25 horses (48% had multiple abnormalities. This study showed that DOE is a useful technique for investigating dynamic disorders of the URT in racehorses in South Africa. The total number and type of dynamic pathological conditions were comparable with those identified in similar populations in other geographical locations.

  12. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    NARCIS (Netherlands)

    Kohler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.M.; Brown, D.L.; Brudno, M.; Campbell, J.; FitzPatrick, D.R.; Eppig, J.T.; Jackson, A.P.; Freson, K.; Girdea, M.; Helbig, I.; Hurst, J.A.; Jahn, J.; Jackson, L.G.; Kelly, A.M.; Ledbetter, D.H.; Mansour, S.; Martin, C.L.; Moss, C.; Mumford, A.; Ouwehand, W.H.; Park, S.M.; Riggs, E.R.; Scott, R.H.; Sisodiya, S.; Vooren, S. van der; Wapner, R.J.; Wilkie, A.O.; Wright, C.F.; Silfhout, A.T. van; Leeuw, N. de; Vries, B. de; Washingthon, N.L.; Smith, C.L.; Westerfield, M.; Schofield, P.; Ruef, B.J.; Gkoutos, G.V.; Haendel, M.; Smedley, D.; Lewis, S.E.; Robinson, P.N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have

  13. Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content

    NARCIS (Netherlands)

    Liu, WT; Linning, KD; Nakamura, K; Mino, T; Matsuo, T; Forney, LJ

    Biomarkers (respiratory quinones and cellular fatty acids) and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes were used to characterize the microbial community structure of lab-scale enhanced biological phosphate-removal (EBPR) systems in response to altering sludge

  14. A 37-year-old Woman with Altered Mental Status and Urinary Frequency

    Directory of Open Access Journals (Sweden)

    Deepa Ravikumar

    2013-03-01

    Full Text Available We present a case report of a patient who initially presented with altered mental status andsignificant urinary frequency. Over the course of her emergency department stay, she thendeveloped tachycardia out of proportion to a new fever along with a respiratory alkalosis. Althougheach objective finding has a broad differential diagnosis, thyroid storm was the only unifyingdiagnosis when all findings were present.

  15. Chaotic dynamics of respiratory sounds

    International Nuclear Information System (INIS)

    Ahlstrom, C.; Johansson, A.; Hult, P.; Ask, P.

    2006-01-01

    There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D 2 ) and the Kaplan-Yorke dimension (D KY ) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data

  16. Chaotic dynamics of respiratory sounds

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrom, C. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden) and Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)]. E-mail: christer@imt.liu.se; Johansson, A. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Hult, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden); Ask, P. [Department of Biomedical Engineering, Linkoepings Universitet, IMT/LIU, Universitetssjukhuset, S-58185 Linkoeping (Sweden); Biomedical Engineering, Orebro University Hospital, S-70185 Orebro (Sweden)

    2006-09-15

    There is a growing interest in nonlinear analysis of respiratory sounds (RS), but little has been done to justify the use of nonlinear tools on such data. The aim of this paper is to investigate the stationarity, linearity and chaotic dynamics of recorded RS. Two independent data sets from 8 + 8 healthy subjects were recorded and investigated. The first set consisted of lung sounds (LS) recorded with an electronic stethoscope and the other of tracheal sounds (TS) recorded with a contact accelerometer. Recurrence plot analysis revealed that both LS and TS are quasistationary, with the parts corresponding to inspiratory and expiratory flow plateaus being stationary. Surrogate data tests could not provide statistically sufficient evidence regarding the nonlinearity of the data. The null hypothesis could not be rejected in 4 out of 32 LS cases and in 15 out of 32 TS cases. However, the Lyapunov spectra, the correlation dimension (D {sub 2}) and the Kaplan-Yorke dimension (D {sub KY}) all indicate chaotic behavior. The Lyapunov analysis showed that the sum of the exponents was negative in all cases and that the largest exponent was found to be positive. The results are partly ambiguous, but provide some evidence of chaotic dynamics of RS, both concerning LS and TS. The results motivate continuous use of nonlinear tools for analysing RS data.

  17. Metformin-associated respiratory alkalosis.

    Science.gov (United States)

    Bryant, Sean M; Cumpston, Kirk; Lipsky, Martin S; Patel, Nirali; Leikin, Jerrold B

    2004-01-01

    We present an 84-year-old man with a history of chronic obstructive pulmonary disease, type 2 diabetes, hypertension, glaucoma, and bladder cancer who presented to the emergency department after the police found him disoriented and confused. Metformin therapy began 3 days before, and he denied any overdose or suicidal ideation. Other daily medications included glipizide, fluticasone, prednisone, aspirin, furosemide, insulin, and potassium supplements. In the emergency department, his vital signs were significant for hypertension (168/90), tachycardia (120 bpm), and Kussmaul respirations at 24 breaths per minute. Oxygen saturation was 99% on room air, and a fingerstick glucose was 307 mg/dL. He was disoriented to time and answered questions slowly. Metformin was discontinued, and by day 3, the patient's vital signs and laboratory test results normalized. He has been asymptomatic at subsequent follow-up visits. Metformin-associated lactic acidosis is a well-known phenomenon. Respiratory alkalosis may be an early adverse event induced by metformin prior to the development of lactic acidosis.

  18. Daddy issues: paternal effects on phenotype.

    Science.gov (United States)

    Rando, Oliver J

    2012-11-09

    The once popular and then heretical idea that ancestral environment can affect the phenotype of future generations is coming back into vogue due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Phenotypes of organ involvement in sarcoidosis

    NARCIS (Netherlands)

    Schupp, Jonas Christian; Freitag-Wolf, Sandra; Bargagli, Elena; Mihailović-Vučinić, Violeta; Rottoli, Paola; Grubanovic, Aleksandar; Müller, Annegret; Jochens, Arne; Tittmann, Lukas; Schnerch, Jasmin; Olivieri, Carmela; Fischer, Annegret; Jovanovic, Dragana; Filipovic, Snežana; Videnovic-Ivanovic, Jelica; Bresser, Paul; Jonkers, René; O'Reilly, Kate; Ho, Ling-Pei; Gaede, Karoline I.; Zabel, Peter; Dubaniewicz, Anna; Marshall, Ben; Kieszko, Robert; Milanowski, Janusz; Günther, Andreas; Weihrich, Anette; Petrek, Martin; Kolek, Vitezslav; Keane, Michael P.; O'Beirne, Sarah; Donnelly, Seamas; Haraldsdottir, Sigridur Olina; Jorundsdottir, Kristin B.; Costabel, Ulrich; Bonella, Francesco; Wallaert, Benoît; Grah, Christian; Peroš-Golubičić, Tatjana; Luisetti, Mauritio; Kadija, Zamir; Pabst, Stefan; Grohé, Christian; Strausz, János; Vašáková, Martina; Sterclova, Martina; Millar, Ann; Homolka, Jiří; Slováková, Alena; Kendrick, Yvonne; Crawshaw, Anjali; Wuyts, Wim; Spencer, Lisa; Pfeifer, Michael; Valeyre, Dominique; Poletti, Venerino; Wirtz, Hubertus; Prasse, Antje; Schreiber, Stefan; Krawczak, Michael; Müller-Quernheim, Joachim

    2018-01-01

    Sarcoidosis is a highly variable, systemic granulomatous disease of hitherto unknown aetiology. The GenPhenReSa (Genotype-Phenotype Relationship in Sarcoidosis) project represents a European multicentre study to investigate the influence of genotype on disease phenotypes in sarcoidosis. The baseline

  20. Emerging semantics to link phenotype and environment

    Directory of Open Access Journals (Sweden)

    Anne E. Thessen

    2015-12-01

    Full Text Available Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1 use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2 two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3 two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE and the Biological Collections Ontology (BCO; these provide a starting point for the development of a data model linking phenotypes and environments.

  1. Haptoglobin Phenotypes and Hypertension in Indigenous Zambians ...

    African Journals Online (AJOL)

    Haptoglobin Phenotypes and Hypertension in Indigenous Zambians at the University Teaching Hospital, Lusaka, Zambia. MM Phiri, T Kaile, FM Goma. Abstract. Objectives: The aim of the study was to investigate the association between presence of haptoglobin phenotypes and hypertension in indigenous Zambian patients ...

  2. Knowledge-based analysis of phenotypes

    KAUST Repository

    Hoendorf, Robert

    2016-01-01

    a formal framework to describe phenotypes. A formalized theory of phenotypes is not only useful for domain analysis, but can also be applied to assist in the diagnosis of rare genetic diseases, and I will show how our results on the ontology

  3. The Neuroanatomy of the Autistic Phenotype

    Science.gov (United States)

    Fahim, Cherine; Meguid, Nagwa A.; Nashaat, Neveen H.; Yoon, Uicheul; Mancini-Marie, Adham; Evans, Alan C.

    2012-01-01

    The autism phenotype is associated with an excess of brain volume due in part to decreased pruning during development. Here we aimed at assessing brain volume early in development to further elucidate previous findings in autism and determine whether this pattern is restricted to idiopathic autism or shared within the autistic phenotype (fragile X…

  4. MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast.

    Science.gov (United States)

    Baruffini, Enrico; Dallabona, Cristina; Invernizzi, Federica; Yarham, John W; Melchionda, Laura; Blakely, Emma L; Lamantea, Eleonora; Donnini, Claudia; Santra, Saikat; Vijayaraghavan, Suresh; Roper, Helen P; Burlina, Alberto; Kopajtich, Robert; Walther, Anett; Strom, Tim M; Haack, Tobias B; Prokisch, Holger; Taylor, Robert W; Ferrero, Ileana; Zeviani, Massimo; Ghezzi, Daniele

    2013-11-01

    We report three families presenting with hypertrophic cardiomyopathy, lactic acidosis, and multiple defects of mitochondrial respiratory chain (MRC) activities. By direct sequencing of the candidate gene MTO1, encoding the mitochondrial-tRNA modifier 1, or whole exome sequencing analysis, we identified novel missense mutations. All MTO1 mutations were predicted to be deleterious on MTO1 function. Their pathogenic role was experimentally validated in a recombinant yeast model, by assessing oxidative growth, respiratory activity, mitochondrial protein synthesis, and complex IV activity. In one case, we also demonstrated that expression of wt MTO1 could rescue the respiratory defect in mutant fibroblasts. The severity of the yeast respiratory phenotypes partly correlated with the different clinical presentations observed in MTO1 mutant patients, although the clinical outcome was highly variable in patients with the same mutation and seemed also to depend on timely start of pharmacological treatment, centered on the control of lactic acidosis by dichloroacetate. Our results indicate that MTO1 mutations are commonly associated with a presentation of hypertrophic cardiomyopathy, lactic acidosis, and MRC deficiency, and that ad hoc recombinant yeast models represent a useful system to test the pathogenic potential of uncommon variants, and provide insight into their effects on the expression of a biochemical phenotype. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc.

  5. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria.

    Science.gov (United States)

    Agrawal, Anurag; Mabalirajan, Ulaganathan

    2016-01-15

    Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases. Copyright © 2016 the American Physiological Society.

  6. Modulation of aerial respiratory behaviour in a pond snail.

    Science.gov (United States)

    Lukowiak, Ken; Martens, Kara; Orr, Mike; Parvez, Kashif; Rosenegger, David; Sangha, Susan

    2006-11-01

    Aerial respiratory in Lymnaea is driven by a three-neuron CPG whose sufficiency and necessity has been directly demonstrated. While this CPG is 'hard-wired' it displays a tremendous amount of plasticity. That is, it is possible by employing specific training procedures to alter how it functions in a specific hypoxic environment. Thus, it is possible to study directly the causal mechanisms of long-term memory formation, forgetting, and modulation of the memory at a single cell level. Thus, it is possible to use a relatively simple three-neuron CPG to study not only important questions concerning regulation of important homeostatic mechanisms but to also use it to study how learning and non-declarative memory are mediated at a cellular level.

  7. Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Kang, Dong Im; Jung, Sang Hoon; Kim, Chul Jong; Park, Hee Chul; Choi, Byung Ki

    2015-01-01

    External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40%-60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (0.71 sec), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). This study is

  8. Immunization alters body odor.

    Science.gov (United States)

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.

  9. Evolving phenotypic networks in silico.

    Science.gov (United States)

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  10. Adjusting phenotypes by noise control.

    Directory of Open Access Journals (Sweden)

    Kyung H Kim

    2012-01-01

    Full Text Available Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks.

  11. Federated Tensor Factorization for Computational Phenotyping

    Science.gov (United States)

    Kim, Yejin; Sun, Jimeng; Yu, Hwanjo; Jiang, Xiaoqian

    2017-01-01

    Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy. PMID:29071165

  12. Nordic research infrastructures for plant phenotyping

    Directory of Open Access Journals (Sweden)

    Kristiina Himanen

    2018-03-01

    Full Text Available Plant phenomics refers to the systematic study of plant phenotypes. Together with closely monitored, controlled climates, it provides an essential component for the integrated analysis of genotype-phenotype-environment interactions. Currently, several plant growth and phenotyping facilities are under establishment globally, and numerous facilities are already in use. Alongside the development of the research infrastructures, several national and international networks have been established to support shared use of the new methodology. In this review, an overview is given of the Nordic plant phenotyping and climate control facilities. Since many areas of phenomics such as sensor-based phenotyping, image analysis and data standards are still developing, promotion of educational and networking activities is especially important. These facilities and networks will be instrumental in tackling plant breeding and plant protection challenges. They will also provide possibilities to study wild species and their ecological interactions under changing Nordic climate conditions.

  13. Association of CYP2C19 polymorphisms and lansoprazole-associated respiratory adverse effects in children.

    Science.gov (United States)

    Lima, John J; Lang, Jason E; Mougey, Edward B; Blake, Kathryn B; Gong, Yan; Holbrook, Janet T; Wise, Robert A; Teague, W G

    2013-09-01

    To determine whether cytochrome P450 (CYP)2C19 haplotype associates with lansoprazole-associated adverse event frequency. Respiratory adverse events from a clinical trial of lansoprazole in children with asthma were analyzed for associations with extensive or poor metabolizer (PM) phenotype based on CYP2C19 haplotypes. Carriers of CYP2C19*2, *3, *8, or *9 alleles were PMs; carriers of 2 wild-type alleles were extensive metabolizers (EMs). Plasma concentrations of lansoprazole were determined in PM and EM phenotypes. The frequency of upper respiratory infection among PMs (n = 45) was higher than that among EMs (n = 91), which in turn was higher than that in placebo subjects (n = 135; P = .0039). The frequency of sore throat (ST) was similarly distributed among EMs and PMs (P = .0015). The OR (95% CI) for upper respiratory infections in PMs was 2.46 (1.02-5.96) (P = .046); for EMs, the OR (95% CI) was 1.55 (0.86-2.79). The OR (95% CI) for ST in EMs and PMs was 2.94 (1.23-7.05, P = .016) vs 1.97 (1.09-3.55, P = .024), respectively. Mean ± SD plasma concentrations of lansoprazole were higher in PMs than in EMs: 207 ± 179 ng/mL vs 132 ± 141 ng/mL (P = .04). Lansoprazole-associated upper respiratory infections and ST in children are related in part to CYP2C19 haplotype. Our data suggest that lansoprazole-associated adverse events in children may be mitigated by adjusting the conventional dose in PMs. Additional studies are required to replicate our findings. Copyright © 2013 Mosby, Inc. All rights reserved.

  14. Effect of transoral tracheal wash on respiratory mechanics in dogs with respiratory disease.

    Science.gov (United States)

    Vaught, Meghan E; Rozanski, Elizabeth A; deLaforcade, Armelle M

    2018-01-01

    The purpose of this study was to determine the impact of a transoral tracheal wash (TOTW) on respiratory mechanics in dogs and to describe the use of a critical care ventilator (CCV) to determine respiratory mechanics. Fourteen client-owned dogs with respiratory diseases were enrolled. Respiratory mechanics, including static compliance (C stat ) and static resistance (R stat ), were determined before and after TOTW. Pre- and post-wash results were compared, with a P -value of mechanics, as observed by a reduction in C stat , presumably due to airway flooding and collapse. While no long-lasting effects were noted in these clinical patients, this effect should be considered when performing TOTW on dogs with respiratory diseases. Respiratory mechanics testing using a CCV was feasible and may be a useful clinical testing approach.

  15. The Nature of Stable Insomnia Phenotypes

    Science.gov (United States)

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L.

    2015-01-01

    Study Objectives: We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Design: Longitudinal. Setting: Urban, community-based. Participants: Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). Interventions: None. Measurements and results: At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the “neither criterion” phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. Conclusions: By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With

  16. Effects of global warming on respiratory diseases

    African Journals Online (AJOL)

    Abe Olugbenga

    and tuberculosis), parasitic lung diseases, chronic obstructive pulmonary disease ... Methods: A literature search on global warming and respiratory diseases was carried out through the internet .... (COPD) The main factor to consider here is.

  17. Respiratory muscle training for multiple sclerosis

    NARCIS (Netherlands)

    Rietberg, Marc B.; Veerbeek, Janne M.; Gosselink, Rik; Kwakkel, Gert; van Wegen, Erwin E.H.

    2017-01-01

    Background: Multiple sclerosis (MS) is a chronic disease of the central nervous system, affecting approximately 2.5 million people worldwide. People with MS may experience limitations in muscular strength and endurance - including the respiratory muscles, affecting functional performance and

  18. Severe acute respiratory syndrome: lessons and uncertainties.

    NARCIS (Netherlands)

    Kullberg, B.J.; Voss, A.

    2003-01-01

    The outbreak of severe acute respiratory syndrome (SARS) has produced scientific and epidemiological discoveries with unprecedented speed, and this information has been spread instantaneously to the global health community through the internet. Within a few weeks, the coronavirus associated with

  19. Respiratory function in facioscapulohumeral muscular dystrophy 1

    NARCIS (Netherlands)

    Wohlgemuth, M.; Horlings, G.C.; Kooi, E.L. van der; Gilhuis, H.J.; Hendriks, J.C.M.; Maarel, S.M. van der; Engelen, B.G.M. van; Heijdra, Y.F.; Padberg, G.W.A.M.

    2017-01-01

    To test the hypothesis that wheelchair dependency and (kypho-)scoliosis are risk factors for developing respiratory insufficiency in facioscapulohumeral muscular dystrophy, we examined 81 patients with facioscapulohumeral muscular dystrophy 1 of varying degrees of severity ranging from ambulatory

  20. Respiratory Health Effects of Passive Smoking

    Science.gov (United States)

    This report concludes that exposure to environmental tobacco smoke (ETS), commonly known as secondhand smoke, is responsible for approx