WorldWideScience

Sample records for alters nitrogen cycling

  1. Parasite infection alters nitrogen cycling at the ecosystem scale.

    Science.gov (United States)

    Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R

    2016-05-01

    Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that

  2. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2013-01-01

    Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha −1 yr −1 ) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition. -- Highlights: •Soil organic N does not increase along the extant N deposition gradient. •Reduced N fixation is related to compositional shifts in soil cyanobacteria community. •Nitrogen cycling is altered by simulated N deposition. •Soil organic C content decrease along the extant N deposition gradient. •Semiarid soils are unable to mitigate CO 2 emissions after increased N deposition. -- N deposition alters N cycling and reduces soil C content in semiarid Mediterranean ecosystems

  3. Ecosystem services altered by human changes in the nitrogen cycle: A new perspective for assessment

    Science.gov (United States)

    Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here...

  4. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  5. Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making Ecology Letters

    Science.gov (United States)

    The human alteration of the nitrogen (N) cycle has yielded many benefits, but also has altered ecosystems and degraded air and water quality in many areas. Here we explore the science available to connect the effects of increasing N on ecosystem structure and function to ecosyst...

  6. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  7. Bioturbation: impact on the marine nitrogen cycle.

    Science.gov (United States)

    Laverock, Bonnie; Gilbert, Jack A; Tait, Karen; Osborn, A Mark; Widdicombe, Steve

    2011-01-01

    Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significantly affect these microbial processes by altering the physicochemical properties of the sediment. For example, the building and irrigation of burrows by bioturbators introduces fresh oxygenated water into deeper sediment layers and allows the exchange of solutes between the sediment and water column. Burrows can effectively extend the oxic/anoxic interface into deeper sediment layers, thus providing a unique environment for nitrogen-cycling microbial communities. Recent studies have shown that the abundance and diversity of micro-organisms can be far greater in burrow wall sediment than in the surrounding surface or subsurface sediment; meanwhile, bioturbated sediment supports higher rates of coupled nitrification-denitrification reactions and increased fluxes of ammonium to the water column. In the present paper we discuss the potential for bioturbation to significantly affect marine nitrogen cycling, as well as the molecular techniques used to study microbial nitrogen cycling communities and directions for future study.

  8. Key ecological responses to nitrogen are altered by climate change

    Science.gov (United States)

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, Jill S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  9. [Effects and mechanism of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem].

    Science.gov (United States)

    Wang, Li-qin; Qi, Yu-chun; Dong, Yun-she; Peng, Qin; Guo, Shu-fang; He, Yun-long; Yan, Zhong-qing

    2015-11-01

    As a widespread natural phenomenon in the soil of middle and high latitude as well as high altitude, freeze-thawing cycles have a great influence on the nitrogen cycle of terrestrial ecosystem in non-growing season. Freeze-thawing cycles can alter the physicochemical and biological properties of the soil, which thereby affect the migration and transformation of soil nitrogen. The impacts of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem found in available studies remain inconsistent, the mechanism is still not clear, and the research methods also need to be further explored and innovated. So it is necessary to sum up and analyze the existing achievements in order to better understand the processes of soil nitrogen cycle subjected to freeze-thawing cycles. This paper reviewed the research progress in China and abroad about the effects and mechanisms of freeze-thawing cycles on key processes of nitrogen cycle in terrestrial ecosystem, including mineralization, immobilization, nitrification and denitrification, N leakage and gaseous loss, and analyzed the deficiencies of extant research. The possible key research topics that should be urgently paid more attention to in the future were also discussed.

  10. Implications of a More Comprehensive Nitrogen Cycle in a Global Biogeochemical Ocean Model

    Science.gov (United States)

    Six, K. D.; Ilyina, T.

    2016-02-01

    Nitrogen plays a crucial role for nearly all living organisms in the Earth system. Changes in the marine nitrogen cycle not only alter the marine biota, but will also have an impact on the marine carbon cycle and, in turn, on climate due to the close coupling of the carbon-nitrogen cycle. The understanding of processes and controls of the marine nitrogen cycle is therefore a prerequisite to reduce uncertainties in the prediction of future climate. Nevertheless, most ocean biogeochemical components of modern Earth system models have a rather simplistic representation of marine N-cycle mainly focusing on nitrate. Here we present results of the HAMburg Ocean Carbon Cycle model (HAMOCC) as part of the MPI-ESM which was extended by a prognostic representation of ammonium and nitrite to resolve important processes of the marine N-cycle such as nitrification and anaerobic ammonium oxidation (anammox). Additionally, we updated the production of nitrous oxide, an important greenhouse gas, allowing for two sources from oxidation of ammonium (nitrification) and from reduction of nitrite (nitrifier-denitrification) at low oxygen concentrations. Besides an extended model data comparison we discuss the following aspects of the N-cycle by model means: (1) contribution of anammox to the loss of fixed nitrogen, and (2) production and emission of marine nitrous oxide.

  11. Impacts of Human Alteration of the Nitrogen Cycle in the U.S. on Radiative Forcing

    Science.gov (United States)

    Nitrogen cycling processes affect radiative forcing directly through emissions of nitrous oxide (N2O) and indirectly because emissions of nitrogen oxide (NO x ) and ammonia (NH3) affect atmospheric concentrations of methane (CH4), carbon dioxide (CO2), water vapor (H2O), ozone (O...

  12. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  13. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  14. Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems

    Science.gov (United States)

    Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia Zeglin

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...

  15. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  16. Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making.

    Science.gov (United States)

    Compton, Jana E; Harrison, John A; Dennis, Robin L; Greaver, Tara L; Hill, Brian H; Jordan, Stephen J; Walker, Henry; Campbell, Holly V

    2011-08-01

    Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here, we review the science quantifying effects of N on key ecosystem services, and compare the costs of N-related impacts or mitigation using the metric of cost per unit of N. Damage costs to the provision of clean air, reflected by impaired human respiratory health, are well characterized and fairly high (e.g. costs of ozone and particulate damages of $28 per kg NO(x)-N). Damage to services associated with productivity, biodiversity, recreation and clean water are less certain and although generally lower, these costs are quite variable (ecosystem services provides decision-makers an integrated view of N sources, damages and abatement costs to address the significant challenges associated with reducing N pollution. Published 2011. This article is a US Government work and is in the public domain in the USA.

  17. Enzymology and ecology of the nitrogen cycle.

    Science.gov (United States)

    Martínez-Espinosa, Rosa María; Cole, Jeffrey A; Richardson, David J; Watmough, Nicholas J

    2011-01-01

    The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.

  18. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils.

    Science.gov (United States)

    Jung, Jaejoon; Yeom, Jinki; Kim, Jisun; Han, Jiwon; Lim, Hyoun Soo; Park, Hyun; Hyun, Seunghun; Park, Woojun

    2011-12-01

    The microbial community (bacterial, archaeal, and fungi) and eight genes involved in the nitrogen biogeochemical cycle (nifH, nitrogen fixation; bacterial and archaeal amoA, ammonia oxidation; narG, nitrate reduction; nirS, nirK, nitrite reduction; norB, nitric oxide reduction; and nosZ, nitrous oxide reduction) were quantitatively assessed in this study, via real-time PCR with DNA extracted from three Antarctic soils. Interestingly, AOB amoA was found to be more abundant than AOA amoA in Antarctic soils. The results of microcosm studies revealed that the fungal and archaeal communities were diminished in response to warming temperatures (10 °C) and that the archaeal community was less sensitive to nitrogen addition, which suggests that those two communities are well-adapted to colder temperatures. AOA amoA and norB genes were reduced with warming temperatures. The abundance of only the nifH and nirK genes increased with both warming and the addition of nitrogen. NirS-type denitrifying bacteria outnumbered NirK-type denitrifiers regardless of the treatment used. Interestingly, dramatic increases in both NirS and NirK-types denitrifiers were observed with nitrogen addition. NirK types increase with warming, but NirS-type denitrifiers tend to be less sensitive to warming. Our findings indicated that the Antarctic microbial nitrogen cycle could be dramatically altered by temperature and nitrogen, and that warming may be detrimental to the ammonia-oxidizing archaeal community. To the best of our knowledge, this is the first report to investigate genes associated with each process of the nitrogen biogeochemical cycle in an Antarctic terrestrial soil environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  1. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    Science.gov (United States)

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.

  2. The evolution and future of Earth's nitrogen cycle.

    Science.gov (United States)

    Canfield, Donald E; Glazer, Alexander N; Falkowski, Paul G

    2010-10-08

    Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by ~2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however, the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N(2)O). Microbial processes will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated.

  3. The Evolution and Future of Earth's Nitrogen Cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Glazer, Alexander N.; Falkowski, Paul G.

    2010-01-01

    , the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N2O). Microbial processes......Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by similar to 2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however...... will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated....

  4. Lipids as paleomarkers to constrain the marine nitrogen cycle.

    Science.gov (United States)

    Rush, Darci; Sinninghe Damsté, Jaap S

    2017-06-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio-available nitrogen species. As most microorganisms are soft-bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically-important cycle, and provides examples of biomarker applications in the geological past. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis.

    Science.gov (United States)

    Lu, Meng; Yang, Yuanhe; Luo, Yiqi; Fang, Changming; Zhou, Xuhui; Chen, Jiakuan; Yang, Xin; Li, Bo

    2011-03-01

    • Anthropogenic nitrogen (N) addition may substantially alter the terrestrial N cycle. However, a comprehensive understanding of how the ecosystem N cycle responds to external N input remains elusive. • Here, we evaluated the central tendencies of the responses of 15 variables associated with the ecosystem N cycle to N addition, using data extracted from 206 peer-reviewed papers. • Our results showed that the largest changes in the ecosystem N cycle caused by N addition were increases in soil inorganic N leaching (461%), soil NO₃⁻ concentration (429%), nitrification (154%), nitrous oxide emission (134%), and denitrification (84%). N addition also substantially increased soil NH₄+ concentration (47%), and the N content in belowground (53%) and aboveground (44%) plant pools, leaves (24%), litter (24%) and dissolved organic N (21%). Total N content in the organic horizon (6.1%) and mineral soil (6.2%) slightly increased in response to N addition. However, N addition induced a decrease in microbial biomass N by 5.8%. • The increases in N effluxes caused by N addition were much greater than those in plant and soil pools except soil NO₃⁻, suggesting a leaky terrestrial N system. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  6. The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors.

    Science.gov (United States)

    Godfrey, Linda V; Glass, Jennifer B

    2011-01-01

    The nitrogen (N) cycle is the only global biogeochemical cycle that is driven by biological functions involving the interaction of many microorganisms. The N cycle has evolved over geological time and its interaction with the oxygen cycle has had profound effects on the evolution and timing of Earth's atmosphere oxygenation (Falkowski and Godfrey, 2008). Almost every enzyme that microorganisms use to manipulate N contains redox-sensitive metals. Bioavailability of these metals has changed through time as a function of varying redox conditions, and likely influenced the biological underpinnings of the N cycle. It is possible to construct a record through geological time using N isotopes and metal concentrations in sediments to determine when the different stages of the N cycle evolved and the role metal availability played in the development of key enzymes. The same techniques are applicable to understanding the operation and changes in the N cycle through geological time. However, N and many of the redox-sensitive metals in some of their oxidation states are mobile and the isotopic composition or distribution can be altered by subsequent processes leading to erroneous conclusions. This chapter reviews the enzymology and metal cofactors of the N cycle and describes proper utilization of methods used to reconstruct evolution of the N cycle through time. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Geochemical isotope compartment model of the nitrogen cycle

    International Nuclear Information System (INIS)

    Weise, G.; Wetzel, K.; Stiehl, G.

    1981-01-01

    A model of the global cycle of nitrogen and its isotopes is described. It takes into account geochemical reservoirs (nitrogen in magmatic metamorphic, and sedimentary rocks and in the atmosphere) and the nitrogen exchange between magmatic rocks and the outer mantle, the transition of nitrogen exchange between sedimentary rocks and the atmosphere. With the aid of the mathematical formalisms of the compartment theory and on the basis of all available delta 11 N values assumptions regarding the isotope effects in forming these nitrogen fluxes data have been obtained on the degree of the nitrogen exchange between the earth crust and the outer mantle and on other nitrogen fluxes characterizing the global nitrogen cycle. (author)

  8. Microbial nitrogen cycling in Arctic snowpacks

    International Nuclear Information System (INIS)

    Larose, Catherine; Vogel, Timothy M; Dommergue, Aurélien

    2013-01-01

    Arctic snowpacks are often considered as chemical reactors for a variety of chemicals deposited through wet and dry events, but are overlooked as potential sites for microbial metabolism of reactive nitrogen species. The fate of deposited species is critical since warming leads to the transfer of contaminants to snowmelt-fed ecosystems. Here, we examined the role of microorganisms and the potential pathways involved in nitrogen cycling in the snow. Next generation sequencing data were used to follow functional gene abundances and a 16S rRNA (ribosomal ribonucleic acid) gene microarray was used to follow shifts in microbial community structure during a two-month spring-time field study at a high Arctic site, Svalbard, Norway (79° N). We showed that despite the low temperatures and limited water supply, microbial communities inhabiting the snow cover demonstrated dynamic shifts in their functional potential to follow several different pathways of the nitrogen cycle. In addition, microbial specific phylogenetic probes tracked different nitrogen species over time. For example, probes for Roseomonas tracked nitrate concentrations closely and probes for Caulobacter tracked ammonium concentrations after a delay of one week. Nitrogen cycling was also shown to be a dominant process at the base of the snowpack. (letter)

  9. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, Darci; Sinninghe Damsté, Jaap S

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  10. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, D.; Sinninghe Damsté, J.S.

    2017-01-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  11. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Bender, Sara J; Parker, Micaela S; Armbrust, E Virginia

    2012-03-01

    Diatoms are photoautotrophic organisms capable of growing on a variety of inorganic and organic nitrogen sources. Discovery of a complete urea cycle in diatoms was surprising, as this pathway commonly functions in heterotrophic organisms to rid cells of waste nitrogen. To determine how the urea cycle is integrated into cellular nitrogen metabolism and energy management, the centric diatom Thalassiosira pseudonana was maintained in semi-continuous batch cultures on nitrate, ammonium, or urea as the sole nitrogen source, under a 16: 8 light: dark cycle and at light intensities that were low, saturating, or high for growth. Steady-state transcript levels were determined for genes encoding enzymes linked to the urea cycle, urea hydrolysis, glutamine synthesis, pyrimidine synthesis, photorespiration, and energy storage. Transcript abundances were significantly affected by nitrogen source, light intensity and a diel cycle. The impact of N source on differential transcript accumulation was most apparent under the highest light intensity. Models of cellular metabolism under high light were developed based on changes in transcript abundance and predicted enzyme localizations. We hypothesize that the urea cycle is integrated into nitrogen metabolism through its connection to glutamine and in the eventual production of urea. These findings have important implications for nitrogen flow in the cell over diel cycles at surface ocean irradiances. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  13. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  14. Nitrogen expander cycles for large capacity liquefaction of natural gas

    International Nuclear Information System (INIS)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity

  15. Nitrogen Cycle Ninja, A Teaching Exercise.

    Science.gov (United States)

    Raun, William R.; And Others

    1997-01-01

    Assesses the effectiveness of using pop quizzes and rewards to improve student retention of the nitrogen cycle. Students able to diagram the N cycle on pop quizzes were rewarded with special cards that included the N cycle. These cards could then be used on subsequent tests in place of memory alone. Six of 11 students tested three months later…

  16. Soil warming alters nitrogen cycling in a New England forest: implications for ecosystem function and structure.

    Science.gov (United States)

    Butler, S M; Melillo, J M; Johnson, J E; Mohan, J; Steudler, P A; Lux, H; Burrows, E; Smith, R M; Vario, C L; Scott, L; Hill, T D; Aponte, N; Bowles, F

    2012-03-01

    Global climate change is expected to affect terrestrial ecosystems in a variety of ways. Some of the more well-studied effects include the biogeochemical feedbacks to the climate system that can either increase or decrease the atmospheric load of greenhouse gases such as carbon dioxide and nitrous oxide. Less well-studied are the effects of climate change on the linkages between soil and plant processes. Here, we report the effects of soil warming on these linkages observed in a large field manipulation of a deciduous forest in southern New England, USA, where soil was continuously warmed 5°C above ambient for 7 years. Over this period, we have observed significant changes to the nitrogen cycle that have the potential to affect tree species composition in the long term. Since the start of the experiment, we have documented a 45% average annual increase in net nitrogen mineralization and a three-fold increase in nitrification such that in years 5 through 7, 25% of the nitrogen mineralized is then nitrified. The warming-induced increase of available nitrogen resulted in increases in the foliar nitrogen content and the relative growth rate of trees in the warmed area. Acer rubrum (red maple) trees have responded the most after 7 years of warming, with the greatest increases in both foliar nitrogen content and relative growth rates. Our study suggests that considering species-specific responses to increases in nitrogen availability and changes in nitrogen form is important in predicting future forest composition and feedbacks to the climate system.

  17. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    Science.gov (United States)

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  18. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.

    Science.gov (United States)

    von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi

    2016-01-01

    River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.

  19. The geobiological nitrogen cycle: From microbes to the mantle.

    Science.gov (United States)

    Zerkle, A L; Mikhail, S

    2017-05-01

    Nitrogen forms an integral part of the main building blocks of life, including DNA, RNA, and proteins. N 2 is the dominant gas in Earth's atmosphere, and nitrogen is stored in all of Earth's geological reservoirs, including the crust, the mantle, and the core. As such, nitrogen geochemistry is fundamental to the evolution of planet Earth and the life it supports. Despite the importance of nitrogen in the Earth system, large gaps remain in our knowledge of how the surface and deep nitrogen cycles have evolved over geologic time. Here, we discuss the current understanding (or lack thereof) for how the unique interaction of biological innovation, geodynamics, and mantle petrology has acted to regulate Earth's nitrogen cycle over geologic timescales. In particular, we explore how temporal variations in the external (biosphere and atmosphere) and internal (crust and mantle) nitrogen cycles could have regulated atmospheric pN 2 . We consider three potential scenarios for the evolution of the geobiological nitrogen cycle over Earth's history: two in which atmospheric pN 2 has changed unidirectionally (increased or decreased) over geologic time and one in which pN 2 could have taken a dramatic deflection following the Great Oxidation Event. It is impossible to discriminate between these scenarios with the currently available models and datasets. However, we are optimistic that this problem can be solved, following a sustained, open-minded, and multidisciplinary effort between surface and deep Earth communities. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.

  20. Nitrogen cycle and ecosystem services in the Brazilian La Plata Basin: anthropogenic influence and climate change.

    Science.gov (United States)

    Watanabe, M; Ortega, E; Bergier, I; Silva, J S V

    2012-08-01

    The increasing human demand for food, raw material and energy has radically modified both the landscape and biogeochemical cycles in many river basins in the world. The interference of human activities on the Biosphere is so significant that it has doubled the amount of reactive nitrogen due to industrial fertiliser production (Haber-Bosch), fossil fuel burning and land-use change over the last century. In this context, the Brazilian La Plata Basin contributes to the alteration of the nitrogen cycle in South America because of its huge agricultural and grazing area that meets the demands of its large urban centres - Sao Paulo, for instance - and also external markets abroad. In this paper, we estimate the current inputs and outputs of anthropogenic nitrogen (in kg N.km(-2).yr(-1)) in the basin. In the results, we observe that soybean plays a very important role in the Brazilian La Plata, since it contributes with an annual entrance of about 1.8 TgN due to biological nitrogen fixation. Moreover, our estimate indicates that the export of soybean products accounts for roughly 1.0 TgN which is greater than the annual nitrogen riverine exports from Brazilian Parana, Paraguay and Uruguay rivers together. Complimentarily, we built future scenarios representing changes in the nitrogen cycle profile considering two scenarios of climate change for 2070-2100 (based on IPCC's A2 and B2) that will affect land-use, nitrogen inputs, and loss of such nutrients in the basin. Finally, we discuss how both scenarios will affect human well-being since there is a connection between nitrogen cycle and ecosystem services that affect local and global populations, such as food and fibre production and climate regulation.

  1. Nitrogen cycle and ecosystem services in the Brazilian La Plata Basin: anthropogenic influence and climate change

    Directory of Open Access Journals (Sweden)

    M Watanabe

    Full Text Available The increasing human demand for food, raw material and energy has radically modified both the landscape and biogeochemical cycles in many river basins in the world. The interference of human activities on the Biosphere is so significant that it has doubled the amount of reactive nitrogen due to industrial fertiliser production (Haber-Bosch, fossil fuel burning and land-use change over the last century. In this context, the Brazilian La Plata Basin contributes to the alteration of the nitrogen cycle in South America because of its huge agricultural and grazing area that meets the demands of its large urban centres - Sao Paulo, for instance - and also external markets abroad. In this paper, we estimate the current inputs and outputs of anthropogenic nitrogen (in kg N.km-2.yr-1 in the basin. In the results, we observe that soybean plays a very important role in the Brazilian La Plata, since it contributes with an annual entrance of about 1.8 TgN due to biological nitrogen fixation. Moreover, our estimate indicates that the export of soybean products accounts for roughly 1.0 TgN which is greater than the annual nitrogen riverine exports from Brazilian Parana, Paraguay and Uruguay rivers together. Complimentarily, we built future scenarios representing changes in the nitrogen cycle profile considering two scenarios of climate change for 2070-2100 (based on IPCC's A2 and B2 that will affect land-use, nitrogen inputs, and loss of such nutrients in the basin. Finally, we discuss how both scenarios will affect human well-being since there is a connection between nitrogen cycle and ecosystem services that affect local and global populations, such as food and fibre production and climate regulation.

  2. EMERGY ANALYSIS OF THE PREHISTORIC NITROGEN CYCLE

    Science.gov (United States)

    Several relationships between the specific emergy or the emergy per unit mass and the mass concentration of nitrogen were shown to exist through an analysis of the global nitrogen cycle. These observed relationships were interpreted by examining the nature of the underlying ener...

  3. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  4. Investigations on the nitrogen cycle in the coastal North Sea

    NARCIS (Netherlands)

    Fan, H.

    2016-01-01

    This thesis focuses on the nitrogen cycle in Dutch coastal waters and sediments. Themain hypothesis of this study was that the different steps of the nitrogen cycle occurspatially and temporally separated from each other rather than that the cycle is closedin the same place and time. To verify this

  5. Investigations on the nitrogen cycle in the coastal North Sea

    NARCIS (Netherlands)

    Fan, H.

    2016-01-01

    This thesis focuses on the nitrogen cycle in Dutch coastal waters and sediments. The main hypothesis of this study was that the different steps of the nitrogen cycle occur spatially and temporally separated from each other rather than that the cycle is closed in the same place and time. To verify

  6. Vegetation controls on carbon and nitrogen cycling and retention: contrasts in spruce and hardwood watershed budgets

    Science.gov (United States)

    Charlene N. Kelly; Stephen H. Schoenholtz; Mary Beth. Adams

    2010-01-01

    Anthropogenic sources of nitrogen (N) have altered the global N cycle to such an extent as to nearly double the rate of N that enters many terrestrial ecosystems. However, predicting the fate of N inputs continues to present challenges, as a multitude of environmental factors play major roles in determining N pathways. This research investigates the role of specific...

  7. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    KAUST Repository

    Rädecker, Nils

    2015-04-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral–algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease.

  8. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    KAUST Repository

    Rä decker, Nils; Pogoreutz, Claudia; Voolstra, Christian R.; Wiedenmann, Jö rg; Wild, Christian

    2015-01-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral–algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease.

  9. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    Science.gov (United States)

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  10. Overlooked runaway feedback in the marine nitrogen cycle: the vicious cycle

    Directory of Open Access Journals (Sweden)

    A. Landolfi

    2013-03-01

    Full Text Available The marine nitrogen (N inventory is thought to be stabilized by negative feedback mechanisms that reduce N inventory excursions relative to the more slowly overturning phosphorus inventory. Using a global biogeochemical ocean circulation model we show that negative feedbacks stabilizing the N inventory cannot persist if a close spatial association of N2 fixation and denitrification occurs. In our idealized model experiments, nitrogen deficient waters, generated by denitrification, stimulate local N2 fixation activity. But, because of stoichiometric constraints, the denitrification of newly fixed nitrogen leads to a net loss of N. This can enhance the N deficit, thereby triggering additional fixation in a vicious cycle, ultimately leading to a runaway N loss. To break this vicious cycle, and allow for stabilizing negative feedbacks to occur, inputs of new N need to be spatially decoupled from denitrification. Our idealized model experiments suggest that factors such as iron limitation or dissolved organic matter cycling can promote such decoupling and allow for negative feedbacks that stabilize the N inventory. Conversely, close spatial co-location of N2 fixation and denitrification could lead to net N loss.

  11. Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle.

    Science.gov (United States)

    Laneuville, Matthieu; Kameya, Masafumi; Cleaves, H James

    2018-03-20

    Nitrogen is the major component of Earth's atmosphere and plays important roles in biochemistry. Biological systems have evolved a variety of mechanisms for fixing and recycling environmental nitrogen sources, which links them tightly with terrestrial nitrogen reservoirs. However, prior to the emergence of biology, all nitrogen cycling was abiological, and this cycling may have set the stage for the origin of life. It is of interest to understand how nitrogen cycling would proceed on terrestrial planets with comparable geodynamic activity to Earth, but on which life does not arise. We constructed a kinetic mass-flux model of nitrogen cycling in its various major chemical forms (e.g., N 2 , reduced (NH x ) and oxidized (NO x ) species) between major planetary reservoirs (the atmosphere, oceans, crust, and mantle) and included inputs from space. The total amount of nitrogen species that can be accommodated in each reservoir, and the ways in which fluxes and reservoir sizes may have changed over time in the absence of biology, are explored. Given a partition of volcanism between arc and hotspot types similar to the modern ones, our global nitrogen cycling model predicts a significant increase in oceanic nitrogen content over time, mostly as NH x , while atmospheric N 2 content could be lower than today. The transport timescales between reservoirs are fast compared to the evolution of the environment; thus atmospheric composition is tightly linked to surface and interior processes. Key Words: Nitrogen cycle-Abiotic-Planetology-Astrobiology. Astrobiology 18, xxx-xxx.

  12. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    Science.gov (United States)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  13. The Effect of Nitrogen Enrichment on C1-Cycling Microorganisms and Methane Flux in Salt Marsh Sediments

    Directory of Open Access Journals (Sweden)

    Irina Catherine Irvine

    2012-03-01

    Full Text Available Methane (CH4 flux from ecosystems is driven by C1-cycling microorganisms – the methanogens and the methylotrophs. Little is understood about what regulates these communities, complicating predictions about how global change drivers such as nitrogen enrichment will affect methane cycling. Using a nitrogen addition gradient experiment in three Southern California salt marshes, we show that sediment CH4 flux increased linearly with increasing nitrogen addition (1.23 µg CH4 m-2 d-1 for each g N m-2 yr-1 applied after seven months of fertilization. To test the reason behind this increased CH4 flux, we conducted a microcosm experiment altering both nitrogen and carbon availability under aerobic and anaerobic conditions. Methanogenesis appeared to be both nitrogen and carbon (acetate limited. N and C each increased methanogenesis by 18%, and together by 44%. In contrast, methanotrophy was stimulated by carbon (methane addition (830%, but was unchanged by nitrogen addition. Sequence analysis of the sediment methylotroph community with the methanol dehydrogenase gene (mxaF revealed three distinct clades that fall outside of known lineages. However, in agreement with the microcosm results, methylotroph abundance (assayed by qPCR and composition (assayed by T-RFLP did not vary across the experimental nitrogen gradient in the field. Together, these results suggest that nitrogen enrichment to salt marsh sediments increases methane flux by stimulating the methanogen community.

  14. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  15. Recent studies of the ocean nitrogen cycle

    Science.gov (United States)

    Eppley, R. W.

    1984-01-01

    The nitrogen cycle in the ocean is dominated by the activities of organisms. External nitrogen inputs from land and from the atmosphere are small compared with rates of consumption and production by organisms and with rates of internal rearrangements of nitrogen pools within the ocean. The chief reservoirs of nitrogen are, in decreasing order of size: nitrogen in sediments, dissolved N2, nitrate, dissolved organic nitrogen (DON), particulate organic nitrogen (PON) (mostly organisms and their by-products). The biogenic fluxes of nitrogen were reviewed. The rate of PON decomposition in the surface layer must be comparable to the rate of ammonium consumption; and at the same time the nitrate consumption rate will be similar to the rates of: (1) sinking of PON out of the surface layer and its decompositon at depth, (2) the rate of nitrification at depth, and (3) the rate of nitrate return to the surface layer by upwelling.

  16. Sensitivity study on nitrogen Brayton cycle coupled with a small ultra-long cycle fast reactor

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol

    2014-01-01

    The main characteristics of UCFR are constant neutron flux and power density. They move their positions every moment at constant speed along with axial position of fuel rod for 60 years. Simultaneously with the development of the reactors, a new power conversion system has been considered. To solve existing issues of vigorous sodium-water reaction in SFR with steam power cycle, many researchers suggested a closed Brayton cycle as an alternative technique for SFR power conversion system. Many inactive gases are selected as a working fluid in Brayton power cycle, mainly supercritical CO 2 (S-CO 2 ). However, S-CO 2 still has potential for reaction with sodium. CO 2 -sodium reaction produces solid product, which has possibility to have an auto ignition reaction around 600 .deg. C. Thus, instead of S-CO 2 , CEA in France has developed nitrogen power cycle for ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration). In addition to inactive characteristic of nitrogen with sodium, its thermal and physical similarity with air enables to easily adopt to existing air Brayton cycle technology. In this study, for an optimized power conversion system for UCFR, a nitrogen Brayton cycle was analyzed in thermodynamic aspect. Based on subchannel analysis data of UCFR-100, a parametric study for thermal performance of nitrogen Brayton cycle was achieved. The system maximum pressure significantly affects to the overall efficiency of cycle, while other parameters show little effects. Little differences of the overall efficiencies for all cases between three stages (BOC, MOC, EOC) indicate that the power cycle of UCFR-100 maintains its performance during the operation

  17. Cascading costs: an economic nitrogen cycle.

    Science.gov (United States)

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  18. Nitrogen cycling process rates across urban ecosystems.

    Science.gov (United States)

    Reisinger, Alexander J; Groffman, Peter M; Rosi-Marshall, Emma J

    2016-09-21

    Nitrogen (N) pollution of freshwater, estuarine, and marine ecosystems is widespread and has numerous environmental and economic impacts. A portion of this excess N comes from urban watersheds comprised of natural and engineered ecosystems which can alter downstream N export. Studies of urban N cycling have focused on either specific ecosystems or on watershed-scale mass balances. Comparisons of specific N transformations across ecosystems are required to contextualize rates from individual studies. Here we reviewed urban N cycling in terrestrial, aquatic, and engineered ecosystems, and compared N processing in these urban ecosystem types to native reference ecosystems. We found that net N mineralization and net nitrification rates were enhanced in urban forests and riparian zones relative to reference ecosystems. Denitrification was highly variable across urban ecosystem types, but no significant differences were found between urban and reference denitrification rates. When focusing on urban streams, ammonium uptake was more rapid than nitrate uptake in urban streams. Additionally, reduction of stormwater runoff coupled with potential decreases in N concentration suggests that green infrastructure may reduce downstream N export. Despite multiple environmental stressors in urban environments, ecosystems within urban watersheds can process and transform N at rates similar to or higher than reference ecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Science.gov (United States)

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P nitrogen cycle in recently abandoned croplands.

  20. Onset of the aerobic nitrogen cycle during the Great Oxidation Event.

    Science.gov (United States)

    Zerkle, Aubrey L; Poulton, Simon W; Newton, Robert J; Mettam, Colin; Claire, Mark W; Bekker, Andrey; Junium, Christopher K

    2017-02-23

    The rise of oxygen on the early Earth (about 2.4 billion years ago) caused a reorganization of marine nutrient cycles, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope ( 15 N/ 14 N) values from approximately 2.31-billion-year-old shales of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event). Our data fill a gap of about 400 million years in the temporal 15 N/ 14 N record and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton.

  1. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession.

    Science.gov (United States)

    Knelman, Joseph E; Graham, Emily B; Prevéy, Janet S; Robeson, Michael S; Kelly, Patrick; Hood, Eran; Schmidt, Steve K

    2018-01-01

    Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.

  2. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Directory of Open Access Journals (Sweden)

    Huhe

    Full Text Available In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively. The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.

  3. Nitrogen cycling in Hot Spring Sediments and Biofilms (Invited)

    Science.gov (United States)

    Meyer-Dombard, D. R.; Burton, M. S.; Havig, J. R.; Shock, E.

    2010-12-01

    Over the past several decades, gene-targeted analyses have revealed that microbial communities in hydrothermal environments can be surprisingly diverse. However, we know shockingly little about basic ecological functions such as carbon and nitrogen cycling or community shifts over time, or environmental parameters such as growth criteria. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in biofilms across a temperature and chemical gradient at this location revealed that multiple autotrophic carbon fixation pathways are functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Further, sequencing of metagenomes from multiple locations at “Bison Pool” has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [2]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [3-5]. The role of individual microbes in nitrogen cycling as environmental conditions vary over space and time is the focus of this study. Here, we explore the diversity of nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. Environmental nucleic acids were extracted, and the presence/absence of Bacteria and Archaea determined by PCR. In addition, PCR-directed screens reveal the presence or absence of the aforementioned functional genes, indicating genetic capacity for nitrogen cycling. We have examined the transition of genetic diversity and genetic capacity within sediments and biofilms at the chemosynthetic/photosynthetic ecotone in several hot springs spanning ranges of pH and geochemical conditions. By sampling across this ecotone, changes in the genetic

  4. [Nitrogen and water cycling of typical cropland in the North China Plain].

    Science.gov (United States)

    Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming

    2015-01-01

    Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP.

  5. [Effects of biochar on soil nitrogen cycle and related mechanisms: a review].

    Science.gov (United States)

    Pan, Yi-Fan; Yang, Min; Dong, Da; Wu, Wei-Xiang

    2013-09-01

    Biochar has its unique physical and chemical properties, playing a significant role in soil amelioration, nutrient retention, fertility improvement, and carbon storage, and being a hotspot in the research areas of soil ecosystem, biogeochemical cycling, and agricultural carbon sequestration. As a kind of anthropogenic materials, biochar has the potential in controlling soil nitrogen (N) cycle directly or indirectly, and thus, has profound effects on soil ecological functions. This paper reviewed the latest literatures regarding the effects of biochar applications on soil N cycle, with the focuses on the nitrogen species adsorption and the biochemical processes (nitrification, denitrification, and nitrogen fixation) , and analyzed the related action mechanisms of biochar. The future research areas for better understanding the interactions between biochar and soil N cycle were proposed.

  6. Nitrogen Cycling throughout Secondary Succession following Agricultural Disturbance in North-Central Virginia

    Science.gov (United States)

    Parisien, A.; Epstein, H. E.

    2017-12-01

    While much is known about the carbon cycle during succession that follows agricultural disturbance, less understood are the dynamics of the nitrogen cycle throughout secondary succession, and how plant-available nitrogen may or may not limit vegetation transitions and net primary productivity over time. Two chronosequences at the Blandy Experimental Farm in Boyce, north-central Virginia were examined to elucidate the complexities of the nitrogen cycle over a temporal successional gradient. Each chronosequence consists of one early, one mid, and one late secondary successional field ( 15 years, 30 years, and 100 years post agricultural abandonment, respectively). Five 10x10 m plots were established in each of the 6 fields for a total of 30 plots. Total soil nitrogen (and carbon) data were collected from soils to 30 cm depth at 10-cm intervals, and net nitrogen mineralization and nitrification were estimated using an in situ soil core with anion-cation exchange resin bag technique. Previous studies of carbon cycling at this location have indicated relatively constant soil CO2 efflux of approximately 1100 g C/m2, as well as increasing net primary production and therefore net ecosystem production, with time since abandonment. In addition, soil C and N, and the soil C:N ratio have been shown to increase from the early to late successional plots. Our current study marks the first comprehensive examination of soil nitrogen dynamics including mineralization and nitrification over a successional gradient at Blandy Farm. A thorough understanding of nitrogen dynamics during secondary succession is especially important in the southeastern United States, where a large portion of previously cultivated land has been abandoned over the past century, due to advances in farming efficiency and the move westward to more fertile soils. Much of the southeastern U.S. is now undergoing secondary succession, and quality data on the dynamics of nitrogen cycling during this procession can

  7. Development of soil properties and nitrogen cycling in created wetlands

    Science.gov (United States)

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  8. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    Science.gov (United States)

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  9. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  10. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession

    Directory of Open Access Journals (Sweden)

    Joseph E. Knelman

    2018-02-01

    Full Text Available Past research demonstrating the importance plant–microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder to late successional Picea sitchensis (Sitka spruce in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant–microbe interactions with late-successional plants and interspecific plant interactions more generally.

  11. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria

    International Nuclear Information System (INIS)

    Li Zhengkui; Zhang Weidong; Zhu Jiating; Pu Peimin; Hu Weipin; Hu Chunhua; Chen Baojun; Li Bo; Cheng Xiaoying; Zhang Shengzhao; Fan Yunqi

    2002-01-01

    Experimental studies were carried out on the purification of eutrophic Taihu Lake water by dynamic experiment using immobilized nitrogen cycle bacteria (INCB). The results showed that the eutrophic water of Taihu Lake can be purified effectively as it passes through the experimental reactor into which some immobilized nitrogen cycle bacteria were put. The removal efficiencies for Total N (TN), NH 4 + -N with immobilized nitrogen cycle bacteria were 72.4% and 85.6%, respectively. It was found that the immobilized nitrogen cycle bacteria also have purificatory effect on eutrophic water of Taihu Lake at winter temperature (7 degree C), and that the removal efficiencies for Total N (TN), NH 4 + -N were 55.6%, and 58.9%, respectively. The removal efficiencies for TN and NH 4 + -N depend on the time the water stays in the experimental reactor

  12. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    Science.gov (United States)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  13. The Environmental Consequences of Altered Nitrogen Cycling Resulting from Industrial Activity, Agricultural Production, and Population Growth in China

    OpenAIRE

    Xing, G.X.; Zhu, Z.L.

    2001-01-01

    Human activities exerted very little effect on nitrogen (N) cycling in China before 1949. Between 1949 and 1999, however, rapid economic development and population growth led to dramatic changes in anthropogenic reactive N, inputted recycling N, N flux on land, N2O emission, and NH3 volatilization. Consequently, these changes have had a tremendous impact on the environment in China. In the current study, we estimated the amount of atmospheric wet N deposition and N transportation into water b...

  14. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  15. [Denitrification study of Elodea nuttallii-nitrogen cycling bacteria restoration in Meiliang Bay, Taihu Lake].

    Science.gov (United States)

    Zhao, Lin; Li, Zheng-Kui; Zhou, Tao; Wu, Ning-Mei; Ye, Zhong-Xiang; Liu, Dan-Dan

    2013-08-01

    Undisturbed sediment cores were collected from Meiliang Bay, Taihu Lake, and the integrated Elodea nuttallii-nitrogen cycling bacteria technology was applied as a restoration method. The effects of the Elodea nuttallii-nitrogen cycling bacteria technology on sediment denitrification was observed by isotope pairing technique. The highest denitrification rate of 104.64 micromol x (m2 x h)(-1) was achieved in sediments with Elodea nuttallii-nitrogen cycling bacteria assemblage. The abundance of nirS, nirK and nosZ genes involved in denitrification processes in the sediments (within 2 cm below the water-sediment interface) were measured by real-time quantitative PCR (RT-qPCR). The abundance of nirS and nosZ genes in the sediments with restoration treatments was increased, which was more than one order of magnitudes higher than that in bare sediments. The results indicated that the presence of macrophyte and nitrogen cycling bacteria could increase benthic nitrogen removal by facilitating coupled nitrification-denitrification and uncoupled nitrification-denitrification.

  16. NATURAL GAS LIQUEFACTION UNITS ON THE BASE OF EXPANDER NITROGEN CYCLES

    OpenAIRE

    Кузьменко, И. Ф.; Передельский, В. А.; Довбиш, А. Л.

    2014-01-01

    It is necessary to create large-capacity LNG-units for natural gas peaks consumption shaving and also to expand liquefied natural gas (LNG) marketing. It is proposed to create such natural gas liquefaction units with the use of outer nitrogen cryogenic thermodynamic cycles. It is necessary to use turboexpander-compressor sets (TECS) in them for maximizing cycles efficiency. Different technological schemes of LNG-units including nitrogen cryogenic units with TECS from one to four have been exa...

  17. A Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes

    Directory of Open Access Journals (Sweden)

    Christopher J. Somes

    2017-05-01

    Full Text Available Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM ~21,000 years before present constrained by nitrogen isotopes. The model predicts a large decrease in nitrogen loss rates due to higher oxygen concentrations in the thermocline and sea level drop, and, as a response, reduced nitrogen fixation. Model experiments are performed to evaluate effects of hypothesized increases of atmospheric iron fluxes and oceanic phosphorus inventory relative to present-day conditions. Enhanced atmospheric iron deposition, which is required to reproduce observations, fuels export production in the Southern Ocean causing increased deep ocean nutrient storage. This reduces transport of preformed nutrients to the tropics via mode waters, thereby decreasing productivity, oxygen deficient zones, and water column N-loss there. A larger global phosphorus inventory up to 15% cannot be excluded from the currently available nitrogen isotope data. It stimulates additional nitrogen fixation that increases the global oceanic nitrogen inventory, productivity, and water column N-loss. Among our sensitivity simulations, the best agreements with nitrogen isotope data from LGM sediments indicate that water column and sedimentary N-loss were reduced by 17–62% and 35–69%, respectively, relative to preindustrial values. Our model demonstrates that multiple processes alter the nitrogen isotopic signal in most locations, which creates large uncertainties when quantitatively constraining individual nitrogen cycling processes. One key uncertainty is nitrogen fixation, which decreases by 25–65% in the model during the LGM mainly in response to reduced N-loss, due to the lack of observations in the open ocean most

  18. A novel microalgal system for energy production with nitrogen cycling

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, T.; Sawayama, S. [National Institute for Resources and Environment, Tsukuba (Japan)

    1999-08-01

    A microalga, Chlorella vulgaris, could grow in the recovered solution from the low temperature catalytic gasification of itself, by which methane rich fuel gas was obtained. All nitrogen in the microalga was converted to ammonia during the gasification, and the recovered solution, in which ammonia was dissolved, could be used as nitrogen nutrient. The result of the energy evaluation indicated that the novel microalgal system for energy production with nitrogen cycling could be created. 9 refs., 3 tabs.

  19. Terrestrial nitrogen cycling in Earth system models revisited

    Science.gov (United States)

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  20. Equilibration of the terrestrial water, nitrogen, and carbon cycles

    OpenAIRE

    Schimel, David S.; Braswell, B. H.; Parton, W. J.

    1997-01-01

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that l...

  1. POPULATION DYNAMICS OF SMALL MAMMALS ACROSS A NITROGEN AMENDED LANDSCAPE

    Science.gov (United States)

    Biogeochemical alterations of the nitrogen cycle from anthropogenic activities could have significant effects on ecological processes at the population, community and ecosystem levels. Nitrogen additions in grasslands have produced qualitative and quantitative changes in vegetat...

  2. Nitrogen footprints: past, present and future

    NARCIS (Netherlands)

    Galloway, J.N.; Winiwarter, W.; Leip, A.; Leach, A.M.; Bleeker, A.; Erisman, J.W.

    2014-01-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been

  3. Reactive nitrogen in the environment and its effect on climate change

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen

  4. The microbial nitrogen cycling potential in marine sediments is impacted by polyaromatic hydrocarbon pollution

    Directory of Open Access Journals (Sweden)

    Nicole M Scott

    2014-03-01

    Full Text Available During petroleum hydrocarbon exposure the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential, if the sediments are aerobic, within the surface layer of marine sediments resulting in anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  5. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  6. Nitrogen balance for a plantation forest drainage canal on the North Carolina Coastal Plain

    Science.gov (United States)

    Timothy W. Appelboom; George M. Chescheir; R. Wayne Skaggs; J. Wendell Gilliam; Devendra M. Amatya

    2009-01-01

    Human alteration of the nitrogen cycle has led to increased riverine nitrogen loads, contributing to the eutrophication of lakes, streams, estuaries, and near-coastal oceans. These riverine nitrogen loads are usually less...

  7. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    NARCIS (Netherlands)

    Voss, M.; Bange, H.W.; Dippner, J.W.; Middelburg, J.J.; Montoya, J.P.; Ward, B.

    2013-01-01

    The ocean’s nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and

  8. Changes in Nitrogen Cycling during Tropical Forest Secondary Succession on Abandoned Pastures

    Science.gov (United States)

    Mirza, S.; Rivera, R. J.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) plays two important roles in Earth's climate. As a plant nutrient, the availability of N affects plant growth and the uptake of carbon (C) from the atmosphere into plant biomass. The accumulation of C in long-lived biomass and in soils contributes to reducing the amount of CO2 in the atmosphere. Secondly, excess N can lead to the production of N2O, which is a more potent greenhouse than CO2. Humans have altered the cycling of N in terrestrial ecosystems, affecting their potential to sequester C and help mitigate climate change. Land-use change, specifically deforestation and reforestation, can affect N availability for plant growth and N2O production. Long-term agricultural use can deplete nitrogen sources, even in tropical soils where N is not expected to limit productivity. Secondary succession and reforestation can allow for the recovery of N stocks and fluxes, with implications for C cycling and N2O emissions. N limitation in pastures and early successional forests increases the demand for N-fixing tree species, but previous research has shown that there is a greater abundance of N-fixing species in older forests (Batterman et. al 2013). Successional trends in N mineralization and denitrification vary across studies, with some showing greater rates in agricultural soils or in mature forest soils, compared to early successional sites. Here we examine changes in N-fixing species, above and belowground N pools, and N cycling rates in secondary forests on former pastures on Oxisols in the wet tropical forest life zone of Puerto Rico. The availability of a long-term well-replicated chronosequence provides us with the opportunity to study decadal trends in N processes during forest recovery after agricultural abandonment.

  9. GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle.

    Science.gov (United States)

    Chen, Jun; Sutter, Benjamin M; Shi, Lei; Tu, Benjamin P

    2017-11-01

    The GATOR1 (SEACIT) complex consisting of Iml1-Npr2-Npr3 inhibits target of rapamycin complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite showing hallmarks of increased TORC1 signaling. Such mutants sense that they are amino acid replete and thus repress metabolic activities that are important for achieving this state. We found that npr2Δ mutants have defective mitochondrial tricarboxylic acid (TCA)-cycle activity and retrograde response. Supplementation with glutamine, and especially aspartate, which are nitrogen-containing forms of TCA-cycle intermediates, rescues growth of npr2Δ mutants. These amino acids are then consumed in biosynthetic pathways that require nitrogen to support proliferative metabolism. Our findings revealed that negative regulators of TORC1, such as GATOR1 (SEACIT), regulate the cataplerotic synthesis of these amino acids from the TCA cycle, in tune with the amino acid and nitrogen status of cells.

  10. [Bacterial anaerobic ammonia oxidation (Anammox) in the marine nitrogen cycle--a review].

    Science.gov (United States)

    Hong, Yiguo; Li, Meng; Gu, Jidong

    2009-03-01

    Anaerobic ammonium oxidation (Anammox) is a microbial oxidation process of ammonium, with nitrite as the electron acceptor and dinitrogen gas as the main product, and is performed by a clade of deeply branched Planctomycetes, which possess an intracytoplasmic membrane-bounded organelle, the anammoxosome, for the Anammox process. The wide distribution of Anammox bacteria in different natural environments has been greatly modified the traditional view of biogeochemical cycling of nitrogen, in which microbial denitrifier is considered as the only organism to respire nitrate and nitrite to produce nitric and nitrous oxides, and eventually nitrogen gas. More evidences indicate that Anammox is responsible for the production of more than 50% of oceanic N2 and plays an important role in global nitrogen cycling. Moreover, due to the close relationship between nitrogen and carbon cycling, it is anticipated that Anammox process might also affect the concentration of CO2 in the atmosphere, and influence the global climate change. In addition, the simultaneous transformation of nitrite and ammonium in wastewater treatment by Anammox would allow a 90% reduction in operational costs and provide a much more effective biotechnological process for wastewater treatment.

  11. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    Science.gov (United States)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus

  12. Impact of climate change and ocean acidification on the marine nitrogen cycle

    International Nuclear Information System (INIS)

    Martinez-Rey, Jorge

    2015-01-01

    The marine nitrogen cycle is responsible for two climate feedbacks in the Earth System. Firstly, it modulates the fixed nitrogen pool available for phytoplankton growth and hence it modulates in part the strength of the biological pump, one of the mechanisms contributing to the oceanic uptake of anthropogenic CO 2 . Secondly, the nitrogen cycle produces a powerful greenhouse gas and ozone (O 3 ) depletion agent called nitrous oxide (N 2 O). Future changes of the nitrogen cycle in response to global warming, ocean deoxygenation and ocean acidification are largely unknown. Processes such as N 2 -fixation, nitrification, denitrification and N 2 O production will experience changes under the simultaneous effect of these three stressors. Global ocean biogeochemical models allow us to study such interactions. Using NEMO-PISCES and the CMIP5 model ensemble we project changes in year 2100 under the business-as-usual high CO 2 emissions scenario in global scale N 2 -fixation rates, nitrification rates, N 2 O production and N 2 O sea-to-air fluxes adding CO 2 sensitive functions into the model parameterizations. Second order effects due to the combination of global warming in tandem with ocean acidification on the fixed nitrogen pool, primary productivity and N 2 O radiative forcing feedbacks are also evaluated in this thesis. (author) [fr

  13. Nitrogen Cascade: An Opportunity to Integrate Biogeochemistry and Policy

    Science.gov (United States)

    Galloway, J. N.; Moomaw, W. R.; Theis, T. L.

    2008-12-01

    It began with micro-organisms millions of years ago, was enhanced by the burning of fossil carbon in the last several hundred years, and was magnified by a patent filed one hundred years ago. Today, the combined actions of cultivation-induced biological nitrogen fixation, fossil fuel combustion and the Haber-Bosch process have exceeded natural terrestrial processes in converting N22 to nitrogen compounds that are biologically, chemically or physically reactive (reactive nitrogen, Nr). While the benefits of Nr are well understood, many of the adverse consequences of excessive Nr are invisible from a policy perspective. Over the past century, the fundamental knowledge on nitrogen processes has advanced to the point where we have a good understanding of nitrogen's biogeochemical cycle, the role of humans in altering the cycle, and the consequences of the alterations. This knowledge has collectively led us to two conclusions-the consequences of intensive human influence on the nitrogen cycle leads to a cascade of ecosystem and human effects which need to be managed. Secondly, the management is complicated by the facts that it not only has to be integrated, but it also has to take into account that the management should not lower the ability of managed ecosystems to produce food for the world's peoples. The framework of the nitrogen cascade provides us with a structure for better identifying intervention points, and more effective policies, technologies and measures to prevent or mitigate the adverse impacts of reactive nitrogen, while enhancing its beneficial uses. We can now begin to use our understanding of science to set priorities and craft new policy strategies. For many regions of the world, the science is strong enough to manage nitrogen and there are existing tools to do so. However, the tools are not integrated, critical tools are missing and most importantly, there are nitrogen-rich regions of the world where the science is lacking, and nitrogen-poor regions

  14. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Science.gov (United States)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  15. Long-term trends in nitrogen isotope composition and nitrogen concentration in brazilian rainforest trees suggest changes in nitrogen cycle.

    Science.gov (United States)

    Hietz, Peter; Dünisch, Oliver; Wanek, Wolfgang

    2010-02-15

    Direct or indirect anthropogenic effects on ecosystem nitrogen cycles are important components of global change. Recent research has shown that N isotopes in tree rings reflect changes in ecosystem nitrogen sources or cycles and can be used to study past changes. We analyzed trends in two tree species from a remote and pristine tropical rainforest in Brazil, using trees of different ages to distinguish between the effect of tree age and long-term trends. Because sapwood differed from heartwood in delta(15)N and N concentration and N can be translocated between living sapwood cells, long-term trends are best seen in dead heartwood. Heartwood delta(15)N in Spanish cedar (Cedrela odorata) and big-leaf mahogany (Swietenia macrophylla) increased with tree age, and N concentrations increased with age in Cedrela. Controlling for tree age, delta(15)N increased significantly during the past century even when analyzing only heartwood and after removing labile N compounds. In contrast to northern temperate and boreal forests where wood delta(15)N often decreased, the delta(15)N increase in a remote rainforest is unlikely to be a direct signal of changed N deposition. More plausibly, the change in N isotopic composition indicates a more open N cycle, i.e., higher N losses relative to internal N cycling in the forest, which could be the result of changed forest dynamics.

  16. Nitrogen Cycling in Agroforestry Systems of Sub-humid Zimbabwe: Closing the loop

    NARCIS (Netherlands)

    Chikowo, R.

    2004-01-01

    Keywords: improved fallows, biological N 2 -fixation, nitrogen cycling, nitrate leaching, oxide emissions, N mineralization -immobilization, granitic sandsThis thesis focuses on nitrogen: its

  17. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.

    Science.gov (United States)

    Marklein, Alison R; Houlton, Benjamin Z

    2012-02-01

    • Biologically essential elements--especially nitrogen (N) and phosphorus (P)--constrain plant growth and microbial functioning; however, human activities are drastically altering the magnitude and pattern of such nutrient limitations on land. Here we examine interactions between N and P cycles of P mineralizing enzyme activities (phosphatase enzymes) across a wide variety of terrestrial biomes. • We synthesized results from 34 separate studies and used meta-analysis to evaluate phosphatase activity with N, P, or N×P fertilization. • Our results show that N fertilization enhances phosphatase activity, from the tropics to the extra-tropics, both on plant roots and in bulk soils. By contrast, P fertilization strongly suppresses rates of phosphatase activity. • These results imply that phosphatase enzymes are strongly responsive to changes in local nutrient cycle conditions. We also show that plant phosphatases respond more strongly to fertilization than soil phosphatases. The tight coupling between N and P provides a mechanism for recent observations of N and P co-limitation on land. Moreover, our results suggest that terrestrial plants and microbes can allocate excess N to phosphatase enzymes, thus delaying the onset of single P limitation to plant productivity as can occur via human modifications to the global N cycle. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  18. Nitrogen Cycling In Latin America and : Drivers, Impacts And Vulnerabilities

    Science.gov (United States)

    Ometto, J. P.; Bustamante, M.; Forti, M. C.; Peres, T.; Stein, A. F.; Jaramillo, V.; Perez, C.; Pinho, P. F.; Ascarrunz, N.; Austin, A.; Martinelli, L. A.

    2015-12-01

    Latin America is at a crossroads where a balance should be found between production of the major agricultural commodities, reasonable and planned urbanization and conservation of its natural ecosystems and associated goods and services. Most of the natural biological fixation of the globe occurs in forests of Latin America. On the other hand, Latin America has one of the highest rate of deforestation in the world, and one of the highest increases in the use of nitrogen fertilizers. A better understanding of the responses of the N cycle to human impacts will allow better conservation of biodiversity and natural resources, with an improvement in food security and more effective land use choices in biofuel development. Latin America is a unique region in multiple aspects, and particularly relevant for this proposal are the broad climatic gradient and economic patterns that include a diverse range of natural ecosystems and socio-economic development pathways. Additionally, the region is impaired by the lack of information on actual impacts of human activity on N cycling across this diverse range of ecosystems. Finally, the large expanse of tropical ecosystems and reservoirs of biodiversity juxtaposed with an intense economic incentive for development make our understanding of human impacts in this context particularly important for global change research in the region. An evaluation of current and predicted changes in climate and land use on nitrogen stocks and fluxes in the region what is being develop by the Nnet network (Nitrogen Cycling In Latin America: Drivers, Impacts And Vulnerabilities ). This presentation will bring the latest results of this integrative initiative in Latin America, focusing on the nitrogen budget associated to provision of ecosystem services and climate change.

  19. Tightening the nitrogen cycle

    OpenAIRE

    Christensen, B.T.

    2004-01-01

    The availability of nitrogen to crop plants is a universally important aspect of soil quality, and often nitrogen represents the immediate limitation to crop productivity in modern agriculture. Nitrogen is decisive for the nutritive value of plant products and plays a key role in the environmental impact of agricultural production. The fundamental doctrine of nitrogen management is to optimise the nitrogen use efficiency of both introduced and native soil nitrogen by increasing the temporal a...

  20. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    Science.gov (United States)

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  1. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti.

    Science.gov (United States)

    D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C

    2017-01-01

    Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to

  2. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    Science.gov (United States)

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  3. A natural light/dark cycle regulation of carbon-nitrogen metabolism and gene expression in rice shoots

    Directory of Open Access Journals (Sweden)

    Haixing Li

    2016-08-01

    Full Text Available Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799 were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant

  4. Controls on Biogeochemical Cycling of Nitrogen in Urban Ecosystems

    Science.gov (United States)

    Templer, P. H.; Hutyra, L.; Decina, S.; Rao, P.; Gately, C.

    2017-12-01

    Rates of atmospheric nitrogen deposition are declining across much of the United States and Europe, yet they remain substantially elevated by almost an order of magnitude over pre-industrial levels and occur as hot spots in urban areas. We measured atmospheric inputs of inorganic and organic nitrogen in multiple urban sites around the Boston Metropolitan area, finding that urban rates are substantially elevated compared to nearby rural areas, and that the range of these atmospheric inputs are as large as observed urban to rural gradients. Within the City of Boston, the variation in deposition fluxes can be explained by traffic intensity, vehicle emissions, and spring fertilizer additions. Throughfall inputs of nitrogen are approximately three times greater than bulk deposition inputs in the city, demonstrating that the urban canopy amplifies rates of nitrogen reaching the ground surface. Similar to many other metropolitan areas of the United States, the City of Boston has 25% canopy cover; however, 25% of this tree canopy is located above impervious pavement. Throughfall inputs that do not have soil below the canopy to retain excess nitrogen may lead to greater inputs of nitrogen into nearby waterways through runoff. Most measurement stations for atmospheric nitrogen deposition are intentionally located away from urban areas and point sources of pollution to capture regional trends. Our data show that a major consequence of this network design is that hotspots of nitrogen deposition and runoff into urban and coastal waterways is likely underestimated to a significant degree. A more complete determination of atmospheric nitrogen deposition and its fate in urban ecosystems is critical for closing regional nitrogen budgets and for improving our understanding of biogeochemical nitrogen cycling across multiple spatial scales.

  5. Nitrogen cycle: approach in Science textbooks for the junior Higt Level 1

    Directory of Open Access Journals (Sweden)

    Angela Fernandes Campos

    2008-01-01

    Full Text Available This paper features as its theme the approach to Nitrogen Cycle in textbooks. The goal is to tell whether the Science textbooks focus on an adequate approach to such a cycle, so that it meets the teacher`s needs. This content was defined because we understand that its study is of the utmost importance, due to the fact that on such a cycle depend nature`s energetic balance, the preservation of the richness of the soil in nutrients and the formation of the nitrogenous compounds which are vital to the organism of all living beings. The research work was carried out by means of the analysis of the Science textbooks recommended by The Textbook Guide 2005, taking into account that, supposedly, upon being approved and suggested by PNLD, they are already qualified to be adopted by teachers. With this research, we came to the conclusion that there are different limits when the Nitrogen Cycle is approached in textbooks. Such finding is not enough for the solution to a real problem; it is believed, however, that perceiving the existence of that problem and understanding what causes is to happen tends to make a possible answer to such a question less distant and conflicting.

  6. Nitrogen Isotope Evidence for a Shift in Eastern Beringian Nitrogen Cycle after the Terminal Pleistocene

    Science.gov (United States)

    Tahmasebi, F.; Longstaffe, F. J.; Zazula, G.

    2016-12-01

    The loess deposits of eastern Beringia, a region in North America between 60° and 70°N latitude and bounded by Chukchi Sea to the west and the Mackenzie River to the east, are a magnificent repository of Late Pleistocene megafauna fossils. The stable carbon and nitrogen isotope compositions of these fossils are measured to determine the paleodiet of these animals, and hence the paleoenvironment of this ecosystem during the Quaternary. For this approach to be most successful, however, requires consideration of possible changes in nutrient cycling and hence the carbon and nitrogen isotopic compositions of vegetation in this ecosystem. To test for such a shift following the terminal Pleistocene, we analyzed the stable carbon and nitrogen isotope compositions of modern plants and bone collagen of Arctic ground squirrels from Yukon Territory, and fossil plants and bones recovered from Late Pleistocene fossil Arctic ground squirrel nests. The data for modern samples provided a measure of the isotopic fractionation between ground squirrel bone collagen and their diet. The over-wintering isotopic effect of decay on typical forage grasses was also measured to evaluate its role in determining fossil plant isotopic compositions. The grasses showed only a minor change ( 0-1 ‰) in carbon isotope composition, but a major change ( 2-10 ‰) in nitrogen isotope composition over the 317-day experiment. Based on the modern carbon isotope fractionation between ground squirrel bone collagen and their diet, the modern vegetation carbon isotopic baseline provides a suitable proxy for the Late Pleistocene of eastern Beringia, after accounting for the Suess effect. However, the predicted nitrogen isotope composition of vegetation comprising the diet of fossil ground squirrels remains 2.5 ‰ higher than modern grasslands in this area, even after accounting for possible N-15 enrichment during decay. This result suggests a change in N cycling in this region since the Late Pleistocene.

  7. Soil warming opens the nitrogen cycle at the alpine treeline.

    Science.gov (United States)

    Dawes, Melissa A; Schleppi, Patrick; Hättenschwiler, Stephan; Rixen, Christian; Hagedorn, Frank

    2017-01-01

    Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ 15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ 15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes. © 2016 John Wiley & Sons

  8. A reappraisal of the terrestrial nitrogen cycle: what can we learn by extracting concepts from Gaia theory?

    Science.gov (United States)

    Cresser, Malcolm S; Aitkenhead, Matthew J; Mian, Ishaq A

    2008-08-01

    Although soil scientists and most environmental scientists are acutely aware of the interactions between the cycling of carbon and nitrogen, for conceptual convenience when portraying the nitrogen cycle in text books the N cycle tends to be considered in isolation from its interactions with the cycling of other elements and water, usually as a snap shot at the current time; the origins of dinitrogen are rarely considered, for example. The authors suggest that Lovelock's Gaia hypothesis provides a useful and stimulating framework for consideration of the terrestrial nitrogen cycle. If it is used, it suggests that urbanization and management of sewage, and intensive animal rearing are probably bigger global issues than nitrogen deposition from fossil fuel combustion, and that plant evolution may be driven by the requirement of locally sustainable and near optimal soil mineral N supply dynamics. This may, in turn, be partially regulating global carbon and oxygen cycles. It is suggested that pollutant N deposition may disrupt this essential natural plant and terrestrial ecosystem evolutionary process, causing biodiversity change. Interactions between the Earth and other bodies in the solar system, and possibly beyond, also need to be considered in the context of the global N cycle over geological time scales. This is because of direct potential impacts on the nitrogen content of the atmosphere, potential long-term impacts of past boloid collisions on plate tectonics and thus on global N cycling via subduction and volcanic emissions, and indirect effects upon C, O and water cycling that all may impact upon the N cycle in the long term.

  9. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  10. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  11. Altered nutrition during hot droughts will impair forest functions in the future

    Science.gov (United States)

    Grossiord, C.; Gessler, A.; Reed, S.; Dickman, L. T.; Collins, A.; Schönbeck, L.; Sevanto, S.; Vilagrosa, A.; McDowell, N. G.

    2017-12-01

    Rising greenhouse gas emissions will increase atmospheric temperature globally and alter hydrological cycles resulting in more extreme and recurrent droughts in the coming century. Nutrition is a key component affecting the vulnerability of forests to extreme climate. Models typically assume that global warming will enhance nitrogen cycling in terrestrial ecosystems and lead to improved plant functions. Drought on the other hand is expected to weaken the same processes, leading to a clear conflict and inability to predict how nutrition and plant functions will be impacted by a simultaneously warming and drying climate. We used a unique setup consisting of long-term manipulation of climate on mature trees to examine how individual vs. combined warming and drought would alter soil N cycling and tree functions. The site consists of the longest record of tree responses to experimental warming and precipitation reduction in natural conditions.Changes in soil nitrogen cycling (e.g. microbial activity, nitrification and ammonification rates, N concentration) occurred in response to the treatments. In addition, temperature rise and precipitation reduction altered the ability of trees to take up nitrogen and modified nitrogen allocation patterns between aboveground and belowground compartments. Although no additive effect of warming and drying were found for the two studied species, contrasting responses to warming and droughts were observed between the two functional types. Overall, our results show that higher temperature and reduced precipitation will alter the nutrition of forest ecosystems in the future with potentially large consequences for forest functions, structure and biodiversity.

  12. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    Directory of Open Access Journals (Sweden)

    Jang K Kim

    Full Text Available We investigated emersion-induced nitrogen (N release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  13. Differences in nitrogen cycling and soil mineralisation between a ...

    African Journals Online (AJOL)

    Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. ... An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the ...

  14. Molecular nitrogen fixation and nitrogen cycle in nature

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, A I

    1952-01-01

    The origin of nitrogen oxides in the atmosphere is discussed. Evidently only a small proportion of the nitrate-and nitrite-nitrogen found in the precipitation is formed through electric discharges from molecular nitrogen, photochemical nitrogen fixation being probably of greater importance. Formation of nitrate nitrogen through atmospheric oxidation of nitrous oxide (N/sub 2/O) evaporating from the soil is also considered likely. Determination of nitrogen compounds at different altitudes is indispensable for gaining information of the N/sub 2/-fixation in the atmosphere and, in general, of the origin of nitrogen oxides and their decomposition. International cooperation is needed for this as well as for the quantitative determination of the nitrogen compounds removed from the soil by leaching and brought by waters into the seas.

  15. Circadian rhythms in the cell cycle and biomass composition of Neochloris oleoabundans under nitrogen limitation.

    Science.gov (United States)

    de Winter, Lenneke; Schepers, Lutz W; Cuaresma, Maria; Barbosa, Maria J; Martens, Dirk E; Wijffels, René H

    2014-10-10

    The circadian clock schedules processes in microalgae cells at suitable times in the day/night cycle. To gain knowledge about these biological time schedules, Neochloris oleoabundans was grown under constant light conditions and nitrogen limitation. Under these constant conditions, the only variable was the circadian clock. The results were compared to previous work done under nitrogen-replete conditions, in order to determine the effect of N-limitation on circadian rhythms in the cell cycle and biomass composition of N. oleoabundans. The circadian clock was not affected by nitrogen-limitation, and cell division was timed in the natural night, despite of constant light conditions. However, because of nitrogen-limitation, not the entire population was able to divide every day. Two subpopulations were observed, which divided alternately every other day. This caused oscillations in biomass yield and composition. Starch and total fatty acids (TFA) were accumulated during the day. Also, fatty acid composition changed during the cell cycle. Neutral lipids were built up during the day, especially in cells that were arrested in their cell cycle (G2 and G3). These findings give insight in the influence of circadian rhythms on the cell cycle and biomass composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  17. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change

    OpenAIRE

    Voss, Maren; Bange, Hermann W.; Dippner, Joachim W.; Middelburg, Jack J.; Montoya, Joseph P.; Ward, Bess

    2013-01-01

    The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelli...

  18. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle

    Science.gov (United States)

    Sullivan, Benjamin W.; Smith, William K.; Townsend, Alan R.; Nasto, Megan K.; Reed, Sasha C.; Chazdon, Robin L.; Cleveland, Cory C.

    2014-01-01

    Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.

  19. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle.

    Science.gov (United States)

    Sullivan, Benjamin W; Smith, W Kolby; Townsend, Alan R; Nasto, Megan K; Reed, Sasha C; Chazdon, Robin L; Cleveland, Cory C

    2014-06-03

    Biological nitrogen fixation (BNF) is the largest natural source of exogenous nitrogen (N) to unmanaged ecosystems and also the primary baseline against which anthropogenic changes to the N cycle are measured. Rates of BNF in tropical rainforest are thought to be among the highest on Earth, but they are notoriously difficult to quantify and are based on little empirical data. We adapted a sampling strategy from community ecology to generate spatial estimates of symbiotic and free-living BNF in secondary and primary forest sites that span a typical range of tropical forest legume abundance. Although total BNF was higher in secondary than primary forest, overall rates were roughly five times lower than previous estimates for the tropical forest biome. We found strong correlations between symbiotic BNF and legume abundance, but we also show that spatially free-living BNF often exceeds symbiotic inputs. Our results suggest that BNF in tropical forest has been overestimated, and our data are consistent with a recent top-down estimate of global BNF that implied but did not measure low tropical BNF rates. Finally, comparing tropical BNF within the historical area of tropical rainforest with current anthropogenic N inputs indicates that humans have already at least doubled reactive N inputs to the tropical forest biome, a far greater change than previously thought. Because N inputs are increasing faster in the tropics than anywhere on Earth, both the proportion and the effects of human N enrichment are likely to grow in the future.

  20. Just enough of a good thing: Ecosystem services and the management of nitrogen

    Science.gov (United States)

    From factory emissions to fertilizer, people have dramatically altered the global nitrogen cycle. The effects are often harmful, such as groundwater pollution with nitrate here in Oregon. Jana Compton will present EPA research that connects the impacts of nitrogen to ecosystem ...

  1. [Effect of Elodea nuttallii-immobilized Nitrogen Cycling Bacteria on Nitrogen Removal Mechanism in an Inflow River, Gonghu Bay].

    Science.gov (United States)

    Han, Hua-yang; Li, Zheng-kui; Wang, Hao; Zhu, Qian

    2016-04-15

    Undisturbed sediment cores and surface water from Qinshui River in Gonghu Bay were collected to carry out a simulation experiment in our laboratory. The remediation effect of Elodea nuttallii-Immobilized Nitrogen Cycling Bacteria (INCB) was applied in the polluted inflow river. The denitrification rate, ANAMMOX rate and nitrogen microorganism diversity were measured by ¹⁵N isotope pairing technology and high-throughput sequencing technology based on 16S rRNA. The TN, NH₄⁺-N, NO₃⁻-N concentrations were reduced by 72.03%, 46.67% and 76.65% in the treatment with addition of Elodea nuttallii and INCB in our laboratory experiment. Meanwhile, denitrification bacteria and ANAMMOX bacteria had synergistic effect with each other. The denitrification and ANAMMOX rates were increased by 165 µmol (m² · h)⁻¹ and 269.7 µmol · (m² · h)⁻¹, respectively. The diversities of denitrification and ANAMMOX bacteria also increased in our experiment. From the level of major phylum, Proteobacteria, Planctomycetes, Acidobbacteria and Bacteroidetes all increased significantly. The results showed that the Elodea nuttallii-INCB assemblage technology could increase the bio-diversity of nitrogen cycling bacteria and promote the ability of nitrogen removal in Qinshui River.

  2. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea.

    Science.gov (United States)

    Yu, Tiantian; Li, Meng; Niu, Mingyang; Fan, Xibei; Liang, Wenyue; Wang, Fengping

    2018-01-01

    In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.

  3. Nitrogen cycling in a 15N-fertilized bean (Phaseolus vulgaris L.) crop

    International Nuclear Information System (INIS)

    Victoria, R.L.; Libardi, P.L.; Reichardt, K.; Cervellini, A.

    1982-01-01

    To increase our understanding of the fate of applied nitrogen in Phaseolus vulgaris crops grown under tropical conditions, 15 N-labelled urea was applied to bean crops and followed for three consecutive cropping periods. Each crop received 100 kg urea-N ha - 1 and 41 kg KCl-K ha - 1 . At the end of each period we estimated each crop's recovery of the added nitrogen, the residual effects of nitrogen from the previous cropping period, the distribution of nitrogen in the soil profile, and leaching losses of nitrogen. In addition, to evaluate potential effects of added phosphorus on nitrogen cycling in this crop, beans were treated at planting with either 35 kg rock-phosphate-P, 35 kg superphosphate-P, or 0 kg P ha - 1 . Results showed that 31.2% of the nitrogen in the first crop was derived from the applied urea, which represents a nitrogen utilization efficiency of 38.5%, 6.2% of the nitrogen in the second crop was derived from fertilizer applied to the first crop, and 1.4% of the nitrogen in the third crop. (orig./AJ)

  4. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  5. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Stamou, A; Katsiri, A

    2011-06-01

    This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.

  6. Anammox revisited: thermodynamic considerations in early studies of the microbial nitrogen cycle.

    Science.gov (United States)

    Oren, Aharon

    2015-08-01

    This paper explores the early literature on the thermodynamics of processes in the microbial nitrogen cycle, evaluating parameters of transfer of energy which depends on the initial and final states of the system, the mechanism of the reactions involved and the rates of these reactions. Processes discussed include the anaerobic oxidation of ammonium (the anammox reaction), the use of inorganic nitrogen compounds as electron donors for anoxygenic photosynthesis, and the mechanism and bioenergetics of biological nitrogen fixation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments.

    Science.gov (United States)

    Nunoura, Takuro; Nishizawa, Manabu; Kikuchi, Tohru; Tsubouchi, Taishi; Hirai, Miho; Koide, Osamu; Miyazaki, Junichi; Hirayama, Hisako; Koba, Keisuke; Takai, Ken

    2013-11-01

    There has been much progress in understanding the nitrogen cycle in oceanic waters including the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizing (anammox) bacteria, and in the comprehensive estimation in abundance and activity of these microbial populations. However, compared with the nitrogen cycle in oceanic waters, there are fewer studies concerning the oceanic benthic nitrogen cycle. To further elucidate the dynamic nitrogen cycle in deep-sea sediments, a sediment core obtained from the Ogasawara Trench at a water depth of 9760 m was analysed in this study. The profiles obtained for the pore-water chemistry, and nitrogen and oxygen stable isotopic compositions of pore-water nitrate in the hadopelagic sediments could not be explained by the depth segregation of nitrifiers and nitrate reducers, suggesting the co-occurrence of nitrification and nitrate reduction in the shallowest nitrate reduction zone. The abundance of SSU rRNA and functional genes related to nitrification and denitrification are consistent with the co-occurrence of nitrification and nitrate reduction observed in the geochemical analyses. This study presents the first example of cooperation between aerobic and anaerobic nitrogen metabolism in the deep-sea sedimentary environments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Nitrogen cycling models and their application to forest harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.; Dale, V.H.

    1986-01-01

    The characterization of forest nitrogen- (N-) cycling processes by several N-cycling models (FORCYTE, NITCOMP, FORTNITE, and LINKAGES) is briefly reviewed and evaluated against current knowledge of N cycling in forests. Some important processes (e.g., translocation within trees, N dynamics in decaying leaf litter) appear to be well characterized, whereas others (e.g., N mineralization from soil organic matter, N fixation, N dynamics in decaying wood, nitrification, and nitrate leaching) are poorly characterized, primarily because of a lack of knowledge rather than an oversight by model developers. It is remarkable how well the forest models do work in the absence of data on some key processes. For those systems in which the poorly understood processes could cause major changes in N availability or productivity, the accuracy of model predictions should be examined. However, the development of N-cycling models represents a major step beyond the much simpler, classic conceptual models of forest nutrient cycling developed by early investigators. The new generation of computer models will surely improve as research reveals how key nutrient-cycling processes operate.

  9. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    Science.gov (United States)

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene

  10. 15N isotopic techniques to study nitrogen cycle in soil-plant-atmosphere system

    International Nuclear Information System (INIS)

    Kumar, Manoj; Chandrakala, J.U.; Sachdev, M.S.; Sachdev, P.

    2009-01-01

    Intensification of agriculture to meet the increasing food demand has caused severe disruption in natural balance of global as well as regional nitrogen cycle, potentially threatening the future sustainability of agriculture and environment of the total fertilizer nitrogen used in agriculture globally, only less than half is recovered by crop plants, rest is lost to the environment, resulting in several environmental problems such as ground water pollution and global warming, besides huge economic loss of this costly input in agriculture. Improving fertilizer nitrogen use efficiency and minimising N loss to the environment is the key to regain the lost control of nitrogen cycle in agriculture. Fertilizer nitrogen use efficiency depends largely on N requirement of crops, N supply from soil and fertilizer through N transformations in soil, and N losses from the soil-water-plant system. 15 N isotopic techniques have the potential to provide accurate measurement quantification of different processes involved in N cycle such as fixation of atmospheric N 2 , transformations- mineralization and immobilization- of soil and fertilizer N which governs N supply to plants, and N losses to the environment through ammonia volatilization, denitrification and nitrate leaching. 15 N tracers can also give precise identification of ways and sources of N loss from agriculture. These information can be used to develop strategies for increasing fertilizer N use efficiency and minimizing the loss of this costly input from agriculture to environment, which in turn will help to achieve the tripartite goal of food security, agricultural profitability and environmental quality. (author)

  11. Geese impact on the nitrogen cycle and especially on the fate of litter nitrogen in Artic wetlands

    OpenAIRE

    Loonen, Maarten; Fivez, Lise; Meire, Patrick; Janssens, Ivan; Boeckx, Pascal

    2014-01-01

    Due to land use changes and reduced hunting pressure in their wintering grounds, goose numbers increased dramatically over the past 50 years. To understand the consequences of these changes, studies on ecosystem processes of the breeding grounds in the Artic are indispensable. A key process affected by herbivores is decomposition, which in turn influences nutrient cycling and thus plant growth. Here, we investigated the influence of geese on the nitrogen cycle. In Spitsbergen (78° 55' N, 11° ...

  12. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, K.R.

    1982-01-01

    15 N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH 4+ -N kg dry soil - 1 day - 1 ). 2) net nitrification (207 mg NO 3- -N kg dry soil - 1 day - 1 ). 3) denitrification (0.37 mg N kg dry soil - 1 day - 1 ), and 4) biological N 2 fixation (0.16 mg N kg dry soil - 1 day - 1 ). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N 2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH 3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal. (orig.)

  13. Next Generation Carbon-Nitrogen Dynamics Model

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  14. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2013-01-01

    Full Text Available The stable isotopes of nitrogen offer a unique perspective on changes in the nitrogen cycle, past and present. However, the presence of multiple forms of nitrogen in marine sediments can complicate the interpretation of bulk nitrogen isotope measurements. Although the large-scale global patterns of seafloor δ15N have been shown to match process-based expectations, small-scale heterogeneity on the seafloor, or alterations of isotopic signals during translation into the subseafloor record, could obscure the primary signals. Here, a public database of nitrogen isotope measurements is described, including both seafloor and subseafloor sediment samples ranging in age from modern to the Pliocene, and used to assess these uncertainties. In general, good agreement is observed between neighbouring seafloor sites within a 100 km radius, with 85% showing differences of < 1‰. There is also a good correlation between the δ15N of the shallowest (< 5 ka subseafloor sediments and neighbouring seafloor sites within a 100 km radius (R2 = 0.83, which suggests a reliable translation of sediments into the buried sediment record. Meanwhile, gradual δ15N decreases over multiple glacial–interglacial cycles appear to reflect post-depositional alteration in records from the deep sea (below 2000 m. We suggest a simple conceptual model to explain these 100-kyr-timescale changes in well-oxygenated, slowly accumulating sediments, which calls on differential loss rates for pools of organic N with different δ15N. We conclude that bulk sedimentary nitrogen isotope records are reliable monitors of past changes in the marine nitrogen cycle at most locations, and could be further improved with a better understanding of systematic post-depositional alteration. Furthermore, geochemical or environmental criteria should be developed in order to effectively identify problematic locations and to account for

  15. Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests

    Science.gov (United States)

    N.S. Nowinski; S.E. Trumbore; G. Jimenez; M.E. Fenn

    2009-01-01

    Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha−1 a−1 as slow release urea since 1997) at two end‐member...

  16. Environmental factors affecting rates of nitrogen cycling

    International Nuclear Information System (INIS)

    Lipschultz, F.

    1984-01-01

    The nitrogen cycle in the eutrophic Delaware river was studied in late summer, 1983 using 15 N tracer additions of NHG 4 + , NO 2 - , and NO 3 - . Rates for nine different transformations were calculated simultaneously with a least-squares minimization analysis. Light was found to stimulate ammonium uptake and to inhibit ammonium oxidation. Rates for nitrification, ammonium uptake by phytoplankton, and photosynthesis were integrated over 24 hours and river depth. High turbidity lifted the effect of light inhibition on nitrification and restricted phytoplankton uptake. Uptake of ammonium contributed over 95% of the inorganic nitrogen ration for phytoplankton, with dark uptake accounting for more than 50%. A mass-conservation, box model of river was used to calculate rate constants required to reproduce observed nutrient concentration changes. The calculated constants correlated well with the measured 15 N and oxygen integrated rates. Water-column nitrification was the major loss term for NH 4 + , while water column regeneration was the primary source. Loss of oxidized nitrogen was insignificant. Oxygen consumption and air-water exchange far exceeded net photosynthetic oxygen production. Nitrification contributed less than 1% to the oxygen demand near Philadelphia but up to 25% further downstream. Production of NO and N 2 O was measured under varying oxygen concentrations in batch cultures of the nitrifying bacteria Nitrosomonas europaea and Nitrosococcus oceanus. Production of both gases increased relative to nitrite production as oxygen levels decreased

  17. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  18. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    Science.gov (United States)

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  19. Effects of Bromus tectorum invasion on microbial carbon and nitrogen cycling in two adjacent undisturbed arid grassland communities

    Science.gov (United States)

    Schaeffer, Sean M.; Ziegler, Susan E.; Belnap, Jayne; Evans, R.D.

    2012-01-01

    Soil nitrogen (N) is an important component in maintaining ecosystem stability, and the introduction of non-native plants can alter N cycling by changing litter quality and quantity, nutrient uptake patterns, and soil food webs. Our goal was to determine the effects of Bromus tectorum (C3) invasion on soil microbial N cycling in adjacent non-invaded and invaded C3 and C4 native arid grasslands. We monitored resin-extractable N, plant and soil δ13C and δ15N, gross rates of inorganic N mineralization and consumption, and the quantity and isotopic composition of microbial phospholipid biomarkers. In invaded C3 communities, labile soil organic N and gross and net rates of soil N transformations increased, indicating an increase in overall microbial N cycling. In invaded C4 communities labile soil N stayed constant, but gross N flux rates increased. The δ13C of phospholipid biomarkers in invaded C4 communities showed that some portion of the soil bacterial population preferentially decomposed invader C3-derived litter over that from the native C4 species. Invasion in C4 grasslands also significantly decreased the proportion of fungal to bacterial phospholipid biomarkers. Different processes are occurring in response to B. tectorum invasion in each of these two native grasslands that: 1) alter the size of soil N pools, and/or 2) the activity of the microbial community. Both processes provide mechanisms for altering long-term N dynamics in these ecosystems and highlight how multiple mechanisms can lead to similar effects on ecosystem function, which may be important for the construction of future biogeochemical process models.

  20. Carbon amendment stimulates benthic nitrogen cycling during the bioremediation of particulate aquaculture waste

    Science.gov (United States)

    Robinson, Georgina; MacTavish, Thomas; Savage, Candida; Caldwell, Gary S.; Jones, Clifford L. W.; Probyn, Trevor; Eyre, Bradley D.; Stead, Selina M.

    2018-03-01

    The treatment of organic wastes remains one of the key sustainability challenges facing the growing global aquaculture industry. Bioremediation systems based on coupled bioturbation-microbial processing offer a promising route for waste management. We present, for the first time, a combined biogeochemical-molecular analysis of the short-term performance of one such system that is designed to receive nitrogen-rich particulate aquaculture wastes. Using sea cucumbers (Holothuria scabra) as a model bioturbator we provide evidence that adjusting the waste C : N from 5 : 1 to 20 : 1 promoted a shift in nitrogen cycling pathways towards the dissimilatory nitrate reduction to ammonium (DNRA), resulting in net NH4+ efflux from the sediment. The carbon amended treatment exhibited an overall net N2 uptake, whereas the control receiving only aquaculture waste exhibited net N2 production, suggesting that carbon supplementation enhanced nitrogen fixation. The higher NH4+ efflux and N2 uptake was further supported by meta-genome predictions that indicate that organic-carbon addition stimulated DNRA over denitrification. These findings indicate that carbon addition may potentially result in greater retention of nitrogen within the system; however, longer-term trials are necessary to determine whether this nitrogen retention is translated into improved sea cucumber biomass yields. Whether this truly constitutes a remediation process is open for debate as there remains the risk that any increased nitrogen retention may be temporary, with any subsequent release potentially raising the eutrophication risk. Longer and larger-scale trials are required before this approach may be validated with the complexities of the in-system nitrogen cycle being fully understood.

  1. Seasonal Nitrogen Cycles on Pluto

    Science.gov (United States)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  2. How Plant Root Exudates Shape the Nitrogen Cycle.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Shi, Weiming; Kronzucker, Herbert J

    2017-08-01

    Although the global nitrogen (N) cycle is largely driven by soil microbes, plant root exudates can profoundly modify soil microbial communities and influence their N transformations. A detailed understanding is now beginning to emerge regarding the control that root exudates exert over two major soil N processes - nitrification and N 2 fixation. We discuss recent breakthroughs in this area, including the identification of root exudates as nitrification inhibitors and as signaling compounds facilitating N-acquisition symbioses. We indicate gaps in current knowledge, including questions of how root exudates affect newly discovered microbial players and N-cycle components. A better understanding of these processes is urgent given the widespread inefficiencies in agricultural N use and their links to N pollution and climate change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Identification and quantification of nitrogen cycling processes in cryptogamic covers

    Science.gov (United States)

    Weber, Bettina; Wu, Dianming; Lenhart, Katharina; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Elbert, Wolfgang; Burrows, Susannah; Clough, Tim; Steinkamp, Jörg; Meusel, Hannah; Behrendt, Thomas; Büdel, Burkhard; Andreae, Meinrat O.; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul; Keppler, Frank; Su, Hang; Pöschl, Ulrich

    2016-04-01

    Cryptogamic covers (CC) comprise communities of photoautotrophic cyanobacteria, lichens, algae, and bryophytes together with heterotrophic bacteria, microfungi, and archaea in varying proportions. Depending on their habitat, cryptogamic rock covers, cryptogamic plant covers, and cryptogamic soil covers are distinguished. The latter comprise biological soil crusts (biocrusts), which globally occur under dryland conditions. In a first assessment of their global role, we quantified that CC fix ˜49 Tg of nitrogen (N) per year (Elbert et al., 2013), corresponding to ˜1/2 of the maximum terrestrial biological N fixation determined in the latest IPCC report. The fixed N is used for biomass formation and partially leached into the ground, where it can be taken up by plants or transformed into N oxides, being emitted into the atmosphere. We show that biocrusts release nitric oxide (NO) and nitrous acid (HONO), which are key species in the global cycling of nitrogen and in the production of ozone and hydroxyl radicals, regulating the oxidizing power and self-cleaning capacity of the atmosphere. Based on laboratory, field and satellite measurement data, we obtained a best estimate of 1.1 Tg a-1 of NO-N and 0.6 Tg a-1 of HONO-N being globally emitted by biocrusts, corresponding to ˜20% of the global nitrogen oxide emissions from soils under natural vegetation (Weber et al., 2015). During full wetting and drying cycles, emissions peaked at low water contents suggesting NO- and HONO-formation under aerobic conditions during nitrification. Other measurements revealed that cryptogamic organisms release nitrous oxide (N2O), a greenhouse gas of crucial importance for climate change. The emission rates varied with temperature, humidity, and N deposition, but divided by respiratory CO2 emission they formed an almost constant ratio, which allowed upscaling on the global scale. We estimated annual N2O emissions of 0.3 - 0.6 Tg by cryptogams, accounting for 4-9% of the global N2O

  4. Root phenotypic differences across a historical gradient of wheat genotypes alter soil rhizosphere communities and their impact on nitrogen cycling

    Science.gov (United States)

    Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.

    2017-12-01

    Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (Psoil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts

  5. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine

    2012-04-01

    This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  7. Reactive nitrogen in the United States: How certain are we about sources and fluxes?

    Science.gov (United States)

    Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here...

  8. Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period.

    Science.gov (United States)

    Yan, Guoyong; Xing, Yajuan; Xu, Lijian; Wang, Jianyu; Meng, Wei; Wang, Qinggui; Yu, Jinghua; Zhang, Zhi; Wang, Zhidong; Jiang, Siling; Liu, Boqi; Han, Shijie

    2016-06-30

    As crucial terrestrial ecosystems, temperate forests play an important role in global soil carbon dioxide flux, and this process can be sensitive to atmospheric nitrogen deposition. It is often reported that the nitrogen addition induces a change in soil carbon dioxide emission in growing season. However, the important effects of interactions between nitrogen deposition and the freeze-thaw-cycle have never been investigated. Here we show nitrogen deposition delays spikes of soil respiration and weaken soil respiration. We found the nitrogen addition, time and nitrogen addition×time exerted the negative impact on the soil respiration of spring freeze-thaw periods due to delay of spikes and inhibition of soil respiration (p nitrogen), 39% (medium-nitrogen) and 36% (high-nitrogen) compared with the control. And the decrease values of soil respiration under medium- and high-nitrogen treatments during spring freeze-thaw-cycle period in temperate forest would be approximately equivalent to 1% of global annual C emissions. Therefore, we show interactions between nitrogen deposition and freeze-thaw-cycle in temperate forest ecosystems are important to predict global carbon emissions and sequestrations. We anticipate our finding to be a starting point for more sophisticated prediction of soil respirations in temperate forests ecosystems.

  9. A nitrogen mass balance for California

    Science.gov (United States)

    Liptzin, D.; Dahlgren, R. A.

    2010-12-01

    Human activities have greatly altered the global nitrogen cycle and these changes are apparent in water quality, air quality, ecosystem and human health. However, the relative magnitude of the sources of new reactive nitrogen and the fate of this nitrogen is not well established. Further, the biogeochemical aspects of the nitrogen cycle are often studied in isolation from the economic and social implications of all the transformations of nitrogen. The California Nitrogen Assessment is an interdisciplinary project whose aim is evaluating the current state of nitrogen science, practice, and policy in the state of California. Because of the close proximity of large population centers, highly productive and diverse agricultural lands and significant acreage of undeveloped land, California is a particularly interesting place for this analysis. One component of this assessment is developing a mass balance of nitrogen as well as identifying gaps in knowledge and quantifying uncertainty. The main inputs of new reactive nitrogen to the state are 1) synthetic nitrogen fertilizer, 2) biological nitrogen fixation, and 3) atmospheric nitrogen deposition. Permanent losses of nitrogen include 1) gaseous losses (N2, N2O, NHx, NOy), 2) riverine discharge, 3) wastewater discharge to the ocean, and 4) net groundwater recharge. A final term is the balance of food, feed, and fiber to support the human and animal populations. The largest input of new reactive nitrogen to California is nitrogen fertilizer, but both nitrogen fixation and atmospheric deposition contribute significantly. Non-fertilizer uses, such as the production of nylon and polyurethane, constitutes about 5% of the synthetic N synthesized production. The total nitrogen fixation in California is roughly equivalent on the 400,000 ha of alfalfa and the approximately 40 million ha of natural lands. In addition, even with highly productive agricultural lands, the large population of livestock, in particular dairy cows

  10. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics.

    Science.gov (United States)

    Heather Erickson; Michael Keller; Eric Davidson

    2001-01-01

    The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...

  11. Effects of Hypoxia on Sedimentary Nitrogen Cycling in the Pensacola Bay Estuary

    Science.gov (United States)

    Eutrophic-induced hypoxic events pose a serious threat to estuaries in coastal systems. Hypoxic events are becoming more intense and widespread with changes in land use and increased anthropogenic pressures. Microbial communities involved in sedimentary nitrogen (N) cycling may h...

  12. Metagenomic assesment of the potential microbial nitrogen pathways in the rhizosphere of a Mediterranean forest after wildfire

    OpenAIRE

    Cobo-Díaz, José F.; Fernández-González, Antonio J.; Villadas, Pablo J.; Robles, Ana B.; Toro, Nicolás; Fernández-López, Manuel

    2015-01-01

    Wildfires are frecuent in the forest of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions result in alterations of both the bacterial communities and the nitrgen cycle,. We explored the effetcs of a holm-oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the u...

  13. N cycling in SPRUCE (Spruce Peatlands Response Under Climatic and Environmental Changes)

    Science.gov (United States)

    Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in th...

  14. The global stoichiometry of litter nitrogen mineralization.

    Science.gov (United States)

    Manzoni, Stefano; Jackson, Robert B; Trofymow, John A; Porporato, Amilcare

    2008-08-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of approximately 2800 observations to show that these global nitrogen-release patterns can be explained by fundamental stoichiometric relationships of decomposer activity. We show how litter quality controls the transition from nitrogen accumulation into the litter to release and alters decomposers' respiration patterns. Our results suggest that decomposers lower their carbon-use efficiency to exploit residues with low initial nitrogen concentration, a strategy used broadly by bacteria and consumers across trophic levels.

  15. Consequences of the cultivation of energy crops for the global nitrogen cycle

    NARCIS (Netherlands)

    Bouwman, A.F.; Grinsven, van J.J.M.; Eickhout, B.

    2010-01-01

    In this paper, we assess the global consequences of implementing first- and second-generation bioenergy in the coming five decades, focusing on the nitrogen cycle. We Use a climate mitigation scenario from the Organization for Economic Cooperation and Development's (OECD) Environmental Outlook, in

  16. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  17. Application of the Open Cycle Stirling Engine Driven with Liquid Nitrogen for the Non-Polluting Automobiles

    Directory of Open Access Journals (Sweden)

    M.B. Kravchenko

    2017-10-01

    Full Text Available Progress on advancing technology of using liquid nitrogen for the non-polluting automobiles is reported. It is shown that the low exergy efficiency of the known engines fueled with liquid nitrogen has discredited the very idea of a cryomobile. The design of the open-cycle cryogenic Stirling engine is proposed. This engine allows extracting up to 57% of the exergy accumulated in liquid nitrogen. The method used to calculate of such open-cycle Stirling engine is described and the calculation results and discussion are presented. It is shown that 200 liters of liquid nitrogen is sufficient for 180 km range of cryomobile at speed of 55 km/h, while a full charge of the 300-kilogram battery of Nissan LEAF electric vehicle is sufficient for a range of 160 km. Use of liquid nitrogen or liquid air as an energy vector in a transport will not require scarce materials, and, in comparison with using of lithium-ion batteries or hydrogen, this will require less capital investment.

  18. Disturbance decouples biogeochemical cycles across forests of the southeastern US

    Science.gov (United States)

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2016-01-01

    Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...

  19. Terrestrial nitrogen cycles: Some unanswered questions

    Science.gov (United States)

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  20. The nitrogen cycle on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  1. Change in running kinematics after cycling are related to alterations in running economy in triathletes.

    Science.gov (United States)

    Bonacci, Jason; Green, Daniel; Saunders, Philo U; Blanch, Peter; Franettovich, Melinda; Chapman, Andrew R; Vicenzino, Bill

    2010-07-01

    Emerging evidence suggests that cycling may influence neuromuscular control during subsequent running but the relationship between altered neuromuscular control and run performance in triathletes is not well understood. The aim of this study was to determine if a 45 min high-intensity cycle influences lower limb movement and muscle recruitment during running and whether changes in limb movement or muscle recruitment are associated with changes in running economy (RE) after cycling. RE, muscle activity (surface electromyography) and limb movement (sagittal plane kinematics) were compared between a control run (no preceding cycle) and a run performed after a 45 min high-intensity cycle in 15 moderately trained triathletes. Muscle recruitment and kinematics during running after cycling were altered in 7 of 15 (46%) triathletes. Changes in kinematics at the knee and ankle were significantly associated with the change in VO(2) after cycling (precruitment in some triathletes and that changes in kinematics, especially at the ankle, are closely related to alterations in running economy after cycling. Copyright 2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters.

    Science.gov (United States)

    Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong

    2017-07-03

    This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH 3 -N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH 3 -N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.

  3. On the linkages between the global carbon-nitrogen-phosphorus cycles

    Science.gov (United States)

    Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto

    2013-04-01

    State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh

  4. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    Science.gov (United States)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and

  5. Does Avicennia germinans expansion alter salt marsh nitrogen removal capacity?

    Science.gov (United States)

    Tatariw, C.; Kleinhuizen, A.; Rajan, S.; Flournoy, N.; Sobecky, P.; Mortazavi, B.

    2017-12-01

    Plant species expansion poses risks to ecosystem services through alterations to plant-microbiome interactions associated with changes to key microbial drivers such as organic carbon (C) substrates, nitrogen (N) availability, and rhizosphere-associated microbial communities. In the northern Gulf of Mexico (GOM), warming winter temperatures associated with climate change have promoted Avicennia germinans (black mangrove) expansion into salt marshes. To date, there is limited knowledge regarding the effects of mangrove expansion on vital ecosystem services such as N cycling in the northern GOM. We designed a field-based study to determine the potential effects of mangrove expansion on salt marsh N biogeochemical cycling in the Spartina alterniflora dominated Chandeleur Islands (LA, USA). We used a combination of process rate measurements and metadata to: 1) Determine the impact of mangrove expansion on salt marsh denitrification and dissimilatory nitrate reduction to ammonium (DNRA), with the goal of quantifying losses or gains in ecosystem services; and 2) identify the mechanisms driving changes in ecosystem services to improve predictions about the impacts of mangrove expansion on salt marsh functional resiliency. The pneumatophore root structure of A. germinans is efficient at delivering oxygen (O2) to sediment, which can promote coupled nitrification-denitrification and decrease sulfide inhibition. We hypothesized that increased sediment O2, when coupled with cooler soil temperatures caused by plant shading, will favor denitrification instead of the DNRA process. An increase in sediment O2, as well as higher N content of A. germinans litter, will also result in a shift in the microbial community. Initial findings indicated that the denitrification pathway dominates over DNRA regardless of vegetation type, with average denitrification rates of 30.1 µmol N kg-1 h-1 versus average DNRA rates of 8.5 µmol N kg-1 h-1. However, neither denitrification nor DNRA rates

  6. Nitrogen footprints: past, present and future

    Science.gov (United States)

    Galloway, James N.; Winiwarter, Wilfried; Leip, Adrian; Leach, Allison M.; Bleeker, Albert; Willem Erisman, Jan

    2014-11-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems.

  7. Nitrogen footprints: past, present and future

    International Nuclear Information System (INIS)

    Galloway, James N; Leach, Allison M; Winiwarter, Wilfried; Leip, Adrian; Bleeker, Albert; Erisman, Jan Willem

    2014-01-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems. (paper)

  8. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    Science.gov (United States)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  9. Mortality hotspots: nitrogen cycling in forest soils during vertebrate decomposition

    Science.gov (United States)

    Decomposing plants and animals fundamentally transform their surrounding environments, and serve as a critical source of limiting nutrients for macro- and micro-fauna. Animal mortality hotspots alter soil biogeochemical cycles, and these natural ephemeral nutrient patches are important for maintaini...

  10. Ecological Impact on Nitrogen and Phosphorus Cycling of a Widespread Fast-growing Leguminous Tropical Forest Plantation Tree Species, Acacia mangium

    Directory of Open Access Journals (Sweden)

    Shigehiro Ishizuka

    2011-11-01

    Full Text Available Symbiotic nitrogen fixation is one of the major pathways of N input to forest ecosystems, enriching N availability, particularly in lowland tropics. Recently there is growing concern regarding the wide areas of fast-growing leguminous plantations that could alter global N2O emissions. Here, we highlight substantially different N and phosphorus utilization and cycling at a plantation of Acacia mangium, which is N2-fixing and one of the major plantation species in tropical/subtropical Asia. The litterfall, fresh leaf quality and fine-root ingrowth of A. mangium were compared to those of non-N2-fixing Swietenia macrophylla and coniferous Araucaria cunninghamii in wet tropical climates in Borneo, Malaysia. The N and P concentrations of the A. mangium fresh leaves were higher than those of the other two species, whereas the P concentration in the leaf-litterfall of A. mangium was less than half that of the others; in contrast the N concentration was higher. The N:P ratio in the A. mangium leaf was markedly increased from fresh-leaf (29 to leaf-litterfall (81. Although the N flux in the total litterfall at the A. mangium plantation was large, the fine-root ingrowth of A. mangium significantly increased by applying both N and P. In conclusion, large quantities of N were accumulated and returned to the forest floor in A. mangium plantation, while its P resorption capacity was efficient. Such large N cycling and restricted P cycling in wide areas of monoculture A. mangium plantations may alter N and P cycling and their balance in the organic layer and soil on a stand level.

  11. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    Science.gov (United States)

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  12. Reactive nitrogen in the environment and its effect on climate change

    International Nuclear Information System (INIS)

    Erisman, J.W.; Bleeker, A.; Galloway, J.; Seitzinger, S.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen currently leads to a net-cooling effect on climate with very high uncertainty. The many complex warming and cooling interactions between nitrogen and climate need to be better assessed, taking also into account the other effects of nitrogen on human health, environment and ecosystem services. Through improved nitrogen management substantial reductions in atmospheric greenhouse gas concentrations could be generated, also allowing for other co-benefits, including improving human health and improved provision of ecosystem services, for example clean air and water, and biodiversity.

  13. Developments in nitrogen generators

    International Nuclear Information System (INIS)

    Ayres, C.L.; Abrardo, J.M.; Himmelberger, L.M.

    1984-01-01

    Three process cycles for the production of nitrogen by the cryogenic separation of air are described in detail. These cycles are: (1) a waste expander cycle; (2) an air expander cycle; and (3) a cycle for producing large quantities of gaseous nitrogen. Each cycle has distinct advantages for various production ranges and delivery pressures. A dicussion of key parameters that must be considered when selecting a cycle to meet specific product requirements is presented. The importance of high plant reliability and a dependable liquid nitrogen back up system is also presented. Lastly, a discussion of plant safety dealing with the hazards of nitrogen, enriched oxygen, and hydrocarbons present in the air is reviewed

  14. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  15. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle.

    Science.gov (United States)

    Thomazo, C; Ader, M; Philippot, P

    2011-03-01

    Although nitrogen is a key element in organic molecules such as nucleic acids and proteins, the timing of the emergence of its modern biogeochemical cycle is poorly known. Recent studies on the antiquity of the nitrogen cycle and its interaction with free oxygen suggests the establishment of a complete aerobic N biogeochemical cycle with nitrification, denitrification, and nitrogen fixation at about 2.68 Gyr. Here, we report new bulk nitrogen isotope data for the 2.72 billion-year-old sedimentary succession of the Tumbiana Formation (Pilbara Craton, Western Australia). The nitrogen isotopic compositions vary widely from +8.6‰ up to +50.4‰ and are inversely correlated with the very low δ(13)C values of associated organic matter defining the Fortescue excursion (down to about -56‰). We propose that this (15)N-enrichment records the onset of nitrification coupled to the continuous removal of its derivatives (nitrite and nitrate) by denitrification. This finding implies an increase in the availability of electron acceptors and probably oxygen in the Tumbiana depositional environment, 300 million years before the oxygenation of the Earth's atmosphere. © 2011 Blackwell Publishing Ltd.

  16. An investigation of the solar cycle response of odd-nitrogen in the thermosphere

    Science.gov (United States)

    Rusch, David W.; Solomon, Stanley C.

    1992-01-01

    This annual report covers the first year of funding for the study of the solar cycle variations of odd-nitrogen (N((sup 2)D), N((sup 4)S), NO) in the Earth's thermosphere. The study uses the extensive data base generated by the Atmosphere Explorer (AE) satellites, and the Solar Mesosphere Explorer Satellite. The AE data are being used, for the first time, to define the solar variability effect on the odd-nitrogen species through analysis of the emissions at 520 nano-m from N((sup 2)D) and the emission from O(+)((sup 2)P). Additional AE neutral and ion density data are used to help define and quantify the physical processes controlling the variations. The results from the airglow study will be used in the next two years of this study to explain the solar cycle changes in NO measured by the Solar Mesosphere Explorer.

  17. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    Science.gov (United States)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  18. Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon:nitrogen ratio and the cycle time.

    Science.gov (United States)

    Mees, Juliana Bortoli Rodrigues; Gomes, Simone Damasceno; Hasan, Salah Din Mahmud; Gomes, Benedito Martins; Boas, Márcio Antonio Vilas

    2014-01-01

    The effects of cycle time (CT) (8, 12 and 16h) and C/N ratio (3, 6 and 9) on nitrogen removal efficiencies in a bench top sequencing batch reactor treating slaughterhouse wastewater were investigated under different operating conditions: in condition 1, the reaction comprises an aerobic/anoxic phase and in condition II, the reaction comprises anoxic I/aerobic/anoxic II phases (with pre-denitrification). The greatest percentages of nitrogen removal were obtained in the CT range from 12 to 16 h and C/N ratios from 3 to 6, with mean efficiency values of 80.76% and 85.57% in condition I and 90.99% and 91.09% in condition II. Although condition II gave a higher removal of total inorganic nitrogen (NH4+ - N + NO2- - N + NO3- - N) than condition I, only condition I showed statistically significant and predictive regression for all the steps of nitrogen removal.

  19. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a mediterranean forest after a wildfire.

    Science.gov (United States)

    Cobo-Díaz, José F; Fernández-González, Antonio J; Villadas, Pablo J; Robles, Ana B; Toro, Nicolás; Fernández-López, Manuel

    2015-05-01

    Wildfires are frequent in the forests of the Mediterranean Basin and have greatly influenced this ecosystem. Changes to the physical and chemical properties of the soil, due to fire and post-fire conditions, result in alterations of both the bacterial communities and the nitrogen cycle. We explored the effects of a holm oak forest wildfire on the rhizospheric bacterial communities involved in the nitrogen cycle. Metagenomic data of the genes involved in the nitrogen cycle showed that both the undisturbed and burned rhizospheres had a conservative nitrogen cycle with a larger number of sequences related to the nitrogen incorporation pathways and a lower number for nitrogen output. However, the burned rhizosphere showed a statistically significant increase in the number of sequences for nitrogen incorporation (allantoin utilization and nitrogen fixation) and a significantly lower number of sequences for denitrification and dissimilatory nitrite reductase subsystems, possibly in order to compensate for nitrogen loss from the soil after burning. The genetic potential for nitrogen incorporation into the ecosystem was assessed through the diversity of the nitrogenase reductase enzyme, which is encoded by the nifH gene. We found that nifH gene diversity and richness were lower in burned than in undisturbed rhizospheric soils. The structure of the bacterial communities involved in the nitrogen cycle showed a statistically significant increase of Actinobacteria and Firmicutes phyla after the wildfire. Both approaches showed the important role of gram-positive bacteria in the ecosystem after a wildfire.

  20. Microbial biomass dynamics dominate N cycle responses to warming in a sub-arctic peatland

    Science.gov (United States)

    Weedon, J. T.; Aerts, R.; Kowalchuk, G. K.; van Bodegom, P. M.

    2012-04-01

    The balance of primary production and decomposition in sub-arctic peatlands may shift with climate change. Nitrogen availability will modulate this shift, but little is known about the drivers of soil nitrogen dynamics in these environments, and how they are influenced by rising soil temperatures. We used a long-term open top chamber warming experiment in Abisko, Sweden, to test for the interactive effects of spring warming, summer warming and winter snow addition on soil organic and inorganic nitrogen fluxes, potential activities of carbon and nitrogen cycle enzymes, and the structure of the soil-borne microbial communities. Summer warming increased the flux of soil organic nitrogen over the growing season, while simultaneously causing a seasonal decrease in microbial biomass, suggesting that N flux is driven by large late-season dieback of microbes. This change in N cycle dynamics was not reflected in any of the measured potential enzyme activities. Moreover, the soil microbial community structure was stable across treatments, suggesting non-specific microbial dieback. To further test whether the observed patterns were driven by direct temperature effects or indirect effects (via microbial biomass dynamics), we conducted follow-up controlled experiments in soil mesocosms. Experimental additions of dead microbial cells had stronger effects on N pool sizes and enzyme activities than either plant litter addition or a 5 °C alteration in incubation temperatures. Peat respiration was positively affected by both substrate addition and higher incubation temperatures, but the temperature-only effect was not sufficient to account for the increases in respiration observed in previous field experiments. We conclude that warming effects on peatland N cycling (and to some extent C cycling) are dominated by indirect effects, acting through alterations to the seasonal flux of microbe-derived organic matter. We propose that climate change models of soil carbon and nitrogen

  1. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    Science.gov (United States)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  2. The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition.

    Science.gov (United States)

    Siegert, Michael; Taubert, Martin; Seifert, Jana; von Bergen-Tomm, Martin; Basen, Mirko; Bastida, Felipe; Gehre, Matthias; Richnow, Hans-Hermann; Krüger, Martin

    2013-11-01

    Anaerobic methanotrophic (ANME) mats host methane-oxidizing archaea and sulfate-reducing prokaryotes. Little is known about the nitrogen cycle in these communities. Here, we link the anaerobic oxidation of methane (AOM) to the nitrogen cycle in microbial mats of the Black Sea by using stable isotope probing. We used four different (15)N-labeled sources of nitrogen: dinitrogen, nitrate, nitrite and ammonium. We estimated the nitrogen incorporation rates into the total biomass and the methyl coenzyme M reductase (MCR). Dinitrogen played an insignificant role as nitrogen source. Assimilatory and dissimilatory nitrate reduction occurred. High rates of nitrate reduction to dinitrogen were stimulated by methane and sulfate, suggesting that oxidation of reduced sulfur compounds such as sulfides was necessary for AOM with nitrate as electron acceptor. Nitrate reduction to dinitrogen occurred also in the absence of methane as electron donor but at six times slower rates. Dissimilatory nitrate reduction to ammonium was independent of AOM. Ammonium was used for biomass synthesis under all conditions. The pivotal enzyme in AOM coupled to sulfate reduction, MCR, was synthesized from nitrate and ammonium. Results show that AOM coupled to sulfate reduction along with biomass decomposition drive the nitrogen cycle in the ANME mats of the Black Sea and that MCR enzymes are involved in this process. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Nitrogen cycling and bacterial community structure of sinking and aging diatom aggregates

    DEFF Research Database (Denmark)

    Lundgaard, Ann Sofie Birch; Treusch, Alexander H.; Stief, Peter

    2017-01-01

    ABSTRACT: Sinking phycodetrital aggregates can contribute to anaerobic nitrogen turnover as they may represent oxygen-depleted microbial hot spots in otherwise oxygenated waters. However, the dynamics of anaerobic nitrogen cycling during the long descent of aggregates through oxic or hypoxic waters...... are unknown. Thus, model aggregates prepared from the diatom Skeletonema marinoi were allowed to age for 4 d at high and low ambient O2 levels (70 and 15% air saturation, respectively), and changes in nitrogen transformations and microbial community structure were followed. At both O2 levels, denitrification...... at average production rates of 0.66 nmol N2-N aggregate (aggr.)–1 h–1 and 0.26 nmol NO2– aggr.–1 h–1. At both O2 levels, but more pronouncedly at 70% air saturation, the microbial community underwent succession as expressed by an increase in (1) relative abundance of specific bacterial taxonomic units; (2...

  4. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  5. Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain

    NARCIS (Netherlands)

    Castro-Diez, P.; González-Muñoz, N.; Alonso, A.; Gallardo, A.; Poorter, L.

    2009-01-01

    We assess the hypothesis that rates of nitrogen transformations in the soil are altered upon replacement of native by exotic trees, differing in litter properties. Ailanthus altissima and Robinia pseudoacacia, two common exotic trees naturalized in the Iberian Peninsula, were compared with the

  6. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    Science.gov (United States)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    to the latest IPCC report. In summary, our measurements show that dryland emissions of nitrogen oxides are largely driven by biocrusts and not by the underlying soil. As precipitation patterns, which influence biocrust activity, are affected by climate change, alterations in global nitrogen oxide emissions are to be expected. Thus, the role of biocrusts in the global cycling of reactive nitrogen needs to be followed and also implemented in regional and global models of biogeochemistry, air chemistry and climate.

  7. Abiotic and biotic controls over biogeochemical cycles in drylands: Insights from climate change and nitrogen deposition experiments on the Colorado Plateau

    Science.gov (United States)

    Reed, S.; Ferrenberg, S.; Tucker, C.; Rutherford, W. A.; Wertin, T. M.; McHugh, T. A.; Morrissey, E.; Kuske, C.; Mueller, R.; Belnap, J.

    2016-12-01

    As for all ecosystems, biogeochemical cycling in drylands represents numerous intricate connections between biotic and abiotic controls. However, patterns of many fundamental ecosystem processes that generally hold across global gradients fall apart at the arid and semiarid end of the spectrum, and data point to an exceptionally strong role for abiotic controls in explaining these patterns. Further, there are multiple dryland characteristics - such as extreme aridity and high UV radiation, as well as specialized biological communities - which can point to a conclusion that "drylands are different". Indeed, drylands are often characterized by their harsh environment, by the diverse classes of biota representing a range of traits aimed at surviving such harsh conditions, and, more recently, by the suggestion of dramatic biotic responses to seemingly subtle changes in abiotic factors. In this talk, we will explore a range of biotic and abiotic controls over fundamental biogeochemical cycling in drylands using data from a suite of manipulation experiments on the Colorado Plateau, USA. We will present results from field treatments that speak to the effects of increasing temperature, altered precipitation regimes, increased nitrogen availability via deposition, and the effects of altered litterfall inputs. Biogeochemical processes we explore will include plant photosynthesis, soil photosynthesis and respiration (with a focus on biological soil crusts), litter decomposition, and nutrient cycling. In addition, we will assess how treatments alter dryland community composition, as well as the resultant feedbacks of community shifts to environmental change. Taken together we will use these diverse datasets to ask questions about what makes drylands different or, instead, if a holistic joining of biotic and abiotic perspectives suggests they are not so different after all. These data will not only lend insight into the partitioning of and balance between biotic and abiotic

  8. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China

    DEFF Research Database (Denmark)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere Abdisa

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling...... and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle....

  9. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    Science.gov (United States)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  10. Nitrogen Dynamics in European Forest Ecosystems: Considerations regarding Anthropogenic Nitrogen Depositions

    OpenAIRE

    Agren, G.I.; Kauppi, P.

    1983-01-01

    This study deals with the nutrient cycle of forest ecosystems over large geographic regions in Europe as affected by nitrogen deposition. The view is taken that the nitrogen cycle of a forest ecosystem has a maximum capacity for circulating nitrogen. Two different cases are defined: case (1) in which the nutrient cycle functions below its maximum capacity, and case (2) in which the circulation operates at the maximum level.

  11. White popular (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ciadamidaro, L.; Madejon, P.; Cabrera, F.; Madejon, E.

    2014-06-01

    Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health. Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH 2.66) and a non-contaminated soil (RHU pH 7.19). Materials and methods: Soil samples were placed in 2,000 cm{sup 3} microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH{sub 4}{sup 4}+-N) and nitrate (NO{sub 3}{sup -} -N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl{sub 2}) were determined at different times of incubation. Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO{sub 3} –-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH{sub 4}{sup +}-N and NO{sub 3}{sup -} -N, microbial biomass N and protease activity. Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle. (Author)

  12. White poplar (Populus alba L. - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Directory of Open Access Journals (Sweden)

    Paula Madejon

    2014-04-01

    Full Text Available Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health.Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH = 2.66 and a non-contaminated soil (RHU pH 7.19.Materials and methods: Soil samples were placed in 2,000 cm3 microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH4+-N and nitrate (NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN, protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl2 were determined at different times of incubation.Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH4+-N andNO3–-N, microbial biomass N and protease activity.Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle.Key words: microbial biomass N; protease activity; soil pH; N mineralization; nitrification; phytoremediation.

  13. Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Catherine A Pfister

    2010-05-01

    Full Text Available Mussels are conspicuous and often abundant members of rocky shores and may constitute an important site for the nitrogen cycle due to their feeding and excretion activities. We used shotgun metagenomics of the microbial community associated with the surface of mussels (Mytilus californianus on Tatoosh Island in Washington state to test whether there is a nitrogen-based microbial assemblage associated with mussels. Analyses of both tidepool mussels and those on emergent benches revealed a diverse community of Bacteria and Archaea with approximately 31 million bp from 6 mussels in each habitat. Using MG-RAST, between 22.5-25.6% were identifiable using the SEED non-redundant database for proteins. Of those fragments that were identifiable through MG-RAST, the composition was dominated by Cyanobacteria and Alpha- and Gamma-proteobacteria. Microbial composition was highly similar between the tidepool and emergent bench mussels, suggesting similar functions across these different microhabitats. One percent of the proteins identified in each sample were related to nitrogen cycling. When normalized to protein discovery rate, the high diversity and abundance of enzymes related to the nitrogen cycle in mussel-associated microbes is as great or greater than that described for other marine metagenomes. In some instances, the nitrogen-utilizing profile of this assemblage was more concordant with soil metagenomes in the Midwestern U.S. than for open ocean system. Carbon fixation and Calvin cycle enzymes further represented 0.65 and 1.26% of all proteins and their abundance was comparable to a number of open ocean marine metagenomes. In sum, the diversity and abundance of nitrogen and carbon cycle related enzymes in the microbes occupying the shells of Mytilus californianus suggest these mussels provide a node for microbial populations and thus biogeochemical processes.

  14. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    Science.gov (United States)

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  15. Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling.

    Science.gov (United States)

    Lee, Michael D; Webb, Eric A; Walworth, Nathan G; Fu, Fei-Xue; Held, Noelle A; Saito, Mak A; Hutchins, David A

    2018-01-01

    Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to

  16. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem.

    Science.gov (United States)

    Chen, Xinxin; Song, Beizhou; Yao, Yuncong; Wu, Hongying; Hu, Jinghui; Zhao, Lingling

    2014-02-15

    Aromatic plants can substantially improve the diversity and structure of arthropod communities, as well as reduce the number of herbivore pests and regulate the abundance of predators and parasitoids. However, it is not clear whether aromatic plants are also effective in improving soil quality by enhancing nutrient cycling. Here, field experiments are described involving intercropping with aromatic plants to investigate their effect on soil nitrogen (N) cycling in an orchard ecosystem. The results indicate that the soil organic nitrogen and available nitrogen contents increased significantly in soils intercropped with aromatic plants. Similarly, the activities of soil protease and urease increased, together with total microbial biomass involved in N cycling, including nitrifying bacteria, denitrifying bacteria and azotobacters, as well as the total numbers of bacteria and fungi. This suggests that aromatic plants improve soil N cycling and nutrient levels by enriching the soil in organic matter through the regulation of both the abundance and community structure of microorganisms, together with associated soil enzyme activity, in orchard ecosystems. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

    Science.gov (United States)

    Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal

    2016-01-01

    Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...

  18. Woody encroachment impacts on ecosystem nitrogen cycling: fixation, storage and gas loss

    Science.gov (United States)

    Soper, F.; Sparks, J. P.

    2016-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs have the potential to alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates vary seasonally, inter-annually and as a function of plant age and abiotic conditions. Applying a small-scale mass balance model to soil N accrual around individual trees (accounting for atmospheric inputs, and gas and hydrologic losses) generated current fixation estimates of 11 kg N ha-1 yr-1, making symbiotic fixation the largest input of N to the ecosystem. However, soil N accrual and increased cycling rates did not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Lab incubations suggested that N2 losses are likely to be low, with field oxygen conditions not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of significant net N accrual, driven by fixation under ongoing encroachment. Given the large scale of woody legume encroachment in the USA, this process is likely to contribute

  19. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  20. Fresh insight to functioning of selected enzymes of the nitrogen cycle.

    Science.gov (United States)

    Eady, Robert R; Antonyuk, Svetlana V; Hasnain, S Samar

    2016-04-01

    The global nitrogen cycle is the process in which different forms of environmental N are interconverted by microorganisms either for assimilation into biomass or in respiratory energy-generating pathways. This short review highlights developments over the last 5 years in our understanding of functionality of nitrogenase, Cu-nitrite reductase, NO reductase and N2O reductase, complex metalloenzymes that catalyze electron/proton-coupled substrate reduction reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of Land Use Change on C-N cycling: Microbes Matter.

    Science.gov (United States)

    Hofmockel, K.

    2012-12-01

    Large swaths of the terrestrial landscape have been altered by human actions on Earth's biophysical systems, resulting in the homogenization of Earth's biota, while simultaneously increasing greenhouse gases and reactive nitrogen (N). This is especially poignant in grasslands that have been largely replaced by managed agricultural systems with substantial N inputs, or by unmanaged grasslands that are dominated by exotic species. Impacted ecosystems may be important for global C models, because they comprise a major portion of the global land area, terrestrial NPP and the world's soil C stocks. This research investigates how anthropogenic changes in plant community composition and agricultural management systems influence the composition and function of microbial communities that mediate key aspects of belowground C and N cycling and storage. Data from agroecology and grassland climate change experiments are used to illustrate how microbial responses can have important implications for large scale coupling of C and N cycles. In this study exotic plant species significantly decreased root inputs, causing shifts in microbial community composition, including both specific taxa and functional guilds of bacteria. By contrast, climate change (precipitation manipulation) caused functional responses (increased carbon and phosphorus cycling) that were not detected in the microbial community composition. Mycorrhizal fungi in managed systems were responsive to both root biomass and nitrogen inputs, significantly altering hydrolytic enzyme activity and aggregate turnover. Collectively small-scale processes can alter the ecosystem biogeochemical cycles. Together theses results suggest that linking microbial communities to coupled C-N cycles may have important implications for terrestrial C cycling feedbacks that are an integral part of the anthropocene era.

  2. Excess nitrogen in the U.S. environment: Trends, risks, and solutions

    Science.gov (United States)

    Davidson, E.A.; David, M.B.; Galloway, J.N.; Goodale, C.L.; Haeuber, R.; Harrison, J.A.; Howarth, R.W.; Jaynes, D.B.; Lowrance, R.R.; Thomas, Nolan B.; Peel, J.L.; Pinder, R.W.; Porter, E.; Snyder, C.S.; Townsend, A.R.; Ward, M.H.

    2011-01-01

    It is not surprising that humans have profoundly altered the global nitrogen (N) cycle in an effort to feed 7 billion people, because nitrogen is an essential plant and animal nutrient. Food and energy production from agriculture, combined with industrial and energy sources, have more than doubled the amount of reactive nitrogen circulating annually on land. Humanity has disrupted the nitrogen cycle even more than the carbon (C) cycle. We present new research results showing widespread effects on ecosystems, biodiversity, human health, and climate, suggesting that in spite of decades of research quantifying the negative consequences of too much available nitrogen in the biosphere, solutions remain elusive. There have been important successes in reducing nitrogen emissions to the atmosphere and this has improved air quality. Effective solutions for reducing nitrogen losses from agriculture have also been identified, although political and economic impediments to their adoption remain. Here, we focus on the major sources of reactive nitrogen for the United States (U.S.), their impacts, and potential mitigation options. Sources: ??? Intensive development of agriculture, industry, and transportation has profoundly altered the U.S. nitrogen cycle. ??? Nitrogen emissions from the energy and transportation sectors are declining, but agricultural emissions are increasing. ??? Approximately half of all nitrogen applied to boost agricultural production escapes its intended use and is lost to the environment. Impacts: ??? Two-thirds of U.S. coastal systems are moderately to severely impaired due to nutrient loading; there are now approximately 300 hypoxic (low oxygen) zones along the U.S. coastline and the number is growing. One third of U.S. streams and two fifths of U.S. lakes are impaired by high nitrogen concentrations. ??? Air pollution continues to reduce biodiversity. A nation-wide assessment has documented losses of nitrogen-sensitive native species in favor of exotic

  3. Improvement of wine terroir management according to biogeochemical cycle of nitrogen in soil

    Science.gov (United States)

    Najat, Nassr; Aude, Langenfeld; Mohammed, Benbrahim; Lionel, Ley; Laurent, Deliere; Jean-Pascal, Goutouly; David, Lafond; Marie, Thiollet-Scholtus

    2015-04-01

    Good wine terroir production implies a well-balanced Biogeochemical Cycle of Nitrogen (BCN) at field level i.e. in soil and in plant. Nitrogen is very important for grape quality and soil sustainability. The mineralization of organic nitrogen is the main source of mineral nitrogen for the vine. This mineralization depends mainly on the soil microbial activity. This study is focused on the functional microbial populations implicated in the BCN, in particular nitrifying bacteria. An experimental network with 6 vine sites located in Atlantic coast (Loire valley and Bordeaux) and in North-East (Alsace) of France has been set up since 2012. These vine sites represent a diversity of environmental factors (i.e. soil and climate). The adopted approach is based on the measure of several indicators to assess nitrogen dynamic in soil, i.e. nitrogen mineralization, regarding microbial biomass and activity. Statistical analyses are performed to determine the relationship between biological indicator and nitrogen mineralisation regarding farmer's practices. The variability of the BCN indicators seems to be correlated to the physical and chemical parameters in the soil of the field. For all the sites, the bacterial biomass is correlated to the rate and kinetic of nitrogen in soil, however this bioindicator depend also on others parameters. Moreover, the functional bacterial diversity depends on the soil organic matter content. Differences in the bacterial biomass and kinetic of nitrogen mineralization are observed between the sites with clayey (Loire valley site) and sandy soils (Bordeaux site). In some tested vine systems, effects on bacterial activity and nitrogen dynamic are also observed depending on the farmer's practices: soil tillage, reduction of inputs, i.e. pesticides and fertilizers, and soil cover management between rows. The BCN indicators seem to be strong to assess the dynamics of the nitrogen in various sites underline the functional diversity of the soils. These

  4. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    Directory of Open Access Journals (Sweden)

    David Sabater

    2014-01-01

    rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  5. Insights into high-temperature nitrogen cycling from studies of the thermophilic ammonia-oxidizing archaeon Nitrosocaldus yellowstonii. (Invited)

    Science.gov (United States)

    de la Torre, J. R.

    2010-12-01

    Our understanding of the nitrogen cycle has advanced significantly in recent years with the discovery of new metabolic processes and the recognition that key processes such as aerobic ammonia oxidation are more broadly distributed among extant organisms and habitat ranges. Nitrification, the oxidation of ammonia to nitrite and nitrate, is a key component of the nitrogen cycle and, until recently, was thought to be mediated exclusively by the ammonia-oxidizing bacteria (AOB). The discovery that mesophilic marine archaea, some of the most abundant microorganisms on the planet, are capable of oxidizing ammonia to nitrite fundamentally changed our perception of the global nitrogen cycle. Ammonia-oxidizing archaea (AOA) are now thought to be significant drivers of nitrification in many marine and terrestrial environments. Most studies, however, have focused on the contribution of AOA to nitrogen cycling in mesophilic environments. Our recent discovery of a thermophilic AOA, Nitrosocaldus yellowstonii, has expanded the role and habitat range of AOA to include high temperature environments. Numerous studies have shown that AOA are widely distributed in geothermal habitats with a wide range of temperature and pH. The availability of multiple AOA genome sequences, combined with metagenomic studies from mesophilic and thermophilic environments gives us a better understanding of the physiology, ecology and evolution of these organisms. Recent studies have proposed that the AOA represent the most deeply branching lineage within the Archaea, the Thaumarchaeota. Furthermore, genomic comparisons between AOA and AOB reveal significant differences in the proposed pathways for ammonia oxidation. These genetic differences likely explain fundamental physiological differences such as the resistance of N. yellowstonii and other AOA to the classical nitrification inhibitors allylthiourea and acetylene. Physiological studies suggest that the marine AOA are adapted to oligotrophic

  6. Modeling the nitrogen cycling and plankton productivity in the Black Sea using a three-dimensional interdisciplinary model

    NARCIS (Netherlands)

    Grégoire, M.; Soetaert, K.E.R.; Nezlin, N.; Kostianoy, A.

    2004-01-01

    A six-compartment ecosystem model defined by a simple nitrogen cycle is coupled with a general circulation model in the Black Sea so as to examine the seasonal variability of the ecohydrodynamics. Model results show that the annual cycle of the biological productivity of the whole basin is

  7. Feasibility Study on Nitrogen-15 Enrichment and Recycling System for Innovative FR Cycle System With Nitride Fuel

    International Nuclear Information System (INIS)

    Masaki Inoue; Kiyoshi Ono; Tsuna-aki Fujioka; Koji Sato; Takeo Asaga

    2002-01-01

    Highly-isotopically-enriched nitrogen (HE-N 2 ; 15 N abundance 99.9%) is indispensable for a nitride fueled fast reactor (FR) cycle to minimize the effect of carbon-14 ( 14 C) generated mainly by 14 N(n,p) 14 C reaction in the core on environmental burden. Thus, the development of inexpensive 15 N enrichment and recycling technology is one of the key aspects for the commercialization of a nitride fueled FR cycle. Nitrogen isotope separation by the gas adsorption technique was experimentally confirmed in order to obtain its technological perspective. A conventional pressure swing adsorption technique, which is already commercialized for recovering the nitrogen gas from multi-composition gas-mixture, would be suitable for recovering in both reprocessing and fuel fabrication to recycle the HE-N 2 gas. A couple of the nitride fuel cycle system concepts including the reprocessing and fuel fabrication process flow diagrams with the HE-N 2 gas recycling were newly designed for both aqueous and non-aqueous (pyrochemical) nitride fuel recycle plants, and also the effect of the HE-N 2 gas recycling on the economics of each concept was evaluated. (authors)

  8. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  9. How inhibiting nitrification affects nitrogen cycle and reduces ...

    Science.gov (United States)

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI along with nitrogen (N) fertilizer increased crop nitrogen use efficiency, crop yield, and altered the pathways and the amount of N loss to environment. NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9% of the total N loss. The cost and benefit analysis showed that the economic benefit of reducing N’s environmental impacts offset the cost of NI. NI application could bring additional revenue of $163.72 ha-1 for a maize farm. Taken together, our findings show that NI application may create a win-win scenario that increases agricultural output, while reducing the negative impact on the environment. Policies that encourage NI application would reduce N’s environmental impacts. A group from Chinese Academy of Sciences, US EPA-ORD and North Carolina examined the net environmental and economic effects of nitrification inhibitors to reduce nitrate leaching associated with farm fertilizers. They conducted a meta-analysis of studies examining nitrification inhibitors, and found that NI application increased ammonia emission, but reduced nitrate leaching and nitrous oxide emission, which led to a reduction of 12.9

  10. The influence of woody encroachment on the nitrogen cycle: fixation, storage and gas loss

    Science.gov (United States)

    Soper, F.; Sparks, J. P.

    2015-12-01

    Woody encroachment is a pervasive land cover change throughout the tropics and subtropics. Encroachment is frequently catalyzed by nitrogen (N)-fixing trees and the resulting N inputs potentially alter whole-ecosystem N cycling, accumulation and loss. In the southern US, widespread encroachment by legume Prosopis glandulosa is associated with increased soil total N storage, inorganic N concentrations, and net mineralization and nitrification rates. To better understand the effects of this process on ecosystem N cycling, we investigated patterns of symbiotic N fixation, N accrual and soil N trace gas and N2 emissions during Prosopis encroachment into the southern Rio Grande Plains. Analyses of d15N in foliage, xylem sap and plant-available soil N suggested that N fixation rates increase with tree age and are influenced by abiotic conditions. A model of soil N accrual around individual trees, accounting for atmospheric inputs and gas losses, generates lifetimes N fixation estimates of up to 9 kg for a 100-year-old tree and current rates of 7 kg N ha-1 yr-1. However, these N inputs and increased soil cycling rates do not translate into increased N gas losses. Two years of field measurements of a complete suite of N trace gases (ammonia, nitrous oxide, nitric oxide and other oxidized N compounds) found no difference in flux between upland Prosopis groves and adjacent unencroached grasslands. Total emissions for both land cover types average 0.56-0.65 kg N ha-1 yr-1, comparable to other southern US grasslands. Additional lab experiments suggested that N2 losses are low and that field oxygen conditions are not usually conducive to denitrification. Taken together, results suggest that this ecosystem is currently experiencing a period of net N accrual under ongoing encroachment.

  11. Nitrogen cycling in a forest stream determined by a 15N tracer addition

    Science.gov (United States)

    Patrick J. Mullholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Waer Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition,

  12. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?

    Science.gov (United States)

    Xiaofei Liu; Zhijie Yang; Chengfang Lin; Christian P. Giardina; Decheng Xiong; Weisheng Lin; Shidong Chen; Chao Xu; Guangshui Chen; Jinsheng Xie; Yiqing Li; Yusheng Yang

    2017-01-01

    Global change such as climate warming and nitrogen (N) deposition is likely to alter terrestrial carbon (C) cycling, including soil respiration (Rs), the largest CO2 source from soils to the atmosphere. To examine the effects of warming, N addition and their interactions on Rs, we...

  13. Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions

    Science.gov (United States)

    Ghimire, Bardan; Riley, William J.; Koven, Charles D.; Mu, Mingquan; Randerson, James T.

    2016-06-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However, current Earth System Models (ESMs) do not mechanistically represent functional nitrogen allocation for photosynthesis or the linkage between nitrogen uptake and root traits. The current version of CLM (4.5) links nitrogen availability and plant productivity via (1) an instantaneous downregulation of potential photosynthesis rates based on soil mineral nitrogen availability, and (2) apportionment of soil nitrogen between plants and competing nitrogen consumers assumed to be proportional to their relative N demands. However, plants do not photosynthesize at potential rates and then downregulate; instead photosynthesis rates are governed by nitrogen that has been allocated to the physiological processes underpinning photosynthesis. Furthermore, the role of plant roots in nutrient acquisition has also been largely ignored in ESMs. We therefore present a new plant nitrogen model for CLM4.5 with (1) improved representations of linkages between leaf nitrogen and plant productivity based on observed relationships in a global plant trait database and (2) plant nitrogen uptake based on root-scale Michaelis-Menten uptake kinetics. Our model improvements led to a global bias reduction in GPP, LAI, and biomass of 70%, 11%, and 49%, respectively. Furthermore, water use efficiency predictions were improved conceptually, qualitatively, and in magnitude. The new model's GPP responses to nitrogen deposition, CO2 fertilization, and climate also differed from the baseline model. The mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers led to overall improvements in global carbon cycling predictions.

  14. The sensitivity of sunflower (Helianthus annuus L. plants to UV-B radiation is altered by nitrogen status

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2018-02-01

    Full Text Available ABSTRACT: Interaction effects between nitrogen and UV-B radiation were studied in sunflower (Helianthus annuus L. variety IAC-Iarama plants grown in a greenhouse under natural photoperiod conditions. Plants were irradiated with 0.8W m-2 (control or 8.0W m-2 (+UV-B of UV-B radiation for 7h per day. The plants were grown in pots containing vermiculite and watered with 70% of full strength nitrogen-free Long Ashton solution, containing either low (42.3ppm or high (282ppm nitrogen as ammonium nitrate. High nitrogen increased dry matter of stem, leaves and shoot, photosynthetic pigments and photosynthesis (A without any alteration in stomatal conductance (gs nor transpiration (E while it reduced the intercellular CO2 (Ci concentration, and malondialdehyde (MDA content. High UV-B radiation had negative effects on dry matter production, A, gs and E with the effects more marked under high nitrogen, whereas it increased Ci under high nitrogen. Activity of PG-POD was reduced by high UV-B radiation under low nitrogen but it was not changed under high nitrogen. The UV-B radiation increased the MDA content independently of nitrogen level. Results indicate that the effects of UV-B radiation on sunflower plants are dependent of nitrogen supply with high nitrogen making their physiological processes more sensitive to UV-B radiation.

  15. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  16. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Science.gov (United States)

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  17. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Nitrogen Cycling Considerations for Low-Disturbance, High-Carbon Soil Management in Climate-Adaptive Agriculture

    Science.gov (United States)

    Bruns, M. A.; Dell, C. J.; Karsten, H.; Bhowmik, A.; Regan, J. M.

    2016-12-01

    Agriculturists are responding to climate change concerns by reducing tillage and increasing organic carbon inputs to soils. Although these management practices are intended to enhance soil carbon sequestration and improve water retention, resulting soil conditions (moister, lower redox, higher carbon) are likely to alter nitrogen cycling and net greenhouse gas (GHG) emissions. Soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical that higher N2O emissions may occur when farmers apply practices intended to make soils more resilient to climate change. As an example, the application of animal manures to increase soil organic matter and replace fossil fuel-based fertilizers could either increase or decrease GHGs. The challenges involved with incorporating manures in reduced-tillage soils often result in N2O emission spikes immediately following manure application. On the other hand, manures enrich soils with bacteria capable of dissimilatory nitrate reduction to ammonium (DNRA), a process that could counter N2O production by denitrification. Since bacterial DNRA activity is enhanced by labile forms of carbon, the forms of carbon in soils may play a role in determining the predominant N cycling processes and the extent and duration of DNRA activity. A key question is how management can address the tradeoff of higher N2O emissions from systems employing climate-adaptive practices. Management factors such as timing and quality of carbon inputs therefore may be critical considerations in minimizing GHG emissions from low-disturbance, high-carbon cropping systems.

  19. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Directory of Open Access Journals (Sweden)

    Anja Kamp

    2016-11-01

    Full Text Available Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations.

  20. The relationship between mantle pH and the deep nitrogen cycle

    Science.gov (United States)

    Mikhail, Sami; Barry, Peter H.; Sverjensky, Dimitri A.

    2017-07-01

    controlled by mineralogy for a given pressure and temperature, and that pH can vary by several units in the pressure-temperature range of 1-5 GPa and 600-1000 °C. Our data show that increasing temperature stabilizes molecular nitrogen and increasing pressure stabilizes ammonic nitrogen. Our model also predicts a stark difference for the dominance of ammonic vs. molecular and ammonium vs. ammonia for aqueous nitrogen in equilibrium with eclogite-facies and peridotite mineralogies, and as a function of the total dissolved nitrogen in the aqueous fluid where lower N concentrations favor aqueous ammonic nitrogen stabilization and higher N concentrations favor aqueous N2. Overall, we present thermodynamic evidence for nitrogen to be reconsidered as an extremely dynamic (chameleon) element whose speciation and therefore behavior is determined by a combination of temperature, pressure, oxygen fugacity, chemical activity, and pH. We show that altering the mineralogy in equilibrium with the fluid can lead to a pH shift of up to 4 units at 5 GPa and 1000 °C. Therefore, we conclude that pH imparts a strong control on nitrogen speciation, and thus N flux, and should be considered a significant factor in high temperature geochemical modeling in the future. Finally, our modelling demonstrates that pH plays an important role in controlling speciation, and thus mass transport, of Eh-pH sensitive elements at temperatures up to at least 1000 °C.

  1. Patterns and controls on nitrogen cycling of biological soil crusts

    Science.gov (United States)

    Barger, Nichole N.; Zaady, Eli; Weber, Bettina; Garcia-Pichel, Ferran; Belnap, Jayne

    2016-01-01

    Biocrusts play a significant role in the nitrogen [N ] cycle within arid and semi-arid ecosystems, as they contribute major N inputs via biological fixation and dust capture, harbor internal N transformation processes, and direct N losses via N dissolved, gaseous and erosional loss processes (Fig. 1). Because soil N availability in arid and semi-arid ecosystems is generally low and may limit net primary production (NPP), especially during periods when adequate water is available, understanding the mechanisms and controls of N input and loss pathways in biocrusts is critically important to our broader understanding of N cycling in dryland environments. In particular, N cycling by biocrusts likely regulates short-term soil N availability to support vascular plant growth, as well as long-term N accumulation and maintenance of soil fertility. In this chapter, we review the influence of biocrust nutrient input, internal cycling, and loss pathways across a range of biomes. We examine linkages between N fixation capabilities of biocrust organisms and spatio-temporal patterns of soil N availability that may influence the longer-term productivity of dryland ecosystems. Lastly, biocrust influence on N loss pathways such as N gas loss, leakage of N compounds from biocrusts, and transfer in wind and water erosion are important to understand the maintenance of dryland soil fertility over longer time scales. Although great strides have been made in understanding the influence of biocrusts on ecosystem N cycling, there are important knowledge gaps in our understanding of the influence of biocrusts on ecosystem N cycling that should be the focus of future studies. Because work on the interaction of N cycling and biocrusts was reviewed in Belnap and Lange (2003), this chapter will focus primarily on research findings that have emerged over the last 15 years (2000-2015).

  2. Nitrates in SNCs: Implications for the nitrogen cycle on Mars

    Science.gov (United States)

    Grady, Monica M.; Wright, I. P.; Franchi, I. A.; Pillinger, C. T.

    1993-01-01

    Nitrogen is the second most abundant constituent of the Martian atmosphere, after CO2, present at a level of ca. 2.7 percent. Several authors have hypothesized that earlier in the planet's history, nitrogen was more abundant, but has been removed by processes such as exospheric loss from the atmosphere. However, an alternative sink for atmospheric nitrogen is the regolith; model calculations have predicted that, via the formation of NOx, HNO2 and HNO3 in the lower layers of the Martian atmosphere, the regolith might trap nitrite and nitrate anions, leading to the build-up of involatile nitrates. Integrated over 4.5 x 10(exp 9) yr, such a mechanism would contribute the equivalent of a layer of nitrates up to 0.3 cm thick distributed across the Martian surface. Features in thermal emission spectra of the surface of Mars have been interpreted tentatively as emanating from various anions (carbonates, bicarbonates, sulphates, etc.), and the presence of nitrates has also been addressed as a possibility. The identification of carbonates in SCN meteorites has allowed inferences to be drawn concerning the composition and evolution of the Martian atmosphere in terms of its carbon isotope systematics; if nitrites, nitrates, or other nitrogen-bearing salts could be isolated from SNC's, similar conclusions might be possible for an analogous nitrogen cycle. Nitrates are unstable, being readily soluble in water, and decomposed at temperatures between 50 C and 600 C, depending on composition. Any nitrates present in SNC's might be removed during ejection from the planet's surface, passage to Earth, or during the sample's terrestrial history, by weathering etc. The same might have been said for carbonates, but pockets of shock-produced glass (lithology C) from within the EET A79001 shergottite and bulk samples of other SNC contain this mineral, which did apparently survive. Nitrates occurring within the glassy melt pockets of lithology C in EET A79001 might likewise be protected

  3. Circadian rhythms in the cell cycle and biomass composition of Neochloris oleoabundans under nitrogen limitation

    NARCIS (Netherlands)

    Winter, de L.; Schepers, L.W.; Cuaresma Franco, M.; Barbosa, M.J.; Martens, D.E.; Wijffels, R.H.

    2014-01-01

    The circadian clock schedules processes in microalgae cells at suitable times in the day/night cycle. To gain knowledge about these biological time schedules, Neochloris oleoabundans was grown under constant light conditions and nitrogen limitation. Under these constant conditions, the only variable

  4. Nitrous oxide fluxes and nitrogen cycling along a pasturechronosequence in Central Amazonia, Brazil

    Science.gov (United States)

    B. Wick; E. Veldkamp; W. Z. de Mello; M. Keller; P. Crill

    2005-01-01

    We studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N...

  5. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration.

    Science.gov (United States)

    Liu, Bing; Gu, Li; Yu, Xin; Yu, Guozhong; Zhang, Huining; Xu, Jinli

    2012-01-01

    A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  6. Distribution patterns of nitrogen micro-cycle functional genes and their quantitative coupling relationships with nitrogen transformation rates in a biotrickling filter.

    Science.gov (United States)

    Wang, Honglei; Ji, Guodong; Bai, Xueyuan

    2016-06-01

    The present study explored the distribution patterns of nitrogen micro-cycle genes and the underlying mechanisms responsible for nitrogen transformation at the molecular level (genes) in a biotrickling filter (biofilter). The biofilter achieved high removal efficiencies for ammonium (NH4(+)-N) (80-94%), whereas nitrate accumulated at different levels under a progressive NH4(+)-N load. Combined analyses revealed the anammox, nas, napA, narG, nirS, and nxrA genes were the dominant enriched genes in different treatment layers. The presence of simultaneous nitrification, ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were the primary factors accounted for the robust NH4(+)-N treatment performance. The presence of DNRA, nitrification, and denitrification was determined to be a pivotal pathway that contributed to the nitrate accumulation in the biofilter. The enrichment of functional genes at different depth gradients and the multi-path coupled cooperation at the functional gene level are conducive to achieving complete nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  8. The complete nitrogen cycle of an N-saturated spruce forest ecosystem.

    Science.gov (United States)

    Kreutzer, K; Butterbach-Bahl, K; Rennenberg, H; Papen, H

    2009-09-01

    Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.

  9. Effects of global change during the 21st century onthe nitrogen cycle

    Science.gov (United States)

    Fowler, D.; Steadman, C. E.; Stevenson, D.; Coyle, M.; Rees, R. M.; Skiba, U. M.; Sutton, M. A.; Cape, J. N.; Dore, A. J.; Vieno, M.; Simpson, D.; Zaehle, S.; Stocker, B. D.; Rinaldi, M.; Facchini, M. C.; Flechard, C. R.; Nemitz, E.; Twigg, M.; Erisman, J. W.; Butterbach-Bahl, K.; Galloway, J. N.

    2015-12-01

    The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, including combustion-related NOx, industrial and agricultural N fixation, estimated to be 220 Tg N yr-1 in 2010, which is approximately equal to the sum of biological N fixation in unmanaged terrestrial and marine ecosystems. According to current projections, changes in climate and land use during the 21st century will increase both biological and anthropogenic fixation, bringing the total to approximately 600 Tg N yr-1 by around 2100. The fraction contributed directly by human activities is unlikely to increase substantially if increases in nitrogen use efficiency in agriculture are achieved and control measures on combustion-related emissions implemented. Some N-cycling processes emerge as particularly sensitive to climate change. One of the largest responses to climate in the processing of Nr is the emission to the atmosphere of NH3, which is estimated to increase from 65 Tg N yr-1 in 2008 to 93 Tg N yr-1 in 2100 assuming a change in global surface temperature of 5 °C in the absence of increased anthropogenic activity. With changes in emissions in response to increased demand for animal products the combined effect would be to increase NH3 emissions to 135 Tg N yr-1. Another major change is the effect of climate changes on aerosol composition and specifically the increased sublimation of NH4NO3 close to the ground to form HNO3 and NH3 in a warmer climate, which deposit more rapidly to terrestrial surfaces than aerosols. Inorganic aerosols over the polluted regions especially in Europe and North America were dominated by (NH4)2SO4 in the 1970s to 1980s, and large reductions in emissions of SO2 have removed most of the SO42- from the atmosphere in these regions. Inorganic aerosols from anthropogenic emissions are now dominated by NH4NO3, a volatile aerosol which contributes substantially to PM10

  10. Composition and function of the microbial community related with the nitrogen cycling on the potato rhizosphere

    International Nuclear Information System (INIS)

    Florez Zapata, Nathalia; Garcia, Juan Carlos; Del Portillo, Patricia; Restrepo, Silvia; Uribe Velez, Daniel

    2013-01-01

    In the S. tuberosum group phureja crops, mineral fertilizer and organic amendments are applied to meet the plants nutritional demands, however the effect of such practices on the associated rizospheric microbial communities are still unknown. Nitrogen plays an important role in agricultural production, and a great diversity of microorganisms regulates its transformation in the soil, affecting its availability for the plant. The aim of this study was to assess the structure of microbial communities related with the N cycle of S. tuberosum group phureja rizospheric soil samples, with contrasting physical-chemical properties and fertilization strategy. Few significant differences between the community compositions at the phylum level were found, only Planctomycetes phylum was different between samples of different soil type and fertilization strategy. However, the analysis of nitrogen-associated functional groups made by ribotyping characterization, grouped soils in terms of such variables in a similar way to the physical-chemical properties. Major differences between soil samples were typified by higher percentages of the ribotypes from nitrite oxidation, nitrogen fixation and denitrification on organic amendment soils. Our results suggest that, the dominant rhizosphere microbial composition is very similar between soils, possibly as a result of population's selection mediated by the rhizosphere effect. However, agricultural management practices in addition to edaphic properties of sampled areas appear to affect some functional groups associated with the nitrogen cycling, due to differences found on soil's physicalchemical properties, like the concentration of ammonium that seems to have an effect regulating the distribution and activity of nitrogen related functional groups in the S. tuberosum rhizosphere.

  11. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    International Nuclear Information System (INIS)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  12. Reconstructing the genetic potential of the microbially-mediated nitrogen cycle in a salt marsh ecosystem

    NARCIS (Netherlands)

    Dini-Andreote, Francisco; de L. Brossi, Maria Julia; van Elsas, Jan Dirk; Salles, Joana F

    2016-01-01

    Coastal ecosystems are considered buffer zones for the discharge of land-derived nutrients without accounting for potential negative side effects. Hence, there is an urgent need to better understand the ecological assembly and dynamics of the microorganisms that are involved in nitrogen (N) cycling

  13. From Gene Expression to the Earth System: Isotopic Constraints on Nitrogen Cycling Across Scales

    Science.gov (United States)

    Houlton, B. Z.

    2015-12-01

    A central motivation of the Biogeosciences is to understand the cycling of biologically essential elements over multiple scales of space and time. This charge is vital to basic knowledge of Earth system functioning. It is also relevant to many of the global challenges we face, such as climate change, biodiversity conservation, and the multifaceted role of global fertilizer use in maximizing human health and well-being. Nitrogen is connected to all of these; yet it has been one of the more vexing elements to quantitatively appraise across systems and scales. Here I discuss how research in my group has been exploring the use of natural nitrogen isotope abundance (15N/14N) as a biogeochemical tracer - from the level of gene expression to nitrogen's role in global climate change. First, I present evidence for a positive correlation between the bacterial genes that encode for gaseous nitrogen production (i.e., nirS) and the 15N/14N of soil extractable nitrate pools across an array of terrestrial ecosystems. Second, I demonstrate how these local-scale results fit with our work on ecosystem-scale nitrogen isotope budgets, where we quantify a uniformly small isotope effect (i.e., supports the working hypothesis that bacterial denitrification is the major fractionating pathway of nitrogen loss from the terrestrial biosphere, much like the global ocean.

  14. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  15. Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose; Wayne T. Swank

    2008-01-01

    We studied nitrogen (N) cycling pools and processes across vegetation and elevation gradients in. the southern Appalachian Mountains in SE USA. Measurements included bulk deposition input, watershed export, throughfall fluxes, litterfall, soil N pools and processes, and soil solution N. N deposition increased with elevation and ranged from 9.5 to 12.4 kg ha-...

  16. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling

    Directory of Open Access Journals (Sweden)

    D. S. Goll

    2012-09-01

    Full Text Available Terrestrial carbon (C cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N and phosphorus (P, nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg, which already includes representations of coupled C and N cycles.

    The model reveals a distinct geographic pattern of P and N limitation. Under the SRES (Special Report on Emissions Scenarios A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes and 16% (particularly at low latitudes lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. Nutrient limitation in general may be biased by the model simplicity, but the ranking of limitations is robust against the parameterization and the inflexibility of stoichiometry. After 2100, increased temperature and high CO2 concentration cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitations. The quantification of P limitation remains challenging. The poorly constrained processes of soil P sorption and biochemical mineralization are identified as the main uncertainties in the strength of P limitation

  17. Nitrogen Concentrations and Isotopic Compositions of Seafloor-Altered Terrestrial Basaltic Glass: Implications for Astrobiology

    Science.gov (United States)

    Banerjee, N.R.; Izawa, M.R.M.; Kobayashi, K.; Lazzeri, K.; Ranieri, L.A.; Nakamura, E.

    2018-01-01

    Abstract Observed enrichments of N (and the δ15N of this N) in volcanic glasses altered on Earth's modern and ancient seafloor are relevant in considerations of modern global N subduction fluxes and ancient life on Earth, and similarly altered glasses on Mars and other extraterrestrial bodies could serve as valuable tracers of biogeochemical processes. Palagonitized glasses and whole-rock samples of volcanic rocks on the modern seafloor (ODP Site 1256D) contain 3–18 ppm N with δ15Nair values of up to +4.5‰. Variably altered glasses from Mesozoic ophiolites (Troodos, Cyprus; Stonyford volcanics, USA) contain 2–53 ppm N with δ15N of −6.3 to +7‰. All of the more altered glasses have N concentrations higher than those of fresh volcanic glass (for MORB, smectite, illite) in both the palagonitized cracks and the microtubules. These phyllosilicates (particularly illite), and possibly also zeolites, are the likely hosts for N in these glasses. Key Words: Nitrogen—Nitrogen isotope—Palagonite—Volcanic glass—Mars. Astrobiology 18, 330–342. PMID:29106312

  18. Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands

    DEFF Research Database (Denmark)

    Bjorsne, Anna-Karin; Rutting, Tobias; Ambus, Per

    2014-01-01

    of exposure to three climate change factors, i.e. warming, elevated CO2 (eCO(2)) and summer drought, applied both in isolation and in combination. By conducting laboratory N-15 tracing experiments we show that warming increased both gross N mineralization and nitrification rates. In contrast, gross......The ongoing climate change affects biogeochemical cycling in terrestrial ecosystems, but the magnitude and direction of this impact is yet unclear. To shed further light on the climate change impact, we investigated alterations in the soil nitrogen (N) cycling in a Danish heathland after 5 years......CO(2). In the full treatment combination, simulating the predicted climate for the year 2075, gross N transformations were only moderately affected compared to control, suggesting a minor alteration of the N cycle due to climate change. Overall, our study confirms the importance of multifactorial field...

  19. The duration of gonadotropin stimulation does not alter the clinical pregnancy rate in IVF or ICSI cycles.

    Science.gov (United States)

    Purandare, N; Emerson, G; Kirkham, C; Harrity, C; Walsh, D; Mocanu, E

    2017-08-01

    Ovarian stimulation is an essential part of assisted reproduction treatments. Research on whether the duration of stimulation alters the success in assisted reproduction has not been conclusive. The purpose of the study was to establish whether the duration of ovarian stimulation alters the success in assisted reproduction treatments. All fresh (non-donor) stimulation cycles performed in an academic tertiary referral ART centre over a period of 18 years, between 1st January 1997 and 31st December 2014, were identified. Data were prospectively and electronically collected. IVF and ICSI cycles were analysed independently. Each category was then subdivided into assisted reproduction cycles where the antagonist, long (down regulation) and flare protocol were used. Clinical pregnancy was the main outcome measured. A total of 10,478 stimulation cycles (6011 fresh IVF and 4467 fresh ICSI) reaching egg collection were included. We showed no significant difference in CP rates in IVF cycles for the long (p = 0.082), antagonist (p = 0.217) or flare (p = 0.741) protocol cycles or in ICSI cycles with the long (p = 0.223), antagonist (p = 0.766) or the flare (p = 0.690) protocol with regards the duration of stimulation. The duration of stimulation does not alter the CP rate in ICSI or IVF cycles using the long, antagonist or flare stimulation protocol.

  20. Invasive insect effects on nitrogen cycling and host physiology are not tightly linked.

    Science.gov (United States)

    Rubino, Lucy; Charles, Sherley; Sirulnik, Abby G; Tuininga, Amy R; Lewis, James D

    2015-02-01

    Invasive insects may dramatically alter resource cycling and productivity in forest ecosystems. Yet, although responses of individual trees should both reflect and affect ecosystem-scale responses, relationships between physiological- and ecosystem-scale responses to invasive insects have not been extensively studied. To address this issue, we examined changes in soil nitrogen (N) cycling, N uptake and allocation, and needle biochemistry and physiology in eastern hemlock (Tsuga canadensis (L) Carr) saplings, associated with infestation by the hemlock woolly adelgid (HWA) (Adelges tsugae Annand), an invasive insect causing widespread decline of eastern hemlock in the eastern USA. Compared with uninfested saplings, infested saplings had soils that exhibited faster nitrification rates, and more needle (15)N uptake, N and total protein concentrations. However, these variables did not clearly covary. Further, within infested saplings, needle N concentration did not vary with HWA density. Light-saturated net photosynthetic rates (Asat) declined by 42% as HWA density increased from 0 to 3 adelgids per needle, but did not vary with needle N concentration. Rather, Asat varied with stomatal conductance, which was highest at the lowest HWA density and accounted for 79% of the variation in Asat. Photosynthetic light response did not differ among HWA densities. Our results suggest that the effects of HWA infestation on soil N pools and fluxes, (15)N uptake, needle N and protein concentrations, and needle physiology may not be tightly coupled under at least some conditions. This pattern may reflect direct effects of the HWA on N uptake by host trees, as well as effects of other scale-dependent factors, such as tree hydrology, affected by HWA activity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. COMPOSITION AND FUNCTION OF THE MICROBIAL COMMUNITY RELATED WITH THE NITROGEN CYCLING ON THE POTATO RHIZOSPHERE

    Directory of Open Access Journals (Sweden)

    Nathalia Maria Vanesa Florez Zapata

    2013-09-01

    Full Text Available In the S. tuberosum group phureja crops, mineral fertilizer and organic amendments are applied to meet the plants’ nutritional demands, however the effect of such practices on the associated rizospheric microbial communities are still unknown. Nitrogen plays an important role in agricultural production, and a great diversity of microorganisms regulates its transformation in the soil, affecting its availability for the plant. The aim of this study was to assess the structure of microbal[trm1]  communities related with the N cycle of S. tuberosum group phureja  rizospheric soil samples, with contrasting physical-chemical properties and fertilization strategy.  Few significant differences between the community composition at the phylum level were found, only Planctomycetes phylum was different between samples of different soil type and fertilization strategy. However, the analysis of nitrogen-associated functional groups made by ribotyping characterization, grouped soils in terms of such variables in a similar way to the physical-chemical properties. Major differences between soil samples were typified by higher percentages of the ribotypes from nitrite oxidation, nitrogen fixation and denitrification on organic amendment soils. Our results suggest that, the dominant rhizosphere microbial composition is very similar between soils, possibly as a result of population’s selection mediated by the rhizosphere effect. However, agricultural management practices in addition to edaphic properties of sampled areas, appear to affect some functional groups associated with the nitrogen cycling, due to differences found on soil’s physical-chemical properties, like the concentration of ammonium that seems to have an effect regulating the distribution and activity of nitrogen related functional groups in the S. tuberosum rhizosphere.

  2. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Directory of Open Access Journals (Sweden)

    Lin-Na Ma

    Full Text Available Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  3. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    Science.gov (United States)

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.

  4. When high waters recede and the floodplain reemerges: Evaluating the lingering effects of extreme flooding on stream nitrogen cycling.

    Science.gov (United States)

    Neville, J.; Emanuel, R. E.

    2017-12-01

    In 2016 Hurricane Matthew brought immense flooding and devastation to the Lumbee (aka Lumber) River basin. Some impacts are obvious, such as deserted homes and businesses, but other impacts, including long-term environmental, are uncertain. Extreme flooding throughout the basin established temporary hydrologic connectivity between aquatic environments and upland sources of nutrients and other pollutants. Though 27% of the basin is covered by wetlands, hurricane-induced flooding was so intense that wetlands may have had no opportunity to mitigate delivery of nutrients into surface waters. As a result, how Hurricane Matthew impacted nitrate retention and uptake in the Lumbee River remains uncertain. The unknown magnitude of nitrate transported into the Lumbee River from surrounding sources may have lingering impacts on nitrogen cycling in this stream. With these potential impacts in mind, we conducted a Lagrangian water quality sampling campaign to assess the ability of the Lumbee River to retain and process nitrogen following Hurricane Matthew. We collected samples before and after flooding and compare first order nitrogen uptake kinetics of both periods. The analysis and comparisons allow us to evaluate the long-term impacts of Hurricane Matthew on nitrogen cycling after floodwaters recede.

  5. Issues in System Boundary Definition for Substance Flow Analysis: The Case of Nitrogen Cycle Management in Catalonia

    Directory of Open Access Journals (Sweden)

    Jordi Bartrola

    2001-01-01

    Full Text Available The great complexity of the nitrogen cycle, including anthropogenic contributions, makes it necessary to carry out local studies, which allow us to identify the specific cause-effect links in a particular society. Models of local societies that are based on methods such as Substance Flow Analysis (SFA, which study and characterise the performance of metabolic exchanges between human society and the environment, are a useful tools for directing local policy towards sustainable management of the nitrogen cycle. In this paper, the selection of geographical boundaries for SFA application is discussed. Data availability and accuracy, and the possibility of linking the results with instructions for decision making, are critical aspects for proper scale selection. The experience obtained in the construction of the model for Catalonia is used to draw attention to the difficulties found in regional studies.

  6. Issues in system boundary definition for substance flow analysis: the case of nitrogen cycle management in Catalonia.

    Science.gov (United States)

    Bartrolí, J; Martin, M J; Rigola, M

    2001-10-16

    The great complexity of the nitrogen cycle, including anthropogenic contributions, makes it necessary to carry out local studies, which allow us to identify the specific cause-effect links in a particular society. Models of local societies that are based on methods such as Substance Flow Analysis (SFA), which study and characterise the performance of metabolic exchanges between human society and the environment, are a useful tools for directing local policy towards sustainable management of the nitrogen cycle. In this paper, the selection of geographical boundaries for SFA application is discussed. Data availability and accuracy, and the possibility of linking the results with instructions for decision making, are critical aspects for proper scale selection. The experience obtained in the construction of the model for Catalonia is used to draw attention to the difficulties found in regional studies.

  7. A model-based insight into the coupling of nitrogen and sulfur cycles in a coastal upwelling system

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar; Canfield, Donald Eugene; Fennel, Katja

    2014-01-01

    is masked, however, by rapid sulfide oxidation, most likely through nitrate reduction. Thus, the cryptic sulfur cycle links with the nitrogen cycle in OMZ settings. Here, we model the physical-chemical water column structure and the observed process rates as driven by formation and sinking of organic...... heterotrophic nitrate reduction and sulfate reduction are responsible for 47% and 36%, respectively, of organic remineralization in a 150 m deep zone below mixed layer. Anammox contributes to 61% of the fixed nitrogen lost to N2 gas, while the rest of the loss is through canonical denitrification...... as a combination of organic matter oxidation by nitrite reduction and sulfide-driven denitrification. Mineralization coupled to heterotrophic nitrate reduction supplies ~48% of the ammonium required by anammox. Due to active sulfate reduction, model results suggest that sulfide-driven denitrification contributes...

  8. Ammonia oxidizer populations vary with nitrogen cycling across a tropical montane mean annual temperature gradient

    Science.gov (United States)

    S. Pierre; I. Hewson; J. P. Sparks; C. M. Litton; C. Giardina; P. M. Groffman; T. J. Fahey

    2017-01-01

    Functional gene approaches have been used to better understand the roles of microbes in driving forest soil nitrogen (N) cycling rates and bioavailability. Ammonia oxidation is a rate limiting step in nitrification, and is a key area for understanding environmental constraints on N availability in forests. We studied how increasing temperature affects the role of...

  9. Biological and Physicochemical Parameters Related to the Nitrogen Cycle in the Rhizospheric Soil of Native Potato (Solanum phureja Crops of Colombia

    Directory of Open Access Journals (Sweden)

    Nathalia Flórez-Zapata

    2011-01-01

    Full Text Available Nitrogen (N plays an important role in agricultural production. This study was designed to evaluate the presence of cultivable N cycle-associated microorganisms (nitrogen-fixing bacteria—NFB, proteolytic bacteria—PR, ammonifiers—AMO, ammonium-oxidizing bacteria—AOB, nitrite-oxidizing bacteria—NOB, and denitrifiers—DEN, and their relationship with physical-chemical and agronomic soil descriptors, in Solanum phureja rhizospheric soil samples, from traditional and organic crop management farms. A cluster analysis with the physical and chemical properties of soil, allowed to identify the organic matter content as an important factor that determines the outcome of that grouping. Significant differences (<0.05 between farms were found in the abundance of this groups, but correlation analysis showed that proteolytic and nitrogen fixing bacteria were the main nitrogen associated functional groups affected by soils' physical-chemical characteristics. The amount of ammonia available is affected by the agricultural management strategy, which consequently affects the NFB abundance. Finally the results showed that PR, protease activity and soil properties related with organic matter transformation has a positive relationship with productivity, which given the high organic matter content of the Andean soils being studied, we conclude that nitrogen mineralization process has an important role in the nitrogen cycle and its bioavailability in this ecosystem.

  10. Biological and Physicochemical Parameters Related to the Nitrogen Cycle in the Rhizospheric Soil of Native Potato (Solanum phureja) Crops of Colombia

    International Nuclear Information System (INIS)

    Zapata, N.F; Velez, D.U

    2011-01-01

    Nitrogen (N) plays an important role in agricultural production. This study was designed to evaluate the presence of cultivable N cycle-associated microorganisms (nitrogen-fixing bacteria NFB, proteolytic bacteria PR, ammonifiers AMO, ammonium-oxidizing bacteria AOB, nitrite-oxidizing bacteria NOB, and denitrifiers DEN), and their relationship with physical-chemical and agronomic soil descriptors, in Solanum phureja rhizospheric soil samples, from traditional and organic crop management farms. A cluster analysis with the physical and chemical properties of soil, allowed to identify the organic matter content as an important factor that determines the outcome of that grouping. Significant differences (P<0.05) between farms were found in the abundance of this groups, but correlation analysis showed that proteolytic and nitrogen fixing bacteria were the main nitrogen associated functional groups affected by soils' physical-chemical characteristics. The amount of ammonia available is affected by the agricultural management strategy, which consequently affects the NFB abundance. Finally the results showed that PR, protease activity and soil properties related with organic matter transformation has a positive relationship with productivity, which given the high organic matter content of the Andean soils being studied, we conclude that nitrogen mineralization process has an important role in the nitrogen cycle and its bioavailability in this ecosystem.

  11. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    Science.gov (United States)

    Boot, Claudia M.; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  12. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary.

    Science.gov (United States)

    Kim, Haryun; Bae, Hee-Sung; Reddy, K Ramesh; Ogram, Andrew

    2016-12-01

    River tributaries are ecologically important environments that function as sinks of inorganic nitrogen. To gain greater insight into the nitrogen cycle (N-cycle) in these environments, the distributions and activities of microbial populations involved in the N-cycle were studied in riparian and stream sediments of the Santa Fe River (SFR) tributaries located in northern Florida, USA. Riparian sediments were characterized by much higher organic matter content, and extracellular enzyme activities, including cellobiohydrolase, β-d-glucosidase, and phenol oxidase than stream sediments. Compared with stream sediments, riparian sediments exhibited significantly higher activities of nitrification, denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation; correspondingly, with higher copies of amoA (a biomarker for enumerating nitrifiers), nirS and nirK (for denitrifiers), and nrfA (for DNRA bacteria). Among N-cycle processes, denitrification showed the highest activities and the highest concentrations of the corresponding gene (nirK and nirS) copy numbers. In riparian sediments, substantial nitrification activities (6.3 mg-N kg soil -1 d -1 average) and numbers of amoA copies (7.3 × 10 7  copies g soil -1 average) were observed, and nitrification rates correlate with denitrification rates. The guild structures of denitrifiers and nitrifiers in riparian sediments differed significantly from those found in stream sediments, as revealed by analysis of nirS and archaeal amoA sequences. This study shows that riparian sediments serve as sinks for inorganic nitrogen loads from non-point sources of agricultural runoff, with nitrification and denitrification associated with elevated levels of carbon and nitrogen contents and extracellular enzyme activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterization of waterborne nitrogen emissions for marine eutrophication modelling in life cycle impact assessment at the damage level and global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2017-01-01

    Current life cycle impact assessment (LCIA) methods lack a consistent and globally applicable characterization model relating nitrogen (N, as dissolved inorganic nitrogen, DIN) enrichment of coastal waters to the marine eutrophication impacts at the endpoint level. This paper introduces a method...... to calculate spatially explicit characterization factors (CFs) at endpoint and damage to ecosystems levels, for waterborne nitrogen emissions, reflecting their hypoxia-related marine eutrophication impacts, modelled for 5772 river basins of the world....

  14. Urbanization effects on soil nitrogen transformations and microbial biomass in the subtropics

    Science.gov (United States)

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    As urbanization can involve multiple alterations to the soil environment, it is uncertain how urbanization effects soil nitrogen cycling. We established 22–0.04 ha plots in six different land cover types—rural slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n=3), rural natural oak forests (n=4), urban pine forests (n=3), urban oak forests (n...

  15. (15)N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods.

    Science.gov (United States)

    van der Sleen, Peter; Vlam, Mart; Groenendijk, Peter; Anten, Niels P R; Bongers, Frans; Bunyavejchewin, Sarayudh; Hietz, Peter; Pons, Thijs L; Zuidema, Pieter A

    2015-01-01

    Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated (15)N abundance (δ(15)N) in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of (15)N-depleted nitrate from the soil, following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests, we measured long-term δ(15)N values in trees from Bolivia, Cameroon, and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pith to the bark across the stem of 28 large trees (the "radial" method). In the second, δ(15)N values were compared across a fixed diameter (the "fixed-diameter" method). We sampled 400 trees that differed widely in size, but measured δ(15)N in the stem around the same diameter (20 cm dbh) in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ(15)N values over time with an explicit control for potential size-effects on δ(15)N values. We found a significant increase of tree-ring δ(15)N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ(15)N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ(15)N values within trees reflect tree ontogeny (size development). However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ(15)N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ(15)N values can be properly

  16. 15N in tree rings as a bio-indicator of changing nitrogen cycling in tropical forests: an evaluation at three sites using two sampling methods

    Directory of Open Access Journals (Sweden)

    Peter evan der Sleen

    2015-04-01

    Full Text Available Anthropogenic nitrogen deposition is currently causing a more than twofold increase of reactive nitrogen input over large areas in the tropics. Elevated 15N abundance (δ15N in the growth rings of some tropical trees has been hypothesized to reflect an increased leaching of 15N-depleted nitrate from the soil following anthropogenic nitrogen deposition over the last decades. To find further evidence for altered nitrogen cycling in tropical forests we measured long-term δ15N values in trees from Bolivia, Cameroon and Thailand. We used two different sampling methods. In the first, wood samples were taken in a conventional way: from the pit to the bark across the stem of 28 large trees (the ‘radial’ method. In the second, δ15N values were compared across a fixed diameter (the ‘fixed-diameter’ method. We sampled 400 trees that differed widely in size, but measured δ15N in the stem around the same diameter (20 cm dbh in all trees. As a result, the growth rings formed around this diameter differed in age and allowed a comparison of δ15N values over time with an explicit control for the potential size-effects on δ15N values. We found a significant increase of tree-ring δ15N across the stem radius of large trees from Bolivia and Cameroon, but no change in tree-ring δ15N values over time was found in any of the study sites when controlling for tree size. This suggests that radial trends of δ15N values within trees reflect tree ontogeny (size development. However, for the trees from Cameroon and Thailand, a low statistical power in the fixed-diameter method prevents to conclude this with high certainty. For the trees from Bolivia, statistical power in the fixed-diameter method was high, showing that the temporal trend in tree-ring δ15N values in the radial method is primarily caused by tree ontogeny and unlikely by a change in nitrogen cycling. We therefore stress to account for tree size before tree-ring δ15N values can be properly

  17. Isotope investigation of nitrogen in the hydrosphere

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1985-01-01

    Compounds of nitrogen are essential, often limiting nutrients, and the nitrogen cycle is therefore one of the most important of the earth's major elements cycles. Of all the cycles, however, the nitrogen cycle is also probably the one most influenced by human activity. This activity has resulted in the increase in reactive nitrogen compounds to such an extent that they now present major forms of pollution. Any strategies aimed at counteracting these disturbances require a better understanding of the sources and reaction processes for nitrogen compounds, and studies of natural variations in 15 N/ 14 N ratio are now being used for this purpose in all parts of the hydrosphere. This paper reviews the isotopic method for tracing sources of nitrate in ground and surface waters

  18. Nitrogen in rock: Occurrences and biogeochemical implications

    Science.gov (United States)

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  19. Effect of replacing nitrogen with helium on a closed cycle diesel engine performance

    Directory of Open Access Journals (Sweden)

    Alaa M. Abo El Ela

    2016-09-01

    Full Text Available One of most important problems of closed cycle diesel engine is deterioration of cylinder pressure and consequently the engine power. Therefore this research aimed to establish a multi zone model using Computational Fluid Dynamic (CFD code; ANSYS Fluent 14.0 to enhance the closed cycle diesel engine performance. The present work investigates the effect of replacing nitrogen gas with helium gas in different concentration under different engine load and equivalence ratios. The numerical model results were validated with comparing them with those obtained from the previous experimental results. The engine which was used for the simulation analysis and the previous experimental work was a single cylinder with a displacement volume of 825 cm3, compression ratio of 17 and run at constant speed of 1500 RPM. The numerical results showed that replacing nitrogen with helium resulted in increasing the in-cylinder pressure. The results showed also that a percentage of 0.5–10% of helium on mass basis is sufficient in the recovery needed to overcome the drop in-cylinder pressure and hence power due to the existence of CO2 in the recycled gas up to 25%. When the CO2 % reaches 25%, it is required to use at least 10% of He as replacement gas to achieve the required recovery.

  20. Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis.

    Science.gov (United States)

    Lee, Marissa R; Bernhardt, Emily S; van Bodegom, Peter M; Cornelissen, J Hans C; Kattge, Jens; Laughlin, Daniel C; Niinemets, Ülo; Peñuelas, Josep; Reich, Peter B; Yguel, Benjamin; Wright, Justin P

    2017-01-01

    Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species' traits may provide the necessary insights. We conducted a global meta-analysis to determine whether plant leaf and litter functional traits, and particularly leaf and litter nitrogen (N) content and carbon: nitrogen (C : N) ratio, explain variation in invasive species' impacts on soil N cycling. Dissimilarity in leaf and litter traits among invaded and noninvaded plant communities control the magnitude and direction of invasion impacts on N cycling. Invasions that caused the greatest increases in soil inorganic N and mineralization rates had a much greater litter N content and lower litter C : N in the invaded than the reference community. Trait dissimilarities were better predictors than the trait values of invasive species alone. Quantifying baseline community tissue traits, in addition to those of the invasive species, is critical to understanding the impacts of invasion on soil N cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Cycle length and COD/N ratio determine properties of aerobic granules treating high-nitrogen wastewater.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Bernat, Katarzyna; Zielińska, Magdalena; Wojnowska-Baryła, Irena

    2014-07-01

    Aerobic granule characteristic in sequencing batch reactors treating high-nitrogen digester supernatant was investigated at cycle lengths (t) of 6, 8 and 12 h with the COD/N ratios in the influent of 4.5 and 2.3. The biomass production (Y obs) correlated with the extracellular polymeric substances (EPS) in grams per COD removed. Denitrification efficiency significantly decreased as the amount of EPS in biomass increased, suggesting that organic assimilation in EPS hampers nitrogen removal. Granule hydrophobicity was highest at t of 8 h; the t has to be long enough to remove pollutants, but not so long that excessive biomass starvation causes extracellular protein consumption that decreases hydrophobicity. At a given t, reducing the COD/N ratio improved hydrophobicity that stimulates cell aggregation. At t of 6 h and the COD/N ratio of 2.3, the dominance of 0.5-1.0 mm granules favored simultaneous nitrification and denitrification and resulted in the highest nitrogen removal.

  2. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    Science.gov (United States)

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  3. Adoption of nitrogen power conversion system for small scale ultra-long cycle fast reactor eliminating intermediate sodium loop

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol

    2016-01-01

    Highlights: • N 2 power conversion system for both safety and thermal performance aspects. • Sensitivity studies of several controlled parameters on N 2 power conversion system. • The elimination of the intermediate loop increased the cycle thermal efficiency. • The elimination of the intermediate loop expects economic advantages. - Abstract: As one of SFRs, the ultra-long cycle fast reactor with a power rating of 100 MW e (UCFR-100) was introduced for a 60-year operation. As an alternative to the traditional steam Rankine cycle for the power conversion system, gas based Brayton cycle has been considered for UCFR-100. Among Supercritical CO 2 (S-CO 2 ), Helium (He), Nitrogen (N 2 ) as candidates for the power conversion system for UCFR-100, an N 2 power conversion system was chosen considering both safety and thermal performance aspects. The elimination of the intermediate sodium loop could be achieved due to the safety and stable characteristics of nitrogen working fluid. In this paper, sensitivity studies with respect to several controlled parameters on N 2 power conversion system were performed to optimize the system. Furthermore, the elimination of the intermediate loop was evaluated with respect to its impact on the thermodynamic performance and other aspects.

  4. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Science.gov (United States)

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  5. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Science.gov (United States)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  6. NATO Advanced Research Workshop on The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere

    CERN Document Server

    Charlson, Robert; Andreae, Meinrat; Rodhe, Henning

    1985-01-01

    Viewed from space, the Earth appears as a globe without a beginning or an end. Encompassing the globe is the atmosphere with its three phases-­ gaseous, liquid, and solid--moving in directions influenced by sunlight, gravity, and rotation. The chemical compositions of these phases are determined by biogeochemical cycles. Over the past hundred years, the processes governing the rates and reactions in the atmospheric biogeochemical cycles have typically been studied in regions where scientists lived. Hence, as time has gone by, the advances in our knowledge of atmospheric chemical cycles in remote areas have lagged substantially behind those for more populated areas. Not only are the data less abundant, they are also scattered. Therefore, we felt a workshop would be an excellent mechanism to assess the state­ of-knowledge of the atmospheric cycles of sulfur and nitrogen in remote areas and to make recommendations for future research. Thus, a NATO Advanced Research Workshop '~he Biogeochemical Cycling of Sulfu...

  7. The role of benthic macrofauna on nitrogen cycling in eutrophic lake sediment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J M

    1998-12-01

    This thesis concerns the role of sediment-living macrobenthos in the cycling of nitrogen species and nitrogen transformation in eutrophic freshwater sediments. In my thesis I have, employing {sup 15}N-isotope techniques in laboratory experiments, shown the importance of infaunal chironomid larvae and oligochaetes on denitrification in eutrophic lake sediments. Investigated benthic organisms not only expand the sediment surface with their permanent or non-permanent burrow constructions, they also transport water through the burrows continuously. This behaviour of intermittent water-pumping activity, provides the burrows with oxygen, and in addition, mediates the supply of nitrate to denitrifying zones. The highly dynamic oxygen climate within and narrow oxic zones around burrows, due to their radial geometry, provides a very short diffusion path for nitrate into surrounding anoxic zones. In my studies rates of denitrification were enhanced c. 3 to 6-fold by the influence of chironomids (Chironomus plumosus) and c. 2-fold by the influence of oligochaetes at comparable biomass. The difference in degree of stimulation is explained by species-specific habitat exploitation which could also be observed between different tube-dwelling species of chironomids. Besides chironomid biomass, the degree of enhancement of denitrification by chironomids was dependent on nitrate concentration in the overlying water, and water temperature. Nitrification was also seen to be stimulated by the infaunal macrobenthos but to a lesser degree than denitrification. It is suggested that bioturbated eutrophic sediment, under predominantly oxic bottom water conditions may act more pronouncedly as a sink for inorganic nitrogen relative to non-bioturbated sediment, and that bioturbated sediment above all, may be an important factor contributing to lowered transport of nitrogen to the coast. In order to sustain high nitrogen removal capacity in wetlands, ponds and lakes, it is further suggested

  8. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  9. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.

    Science.gov (United States)

    Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali

    2017-02-01

    Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    % was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom......-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly...

  11. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

    Science.gov (United States)

    Naftz, David L.

    2017-01-01

    Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

  12. Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: Excellent rate capability and cycle stability

    Science.gov (United States)

    Zhang, Deyi; Han, Mei; Wang, Bing; Li, Yubing; Lei, Longyan; Wang, Kunjie; Wang, Yi; Zhang, Liang; Feng, Huixia

    2017-08-01

    Vastly improving the charge storage capability of supercapacitors without sacrificing their high power density and cycle performance would bring bright application prospect. Herein, we report a nitrogen and sulfur co-doped hierarchical porous carbon (NSHPC) with very superior capacitance performance fabricated by KOH activation of nitrogen and sulfur co-doped ordered mesoporous carbon (NSOMC). A high electrochemical double-layer (EDL) capacitance of 351 F g-1 was observed for the reported NSHPC electrodes, and the capacitance remains at 288 F g-1 even under a large current density of 20 A g-1. Besides the high specific capacitance and outstanding rate capability, symmetrical supercapacitor cell based on the NSHPC electrodes also exhibits an excellent cycling performance with 95.61% capacitance retention after 5000 times charge/discharge cycles. The large surface area caused by KOH activation (2056 m2 g-1) and high utilized surface area owing to the ideal micro/mesopores ratio (2.88), large micropores diameter (1.38 nm) and short opened micropores structure as well as the enhanced surface wettability induced by N and S heteroatoms doping and improved conductivity induced by KOH activation was found to be responsible for the very superior capacitance performance.

  13. Transgenic plants that exhibit enhanced nitrogen assimilation

    Science.gov (United States)

    Coruzzi, Gloria M.; Brears, Timothy

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  14. Mortality and community changes drive sudden oak death impacts on litterfall and soil nitrogen cycling.

    Science.gov (United States)

    Cobb, Richard C; Eviner, Valerie T; Rizzo, David M

    2013-10-01

    Few studies have quantified pathogen impacts to ecosystem processes, despite the fact that pathogens cause or contribute to regional-scale tree mortality. We measured litterfall mass, litterfall chemistry, and soil nitrogen (N) cycling associated with multiple hosts along a gradient of mortality caused by Phytophthora ramorum, the cause of sudden oak death. In redwood forests, the epidemiological and ecological characteristics of the major overstory species determine disease patterns and the magnitude and nature of ecosystem change. Bay laurel (Umbellularia californica) has high litterfall N (0.992%), greater soil extractable NO3 -N, and transmits infection without suffering mortality. Tanoak (Notholithocarpus densiflorus) has moderate litterfall N (0.723%) and transmits infection while suffering extensive mortality that leads to higher extractable soil NO3 -N. Redwood (Sequoia sempervirens) has relatively low litterfall N (0.519%), does not suffer mortality or transmit the pathogen, but dominates forest biomass. The strongest impact of pathogen-caused mortality was the potential shift in species composition, which will alter litterfall chemistry, patterns and dynamics of litterfall mass, and increase soil NO3 -N availability. Patterns of P. ramorum spread and consequent mortality are closely associated with bay laurel abundances, suggesting this species will drive both disease emergence and subsequent ecosystem function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. In vivo urea cycle flux distinguishes and correlates with phenotypic severity in disorders of the urea cycle

    Science.gov (United States)

    Lee, Brendan; Yu, Hong; Jahoor, Farook; O'Brien, William; Beaudet, Arthur L.; Reeds, Peter

    2000-01-01

    Urea cycle disorders are a group of inborn errors of hepatic metabolism that result in often life-threatening hyperammonemia and hyperglutaminemia. Clinical and laboratory diagnosis of partial deficiencies during asymptomatic periods is difficult, and correlation of phenotypic severity with either genotype and/or in vitro enzyme activity is often imprecise. We hypothesized that stable isotopically determined in vivo rates of total body urea synthesis and urea cycle-specific nitrogen flux would correlate with both phenotypic severity and carrier status in patients with a variety of different enzymatic deficiencies of the urea cycle. We studied control subjects, patients, and their relatives with different enzymatic deficiencies affecting the urea cycle while consuming a low protein diet. On a separate occasion the subjects either received a higher protein intake or were treated with an alternative route medication sodium phenylacetate/benzoate (Ucephan), or oral arginine supplementation. Total urea synthesis from all nitrogen sources was determined from [18O]urea labeling, and the utilization of peripheral nitrogen was estimated from the relative isotopic enrichments of [15N]urea and [15N]glutamine during i.v. co-infusions of [5-(amide)15N]glutamine and [18O]urea. The ratio of the isotopic enrichments of 15N-urea/15N-glutamine distinguished normal control subjects (ratio = 0.42 ± 0.06) from urea cycle patients with late (0.17 ± 0.03) and neonatal (0.003 ± 0.007) presentations irrespective of enzymatic deficiency. This index of urea cycle activity also distinguished asymptomatic heterozygous carriers of argininosuccinate synthetase deficiency (0.22 ± 0.03), argininosuccinate lyase deficiency (0.35 ± 0.11), and partial ornithine transcarbamylase deficiency (0.26 ± 0.06) from normal controls. Administration of Ucephan lowered, and arginine increased, urea synthesis to the degree predicted from their respective rates of metabolism. The 15N-urea/15N-glutamine ratio

  16. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles

    Science.gov (United States)

    Berman-Frank, I.; Chen, Y.-B.; Gerchman, Y.; Dismukes, G. C.; Falkowski, P. G.

    2005-03-01

    Cyanobacterial N2-fixation supplies the vast majority of biologically accessible inorganic nitrogen to nutrient-poor aquatic ecosystems. The process, catalyzed by the heterodimeric protein complex, nitrogenase, is thought to predate that of oxygenic photosynthesis. Remarkably, while the enzyme plays such a critical role in Earth's biogeochemical cycles, the activity of nitrogenase in cyanobacteria is markedly inhibited in vivo at a post-translational level by the concentration of O2 in the contemporary atmosphere leading to metabolic and biogeochemical inefficiency in N2 fixation. We illustrate this crippling effect with data from Trichodesmium spp. an important contributor of "new nitrogen" to the world's subtropical and tropical oceans. The enzymatic inefficiency of nitrogenase imposes a major elemental taxation on diazotrophic cyanobacteria both in the costs of protein synthesis and for scarce trace elements, such as iron. This restriction has, in turn, led to a global limitation of fixed nitrogen in the contemporary oceans and provides a strong biological control on the upper bound of oxygen concentration in Earth's atmosphere.

  17. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils

    Science.gov (United States)

    Daniela F. Cusack; Margaret S. Torn; William H. McDowell; Whendee L. Silver

    2010-01-01

    Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in...

  18. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  19. Pruning cycles and nitrogen fertilization of coffee fields conducted in the “safra zero” system

    OpenAIRE

    Japiassú, Leonardo Bíscaro; Fundação Procafé; Garcia, André Luiz Alvarenga; Fundação Procafé; Guimarães, Rubens José; Universidade Federal de Lavras - UFLA; Padilha, Lílian; Embrapa Café; Carvalho, Carlos Henrique Siqueira; Embrapa Café

    2010-01-01

    Modern, competitive and cost effective coffee production requires plants with high productivity that are more adapted to mechanical and manual harvesting. “Safra Zero” is a cultivation system designed to limit plant height and eliminate the need for expensive harvesting during years of low productivity, which usually follow years of high productivity. This system is based on pruning cycles, nitrogen fertilization and different management methods. To evaluate the “Safra Zero&...

  20. Automatic adjustment of cycle length and aeration time for improved nitrogen removal in an alternating activated sludge process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard

    1997-01-01

    The paper examines the nitrogen dynamics in the alternating BIODENITRO and BIODENIPHO processes with a focus on two control handles influencing now scheduling and aeration: the cycle length and the ammonia concentration at which a nitrifying period is terminated. A steady state analysis examining...

  1. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle.

    Science.gov (United States)

    Niu, Shuli; Classen, Aimée T; Dukes, Jeffrey S; Kardol, Paul; Liu, Lingli; Luo, Yiqi; Rustad, Lindsey; Sun, Jian; Tang, Jianwu; Templer, Pamela H; Thomas, R Quinn; Tian, Dashuan; Vicca, Sara; Wang, Ying-Ping; Xia, Jianyang; Zaehle, Sönke

    2016-06-01

    Nitrogen (N) deposition is impacting the services that ecosystems provide to humanity. However, the mechanisms determining impacts on the N cycle are not fully understood. To explore the mechanistic underpinnings of N impacts on N cycle processes, we reviewed and synthesised recent progress in ecosystem N research through empirical studies, conceptual analysis and model simulations. Experimental and observational studies have revealed that the stimulation of plant N uptake and soil retention generally diminishes as N loading increases, while dissolved and gaseous losses of N occur at low N availability but increase exponentially and become the dominant fate of N at high loading rates. The original N saturation hypothesis emphasises sequential N saturation from plant uptake to soil retention before N losses occur. However, biogeochemical models that simulate simultaneous competition for soil N substrates by multiple processes match the observed patterns of N losses better than models based on sequential competition. To enable better prediction of terrestrial N cycle responses to N loading, we recommend that future research identifies the response functions of different N processes to substrate availability using manipulative experiments, and incorporates the measured N saturation response functions into conceptual, theoretical and quantitative analyses. © 2016 John Wiley & Sons Ltd/CNRS.

  2. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification

    Directory of Open Access Journals (Sweden)

    Karen L Casciotti

    2012-10-01

    Full Text Available The microbial nitrogen (N cycle involves a variety of redox processes that control the availability and speciation of N in the environment and are involved with the production of nitrous oxide (N2O, a climatically important greenhouse gas. Isotopic measurements of ammonium (NH4+, nitrite (NO2-, nitrate (NO3-, and N2O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO3- and NO2- have shown that there is NO3- regeneration in the ocean’s euphotic zone, as well as in and around oxygen deficient zones, indicating that nitrification may play more roles in the ocean’s N cycle than generally thought. Likewise, the inverse isotope effect associated with NO2- oxidation yields unique information about the role of this process in NO2- cycling in the primary and secondary NO2- maxima. Finally, isotopic measurements of N2O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process, the insights provided by this information, and provide a prospectus for future work in this area.

  3. Insights on the marine microbial nitrogen cycle from isotopic approaches to nitrification.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn

    2012-01-01

    The microbial nitrogen (N) cycle involves a variety of redox processes that control the availability and speciation of N in the environment and that are involved with the production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Isotopic measurements of ammonium (NH(+) (4)), nitrite (NO(-) (2)), nitrate (NO(-) (3)), and N(2)O can now be used to track the cycling of these compounds and to infer their sources and sinks, which has lead to new and exciting discoveries. For example, dual isotope measurements of NO(-) (3) and NO(-) (2) have shown that there is NO(-) (3) regeneration in the ocean's euphotic zone, as well as in and around oxygen deficient zones (ODZs), indicating that nitrification may play more roles in the ocean's N cycle than generally thought. Likewise, the inverse isotope effect associated with NO(-) (2) oxidation yields unique information about the role of this process in NO(-) (2) cycling in the primary and secondary NO(-) (2) maxima. Finally, isotopic measurements of N(2)O in the ocean are indicative of an important role for nitrification in its production. These interpretations rely on knowledge of the isotope effects for the underlying microbial processes, in particular ammonia oxidation and nitrite oxidation. Here we review the isotope effects involved with the nitrification process and the insights provided by this information, then provide a prospectus for future work in this area.

  4. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    Science.gov (United States)

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. © 2015 John Wiley & Sons Ltd.

  5. Ceramic packages for liquid-nitrogen operation

    International Nuclear Information System (INIS)

    Tong, H.M.; Yeh, H.L.; Goldblatt, R.D.

    1989-01-01

    To evaluate their compatibility for use in a liquid-nitrogen computer, metallized ceramic packages with test chips joined using IBM controlled-collapse solder (Pb-Sn) technology have been cycled between 30 0 C and liquid-nitrogen temperature. Room-temperature electrical resistance measurements were made at regular intervals of cycles to determine whether solder failure accompanied by a significant resistance increase had occurred. For the failed solder joints characterized by the highest thermal shear strain amplitude of 3.3 percent, the authors were able to estimate the number of liquid-nitrogen cycles needed to produce the corresponding failure rate using a room-temperature solder lifetime model. Cross-sectional examination of the failed solder joints using scanning electron microscopy and energy dispersive X-ray analysis indicated solder cracking occurring at the solder-ceramic interface. Chip pull tests on cycled packages yielded strengths far exceeding the minimal requirement. Mechanisms involving the formation of intermetallics were proposed to account for the observed solder fracture modes after liquid-nitrogen cycling and after chip pull. Furthermore, scanning electron microscopic examination of pulled chips in cycled packages showed no apparent sign of cracking in quartz and polyimide for chip insulation

  6. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  7. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  8. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter.

    Science.gov (United States)

    Mooshammer, Maria; Wanek, Wolfgang; Schnecker, Jörg; Wild, Birgit; Leitner, Sonja; Hofhansl, Florian; Blöchl, Andreas; Hämmerle, Ieda; Frank, Alexander H; Fuchslueger, Lucia; Keiblinger, Katharina M; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2012-04-01

    Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) was incubated under constant environmental conditions. After three and six months, we measured various aspects of nitrogen and phosphorus cycling. We found that gross protein depolymerization, N mineralization (ammonification), and nitrification rates were negatively related to litter C:N. Rates of P mineralization were negatively correlated with litter C:P. The negative correlations with litter C:N were stronger for inorganic N cycling processes than for gross protein depolymerization, indicating that the effect of resource stoichiometry on intracellular processes was stronger than on processes catalyzed by extracellular enzymes. Consistent with this, extracellular protein depolymerization was mainly limited by substrate availability and less so by the amount of protease. Strong positive correlations between the interconnected N and P pools and the respective production and consumption processes pointed to feed-forward control of microbial litter N and P cycling. A negative relationship between litter C:N and phosphatase activity (and between litter C:P and protease activity) demonstrated that microbes tended to allocate carbon and nutrients in ample supply into the production of extracellular enzymes to mine for the nutrient that is more limiting. Overall, the study demonstrated a strong effect of litter stoichiometry (C:N:P) on gross processes of microbial N and P cycling in decomposing litter; mineralization of N and P were tightly coupled to assist in maintaining cellular homeostasis of litter microbial communities.

  9. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effects of nitrogen addition and fire on plant nitrogen use in a temperate steppe.

    Directory of Open Access Journals (Sweden)

    Hai-Wei Wei

    Full Text Available Plant nitrogen (N use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m(-2 yr(-1 and prescribed fire (annual burning on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP, inorganic N, and N uptake, decreased N response efficiency (NRE, but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

  11. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    Science.gov (United States)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  12. Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen and phosphorus control

    NARCIS (Netherlands)

    Claquin, P.; Martin-Jézéquel, V.R.; Kromkamp, J.C.; Veldhuis, M.; Kraay, G.W.

    2002-01-01

    The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light- (E), nitrogen- (N), and phosphorus- (P) limited growth rates. In all growth conditions investigated, the decrease

  13. Slow-cycle effects of foliar herbivory alter the nitrogen acquisition and population size of Collembola

    Science.gov (United States)

    Mark A. Bradford; Tara Gancos; Christopher J. Frost

    2008-01-01

    In terrestrial systems there is a close relationship between litter quality and the activity and abundance of decomposers. Therefore, the potential exists for aboveground, herbivore-induced changes in foliar chemistry to affect soil decomposer fauna. These herbivore-induced changes in chemistry may persist across growing seasons. While the impacts of such slow-cycle...

  14. Managing Nitrogen in the anthropocene: integrating social and ecological science

    Science.gov (United States)

    Zhang, X.; Mauzerall, D. L.; Davidson, E. A.; Kanter, D.; Cai, R.; Searchinger, T.

    2014-12-01

    Human alteration of the global nitrogen cycle by agricultural activities has provided nutritious food to society, but also poses increasing threats to human and ecosystem health through unintended pollution. Managing nitrogen more efficiently in crop production is critical for addressing both food security and environmental challenges. Technologies and management practices have been developed to increase the uptake of applied nitrogen by crops. However, nitrogen use efficiency (NUE, yield per unit nitrogen input) is also affected by social and economic factors. For example, to maximize profit, farmers may change crop choice or their nitrogen application rate, both of which lead to a change in NUE. To evaluate such impacts, we use both theoretical and empirical approaches on micro (farm) and macro (national) scales: 1) We developed a bio-economic model (NUE3) on a farm scale to investigate how market signals (e.g. fertilizer and crop prices), government policies, and nitrogen-efficient technologies affect NUE. We demonstrate that if factors that influence nitrogen inputs (e.g. fertilizer-to-crop price ratios) are not considered, NUE projections will be poorly constrained. The impact of nitrogen-efficient technologies on NUE not only depends on how technology changes the production function, but also relies on the prices of the technologies, fertilizers, and crops. 2) We constructed a database of the nitrogen budget in crop production for major crops and major crop producing countries from 1961 to 2010. Using this database, we investigate historical trends of NUE and its relationship to agronomic, economic, social, and policy factors. We find that NUE in most developed countries follows a "U-shape" relationship with income level, consistent with the Environmental Kuznets Curve theory. According to the dynamics revealed in the NUE3 model, we propose three major pathways by which economic development affects NUE, namely consumption, technology, and public policy

  15. Successional patterns of key genes and processes involved in the microbial nitrogen cycle in a salt marsh chronosequence

    NARCIS (Netherlands)

    Salles, Joana Falcao; Cassia Pereira e Silva , de Michele; Dini-Andreote, Francisco; Dias, Armando C. F.; Guillaumaud, Nadine; Poly, Franck; van Elsas, Jan Dirk

    Here, we investigated the patterns of microbial nitrogen cycling communities along a chronosequence of soil development in a salt marsh. The focus was on the abundance and structure of genes involved in N fixation (nifH), bacterial and archaeal ammonium oxidation (amoA; AOB and AOA), and the

  16. Influence of moisture regime and tree species composition on nitrogen cycling dynamics in hardwood forests of Mammoth Cave National Park, Kentucky, USA

    Science.gov (United States)

    Eric S. Fabio; Mary A. Arthur; Charles C. Rhoades

    2009-01-01

    Understanding how natural factors interact across the landscape to influence nitrogen (N) cycling is an important focus in temperate forests because of the great inherent variability in these forests. Site-specific attributes, including local topography, soils, and vegetation, can exert important controls on N processes and retention. Seasonal monitoring of N cycling...

  17. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders.

    Science.gov (United States)

    MacLeod, Erin L; Hall, Kevin D; McGuire, Peter J

    2016-01-01

    Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.

  18. Nitrogen and energy metabolism of sows during several reproductive cycles in relation to nitrogen intake

    NARCIS (Netherlands)

    Everts, H.

    1994-01-01

    By feeding the same diet during pregnancy and lactation sows are fed above the nitrogen requirement during pregnancy due to the relatively high nitrogen requirement during lactation. For feeding closer to the requirements at least two diets are needed: one diet with a low nitrogen content

  19. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  20. Response of Nodularia spumigena to pCO2 – Part 1: Growth, production and nitrogen cycling

    Directory of Open Access Journals (Sweden)

    M. Nausch

    2012-08-01

    Full Text Available Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2 concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C and dinitrogen (N2 fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 μatm, mid (median 353 μatm, and high (median 548 μatm CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO2 on C and N2 fixation, as well as on cell growth. An increase in pCO2 during incubation days 0 to 9 resulted in an elevation in growth rate by 84 ± 38% (low vs. high pCO2 and 40 ± 25% (mid vs. high pCO2, as well as in N2 fixation by 93 ± 35% and 38 ± 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO2 treatment was elevated compared to the other two treatments by 97% (high vs. low and 44% (high vs. mid at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP was observed at high pCO2. Our findings suggest that rising pCO2 stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the

  1. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    Science.gov (United States)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited at high elevation in areas that recharge regional groundwater. Combined, our findings suggest that urbanization in semi-arid regions results in tradeoffs in the redistribution of water and N that have important

  2. Assessment of the fate of anthropogenic nitrogen in large watersheds by isotopic techniques

    International Nuclear Information System (INIS)

    Mayer, B.

    1999-01-01

    Human activity has greatly altered the nitrogen cycle in terrestrial and aquatic ecosystems and increased the nitrogen flow in many rivers. Preliminary work of the International SCOPE Nitrogen Project indicates that only 20% of the human-controlled nitrogen inputs to large watersheds are exported to the oceans in riverine flow (Howarth, 1998). Therefore, approximately 80% of the anthropogenic nitrogen inputs are either stored or denitrified in the catchments. Anthropogenic nitrogen can be retained in forests (possibly as a result of increased productivity) or in agricultural soils. It can also be stored in groundwater. These sinks are, however, often not large enough to account for the 'missing' nitrogen. It is, therefore, assumed that the majority of the human-controlled nitrogen inputs to large watersheds is denitrified in soils, riparian zones, wetlands, lakes, and rivers. Within the SCOPE Nitrogen Project, preliminary isotope analyses were performed on dissolved nitrates from several streams draining into the North Atlantic Ocean. Both δ 15 N nitrate and δ 18 O nitrate values were determined in order to identify nitrate sources. A further objective was to test, whether the isotopic composition of dissolved nitrate provides a measure for the extent to which denitrification occurs in the respective watersheds

  3. [Dynamic changes in functional genes for nitrogen bioremediation of petroleum-contaminated soil cycle during].

    Science.gov (United States)

    Wu, Bin-Bin; Lu, Dian-Nan; Liu, Zheng

    2012-06-01

    Microorganisms in nitrogen cycle serve as an important part of the ecological function of soil. The aim of this research was to monitor the abundance of nitrogen-fixing, denitrifying and nitrifying bacteria during bioaugmentation of petroleum-contaminated soil using real-time polymerase chain reaction (real-time PCR) of nifH, narG and amoA genes which encode the key enzymes in nitrogen fixation, nitrification and ammoniation respectively. Three different kinds of soils, which are petroleum-contaminated soil, normal soil, and remediated soil, were monitored. It was shown that the amounts of functional microorganisms in petroleum-contaminated soil were far less than those in normal soil, while the amounts in remediated soil and normal soil were comparable. Results of this experiment demonstrate that nitrogen circular functional bacteria are inhibited in petroleum-contaminated soil and can be recovered through bioremediation. Furthermore, copies of the three functional genes as well as total petroleum hydrocarbons (TPH) for soils with six different treatments were monitored. Among all treatments, the one, into which both E. cloacae as an inoculant and wheat straw as an additive were added, obtained the maximum copies of 2.68 x 10(6), 1.71 x 10(6) and 8.54 x 10(4) per gram dry soil for nifH, narG and amoA genes respectively, companying with the highest degradation rate (48% in 40 days) of TPH. The recovery of functional genes and removal of TPH were better in soil inoculated with E cloacae and C echinulata collectively than soil inoculated with E cloacae only. All above results suggest that the nitrogen circular functional genes could be applied to monitor and assess the bioremediation of petroleum-contaminated soil.

  4. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    Science.gov (United States)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  5. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    Science.gov (United States)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  6. Ecophysiology of the internal cycling of nitrogen in deciduous fruit trees

    International Nuclear Information System (INIS)

    Millard, P.

    2005-01-01

    physiology has led to significant improvements in our understanding of cycling of N in trees. It is clear that nitrogen has a very high mobility in the tree and that its initial partitioning to a target organ does not necessarily represent its final destination. Increasing the effectiveness of the recycling of the N already present in the orchard is a basic step to reduce external N inputs. The better understanding of the role of internal tree cycling of N allows a fine tuning of N supply to improve its uptake efficiency and reduce potential losses [it

  7. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  8. On the application of the compartment theory to the modelling of the isotopic composition of nitrogen in its natural cycle

    International Nuclear Information System (INIS)

    Winkler, E.; Wetzel, K.

    1979-01-01

    The compartment theory is presented as a means for mathematical modelling of isotope geochemical processes, taking into consideration isotopic effects. It is used to formulate a global model of the isotopic composition of nitrogen in its natural cycle, which consists of three pools connected by fluxes: nitrogen in magmatites, in the atmosphere, and in sedimentary rocks. A part from the simulation of the development of pool sizes, of delta 15 N values and of fluxes as functions of time through the history of the earth, contributions could be made to the solution of geochemical problems. The results of modelling indicate that the original atmosphere contained much less nitrogen than the present one (up to 10% of the present value), and that a nitrogen flux exists from the upper crust to the magmatites (about 6 . 10 5 tons/yr). (author)

  9. Incorporating Prognostic Marine Nitrogen Fixers and Related Bio-Physical Feedbacks in an Earth System Model

    Science.gov (United States)

    Paulsen, H.; Ilyina, T.; Six, K. D.

    2016-02-01

    Marine nitrogen fixers play a fundamental role in the oceanic nitrogen and carbon cycles by providing a major source of `new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Furthermore, nitrogen fixers may regionally have a direct impact on ocean physics and hence the climate system as they form extensive surface mats which can increase light absorption and surface albedo and reduce the momentum input by wind. Resulting alterations in temperature and stratification may feed back on nitrogen fixers' growth itself.We incorporate nitrogen fixers as a prognostic 3D tracer in the ocean biogeochemical component (HAMOCC) of the Max Planck Institute Earth system model and assess for the first time the impact of related bio-physical feedbacks on biogeochemistry and the climate system.The model successfully reproduces recent estimates of global nitrogen fixation rates, as well as the observed distribution of nitrogen fixers, covering large parts of the tropical and subtropical oceans. First results indicate that including bio-physical feedbacks has considerable effects on the upper ocean physics in this region. Light absorption by nitrogen fixers leads locally to surface heating, subsurface cooling, and mixed layer depth shoaling in the subtropical gyres. As a result, equatorial upwelling is increased, leading to surface cooling at the equator. This signal is damped by the effect of the reduced wind stress due to the presence of cyanobacteria mats, which causes a reduction in the wind-driven circulation, and hence a reduction in equatorial upwelling. The increase in surface albedo due to nitrogen fixers has only inconsiderable effects. The response of nitrogen fixers' growth to the alterations in temperature and stratification varies regionally. Simulations with the fully coupled Earth system model are in progress to assess the implications of the biologically induced changes in upper ocean physics for the global climate system.

  10. Neurological implications of urea cycle disorders

    Science.gov (United States)

    Summar, M.; Leonard, J. V.

    2013-01-01

    Summary The urea cycle disorders constitute a group of rare congenital disorders caused by a deficiency of the enzymes or transport proteins required to remove ammonia from the body. Via a series of biochemical steps, nitrogen, the waste product of protein metabolism, is removed from the blood and converted into urea. A consequence of these disorders is hyperammonaemia, resulting in central nervous system dysfunction with mental status changes, brain oedema, seizures, coma, and potentially death. Both acute and chronic hyperammonaemia result in alterations of neurotransmitter systems. In acute hyperammonaemia, activation of the NMDA receptor leads to excitotoxic cell death, changes in energy metabolism and alterations in protein expression of the astrocyte that affect volume regulation and contribute to oedema. Neuropathological evaluation demonstrates alterations in the astrocyte morphology. Imaging studies, in particular 1H MRS, can reveal markers of impaired metabolism such as elevations of glutamine and reduction of myoinositol. In contrast, chronic hyperammonaemia leads to adaptive responses in the NMDA receptor and impairments in the glutamate–nitric oxide–cGMP pathway, leading to alterations in cognition and learning. Therapy of acute hyperammonaemia has relied on ammonia-lowering agents but in recent years there has been considerable interest in neuroprotective strategies. Recent studies have suggested restoration of learning abilities by pharmacological manipulation of brain cGMP with phosphodiesterase inhibitors. Thus, both strategies are intriguing areas for potential investigation in human urea cycle disorders. PMID:18038189

  11. THE ROLE OF NITROGEN IN TITAN’S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Department of Space Research, Southwest Research Institute, San Antonio, TX 78228 (United States); Westlake, J. H. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [Fund Kis, F-92160 Antony (France)

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N({sup 4}S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH{sub 3}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}, despite the lower CH{sub 4} photodissociation rates compared with solar maximum conditions, is explained by the role of N({sup 4}S). N({sup 4}S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH{sub 3}. When in higher abundance during solar maximum at lower altitudes, N({sup 4}S) increases the importance of bimolecular CH{sub 3} + N({sup 4}S) reactions producing HCN and H{sub 2}CN. The subsequent remarkable CH{sub 3} loss and decrease in the CH{sub 3} abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  12. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    Science.gov (United States)

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to

  13. Reconstructing the Genetic Potential of the Microbially-Mediated Nitrogen Cycle in a Salt Marsh Ecosystem.

    Science.gov (United States)

    Dini-Andreote, Francisco; Brossi, Maria Julia de L; van Elsas, Jan Dirk; Salles, Joana F

    2016-01-01

    Coastal ecosystems are considered buffer zones for the discharge of land-derived nutrients without accounting for potential negative side effects. Hence, there is an urgent need to better understand the ecological assembly and dynamics of the microorganisms that are involved in nitrogen (N) cycling in such systems. Here, we employed two complementary methodological approaches (i.e., shotgun metagenomics and quantitative PCR) to examine the distribution and abundance of selected microbial genes involved in N transformations. We used soil samples collected along a well-established pristine salt marsh soil chronosequence that spans over a century of ecosystem development at the island of Schiermonnikoog, The Netherlands. Across the examined soil successional stages, the structure of the populations of genes involved in N cycling processes was strongly related to (shifts in the) soil nitrogen levels (i.e., [Formula: see text], [Formula: see text]), salinity and pH (explaining 73.8% of the total variation, R (2) = 0.71). Quantification of the genes used as proxies for N fixation, nitrification and denitrification revealed clear successional signatures that corroborated the taxonomic assignments obtained by metagenomics. Notably, we found strong evidence for niche partitioning, as revealed by the abundance and distribution of marker genes for nitrification (ammonia-oxidizing bacteria and archaea) and denitrification (nitrite reductase nirK, nirS and nitrous oxide reductase nosZ clades I and II). This was supported by a distinct correlation between these genes and soil physico-chemical properties, such as soil physical structure, pH, salinity, organic matter, total N, [Formula: see text], [Formula: see text] and [Formula: see text], across four seasonal samplings. Overall, this study sheds light on the successional trajectories of microbial N cycle genes along a naturally developing salt marsh ecosystem. The data obtained serve as a foundation to guide the formulation of

  14. Nitrogen trading tool

    Science.gov (United States)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  15. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    OpenAIRE

    Diallo, M. D.; Guisse, A.; Sall, S. N.; Dick, R. P.; Assigbetsé, Komi; Dieng, A. L.; Chotte, Jean-Luc

    2015-01-01

    Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB) community composition and nitrogen (N) availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C) and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. T...

  16. Nitrogen Cycling and GHG Emissions of Natural and Managed Tropical Ecosystems at Mt. Kilimanjaro

    Science.gov (United States)

    Gutlein, A.; Ralf, K.; Gerschlauer, F.; Dannenmann, M.; Butterbach-Bahl, K.; Diaz-Pines, E.

    2016-12-01

    In a rapidly changing world understanding of natural ecosystems response to human perturbations such as land use and climate changes as well as habitat destruction is crucial with respect to sustainability of ecosystem services. This is particularily true for tropical forest ecosystems which have significant effects on the major biogeochemical cycles and global climate. Here we present a comprehensive dataset of nitrogen cycling and GHG emissions of natural and managed ecosystems along land use and climate gradients at Mt. Kilimanjaro, Tanzania including different forest ecosystems, homegardens, and coffee plantations. Soil N turnover rates were highest in the Ocotea forest and progressively decreased with decreasing annual rainfall and increasing land use intensity. Nitrogen production and immobilization rates positively correlated with soil organic C and total N concentrations as well as substrate availability of dissolved organic C and N, but correlated less with soil ammonium and nitrate concentrations. By using indicators of N retention and characteristics of soil nutrient status, we observed a grouping of faster, but tighter N cycling in the (semi-) natural savanna, Helychrysum and Ocotea forest. This contrasted with a more open N cycle in managed systems (homegarden and coffee plantation) where N was more prone to leaching or gaseous losses due to high nitrate production rates. The partly disturbed lower montane forest ranged in between these two groups. These finding could be supported by differences in natural 15N abundance of litter and soil across all sites. Comparing GHG emissions at the land use gradient showed, that with increasing intensification (lower montane forest - homegarden - coffee plantation) N2O emissions increased but at the same time the soil sink for atmospheric CH4 decreased. GHG emission measurements at the climate gradient (savanna, lower montane, Ocotea and Podocarpus forest, Helychrysum) revealed that differences in soil moisture

  17. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation

  18. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    Science.gov (United States)

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks

  19. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

    Directory of Open Access Journals (Sweden)

    Chonggang Xu

    Full Text Available Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2 concentration, temperature, and radiation when evaluated against published data of V(c,max (maximum carboxylation rate and J(max (maximum electron transport rate. A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the

  20. Modelling the pelagic nitrogen cycle and vertical particle flux in the Norwegian sea

    Science.gov (United States)

    Haupt, Olaf J.; Wolf, Uli; v. Bodungen, Bodo

    1999-02-01

    A 1D Eulerian ecosystem model (BIological Ocean Model) for the Norwegian Sea was developed to investigate the dynamics of pelagic ecosystems. The BIOM combines six biochemical compartments and simulates the annual nitrogen cycle with specific focus on production, modification and sedimentation of particles in the water column. The external forcing and physical framework is based on a simulated annual cycle of global radiation and an annual mixed-layer cycle derived from field data. The vertical resolution of the model is given by an exponential grid with 200 depth layers, allowing specific parameterization of various sinking velocities, breakdown of particles and the remineralization processes. The aim of the numerical experiments is the simulation of ecosystem dynamics considering the specific biogeochemical properties of the Norwegian Sea, for example the life cycle of the dominant copepod Calanus finmarchicus. The results of the simulations were validated with field data. Model results are in good agreement with field data for the lower trophic levels of the food web. With increasing complexity of the organisms the differences increase between simulated processes and field data. Results of the numerical simulations suggest that BIOM is well adapted to investigate a physically controlled ecosystem. The simulation of grazing controlled pelagic ecosystems, like the Norwegian Sea, requires adaptations of parameterization to the specific ecosystem features. By using seasonally adaptation of the most sensible processes like utilization of light by phytoplankton and grazing by zooplankton results were greatly improved.

  1. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  2. Efficiency of nitrogen fertilizers for rice

    OpenAIRE

    Roger, Pierre-Armand; Grant, I.F.; Reddy, P.M.; Watanabe, I.

    1987-01-01

    The photosynthetic biomass that develops in the floodwater of wetland rice fields affects nitrogen dynamics in the ecosystem. This review summarizes available data on the nature, productivity, and composition of the photosynthetic aquatic biomass, and its major activities regarding the nitrogen cycle, i.e., nitrogen fixation by free living blue-green algae and #Azolla$, nitrogen trapping, nitrogen accumulation at the soil surface, its effect on nitrogen losses by ammonia volatilization, nitro...

  3. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.

    2017-01-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  4. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    Science.gov (United States)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  5. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    Science.gov (United States)

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

    Science.gov (United States)

    Landolfi, A.; Somes, C. J.; Koeve, W.; Zamora, L. M.; Oschlies, A.

    2017-08-01

    There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (˜+5 Tg N y-1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.

  7. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for economically-optimal nitrogen rates

    Directory of Open Access Journals (Sweden)

    Y. Xia

    2011-11-01

    Full Text Available Nitrogen (N fertilizer plays an important role in agricultural systems in terms of food yield. However, N application rates (NARs are often overestimated over the rice (Oryza sativa L. growing season in the Taihu Lake region of China. This is largely because negative externalities are not entirely included when evaluating economically-optimal nitrogen rate (EONR, such as only individual N losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and farming processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.05 yuan. Accordingly, our current EONR has been evaluated at 187 kg N ha−1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.

  9. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    Science.gov (United States)

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-07-01

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  10. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis

    DEFF Research Database (Denmark)

    Reynolds, C K; Kristensen, Niels Bastian

    2007-01-01

    The extensive development of the ruminant forestomach sets apart their nitrogen (N) economy from that of nonruminants in a number of respects. Extensive pre-gastric fermentation alters the profile of protein reaching the small intestine, largely through the transformation of nitrogenous compounds...

  11. Warming can boost denitrification disproportionately due to altered oxygen dynamics.

    Directory of Open Access Journals (Sweden)

    Annelies J Veraart

    Full Text Available BACKGROUND: Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising temperature, the impact of temperature on denitrification seems to vary widely between systems. METHODOLOGY/PRINCIPAL FINDINGS: We explored the effects of warming on denitrification rates using microcosm experiments, field measurements and a simple model approach. Our results suggest that a three degree temperature rise will double denitrification rates. By performing experiments at fixed oxygen concentrations as well as with oxygen concentrations varying freely with temperature, we demonstrate that this strong temperature dependence of denitrification can be explained by a systematic decrease of oxygen concentrations with rising temperature. Warming decreases oxygen concentrations due to reduced solubility, and more importantly, because respiration rates rise more steeply with temperature than photosynthesis. CONCLUSIONS/SIGNIFICANCE: Our results show that denitrification rates in aquatic ecosystems are strongly temperature dependent, and that this is amplified by the temperature dependencies of photosynthesis and respiration. Our results illustrate the broader phenomenon that coupling of temperature dependent reactions may in some situations strongly alter overall effects of temperature on ecological processes.

  12. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  13. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Science.gov (United States)

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; Huang, Li-hua; Xiao, Yin-long; Chen, Gang; Hu, Hong-ling; Liu, Li; Zheng, Jiang-kun; Xu, Zhen-Feng; Chen, Liang-hua

    2013-01-01

    The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m) were 351.7 and 7752.8 kg ha(-1). Open field nitrogen deposition at the study site was 113.8 kg N ha(-1) yr(-1), which was one of the highest in the world. N-NH4(+), N-NO3(-) and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(-) and DON but not N-NH4(+). The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1) yr(-1), due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  14. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    Science.gov (United States)

    Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2017-01-01

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070

  15. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    Science.gov (United States)

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  16. The Nitrogen Footprint Tool for Institutions: Comparing Results for a Diverse Group of Institutions

    Science.gov (United States)

    Castner, E.; Leach, A. M.; Galloway, J. N.; Hastings, M. G.; Lantz-Trissel, J.; Leary, N.; Kimiecik, J.; de la Reguera, E.

    2015-12-01

    Anthropogenic production of reactive nitrogen (Nr) has drastically altered the nitrogen cycle over the past few decades by causing it to accumulate in the environment. A nitrogen footprint (NF) estimates the amount of Nr released to the environment as a result of an entity's activities. The Nitrogen Footprint Tool (NFT) for universities and institutions provides a standardized method for quantifying the NF for the activities and operations of these entities. The NFT translates data on energy use, food purchasing, sewage treatment, and fertilizer use to the amount of Nr lost to the environment using NOx and N2O emission factors, virtual nitrogen factors (VNFs) for food production, N reduction rates from wastewater treatment, and nitrogen uptake factors for fertilizer. As part of the Nitrogen Footprint Project supported by the EPA, seven institutions (colleges, universities, and research institutions) have completed NFT assessments: University of Virginia, University of New Hampshire, Brown University, Dickinson College, Colorado State University, Eastern Mennonite University, and the Marine Biological Laboratory. The results of these assessments reveal the magnitude of impacts on the global nitrogen cycle by different activities and sectors, and will allow these institutions to set NF reduction goals along with management decisions based on scenarios and projections in the NFT. The trends revealed in early analysis of the results include geographic differences based on regional energy sources and local sewage treatment, as well as operational differences that stem from institution type and management. As an example of the impact of management, the amount and type of food served directly impacts the food production NF, which is a large percentage of the total NF for all institutions (35-75%). Comparison of these first NF results will shed light on the primary activities of institutions that add Nr to the environment and examine the differences between them.

  17. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    King, Alison E.; Hofmockel, Kirsten S.

    2017-03-01

    Diversifying biologically simple cropping systems often entails altering other management practices, such as tillage regime or nitrogen (N) source. We hypothesized that the interaction of crop rotation, N source, and tillage in diversified cropping systems would promote microbially-mediated soil C and N cycling while attenuating inorganic N pools. We studied a cropping systems trial in its 10th year in Iowa, USA, which tested a 2-yr cropping system of corn (Zea mays L.)/soybean [Glycine max (L.) Merr.] managed with conventional fertilizer N inputs and conservation tillage, a 3-yr cropping system of corn/soybean/small grain + red clover (Trifolium pratense L.), and a 4-yr cropping system of corn/soybean/small grain + alfalfa (Medicago sativa L.)/alfalfa. Three year and 4-yr cropping systems were managed with composted manure, reduced N fertilizer inputs, and periodic moldboard ploughing. We assayed soil microbial biomass carbon (MBC) and N (MBN), soil extractable NH4 and NO3, gross proteolytic activity of native soil, and potential activity of six hydrolytic enzymes eight times during the growing season. At the 0-20cm depth, native protease activity in the 4-yr cropping system was greater than in the 2-yr cropping system by a factor of 7.9, whereas dissolved inorganic N pools did not differ between cropping systems (P = 0.292). At the 0-20cm depth, MBC and MBN the 4-yr cropping system exceeded those in the 2-yr cropping system by factors of 1.51 and 1.57. Our findings suggest that diversified crop cropping systems, even when periodically moldboard ploughed, support higher levels of microbial biomass, greater production of bioavailable N from SOM, and a deeper microbially active layer than less diverse cropping systems.

  18. The Antarctic ozone minimum - Relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle

    Science.gov (United States)

    Callis, L. B.; Natarajan, M.

    1986-01-01

    Photochemical calculations along 'diabatic trajectories' in the meridional phase are used to search for the cause of the dramatic springtime minimum in Antarctic column ozone. The results indicate that the minimum is principally due to catalytic destruction of ozone by high levels of total odd nitrogen. Calculations suggest that these levels of odd nitrogen are transported within the polar vortex and during the polar night from the middle to upper stratosphere and lower mesosphere to the lower stratosphere. The possibility that these levels are related to the 11-year solar cycle and are increased by enhanced formation in the thermosphere and mesosphere during solar maximum conditions is discussed.

  19. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    Science.gov (United States)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  20. Life cycle assessment of microalgae-based aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects.

    Science.gov (United States)

    Guo, Fang; Zhao, Jing; A, Lusi; Yang, Xiaoyi

    2016-12-01

    The aim of this work is to compare the life cycle assessments of low-N and normal culture conditions for a balance between the lipid content and specific productivity. In order to achieve the potential contribution of lipid content to the life cycle assessment, this study established relationships between lipid content (nitrogen effect) and specific productivity based on three microalgae strains including Chlorella, Isochrysis and Nannochloropsis. For microalgae-based aviation fuel, the effects of the lipid content on fossil fuel consumption and greenhouse gas (GHG) emissions are similar. The fossil fuel consumption (0.32-0.68MJ·MJ -1 MBAF) and GHG emissions (17.23-51.04gCO 2 e·MJ -1 MBAF) increase (59.70-192.22%) with the increased lipid content. The total energy input decreases (2.13-3.08MJ·MJ -1 MBAF, 14.91-27.95%) with the increased lipid content. The LCA indicators increased (0-47.10%) with the decreased nitrogen recovery efficiency (75-50%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Diazotroph-Bacterial Community Structure of Root Nodules Account for Two-Fold Differences in Plant Growth: Consequences for Global Biogeochemical Cycles

    Science.gov (United States)

    Williams, M. A.

    2016-12-01

    The bacterial communities that inhabit and function as mutualists in the nodules of soybean, a major worldwide crop, are a fundamental determinant of plant growth and global nitrogen and carbon cycles. Unfertilized soybean can derive up to 90% of its nitrogen through bacterial-driven diazotrophy. It was the goal of the research in this study to assess whether different bacterial taxa (e.g. Bradyrhizobia spp.) differ in their soybean growth supportive role, which could then feedback to alter global biogeochemical cycling. Using 16S rRNA and NifH genes, nodule bacterial communities were shown to vary across 9 different cultivars of soybean, and that the variation between cultivars were highly correlated to plant yield (97 to 188 bu/Ha) and nitrogen. The relative abundances of gene sequences associated with the closest taxonomic match (NCBI), indicated that several taxa were (r= 0.76) negatively (e.g. Bradyrhizobium sp Ec3.3) or (r= 0.84) positively (e.g. Bradyrhizobium elkanii WSM 2783) correlated with plant yield. Other non-Rhizobiaceae taxa, such as Rhodopseudomonas spp. were also prevalent and correlated with plant yield. Soybeans and other leguminous crops will become increasingly important part of world food production, soil fertility and global biogeochemical cycles with rising population and food demand. The study demonstrates the importance of plant-microbial feedbacks driving plant growth but also ramifications for global cycling of nitrogen and carbon.

  2. CARBON CYCLES, NITROGEN FIXATION AND THE LEGUME-RHIZOBIA SYMBIOSIS AS SOIL CONTAMINANT BIOTEST SYSTEM

    Directory of Open Access Journals (Sweden)

    Dietrich Werner

    2008-06-01

    Full Text Available The major pools and turnover  rates of the global carbon (C cycles are presented and compared to the human production of CO2  from the burning of fossil fuels (e.g. coal and oil and geothermal  fuels (natural  gases, both categorized as non-renewable energy resources which  in amount  reaches around  6.5 Gigatons C per year. These pools that serve as C-holding stallions  are in the atmosphere,  the land plant biomass, the organic soils carbon, the ocean carbon and the lithosphere. In another related case, the present focus in the area of nitrogen  fixation  is discussed with  data on world  production of grain  legumes  compared  to cereals production and nitrogen  fertilizer use. The focus to understand  the molecular  biology of the legume-rhizobia symbiosis as a major contributor to nitrogen  fixation  is in the areas of signal exchange between  host plants and rhizobia  in the rhizophere including  the nod factor signalling, the infection  and nodule compartmentation and the soils stress factors affecting the symbiosis. The use of the Legume-Rhizobia symbiosis as a biotest system for soil contaminants includes data for cadmium,  arsenate, atrazine,  lindane,  fluoranthene, phenantrene and acenaphthene and also results  on the mechanism,  why the symbiotic system is more sensitive  than test systems with plant growth  parameters.

  3. Reconstructing Century-Scale Changes in Nitrogen Cycling in Forests Throughout the United States using Tree-Ring δ15N Chronologies

    Science.gov (United States)

    Gerhart-Barley, L.; McLauchlan, K. K.; Battles, J. J.; Craine, J. M.; Higuera, P. E.; Mack, M. C.; McNeil, B. E.; Nelson, D. M.; Pederson, N.; Perakis, S. S.

    2016-12-01

    In recent decades, human perturbation of the global nitrogen (N) cycle has been immense with reactive nitrogen supply to ecosystems from anthropogenic sources now exceeding that of natural fixation. The impact of these perturbations on ecosystem nutrient cycling and plant communities is limited by the lack of long-term `baseline' assessments of N cycling prior to anthropogenic influences. Stable N isotope analysis (δ15N) of dendrochronological records have the potential to provide this baseline data, but to date have focused on short term, regional assessments. Here, we address this question with a data set incorporating 311 individual trees and 7,661 δ15N measurements from 50 sites throughout the contiguous United States. These sites represent the diversity of US forest types, climate conditions, N deposition, soil types, and disturbance histories. The chronologies span, on average, the last 162 calendar years, with the oldest chronology dating back to 1572 C.E. Consequently, this study is the first century- and continental-scale assessment of ecosystem N cycling using tree-ring chronologies. When aggregated, the chronologies show a consistent decline from 1825 C.E. to present, indicating declining N availability in US forests, despite global increases in N supply. Environmental factors such as mean annual precipitation (MAP), mean annual temperature (MAT), and mean annual nitrogen deposition (Ndep) did not contribute to average site δ15N values; however, MAP and MAT significantly affected temporal trajectories in tree-ring δ15N, with more negative slopes toward present occurring in regions with low MAT and high MAP. Quantity of atmospheric N deposition had no discernible impact on mean δ15N values or on the temporal slope. This lack of response is either because levels of N deposition are too low to produce a discernible response in any meaningful aspects of the N cycle, and/or the δ15N signature of depositional N is similar enough to ecosystem N pools that

  4. Effects of flood inundation and invasion by Phalaris arundinacea on nitrogen cycling in an Upper Mississippi River floodplain forest

    Science.gov (United States)

    Swanson, Whitney; DeJager, Nathan R.; Strauss, Eric A.; Thomsen, Meredith

    2017-01-01

    Although floodplains are thought to serve as important buffers against nitrogen (N) transport to aquatic systems, frequent flooding and high levels of nutrient availability also make these systems prone to invasion by exotic plant species. Invasive plants could modify the cycling and availability of nutrients within floodplains, with effects that could feedback to promote the persistence of the invasive species and impact N export to riverine and coastal areas. We examined the effect of flooding on soil properties and N cycling at a floodplain site in Pool 8 of the Upper Mississippi River with 2 plant communities: mature native forest (Acer saccharinum) and patches of an invasive grass (Phalaris arundinacea). Plots were established within each vegetation type along an elevation gradient and sampled throughout the summers of 2013 and 2014. Spatial trends in flooding resulted in higher soil organic matter, porosity, and total nitrogen and carbon in low elevations. Nutrient processes and NH4+ and NO3− availability, however, were best explained by vegetation type and time after flooding. Phalaris plots maintained higher rates of nitrification and higher concentrations of available NH4+ and NO3−. These results suggest that invasion by Phalarismay make nitrogen more readily available and could help to reinforce this species' persistence in floodplain wetlands. They also raise the possibility that Phalaris may decrease floodplain N storage capacity and influence downstream transport of N to coastal zones.

  5. Generation of Phase-Stable Sub-Cycle Mid-Infrared Pulses from Filamentation in Nitrogen

    Directory of Open Access Journals (Sweden)

    Takao Fuji

    2013-02-01

    Full Text Available Sub-single-cycle pulses in the mid-infrared (MIR region were generated through a laser-induced filament. The fundamental (ω1 and second harmonic (ω2 output of a 30-fs Ti:sapphire amplifier were focused into nitrogen gas and produce phase-stable broadband MIR pulses (ω0 by using a four-wave mixing process (ω1 + ω1 - ω2 → ω0 through filamentation. The spectrum spread from 400 cm-1 to 5500 cm-1, which completely covered the MIR region. The low frequency components were detected by using an electro-optic sampling technique with a gaseous medium. The efficiency of the MIR pulse generation was very sensitive to the delay between the fundamental and second harmonic pulses. It was revealed that the delay dependence of the efficiency came from the interference between two opposite parametric processes, ω1 + ω1 - ω2 → ω0 and ω2 - ω1 - ω1 → ω0. The pulse duration was measured as 6.9 fs with cross-correlation frequency-resolved optical gating by using four-wave mixing in nitrogen. The carrier-envelope phase of the MIR pulse was passively stabilized. The instability was estimated as 154 mrad rms in 2.5 h.

  6. Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Lee, J.; Jeong, S. [Cryogenic Engineering Laboratory, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop N{sub 2} decompression system in terms of nitrogen consumption. In this study, two closed-loop pure N{sub 2} J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are investigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled N{sub 2} J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.

  7. Leaf nitrogen assimilation and partitioning differ among subtropical forest plants in response to canopy addition of nitrogen treatments

    Science.gov (United States)

    Nan Liu; Shuhua Wu; Qinfeng Guo; Jiaxin Wang; Ce Cao; Jun Wang

    2018-01-01

    Global increases in nitrogen deposition may alter forest structure and function by interferingwith plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy...

  8. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  9. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  10. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  11. A microbial biogeochemistry network for soil carbon and nitrogen cycling and methane flux: model structure and application to Asia

    Science.gov (United States)

    Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.

    2017-12-01

    A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.

  12. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.

    Science.gov (United States)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-11-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. New, national bottom-up estimate for tree-based biological nitrogen fixation in the US

    Science.gov (United States)

    Nitrogen is a limiting nutrient in many ecosystems, but is also a chief pollutant from human activity. Quantifying human impacts on the nitrogen cycle and investigating natural ecosystem nitrogen cycling both require an understanding of the magnitude of nitrogen inputs from biolo...

  14. Efficiency of an air-cooled thermodynamic cycle

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1979-01-01

    The application of air, nitrogen, helium and the chemically reacting N 2 O 4 reversible 2NO 2 reversible 2NO + O 2 system as working agents and coolants for a low capacity nuclear power plant is investigated. The above system due to its physico-chemical and thermo-physical properties allows both a gaseous cycle and a cycle with condensation. The analysis has shown that a thermodynamic air-cooled cycle with the dissociating nitrogen tetroxide in the temperature range from 500 to 600 deg C has an advantage over cycles with air and nitrogen. To identify the chemical reaction kinetics in the thermodynamic processes, thermodynamic calculations of the gas-liquid cycle with N 2 O 4 both with simple and intermediate heat regeneration at different pressures over hot side were performed. At gas pressures lower than 12 - 15 atm, the cycle with a simple regeneration is more effective, and at pressure increase, the cycle with an intermediate regeneration is preferable

  15. The mechanism of enhanced wastewater nitrogen removal by photo-sequencing batch reactors based on comprehensive analysis of system dynamics within a cycle.

    Science.gov (United States)

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos

    2018-07-01

    To understand the mechanism of enhanced nitrogen removal by photo-sequencing batch reactors (photo-SBRs), which incorporated microalgal photosynthetic oxygenation into the aerobic phases of a conventional cycle, this study performed comprehensive analysis of one-cycle dynamics. Under a low aeration intensity (about 0.02 vvm), a photo-SBR, illuminated with light at 92.27 μ·mol·m -2 ·s -1 , could remove 99.45% COD, 99.93% NH 4 + -N, 90.39% TN, and 95.17% TP, while the control SBR could only remove 98.36% COD, 83.51% NH 4 + -N, 78.96% TN, and 97.75% TP, for a synthetic domestic sewage. The specific oxygen production rate (SOPR) of microalgae in the photo-SBR could reach 6.63 fmol O 2 ·cell -1 ·h -1 . One-cycle dynamics shows that the enhanced nitrogen removal by photo-SBRs is related to photosynthetic oxygenation, resulting in strengthened nitrification, instead of direct nutrient uptake by microalgae. A too high light or aeration intensity could deteriorate anoxic conditions and thus adversely affect the removal of TN and TP in photo-SBRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Nitrogen deposition effects on Mediterranean-type ecosystems: An ecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa-Hueso, Raul, E-mail: raul.ochoa@ccma.csic.es [Department of Plant Physiology and Ecology, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, C/Serrano 115 Dpdo., 28006 Madrid (Spain); Allen, Edith B. [Department of Botany and Plant Sciences and Center for Conservation Biology, University of California, Riverside, CA 92521 (United States); Branquinho, Cristina; Cruz, Cristina; Dias, Teresa [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biologia Ambiental, Campo Grande, Bloco C4, 1749-016 Lisboa (Portugal); Fenn, Mark E. [US Department of Agriculture (USDA) Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States); Manrique, Esteban [Department of Plant Physiology and Ecology, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Cientificas, C/Serrano 115 Dpdo., 28006 Madrid (Spain); Perez-Corona, M. Esther [Department of Ecology, Faculty of Biology, Universidad Complutense de Madrid, C/Jose Antonio Novais 2, 28040 Madrid (Spain); Sheppard, Lucy J. [Centre of Ecology and Hydrology, Bush Estate, Penicuik EH26 0QB (United Kingdom); Stock, William D. [Centre for Ecosystem Management, School of Natural Sciences, Edith Cowan University, 100 Joondalup Drive, Joondalup, Perth, WA 6027 (Australia)

    2011-10-15

    We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling. - Highlights: > N deposition impacts are understudied in Mediterranean ecosystems out of California. > Dry N deposition is dominant and N flushes are common after rainless periods. > Water availability and P fertility regulate ecosystem responses to N deposition. > Research is needed to determine critical loads for each region and vegetation type. - Nitrogen deposition threatens the Mediterranean regions of the world.

  17. Nitrogen deposition effects on Mediterranean-type ecosystems: An ecological assessment

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raul; Allen, Edith B.; Branquinho, Cristina; Cruz, Cristina; Dias, Teresa; Fenn, Mark E.; Manrique, Esteban; Perez-Corona, M. Esther; Sheppard, Lucy J.; Stock, William D.

    2011-01-01

    We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling. - Highlights: → N deposition impacts are understudied in Mediterranean ecosystems out of California. → Dry N deposition is dominant and N flushes are common after rainless periods. → Water availability and P fertility regulate ecosystem responses to N deposition. → Research is needed to determine critical loads for each region and vegetation type. - Nitrogen deposition threatens the Mediterranean regions of the world.

  18. Quantitative inhibition of soil C and N cycling by ectomycorrhizal fungi under field condition

    Science.gov (United States)

    Averill, C.; Hawkes, C.

    2014-12-01

    Ectomycorrhizal (ECM) ecosystems store more carbon than non-ectomycorrhizal ecosystems at global scale. Recent theoretical and empirical work suggests the presence of ECM fungi allows plants to compete directly with decomposers for soil nitrogen (N) via exo-enzyme synthesis. Experimental ECM exclusion often results in a release from competition of saprotrophic decomposers, allowing for increased C-degrading enzyme production, increased microbial biomass, and eventually declines in soil C stocks. Our knowledge of this phenomenon is limited, however, to the presence or absence of ECM fungi. It remains unknown if competitive repression of saprotrophic microbes and soil C cycling by ECM fungi varies with ECM abundance. This is particularly relevant to global change experiments when manipulations alter plant C allocation to ECM symbionts. To test if variation in ECM abundance alters the competitive inhibition of saprotrophic soil microbes (quantitative inhibition) we established experimental ECM exclusion treatments along an ECM abundance gradient. We dug trenches to experimentally exclude ECM fungi, allowing us to test for competitive release of soil saprotrophs from competition. To control for disturbance we placed in-growth bags both inside and outside of trenches. Consistent with the quantitative inhibition hypothesis, sites with more ECM fungi had significantly less microbial biomass per unit soil C and lower rates of N mineralization. Consistent with a release from competition, C-degrading enzyme activities were higher and gross proteolytic rates were lower per unit microbial biomass inside compared to outside trenches. We interpret this to reflect increased microbial investment in C-acquisition and decreased investment in N-acquisition in the absence of ECM fungi. Furthermore, the increase in C-degrading enzymes per unit microbial biomass was significantly greater in sites with the most abundant ECM fungi. Based on these results, ECM-saprotroph competition does

  19. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    Science.gov (United States)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  20. Nitrogen cycling in a turbid, tidal estuary

    NARCIS (Netherlands)

    Andersson, M.G.I.

    2007-01-01

    In this thesis I investigated nitrification, dissolved inorganic and organic nitrogen uptake, and the relative importance of nitrification and ammonium assimilation. I have also investigated exchange with marshes and sediments. Nitrification, oxidation of ammonium to nitrate is the first step for

  1. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    Directory of Open Access Journals (Sweden)

    Friedrich Wolfgang Gerbl

    2014-05-01

    Full Text Available Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ, a slightly radioactive thermal mineral spring with a temperature of 43.6 - 47oC near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40oC, respectively were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH42SO4 as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA, nitrite oxidoreductase subunits A and B (nxrA and nxrB, nitrate reductase (narG, nitrite reductase (nirS, nitric oxide reductases (cnorB and qnorB, nitrous oxide reductase (nosZ. Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD was not detected. However, a geological origin of NH4+ in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  2. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    Science.gov (United States)

    Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  3. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    Science.gov (United States)

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  4. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis

    International Nuclear Information System (INIS)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A.; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. - Highlights: • Meta-analysis was used to address the effects of N addition on C cycle. • N addition caused an large decease in belowground plant C pool. • N-rich and N-limited ecosystems had different responses to N addition. - N addition caused a large decrease in below-ground plant C pool.

  5. Assessing the impact of Narasin on biogeochemical N-cycling in unsaturated soil.

    Science.gov (United States)

    Devries, S. L.; Loving, M.; Logozzo, L. A.; Zhang, P.

    2016-12-01

    Agricultural soils are exposed to Narasin, an anti-coccidiodal drug, when poultry litter is applied as a nitrogen fertilizer. Though it has a relatively short half-life in soil, narasin may persist at concentrations ranging from pg·kg-1 to ng·kg-1. A recent study reported that that exposure in this range affect the composition of soil microbial communities, leading to delayed or modified rates of biogeochemical nitrogen redox reactions. The objective of this experiment was to conduct a comprehensive examination into the effects of 1-1000 ng kg-1 Narasin on the rates of nitrogen mineralization, nitrification, and denitrification as well as the associated impacts on soil N availability and N2O losses. Soils tested at 40%, 60%, and 80% WFPS showed that ultralow doses of narasin (1-1000 ng kg-1) can significantly alter one or more steps in the N cycle in ways that may impact N availability to crop plants and increase non-point source N pollution.

  6. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  7. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    Science.gov (United States)

    Elser, J.J.; Andersen, T.; Baron, Jill S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

  8. Consequences of human modification of the global nitrogen cycle.

    Science.gov (United States)

    Erisman, Jan Willem; Galloway, James N; Seitzinger, Sybil; Bleeker, Albert; Dise, Nancy B; Petrescu, A M Roxana; Leach, Allison M; de Vries, Wim

    2013-07-05

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the 'nitrogen cascade': a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many trans-boundary pollution problems.

  9. Consequences of human modification of the global nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, J.N.; Leach, A.M. [Environmental Sciences, University of Virginia, Charlottesville, VA 22904-4123 (United States); Bleeker, A. [Energy research Centre of the Netherlands, 1755 ZG, Petten (Netherlands); Erisman, J.W. [VU University, 1081 HV Amsterdam (Netherlands); Seitzinger, S. [4International Geosphere-Biosphere Programme (IGBP) Secretariat, Royal Swedish Academy of Sciences, PO Box 50005, 104 05 Stockholm (Sweden); Dise, N.B. [Department of Environmental and Geographical Sciences, Manchester Metropolitan University, John Dalton East Building, Chester Street, Manchester M15GD (United Kingdom); Petrescu, A.M.R. [European Commission, Joint Research Centre, Institute for Environment and Sustainability (IES) Air and Climate Unit, TP290 Via Enrico Fermi 2749, 21027 Ispra, Varese (Italy); De Vries, W. [Alterra Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen (Netherlands)

    2013-07-15

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the 'nitrogen cascade': a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many transboundary pollution problems.

  10. Non-Linear Nitrogen Cycling and Ecosystem Calcium Depletion Along a Temperate Forest Soil Nitrogen Gradient

    Science.gov (United States)

    Sinkhorn, E. R.; Perakis, S. S.; Compton, J. E.; Cromack, K.; Bullen, T. D.

    2007-12-01

    Understanding how N availability influences base cation stores is critical for assessing long-term ecosystem sustainability. Indices of nitrogen (N) availability and the distribution of nutrients in plant biomass, soil, and soil water were examined across ten Douglas-fir (Pseudotsuga menziesii) stands spanning a three-fold soil N gradient (0-10 cm: 0.21 - 0.69% N, 0-100 cm: 9.2 - 28.8 Mg N ha-1) in the Oregon Coast Range. This gradient is largely the consequence of historical inputs from N2-fixing red alder stands that can add 100-200 kg N ha-1 yr-1 to the ecosystem for decades. Annual net N mineralization and litterfall N return displayed non-linear relationships with soil N, increasing initially, and then decreasing as N-richness increased. In contrast, nitrate leaching from deep soils increased linearly across the soil N gradient and ranged from 0.074 to 30 kg N ha-1 yr-1. Soil exchangeable Ca, Mg, and K pools to 1 m depth were negatively related to nitrate losses across sites. Ca was the only base cation exhibiting concentration decreases in both plant and soil pools across the soil N gradient, and a greater proportion of total available ecosystem Ca was sequestered in aboveground plant biomass at high N, low Ca sites. Our work supports a hierarchical model of coupled N-Ca cycles across gradients of soil N enrichment, with microbial production of mobile nitrate anions leading to depletion of readily available Ca at the ecosystem scale, and plant sequestration promoting Ca conservation as Ca supply diminishes. The preferential storage of Ca in aboveground biomass at high N and low Ca sites, while critical for sustaining plant productivity, may also predispose forests to Ca depletion in areas managed for intensive biomass removal. Long-term N enrichment of temperate forest soils appears capable of sustaining an open N cycle and key symptoms of N-saturation for multiple decades after the cessation of elevated N inputs.

  11. [Nitrogen cycling in rice-duck mutual ecosystem during double cropping rice growth season].

    Science.gov (United States)

    Zhang, Fan; Chen, Yuan-Quan; Sui, Peng; Gao, Wang-Sheng

    2012-01-01

    Raising duck in paddy rice field is an evolution of Chinese traditional agriculture. In May-October 2010, a field experiment was conducted in a double cropping rice region of Hunan Province, South-central China to study the nitrogen (N) cycling in rice-duck mutual ecosystem during early rice and late rice growth periods, taking a conventional paddy rice field as the control. Input-output analysis method was adopted. The N output in the early rice-duck mutual ecosystem was 239.5 kg x hm(-2), in which, 12.77 kg x hm(-2) were from ducks, and the N output in the late rice-duck mutual ecosystem was 338.7 kg x hm(-2), in which, 23.35 kg x hm(-2) were from ducks. At the present N input level, there existed soil N deficit during the growth seasons of both early rice and late rice. The N input from duck sub-system was mainly from the feed N, and the cycling rate of the duck feces N recycled within the system was 2.5% during early rice growth season and 3.5% during late rice growth season. After late rice harvested, the soil N sequestration was 178.6 kg x hm(-2).

  12. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Science.gov (United States)

    Brookshire, E N Jack; Thomas, Steven A

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  13. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Directory of Open Access Journals (Sweden)

    E N Jack Brookshire

    Full Text Available Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N. In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy; the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  14. Life-Cycle Cost and Environmental Assessment of Decentralized Nitrogen Recovery Using Ion Exchange from Source-Separated Urine through Spatial Modeling.

    Science.gov (United States)

    Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L

    2017-11-07

    Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.

  15. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    Science.gov (United States)

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  16. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  17. [Nitrogen input altered testate amoebae community in peatland of Sanjiang Plain, Northeast China].

    Science.gov (United States)

    Song, Li-hong; Yan, Xiu-min; Wang, Ke-hong; Zhu, Xiao-yan; Wu, Dong-hu

    2015-02-01

    In the present study, an in situ control experiment was carried out to explore the response of testate amoebae to exogenous nitrogen addition in peatland of Sanjiang Plain. The results showed that nitrogen addition increased the biomass of testate amoebae at lower levels (6 g N · m(-2)), while decreased it at higher levels (> 12 g N · m(-2)). At genus level, nitrogen addition significantly increased the biomass of Arcella and Phryganella, decreased the biomass of Euglypha. Only lower nitrogen addition significantly increased the biomass of Centropyxis. At species level, nitrogen addition significantly decreased the biomass of Euglypha rotunda, while the biomass of either Centropyxis cassis or Phryganella acropodia was increased by a lower nitrogen addition treatment. This study suggested that the response of peatland testate amoebae to nitrogen addition was species specific, which could potentially be used as an indicator for the environment of peatlands.

  18. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  19. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    NARCIS (Netherlands)

    Santos, Henrique F.; Carmo, Flavia L.; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B.; Rosado, Alexandre S.; van Elsas, Jan Dirk; Peixoto, Raquel S.

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study

  20. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Science.gov (United States)

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  1. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  2. Marine microbiology. Final report. [Role of marine bacteria in the nitrogen cycle in oceans

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S.W.

    1977-01-01

    Progress is reported on microbial investigations in the marine environment with emphasis on the role of bacteria in the nitrogen cycle, specifically concentrating on the organisms responsible for microbiological oxidation of ammonia to nitrite and nitrite to nitrate. The distribution rates of in situ reactions, fine structure and biochemical properties of these organisms were detailed. Rates of urea, acetate, and glucose decomposition in both inshore and offshore waters were determined using labelled compounds and the significance of these degradations in the hydrosphere was examined. A new test for the determination of bacterial biomass was developed and using this test in conjunction with more standard techniques it was demonstrated that bacteria comprised up to 50 percent of the total biomass in the oceans.

  3. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles.

    Science.gov (United States)

    Otero, Xosé Luis; De La Peña-Lastra, Saul; Pérez-Alberti, Augusto; Ferreira, Tiago Osorio; Huerta-Diaz, Miguel Angel

    2018-01-23

    Seabirds drastically transform the environmental conditions of the sites where they establish their breeding colonies via soil, sediment, and water eutrophication (hereafter termed ornitheutrophication). Here, we report worldwide amounts of total nitrogen (N) and total phosphorus (P) excreted by seabirds using an inventory of global seabird populations applied to a bioenergetics model. We estimate these fluxes to be 591 Gg N y -1 and 99 Gg P y -1 , respectively, with the Antarctic and Southern coasts receiving the highest N and P inputs. We show that these inputs are of similar magnitude to others considered in global N and P cycles, with concentrations per unit of surface area in seabird colonies among the highest measured on the Earth's surface. Finally, an important fraction of the total excreted N (72.5 Gg y -1 ) and P (21.8 Gg y -1 ) can be readily solubilized, increasing their short-term bioavailability in continental and coastal waters located near the seabird colonies.

  4. Nitrogen-doped porous “green carbon” derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jiangying, E-mail: qujy@lnnu.edu.cn [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Carbon Research Laboratory, Center for Nano Materials and Science, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, 116024 (China); Lv, Siyuan; Peng, Xiyue; Tian, Shuo; Wang, Jia [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Gao, Feng, E-mail: fenggao2003@163.com [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029 (China); Carbon Research Laboratory, Center for Nano Materials and Science, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian, 116024 (China)

    2016-06-25

    Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. The strategy in this work is highlighted to selective removal of intrinsic CaCO{sub 3} in shrimp shell followed by KOH activation to tune the pore sizes of the obtained carbons. On the basis of the different porous structures, the discharge capacity of the obtained carbons as Li–S cathodes follows the order of micro-mesoporous carbon>mesoporous carbon>microporous carbon. The high capacity of the micro-mesoporous carbon is attributed to its positive characters such as the coexistence of micro-mesoporous structure, the large pore volume and the high specific surface area. Furthermore, well-dispersed nitrogen in the porous carbons is naturally doped and inherited from shrimp shell, and can help to enhance cycle stability when used as cathodes. As a result, all carbon cathodes exhibit the good cycle stability (>78%) due to their nitrogen doping induced chemical adsorption of sulfur on the surface areas of the porous carbons. Among them, mesoporous carbon cathode shows the best cycle stability with 90% retention within 100 cycles, which is mainly attributed to the synergistic effects of its both large pore size (5.12 nm) and high nitrogen content (6.67 wt %). - Highlights: • Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. • Intrinsic CaCO{sub 3} in shrimp shell as the natural template plays an important role on tailoring of the pore sizes of the porous carbons. • Nitrogen containing polysaccharide in shrimp shell benefits to produce nitrogen-rich carbons. • The effects of pore sizes on the electrochemical performance are investigated in detail. • The carbon-sulfur cathodes exhibit the good cycle stability because of nitrogen doping induced chemical adsorption of sulfur.

  5. Nitrogen-doped porous “green carbon” derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery

    International Nuclear Information System (INIS)

    Qu, Jiangying; Lv, Siyuan; Peng, Xiyue; Tian, Shuo; Wang, Jia; Gao, Feng

    2016-01-01

    Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. The strategy in this work is highlighted to selective removal of intrinsic CaCO_3 in shrimp shell followed by KOH activation to tune the pore sizes of the obtained carbons. On the basis of the different porous structures, the discharge capacity of the obtained carbons as Li–S cathodes follows the order of micro-mesoporous carbon>mesoporous carbon>microporous carbon. The high capacity of the micro-mesoporous carbon is attributed to its positive characters such as the coexistence of micro-mesoporous structure, the large pore volume and the high specific surface area. Furthermore, well-dispersed nitrogen in the porous carbons is naturally doped and inherited from shrimp shell, and can help to enhance cycle stability when used as cathodes. As a result, all carbon cathodes exhibit the good cycle stability (>78%) due to their nitrogen doping induced chemical adsorption of sulfur on the surface areas of the porous carbons. Among them, mesoporous carbon cathode shows the best cycle stability with 90% retention within 100 cycles, which is mainly attributed to the synergistic effects of its both large pore size (5.12 nm) and high nitrogen content (6.67 wt %). - Highlights: • Nitrogen-rich porous “green carbons” derived from abundant shrimp shell shows good performance for Li–S batteries. • Intrinsic CaCO_3 in shrimp shell as the natural template plays an important role on tailoring of the pore sizes of the porous carbons. • Nitrogen containing polysaccharide in shrimp shell benefits to produce nitrogen-rich carbons. • The effects of pore sizes on the electrochemical performance are investigated in detail. • The carbon-sulfur cathodes exhibit the good cycle stability because of nitrogen doping induced chemical adsorption of sulfur.

  6. Soil respiration, microbial biomass and exoenzyme activity in switchgrass stands under nitrogen fertilization management and climate warming.

    Science.gov (United States)

    Jian, S.; Li, J.; de Koff, J.; Celada, S.; Mayes, M. A.; Wang, G.; Guo, C.

    2016-12-01

    Switchgrass (Panicum virgatum L.), as a model bioenergy crop, received nitrogen fertilizers for increasing its biomass yields. Studies rarely investigate the interactive effects of nitrogen fertilization and climate warming on soil microbial activity and carbon cycling in switchgrass cropping systems. Enhanced nitrogen availability under fertilization can alter rates of soil organic matter decomposition and soil carbon emissions to the atmosphere and thus have an effect on climate change. Here, we assess soil CO2 emission, microbial biomass and exoenzyme activities in two switchgrass stands with no fertilizer and 60 lbs N / acre. Soils were incubated at 15 ºC and 20 ºC for 180-day. Dry switchgrass plant materials were added to incubation jars and the 13C stable isotopic probing technique was used to monitor soil CO2 respiration derived from relatively labile litter and indigenous soil. Measurements of respiration, δ13C of respiration, microbial biomass carbon and exoenzyme activity were performed on days 1, 5, 10, 15, 30, 60, 90, 120, 150 and 180. Soil respiration rate was greater in the samples incubated at 20 ºC as compared to those incubated at 15 ºC. Exoenzyme activities were significantly altered by warming, litter addition and nitrogen fertilization. There was a significant interactive effect of nitrogen fertilization and warming on the proportion of CO2 respired from soils such that nitrogen fertilization enhanced warming-induced increase by 12.0% (Pmineralization. Fertilization increased soil microbial biomass carbon at both temperatures (9.0% at 15 ºC and 14.5% at 20 ºC). Our preliminary analysis suggested that warming effects on enhanced soil respiration can be further increased with elevated fertilizer input via greater microbial biomass and exoenzyme activity. In addition to greater biomass yield under N fertilization, this study informs potential soil carbon loss from stimulated soil respiration under nitrogen fertilization and warming in

  7. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    Science.gov (United States)

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  8. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    Science.gov (United States)

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  9. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    Science.gov (United States)

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  10. Effects of sediment dredging on nitrogen cycling in Lake Taihu, China: Insight from mass balance based on a 2-year field study.

    Science.gov (United States)

    Yu, Juhua; Fan, Chengxin; Zhong, Jicheng; Zhang, Lu; Zhang, Lei; Wang, Changhui; Yao, Xiaolong

    2016-02-01

    Sediment dredging can permanently remove pollutants from an aquatic ecosystem, which is considered an effective approach to aquatic ecosystem restoration. In this work, a 2-year field simulation test was carried out to investigate the effect of dredging on nitrogen cycling across the sediment-water interface (SWI) in Lake Taihu, China. The results showed that simulated dredging applied to an area rich in total organic carbon (TOC) and total nitrogen (TN) slightly reduced the NH4(+)-N release from sediments while temporarily enhanced the NH4(+)-N release in an area with lower TOC and/or TN (in the first 180 days), although the application had a limited effect on the fluxes of NO2(-)-N and NO3(-)-N in both areas. Further analysis indicated that dredging induced decreases in nitrification, denitrification, and anaerobic ammonium oxidation (anammox) in sediments, notably by 76.9, 49.0, and 89.9%, respectively, in the TOC and/or TN-rich area. Therefore, dredging slowed down nitrogen cycling rates in sediments but did not increase N loading to overlying water. The main reason for the above phenomenon could be attributed to the removal of the surface sediments enriched with more TOC and/or TN (compared with the bottom sediments). Overall, to minimize internal N pollution, dredging may be more applicable to nutrient-rich sediments.

  11. Soil organic matter and nitrogen cycling in response to harvesting, mechanical site preparation, and fertilization in a wetland with a mineral substrate

    Science.gov (United States)

    James W. McLaughlin; Margaret R. Gale; Martin F. Jurgensen; Carl C. Trettin

    2000-01-01

    Forested wetlands are becoming an important timber resource in the Upper Great Lakes Region of the US. However, there is limited information on soil nutrient cycling responses to harvesting and post-harvest manipulations (site preparation and fertilization). The objective of this study was to examine cellulose decomposition, nitrogen mineralization, and soil solution...

  12. Contrasting features of urea cycle disorders in human patients and knockout mouse models.

    Science.gov (United States)

    Deignan, Joshua L; Cederbaum, Stephen D; Grody, Wayne W

    2008-01-01

    The urea cycle exists for the removal of excess nitrogen from the body. Six separate enzymes comprise the urea cycle, and a deficiency in any one of them causes a urea cycle disorder (UCD) in humans. Arginase is the only urea cycle enzyme with an alternate isoform, though no known human disorder currently exists due to a deficiency in the second isoform. While all of the UCDs usually present with hyperammonemia in the first few days to months of life, most disorders are distinguished by a characteristic profile of plasma amino acid alterations that can be utilized for diagnosis. While enzyme assay is possible, an analysis of the underlying mutation is preferable for an accurate diagnosis. Mouse models for each of the urea cycle disorders exist (with the exception of NAGS deficiency), and for almost all of them, their clinical and biochemical phenotypes rather closely resemble the phenotypes seen in human patients. Consequently, all of the current mouse models are highly useful for future research into novel pharmacological and dietary treatments and gene therapy protocols for the management of urea cycle disorders.

  13. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms.

    Science.gov (United States)

    Meyer, Kyle M; Klein, Ann M; Rodrigues, Jorge L M; Nüsslein, Klaus; Tringe, Susannah G; Mirza, Babur S; Tiedje, James M; Bohannan, Brendan J M

    2017-03-01

    Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils. © 2017 John Wiley & Sons Ltd.

  14. Experimental nitrogen dioxide poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Cutlip, R C

    1966-01-01

    Experimental nitrogen dioxide inhalation has been reported to produce signs and lesions typical of field cases of bovine pulmonary adenomatosis (BPA) as described by Monlux et al, and Seaton. Similar lesions have been produced in mice and guinea pigs. These studies were conducted because of the similarities between silo-filler's disease of man, caused by nitrogen dioxide, and BPA. Since previous studies involved inadequate numbers of cattle, a more critical evaluation of the effects of nitrogen dioxide was needed. This project was designed to study the clinical and pathologic alterations induced in cattle by repeated exposure to nitrogen dioxide gas.

  15. Geochemical behaviour of uranium in the cycle of alteration; Comportement geochimique de l'uranium dans le cycle d'alteration

    Energy Technology Data Exchange (ETDEWEB)

    Chervet, J; Coulomb, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Soudan, P [Centre d' Etude de Lalumine, Compagnie Pechiney (France)

    1958-07-01

    The investigation of the genesis of secondary mineralized accumulations, and the prospecting of deposits from microchemical anomalies in the surface material, is requiring a well-developed knowledge of the geochemical properties of the uranium during the alteration phase. In the present work, the authors tried to track the uranium history during a part of his natural creeping. a) They describe some most typical mineralogical observations of alteration phenomena and material migration, picked up in place on the deposits. b) They give experimental results concerning the solubilities of the uranium minerals and the factors affecting this solubility. c) They study the water circulation in granitic batholites, and the influence of the occurrence of the uranium deposits on their composition. d) They observe the amplitude of phenomena restricting the dispersions: fixations, precipitations, etc., and the behaviour of growth in uraniferous areas. e) Finally, the opposition chemical alteration-radioactive equilibrium results in an important imbalance in altered materials. The authors tried to use the measurement of this imbalance to explain geochemical processes. (author) [French] L'etude des conditions de genese des accumulations minerales secondaires, ainsi que la prospection des gisements a partir d'anomalies microchimiques dans les materiaux de surface, necessite une connaissance approfondie des proprietes geochimiques fondamentales de l'uranium dans la phase d'alteration. Nous essayons, dans ce travail, de suivre l'histoire de l'uranium dans une partie de son cheminement naturel. a) Nous decrivons quelques observations mineralogiques particulierement typiques de phenomenes d'alteration et de migration de matiere, prises 'in situ' dans les gisements. b) Nous donnons les resultats d'experiences de laboratoire sur les solubilites de mineraux d'uranium et sur les facteurs influen nt cette solubilite. c) Nous etudions les circulations d'eaux sur les massifs granitiques et

  16. The global nitrogen cycle in the twenty-first century.

    Science.gov (United States)

    Fowler, David; Coyle, Mhairi; Skiba, Ute; Sutton, Mark A; Cape, J Neil; Reis, Stefan; Sheppard, Lucy J; Jenkins, Alan; Grizzetti, Bruna; Galloway, James N; Vitousek, Peter; Leach, Allison; Bouwman, Alexander F; Butterbach-Bahl, Klaus; Dentener, Frank; Stevenson, David; Amann, Marcus; Voss, Maren

    2013-07-05

    Global nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr(-1)) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3(-)) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere. Emissions, mainly of ammonia (NH3) from land together with combustion related emissions of nitrogen oxides (NOx), contribute 100 Tg N yr(-1) to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH4NO3) and ammonium sulfate (NH4)2SO4. Leaching and riverine transport of NO3 contribute 40-70 Tg N yr(-1) to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr(-1)) to double the ocean processing of Nr. Some of the marine Nr is buried in sediments, the remainder being denitrified back to the atmosphere as N2 or N2O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of Nr in the atmosphere, with the exception of N2O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 10(2)-10(3) years), the lifetime is a few decades. In the ocean, the lifetime of Nr is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N2O that will respond very slowly to control measures on the sources of Nr from which it is produced.

  17. N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios

    Directory of Open Access Journals (Sweden)

    H. Lotze-Campen

    2012-10-01

    Full Text Available Reactive nitrogen (Nr is not only an important nutrient for plant growth, thereby safeguarding human alimentation, but it also heavily disturbs natural systems. To mitigate air, land, aquatic, and atmospheric pollution caused by the excessive availability of Nr, it is crucial to understand the long-term development of the global agricultural Nr cycle. For our analysis, we combine a material flow model with a land-use optimization model. In a first step we estimate the state of the Nr cycle in 1995. In a second step we create four scenarios for the 21st century in line with the SRES storylines. Our results indicate that in 1995 only half of the Nr applied to croplands was incorporated into plant biomass. Moreover, less than 10 per cent of all Nr in cropland plant biomass and grazed pasture was consumed by humans. In our scenarios a strong surge of the Nr cycle occurs in the first half of the 21st century, even in the environmentally oriented scenarios. Nitrous oxide (N2O emissions rise from 3 Tg N2O-N in 1995 to 7–9 in 2045 and 5–12 Tg in 2095. Reinforced Nr pollution mitigation efforts are therefore required.

  18. Physical Factors Correlate to Microbial Community Structure and Nitrogen Cycling Gene Abundance in a Nitrate Fed Eutrophic Lagoon.

    Science.gov (United States)

    Highton, Matthew P; Roosa, Stéphanie; Crawshaw, Josie; Schallenberg, Marc; Morales, Sergio E

    2016-01-01

    Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH , nirS , nosZI , and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

  19. Physical factors correlate to microbial community structure and nitrogen cycling gene abundance in a nitrate fed eutrophic lagoon

    Directory of Open Access Journals (Sweden)

    Matthew Paul Highton

    2016-10-01

    Full Text Available Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN and phosphorous gradient (DRP. Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH, nirS, nosZI and nosZII using qPCR, potential activity (via denitrification enzyme activity, as well as using changes in total community (via 16S rRNA gene amplicon sequencing. Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance and functional level (proportion of the microbial community carrying nifH and nosZI genes were most strongly associated with physical gradients (e.g. lake depth, sediment grain size, sediment porosity and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

  20. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  1. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  2. Carbon-nitrogen interactions in forest ecosystems

    DEFF Research Database (Denmark)

    Gundersen, Per; Berg, Bjørn; Currie, W.S.

    This report is a summary of the main results from the EU project “Carbon – Nitrogen Interactions in Forest Ecosystems” (CNTER). Since carbon (C) and nitrogen (N) are bound together in organic matter we studied both the effect of N deposition on C cycling in forest ecosystems, and the effect of C ...

  3. The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales

    OpenAIRE

    Billen, Gilles; Garnier, Josette; Lassaletta, Luis

    2013-01-01

    The nitrogen cycle of pre-industrial ecosystems has long been remarkably closed, in spite of the high mobility of this element in the atmosphere and hydrosphere. Inter-regional and international commercial exchanges of agricultural goods, which considerably increased after the generalization of the use of synthetic nitrogen fertilizers, introduced an additional type of nitrogen mobility, which nowadays rivals the atmospheric and hydrological fluxes in intensity, and causes their enhancement a...

  4. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    Science.gov (United States)

    Dannenmann, Michael; Bimüller, Carolin; Gschwendtner, Silvia; Leberecht, Martin; Tejedor, Javier; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz

    2016-01-01

    European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here

  5. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    Directory of Open Access Journals (Sweden)

    Michael Dannenmann

    Full Text Available European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this

  6. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  7. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  8. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    Science.gov (United States)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected

  9. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  10. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Science.gov (United States)

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  11. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  12. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.

    Science.gov (United States)

    Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B

    2012-01-01

    Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

  13. Phosphorylation states of cell cycle and DNA repair proteins can be altered by the nsSNPs

    International Nuclear Information System (INIS)

    Savas, Sevtap; Ozcelik, Hilmi

    2005-01-01

    Phosphorylation is a reversible post-translational modification that affects the intrinsic properties of proteins, such as structure and function. Non-synonymous single nucleotide polymorphisms (nsSNPs) result in the substitution of the encoded amino acids and thus are likely to alter the phosphorylation motifs in the proteins. In this study, we used the web-based NetPhos tool to predict candidate nsSNPs that either introduce or remove putative phosphorylation sites in proteins that act in DNA repair and cell cycle pathways. Our results demonstrated that a total of 15 nsSNPs (16.9%) were likely to alter the putative phosphorylation patterns of 14 proteins. Three of these SNPs (CDKN1A-S31R, OGG1-S326C, and XRCC3-T241M) have already found to be associated with altered cancer risk. We believe that this set of nsSNPs constitutes an excellent resource for further molecular and genetic analyses. The novel systematic approach used in this study will accelerate the understanding of how naturally occurring human SNPs may alter protein function through the modification of phosphorylation mechanisms and contribute to disease susceptibility

  14. Sediment nitrogen cycling rates and microbial abundance along a submerged vegetation gradient in a eutrophic lake.

    Science.gov (United States)

    Yao, Lu; Chen, Chengrong; Liu, Guihua; Liu, Wenzhi

    2018-03-01

    Decline of submerged vegetation is one of the most serious ecological problems in eutrophic lakes worldwide. Although restoration of submerged vegetation is widely assumed to enhance ecological functions (e.g., nitrogen removal) and aquatic biodiversity, the evidence for this assumption is very limited. Here, we investigated the spatio-temporal patterns of sediment potential nitrification, unamended denitrification and N 2 O production rates along a vegetation gradient in the Lake Honghu, where submerged vegetation was largely restored by prohibiting net-pen aquaculture. We also used five functional genes as markers to quantify the abundance of sediment nitrifying and denitrifying microorganisms. Results showed that unvegetated sediments supported greater nitrification rates than rhizosphere sediments of perennial or seasonal vegetation. However, the absence of submerged vegetation had no significant effect on denitrification and N 2 O production rates. Additionally, the abundance of functional microorganisms in sediments was not significantly different among vegetation types. Season had a strong effect on both nitrogen cycling processes and microbial abundances. The highest nitrification rates were observed in September, while the highest denitrification rates occurred in December. The temporal variation of sediment nitrification, denitrification and N 2 O production rates could be due to changes in water quality and sediment properties rather than submerged vegetation and microbial abundances. Our findings highlight that vegetation restoration in eutrophic lakes improves water quality but does not enhance sediment nitrogen removal rates and microbial abundances. Therefore, for reducing the N level in eutrophic lakes, major efforts should be made to control nutrients export from terrestrial ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. EFFECT OF BLUE GREEN ALGAE ON SOIL NITROGEN

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... associated with soil dessication at the end of the cultivation cycle and algal growth ... blue-green algae (BGA) on soil nitrogen was carried out from June to December 2005. .... Nitrogen fixation by free living Micro-organisms.

  16. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    Science.gov (United States)

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  17. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M

    2018-01-01

    Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.

  18. Options for including nitrogen management in climate policy

    International Nuclear Information System (INIS)

    Erisman, J.W.

    2010-12-01

    The outline of the presentation is as follows: Climate change and nitrogen; Nitrogen and climate interlinkages; Options for nitrogen management; Report, workshop and IPCC; and Conclusions. The concluding remarks are: Fertilizing the biosphere with reactive nitrogen compounds lead to ecosystem, health, water and climate impacts; Nitrogen deposition can lead to additional carbon sequestration and to impacts on biodiversity and ecosystem services; Nitrogen addition to the biosphere might have a net cooling effect of 1 W/m 2 ; Life Cycle Analysis is needed to show the full impact; and Nitrogen management is essential for the environment and can have a positive effect on the net GHG exchange.

  19. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  20. Altered Nitrogenous Pools Induced by the Azolla-Anabaena Azolla Symbiosis

    Science.gov (United States)

    Newton, Jack W.; Cavins, James F.

    1976-01-01

    The free amino acid and ammonia pools of Azolla caroliniana were analyzed by quantitative column chromatography on columns capable of separating all of the nitrogenous constituents normally found in physiological fluids. Comparisons were made of plants containing symbiotic algae and grown on nitrogen-free media, plants grown on media containing nitrate, and algae-free plants also grown on nitrate media. The major feature of the data was a very high level of intracellular ammonia found in plants which contain N2-fixing algal symbionts. In addition to the more usual amino acids, serine and cystathionine were found in the free amino acid pool. PMID:16659770

  1. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  2. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    Science.gov (United States)

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  3. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment

    Science.gov (United States)

    Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana

    2015-05-01

    Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (warming and negative drying effects on the soil N cycle may counterbalance each other.

  4. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    Science.gov (United States)

    Joseph M. Craine; Andrew J. Elmore; Marcos P. M. Aidar; Mercedes Bustamante; Todd E. Dawson; Erik A. Hobbie; Ansgar Kahmen; Michelle C. Mack; Kendra K. McLauchlan; Anders Michelsen; Gabriela Nardoto; Linda H. Pardo; Josep Penuelas; Peter B. Reich; Edward A.G. Schuur; William D. Stock; Pamela H. Templer; Ross A. Virginia; Jeffrey M. Welker; Ian J. Wright

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios, foliar N concentrations, mycorrhizal type and climate for over 11 000 plants worldwide. Global-scale comparisons of other components of the N cycle...

  5. Parametric analysis of blade configurations for a small-scale nitrogen axial expander with hybrid open-Rankine cycle

    International Nuclear Information System (INIS)

    Khalil, Khalil M.; Mahmoud, S.; Al- Dadah, R.K.; AL-Mousawi, Fadhel

    2017-01-01

    Highlights: • Develop cryogenic energy storage and efficient recovery technologies. • Integrate small scale closed and cryogenic open-Rankine cycles. • Investigate blade configuration on small-scale axial expander performance. • Use mean line and 3D CFD simulation for expander robust design procedure. • Predict effects of expander efficiency on hybrid open-Rankine cycle efficiency. - Abstract: During the last few decades, low-grade energy sources such as solar energy and wind energy have enhanced the efficiency of the advanced renewable technologies such as the combined Rankine. Furthermore, these heat sources have contributed to a reduction in CO2 emissions. To address the problem of the intermittent nature of such renewable sources, energy storage technologies have been used to balance the power demand and smooth out energy production. In this study, the direct expansion cycle (open Rankine cycle) is combined with a closed loop Rankine cycle to generate power more efficiently and address the problem of discontinuous renewable sources. The topping cycle of this system is a closed looped Rankine cycle and propane is used as a hydrocarbon fluid, while the direct expansion cycle is considered to be the bottoming cycle utilizing nitrogen as cryogen fluid. Small-scale expanders are the most important parts in many thermal power cycles, such as the Rankine cycle, due to the significant impact on the overall cycle’s efficiency. This work investigated the effect of using a number of blade configurations on the cycle’s performance using a small-scale axial expander. A three-dimensional Computational Fluid Dynamic (CFD) simulation was used to examine four proposed blade configurations (lean, sweep, twist, bowl) with three hub- tip ratios (0.83, 0.75, 0.66). In addition, a numerical simulation model of the hybrid open expansion- Rankine cycle was designed and modeled in order to estimate the cycle’s performance. The results show that when the expander

  6. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  7. Efficient assimilation of cyanobacterial nitrogen by water hyacinth.

    Science.gov (United States)

    Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin

    2017-10-01

    A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage

    Science.gov (United States)

    Tian, Lei-Lei; Wei, Xian-Yong; Zhuang, Quan-Chao; Jiang, Chen-Hui; Wu, Chao; Ma, Guang-Yao; Zhao, Xing; Zong, Zhi-Min; Sun, Shi-Gang

    2014-05-01

    A facile bottom-up strategy was developed to fabricate nitrogen-doped graphene sheets (NGSs) from glucose using a sacrificial template synthesis method. Three main types of nitrogen dopants (pyridinic, pyrrolic and graphitic nitrogens) were introduced into the graphene lattice, and an inimitable microporous structure of NGS with a high specific surface area of 504 m2 g-1 was obtained. Particularly, with hybrid features of lithium ion batteries and Faradic capacitors at a low rate and features of Faradic capacitors at a high rate, the NGS presents a superior lithium storage performance. During electrochemical cycling, the NGS electrode afforded an enhanced reversible capacity of 832.4 mA h g-1 at 100 mA g-1 and an excellent cycling stability of 750.7 mA h g-1 after 108 discharge-charge cycles. Furthermore, an astonishing rate capability of 333 mA h g-1 at 10 000 mA g-1 and a high rate cycle performance of 280.6 mA h g-1 even after 1200 cycles were also achieved, highlighting the significance of nitrogen doping on the maximum utilization of graphene-based materials for advanced lithium storage.

  9. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage.

    Science.gov (United States)

    Tian, Lei-Lei; Wei, Xian-Yong; Zhuang, Quan-Chao; Jiang, Chen-Hui; Wu, Chao; Ma, Guang-Yao; Zhao, Xing; Zong, Zhi-Min; Sun, Shi-Gang

    2014-06-07

    A facile bottom-up strategy was developed to fabricate nitrogen-doped graphene sheets (NGSs) from glucose using a sacrificial template synthesis method. Three main types of nitrogen dopants (pyridinic, pyrrolic and graphitic nitrogens) were introduced into the graphene lattice, and an inimitable microporous structure of NGS with a high specific surface area of 504 m(2) g(-1) was obtained. Particularly, with hybrid features of lithium ion batteries and Faradic capacitors at a low rate and features of Faradic capacitors at a high rate, the NGS presents a superior lithium storage performance. During electrochemical cycling, the NGS electrode afforded an enhanced reversible capacity of 832.4 mA h g(-1) at 100 mA g(-1) and an excellent cycling stability of 750.7 mA h g(-1) after 108 discharge-charge cycles. Furthermore, an astonishing rate capability of 333 mA h g(-1) at 10,000 mA g(-1) and a high rate cycle performance of 280.6 mA h g(-1) even after 1200 cycles were also achieved, highlighting the significance of nitrogen doping on the maximum utilization of graphene-based materials for advanced lithium storage.

  10. 15N natural abundance in warm-core rings of the Gulf Stream: studies of the upper-ocean nitrogen cycle

    International Nuclear Information System (INIS)

    Altabet, M.A.

    1984-01-01

    An extensive study of 15 N natural abundance in particulate organic nitrogen (PON) from warm-core rings of the Gulf Stream was carried out to test its use as an in situ tracer of the marine nitrogen cycle. Ring 82-B exhibited large temporal changes in the delta 15 N of PON. It was found that delta 15 N values for euphotic zone PON were low in April before stratification and higher in June after stratification had occurred. Below 400 meters, in the permanent thermocline, the change was opposite going from very high values to ones similar to those at the surface. Examination of vertical profiles for delta 15 N in the upper 200 meters demonstrated that in stratified waters a delta 15 N minimum for PON occurs with both the top of the nitracline and a maximum in PON concentration. Often a minimum in C/N ratio also occurs at the depth of the delta 15 N minimum. A mathematical model of nitrogen flux into and out of the euphotic zone and associated isotopic fractionation qualitatively reproduced the observed patterns for the delta 15 N of PON, PON concentration and NO 3 - concentration. Levels of PON increased as a result of either increasing NO 3 - flux into the euphotic zone or increasing the residence time of PON in the euphotic zone. These results lend general support to current views regarding the nature and significance of the vertical fluxes of nitrogen in the upper-ocean and the hypotheses presented concerning the factors which control the delta 15 N of PON

  11. Nitrogen from mountain to fjord - Annual report 1993; Nitrogen fra fjell til fjord. Aarsrapport 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kaste, Oe; Bechmann, M; Toerset, K

    1994-07-01

    ``Nitrogen from mountain to fjord`` is an interdisciplinary research programme which studies the nitrogen cycle from deposition to discharge into the sea. The project includes investigation of the nitrogen budgets for two catchments and selected areas of mountain, heath, forest, crop land and fresh water. The main purpose of the project is to increase the knowledge of uptake and runoff of nitrogen and thus to improve the prediction of future effects on soil, forest, fresh water and fjords. The activities are concentrated about two water courses in Norway: Bjerkreimsvassdraget and Aulivassdraget. In Bjerkreimsvassdraget the nitrate concentration changed only little from 1992 to 1993. Relatively large variations in the nitrate concentrations were found in the forest and heath areas of the system. In Aulivassdraget the nitrogen concentration has changed considerably in 1992 and 1993. The maximum concentration measured in the main river was 13.2 mg N/l. In autumn 1992 and spring 1993 much nitrogen remained in the soil after the poor harvest of 1992 and at that time much nitrogen was carried away by the runoff. 16 refs., 19 figs., 16 tabs.

  12. Emissions of carbon, nitrogen, and sulfur from biomass burning in Nigeria

    International Nuclear Information System (INIS)

    Akeredolu, F.; Isichei, A.O.

    1991-01-01

    The atmospheric implications of the effects of burning of vegetation in Nigeria are discussed. The following topics are explored: the extent of biomass burning by geographical area; estimates of emission rates of carbon, nitrogen and sulfur; and the impact on biogeochemical cycling of elements. The results suggest that biomass burning generates a measurable impact on the cycling of carbon and nitrogen

  13. Cyanobacteria in CELSS: Growth strategies for nutritional variation and nitrogen cycling

    Science.gov (United States)

    Fry, I. V.; Packer, L.

    1990-01-01

    Cyanobacteria (blue-green algae) are versatile organisms which are capable of adjusting their cellular levels of carbohydrate, protein, and lipid in response to changes in the environment. Under stress conditions there is an imbalance between nitrogen metabolism and carbohydrate/lipid synthesis. The lesion in nitrogen assimilation is at the level of transport: the stress condition diverts energy from the active accumulation of nitrate to the extrusion of salt, and probably inhibits a cold-labile ATP'ace in the case of cold shock. Both situations affect the bioenergetic status of the cell such that the nitrogenous precursors for protein synthesis are depleted. Dispite the inhibition of protein synthesis and growth, photosynthetic reductant generation is relatively unaffected. The high O2 reductant would normally lead to photo-oxidative damage of cellular components; however, the organism copes by channeling the 'excess' reductant into carbon storage products. The increase in glycogen (28 to 35 percent dry weight increase) and the elongation of lipid fatty acid side chains (2 to 5 percent dry weight increase) at the expense of protein synthesis (25 to 34 percent dry weight decrease) results in carbohydrate, lipid and protein ratios that are closer to those required in the human diet. In addition, the selection of nitrogen fixing mutants which excrete ammonium ions present an opportunity to tailor these micro-organisms to meet the specific need for a sub-system to reverse potential loss of fixed nitrogen material.

  14. Brucella, nitrogen and virulence.

    Science.gov (United States)

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  15. Cost-effectiveness of nitrogen mitigation by alternative household wastewater management technologies.

    Science.gov (United States)

    Wood, Alison; Blackhurst, Michael; Hawkins, Troy; Xue, Xiaobo; Ashbolt, Nicholas; Garland, Jay

    2015-03-01

    Household wastewater, especially from conventional septic systems, is a major contributor to nitrogen pollution. Alternative household wastewater management technologies provide similar sewerage management services but their life cycle costs and nitrogen flow implications remain uncertain. This paper addresses two key questions: (1) what are the total costs, nitrogen mitigation potential, and cost-effectiveness of a range of conventional and alternative municipal wastewater treatment technologies, and (2) what uncertainties influence these outcomes and how can we improve our understanding of these technologies? We estimate a household nitrogen mass balance for various household wastewater treatment systems and combine this mass balance with life cycle cost assessment to calculate the cost-effectiveness of nitrogen mitigation, which we define as nitrogen removed from the local watershed. We apply our methods to Falmouth, MA, where failing septic systems have caused heightened eutrophication in local receiving water bodies. We find that flushing and dry (composting) urine-diversion toilets paired with conventional septic systems for greywater management demonstrate the lowest life cycle cost and highest cost-effectiveness (dollars per kilogram of nitrogen removed from the watershed). Composting toilets are also attractive options in some cases, particularly best-case nitrogen mitigation. Innovative/advanced septic systems designed for high-level nitrogen removal are cost-competitive options for newly constructed homes, except at their most expensive. A centralized wastewater treatment plant is the most expensive and least cost-effective option in all cases. Using a greywater recycling system with any treatment technology increases the cost without adding any nitrogen removal benefits. Sensitivity analysis shows that these results are robust considering a range of cases and uncertainties. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Nitrogen cycling in an integrated biomass for energy system

    International Nuclear Information System (INIS)

    Moorhead, K.K.

    1986-01-01

    A series of experiments was conducted to evaluate N cycling in three components of an integrated biomass for energy system, i.e. water hyacinth production, anaerobic digestion in hyacinth biomass, and recycling of digester effluent and sludge. Plants assimilated 50 to 90% of added N in hyacinth production systems. Up to 28% of the total plant N was contained in hyacinth detritus. Nitrogen loading as plant detritus into hyacinth ponds was 92 to 148 kg N ha -1 yr -1 . Net mineralization of plant organic 15 N during anaerobic digestion was 35 and 70% for water hyacinth plants with low and high N content, respectively. Approximately 20% of the 15 N was recovered in the digested sludge while the remaining 15 N was recovered in the effluent. Water hyacinth growth in digester effluents was affected by electrical conductivity and 15 NH 4 + -N concentration. Addition of water hyacinth biomass to soil resulted in decomposition of 39 to 50% of added C for fresh plant biomass and 19 to 23% of added C for digested biomass sludge. Only 8% of added 15 N in digested sludges was mineralized to 15 NO 3 - -N despite differences in initial N content. In contrast, 3 and 33% of added 15 N in fresh biomass with low and high N content, respectively, was recovered as 15 NO 3 - -N. Total 15 N recovery after anaerobic digestion ranged from 70 to 100% of the initial plant biomass 15 N. Total N recovery by sludge and effluent recycling in the integrated biomass for energy system was 48 to 60% of the initial plant biomass 15 N

  17. Changes in Nitrogen Cycling in a Shrub-Encroached Dryland

    Science.gov (United States)

    Turpin-Jelfs, T. C.; Michaelides, K.; Biederman, J. A.; Evershed, R. P.; Anesio, A. M.

    2017-12-01

    Land degradation is estimated to have occurred in 10-20% of Earth's drylands, where the environmental and socioeconomic consequences have affected 250 million people. The prevailing form of land degradation in drylands over the past ca. 150 years has been the encroachment of woody plants into arid and semi-arid grasslands. The density of mesquite (Prosopis spp.), a significant nitrogen (N)-fixing woody encroacher, has increased within the arid and semi-arid grasslands of the southwestern US by >400% over the past 30 years to occupy an area of >38 Mha. However, the impacts of an increasing density of N-fixing shrubs on the cycling and spatial variability of N within these ecosystems remains poorly understood. Here, we quantify how concentrations of N (ammonium-N, nitrate-N, organic N), as well as carbon (C; total C and organic C) and phosphorous (P; loosely-bound P, iron- and aluminium-bound P, apatite P and calcite-bound P, and residual P), and the structure of the microbial community (phospholipid fatty acids), change in the soils underneath and between shrub canopies along a gradient of shrub-encroachment for a semiarid grassland in the Santa Rita Experimental Range (SRER) Arizona, US. This gradient of encroachment was comprised of five sites that ranged from a grass dominated state to a shrub-dominated state characterised by mosaics of shrub patches and bare-soil interspaces. Our results show that the organic C and total N content of soils between shrubs decreased by >50% between grass dominant and shrub dominant end-member sites. Conversely, the organic C and total N content of soils beneath shrub canopies remained relatively constant along the encroachment gradient.

  18. Nitrogen availability drives priming effect by altering microbial carbon-use efficiency after permafrost thaw

    Science.gov (United States)

    Chen, L.; Liu, L.; Zhang, Q.; Mao, C.; Liu, F.; Yang, Y.

    2017-12-01

    Enhanced vegetation growth can potentially aggravate soil C loss by accelerating the decomposition of soil organic matter (SOM) ("priming effect"), thereby reinforcing the positive C-climate feedback in permafrost ecosystems. However, the degree to which priming effect alters permafrost C dynamics is expected to be modified by nitrogen (N) availability after permafrost thaw. Despite this recognition, experimental evidence for the linkage between priming effect and post-thaw N availability is still lacking. Particularly, the microbial mechanisms involved remain unknown. Here, using a thermokarst-induced natural N gradient combined with an isotope-labeled glucose and N addition experiment, we presented a strong linkage between soil N availability and priming effect in Tibetan permafrost. We observed that the magnitude of priming effect along the thaw gradient was negatively associated with soil total dissolved nitrogen (TDN) concentration. This negative effect of post-thaw N availability was further proved by a sharply reduced priming effect following mineral N supply. These two lines of evidence jointly illustrated that the priming effect along the thaw chronosequence was controlled by N availability, supporting the `N mining theory'. In contrast to the prevailing assumption, this N-regulated priming effect was independent from changes in C- or N-acquiring enzyme activities, but positively associated with the change in metabolic quotients (△SOM-qCO2), highlighting that decreased microbial metabolism efficiency rather than increased enzyme activities account for greater priming effect under reduced N availability. Taken together, these findings demonstrate that C dynamics in melting permafrost largely depends on post-thaw N availability due to its effect of retarding SOM mineralization. This C-N interaction and the relevant microbial metabolic efficiency should be considered in Earth System Models for a better understanding of soil C dynamics after permafrost thaw.

  19. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Manufacturing cycle for pure neon-helium mixture production

    International Nuclear Information System (INIS)

    Batrakov, B.P.; Kravchenko, V.A.

    1980-01-01

    The manufacturing cycle for pure neon-helium mixture production with JA-300 nitrogen air distributing device has been developed. Gas mixture containing 2-3% of neon-helium mixture (the rest is mainly nitrogen 96-97%) is selected out of the cover of the JA-300 column condensator and enters the deflegmator under the 2.3-2.5 atm. pressure. The diflegmator presents a heat exchange apparatus in which at 78 K liquid nitrogen the condensation of nitrogen from the mixture of gases entering from the JA-300 column takes place. The enriched gas mixture containing 65-70% of neon-helium mixture and 30-35% of nitrogen goes out from the deflegmator. This enriched neon-helium mixture enters the gasgoeder for impure (65-70%) neon-helium mixture. Full cleaning of-neon helium mixture of nitrogen is performed by means of an adsorber. As adsorbent an activated coal has been used. Adsorption occurs at the 78 K temperature of liquid nitrogen and pressure P=0.1 atm. As activated coal cooled down to nitrogen temperature adsorbs nitrogen better than neon and helium, the nitrogen from the mixture is completely adsorbed. Pure neon-helium mixture from the adsorber comes into a separate gasgolder. In one campaign the cycle allows obtaining 2 m 3 of the mixture. The mixture contains 0.14% of nitrogen, 0.01% of oxygen and 0.06% of hydrogen

  1. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  2. Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics

    OpenAIRE

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we deve...

  3. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2005-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with turbine cycle is considered as one of the leading candidates for future nuclear power plants. In this paper, the various types of HTGR gas turbine cycles are concluded as three typical cycles of direct cycle, closed indirect cycle and open indirect cycle. Furthermore they are theoretically converted to three Brayton cycles of helium, nitrogen and air. Those three types of Brayton cycles are thermodynamically analyzed and optimized. The results show that the variety of gas affects the cycle pressure ratio more significantly than other cycle parameters, however, the optimized cycle efficiencies of the three Brayton cycles are almost the same. In addition, the turbomachines which are required for the three optimized Brayton cycles are aerodynamically analyzed and compared and their fundamental characteristics are obtained. Helium turbocompressor has lower stage pressure ratio and more stage number than those for nitrogen and air machines, while helium and nitrogen turbocompressors have shorter blade length than that for air machine

  4. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Goldblatt, Colin; Johnson, Benjamin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth’s biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  5. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  6. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  7. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability

    DEFF Research Database (Denmark)

    Craine, J M; Elmore, A J; Aidar, M P M

    2009-01-01

    Ratios of nitrogen (N) isotopes in leaves could elucidate underlying patterns of N cycling across ecological gradients. To better understand global-scale patterns of N cycling, we compiled data on foliar N isotope ratios (d15N), foliar N concentrations, mycorrhizal type and climate for over 11 00...

  8. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    Science.gov (United States)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  9. Development of commercial nitrogen-rich stainless steels

    International Nuclear Information System (INIS)

    Liljas, M.

    1999-01-01

    This paper reviews the development of nitrogen alloyed stainless steels. Nitrogen alloying of austenitic stainless steels started at an early stage and was to a large extent caused by nickel shortage. However, direct technical advantages such as increased strength of the nitrogen alloyed steels made them attractive alternatives to the current steels. It was not until the advent of the AOD (argon oxygen decarburisation) process in the late 1960s that nitrogen alloying could be controlled to such accuracy that it became successful commercially on a broader scale. The paper describes production aspects and how nitrogen addition influences microstructure and the resulting properties of austenitic and duplex stainless steels. For austenitic steels there are several reasons for nitrogen alloying. Apart from increasing strength nitrogen also improves structural stability, work hardening and corrosion resistance. For duplex steels nitrogen also has a decisive effect in controlling the microstructure during thermal cycles such as welding. (orig.)

  10. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Stella Lovelli

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  11. Nitrogen Balance During Sweet Sorghum Cropping Cycle as Affected by Irrigation and Fertilization Rate

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    2011-02-01

    Full Text Available A two-year trial was carried out on sweet sorghum, grown in semi-arid environments of southern Europe. The trial was aimed to monitor the main components of the crop N-balance under different irrigation regimes and nitrogen fertilization rates, in factorial combination. A rainfed condition (only one watering soon after sowing was compared with a deficit irrigation regime and a full irrigation treatment (50 and 100% restoration of total crop water consumption, respectively. Crop nitrogen uptake always showed to be the highest N-balance components and was included in the range of 125-194 kg ha-1 during 1997-1998, with respect to the total shoot biomass, according to the nitrogen fertilization rate; consequently, it significantly reduced both nitrogen concentration in the soil solution and the total nitrogen loss due to drainage. Nitrogen concentration in the drainage water didn’t result to be strictly dependent on the rate of fertiliser applied but on the actual soil nitrogen content; the maximum registered value of total nitrogen lost by leaching was 1.9 kg ha-1. Differently, total nitrogen loss due to volatilisation was proportional to the amount of fertilizer applied; irrigation favourably reduced this kind of loss. The limited amount of Nvolatilisation loss was probably due to the neutral pH soil conditions; as an order of magnitude, referring to the highest fertilized but rainfed treatment, the utmost N-volatilisation loss was equal to 5.5 Kg ha-1, as an average over the three years, that is to say less than the 5% of the fertilization rate. A fertilisation rate of 120 Kg ha-1 of nitrogen, together with water application, generally produced a balance between crop N-uptake and total N-loss due to volatilisation and drainage (only the stalk biomass was considered in this calculation. Lower rates of fertilizing nitrogen, indeed, determined a depletion in the soil nitrogen content because of the high crop biomass and the strong N-uptake by the

  12. Cycling of fertilizer and cotton crop residue nitrogen

    International Nuclear Information System (INIS)

    Rochester, I.J.; Constable, G.A.; MacLeod, D.A.

    1993-01-01

    Mineral nitrogen (N), nitrate and ammonium contents were monitored in N-fertilized soils supporting cotton crops to provide information on the nitrification, mineralization and immobilization processes operating in the soil. The relative contributions of fertilizer N, previous cotton crop residue N and indigenous soil N to the mineral N pools and to the current crop's N uptake were calculated. After N fertilizer (urea) application, the soil's mineral N content rose rapidly and subsequently declined at a slower rate. The recovery of 15 N-labelled urea as mineral N declined exponentially with time. Biological immobilization (and possibly denitrification to some extent) were believed to be the major processes reducing post-application soil mineral N content. Progressively less N was mineralized upon incubation of soil sampled through the growing season. Little soil N (either from urea or crop residue) was mineralized at crop maturity. Cycling of N was evident between the soil mineral and organic N pools throughout the cotton growing season. Considerable quantities of fertilizer N were immobilized by the soil micro biomass; immobilized N was remineralized and subsequently taken up by the cotton crop. A large proportion of the crop N was taken up in the latter part of the season when the soil mineral N content was low. It is suggested that much of the N taken up by cotton was derived from microbial sources, rather than crop residues. The application of cotton crop residue (stubble) slightly reduced the mineral N content in the soil by encouraging biological immobilization. 15 N was mineralized very slowly from the labelled crop residue and did not contribute significantly to the supply of N to the current crop. Recovery of labelled fertilizer N and labelled crop residue N by the cotton crop was 28% and 1%, respectively. In comparison, the apparent recovery of fertilizer N was 48%. Indigenous soil N contributed 68% of the N taken up by the cotton crop. 33 refs., 1 tab

  13. Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: The need for long-term and site-based research

    Czech Academy of Sciences Publication Activity Database

    Shibata, H.; Branquinho, C.; McDowell, W. H.; Mitchell, J.M.; Monteith, D. T.; Tang, J.; Arvola, L.; Cruz, C.; Cusack, D.F.; Halada, L.; Kopáček, Jiří; Máguas, C.; Sajidu, S.; Schubert, H.; Tokuchi, N.; Záhora, J.

    2015-01-01

    Roč. 44, č. 3 (2015), s. 178-193 ISSN 0044-7447 Institutional support: RVO:60077344 Keywords : atmospheric deposition * biogeochemistry * water quality * N2O * nitrogen leaching Subject RIV: DJ - Water Pollution ; Quality Impact factor: 2.555, year: 2015

  14. Characterizing bacterial gene expression in nitrogen cycle metabolism with RT-qPCR.

    Science.gov (United States)

    Graham, James E; Wantland, Nicholas B; Campbell, Mark; Klotz, Martin G

    2011-01-01

    Recent advances in DNA sequencing have greatly accelerated our ability to obtain the raw information needed to recognize both known and potential novel modular microbial genomic capacity for nitrogen metabolism. With PCR-based approaches to quantifying microbial mRNA expression now mainstream in most laboratories, researchers can now more efficiently propose and test hypotheses on the contributions of individual microbes to the biological accessibility of nitrogen upon which all other life depends. We review known microbial roles in these key nitrogen transformations, and describe the necessary steps in carrying out relevant gene expression studies. An example experimental design is then provided characterizing Nitrosococcus oceani mRNA expression in cultures responding to ammonia. The approach described, that of assessing microbial genome inventory and testing putative modular gene expression by mRNA quantification, is likely to remain an important tool in understanding individual microbial contributions within microbial community activities that maintain the Earth's nitrogen balance. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  16. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  17. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  18. Influence of forest disturbance on stable nitrogen isotope ratios in soil and vegetation profiles

    Science.gov (United States)

    Jennifer D. Knoepp; Scott R. Taylor; Lindsay R. Boring; Chelcy F. Miniat

    2015-01-01

    Soil and plant stable nitrogen isotope ratios (15 N) are influenced by atmospheric nitrogen (N) inputs and processes that regulate organic matter (OM) transformation and N cycling. The resulting 15N patterns may be useful for discerning ecosystem differences in N cycling. We studied two ecosystems; longleaf pine wiregrass (...

  19. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  20. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  1. Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna.

    Science.gov (United States)

    Rossiter-Rachor, N A; Setterfield, S A; Douglas, M M; Hutley, L B; Cook, G D; Schmidt, S

    2009-09-01

    Invasion by the African grass Andropogon gayanus is drastically altering the understory structure of oligotrophic savannas in tropical Australia. We compared nitrogen (N) relations and phenology of A. gayanus and native grasses to examine the impact of invasion on N cycling and to determine possible reasons for invasiveness of A. gayanus. Andropogon gayanus produced up to 10 and four times more shoot phytomass and root biomass, with up to seven and 2.5 times greater shoot and root N pools than native grass understory. These pronounced differences in phytomass and N pools between A. gayanus and native grasses were associated with an altered N cycle. Most growth occurs in the wet season when, compared with native grasses, dominance of A. gayanus was associated with significantly lower total soil N pools, lower nitrification rates, up to three times lower soil nitrate availability, and up to three times higher soil ammonium availability. Uptake kinetics for different N sources were studied with excised roots of three grass species ex situ. Excised roots of A. gayanus had an over six times higher-uptake rate of ammonium than roots of native grasses, while native grass Eriachne triseta had a three times higher uptake rate of nitrate than A. gayanus. We hypothesize that A. gayanus stimulates ammonification but inhibits nitrification, as was shown to occur in its native range in Africa, and that this modification of the soil N cycle is linked to the species' preference for ammonium as an N source. This mechanism could result in altered soil N relations and could enhance the competitive superiority and persistence of A. gayanus in Australian savannas.

  2. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    Science.gov (United States)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  3. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    Science.gov (United States)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    example, in certain arid ecosystems of southern California, elevated nitrogen has promoted invasions of annual non-native grasses. At the same time, a period of above-normal precipitation years has exacerbated the grass invasions. Increased grass cover has altered the hydrologic cycle of these areas and increased fire risk, ultimately leading to conversion of the ecosystem from diverse shrublands to less diverse grasslands. In addition to empirical studies, modeling can be used to simulate climate change and nitrogen interactions. The ForSAFE-VEG model, for example, has been used to examine climate change and nitrogen interactions in Rocky Mountain alpine vegetation communities. Results from both empirical studies and modeling indicate that nitrogen and climate change interact to drive losses in biodiversity greater than those caused by either stressor alone. Reducing inputs of anthropogenic reactive nitrogen may be an effective mitigation strategy for protecting biodiversity in the face of climate change.

  4. Simulated Nitrogen Deposition has Minor Effects on Ecosystem Pools and Fluxes of Energy, Elements, and Biochemicals in a Northern Hardwoods Forest

    Science.gov (United States)

    Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.

    2017-12-01

    The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest

  5. Belowground Carbon Allocation to Ectomycorrhizal Fungi Links Biogeochemical Cycles of Boron and Nitrogen

    Science.gov (United States)

    Lucas, R. W.; Högberg, P.; Ingri, J. N.

    2011-12-01

    Boron (B) is an essential micronutrient to most trees and represents an important limiting resource in some regions, deficient trees experiencing the loss of apical dominance, altered stem growth, and even tree death in extreme cases. Similar to the acquisition of most soil nutrients, B is likely supplied to host trees by mycorrhizal symbionts in exchange for recently fixed carbohydrates. In this way, belowground allocation of photosynthate, which drives the majority of biological processes belowground, links the biogeochemical cycles of B and nitrogen (N). Using a long-term N addition experiment in a Pinus sylvestris forest that has been ongoing for 41 years, we examined how the availability of inorganic N mediates the response of B isotopes in the tree needles, organic soil, and fungal pools in a boreal forest in northern Sweden. Using archived needle samples collected annually from the current year's needle crop, we observed δ11B to increase from 30.8 (0.5 se) to 41.8 (0.7 se)% in N fertilized plots from 1970 to 1979, a period of increasing B deficiency stress induced by N fertilization; the concentration of B in tree needles during 1979 dropping as low as 3.0 μg g-2. During the same period, B concentrations in tree needles from control plots remained relatively unchanged and δ11B remained at a steady state value of 34.1 (1.0 se)%. Following a distinct, large-scale, pulse labeling event in 1980 in which 2.5 kg ha-1 of isotopically distinct B was applied to all treatment and control plots to alleviate the N-induced B deficiency, concentrations of B in current needles increased immediately in all treatments, the magnitude of the response being dependent upon the N treatment. But unlike other pool dilution studies, δ11B of current tree needles did not return to pre-addition, steady-state levels. Instead, δ11B continued to decrease over time in both N addition and control treatments. This unexpected pattern has not been previously described but can be explained

  6. Identification of land use and other anthropogenic impacts on nitrogen cycling using stable isotopes and distributed hydrologic modeling

    Science.gov (United States)

    O'Connell, M. T.; Macko, S. A.

    2017-12-01

    Reactive modeling of sources and processes affecting the concentration of NO3- and NH4+ in natural and anthropogenically influenced surface water can reveal unexpected characteristics of the systems. A distributed hydrologic model, TREX, is presented that provides opportunities to study multiscale effects of nitrogen inputs, outputs, and changes. The model is adapted to run on parallel computing architecture and includes the geochemical reaction module PhreeqcRM, which enables calculation of δ15N and δ18O from biologically mediated transformation reactions in addition to mixing and equilibration. Management practices intended to attenuate nitrate in surface and subsurface waters, in particular the establishment of riparian buffer zones, are variably effective due to spatial heterogeneity of soils and preferential flow through buffers. Accounting for this heterogeneity in a fully distributed biogeochemical model allows for more efficient planning and management practices. Highly sensitive areas within a watershed can be identified based on a number of spatially variable parameters, and by varying those parameters systematically to determine conditions under which those areas are under more or less critical stress. Responses can be predicted at various scales to stimuli ranging from local changes in cropping regimes to global shifts in climate. This work presents simulations of conditions showing low antecedent nitrogen retention versus significant contribution of old nitrate. Nitrogen sources are partitioned using dual isotope ratios and temporally varying concentrations. In these two scenarios, we can evaluate the efficiency of source identification based on spatially explicit information, and model effects of increasing urban land use on N biogeochemical cycling.

  7. The stream subsurface: nitrogen cycling and the cleansing function of hyporheic zones

    Science.gov (United States)

    Rhonda Mazza; Steve Wondzell; Jay Zarnetske

    2014-01-01

    Nitrogen is an element essential to plant growth and ecosystem productivity. Excess nitrogen, however, is a common water pollutant. It can lead to algal blooms that deplete the water's dissolved oxygen, creating "dead zones" devoid of fish and aquatic insects.Previous research showed that the subsurface area of a stream, known as the hyporheic...

  8. Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms.

    Science.gov (United States)

    Mayor, Jordan; Bahram, Mohammad; Henkel, Terry; Buegger, Franz; Pritsch, Karin; Tedersoo, Leho

    2015-01-01

    Ectomycorrhizal (EcM)-mediated nitrogen (N) acquisition is one main strategy used by terrestrial plants to facilitate growth. Measurements of natural abundance nitrogen isotope ratios (denoted as δ(15)N relative to a standard) increasingly serve as integrative proxies for mycorrhiza-mediated N acquisition due to biological fractionation processes that alter (15)N:(14)N ratios. Current understanding of these processes is based on studies from high-latitude ecosystems where plant productivity is largely limited by N availability. Much less is known about the cause and utility of ecosystem δ(15)N patterns in the tropics. Using structural equation models, model selection and isotope mass balance we assessed relationships among co-occurring soil, mycorrhizal plants and fungal N pools measured from 40 high- and 9 low-latitude ecosystems. At low latitudes (15)N-enrichment caused ecosystem components to significantly deviate from those in higher latitudes. Collectively, δ(15)N patterns suggested reduced N-dependency and unique sources of EcM (15)N-enrichment under conditions of high N availability typical of the tropics. Understanding the role of mycorrhizae in global N cycles will require reevaluation of high-latitude perspectives on fractionation sources that structure ecosystem δ(15)N patterns, as well as better integration of EcM function with biogeochemical theories pertaining to climate-nutrient cycling relationships. © 2014 John Wiley & Sons Ltd/CNRS.

  9. Consequences of human modification of the global nitrogen cycle

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Roxana Petrescu, A.M.; Leach, A.M.; Vries, de W.

    2013-01-01

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution,

  10. Consequences of human modification of the global nitrogen cycle.

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, R.; Leach, A.M.; de Vries, W.

    2013-01-01

    The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution,

  11. Beneficial effects of aluminum enrichment on nitrogen-fixing cyanobacteria in the South China Sea.

    Science.gov (United States)

    Liu, Jiaxing; Zhou, Linbin; Ke, Zhixin; Li, Gang; Shi, Rongjun; Tan, Yehui

    2018-04-01

    Few studies focus on the effects of aluminum (Al) on marine nitrogen-fixing cyanobacteria, which play important roles in the ocean nitrogen cycling. To examine the effects of Al on the nitrogen-fixing cyanobacteria, bioassay experiments in the oligotrophic South China Sea (SCS) and culture of Crocosphaera watsonii in the laboratory were conducted. Field data showed that 200 nM Al stimulated the growth and the nitrogenase gene expression of Trichodesmium and unicellular diazotrophic cyanobacterium group A, and the nitrogen fixation rates of the whole community. Laboratory experiments demonstrated that Al stimulated the growth and nitrogen fixation of C. watsonii under phosphorus limited conditions. Both field and laboratory results indicated that Al could stimulate the growth of diazotrophs and nitrogen fixation in oligotrophic oceans such as the SCS, which is likely related to the utilization of phosphorus, implying that Al plays an important role in the ocean nitrogen and carbon cycles by influencing nitrogen fixation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs

    Science.gov (United States)

    Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; de la Cruz, A.; Calvete-Sogo, H.; Vallejo, A.

    2017-09-01

    Increasing tropospheric ozone (O3) and atmospheric nitrogen (N) deposition alter the structure and composition of pastures. These changes could affect N and C compounds in the soil that in turn can influence soil microbial activity and processes involved in the emission of N oxides, methane (CH4) and carbon dioxide (CO2), but these effects have been scarcely studied. Through an open top chamber (OTC) field experiment, the combined effects of both pollutants on soil gas emissions from an annual experimental Mediterranean community were assessed. Four O3 treatments and three different N input levels were considered. Fluxes of nitric (NO) and nitrous (N2O) oxide, CH4 and CO2 were analysed as well as soil mineral N and dissolved organic carbon. Belowground plant parameters like root biomass and root C and N content were also sampled. Ozone strongly increased soil N2O emissions, doubling the cumulative emission through the growing cycle in the highest O3 treatment, while N-inputs enhanced more slightly NO; CH4 and CO2 where not affected. Both N-gases had a clear seasonality, peaking at the start and at the end of the season when pasture physiological activity is minimal; thus, higher microorganism activity occurred when pasture had a low nutrient demand. The O3-induced peak of N2O under low N availability at the end of the growing season was counterbalanced by the high N inputs. These effects were related to the O3 x N significant interaction found for the root-N content in the grass and the enhanced senescence of the community. Results indicate the importance of the belowground processes, where competition between plants and microorganisms for the available soil N is a key factor, for understanding the ecosystem responses to O3 and N.

  13. Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation

    NARCIS (Netherlands)

    Gupta, V.V.S.R.; Kroker, S.J.; Hicks, M.; Davoren, W.; Descheemaeker, K.K.E.; Llewellyn, R.

    2014-01-01

    Non-symbiotic nitrogen (N2) fixation by diazotrophic bacteria is a potential source for biological N inputs in non-leguminous crops and pastures. Perennial grasses generally add larger quantities of above- and belowground plant residues to soil, and so can support higher levels of soil biological

  14. How to make a complex story understandable. Communication on nitrogen

    International Nuclear Information System (INIS)

    Bleeker, A.; Hensen, A.; Erisman, J.W.

    2011-01-01

    Understanding is the first step towards solving the nitrogen problem. Various applications have been developed to gain insight in the complex interactions between the nitrogen cycle and the social-economic and environmental aspects. Experience has learned that many users have not only gained a clearer picture of the urgency and complexity of the problem; now they also have options for dealing with the nitrogen problem. [nl

  15. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil.

    Science.gov (United States)

    Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta

    2018-04-01

    Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burnt wood from land after a fire. The main objective of this work was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organic matter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil, which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200 km transect

    Science.gov (United States)

    Liu, Dongwei; Zhu, Weixing; Wang, Xiaobo; Pan, Yuepeng; Wang, Chao; Xi, Dan; Bai, Edith; Wang, Yuesi; Han, Xingguo; Fang, Yunting

    2017-03-01

    Nitrogen (N) cycling in drylands under changing climate is not well understood. Our understanding of N cycling over larger scales to date relies heavily on the measurement of bulk soil N, and the information about internal soil N transformations remains limited. The 15N natural abundance (δ15N) of ammonium and nitrate can serve as a proxy record for the N processes in soils. To better understand the patterns and mechanisms of N cycling in drylands, we collected soils along a 3200 km transect at about 100 km intervals in northern China, with mean annual precipitation (MAP) ranging from 36 to 436 mm. We analyzed N pools and δ15N of ammonium, dual isotopes (15N and 18O) of nitrate, and the microbial gene abundance associated with soil N transformations. We found that N status and its driving factors were different above and below a MAP threshold of 100 mm. In the arid zone with MAP below 100 mm, soil inorganic N accumulated, with a large fraction being of atmospheric origin, and ammonia volatilization was strong in soils with high pH. In addition, the abundance of microbial genes associated with soil N transformations was low. In the semiarid zone with MAP above 100 mm, soil inorganic N concentrations were low and were controlled mainly by biological processes (e.g., plant uptake and denitrification). The preference for soil ammonium over nitrate by the dominant plant species may enhance the possibility of soil nitrate losses via denitrification. Overall, our study suggests that a shift from abiotic to biotic controls on soil N biogeochemistry under global climate changes would greatly affect N losses, soil N availability, and other N transformation processes in these drylands in China.

  17. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow.

    Science.gov (United States)

    Zhang, Juanjuan; Yan, Xuebin; Su, Fanglong; Li, Zhen; Wang, Ying; Wei, Yanan; Ji, Yangguang; Yang, Yi; Zhou, Xianhui; Guo, Hui; Hu, Shuijin

    2018-06-01

    Nitrogen and phosphorus are two important nutrient elements for plants. The current paradigm suggests that the scaling of plant tissue N to P is conserved across environments and plant taxa because these two elements are coupled and coordinately change with each other following a constant allometric trajectory. However, this assumption has not been vigorously examined, particularly in changing N and P environments. We propose that changes in relative availability of N and P in soil alter the N to P relationship in plants. Taking advantage of a 4-yr N and P addition experiment in a Tibetan alpine meadow, we examined changes in plant N and P concentrations of 14 common species. Our results showed that while the scaling of N to P under N additions was similar to the previously reported pattern with a uniform 2/3 slope of the regression between log N and log P, it was significantly different under P additions with a smaller slope. Also, graminoids had different responses from forbs. These results indicate that the relative availability of soil N and P is an important determinant regulating the N and P concentrations in plants. These findings suggest that alterations in the N to P relationships may not only alter plant photosynthate allocation to vegetative or reproductive organs, but also regulate the metabolic and growth rate of plant and promote shifts in plant community composition in a changing nutrient loading environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characteristic of riverine dissolved inorganic nitrogen export in subtropic high-standing island, Taiwan

    Science.gov (United States)

    Lee, Li-Chin; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Shih, Yu-Ting

    2015-04-01

    Extreme increase of anthropogenic nitrogen (e.g. fertilizer and excretion) has altered the nitrogen cycling and terrestrial ecosystems. Taiwan located between eastern Asia and Oceania is the hotspot of global riverine DIN (dissolved inorganic nitrogen, including NH4, NO3, and NO2) export, but rarely documented comprehensively. Totally 50 catchments, covering 2/3 of this island, with different anthropogenic activities are involved in this study. The monthly sampling for NH4 and seasonal sampling for NO3 and NO2 supplemented with daily discharge are used to estimate the riverine DIN export. Meanwhile, the landscape characteristics, land-use, and population density are also used to discriminate the characteristics of riverine DIN export. Results showed that the observed riverine DIN concentration and yield vary from 17.7-603.5 μM and 575.0-15588.9 kg-N km-2 yr-1 corresponding to the increase of anthropogenic activities. The arithmetic mean of DIN concentration and yield are 126.7μM and 3594.7 kg-N km-2 yr-1, respectively. The unexpected high yields can attribute to abundant precipitation, heavy fertilizer application, and high population. For concentration variation, no significant variation can be found in the pristine and agriculture-dominated catchments, whereas the strong dilution effect in the wet season is characterized in the intensively-disturbed catchments. Although there are some seasonal variations in concentration, the yields in wet season are almost doubled than that in dry season indicating the strong control of streamflow. For speciation, NH4 is the dominant species in intensively-disturbed catchment, but NO3 dominates the DIN composition for the pristine and agriculture-dominated catchments. Our result can provide a strong basis for supplementary estimation for regional to global study and DIN export control which is the aim of the Kampala Declaration on global nitrogen management. Keywords: dissolved inorganic nitrogen, anthropogenic nitrogen

  19. Nitrogen cycling in organic farming systems with rotational grass-clover and arable crops

    DEFF Research Database (Denmark)

    Berntsen, Jørgen; Grant, Ruth; Olesen, Jørgen E.

    2006-01-01

    Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This i especially the case for organic .....

  20. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    Science.gov (United States)

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. Published by Elsevier Ireland Ltd.

  1. Utilization of natural variations in the abundance of nitrogen-15 as a tracer in hydrogeology - Initial results

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.

    1974-01-01

    Nitrogen compounds dissolved in natural waters exhibit considerable variations in nitrogen-15 content (more than 10 per mille). The authors describe briefly the analytical techniques used in measuring δ 15 N, the main features of the isotopic cycle of nitrogen and the results obtained so far. A simplified model of the nitrogen cycle and its isotopic implications is presented; with this model one can deduce from a number of observed variations the physical or biological mechanism (or mechanisms) involved. Isotopic studies of nitrogen may be a useful additional tool for detecting and interpreting certain forms of pollution. (author) [fr

  2. The urea cycle disorders.

    Science.gov (United States)

    Helman, Guy; Pacheco-Colón, Ileana; Gropman, Andrea L

    2014-07-01

    The urea cycle is the primary nitrogen-disposal pathway in humans. It requires the coordinated function of six enzymes and two mitochondrial transporters to catalyze the conversion of a molecule of ammonia, the α-nitrogen of aspartate, and bicarbonate into urea. Whereas ammonia is toxic, urea is relatively inert, soluble in water, and readily excreted by the kidney in the urine. Accumulation of ammonia and other toxic intermediates of the cycle lead to predominantly neurologic sequelae. The disorders may present at any age from the neonatal period to adulthood, with the more severely affected patients presenting earlier in life. Patients are at risk for metabolic decompensation throughout life, often triggered by illness, fasting, surgery and postoperative states, peripartum, stress, and increased exogenous protein load. Here the authors address neurologic presentations of ornithine transcarbamylase deficiency in detail, the most common of the urea cycle disorders, neuropathology, neurophysiology, and our studies in neuroimaging. Special attention to late-onset presentations is given. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and #Acacia mangium# plantation on a sandy tropical soil

    OpenAIRE

    Tchichelle, Sogni Viviane; Epron, Daniel; Mialoundama, Fidèle; Koutika, Lydie-Stella; Harmand, Jean-Michel; Bouillet, Jean-Pierre; Mareschal, Louis

    2017-01-01

    Sustainable wood production requires appropriate management of commercial forest plantations. Establishment of industrial eucalypt plantations on poor sandy soils leads to a high loss of nutrients including nitrogen (N) after wood harvesting. An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the eucalypt monoculture to sustain soil fertility through enhancement of the N biological cycle. ...

  4. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  5. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Jennifer B. Glass

    2015-09-01

    Full Text Available Iron (Fe and copper (Cu are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3-, NO2-, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8 occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

  6. Biomass fueled closed cycle gas turbine with water injection

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Silvia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    Direct water injection has been studied for a small scale ({approx} 8 MW fuel input) closed cycle gas turbine coupled to a biomass fueled CFB furnace. Two different working fluids have been considered (helium-water mixture and nitrogen-water mixture). The water injection could take place between the compressor stages, as an intercooler, or after the high pressure compressor, as an aftercooler. Both this options have been studied, varying the relative humidity levels after the injection and the temperatures of the injected water. The effect of water injection on thermodynamic properties of the working fluids has been studied, together with its effect on turbomachinery isentropic efficiency. A sensitivity analysis on turbomachinery efficiency and cycle base pressure has been included. The results from this study have been compared to the performance of a dry closed cycle without water injection. The wet cycle shows an electric efficiency in the range 29-32% with helium-water mixture as working fluid and 30-32% with nitrogen-water mixture as working fluid, while the total efficiency (referring to the fuel LHV) is always higher than 100%. In the non-injected cycle the electric efficiency is 30-35% with helium and 32-36 with nitrogen. The total efficiency in the dry case with two level intercooling and postcooling is 87-89%, while is higher than 100% when only one stage inter- and postcooling is present. Aside from this, the study also includes a sizing of the heat exchangers for the different cycle variations. The heat transfer area is very sensible to the working fluid and to the amount of injected water and it's always higher when a nitrogen-water mixture is used. Compared to the cycle without water injection, by the way, the number of heat exchangers is reduced. This will lead to a lower pressure drop and a simpler plant layout. The total heat transfer area, however, is higher in the wet cycle than in the dry cycle.

  7. Influence of age and menstrual cycle on mammography and MR imaging of the breast; Einfluss von Alter und Menstruationszyklus auf Mammographie und MR-Mammographie

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Schimpfle, M.; Ohmenhaeuser, K.; Claussen, C.D. [Tuebingen Univ. (Germany). Abt. fuer Radiologische Diagnostik

    1997-09-01

    Age and menstrual cycle have an important influence on the breast. This well-known fact is experienced in the daily routine of gynecologists and radiologists. The number of publications addressing the effect of these influences on imaging, however, is surprisingly low. The aim of this work is to describe the influences of age and menstrual cycle on the breast and to address their clinical relevance for mammography and MR mammography. Therefore, own data are presented concerning the age and menstrual cycle influences on breast parenchyma in dynamic MR mammography. Literature data are used to correlate mammography and MR imaging findings with these influences. The changes of the breast due to age and menstrual cycle have important direct implications on performing and reading conventional mammography and MR mammography. The knowledge of these changes is also helpful in the interpretation of findings when comparing different methods. Finally, the data gained by using imaging methods enable important basic insights into physiology and physiopathology of the breast in vivo. (orig.) [Deutsch] Alter und Menstruationszyklus stellen wichtige Einflussfaktoren auf die Mamma dar. Diese Tatsache ist klinisch lange bekannt und im Alltag des Gynaekologen wie Radiologen staendig praesent. Dagegen ist die Anzahl der Publikationen zu den Auswirkungen dieser Einfluesse auf die Bildgebung erstaunlich niedrig. Ziel dieser Arbeit ist es, die alters- und zyklusabhaengigen Veraenderungen der Mamma und deren klinische Relevanz fuer die Mammographie und MR-Mammographie darzustellen. Zu diesem Zweck werden aus einer eigenen Studie Daten der dynamischen MR-Tomographie zum Alters- und Zykluseinfluss auf das Mammaparenchym praesentiert. Darueber hinaus werden diese Einflussfaktoren mit mammographischen und MR-tomographischen Daten aus der Literatur korreliert. Dabei zeigt sich, dass sich aus den alters- und menstruationszyklusbedingten Veraenderungen der Brust wichtige unmittelbare

  8. Bipolar mood cycles and lunar tidal cycles.

    Science.gov (United States)

    Wehr, T A

    2018-04-01

    In 17 patients with rapid cycling bipolar disorder, time-series analyses detected synchronies between mood cycles and three lunar cycles that modulate the amplitude of the moon's semi-diurnal gravimetric tides: the 14.8-day spring-neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies ('supermoons'). The analyses also revealed shifts among 1:2, 1:3, 2:3 and other modes of coupling of mood cycles to the two bi-weekly lunar cycles. These shifts appear to be responses to the conflicting demands of the mood cycles' being entrained simultaneously to two different bi-weekly lunar cycles with slightly different periods. Measurements of circadian rhythms in body temperature suggest a biological mechanism through which transits of one of the moon's semi-diurnal gravimetric tides might have driven the patients' bipolar cycles, by periodically entraining the circadian pacemaker to its 24.84-h rhythm and altering the pacemaker's phase-relationship to sleep in a manner that is known to cause switches from depression to mania.

  9. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  10. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere

    Directory of Open Access Journals (Sweden)

    Y. P. Wang

    2010-07-01

    Full Text Available Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N and phosphorus (P, in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C, nitrogen (N and phosphorus (P cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise.

    This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.

  11. Nitrogen cycling under alternate wetting and drying cycles in Arkansas rice

    Science.gov (United States)

    Alternate wetting and drying (AWD) cycles offer potential savings in water use for paddy rice production while reducing both greenhouse gas emissions and lowering grain arsenic content. In a three-year (2011-2013) field study near Stuttgart, AR, one-third of a field previously grown to soybean was b...

  12. Computational regulatory model for detoxification of ammonia from urea cycle in liver

    OpenAIRE

    ALI, Rashith Muhammad MUBARAK; GURUSAMY, Poornima Devi; RAMACHANDRAN, Selvakumar

    2015-01-01

    A nondeterministic finite automaton was designed to monitor enzymatic regulation and detoxification of excess ammonia in the urea cycle and its disorders. The designed machine is used for the diagnosis of deficiency and for regulating the expression of any of the enzymes involved with acceptance and rejection states in the urea cycle. The urea cycle is the metabolism of excess nitrogen produced by the breakdown of protein and other nitrogen-containing molecules in liver. Disorder in the urea ...

  13. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Science.gov (United States)

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We

  14. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    Directory of Open Access Journals (Sweden)

    Maryam Yazdani Foshtomi

    Full Text Available The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea.Our results indicated that bacteria (total and β-AOB showed more spatio-temporal variation than archaea (total and AOA as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices.Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal

  15. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Won [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Texas A & M Univ., College Station, TX (United States); Sharma, Ronish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meduri, Praveen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaef, Herbert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutkenhaus, Jodie [Texas A & M Univ., College Station, TX (United States); Lemmon, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nandasiri, Manjula I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-30

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  16. Ambient groundwater flow diminishes nitrogen cycling in streams

    Science.gov (United States)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  17. Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations.

    Science.gov (United States)

    Kompisch, Kai Michael; Lange, Claudia; Steinemann, Doris; Skawran, Britta; Schlegelberger, Brigitte; Müller, Reinhard; Schumacher, Udo

    2010-11-01

    Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.

  18. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. The dogfish shark (Squalus acanthias) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding.

    Science.gov (United States)

    Kajimura, Makiko; Walsh, Patrick J; Mommsen, Thomas P; Wood, Chris M

    2006-01-01

    Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O-UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate-limiting enzyme of the O-UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O-UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O-UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.

  20. Parameterization of Nitrogen Limitation for a Dynamic Ecohydrological Model: a Case Study from the Luquillo Critical Zone Observatory

    Science.gov (United States)

    Bastola, S.; Bras, R. L.

    2017-12-01

    Feedbacks between vegetation and the soil nutrient cycle are important in ecosystems where nitrogen limits plant growth, and consequently influences the carbon balance in the plant-soil system. However, many biosphere models do not include such feedbacks, because interactions between carbon and the nitrogen cycle can be complex, and remain poorly understood. In this study we coupled a nitrogen cycle model with an eco-hydrological model by using the concept of carbon cost economics. This concept accounts for different "costs" to the plant of acquiring nitrogen via different pathways. This study builds on tRIBS-VEGGIE, a spatially explicit hydrological model coupled with a model of photosynthesis, stomatal resistance, and energy balance, by combining it with a model of nitrogen recycling. Driven by climate and spatially explicit data of soils, vegetation and topography, the model (referred to as tRIBS-VEGGIE-CN) simulates the dynamics of carbon and nitrogen in the soil-plant system; the dynamics of vegetation; and different components of the hydrological cycle. The tRIBS-VEGGIE-CN is applied in a humid tropical watershed at the Luquillo Critical Zone Observatory (LCZO). The region is characterized by high availability and cycling of nitrogen, high soil respiration rates, and large carbon stocks.We drive the model under contemporary CO2 and hydro-climatic forcing and compare results to a simulation under doubling CO2 and a range of future climate scenarios. The results with parameterization of nitrogen limitation based on carbon cost economics show that the carbon cost of the acquisition of nitrogen is 14% of the net primary productivity (NPP) and the N uptake cost for different pathways vary over a large range depending on leaf nitrogen content, turnover rates of carbon in soil and nitrogen cycling processes. Moreover, the N fertilization simulation experiment shows that the application of N fertilizer does not significantly change the simulated NPP. Furthermore, an