WorldWideScience

Sample records for alters motor behavior

  1. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups.

    Science.gov (United States)

    Venerosi, Aldina; Ricceri, Laura; Scattoni, Maria Luisa; Calamandrei, Gemma

    2009-03-30

    Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Late gestational exposure [gestational day (GD) 14-17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  2. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  3. Clinical biomechanic correlates of cervical dysfunction: Part 4. Altered regional motor behavior.

    Science.gov (United States)

    Vorro, J; Johnston, W L

    1998-06-01

    The present study examined organizational patterns of individual muscular contributions to head and neck motion. Previous studies of asymptomatic subjects with cervical motor asymmetry identified significant kinematic and myoelectric alterations. The current study evaluated 34 asymptomatic subjects categorized as to symmetry group based on initial palpatory test comparing regional motion responses of the head and neck to sidebending right and left. Electromyographic techniques were used to study muscular activity, indicating contraction frequency for each muscle monitored during active and passive test motions. Subjects with diagnosed regional motion asymmetry exhibited a significantly altered organization of electrically active and electrically silent muscles. Their pattern of muscle contraction was compromised just as frequently in the passive as in the active phases of motion. A positive sign of motion asymmetry on physical examination of the cervical region alerts the physician early to the presence of significant dysfunction in motor organization for efficient head/neck movement. The adaptive motor patterning in dysfunction can occur before the appearance of subjective pain.

  4. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  5. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... to the production of motor behavior in adult mammals....

  6. Gonadotropin-releasing hormone receptor (Gnrhr) gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Science.gov (United States)

    Busby, Ellen R; Sherwood, Nancy M

    2017-01-01

    Gonadotropin-releasing hormone (GnRH) is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  7. Gonadotropin-releasing hormone receptor (Gnrhr gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Directory of Open Access Journals (Sweden)

    Ellen R Busby

    Full Text Available Gonadotropin-releasing hormone (GnRH is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  8. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors

    Directory of Open Access Journals (Sweden)

    Hinkle Kelly M

    2012-05-01

    Full Text Available Abstract Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. Although the mechanisms behind the pathogenic effects of LRRK2 mutations are still not clear, data emerging from in vitro and in vivo models suggests roles in regulating neuronal polarity, neurotransmission, membrane and cytoskeletal dynamics and protein degradation. We created mice lacking exon 41 that encodes the activation hinge of the kinase domain of LRRK2. We have performed a comprehensive analysis of these mice up to 20 months of age, including evaluation of dopamine storage, release, uptake and synthesis, behavioral testing, dendritic spine and proliferation/neurogenesis analysis. Our results show that the dopaminergic system was not functionally comprised in LRRK2 knockout mice. However, LRRK2 knockout mice displayed abnormal exploratory activity in the open-field test. Moreover, LRRK2 knockout mice stayed longer than their wild type littermates on the accelerated rod during rotarod testing. Finally, we confirm that loss of LRRK2 caused degeneration in the kidney, accompanied by a progressive enhancement of autophagic activity and accumulation of autofluorescent material, but without evidence of biphasic changes.

  9. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    studies. In the second study, we looked into the distribution of firing rates during different motor programs and the mechanisms that give rise to the distribution. We implanted high-density silicon probes in the spinal cord and recorded parallel single unit activity while inducing different scratch......, and it remains skewed in different behaviors. Our findings support that the neuronal activity, which is involved in motor behavior, is governed by synaptic fluctuations and as a result thereof is irregular. Similar lognormal- like distributions of firing rates have also been observed in other brain areas...

  10. Mechanisms of skill in sequential motor behavior

    NARCIS (Netherlands)

    Verwey, W.B.

    1994-01-01

    The statement that practice is the major determinant of skilled behavior is a truism. Yet, it is unclear why practice is so important and what the consequences of practice are. This thesis addresses the theme of acquiring skill from a motor point of view: How is it possible that with practice more

  11. Adult-onset stereotypical motor behaviors.

    Science.gov (United States)

    Maltête, D

    Stereotypies have been defined as non-goal-directed movement patterns repeated continuously for a period of time in the same form and on multiple occasions, and which are typically distractible. Stereotypical motor behaviors are a common clinical feature of a variety of neurological conditions that affect cortical and subcortical functions, including autism, tardive dyskinesia, excessive dopaminergic treatment of Parkinson's disease and frontotemporal dementia. The main differential diagnosis of stereotypies includes tic disorders, motor mannerisms, compulsion and habit. The pathophysiology of stereotypies may involve the corticostriatal pathways, especially the orbitofrontal and anterior cingulated cortices. Because antipsychotics have long been used to manage stereotypical behaviours in mental retardation, stereotypies that present in isolation tend not to warrant pharmacological intervention, as the benefit-to-risk ratio is not great enough. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Repetitive motor behavior: further characterization of development and temporal dynamics.

    Science.gov (United States)

    Muehlmann, Amber M; Bliznyuk, Nikolay; Duerr, Isaac; Lewis, Mark H

    2015-03-01

    Repetitive behaviors are diagnostic for autism spectrum disorders, common in related neurodevelopmental disorders, and normative in typical development. In order to identify factors that mediate repetitive behavior development, it is necessary to characterize the expression of these behaviors from an early age. Extending previous findings, we characterized further the ontogeny of stereotyped motor behavior both in terms of frequency and temporal organization in deer mice. A three group trajectory model provided a good fit to the frequencies of stereotyped behavior across eight developmental time points. Group based trajectory analysis using a measure of temporal organization of stereotyped behavior also resulted in a three group solution. Additionally, as the frequency of stereotyped behavior increased with age, the temporal distribution of stereotyped responses became increasingly regular or organized indicating a strong association between these measures. Classification tree and principal components analysis showed that accurate classification of trajectory group could be done with fewer observations. This ability to identify trajectory group membership earlier in development allows for examination of a wide range of variables, both experiential and biological, to determine their impact on altering the expected trajectory of repetitive behavior across development. Such studies would have important implications for treatment efforts in neurodevelopmental disorders such as autism. © 2015 Wiley Periodicals, Inc.

  13. Altered motor control patterns in whiplash and chronic neck pain

    Directory of Open Access Journals (Sweden)

    Vasseljen Ottar

    2008-06-01

    Full Text Available Abstract Background Persistent whiplash associated disorders (WAD have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM, conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173 were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal, and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6 for the WAD group, 17.9° (95% CI; 16.1–19.6 for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1 for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a

  14. Can Molecular Hippocampal Alterations Explain Behavioral ...

    Science.gov (United States)

    Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined genotypical outcomes in adult male and female offspring of rats exposed to variable stress during pregnancy. Dams (n=15/treatment) were subjected to several non-chemical stressors including intermittent noise, light, crowding, restraint, and altered circadian lighting, from gestational day (GD) 13 to 20. Tail blood was drawn on GD 12, 16 and 20 to verify a stress response. Corticosterone levels were not different between the stressed and non-stressed dams on GD12 but was significantly increased in stressed dams on GD 16 and 20 compared to controls. Dams gave birth on GD22 (postnatal day or PND 0). Several behavioral tests were used to assess the cognitive and behavioral phenotype of the offspring from PND 49 through 86, including the Morris water maze and novel object recognition. Male and female stressed offspring showed reduced reversal learning on the Morris water maze and stressed females did not show a significant preference for the novel object (57 ± 8%) while control females did (71 ± 3%). This indicates altered cognition in prenatally stressed offspring. On PND 91-92, offspring were necropsied and hippocampal tissue was collected. Genotypic outcomes of prenatal stress w

  15. Dietary restriction alters fine motor function in rats.

    Science.gov (United States)

    Smith, Lori K; Metz, Gerlinde A

    2005-08-07

    A number of standard behavioral tasks in animal research utilize food rewards for positive reinforcement. In order to enhance the motivation to participate in these tasks, animals are usually placed on a restricted diet. While dietary restriction (DR) has been shown to have beneficial effects on recovery after brain injury, life span and aging processes, it might also represent a stressor. Since stress can influence a broad range of behaviors, the purpose of this study was to assess whether DR may have similar effects on skilled movement. Adult male Long-Evans rats were trained and tested in a skilled reaching task both prior to and during a mild food restriction regimen that maintained their body weights at 90-95% of baseline weight for eight days. The observations revealed that DR decreased reaching success and increased the number of attempts to grasp a single food pellet. The animals appeared to be more frantic when attempting to reach for food pellets, and the time taken to reach for 20 pellets decreased following the onset of DR. A second experiment investigating behaviors that do not require food rewards, including a ladder rung walking task and an open field test, confirmed that rats on DR display deficits in skilled movements and are hyperactive. These findings suggest that results obtained in motor tasks using food rewards need to be interpreted with caution. The findings are discussed with respect to stress associated with DR.

  16. Action word understanding and overt motor behavior.

    Science.gov (United States)

    Dalla Volta, Riccardo; Gianelli, Claudia; Campione, Giovanna Cristina; Gentilucci, Maurizio

    2009-07-01

    Is the motor system involved in language processing? In order to clarify this issue, we carried out three behavioral experiments, using go-no-go and choice paradigms. In all the experiments, we used a semantic decision task with an early delivery of the go signal (during processing language material). Italian verbs expressing hand actions, foot actions or an abstract content served as stimuli. Participants executed intransitive (Experiment 1) or transitive (Experiment 2) actions with their right hand in response to the acoustic presentation of action-related verbs and refrained from responding to abstract verbs. The kinematics of the actions was slowed down by hand action-related verbs when compared with foot action-related verbs. In Experiment 3, hand-related and foot-related verbs were presented. Participants responded to hand-related and foot-related verbs with their hand and their foot (compatible condition) and in another block of trials they responded to hand-related and foot-related verbs with their foot and their hand (incompatible condition), respectively. In the compatible condition, the beginning of the action was faster, whereas the kinematics of the action was slower. The present findings suggest complete activation of verb-related motor programs during language processing. The data are discussed in support of the hypothesis that this complete activation is necessary requisite to understand the exact meaning of action words because goal and consequence of the actions are represented.

  17. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration.

    Science.gov (United States)

    Branchu, Julien; Boutry, Maxime; Sourd, Laura; Depp, Marine; Leone, Céline; Corriger, Alexandrine; Vallucci, Maeva; Esteves, Typhaine; Matusiak, Raphaël; Dumont, Magali; Muriel, Marie-Paule; Santorelli, Filippo M; Brice, Alexis; El Hachimi, Khalid Hamid; Stevanin, Giovanni; Darios, Frédéric

    2017-06-01

    Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  19. Cognition and behavior in motor neuron disease

    NARCIS (Netherlands)

    Raaphorst, J.

    2015-01-01

    Motor neuron disease (MND) is a devastating neurodegenerative disorder characterized by progressive motor neuron loss, leading to weakness of the muscles of arms and legs, bulbar and respiratory muscles. Depending on the involvement of the lower and the upper motor neuron, amyotrophic lateral

  20. Stimulation of the human motor cortex alters generalization patterns of motor learning.

    Science.gov (United States)

    Orban de Xivry, Jean-Jacques; Marko, Mollie K; Pekny, Sarah E; Pastor, Damien; Izawa, Jun; Celnik, Pablo; Shadmehr, Reza

    2011-05-11

    It has been hypothesized that the generalization patterns that accompany learning carry the signatures of the neural systems that are engaged in that learning. Reach adaptation in force fields has generalization patterns that suggest primary engagement of a neural system that encodes movements in the intrinsic coordinates of joints and muscles, and lesser engagement of a neural system that encodes movements in the extrinsic coordinates of the task. Among the cortical motor areas, the intrinsic coordinate system is most prominently represented in the primary sensorimotor cortices. Here, we used transcranial direct current stimulation (tDCS) to alter mechanisms of synaptic plasticity and found that when it was applied to the motor cortex, it increased generalization in intrinsic coordinates but not extrinsic coordinates. However, when tDCS was applied to the posterior parietal cortex, it had no effects on learning or generalization in the force field task. The results suggest that during force field adaptation, the component of learning that produces generalization in intrinsic coordinates depends on the plasticity in the sensorimotor cortex.

  1. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  2. Cognitive alterations in motor imagery process after left hemispheric ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available BACKGROUND: Motor imagery training is a promising rehabilitation strategy for stroke patients. However, few studies had focused on the neural mechanisms in time course of its cognitive process. This study investigated the cognitive alterations after left hemispheric ischemic stroke during motor imagery task. METHODOLOGY/PRINCIPAL FINDINGS: Eleven patients with ischemic stroke in left hemisphere and eleven age-matched control subjects participated in mental rotation task (MRT of hand pictures. Behavior performance, event-related potential (ERP and event-related (desynchronization (ERD/ERS in beta band were analyzed to investigate the cortical activation. We found that: (1 The response time increased with orientation angles in both groups, called "angle effect", however, stoke patients' responses were impaired with significantly longer response time and lower accuracy rate; (2 In early visual perceptual cognitive process, stroke patients showed hypo-activations in frontal and central brain areas in aspects of both P200 and ERD; (3 During mental rotation process, P300 amplitude in control subjects decreased while angle increased, called "amplitude modulation effect", which was not observed in stroke patients. Spatially, patients showed significant lateralization of P300 with activation only in contralesional (right parietal cortex while control subjects showed P300 in both parietal lobes. Stroke patients also showed an overall cortical hypo-activation of ERD during this sub-stage; (4 In the response sub-stage, control subjects showed higher ERD values with more activated cortical areas particularly in the right hemisphere while angle increased, named "angle effect", which was not observed in stroke patients. In addition, stroke patients showed significant lower ERD for affected hand (right response than that for unaffected hand. CONCLUSIONS/SIGNIFICANCE: Cortical activation was altered differently in each cognitive sub-stage of motor imagery after

  3. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  4. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    Science.gov (United States)

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  5. Developmental Exposure to Pesticides Alters Motor Activity and Coordination in Rats: Sex Differences and Underlying Mechanisms.

    Science.gov (United States)

    Gómez-Giménez, B; Felipo, V; Cabrera-Pastor, A; Agustí, A; Hernández-Rabaza, V; Llansola, M

    2018-02-01

    It has been proposed that developmental exposure to pesticides contributes to increasing prevalence of neurodevelopmental disorders in children, such as attention deficit with hyperactivity (ADHD) and to alterations in coordination skills. However, the mechanisms involved in these alterations remain unclear. We analyzed the effects on spontaneous motor activity and motor coordination of developmental exposure to a representative pesticide of each one of the four main chemical families: organophosphates (chlorpyrifos), carbamates (carbaryl), organochlorines (endosulfan), and pyrethroids (cypermethrin). Pesticides were administered once a day orally, in a sweet jelly, from gestational day 7 to post natal day 21. Spontaneous motor activity was assessed by an actimeter and motor coordination using the rotarod, when rats were adults. The effects were analyzed separately in males and females. Extracellular GABA in cerebellum and NMDA receptor subunits in hippocampus were assessed as possible underlying mechanisms of motor alterations. Motor coordination was impaired by developmental exposure to endosulfan, cypermethrin, and chlorpyrifos in females but not in males. The effect of endosulfan and cypermethrin would be due to increased extracellular GABA in cerebellum, which remains unaltered in male rats. Chlorpyrifos increased motor activity in males and females. Cypermethrin decreased motor activity mainly in males. In male rats, but not in females, expression of the NR2B subunit of NMDA receptor in hippocampus correlated with motor activity. These results show sex-specific effects of different pesticides on motor activity and coordination, associated with neurotransmission alterations. These data contribute to better understand the relationship between developmental exposure to the main pesticide families and motor disorders in children.

  6. Parallel alterations of functional connectivity during execution and imagination after motor imagery learning.

    Science.gov (United States)

    Zhang, Hang; Xu, Lele; Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that the potential value of MI learning in motor function rehabilitation

  7. Testosterone enhances risk tolerance without altering motor impulsivity in male rats.

    Science.gov (United States)

    Cooper, Sarah E; Goings, Sydney P; Kim, Jessica Y; Wood, Ruth I

    2014-02-01

    Anabolic-androgenic steroids (AAS) increase impulsive and uncontrolled aggressive ('roid rage) in humans and enhance agonistic behavior in animals. However, the underlying mechanisms for AAS-induced aggression remain unclear. Potential contributing elements include an increase risk-taking and/or motor impulsivity due to AAS. This study addressed the effects of chronic high-dose testosterone on risk tolerance using a risky decision-making task (RDT) and motor impulsivity with a go/no-go task in operant chambers. Male Long-Evans rats were treated for at least 4 weeks with testosterone (7.5mg/kg) or vehicle beginning in late adolescence. Testosterone was used because it is popular among human AAS users. In RDT testing, one lever was paired with delivery of a small "safe" food reward, while the other was paired with a large "risky" reward associated with an increasing risk of footshock (0%, 25%, 50%, 75%, 100%) in successive test blocks. Three shock intensities were used: 1.0, 1.2, and 1.4mA/kg. As shock intensity and risk of shock increased, preference for the lever signifying a large reward significantly declined for both vehicle- and testosterone-treated rats (ptestosterone-treated rats showed greater preference for the large reward, compared to vehicle-treated controls. Increased preference for the large reward, despite risk of footshock, is consistent with increased risk tolerance. In go/no-go testing, rats were trained to press a single lever if the go cue was presented (stimulus light) or to refrain from pressing during the no-go cue (tone). There was no effect of testosterone on pre-cue responses, or performance in go and no-go trials. These results suggest that AAS may increase risk-tolerance without altering motor impulsivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Evaluation of the motor behavior in rats with cortical ablation].

    Science.gov (United States)

    Gonzalez-Pina, R; Bueno-Nava, A; Alfaro-Rodriguez, A; Durand-Rivera, J A

    The cortical ablation has been used as an experimental model in order to study the basic mechanisms of functional recovery. However, there is not data concerning to the injury effects on the motor and somatosensorial behavioral manifestations that allow us to categorize such sequels as a hemiplegic model. We used 35 male Wistar rats (280-300 g) allocated in two groups: control (n = 17) and brain injured by cortical ablation (n = 18). Previously trained, basal recordings of the footprint and motor and somatosensorial assessment were performed in the rats before surgery. The behavioral tests were performed again 6 hours after surgery and the spontaneous ambulatory activity was also evaluated. It was observed a decrease in the stride's length and an increase in the stride's angle and in the motor deficit, while the somatosensorial assessment and spontaneous ambulatory activity were not affected. These findings are discussed in function of the motor features of the hemiparetic sequels in humans.

  9. Differential motor alterations in children with three types of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Adrián Poblano

    2014-11-01

    Full Text Available Objective To determine frequency of motor alterations in children with attention deficit hyperactivity disorder (ADHD. Method We evaluated 19 children aged 7-12 years with ADHD classified in three sub-types: Combined (ADHD-C, with Inattention (ADHD-I, and with Hyperactivity (ADHD-H. Controls were age- and gender matched healthy children. We utilized Bruininks-Oseretsky Test of Motor Proficiency (BOTMP for measuring motor skills. Results We observed differences between children with ADHD and controls in BOTMP general score and in static coordination, dynamic general- and hand- coordination, and in synkinetic movements. We also found differences in dynamic hand coordination between controls and children with ADHD-C; in dynamic general coordination between controls and children with ADHD-H; and in frequency of synkinetic movements between controls and children with ADHD-H. Conclusion Children with ADHD with a major degree of hyperactivity showed greater frequency of motor alterations.

  10. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    behaviors from a premotor network with recurrent connections, which is operating in the irregular regime. Our experimental findings are in agreement with studies from the cortex and the balanced model. It is therefore relevant to study the population activity in the spinal cord for traits from cortex...... (Buzsáki and Mizuseki, 2014). Roxin et al. (2011) detailed the firing rate distribution in networks in the balanced regime, and found it to be similar to a lognormal distribution and describing the data from the population studies very well. Our experimental observations and analysis are in agreement......In biological networks, millions of neurons organize themselves from microscopic noisy individuals to robust macroscopic entities. These entities are capable of producing higher functions like sensory processing, decision-making, and elaborate behavioral responses. Every aspect of these behaviors...

  11. Motor effort alters changes of mind in sensorimotor decision making.

    Directory of Open Access Journals (Sweden)

    Diana Burk

    Full Text Available After committing to an action, a decision-maker can change their mind to revise the action. Such changes of mind can even occur when the stream of information that led to the action is curtailed at movement onset. This is explained by the time delays in sensory processing and motor planning which lead to a component at the end of the sensory stream that can only be processed after initiation. Such post-initiation processing can explain the pattern of changes of mind by asserting an accumulation of additional evidence to a criterion level, termed change-of-mind bound. Here we test the hypothesis that physical effort associated with the movement required to change one's mind affects the level of the change-of-mind bound and the time for post-initiation deliberation. We varied the effort required to change from one choice target to another in a reaching movement by varying the geometry of the choice targets or by applying a force field between the targets. We show that there is a reduction in the frequency of change of mind when the separation of the choice targets would require a larger excursion of the hand from the initial to the opposite choice. The reduction is best explained by an increase in the evidence required for changes of mind and a reduced time period of integration after the initial decision. Thus the criteria to revise an initial choice is sensitive to energetic costs.

  12. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    Science.gov (United States)

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  13. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    Science.gov (United States)

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  14. Altered synaptic plasticity in Tourette's syndrome and its relationship to motor skill learning.

    Directory of Open Access Journals (Sweden)

    Valerie Cathérine Brandt

    Full Text Available Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18-39 and 15 healthy controls (12 male; age 18-33. Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover

  15. Altered Eating Behaviors in Female Victims of Intimate Partner Violence.

    Science.gov (United States)

    Wong, Susan P Y; Chang, Judy C

    2016-12-01

    Little is known about altered eating behaviors that are associated with the experience of intimate partner violence (IPV) victimization. Our aim was to explore the experiences and perspectives of IPV victims regarding their eating behaviors and their attitudes toward and use of food. We conducted focus groups and individual interviews with 25 IPV victims identified at a domestic violence agency and asked them about their eating behaviors and how, if at all, these behaviors related to their experience of IPV. Qualitative analysis of the transcribed encounters identified themes explicating the relationship between their eating behaviors and experiences of IPV. All women described altered eating behaviors related to IPV that were categorized into several major themes: (a) somatization (victims experience significant somatic symptoms as a result of abuse); (b) avoiding abuse (victims modify their eating behaviors to avoid abuse); (c) coping (victims use food to handle the psychological effects of abuse); (d) self-harm (victims use food to hurt themselves as a reaction to the abuse); and (e) challenging abusive partners (victims use their eating behaviors to retaliate against their abusers). IPV can provoke altered eating behaviors in victims that may be harmful, comforting, or a source of strength in their abusive relationships. Understanding the complex relationship between IPV and victims' altered eating behaviors is important in promoting healthy eating among victims. © The Author(s) 2015.

  16. Causal Role of Motor Simulation in Turn-Taking Behavior.

    Science.gov (United States)

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  17. Physiological Markers of Motor Inhibition during Human Behavior.

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B

    2017-04-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats.

    Science.gov (United States)

    Thomas, Jennifer D; Idrus, Nirelia M; Monk, Bradley R; Dominguez, Hector D

    2010-10-01

    Prenatal alcohol exposure can alter physical and behavioral development, leading to a range of fetal alcohol spectrum disorders. Despite warning labels, pregnant women continue to drink alcohol, creating a need to identify effective interventions to reduce the severity of alcohol's teratogenic effects. Choline is an essential nutrient that influences brain and behavioral development. Recent studies indicate that choline supplementation can reduce the teratogenic effects of developmental alcohol exposure. The present study examined whether choline supplementation during prenatal ethanol treatment could mitigate the adverse effects of ethanol on behavioral development. Pregnant Sprague-Dawley rats were intubated with 6 g/kg/day ethanol in a binge-like manner from gestational days 5-20; pair-fed and ad libitum chow controls were included. During treatment, subjects from each group were intubated with either 250 mg/kg/day choline chloride or vehicle. Spontaneous alternation, parallel bar motor coordination, Morris water maze, and spatial working memory were assessed in male and female offspring. Subjects prenatally exposed to alcohol exhibited delayed development of spontaneous alternation behavior and deficits on the working memory version of the Morris water maze during adulthood, effects that were mitigated with prenatal choline supplementation. Neither alcohol nor choline influenced performance on the motor coordination task. These data indicate that choline supplementation during prenatal alcohol exposure may reduce the severity of fetal alcohol effects, particularly on alterations in tasks that require behavioral flexibility. These findings have important implications for children of women who drink alcohol during pregnancy. © 2010 Wiley-Liss, Inc.

  19. Dissociating motivational direction and affective valence: specific emotions alter central motor processes.

    Science.gov (United States)

    Coombes, Stephen A; Cauraugh, James H; Janelle, Christopher M

    2007-11-01

    We aimed to clarify the relation between affective valence and motivational direction by specifying how central and peripheral components of extension movements are altered according to specific unpleasant affective states. As predicted, premotor reaction time was quicker for extension movements initiated during exposure to attack than for extension movements initiated during exposure to all other valence categories (mutilation, erotic couples, opposite-sex nudes, neutral humans, household objects, blank). Exposure to erotic couples and mutilations yielded greater peak force than exposure to images of attack, neutral humans, and household objects. Finally, motor reaction time and peak electromyographic amplitude were not altered by valence. These findings indicate that unpleasant states do not unilaterally prime withdrawal movements, and that the quick execution of extension movements during exposure to threatening images is due to rapid premotor, rather than motor, reaction time. Collectively, our findings support the call for dissociating motivational direction and affective valence.

  20. Parathion alters incubation behavior of laughing gulls

    Science.gov (United States)

    White, D.H.; Mitchell, C.A.; Hill, E.F.

    1983-01-01

    One member of each pair of incubating laughing gulls at 9 nests was trapped, orally dosed with either 6 mg/kg parathion in corn oil or corn oil alone, and marked about the neck with red dye. Each nest was marked with a numbered stake and the treatment was recorded. A pilot study with captive laughing gulls had determined the proper dosage of parathion that would significantly inhibit their brain AChE activity (about 50% of normal) without overt signs of poisoning. After dosing, birds were released and the nests were observed for 2 1/2 days from a blind on the nesting island. The activities of the birds at each marked nest were recorded at 10-minute intervals. Results indicated that on the day of treatment there was no difference (P greater than 0.05, Chi-square test) in the proportion of time spent on the nest between treated and control birds. However, birds dosed with 6 mg/kg parathion spent significantly less time incubating on days 2 and 3 than did birds receiving only corn oil. By noon on the third day, sharing of nest duties between pair members in the treated group had approached normal, indicating recovery from parathion intoxication. These findings suggest that sublethal exposure of nesting birds to an organophosphate (OP) insecticide, such as parathion, may result in decreased nest attentiveness, thereby making the clutch more susceptible to predation or egg failure. Behavioral changes caused by sublethal OP exposure could be especially detrimental in avian species where only one pair member incubates or where both members are exposed in species sharing nest duties.

  1. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.

    Science.gov (United States)

    Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R

    2017-07-01

    Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1  week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.

  2. Opposite Synaptic Alterations at the Neuromuscular Junction in an ALS Mouse Model: When Motor Units Matter.

    Science.gov (United States)

    Tremblay, Elsa; Martineau, Éric; Robitaille, Richard

    2017-09-13

    Denervation of the neuromuscular junction (NMJ) precedes the loss of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). ALS is characterized by a motor unit (MU)-dependent vulnerability where MNs with fast-fatigable (FF) characteristics are lost first, followed by fast fatigue-resistant (FR) and slow (S) MNs. However, changes in NMJ properties as a function of MU types remain debated. We hypothesized that NMJ synaptic functions would be altered precociously in an MU-specific manner, before structural alterations of the NMJ. Synaptic transmission and morphological changes of NMJs have been explored in two nerve-muscle preparations of male SOD1 G37R mice and their wild-type (WT) littermates: the soleus (S and FR MU); and the extensor digitorum longus (FF MU). S, FR, and FF NMJs of WT mice showed distinct synaptic properties from which we build an MU synaptic profile (MUSP) that reports MU-dependent NMJ synaptic properties. At postnatal day 180 (P180), FF and S NMJs of SOD1 already showed, respectively, lower and higher quantal content compared with WT mice, before signs of MN death and before NMJ morphological alterations. Changes persisted in both muscles until preonset (P380), while denervation was frequent in the mutant mouse. MN death was evident at this stage. Additional changes occurred at clinical disease onset (P450) for S and FR MU. As a whole, our results reveal a reversed MUSP in SOD1 mutants and highlight MU-specific synaptic changes occurring in a precise temporal sequence. Importantly, changes in synaptic properties appear to be good predictors of vulnerability to neurodegeneration. SIGNIFICANCE STATEMENT The inadequate excitability of motor neurons and their output, the neuromuscular junctions (NMJs), has been considered a key factor in the detrimental outcome of the motor function in amyotrophic lateral sclerosis. However, a conundrum persists at the NMJ whereby persistent but incoherent opposite neurotransmission changes have been reported

  3. Mathematical modeling of bacterial track-altering motors: Track cleaving through burnt-bridge ratchets.

    Science.gov (United States)

    Shtylla, Blerta; Keener, James P

    2015-04-01

    The generation of directed movement of cellular components frequently requires the rectification of Brownian motion. Molecular motor enzymes that use ATP to walk on filamentous tracks are typically involved in cell transport, however, a track-altering motor can arise when an enzyme interacts with and alters its track. In Caulobacter crescentus and other bacteria, an active DNA partitioning (Par) apparatus is employed to segregate replicated chromosome regions to specific locations in dividing cells. The Par apparatus is composed of two proteins: ParA, an ATPase that can form polymeric structures on the nucleoid, and ParB, a protein that can bind and destabilize ParA structures. It has been proposed that the ParB-mediated alteration of ParA structures could be responsible for generating the directed movement of DNA during bacterial division. How precisely these actions are coordinated and translated into directed movement is not clear. In this paper we consider the C. crescentus segregation apparatus as an example of a track altering motor that operates using a so-called burnt-bridge mechanism. We develop and analyze mathematical models that examine how diffusion and ATP-hydrolysis-mediated monomer removal (or cleaving) can be combined to generate directed movement. Using a mean first passage approach, we analytically calculate the effective ParA track-cleaving velocities, effective diffusion coefficient, and other higher moments for the movement a ParB protein cluster that breaks monomers away at random locations on a single ParA track. Our model results indicate that cleaving velocities and effective diffusion constants are sensitive to ParB-induced ATP hydrolysis rates. Our analytical results are in excellent agreement with stochastic simulation results.

  4. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    Science.gov (United States)

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  5. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  6. Alteration behavior of 67 years old tunnel lining concrete

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Hasegawa, Hiroshi; Nakane, Sunao

    1992-01-01

    The objective of this study is to collect data on alteration of concrete under natural environmental conditions. Cementitious materials are examined for utilization in radioactive waste disposal with expectations of long life. To develop a predictive model of alteration behavior, it is important to investigate the alteration of concrete under various natural conditions for a long period of time. Taking into account environmental conditions anticipated for radioactive waste repositories, concrete cores are drilled from tunnel lining concrete 67 years in age. The investigations are conducted from chemical as well as physical points of view using various methods. The concrete examined is found to have been insignificantly altered, maintaining the strength and degree of impermeability hoped for. (orig.)

  7. Altered Rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy.

    Directory of Open Access Journals (Sweden)

    Sam M Doesburg

    Full Text Available Epilepsy is associated with an abnormal expression of neural oscillations and their synchronization across brain regions. Oscillatory brain activation and synchronization also play an important role in cognition, perception and motor control. Childhood epilepsy is associated with a variety of cognitive and motor deficits, but the relationship between altered functional brain responses in various frequency ranges and functional impairment in these children remains poorly understood. We investigated functional magnetoencephalographic (MEG responses from motor cortex in multiple functionally relevant frequency bands following median nerve stimulation in twelve children with epilepsy, including four children with motor impairments. We demonstrated that children with motor impairments exhibit an excessive gamma-band response from Rolandic cortex, and that the magnitude of this Rolandic gamma response is negatively associated with motor function. Abnormal responses from motor cortex were also associated with ictal desynchronization of oscillations within Rolandic cortex measured using intracranial EEG (iEEG. These results provide the evidence that ictal disruption of motor networks is associated with an altered functional response from motor cortex, which is in turn associated with motor impairment.

  8. Alteration in forward model prediction of sensory outcome of motor action in Focal Hand Dystonia

    Directory of Open Access Journals (Sweden)

    André eLee

    2013-07-01

    Full Text Available Focal hand dystonia in musicians is a movement disorder affecting highly trained movements. Rather than being a pure motor disorder related to movement execution only, movement planning, error prediction and sensorimotor integration are also impaired. Internal models, of which two types, forward and inverse models have been described and most likely processed in the cerebellum, are known to be involved in these tasks. Recent results indicate that the cerebellum may be involved in the pathophysiology of focal dystonia. Thus the aim of our study was to investigate whether an internal model deficit plays a role in focal dystonia. We focused on the forward model, which predicts sensory consequences of motor commands and allows the discrimination between external sensory input and input deriving from motor action. We investigated 19 patients, aged 19-59 and 19 healthy musicians aged 19-36 as controls. Tactile stimuli were applied to fingers II–V of both hands by the experimenter or the patient. After each stimulus the participant rated the stimulus-intensity on a scale between 0 (no sensation and 1 (maximal intensity. The difference of perceived intensity between self- & externally applied stimuli was then calculated for each finger. For assessing differences between patients and controls we performed a cluster analysis of the affected hand and the corresponding hand of the controls using the fingers II–V as variables in a 4-dimensional hyperspace (chance level=0.5. Using a cluster analysis, we found a correct classification of the affected finger in 78,9%-94.7%. There was no difference between patients and healthy controls of the absolute value of the perceived stimulus intensity. Our results suggest an altered forward model function in focal hand dystonia. It has the potential of suggesting a neural correlate within the cerebellum and of helping integrate findings with regard to altered sensorimotor processing and altered prediction in FD in a

  9. Analysis of the motor behavior of a patient submitted to radical mastectomy - doi:10.5020/18061230.2009.p61

    Directory of Open Access Journals (Sweden)

    Lucas Flocke Hack

    2012-01-01

    Full Text Available Objective: To analyze the motor behavior of a patient in late postoperative of radical mastectomy during the accomplishment of some daily life activities, her gait and her body posture. Methods: This was an observational and descriptive case report study developed in an academic institution at Novo Hamburgo/RS, Brazil. By means of video recording, the accomplishment of daily life activities, the gait and body posture of a mastectomy patient were evaluated. Results: The most important alterations found were: increased base of support, torso swinging on gait, “S” shape scoliosis, accentuation of the spine physiologic curves and compensatory attitudes for reaching greater amplitudes of arm elevation at the same side of the surgery. Conclusion: We conclude that motor behavior alterations after surgery of radical mastectomy can be reasonably minimized, remaining a small reduction of movement amplitude and of muscular strength on upper limb and torso.

  10. Adaptive coding of orofacial and speech actions in motor and somatosensory spaces with and without overt motor behavior.

    Science.gov (United States)

    Sato, Marc; Vilain, Coriandre; Lamalle, Laurent; Grabski, Krystyna

    2015-02-01

    Studies of speech motor control suggest that articulatory and phonemic goals are defined in multidimensional motor, somatosensory, and auditory spaces. To test whether motor simulation might rely on sensory-motor coding common with those for motor execution, we used a repetition suppression (RS) paradigm while measuring neural activity with sparse sampling fMRI during repeated overt and covert orofacial and speech actions. RS refers to the phenomenon that repeated stimuli or motor acts lead to decreased activity in specific neural populations and are associated with enhanced adaptive learning related to the repeated stimulus attributes. Common suppressed neural responses were observed in motor and posterior parietal regions in the achievement of both repeated overt and covert orofacial and speech actions, including the left premotor cortex and inferior frontal gyrus, the superior parietal cortex and adjacent intraprietal sulcus, and the left IC and the SMA. Interestingly, reduced activity of the auditory cortex was observed during overt but not covert speech production, a finding likely reflecting a motor rather an auditory imagery strategy by the participants. By providing evidence for adaptive changes in premotor and associative somatosensory brain areas, the observed RS suggests online state coding of both orofacial and speech actions in somatosensory and motor spaces with and without motor behavior and sensory feedback.

  11. Frontal Motor Cortex Activity During Reactive Control Is Associated With Past Suicidal Behavior in Recent-Onset Schizophrenia.

    Science.gov (United States)

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy N; Carter, Cameron S

    2015-01-01

    Suicide is prevalent in schizophrenia (SZ), yet the neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in SZ, including those that support reactive control, and PFC changes are observed in postmortem studies of heterogeneous suicide victims. We tested whether history of suicide attempt is associated with altered frontal motor cortex activity during reactive control processes. We evaluated 17 patients with recent onset of DSM-IV-TR-defined SZ using the Columbia Suicide Severity Rating Scale and functional magnetic resonance imaging during Stroop task performance. Group-level regression models relating past suicidal behavior to frontal activation controlled for depression, psychosis, and impulsivity. Past suicidal behavior was associated with relatively higher activation in the left-hemisphere supplementary motor area (SMA), pre-SMA, premotor cortex, and dorsolateral PFC, all ipsilateral to the active primary motor cortex. This study provides unique evidence that suicidal behavior in patients with recent-onset SZ directly relates to frontal motor cortex activity during reactive control, in a pattern reciprocal to the relationship with proactive control found previously. Further work should address how frontal-based control functions change with risk over time, and their potential utility as a biomarker for interventions to mitigate suicide risk in SZ.

  12. Children with behavioral problems and motor problems have a worse neurological condition than children with behavioral problems only

    NARCIS (Netherlands)

    Peters, Lieke H. J.; Maathuis, Carel G. B.; Hadders-Algra, Mijna

    2014-01-01

    Background: Some evidence suggests that children with specific behavioral problems are at risk for motor problems. It is unclear whether neurological condition plays a role in the propensity of children with behavioral problems to develop Motor problems. Aims: To examine the relation between

  13. Mechanism of Cooperative Behavior in Systems of Slow and Fast Molecular Motors

    Science.gov (United States)

    Larson, Adam G.; Landahl, Eric C.; Rice, Sarah E.

    2009-01-01

    Summary Two recent theoretical advances have described cargo transport by multiple identical motors and by multiple oppositely directed, but otherwise identical motors [1, 2]. Here we combine a similar theoretical approach with a simple experiment to describe the behavior of a system comprised of slow and fast molecular motors having the same directionality. We observed the movement of microtubules by mixtures of slow and fast kinesin motors attached to a glass coverslip in a classic sliding filament assay. The motors are identical, except that the slow ones contain five point mutations that collectively reduce their velocity ∼15-fold without compromising maximal ATPase activity. Our results indicate that a small fraction of fast motors are able to accelerate the dissociation of slow motors from microtubules. Because of this, a sharp, highly cooperative transition occurs from slow to fast microtubule movement as the relative number of fast motors in the assay is increased. Microtubules move at half-maximal velocity when only 15% of the motors in the assay are fast. Our model indicates that this behavior depends primarily on the relative motor velocities and the asymmetry between their forward and backward dissociation forces. It weakly depends on the number of motors and their processivity. We predict that movement of cargoes bound to two types of motors having very different velocities will be dominated by one or the other motor. Therefore, cargoes can potentially undergo abrupt changes in movement in response to regulatory mechanisms acting on only a small fraction of motors. PMID:19506764

  14. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Costa, Lidiane M; Pedroso, Taíse F; Fonseca, Mariana M; Bernardi, Jamile S; Fiuza, Tiago L; Pereira, Maria E

    2016-10-01

    The aim of this work was to investigate the effects of HgCl 2 exposure in the doses of 0, 10 and 50μg Hg 2+ /mL in drinking water during pregnancy on tissue essential metal homeostasis, as well as the effects of HgCl 2 exposure in utero and breast milk on behavioral tasks. Pregnant rats exposed to both inorganic mercury doses presented high renal Hg content and an increase in renal Cu and hepatic Zn levels. Mercury exposure increased fecal Hg and essential metal contents. Pups exposed to inorganic Hg presented no alterations in essential metal homeostasis or in behavioral task markers of motor function. In conclusion, this work showed that the physiologic pregnancy and lactation states protected the offspring from adverse effects of low doses of Hg 2+ . This protection is likely to be related to the endogenous scavenger molecule, metallothionein, which may form an inert complex with Hg 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.

  15. SLC39A14 deficiency alters manganese homeostasis and excretion resulting in brain manganese accumulation and motor deficits in mice.

    Science.gov (United States)

    Jenkitkasemwong, Supak; Akinyode, Adenike; Paulus, Elizabeth; Weiskirchen, Ralf; Hojyo, Shintaro; Fukada, Toshiyuki; Giraldo, Genesys; Schrier, Jessica; Garcia, Armin; Janus, Christopher; Giasson, Benoit; Knutson, Mitchell D

    2018-02-20

    Solute carrier family 39, member 14 (SLC39A14) is a transmembrane transporter that can mediate the cellular uptake of zinc, iron, and manganese (Mn). Studies of Slc39a14 knockout ( Slc39a14 -/- ) mice have documented that SLC39A14 is required for systemic growth, hepatic zinc uptake during inflammation, and iron loading of the liver in iron overload. The normal physiological roles of SLC39A14, however, remain incompletely characterized. Here, we report that Slc39a14 -/- mice spontaneously display dramatic alterations in tissue Mn concentrations, suggesting that Mn is a main physiological substrate for SLC39A14. Specifically, Slc39a14 -/- mice have abnormally low Mn levels in the liver coupled with markedly elevated Mn concentrations in blood and most other organs, especially the brain and bone. Radiotracer studies using 54 Mn reveal that Slc39a14 -/- mice have impaired Mn uptake by the liver and pancreas and reduced gastrointestinal Mn excretion. In the brain of Slc39a14 -/- mice, Mn accumulated in the pons and basal ganglia, including the globus pallidus, a region susceptible to Mn-related neurotoxicity. Brain Mn accumulation in Slc39a14 -/- mice was associated with locomotor impairments, as assessed by various behavioral tests. Although a low-Mn diet started at weaning was able to reverse brain Mn accumulation in Slc39a14 -/- mice, it did not correct their motor deficits. We conclude that SLC39A14 is essential for efficient Mn uptake by the liver and pancreas, and its deficiency results in impaired Mn excretion and accumulation of the metal in other tissues. The inability of Mn depletion to correct the motor deficits in Slc39a14 -/- mice suggests that the motor impairments represent lasting effects of early-life Mn exposure.

  16. Mechanism of Cooperative Behavior in Systems of Slow and Fast Molecular Motors

    OpenAIRE

    Larson, Adam G.; Landahl, Eric C.; Rice, Sarah E.

    2009-01-01

    Two recent theoretical advances have described cargo transport by multiple identical motors and by multiple oppositely directed, but otherwise identical motors [1, 2]. Here we combine a similar theoretical approach with a simple experiment to describe the behavior of a system comprised of slow and fast molecular motors having the same directionality. We observed the movement of microtubules by mixtures of slow and fast kinesin motors attached to a glass coverslip in a classic sliding filament...

  17. Alterations in offspring behavior induced by chronic prenatal cocaine dosing.

    Science.gov (United States)

    Smith, R F; Mattran, K M; Kurkjian, M F; Kurtz, S L

    1989-01-01

    Sperm-positive female Long-Evans hooded rats were dosed subcutaneously with 10 mg/kg/day cocaine or an equal volume of vehicle (0.9% sterile saline) from gestation day 4 (GD4) through GD18. Offspring were assessed for development of negative geotaxis, righting reflex, spontaneous alternation, and open field activity, and for adult behaviors including DRL-20 acquisition, water maze, visual discrimination, barbiturate sleep time, shuttlebox avoidance, footshock sensitivity, and tail flick latency. Cocaine dosing produced no significant effects on dam weight gain, any measure of litter size and weight, or early postnatal behavioral tests, but there were significant drug effects on development of spontaneous alternation, development of open field activity, DRL-20 acquisition, water maze performance, tail flick, and footshock sensitivity. These data suggest that chronic administration of a modest dose of cocaine during gestation in the rat alters a number of behaviors in the offspring.

  18. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    Directory of Open Access Journals (Sweden)

    Hideki Nakagawa

    2012-08-01

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P0.05. Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05. This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05. Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  19. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana.

    Science.gov (United States)

    Nakagawa, Hideki; Nishida, Yuuya

    2012-11-15

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r(2) = 0.5741, P0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r(2) = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r(2) = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  20. Motor Circuit-Specific Burst Patterns Drive Different Muscle and Behavior Patterns

    Science.gov (United States)

    Diehl, Florian; White, Rachel S.; Stein, Wolfgang

    2013-01-01

    In the isolated CNS, different modulatory inputs can enable one motor network to generate multiple output patterns. Thus far, however, few studies have established whether different modulatory inputs also enable a defined network to drive distinct muscle and movement patterns in vivo, much as they enable these distinctions in behavioral studies. This possibility is not a foregone conclusion, because additional influences present in vivo (e.g., sensory feedback, hormonal modulation) could alter the motor patterns. Additionally, rhythmic neuronal activity can be transformed into sustained muscle contractions, particularly in systems with slow muscle dynamics, as in the crab (Cancer borealis) stomatogastric system used here. We assessed whether two different versions of the biphasic (protraction, retraction) gastric mill (chewing) rhythm, triggered in the isolated stomatogastric system by the modulatory ventral cardiac neurons (VCNs) and postoesophageal commissure (POC) neurons, drive different muscle and movement patterns. One distinction between these rhythms is that the lateral gastric (LG) protractor motor neuron generates tonic bursts during the VCN rhythm, whereas its POC-rhythm bursts are divided into fast, rhythmic burstlets. Intracellular muscle fiber recordings and tension measurements show that the LG-innervated muscles retain the distinct VCN-LG and POC-LG neuron burst structures. Moreover, endoscope video recordings in vivo, during VCN-triggered and POC-triggered chewing, show that the lateral teeth protraction movements exhibit the same, distinct protraction patterns generated by LG in the isolated nervous system. Thus, the multifunctional nature of an identified motor network in the isolated CNS can be preserved in vivo, where it drives different muscle activity and movement patterns. PMID:23864688

  1. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Filipa I Baptista

    Full Text Available Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM or mannitol (osmotic control; 25 mM plus 25 mM glucose for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal

  2. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.

    Science.gov (United States)

    Trevino, Michael A; Herda, Trent J; Cooper, Michael A

    2014-09-06

    Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike

  3. Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice.

    Directory of Open Access Journals (Sweden)

    Fanny Mochel

    Full Text Available The pattern of cerebral dopamine (DA abnormalities in Huntington disease (HD is complex, as reflected by the variable clinical benefit of both DA antagonists and agonists in treating HD symptoms. In addition, little is known about serotonin metabolism despite the early occurrence of anxiety and depression in HD. Post-mortem enzymatic changes are likely to interfere with the in vivo profile of biogenic amines. Hence, in order to reliably characterize the regional and chronological profile of brain neurotransmitters in a HD mouse model, we used a microwave fixation system that preserves in vivo concentrations of dopaminergic and serotoninergic amines. DA was decreased in the striatum of R6/2 mice at 8 and 12 weeks of age while DA metabolites, 3-methoxytyramine and homovanillic acid, were already significantly reduced in 4-week-old motorically asymptomatic R6/2 mice. In the striatum, hippocampus and frontal cortex of 4, 8 and 12-week-old R6/2 mice, serotonin and its metabolite 5-hydroxyindoleacetic acid were significantly decreased in association with a decreased turnover of serotonin. In addition, automated high-resolution behavioural analyses displayed stress-like behaviours such as jumping and grooming and altered spatial learning in R6/2 mice at age 4 and 6 weeks respectively. Therefore, we describe the earliest alterations of DA and serotonin metabolism in a HD murine model. Our findings likely underpin the neuropsychological symptoms at time of disease onset in HD.

  4. MicroRNA-128 governs neuronal excitability and motor behavior in mice

    DEFF Research Database (Denmark)

    Tan, Chan Lek; Plotkin, Joshua L.; Venø, Morten Trillingsgaard

    2013-01-01

    The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks...... and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor...... activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson's-like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy...

  5. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Bonett, Austin H. [IEEE, (United States)

    2001-09-01

    The energy efficiency is one of the main parameters in the design of the industrial motors of general purpose; nevertheless, it is avoided that it is at the cost of the reliability or to the global performance of the motor. Exist user groups of this equipment that consider that, in the search of a greater efficiency, the useful life period is diminished and the characteristics of operation of the motor are affected. During the past last years, the author has studied the aspects of quality and reliability, as well as the operative advantages of the high efficiency motors and written down the increasing interest for these aspects. Also he has detected that a great number of users has realized that, additionally to the obvious energy saving, the efficient motor offers a greater reliability and a longer useful life in most of the industrial applications. The objective of this article is to present the differences in the quality levels, reliability and operation parameters of high efficiency squirrel cage type electrical motors with those of the motors of standard manufacture. [Spanish] La eficiencia energetica es uno de los principales parametros en el diseno de los motores industriales de proposito general; sin embargo, se evita que sea a costa de la confiabilidad o del desempeno global del motor. Existen grupos de usuarios de estos equipos que consideran que, en la busqueda de una mayor eficiencia, se disminuye el periodo de vida util y se afectan las caracteristicas de operacion del motor. Durante los ultimos anos, el autor ha estudiado los aspectos de calidad y confiabilidad, asi como las ventajas operativas de los motores de alta eficiencia y anotado el incremento del interes por estos aspectos. Tambien ha detectado que un gran numero de usuarios se ha dado cuenta que, adicionalmente a los obvios ahorros de energia, el motor eficiente ofrece una mayor confiabilidad y una vida util mas larga en la mayoria de las aplicaciones industriales. El objetivo de este

  6. Frictional Behavior of Altered Basement Approaching the Nankai Trough

    Science.gov (United States)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.

    2017-12-01

    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in

  7. Brief rewarming blunts hypothermia-induced alterations in sensation, motor drive and cognition

    Directory of Open Access Journals (Sweden)

    Marius Brazaitis

    2016-12-01

    hypothermia-induced alterations in neural drive transmission (4.3±0.5 versus 3.4±0.8 mV H-reflex and 4.9±0.2 versus 4.4±0.4 mV V-wave, P<0.05, which increased central fatigue during a 2-min maximum load (P<0.05. Furthermore, only in brief warm water rewarming cerebral alterations were restored to the control level and it was indicated by shortened reaction times (P<0.05.Conclusions: Brief rewarming in warm water rather than the same duration rewarming in thermoneutral environment blunted the hypothermia-induced alterations for thermoregulation, sensation, motor drive and cognition, despite the fact that rectal and deep muscle temperature remained lowered.

  8. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Walters, Jennifer L.; Lansdell, Theresa A.; Lookingland, Keith J.; Baker, Lisa E.

    2015-01-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  9. Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture.

    Science.gov (United States)

    Muhammad, Arif; Kolb, Bryan

    2011-07-11

    Based on the findings of postnatal tactile stimulation (TS), a favorable experience in rats, the present study examined the influence of prenatal TS on juvenile behavior, adult amphetamine (AMPH) sensitization, and structural alteration in the prefrontal cortex (PFC) and the striatum. Female rats received TS through a baby hair brush throughout pregnancy, and the pups born were tested for open field locomotion, elevated plus maze (EPM), novel object recognition (NOR), and play fighting behaviors. Development and persistence of drug-induced behavioral sensitization in adults were tested by repeated AMPH administration and a challenge, respectively. Structural plasticity in the brain was assessed from the prefrontal cortical thickness and striatum size from serial coronal sections. The results indicate that TS females showed enhanced exploration in the open field. TS decreased the frequency of playful attacks whereas the response to face or evade an attack was not affected. Anxiety-like behavior and cognitive performance were not influenced by TS. AMPH administration resulted in gradual increase in locomotor activity (i.e., behavioral sensitization) that persisted at least for 2 weeks. However, both male and female TS rats exhibited attenuated AMPH sensitization compared to sex-matched controls. Furthermore, the drug-associated alteration in the prefrontal cortical thickness and striatum size observed in controls were prevented by TS experience. In summary, TS during prenatal development modified juvenile behavior, attenuated drug-induced behavioral sensitization in adulthood, and reorganized brain regions implicated in drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  11. Relative contribution of different altered motor unit control to muscle weakness in stroke: a simulation study

    Science.gov (United States)

    Shin, Henry; Suresh, Nina L.; Zev Rymer, William; Hu, Xiaogang

    2018-02-01

    Objective. Chronic muscle weakness impacts the majority of individuals after a stroke. The origins of this hemiparesis is multifaceted, and an altered spinal control of the motor unit (MU) pool can lead to muscle weakness. However, the relative contribution of different MU recruitment and discharge organization is not well understood. In this study, we sought to examine these different effects by utilizing a MU simulation with variations set to mimic the changes of MU control in stroke. Approach. Using a well-established model of the MU pool, this study quantified the changes in force output caused by changes in MU recruitment range and recruitment order, as well as MU firing rate organization at the population level. We additionally expanded the original model to include a fatigue component, which variably decreased the output force with increasing length of contraction. Differences in the force output at both the peak and fatigued time points across different excitation levels were quantified and compared across different sets of MU parameters. Main results. Across the different simulation parameters, we found that the main driving factor of the reduced force output was due to the compressed range of MU recruitment. Recruitment compression caused a decrease in total force across all excitation levels. Additionally, a compression of the range of MU firing rates also demonstrated a decrease in the force output mainly at the higher excitation levels. Lastly, changes to the recruitment order of MUs appeared to minimally impact the force output. Significance. We found that altered control of MUs alone, as simulated in this study, can lead to a substantial reduction in muscle force generation in stroke survivors. These findings may provide valuable insight for both clinicians and researchers in prescribing and developing different types of therapies for the rehabilitation and restoration of lost strength after stroke.

  12. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia

    Directory of Open Access Journals (Sweden)

    Stefano Cinque

    2018-02-01

    Full Text Available Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD and obsessive-compulsive disorder (OCD. Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT knockout (KO and heterozygous (HET mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1. Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT–HET dams bred with DAT–HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats’ sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT. During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH and RO-5203648, a trace amine-associated receptor 1 (TAAR1 partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2, serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research.

  13. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    Directory of Open Access Journals (Sweden)

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  14. Consolidating behavioral and neurophysiologic findings to explain the influence of contextual interference during motor sequence learning

    NARCIS (Netherlands)

    Wright, David; Verwey, Willem B.; Buchanen, John; Chen, Jing; Rhee, Joohyun; Immink, Maarten

    2016-01-01

    Motor sequence learning under high levels of contextual interference (CI) disrupts initial performance but supports delayed test and transfer performance when compared to learning under low CI. Integrating findings from early behavioral work and more recent experimental efforts that incorporated

  15. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light.

    Science.gov (United States)

    Tosi, S; Nieh, J C

    2017-11-09

    Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: -43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42-3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.

  16. Sertraline Induces Toxicity and Behavioral Alterations in Planarians

    Directory of Open Access Journals (Sweden)

    Isabela Salvador Thumé

    2017-01-01

    Full Text Available Toxicity attributed to sertraline has been demonstrated recently in different cell types and also in some organisms. We investigated the effect of sertraline on planarians, which are considered suitable for investigations in neurotoxicology and currently are widely used as an animal model in neuropharmacological studies. Planarians treated with 10 µM sertraline showed a rapid reduction in their spontaneous movement until they became completely motionless and then showed a series of asynchronous paroxysms (seizures followed by progressive tissue damage, beginning 48 h after the sertraline treatment, and died approximately 72 h later. Our data showed that sertraline does not cause planarian death within the range of therapeutic concentrations; however, behavioral alterations were observed with concentrations that can be considered compatible with therapeutic ones, such as a significant reduction in planarian locomotory activity at 0.4 µM. Treatment with 4 µM sertraline had a significant effect, reducing planarian locomotory activity and increasing the number of asynchronous paroxysms; both effects were significantly maintained even 24 h after the sertraline was withdrawn. These behavioral changes observed at low micromolar concentrations suggest that sertraline might have residual biological consequences for planarians, even after it is withdrawn.

  17. Sertraline Induces Toxicity and Behavioral Alterations in Planarians.

    Science.gov (United States)

    Thumé, Isabela Salvador; Frizzo, Marcos Emílio

    2017-01-01

    Toxicity attributed to sertraline has been demonstrated recently in different cell types and also in some organisms. We investigated the effect of sertraline on planarians, which are considered suitable for investigations in neurotoxicology and currently are widely used as an animal model in neuropharmacological studies. Planarians treated with 10  µ M sertraline showed a rapid reduction in their spontaneous movement until they became completely motionless and then showed a series of asynchronous paroxysms (seizures) followed by progressive tissue damage, beginning 48 h after the sertraline treatment, and died approximately 72 h later. Our data showed that sertraline does not cause planarian death within the range of therapeutic concentrations; however, behavioral alterations were observed with concentrations that can be considered compatible with therapeutic ones, such as a significant reduction in planarian locomotory activity at 0.4  µ M. Treatment with 4  µ M sertraline had a significant effect, reducing planarian locomotory activity and increasing the number of asynchronous paroxysms; both effects were significantly maintained even 24 h after the sertraline was withdrawn. These behavioral changes observed at low micromolar concentrations suggest that sertraline might have residual biological consequences for planarians, even after it is withdrawn.

  18. Primary motor cortex alterations in Alzheimer disease: A study in the 3xTg-AD model.

    Science.gov (United States)

    Orta-Salazar, E; Feria-Velasco, A I; Díaz-Cintra, S

    2017-04-19

    In humans and animal models, Alzheimer disease (AD) is characterised by accumulation of amyloid-β peptide (Aβ) and hyperphosphorylated tau protein, neuronal degeneration, and astrocytic gliosis, especially in vulnerable brain regions (hippocampus and cortex). These alterations are associated with cognitive impairment (loss of memory) and non-cognitive impairment (motor impairment). The purpose of this study was to identify cell changes (neurons and glial cells) and aggregation of Aβ and hyperphosphorylated tau protein in the primary motor cortex (M1) in 3xTg-AD mouse models at an intermediate stage of AD. We used female 3xTg-AD mice aged 11 months and compared them to non-transgenic mice of the same age. In both groups, we assessed motor performance (open field test) and neuronal damage in M1 using specific markers: BAM10 (extracellular Aβ aggregates), tau 499 (hyperphosphorylated tau protein), GFAP (astrocytes), and Klüver-Barrera staining (neurons). Female 3xTg-AD mice in intermediate stages of the disease displayed motor and cellular alterations associated with Aβ and hyperphosphorylated tau protein deposition in M1. Patients with AD display signs and symptoms of functional impairment from early stages. According to our results, M1 cell damage in intermediate-stage AD affects motor function, which is linked to progression of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. STUDIES ON FETAL MOTOR BEHAVIOR IN NORMAL AND COMPLICATED PREGNANCIES

    NARCIS (Netherlands)

    Sival, DA

    The possibility of studying fetal motor behaviour by ultrasound techniques has provoked research on its potential application for assessment of prenatal neurological conditions. The characteristics ('quality') of one particular movement pattern, the 'general movement', has been shown to be

  20. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Science.gov (United States)

    Elston, Thomas W; Pandian, Ashvini; Smith, Gregory D; Holley, Andrew J; Gao, Nanjing; Lugo, Joaquin N

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.

  1. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Thomas W Elston

    Full Text Available There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.

  2. Aniracetam Does Not Alter Cognitive and Affective Behavior in Adult C57BL/6J Mice

    Science.gov (United States)

    Elston, Thomas W.; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Gao, Nanjing; Lugo, Joaquin N.

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639

  3. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Science.gov (United States)

    de Xivry J-J, Orban; de Xivry, Jean-Jacques Orban

    2013-01-01

    Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm) was varied either on a trial-to-trial basis (random schedule) or in blocks (blocked schedule). On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  4. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Directory of Open Access Journals (Sweden)

    Orban de Xivry J-J

    Full Text Available Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm was varied either on a trial-to-trial basis (random schedule or in blocks (blocked schedule. On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  5. Active behavioral coping alters the behavioral but not the endocrine response to stress

    Science.gov (United States)

    Helmreich, Dana L.; Tylee, Daniel; Christianson, John P.; Kubala, Kenneth H.; Govindarajan, Sindhuja T.; O’Neill, William E.; Becoats, Kyeesha; Watkins, Linda; Maier, Steve F.

    2012-01-01

    Summary Exposure to traumatic stressors typically causes lasting changes in emotionality and behavior. However, coping strategies have been shown to prevent and alleviate many stress consequences and the biological mechanisms that underlie coping are of great interest. Whereas the laboratory stressor inescapable tail-shock induces anxiety-like behaviors, here we demonstrate that permitting a rat to chew on a wooden dowel during administration of tail-shock prevented the development of anxiety like behaviors in the open field and juvenile social exploration tests. Uncontrollable stressors increase corticosterone and decrease thyroid hormone, and we hypothesized that coping would blunt these changes. While tail-shock did produce these effects, active coping did not alter hormone levels. The dissociation between behavioral resilience and circulating hormones is discussed with regard to the utility of these molecules as biomarkers for psychiatric disease. PMID:22578266

  6. Sensorimotor oscillations prior to speech onset reflect altered motor networks in adults who stutter

    OpenAIRE

    Anna-Maria Mersov; Cecilia Jobst; Douglas Owen Cheyne; Douglas Owen Cheyne; Douglas Owen Cheyne; Luc De Nil

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and twelve age-matched controls were presented...

  7. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter

    OpenAIRE

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O.; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented wit...

  8. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials.

    Science.gov (United States)

    Wu, Zehan; Xie, Tao; Yao, Lin; Zhang, Dingguo; Sheng, Xinjun; Farina, Dario; Chen, Liang; Mao, Ying; Zhu, Xiangyang

    2017-01-01

    We propose electrocorticographic temporal alteration mapping (ETAM) for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs) within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM), which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases) were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS) procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8%) and specificity (94.3%) in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%). These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  9. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Zehan Wu

    2017-06-01

    Full Text Available We propose electrocorticographic temporal alteration mapping (ETAM for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM, which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8% and specificity (94.3% in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%. These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  10. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    Science.gov (United States)

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  11. Sensorimotor oscillations prior to speech onset reflect altered motor networks in adults who stutter

    Directory of Open Access Journals (Sweden)

    Anna-Maria Mersov

    2016-09-01

    Full Text Available Adults who stutter (AWS have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG. Twelve AWS and twelve age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset and speech execution (following speech onset. Compared to controls, AWS showed stronger beta (15-25Hz suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.

  12. Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons

    Science.gov (United States)

    Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni

    2012-01-01

    Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285

  13. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter.

    Science.gov (United States)

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15-25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.

  14. Cerebellar Shank2 Regulates Excitatory Synapse Density, Motor Coordination, and Specific Repetitive and Anxiety-Like Behaviors.

    Science.gov (United States)

    Ha, Seungmin; Lee, Dongwon; Cho, Yi Sul; Chung, Changuk; Yoo, Ye-Eun; Kim, Jihye; Lee, Jiseok; Kim, Woohyun; Kim, Hyosang; Bae, Yong Chul; Tanaka-Yamamoto, Keiko; Kim, Eunjoon

    2016-11-30

    Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2 -/- mice, remains unexplored. Here we show that Shank2 -/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2 fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2 fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2 -/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2 fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2 -/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum

  15. Altered nigrostriatal and nigrocortical functional connectivity in rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Ellmore, Timothy M; Castriotta, Richard J; Hendley, Katie L; Aalbers, Brian M; Furr-Stimming, Erin; Hood, Ashley J; Suescun, Jessika; Beurlot, Michelle R; Hendley, Roy T; Schiess, Mya C

    2013-12-01

    Rapid eye movement sleep behavior disorder (RBD) is a condition closely associated with Parkinson disease (PD). RBD is a sleep disturbance that frequently manifests early in the development of PD, likely reflecting disruption in normal functioning of anatomical areas affected by neurodegenerative processes. Although specific neuropathological aspects shared by RBD and PD have yet to be fully documented, further characterization is critical to discovering reliable biomarkers that predict PD onset. In the current study, we tested the hypothesis of altered functional connections of the substantia nigra (SN) in patients in whom RBD was diagnosed. Between-groups, single time point imaging. UTHSC-H 3 telsa MRI center. Ten patients with RBD, 11 patients with PD, and 10 age-matched controls. NA. We measured correlations of SN time series using resting state blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) in patients with idiopathic RBD who were at risk for developing PD, patients in whom PD was diagnosed, and age-matched controls. Using voxelwise analysis of variance, different correlations (P < 0.01, whole-brain corrected) between left SN and left putamen were found in patients with RBD compared with controls and patients with PD. SN correlations with right cuneus/precuneus and superior occipital gyrus were significantly different for patients with RBD compared with both controls and patients with PD. The results suggest that altered nigrostriatal and nigrocortical connectivity characterizes rapid eye movement sleep behavior disorder before onset of obvious motor impairment. The functional changes are discussed in the context of degeneration in dopaminergic and cognition-related networks.

  16. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  17. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors.

    Science.gov (United States)

    Stein, Paul S G

    2018-02-01

    Neuronal networks in the turtle spinal cord have considerable computational complexity even in the absence of connections with supraspinal structures. These networks contain central pattern generators (CPGs) for each of several behaviors, including three forms of scratch, two forms of swim, and one form of flexion reflex. Each behavior is activated by a specific set of cutaneous or electrical stimuli. The process of selection among behaviors within the spinal cord has multisecond memories of specific motor patterns. Some spinal cord interneurons are partially shared among several CPGs, whereas other interneurons are active during only one type of behavior. Partial sharing is a proposed mechanism that contributes to the ability of the spinal cord to generate motor pattern blends with characteristics of multiple behaviors. Variations of motor patterns, termed deletions, assist in characterization of the organization of the pattern-generating components of CPGs. Single-neuron recordings during both normal and deletion motor patterns provide support for a CPG organizational structure with unit burst generators (UBGs) whose members serve a direction of a specific degree of freedom of the hindlimb, e.g., the hip-flexor UBG, the hip-extensor UBG, the knee-flexor UBG, the knee-extensor UBG, etc. The classic half-center hypothesis that includes all the hindlimb flexors in a single flexor half-center and all the hindlimb extensors in a single extensor half-center lacks the organizational complexity to account for the motor patterns produced by turtle spinal CPGs. Thus the turtle spinal cord is a valuable model system for studies of mechanisms responsible for selection and generation of motor behaviors. NEW & NOTEWORTHY The concept of the central pattern generator (CPG) is a major tenet in motor neuroethology that has influenced the design and interpretations of experiments for over a half century. This review concentrates on the turtle spinal cord and describes studies from

  18. Core exercises elevate trunk stability to facilitate skilled motor behavior of the upper extremities.

    Science.gov (United States)

    Miyake, Yuki; Kobayashi, Ryuji; Kelepecz, Dolly; Nakajima, Masaaki

    2013-04-01

    The purpose of this study was to investigate the influence of core exercises on upper extremity function relative to skilled motor behavior and postural sway. We examined the effects of core exercises on the skilled motor behavior and postural sway of 40 healthy students who were assigned randomly to the core exercise group or the control group. Independent variable is extent of exposure to core exercise and dependent variables are skilled motor behavior and postural sway. A Purdue pegboard which measures skilled motor behavior and a stabilometer which measures postural sway were used to evaluate the influence of core exercises. Pre-intervention and post-intervention skilled motor behavior and postural sway were compared between the core exercise group and control group using the Wilcoxon rank sum test; a significance level of α = 0.05 was considered statistically significant. Also, we investigated the application of core exercises in a clinical setting for one patient with cerebral vascular disease. The post intervention skilled motor behavior (p = 0.04) and postural sway, LNG (p = 0.05), LNG/TIME (p = 0.04) and X LNG (p = 0.02) were significantly higher in the core exercise group than control group. In the case report, there were good results; function of the upper extremity improved after doing the exercises. There were positive changes in some daily living activities. Core exercises are likely to enhance trunk stabilization to improve upper extremity function. It is possible for core exercises to be adapted for patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Walking in school-aged children in a dual-task paradigm is related to age but not to cognition, motor behavior, injuries, or psychosocial functioning

    Directory of Open Access Journals (Sweden)

    Priska eHagmann-von Arx

    2016-03-01

    Full Text Available Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7 to 13.2 years (M =10.0 years. Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task and while performing a motor or cognitive task (dual task. Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning.

  20. The role of pre-school children motor behavior in developing their self-concept

    Directory of Open Access Journals (Sweden)

    Perić Dušan

    2014-01-01

    Full Text Available The assessment of motor behavior and general intellectual abilities were performed on a sample of 42 pre-school children (22 boys and 20 girls aged 6 (±3 months; moreover, the self-concept of those children was analysed. For the assessment of their motor behavior six movement tasks were chosen and the Mary Gutrich scale was applied for the analysis of the results. The children's intellectual abilities were assessed by the means of Raven's colored progressive matrices so as to enable the groups to homogenise, as well as to eliminate potential parasite factors when drawing conclusions. The self-concept analysis was performed using the pshychological interview during the course of which the children described their impression of their own abilities with regard to the past, present and future. The data related to the self-concept were complemented with the analysis of the children's drawings. The statistical analysis of the data gathered showed that motor behavior plays a significant role in developing one's self-concept, which is especially true of boys. Even though there is no significant statistical difference between boys and girls with respect to the quality of their motor behavior, there are significant differences between them pertaining to the vocabulary they use when describing their own selves, i.e. their self-concept, especially with respect to the present and future. Boys seem to use more extensive motor-related vocabulary when describing themselves, especially those with greater motor skills. Both boys and girls show a tendency to describe themselves as incapable in the past. When describing their present moment capabilities, girls tend to use vocabulary related to play and independence, whereas they mostly use vocabulary related to professions and sex roles when referring to the future. These findings indicate that social factors are of immense importance from a very early age, especially among girls. Moreover, the results show that

  1. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-01-01

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  2. "Permethrin chronic exposure alters motor coordination in rats: effect of calcium supplementation and amlodipine".

    Science.gov (United States)

    Godinho, A F; Stanzani, S L; Ferreira, F C; Braga, T C; Silva, M C; Chaguri, J L; Dias-Júnior, C A

    2014-03-01

    Recently was observed that pyrethroids decrease motor coordination and that calcium channels can be important targets for this effect. To contribute with this observation, this work studied the motor coordination and exploration (using hole-board apparatus), and locomotion (using open-field apparatus) of rats exposed to following treatments: permethrin (PM), PM plus calcium gluconate (CG) and PM plus amlodipine (AML). The results obtained show that CG or AML alone not changed the motor coordination while PM decreases it. CG kept the effect of permethrin; AML, however, decreased the values of permethrin to the control. Locomotor activity and exploration, which could confound results of motor coordination, were not modified by treatments. The concentration of PM in brain tissue was increased by the CG and AML. The neurosomatic index (weight brain/body weight) was increased by the PM and PM+CG. In conclusion, the combined results here obtained indicates that the calcium ion and the channels in which it is involved can be important targets for the toxic effect of pyrethroid insecticide permethrin on motor nerve activity of rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs

    Directory of Open Access Journals (Sweden)

    Matt Q. Clark

    2016-07-01

    Full Text Available Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons are used in all these behaviors, but the identity (or even existence of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°. A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program.

  4. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  5. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Bacterial behavior has been observed to change during spaceflight. Higher final cell counts enhanced biofilm formation increased virulence and reduced susceptibility...

  6. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Spinetta, Michael J; Thomas, Jennifer D; Riley, Edward P

    2011-01-01

    The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Alterations in central motor representation increase over time in individuals with rotator cuff tendinopathy.

    Science.gov (United States)

    Ngomo, Suzy; Mercier, Catherine; Bouyer, Laurent J; Savoie, Alexandre; Roy, Jean-Sébastien

    2015-02-01

    To investigate whether rotator cuff tendinopathy leads to changes in central motor representation of a rotator cuff muscle, and to assess whether such changes are related to pain intensity, pain duration, and physical disability. Using transcranial magnetic stimulation, motor representation of infraspinatus muscle was assessed bilaterally in patients with unilateral rotator cuff tendinopathy. Active motor threshold is significantly larger for the affected shoulder comparatively to the unaffected shoulder (n=39, p=0.01), indicating decreased corticospinal excitability on the affected side compared to unaffected side. Further, results suggest that this asymmetry in corticospinal excitability is associated with duration of pain (n=39; r=0.45; p=0.005), but not with pain intensity (n=39; r0.43). In contrast with findings in other populations with musculoskeletal pain, no significant inter-hemispheric asymmetry was observed in map location (n=16; p-values ⩾ 0.91), or in the amplitude of motor responses obtained at various stimulation intensities (n=16; p=0.83). Chronicity of pain, but not its intensity, appears to be a factor related to lower excitability of infraspinatus representation. These results support the view that while cortical reorganization correlates with magnitude of pain in neuropathic pain syndromes, it could be more related to chronicity in the case of musculoskeletal disorders. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Sensory and motor components of reproductive behavior : pathways and plasticity

    NARCIS (Netherlands)

    Holstege, Gert; Van der Horst, Veronique G.J.M.

    Reproductive behavior in most mammalian species consists of a highly stereotyped pattern of movements, is elicited by specific sensory stimuli and is sex steroid dependent. The present paper describes a concept of the pathways in the midbrain, brainstem and spinal cord which control the receptive

  9. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Hand Preference and Cognitive, Motor, and Behavioral Functioning in 10-Year-Old Extremely Preterm Children.

    Science.gov (United States)

    Burnett, Alice C; Anderson, Peter J; Joseph, Robert M; Allred, Elizabeth N; O'Shea, T Michael; Kuban, Karl C K; Leviton, Alan

    2018-04-01

    The association of hand preference (left, mixed, and right) with cognitive, academic, motor, and behavioral function was evaluated in 864 extremely preterm children at 10 years of age. Left-handed and right-handed children performed similarly but mixed-handed children had greater odds of functional deficits across domains than right-handed children. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation.

    Directory of Open Access Journals (Sweden)

    David Zada

    2014-09-01

    Full Text Available The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2 gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8-/- zebrafish using zinc-finger nuclease (ZFN-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8-/- larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8-/- larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8-/- larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8-/- larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit

  12. Behavioral, neuropsychiatric and cognitive disorders in Parkinson's disease patients with and without motor complications.

    Science.gov (United States)

    Solla, P; Cannas, A; Floris, G L; Orofino, G; Costantino, E; Boi, A; Serra, C; Marrosu, M G; Marrosu, F

    2011-06-01

    Parkinson's disease (PD), commonly defined as a hypokinetic movement disorder, is hampered by the appearance of motor complications (MC), including dyskinesias and motor fluctuations, and non-motor symptoms such as behavioral, neuropsychiatric and cognitive disorders, which, in the last years, are gaining increasing attention. The factors affecting MC and these non-motor symptoms are still largely unknown and their interactions are not yet fully evaluated. To identify the presence of behavioral, neuropsychiatric and cognitive disorders in PD patients with and without MC and to evaluate their association with MC. Consecutive PD patients received a comprehensive structured clinical evaluation including pharmacologic treatment, MC and non-motor symptoms such as reward-seeking behaviors, neuropsychiatric symptoms (depression, anxiety, psychoses and hallucinations) and dementia. 349 patients were included in this analysis. Patient with MC showed enhanced frequency of dementia (p compulsive shopping (p < 0.001), while they were not significantly associated with pathological gambling and binge eating. Patients with dyskinesias also had significantly higher frequency of dopamine dysregulation syndrome, hallucinations and delusions (p < 0.001), with the exception of delusional jealousy. We found a higher frequency of behavioral, neuropsychiatric and cognitive disorders in patients with MC. The lack of detection of dyskinesias in several PD patients with pathological gambling in our study represents a very interesting issue. While binge eating mainly seems to be related to the use of dopamine agonists, the significant lack of association between dyskinesias and delusional jealousy suggests the hypothesis of a possible underlying psychopathological predisposition rather than a mere pharmacologic effect in PD patients with these behavioral complications. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    Science.gov (United States)

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGAcommunicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.

    Science.gov (United States)

    Yang, Xingfu; Wu, Ning

    2018-01-23

    As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.

  15. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl2.

    Science.gov (United States)

    Alaverdashvili, Mariam; Lapointe, Valerie; Whishaw, Ian Q; Cross, Albert R

    2017-01-01

    Manganese-enhanced magnetic resonance imaging (MEMRI) has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg). The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are difficult to achieve

  16. Automated Detection of Repetitive Motor Behaviors as an Outcome Measurement in Intellectual and Developmental Disabilities.

    Science.gov (United States)

    Gilchrist, Kristin H; Hegarty-Craver, Meghan; Christian, Robert B; Grego, Sonia; Kies, Ashley C; Wheeler, Anne C

    2017-11-21

    Repetitive sensory motor behaviors are a direct target for clinical treatment and a potential treatment endpoint for individuals with intellectual or developmental disabilities. By removing the burden associated with video annotation or direct observation, automated detection of stereotypy would allow for longer term monitoring in ecologic settings. We report automated detection of common stereotypical motor movements using commercially available accelerometers affixed to the body and a generalizable detection algorithm. The method achieved a sensitivity of 80% for body rocking and 93% for hand flapping without individualized algorithm training or foreknowledge of subject's specific movements. This approach is well-suited for implementation in a continuous monitoring system outside of a clinical setting.

  17. Fish Chromatophores--From Molecular Motors to Animal Behavior.

    Science.gov (United States)

    Sköld, Helen Nilsson; Aspengren, Sara; Cheney, Karen L; Wallin, Margareta

    2016-01-01

    Chromatophores are pigment-bearing cells of lower vertebrates, including fish that cater for the ability of individual animals to shift body coloration and pattern. Color change provides dynamic camouflage and various kinds of communication. It is also a spectacular example of phenotypic plasticity, and of significant importance for adaptation and survival in novel environments. Through different cellular mechanisms, color change can occur within minutes or more slowly over weeks. Chromatophores have different pigment types and are located not only in the skin, but also in the eyes and internally. While morphological color change, including seasonal color change, has received a lot of interest from evolutionary biologists and behavioral ecologists, the more rapid physiological color change has been largely a research subject for cell physiologists. In this cross-disciplinary review, we have highlighted emerging trends in pigment cell research and identified unsolved problems for future research. Copyright © 2016. Published by Elsevier Inc.

  18. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-10-02

    Oct 2, 2013 ... (EMS), for their root growth behavior and salinity tolerance under hydroponic conditions. Six independent mutant lines .... Nagina 22 mutants were screened under hydroponic conditions and putative ..... Nacl resistant rice plant lines from another culture: Distribution pattern of K+/Na+ in callus and plant cells ...

  19. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    In this study, we have screened about 1500 mutants (M2 generation) generated by treating an upland drought tolerant genotype Nagina 22 with Ethyl Methane Sulfonate (EMS), for their root growth behavior and salinity tolerance under hydroponic conditions. Six independent mutant lines possessing significantly shorter ...

  20. Motor learning in individuals with autism spectrum disorder: activation in superior parietal lobule related to learning and repetitive behaviors.

    Science.gov (United States)

    Travers, Brittany G; Kana, Rajesh K; Klinger, Laura G; Klein, Christopher L; Klinger, Mark R

    2015-02-01

    Motor-linked implicit learning is the learning of a sequence of movements without conscious awareness. Although motor symptoms are frequently reported in individuals with autism spectrum disorder (ASD), recent behavioral studies have suggested that motor-linked implicit learning may be intact in ASD. The serial reaction time (SRT) task is one of the most common measures of motor-linked implicit learning. The present study used a 3T functional magnetic resonance imaging scanner to examine the behavioral and neural correlates of real-time motor sequence learning in adolescents and adults with ASD (n = 15) compared with age- and intelligence quotient-matched individuals with typical development (n = 15) during an SRT task. Behavioral results suggested less robust motor sequence learning in individuals with ASD. Group differences in brain activation suggested that individuals with ASD, relative to individuals with typical development, showed decreased activation in the right superior parietal lobule (SPL) and right precuneus (Brodmann areas 5 and 7, and extending into the intraparietal sulcus) during learning. Activation in these areas (and in areas such as the right putamen and right supramarginal gyrus) was found to be significantly related to behavioral learning in this task. Additionally, individuals with ASD who had more severe repetitive behavior/restricted interest symptoms demonstrated greater decreased activation in these regions during motor learning. In conjunction, these results suggest that the SPL may play an important role in motor learning and repetitive behavior in individuals with ASD. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Chang, Wei-Ju; O'Connell, Neil E; Beckenkamp, Paula R; Alhassani, Ghufran; Liston, Matthew B; Schabrun, Siobhan M

    2018-04-01

    Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Meta-analyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A role for α4(non-α6)* nicotinic acetylcholine receptors in motor behavior.

    Science.gov (United States)

    Soll, Lindsey G; Grady, Sharon R; Salminen, Outi; Marks, Michael J; Tapper, Andrew R

    2013-10-01

    Nicotinic acetylcholine receptors (nAChRs) containing either the α4 and/or α6 subunit are robustly expressed in dopaminergic nerve terminals in dorsal striatum where they are hypothesized to modulate dopamine (DA) release via acetylcholine (ACh) stimulation from cholinergic interneurons. However, pharmacological blockade of nAChRs or genetic deletion of individual nAChR subunits, including α4 and α6, in mice, yields little effect on motor behavior. Based on the putative role of nAChRs containing the α4 subunit in modulation of DA in dorsal striatum, we hypothesized that mice expressing a single point mutation in the α4 nAChR subunit, Leu9'Ala, that renders nAChRs hypersensitive to agonist, would exhibit exaggerated differences in motor behavior compared to WT mice. To gain insight into these differences, we challenged WT and Leu9'Ala mice with the α4β2 nAChR antagonist dihydro-β-erythroidine (DHβE). Interestingly, in Leu9'Ala mice, DHβE elicited a robust, reversible motor impairment characterized by hypolocomotion, akinesia, catalepsy, clasping, and tremor; whereas the antagonist had little effect in WT mice at all doses tested. Pre-injection of nicotine (0.1 mg/kg) blocked DHβE-induced motor impairment in Leu9'Ala mice confirming that the phenotype was mediated by antagonism of nAChRs. In addition, SKF82958 (1 mg/kg) and amphetamine (5 mg/kg) prevented the motor phenotype. DHβE significantly activated more neurons within striatum and substantia nigra pars reticulata in Leu9'Ala mice compared to WT animals, suggesting activation of the indirect motor pathway as the circuit underlying motor dysfunction. ACh evoked DA release from Leu9'Ala striatal synaptosomes revealed agonist hypersensitivity only at α4(non-α6)* nAChRs. Similarly, α6 nAChR subunit deletion in an α4 hypersensitive nAChR (Leu9'Ala/α6 KO) background had little effect on the DHβE-induced phenotype, suggesting an α4(non-α6)* nAChR-dependent mechanism. Together, these data indicate

  3. REM Sleep Behavior and Motor Findings in Parkinson's Disease: A Cross-sectional Analysis

    Directory of Open Access Journals (Sweden)

    Abhimanyu Mahajan

    2014-06-01

    Full Text Available Background: Parkinson's disease (PD represents a major public health challenge that will only grow in our aging population. Understanding the connection between PD and associated prodromal conditions, such as rapid eye movement sleep behavioral disorder (RBD, is critical to identifying prevention strategies. However, the relationship between RBD and severity of motor findings in early PD is unknown. This study aims to examine this relationship. Methods: The study population consisted of 418 PD patients who completed the Movement Disorders Society‐United Parkinson's Disease Rating Scale (MDS‐UPDRS and rapid eye movement sleep (REM disorder questionnaires at the baseline visit of the Michael J. Fox's Parkinson's Progression Markers Initiative (PPMI. Cross‐sectional analysis was carried out to assess the association between REM Sleep Behavior Screening Questionnaire score and MDS UPDRS‐3 (motor score categories. Correlation with a higher score category was described as “worse motor findings”. A score of 5 on the REM disorder questionnaire was defined as predictive of RBD.Results: Out of the 418 PD patients, 113 (27.0% had RBD. With univariate logistic regression analysis, individuals with scores predictive of RBD were 1.66 times more likely to have worse motor findings (p = 0.028. Even with age, gender, and Geriatric Depression Scale scores taken into account, individuals with scores predictive of RBD were 1.69 times more likely to have worse motor findings (p = 0.025.Discussion: PD patients with RBD symptoms had worse motor findings than those unlikely to have RBD. This association provides further evidence for the relationship between RBD and PD.

  4. MODELING DRIVER BEHAVIOR IN THE DRIVING OF THEIR MOTOR VEHICLE

    Directory of Open Access Journals (Sweden)

    A. V. Skrypnikov

    2015-01-01

    Full Text Available The article holds the gradual formation of images and actions of the driver. As outlined the author's arguments based on the following assumptions: We consider the motion of the mass, mass-produced currently by the domestic industry of automobiles; considered the motion of single cars as the most common and most dangerous cases, allowing to evaluate the influence of parameters on the road driving mode "pure"; drivers tend to reduce travel times and therefore move with the maximum possible speed; drivers choose speed, visually estimating lying in front of part of the way and given the speed at the time of this evaluation; driver behavior, ceteris paribus determined the influence of visibility limitations and conditions visual perception; considered the motion on the ascent and descent, but the determining factor is the direction of descent. Set of operations, branches off the driver, can be represented as a multi-level system comprising three main groups of psycho-physiological processes, activities analyzers (perception of information; the work of the central nervous system (processing and storage; effective activity (responses to the implementation of the decision. On the basis of the received information in human consciousness formed images of the environment, the totality of which is an information model of the object. Comparing it with the standards (memory engrams, the driver generates the mo st appropriate in the circumstances set of actions. Implementation of the decision is the final stage of human response to the external environment and is expressed in the change of the degree of use of traction engine or braking force; change the steering angle as that does not affect the speed of motion, the algorithm of the driver is not taken into account. Analysis of the schemes of algorithms allows to obtain quantitative characteristics of the vehicle: stereotyped figures, logical complexity.

  5. Effects of water quality alterations on fish behavior

    International Nuclear Information System (INIS)

    Gray, R.H.; Haynes, J.M.; Montgomery, J.C.; Genoway, R.G.; Barraclough, S.A.; Anderson, D.R.; Thatcher, T.O.; Bean, R.M.; Page, T.L.

    1977-01-01

    Objectives of this project are to study behavioral patterns of ecologically or economically valuable fish. Information on sensory--avoidance behavior, or preferential foraging habits, if definitively established by systematic observation can be constructively used in both outfall and water intake design to ameliorate potentially noxious disturbances caused by these structures. The work is applicable to both nuclear and fossil fuel-fired steam electric plants. The instantaneous response of juvenile chinook salmon encountering a simulated river thermal plume interface was also evaluated in a model raceway. Tests indicate that juvenile chinook salmon perceive and avoid discharge temperatures greater than 9 to 11 0 C above ambient, regardless of acclimation temperature. Chlorine is a major chemical compound to reduce biofouling in steam electric power plants. Chlorination of large volumes of cooling waters poses the problem of the formation of chlorination by-products discharged to natural water systems. Long-term bioassays, both fresh and salt water, are underway with indepth analytical chemistry to determine the magnitude of the chlorination by-product problem

  6. Ablation of TFR1 in Purkinje Cells Inhibits mGlu1 Trafficking and Impairs Motor Coordination, But Not Autistic-Like Behaviors.

    Science.gov (United States)

    Zhou, Jia-Huan; Wang, Xin-Tai; Zhou, Liang; Zhou, Lin; Xu, Fang-Xiao; Su, Li-Da; Wang, Hao; Jia, Fan; Xu, Fu-Qiang; Chen, Gui-Quan; De Zeeuw, Chris I; Shen, Ying

    2017-11-22

    Group 1 metabotropic glutamate receptors (mGlu1/5s) are critical to synapse formation and participate in synaptic LTP and LTD in the brain. mGlu1/5 signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases, but underlying mechanisms for its modulation are not clear. Here, we report that transferrin receptor 1 (TFR1), a transmembrane protein of the clathrin complex, modulates the trafficking of mGlu1 in cerebellar Purkinje cells (PCs) from male mice. We show that conditional knock-out of TFR1 in PCs does not affect the cytoarchitecture of PCs, but reduces mGlu1 expression at synapses. This regulation by TFR1 acts in concert with that by Rab8 and Rab11, which modulate the internalization and recycling of mGlu1, respectively. TFR1 can bind to Rab proteins and facilitate their expression at synapses. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-LTP and PC intrinsic excitability are not affected. Finally, we demonstrate that PC ablation of TFR1 impairs motor coordination, but does not affect social behaviors in mice. Together, these findings underscore the importance of TFR1 in regulating mGlu1 trafficking and suggest that mGlu1- and mGlu1-dependent parallel fiber-LTD are associated with regulation of motor coordination, but not autistic behaviors. SIGNIFICANCE STATEMENT Group 1 metabotropic glutamate receptor (mGlu1/5) signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases. Recent work suggests that altered mGlu1 signaling in Purkinje cells (PCs) may be involved in not only motor learning, but also autistic-like behaviors. We find that conditional knock-out of transferrin receptor 1 (TFR1) in PCs reduces synaptic mGlu1 by tethering Rab8 and Rab11 in the cytosol. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-PC LTP and PC intrinsic excitability are intact. Motor coordination is

  7. The effects of yoga practice in school physical education on children's motor abilities and social behavior

    OpenAIRE

    Folleto, J?lia C; Pereira, Keila RG; Valentini, Nadia Cristina

    2016-01-01

    Background: In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. Aim: To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6–8-year-old children. Methods: The study included 16 children from the 1st grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each sessi...

  8. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  9. Feeding behaviors and other motor development in healthy children (2-24 months).

    Science.gov (United States)

    Carruth, Betty Ruth; Skinner, Jean D

    2002-04-01

    To monitor infant's gross, fine and oral motor development patterns related to feeding. An incomplete block design was used with 57 to 60 (sample = 98) mothers interviewed when their children were 2, 3, 4, 6, 8, 10, 12, 16 and 24 months (within +/- 5 days of birth date). Each mother had 5 to 6 interviews. Selected developmental feeding behaviors were monitored using in-home interviews conducted by trained interviewers (n = 2). At each interview, mothers reported the child's age when behaviors first occurred, and anthropometric measurements were performed. Subjects were healthy white children who lived mostly in homes with educated two-parent families of upper socioeconomic status. Mean behavioral ages were within normal ranges reported in the literature, whereas individuals exhibited a wide diversity in reported ages. Examples of gross motor skills (age in months, +/- SD) included sitting without help (5.50+/-2.08) and crawling (8.00+/-1.55). Mean ages for self-feeding fine motor skills showed children reaching for a spoon when hungry (5.47+/-1.44), using fingers to rake food toward self (8.87+/-2.58) and using fingers to self-feed soft foods (13.52+/-2.83). Oral behaviors included children opening their mouth when food approached (4.46+/-1.37), eating food with tiny lumps (8.70+/-2.03) and chewing and swallowing firmer foods without choking (12.17+/-2.28). Mean ages for feeding behaviors occurred within expected age ranges associated with normal development. However, mothers reported that individual children exhibited a wide age range for achieving these behaviors. Our results should be considered in counseling mothers about infant feeding practices.

  10. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    Science.gov (United States)

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  11. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation.

    Science.gov (United States)

    André, Caroline; Dinel, Anne-Laure; Ferreira, Guillaume; Layé, Sophie; Castanon, Nathalie

    2014-10-01

    Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated

  12. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  13. Altered behavior in mice with deletion of the alpha2-antiplasmin gene.

    Directory of Open Access Journals (Sweden)

    Eri Kawashita

    Full Text Available BACKGROUND: The α2-antiplasmin (α2AP protein is known to be a principal physiological inhibitor of plasmin, and is expressed in various part of the brain, including the hippocampus, cortex, hypothalamus and cerebellum, thus suggesting a potential role for α2AP in brain functions. However, the involvement of α2AP in brain functions is currently unclear. OBJECTIVES: The goal of this study was to investigate the effects of the deletion of the α2AP gene on the behavior of mice. METHODS: The motor function was examined by the wire hang test and rotarod test. To evaluate the cognitive function, a repeated rotarod test, Y-maze test, Morris water maze test, passive or shuttle avoidance test and fear conditioning test were performed. An open field test, dark/light transition test or tail suspension test was performed to determine the involvement of α2AP in anxiety or depression-like behavior. RESULTS AND CONCLUSIONS: The α2AP knockout (α2AP-/- mice exhibited impaired motor function compared with α2AP+/+ mice. The α2AP-/- mice also exhibited impairments in motor learning, working memory, spatial memory and fear conditioning memory. Furthermore, the deletion of α2AP induced anxiety-like behavior, and caused an anti-depression-like effect in tail suspension. Therefore, our findings suggest that α2AP is a crucial mediator of motor function, cognitive function, anxiety-like behavior and depression-like behavior, providing new insights into the role of α2AP in the brain functions.

  14. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    Science.gov (United States)

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  15. Parkinsonism and vigilance: alteration in neural oscillatory activity and phase-amplitude coupling in the basal ganglia and motor cortex.

    Science.gov (United States)

    Escobar Sanabria, David; Johnson, Luke A; Nebeck, Shane D; Zhang, Jianyu; Johnson, Matthew D; Baker, Kenneth B; Molnar, Gregory F; Vitek, Jerrold L

    2017-11-01

    Oscillatory neural activity in different frequency bands and phase-amplitude coupling (PAC) are hypothesized to be biomarkers of Parkinson's disease (PD) that could explain dysfunction in the motor circuit and be used for closed-loop deep brain stimulation (DBS). How these putative biomarkers change from the normal to the parkinsonian state across nodes in the motor circuit and within the same subject, however, remains unknown. In this study, we characterized how parkinsonism and vigilance altered oscillatory activity and PAC within the primary motor cortex (M1), subthalamic nucleus (STN), and globus pallidus (GP) in two nonhuman primates. Static and dynamic analyses of local field potential (LFP) recordings indicate that 1 ) after induction of parkinsonism using the neurotoxin MPTP, low-frequency power (8-30 Hz) increased in the STN and GP in both subjects, but increased in M1 in only one subject; 2 ) high-frequency power (~330 Hz) was present in the STN in both normal subjects but absent in the parkinsonian condition; 3 ) elevated PAC measurements emerged in the parkinsonian condition in both animals, but in different sites in each animal (M1 in one subject and GPe in the other); and 4 ) the state of vigilance significantly impacted how oscillatory activity and PAC were expressed in the motor circuit. These results support the hypothesis that changes in low- and high-frequency oscillatory activity and PAC are features of parkinsonian pathophysiology and provide evidence that closed-loop DBS systems based on these biomarkers may require subject-specific configurations as well as adaptation to changes in vigilance. NEW & NOTEWORTHY Chronically implanted electrodes were used to record neural activity across multiple nodes in the basal ganglia-thalamocortical circuit simultaneously in a nonhuman primate model of Parkinson's disease, enabling within-subject comparisons of electrophysiological biomarkers between normal and parkinsonian conditions and different

  16. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. A structured assessment of motor function, behavior, and communication in patients with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Nag, Heidi E; Bergsaker, David K; Hunn, Bente S; Schmidt, Susanne; Hoxmark, Lise B

    2017-11-01

    The present study aimed to increase the knowledge about Wolf-Hirschhorn syndrome (WHS), especially concerning motor function, autism spectrum disorders (ASD), and adapted behavior, but also regarding clinical symptoms in general. Motor function was evaluated via systematic observation. Standardized assessments such as the Vineland Adapted Behavior Scales II (VABS II), the Social Communication Questionnaire (SCQ), and the Child Behavior Checklist (CBCL) or Adult Behavior Checklist (ABCL) were used for the behavioral assessment. In total, two males and eight females between one and 48 years of age with a genetically confirmed diagnosis of WHS and their parents participated in this study. Deletion sizes were known for seven of the ten patients and varied between 55 Kb and 20 Mb. The chromosome coordinates were known for six of them, and none of those had the same break points in their deletion. The main finding in this study was that patients with WHS may have a better outcome regarding motor skills and expressive communication than previously described. We could confirm the main medical findings described earlier, but found also a population with a less severe dysmorphology, fewer congenital malformations, and fewer medical challenges than expected. Sleep problems may persist into adulthood and need a more thorough investigation. Research on possible indications of ASD is strongly needed for targeted interventions. In conclusion, a more thorough assessment of communication, possible ASD, and sleep in larger groups of patients with WHS are needed to confirm and further investigate the findings from this study and to provide more targeted interventions for WHS patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. On the origin of grasshopper oviposition behavior: structural homology in pregenital and genital motor systems.

    Science.gov (United States)

    Thompson, Karen J; Jones, Alaine D; Miller, Sandra A

    2014-01-01

    In female grasshoppers, oviposition is a highly specialized behavior involving a rhythm-generating neural circuit, the oviposition central pattern generator, unusual abdominal appendages, and dedicated muscles. This study of Schistocerca americana (Drury) grasshoppers was undertaken to determine whether the simpler pregenital abdominal segments, which do not contain ovipositor appendages, share common features with the genital segment, suggesting a roadmap for the genesis of oviposition behavior. Our study revealed that although 5 of the standard pregenital body wall muscles were missing in the female genital segment, homologous lateral nerves were, indeed, present and served 4 ovipositor muscles. Retrograde labeling of the corresponding pregenital nerve branches in male and female grasshoppers revealed motor neurons, dorsal unpaired median neurons, and common inhibitor neurons which appear to be structural homologues of those filled from ovipositor muscles. Some pregenital motor neurons displayed pronounced contralateral neurites; in contrast, some ovipositor motor neurons were exclusively ipsilateral. Strong evidence of structural homology was also obtained for pregenital and ovipositor skeletal muscles supplied by the identified neurons and of the pregenital and ovipositor skeletons. For example, transient embryonic segmental appendages were maintained in the female genital segments, giving rise to ovipositor valves, but were lost in pregenital abdominal segments. Significant proportional differences in sternal apodemes and plates were observed, which partially obscure the similarities between the pregenital and genital skeletons. Other changes in reorganization included genital muscles that displayed adult hypertrophy, 1 genital muscle that appeared to represent 2 fused pregenital muscles, and the insertion points of 2 ovipositor muscles that appeared to have been relocated. Together, the comparisons support the idea that the oviposition behavior of genital

  19. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age

    NARCIS (Netherlands)

    Roze, Elise; Meijer, Lisethe; Bakker, Attie; Van Braeckel, Koenraad N. J. A.; Sauer, Pieter J. J.; Bos, Arend F.

    2009-01-01

    BACKGROUND: Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. OBJECTIVE: We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age.

  20. MRI shows thickening and altered diffusion in the median and ulnar nerves in multifocal motor neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Haakma, Wieke [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Aarhus University, Department of Forensic Medicine and Comparative Medicine Lab, Aarhus (Denmark); Jongbloed, Bas A.; Goedee, H.S.; Berg, Leonard H. van den; Pol, W.L. van der [University Medical Center Utrecht, Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, Utrecht (Netherlands); Froeling, Martijn; Bos, Clemens; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Leemans, Alexander [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2017-05-15

    To study disease mechanisms in multifocal motor neuropathy (MMN) with magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of the median and ulnar nerves. We enrolled ten MMN patients, ten patients with amyotrophic lateral sclerosis (ALS) and ten healthy controls (HCs). Patients underwent MRI (in a prone position) and nerve conduction studies. DTI and fat-suppressed T2-weighted scans of the forearms were performed on a 3.0T MRI scanner. Fibre tractography of the median and ulnar nerves was performed to extract diffusion parameters: fractional anisotropy (FA), mean (MD), axial (AD) and radial (RD) diffusivity. Cross-sectional areas (CSA) were measured on T2-weighted scans. Forty-five out of 60 arms were included in the analysis. AD was significantly lower in MMN patients (2.20 ± 0.12 x 10{sup -3} mm{sup 2}/s) compared to ALS patients (2.31 ± 0.17 x 10{sup -3} mm{sup 2}/s; p < 0.05) and HCs (2.31± 0.17 x 10{sup -3} mm{sup 2}/s; p < 0.05). Segmental analysis showed significant restriction of AD, RD and MD (p < 0.005) in the proximal third of the nerves. CSA was significantly larger in MMN patients compared to ALS patients and HCs (p < 0.01). Thickening of nerves is compatible with changes in the myelin sheath structure, whereas lowered AD values suggest axonal dysfunction. These findings suggest that myelin and axons are diffusely involved in MMN pathogenesis. (orig.)

  1. Behavioral alterations in the gray dolphin Sotalia guianensis (Gervais, 1953 caused by sea traffi

    Directory of Open Access Journals (Sweden)

    Francielli Cristine Cunha Melo

    2006-03-01

    Full Text Available Behavioral responses by Sotalia guianensis dolphins in the presence of touristic sea traffic in the bay of Curral, Pipa-RN, Brazil, were measured. The dolphins changed their behavior when boats were closer than 100 meters. The main behavioral alterations were that the dolphins remained submerged for longer and that they formed a more cohesive group as the boats came closer. Although we concluded that the approach of the boats changed the dolphins’ behavioral pattern, we do not know what aspects of the boats caused the avoidance. We believe that the noise of the boats is probably responsible for repelling the animals.

  2. Bimanual non-congruent actions in motor neglect: a combined behavioral/fMRI study

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2015-10-01

    Full Text Available In Motor Neglect (MN syndrome, a specific impairment in non-congruent bimanual movements has been described. In the present case-control study, we investigated the neuro-functional correlates of this behavioral deficit. Two right-brain-damaged patients, one with (MN+ and one without (MN- MN, were evaluated by means of functional Magnetic Resonance Imaging (fMRI in a bimanual Circles-Lines paradigm. Patients were requested to perform right-hand movements (lines-drawing and, simultaneously, congruent (lines-drawing or non-congruent (circles-drawing left-hand movements. In the behavioral task, MN- patient showed a bimanual-coupling-effect, while MN+ patient did not. The fMRI study showed that in MN-, a fronto-parietal network, mainly involving the pre-supplementary motor area (pre-SMA and the posterior parietal cortex (PPC, was significantly more active in non-congruent than in congruent conditions, as previously shown in healthy subjects. On the contrary, MN+ patient showed an opposite pattern of activation both in pre-SMA and in PPC. Within this fronto-parietal network, the pre-SMA is supposed to exert an inhibitory influence on the default coupling of homologous muscles, thus allowing the execution of non-congruent movements. In MN syndrome, the described abnormal pre-SMA activity supports the hypothesis that a failure to inhibit ipsilesional motor programs might determine a specific impairment of non-congruent movements.

  3. Serotonin-dopamine interactions in the control of conditioned reinforcement and motor behavior.

    Science.gov (United States)

    Sasaki-Adams, D M; Kelley, A E

    2001-09-01

    These studies addressed the question of serotonin (5-HT)-dopamine (DA) interactions with regard to reward-related behavior and motor activity in rats. The first experiment evaluated the effect of chronic treatment with fluoxetine (7 mg/kg/day), a serotonin-selective reuptake inhibitor, and buproprion (15 mg/kg/day), a dopamine reuptake inhibitor, on responding for conditioned reinforcement (CR). Chronic fluoxetine, but not buproprion, enhanced CR responding, and also potentiated cocaine-induced increases in CR responding. In the second experiment, animals received intra-accumbens infusions of either 5-HT (0, 1, 5, and 10 microg) or DA (10, 20 microg) prior to the conditioned reinforcement test. Dopamine, but not 5-HT, selectively facilitated CR responding, although 5-HT non-specifically increased responding as well. In the third and fourth experiments, it was demonstrated that intra-accumbens 5-HT causes increased motor activity, which was partially blocked by DA antagonists. The results suggest that chronically increased levels of 5-HT may facilitate reward-related behavior, but most likely via indirect modulatory mechanisms affecting general arousal and motor tone.

  4. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  5. Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors.

    Science.gov (United States)

    Terahara, Naoya; Krulwich, Terry A; Ito, Masahiro

    2008-09-23

    Bacterial flagella contain membrane-embedded stators, Mot complexes, that harness the energy of either transmembrane proton or sodium ion gradients to power motility. Use of sodium ion gradients is associated with elevated pH and sodium concentrations. The Mot complexes studied to date contain channels that use either protons or sodium ions, with some bacteria having only one type and others having two distinct Mot types with different ion-coupling. Here, alkaliphilic Bacillus clausii KSM-K16 was shown to be motile in a pH range from 7 to 11 although its genome encodes only one Mot (BCl-MotAB). Assays of swimming as a function of pH, sodium concentration, and ion-selective motility inhibitors showed that BCl-MotAB couples motility to sodium at the high end of its pH range but uses protons at lower pH. This pattern was confirmed in swimming assays of a statorless Bacillus subtilis mutant expressing either BCl-MotAB or one of the two B. subtilis stators, sodium-coupled Bs-MotPS or proton-coupled Bs-MotAB. Pairs of mutations in BCl-MotB were identified that converted the naturally bifunctional BCl-MotAB to stators that preferentially use either protons or sodium ions across the full pH range. We then identified trios of mutations that added a capacity for dual-ion coupling on the distinct B. subtilis Bs-MotAB and Bs-MotPS motors. Determinants that alter the specificity of bifunctional and single-coupled flagellar stators add to insights from studies of other ion-translocating transporters that use both protons and sodium ions.

  6. Postural alignment is altered in people with chronic stroke and related to motor and functional performance.

    Science.gov (United States)

    Verheyden, Geert; Ruesen, Carolien; Gorissen, Monique; Brumby, Victoria; Moran, Rachel; Burnett, Malcolm; Ashburn, Ann

    2014-10-01

    Trunk control is impaired after stroke but little is known about how changes in posture relate to other deficits. We examined spinal postural alignment in people with chronic stroke and explored the relationship between postural alignment and clinical measures. Twenty-one subjects with stroke and 22 age-matched healthy comparison subjects participated in this observational, cross-sectional study. Data collection included measurements of thoracic, lumbar, sacral, and overall postural alignment in the sagittal plane in both sitting and standing. Measurements were made in different postures, including: upright, flexed forward, and extended backward. Clinical outcome measures included the Trunk Impairment Scale and its subscales, Fugl-Meyer Scale, Berg Balance Scale, Barthel Index, and Stroke Impact Scale. Significant deviations in postural alignment for participants with stroke compared with comparison subjects were apparent in sacral alignment (P Scale (r = -0.61) and Berg Balance Scale (r = -0.64). Participants with greater anterior pelvic tilt when flexed forward and more overall inclination when flexed forward and extended backward scored better on the Trunk Impairment Scale, its subscales, and Berg Balance Scale (r = -0.6-0.7). People with chronic stroke have altered postural alignment in standing compared with subjects without neurological deficits. Investigating interventions focusing on increasing anterior and posterior pelvic tilt seem warranted.Video Abstract available. See video (Supplemental Digital Content 1, http://links.lww.com/JNPT/A76) for more insights from the authors.

  7. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  8. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    Science.gov (United States)

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves.

  9. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    Science.gov (United States)

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system.

    Science.gov (United States)

    Lee, Minkyung; Ryu, Young Hoon; Cho, Won Gil; Kang, Yeo Wool; Lee, Soo Jin; Jeon, Tae Joo; Lyoo, Chul Hyoung; Kim, Chul Hoon; Kim, Dong Goo; Lee, Kyochul; Choi, Tae Hyun; Choi, Jae Yong

    2015-09-01

    Depression frequently accompanies in Parkinson's disease (PD). Previous research suggested that dopamine (DA) and serotonin systems are closely linked with depression in PD. However, comprehensive studies about the relationship between these two neurotransmitter systems are limited. Therefore, the purpose of this study is to evaluate the effect of dopaminergic destruction on the serotonin system. The interconnection between motor and depression was also examined. Two PET scans were performed in the 6-hydroxydopamine (6-OHDA) lesioned and sham operated rats: [(18) F]FP-CIT for DA transporters and [(18) F]Mefway for serotonin 1A (5-HT(1A)) receptors. Here, 6-OHDA is a neurotoxin for dopaminergic neurons. Behavioral tests were used to evaluate the severity of symptoms: rotational number for motor impairment and immobility time, acquired from the forced swim test for depression. Region-of-interests were drawn in the striatum and cerebellum for the DA system and hippocampus and cerebellum for the 5-HT system. The cerebellum was chosen as a reference region. Nondisplaceable binding potential in the striatum and hippocampus were compared between 6-OHDA and sham groups. As a result, the degree of DA depletion was negatively correlated with rotational behavior (R(2)  = 0.79, P = 0.003). In 6-OHDA lesioned rats, binding values for 5-HT(1A) receptors was 22% lower than the sham operated group. This decrement of 5-HT(1A) receptor binding was also correlated with the severity of depression (R(2)  = 0.81, P = 0.006). Taken together, this research demonstrated that the destruction of dopaminergic system causes the reduction of the serotonergic system resulting in the expression of depressive behavior. The degree of dopaminergic dysfunction was positively correlated with the impairment of the serotonin system. Severity of motor symptoms was also closely related to depressive behavior. © 2015 Wiley Periodicals, Inc.

  11. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  12. Behavioral Problems in Children with Motor and Intellectual Disabilities: Prevalence and Associations with Maladaptive Personality and Marital Relationship

    Science.gov (United States)

    Vrijmoeth, Cis; Monbaliu, Elegast; Lagast, Emmy; Prinzie, Peter

    2012-01-01

    Prevalence rates of behavioral problems in children with motor disabilities are commonly based on questionnaires developed for a general population (e.g., Child Behavior CheckList). These questionnaires do not take into account lower levels of intellectual functioning. The first aim of this study was to examine the prevalence of parent-reported…

  13. The Cinderella of Psychology: The Neglect of Motor Control in the Science of Mental Life and Behavior

    Science.gov (United States)

    Rosenbaum, David A.

    2005-01-01

    One would expect psychology--the science of mental life and behavior--to place great emphasis on the means by which mental life is behaviorally expressed. Surprisingly, however, the study of how decisions are enacted--the focus of motor control research--has received little attention in psychology. This article documents the neglect and considers…

  14. Hypnagogic behavior disorder: complex motor behaviors during wake-sleep transitions in 2 young children.

    Science.gov (United States)

    Pareja, Juan A; Cuadrado, María Luz; García-Morales, Irene; Gil-Nagel, Antonio; Franch, Oriol

    2008-08-01

    A nondescribed behavioral disorder was observed during wake-sleep transitions in 2 young children. Two boys had episodes of abnormal behavior in hypnagogic-and occasionally hypnopompic-periods for 1 year from the time they were 1 year and several months old. The episodes consisted of irregular body movements, which could be either gentle or violent but never made the children get out of bed. They lasted from a few seconds to 2 hours and were associated with poor reactivity and amnesia of the events. Electroencephalography (EEG) recordings showed wake-state features, with brief bursts of hypnagogic hypersynchrony, and did not display seizure activity. A distinctive behavior disorder occurring during wake-sleep transitions with a wake EEG pattern has been identified in very early childhood. The clinical profile does not fit any of the known parasomnias and might belong to a new category of parasomnia.

  15. Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs.

    Science.gov (United States)

    Hayase, T; Yamamoto, Y; Yamamoto, K

    2000-12-01

    The present study evaluated the effects of mixed opioid drugs on the severity of cocaine (COCA) toxicity by examining stress-related behavioral alterations in mice. In order to ascertain the strength of the stress, the continuous observation of the behavioral symptoms in the cage and the forced swimming test (Porsolt test) were performed in the COCA (75 mg/kg, i.p.)-treated groups, with or without the mixed mu-kappa receptor-related opioid drugs, buprenorphine (BUP) and pentazocine (PEN). Using the high-sensitivity activity measuring instrument Supermex, both the spontaneous behaviors in the cage and the forced swimming behaviors in the water were assessed as activity counts. The behavioral alterations in the COCA-treated groups were compared with a group of mice given a 10 min immobilization stress (IM group). In the COCA-only group, a prolonged increase in the spontaneous behaviors accompanied by convulsive seizures was observed even in the surviving mice, unlike in the IM group. However, an acceleration of behavioral despair in the Porsolt test similar to that observed in the IM group was observed in the COCA group after the disappearance of the acute toxic symptoms (5 hours after the COCA treatment). Among the opioid-treated groups, the mortality rate was attenuated only in the COCA-BUP (0.25 mg/kg, i.p.) group. In the COCA-BUP group, a prolonged suppression of the morbid hyperactivity in the cage except for the convulsive seizures, and a normalization of the swimming behavior in the Porsolt test were observed in the survivors. On the other hand, in the COCA-PEN (5 mg/kg, i.p.) group, the swimming behavior in the Porsolt test was abnormally increased in addition to the prolonged morbid hyperactivity in the cage. Therefore, the COCA-induced stress-related behaviors were normalized in the group of mice treated with BUP, a group with a good prognosis.

  16. A Perceptual Motor Intervention Improves Play Behavior In Children With Moderate To Severe Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Brigette Oliver Ryalls

    2016-05-01

    Full Text Available For children with moderate or severe cerebral palsy (CP, a foundational early goal is independent sitting. Sitting offers additional opportunities for object exploration, play and social engagement. The achievement of sitting coincides with important milestones in other developmental areas, such as social engagement with others, understanding of spatial relationships, and the use of both hands to explore objects. These milestones are essential skills necessary for play behavior. However, little is known about how sitting and play behavior might be affected by a physical therapy intervention in children with moderate or severe CP. Therefore, our overall purpose in this study was to determine if sitting skill could be advanced in children with moderate to severe CP using a perceptual motor intervention, and if play skills would change significantly as sitting advanced. Thirty children between the ages of 18 months and 6 years who were able to hold prop sitting for at least 10 seconds were recruited for this study. Outcome measures were the sitting subsection of the Gross Motor Function Measure (GMFM, and the Play Assessment of Children with Motor Impairment (PACMI play assessment scale, which is a modified version of the Play in Early Childhood Evaluation System (PIECES. Significant improvements in GMFM sitting scores (p<0.001 and marginally significant improvement in play assessment scores (p=0.067 were found from pre- to post-intervention. Sitting change explained a significant portion of the variance in play change for children over the age of 3 years, who were more severely affected by CP. The results of this study indicate that advances in sitting skill may be a factor in supporting improvements in functional play, along with age and severity of physical impairment.

  17. Time-varying motor control of autotomized leopard gecko tails: multiple inputs and behavioral modulation.

    Science.gov (United States)

    Higham, Timothy E; Russell, Anthony P

    2012-02-01

    Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.

  18. The modulation of two motor behaviors by persistent sodium currents inXenopus laevistadpoles.

    Science.gov (United States)

    Svensson, Erik; Jeffreys, Hugo; Li, Wen-Chang

    2017-07-01

    Persistent sodium currents ( I NaP ) are common in neuronal circuitries and have been implicated in several diseases, such as amyotrophic lateral sclerosis (ALS) and epilepsy. However, the role of I NaP in the regulation of specific behaviors is still poorly understood. In this study we have characterized I NaP and investigated its role in the swimming and struggling behavior of Xenopus tadpoles. I NaP was identified in three groups of neurons, namely, sensory Rohon-Beard neurons (RB neurons), descending interneurons (dINs), and non-dINs (neurons rhythmically active in swimming). All groups of neurons expressed I NaP , but the currents differed in decay time constants, amplitudes, and the membrane potential at which I NaP peaked. Low concentrations (1 µM) of the I NaP blocker riluzole blocked I NaP ~30% and decreased the excitability of the three neuron groups without affecting spike amplitudes or cellular input resistances. Riluzole reduced the number of rebound spikes in dINs and depressed repetitive firing in RB neurons and non-dINs. At the behavior level, riluzole at 1 µM shortened fictive swimming episodes. It also reduced the number of action potentials neurons fired on each struggling cycle. The results show that I NaP may play important modulatory roles in motor behaviors. NEW & NOTEWORTHY We have characterized persistent sodium currents in three groups of spinal neurons and their role in shaping spiking activity in the Xenopus tadpole. We then attempted to evaluate the role of persistent sodium currents in regulating tadpole swimming and struggling motor outputs by using low concentrations of the persistent sodium current antagonist riluzole. Copyright © 2017 the American Physiological Society.

  19. Voluntary alcohol intake after noise exposure in adolescent rats: Hippocampal-related behavioral alterations.

    Science.gov (United States)

    Miceli, M; Molina, S J; Forcada, A; Acosta, G B; Guelman, L R

    2018-01-15

    Different physical or chemical agents, such as noise or alcohol, can induce diverse behavioral and biochemical alterations. Considering the high probability of young people to undergo consecutive or simultaneous exposures, the aim of the present work was to investigate in an animal model if noise exposure at early adolescence could induce hippocampal-related behavioral changes that might be modified after alcohol intake. Male Wistar rats (28-days-old) were exposed to noise (95-97 dB, 2 h). Afterwards, animals were allowed to voluntarily drink alcohol (10% ethanol in tap water) for three consecutive days, using the two-bottle free choice paradigm. After that, hippocampal-related memory and anxiety-like behavior tests were performed. Results show that whereas noise-exposed rats presented deficits in habituation memory, those who drank alcohol exhibited impairments in associative memory and anxiety-like behaviors. In contrast, exposure to noise followed by alcohol intake showed increases in exploratory and locomotor activities as well as in anxiety-like behaviors, unlike what was observed using each agent separately. Finally, lower levels of alcohol intake were measured in these animals when compared with those that drank alcohol and were not exposed to noise. Present findings demonstrate that exposure to physical and chemical challenges during early adolescence might induce behavioral alterations that could differ depending on the schedule used, suggesting a high vulnerability of rat developing brain to these socially relevant agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  1. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    Science.gov (United States)

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Motor cortical prediction of EMG: evidence that a kinetic brain-machine interface may be robust across altered movement dynamics.

    Science.gov (United States)

    Cherian, A; Krucoff, M O; Miller, L E

    2011-08-01

    During typical movements, signals related to both the kinematics and kinetics of movement are mutually correlated, and each is correlated to some extent with the discharge of neurons in the primary motor cortex (M1). However, it is well known, if not always appreciated, that causality cannot be inferred from correlations. Although these mutual correlations persist, their nature changes with changing postural or dynamical conditions. Under changing conditions, only signals directly controlled by M1 can be expected to maintain a stable relationship with its discharge. If one were to rely on noncausal correlations for a brain-machine interface, its generalization across conditions would likely suffer. We examined this effect, using multielectrode recordings in M1 as input to linear decoders of both end point kinematics (position and velocity) and proximal limb myoelectric signals (EMG) during reaching. We tested these decoders across tasks that altered either the posture of the limb or the end point forces encountered during movement. Within any given task, the accuracy of the kinematic predictions tended to be somewhat better than the EMG predictions. However, when we used the decoders developed under one task condition to predict the signals recorded under different postural or dynamical conditions, only the EMG decoders consistently generalized well. Our results support the view that M1 discharge is more closely related to kinetic variables like EMG than it is to limb kinematics. These results suggest that brain-machine interface applications using M1 to control kinetic variables may prove to be more successful than the more standard kinematic approach.

  3. The protective effect of two commercial formats of Ginkgo biloba on motor alterations induced by cassava juice (Manihot esculenta Crantz) in Wistar rats.

    Science.gov (United States)

    Rivadeneyra-Domínguez, E; Vázquez-Luna, A; Rodríguez-Landa, J F; Mérida-Portilla, C V; Díaz-Sobac, R

    2017-10-01

    This study evaluated the protective effects of 2 commercial formats of Ginkgo biloba on motor alterations induced by cassava (Manihot esculenta Crantz) juice consumption in male Wistar rats. The effects were evaluated with the open field and swim tests at 0, 7, 14, 21, and 28 days of treatment, one hour after administering the product. Compared to controls, open field crossings increased after day 21 of cassava juice consumption, and lateral swimming in the swim test was reported after day 7. Ginkgo biloba extracts prevented motor alterations associated with cassava juice consumption, probably due to the flavonoid content in both formats of Ginkgo biloba. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Effects of Infantile Repeated Hyperglycemia on Behavioral Alterations in Adult Rats

    Directory of Open Access Journals (Sweden)

    Malihe Moghadami

    2012-09-01

    Full Text Available Anxiety symptoms have been reported to be present in many patients with diabetes mellitus. However, little is known about the effects of hyperglycemia in critical periods of the central nervous system development. We assessed locomotive, exploratory, and anxiety behaviors in adult rats that remained from infantile repeated hyperglycemia by the open field and elevated plus maze tests. Our findings showed significant hypo activity, reduced locomotive/exploratory activities, increased fear related behaviors, and anxiety state between hyperglycemic and control adult males and the same differences were observed among females. In addition, no significant behavioral alterations between male and female animals were observed. This study determined that repeated increments in daily blood sugar levels in newborns may affect neuronal functions and provide behavioral abnormalities in adults.

  5. Effects of Infantile Repeated Hyperglycemia on Behavioral Alterations in Adult Rats

    Directory of Open Access Journals (Sweden)

    Malihe Moghadami

    2012-08-01

    Full Text Available Anxiety symptoms have been reported to be present in many patients with diabetes mellitus. However, little is known about the effects of hyperglycemia in critical periods of the central nervous system development. We assessed locomotive, exploratory, and anxiety behaviors in adult rats that remained from infantile repeated hyperglycemia by the open field and elevated plus maze tests. Our findings showed significant hypo activity, reduced locomotive/exploratory activities, increased fear related behaviors, and anxiety state between hyperglycemic and control adult males and the same differences were observed among females. In addition, no significant behavioral alterations between male and female animals were observed. This study determined that repeated increments in daily blood sugar levels in newborns may affect neuronal functions and provide behavioral abnormalities in adults.

  6. Neuropsychological evaluation and parental assessment of behavioral and motor difficulties in children with neurofibromatosis type 1.

    Science.gov (United States)

    Coutinho, V; Kemlin, I; Dorison, N; Billette de Villemeur, T; Rodriguez, D; Dellatolas, G

    2016-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant multisystem disorder, with large inter and intrafamilial clinical variability and uncertain prognosis. In children with NF1 cognitive disorders, learning difficulties and behavioral problems are common. The present study aims to establish the neuropsychological and behavioral profiles of 78 patients with NF1, aged between 5 and 18 years, and to examine the relationship between these profiles and the transmission of NF1 (sporadic vs. familial), clinical manifestations, and environmental factors. We used several questionnaires completed by parents and neuropsychological tests. The results confirmed specific neuropsychological disabilities in children with NF1, especially involving visuospatial and fine motor skills, learning difficulties and behavioral problems. Cognitive difficulties were significantly more frequent in patients with familial than in those with sporadic NF1. All parental questionnaires were correlated with each other, but parental reports were not associated with FSIQ, SES, school status, and clinical manifestations of the disease. Neuropsychological tests were poorly related to parental reports of cognitive and behavioral difficulties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Perinatal exposure to genistein alters reproductive development and aggressive behavior in male mice.

    Science.gov (United States)

    Wisniewski, Amy B; Cernetich, Amy; Gearhart, John P; Klein, Sabra L

    2005-02-15

    Exposure to endocrine disrupting chemicals adversely affects reproductive development and behavior in males. The goal of this study was to determine if exposure to genistein, an isoflavone found in soy, during early periods of sex differentiation alters reproductive development and behavior in male mice. Female C57BL/6 mice were fed a phytoestrogen-free diet supplemented with 0, 5 or 300 mg/kg of genistein throughout gestation and lactation. Anogenital distance (AGD) and body mass of male offspring was measured weekly from postnatal days 2-21, timing of preputial separation was assessed at puberty, and in adulthood, reproductive organ masses, sperm and testosterone production, and reproductive and aggressive behaviors were assessed. Exposure to genistein resulted in smaller AGD are reduced body mass, with the low-dose diet exerting a greater effect. Timing of preputial separation, adult reproductive behavior, sperm concentrations and testosterone production were not influenced by genistein treatment at either dose. Aggressive behaviors were decreased, whereas defensive behaviors were increased, in males that received the low-dose genistein diet. Exposure to genistein during critical periods of sex differentiation results in concurrent and persistent demasculinization in male mice. Phenotypic and behavioral abnormalities induced by genistein showed a non-monotonic response, where treatment with a low dose exerted a greater effect than treatment with a high dose of genistein. Given the popularity of soy infant formulas, the influence isoflavone exposure on reproductive and behavioral health in boys and men should be considered.

  8. Alterations of male sexual behavior by learned aversions to hamster vaginal secretion.

    Science.gov (United States)

    Johnston, R E; Zahorik, D M; Immler, K; Zakon, H

    1978-02-01

    Male hamsters poisoned after their first adult exposure to the vaginal secretion of female hamsters became hesitant to approach and ingest the secretion. The same aversion-training procedure also altered the responses of males to estrous females, changing the latency, frequency, and duration of a variety of behaviors that are commonly taken as indexes of sexual attraction or arousal and of copulatory performance. The effects suggest that the aversions to vaginal secretion alter the perceived meaning of the secretion for male hamsters, and analysis of the correlations between various measures of sexual arousal and performance support the hypothesis that separate mechanisms underlie the effects of the secretion on appetitive and consummatory sexual behavior.

  9. Caenorhabditis elegans mutants having altered preference of chemotaxis behavior during simultaneous presentation of two chemoattractants.

    Science.gov (United States)

    Lin, Lin; Wakabayashi, Tokumitsu; Oikawa, Tomohiro; Sato, Tsutomu; Ogurusu, Tarou; Shingai, Ryuzo

    2006-11-01

    Upon presentation of two distinct chemoattractants such as sodium acetate and diacetyl simultaneously, the nematode Caenorhabditis elegans was preferentially attracted by one of these chemoattractants. We isolated two mutants having altered preference of chemotaxis behavior toward simultaneous presentation of sodium acetate and diacetyl. The chep-1(qr1) (CHEmosensory Preference) mutant preferred sodium acetate to diacetyl, while the chep-2(qr2) mutant preferred diacetyl to sodium acetate in simultaneous presentation of these chemoattractants. The chemotaxis behavior of chep-2(qr2) mutant in simultaneous presentation suggests a function of chep-2 gene products within the chemosensory informational integration pathway as well as in the chemosensory pathway.

  10. Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring.

    Science.gov (United States)

    Sasaki, A; de Vega, W; Sivanathan, S; St-Cyr, S; McGowan, P O

    2014-07-11

    Maternal obesity and overconsumption of saturated fats during pregnancy have profound effects on offspring health, ranging from metabolic to behavioral disorders in later life. The influence of high-fat diet (HFD) exposure on the development of brain regions implicated in anxiety behavior is not well understood. We previously found that maternal HFD exposure is associated with an increase in anxiety behavior and alterations in the expression of several genes involved in inflammation via the glucocorticoid signaling pathway in adult rat offspring. During adolescence, the maturation of feedback systems mediating corticosteroid sensitivity is incomplete, and therefore distinct from adulthood. In this study, we examined the influence of maternal HFD on several measures of anxiety behavior and gene expression in adolescent offspring. We examined the expression of corticosteroid receptors and related inflammatory processes, as corticosteroid receptors are known to regulate circulating corticosterone levels during basal and stress conditions in addition to influencing inflammatory processes in the hippocampus and amygdala. We found that adolescent animals perinatally exposed to HFD generally showed decreased anxiety behavior accompanied by a selective alteration in the expression of the glucocorticoid receptor and several downstream inflammatory genes in the hippocampus and amygdala. These data suggest that adolescence constitutes an additional period when the effects of developmental programming may modify mental health trajectories. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Evidence of alterations in transcallosal motor inhibition as a possible long-term consequence of concussions in sports: A transcranial magnetic stimulation study.

    Science.gov (United States)

    Davidson, Travis W; Tremblay, François

    2016-10-01

    Growing evidence suggests that long-term structural and physiological alterations are present in the brain of previously concussed athletes. In this study, we sought to further explore the long-term consequences of concussions with transcranial magnetic stimulation (TMS) by examining excitability changes both within and between hemispheres. Participants (32 young adults with and without a history of concussions (HxC)) first underwent testing to assess cognitive and motor performance using standardized tests. Then, the following TMS measures were derived bilaterally: (1) resting motor threshold and motor evoked potentials (MEP), (2) afferent-induced modulation, (3) contralateral silent period (cSP) and MEP facilitation, and, (4) ipsilateral silent period (iSP). Multivariate analyses of performance data revealed no major group differences. For TMS data, no "hemisphere" effects were detected for all measures. Group differences were detected only for iSP derived measures owing to alterations in the onset latency and duration of transcallosal inhibition in the HxC group. While no major asymmetries were found between hemispheres, participants in the HxC group showed evidence of impaired transcallosal inhibition. Results provide one of the first piece of evidence pointing to alterations in transcallosal inhibition as a potential neurophysiological marker of long-term consequences of concussions in sports. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring.

    Science.gov (United States)

    Enes-Marques, Silvia; Giusti-Paiva, Alexandre

    2018-01-27

    Maternal behavior has a substantial impact on the behavioral, endocrine, and neural development of the pups. This study investigated the effect of altering the neonatal nutritional environment by modifying the litter size on maternal care and anxiety- and fear-like behaviors in rats during adulthood. On postnatal day (PND) 2, litters were adjusted to a small litter (SL) size of three pups per dam or normal litter (NL) size of 12 pups per dam. Maternal behaviors were scored daily during lactation (PND2-21). The weight gain, food intake, adiposity, and biochemical landmarks of offspring rats were evaluated. On PND60, performances in the open field, elevated plus-maze (EPM), and fear conditioning test were measured. The reduction of the litter size enhanced maternal care in lactating rats, increasing the arched-back posture and licking pups. SL offspring exhibited accelerated weight gain, hyperphagia, increased visceral fat mass, dyslipidemia, and hyperleptinemia in adulthood. The SL offspring of both sexes showed an increase in the anti-thigmotactic effect in the open field, an intact anxious-phenotype in the EPM, and a decrease in the time spent freezing during the fear-conditioning test, compared to NL. The neonatal environment as determined by litter size plays a crucial role in programming the adult metabolic phenotype as well as behavioral responses to stressful stimuli, with an impact on anxiety-like and fear behaviors. These behavioral changes in offspring may be, at least in part, a result of increased maternal care.

  13. Postpartum behavioral profiles in Wistar rats following maternal separation - altered exploration and risk-assessment behavior in MS15 dams

    Directory of Open Access Journals (Sweden)

    Loudin Daoura

    2010-06-01

    Full Text Available The rodent maternal separation (MS model is frequently used to investigate the impact of early environmental factors on adult neurobiology and behavior. The majority of MS studies assess effects in the offspring and few address the consequences of repeated pup removal in the dam. Such studies are of interest since alterations detected in offspring subjected to MS may, at least in part, be mediated by variations in maternal behavior and the amount of maternal care provided by the dam. The aim of this study was to investigate how daily short (15 min; MS15 and prolonged (360 min; MS360 periods of MS affects the dam by examining postpartum behavioral profiles using the multivariate concentric square field™ (MCSF test. The dams were tested on postpartum days 24-25, i.e. just after the end of the separation period and weaning. The results reveal a lower exploratory drive and lower risk-assessment behavior in MS15 dams relative to MS360 or animal facility reared dams. The present results contrast some of the previously reported findings and provide new information about early post-weaning behavioral characteristics in a multivariate setting. Plausible explanations for the results are provided including a discussion how the present results fit into the maternal mediation hypothesis.

  14. Effects of multisensory and motor stimulation on the behavior of people with dementia.

    Science.gov (United States)

    Sposito, Giovana; Barbosa, Ana; Figueiredo, Daniela; Yassuda, Mônica Sanches; Marques, Alda

    2017-04-01

    A quasi-experimental study using a pre-posttest design was conducted in four aged care facilities to assess the effects of a person-centred care (PCC) multisensory stimulation (MSS) and motor stimulation (MS) program, implemented by direct care workers, on the behaviors of residents with dementia. Data were collected at baseline and after the intervention through video recordings of morning care routines. Forty-five residents with moderate and severe dementia participated in the study. A total of 266 morning care routines were recorded. The frequency and duration of a list of behaviors were analyzed. The frequency of engagement in task decreased significantly ( p = .002) however, its duration increased ( p = .039). The duration of gaze directed at direct care workers improved significantly ( p = .014) and the frequency of closed eyes decreased ( p = .046). There was a significant decrease in the frequency of the expression of sadness. These results support the implementation of PCC-MSS and MS programs as they may stimulate residents' behaviors.

  15. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins

    Directory of Open Access Journals (Sweden)

    Joaquin N Lugo

    2014-04-01

    Full Text Available Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN. In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN.The knockout (KO mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile x mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins.

  17. IL-4 Inhibits IL-1β-Induced Depressive-Like Behavior and Central Neurotransmitter Alterations

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2015-01-01

    Full Text Available It has been known that activation of the central innate immune system or exposure to stress can disrupt balance of anti-/proinflammatory cytokines. The aim of the present study was to investigate the role of pro- and anti-inflammatory cytokines in the modulation of depressive-like behaviors, the hormonal and neurotransmitter systems in rats. We investigated whether centrally administered IL-1β is associated with activation of CNS inflammatory pathways and behavioral changes and whether treatment with IL-4 could modulate IL-1β-induced depressive-like behaviors and central neurotransmitter systems. Infusion of IL-4 significantly decreased IL-1β-induced anhedonic responses and increased social exploration and total activity. Treatment with IL-4 markedly blocked IL-1β-induced increase in PGE2 and CORT levels. Also, IL-4 reduced IL-1β-induced 5-HT levels by inhibiting tryptophan hydroxylase (TPH mRNA and activating serotonin transporter (SERT in the hippocampus, and levels of NE were increased by activating tyrosine hydroxylase (TH mRNA expression. These results demonstrate that IL-4 may locally contribute to the regulation of noradrenergic and serotonergic neurotransmission and may inhibit IL-1β-induced behavioral and immunological changes. The present results suggest that IL-4 modulates IL-1β-induced depressive behavior by inhibiting IL-1β-induced central glial activation and neurotransmitter alterations. IL-4 reduced central and systemic mediatory inflammatory activation, as well as reversing the IL-1β-induced alterations in neurotransmitter levels. The present findings contribute a biochemical pathway regulated by IL-4 that may have therapeutic utility for treatment of IL-1β-induced depressive behavior and neuroinflammation which warrants further study.

  18. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior prior to alterations in muscle function.

    Science.gov (United States)

    Norden, Diana M; Bicer, Sabahattin; Clark, Yvonne; Jing, Runfeng; Henry, Christopher J; Wold, Loren E; Reiser, Peter J; Godbout, Jonathan P; McCarthy, Donna O

    2015-01-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with loss of muscle mass, weakness, and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, during treatment, and persists for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. Currently there are no effective treatments to reduce CRF. The aim of this study was to use a mouse model of tumor growth and discriminate between two main components of fatigue: loss of muscle mass/function and altered mood/motivation. Here we show that tumor growth increased fatigue- and depressive-like behaviors, and reduced body and muscle mass. Decreased voluntary wheel running activity (VWRA) and increased depressive-like behavior in the forced swim and sucrose preference tests were evident in tumor-bearing mice within the first two weeks of tumor growth and preceded the loss of body and muscle mass. At three weeks, tumor-bearing mice had reduced grip strength but this was not associated with altered expression of myosin isoforms or impaired contractile properties of muscles. These increases in fatigue and depressive-like behaviors were paralleled by increased expression of IL-1β mRNA in the cortex and hippocampus. Minocycline administration reduced tumor-induced expression of IL-1β in the brain, reduced depressive-like behavior, and improved grip strength without altering muscle mass. Taken together, these results indicate that neuroinflammation and depressed mood, rather than muscle wasting, contribute to decreased voluntary activity and precede major changes in muscle contractile properties with tumor growth. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood.

    Science.gov (United States)

    Sasaki, A; de Vega, W C; St-Cyr, S; Pan, P; McGowan, P O

    2013-06-14

    Maternal obesity carries significant health risks for offspring that manifest later in life, including metabolic syndrome, cardiovascular disease and affective disorders. Programming of the hypothalamic-pituitary-adrenal (HPA) axis during development mediates both metabolic homeostasis and the response to psychosocial stress in offspring. A diet high in fat alters maternal systemic corticosterone levels, but effects in offspring on limbic brain areas regulating the HPA axis and anxiety behavior are poorly understood. In addition to their role in the response to psychosocial stress, corticosteroid receptors form part of the glucocorticoid signaling pathway comprising downstream inflammatory processes. Increased systemic inflammation is a hallmark of high-fat diet exposure, though altered expression of these genes in limbic brain areas has not been examined. We studied the influence of high-fat diet exposure during pre-weaning development in rats on gene expression in the amygdala and hippocampus by quantitative real-time polymerase chain reaction (PCR), anxiety behavior in the Open field, elevated plus maze and light-dark transition tasks, and corticosterone levels in response to stress by radioimmunoassay. As adults, offspring exposed to perinatal high-fat diet show increased expression of corticosterone receptors in the amygdala and altered pro-inflammatory and anti-inflammatory expression in the hippocampus and amygdala in genes known to be regulated by the glucocorticoid receptor. These changes were associated with increased anxiety behavior, decreased basal corticosterone levels and a slower return to baseline levels following a stress challenge. The data indicate that the dietary environment during development programs glucocorticoid signaling pathways in limbic areas relevant for the regulation of HPA function and anxiety behavior. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Invasive plant species alters consumer behavior by providing refuge from predation.

    Science.gov (United States)

    Dutra, Humberto P; Barnett, Kirk; Reinhardt, Jason R; Marquis, Robert J; Orrock, John L

    2011-07-01

    Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.

  1. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  2. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  3. The wake-promoting drug Modafinil prevents motor impairment in sickness behavior induced by LPS in mice: Role for dopaminergic D1 receptor.

    Science.gov (United States)

    Zager, Adriano; Brandão, Wesley Nogueira; Margatho, Rafael Oliveira; Peron, Jean Pierre; Tufik, Sergio; Andersen, Monica Levy; Kornum, Birgitte Rahbek; Palermo-Neto, João

    2018-02-02

    The wake-promoting drug Modafinil has been used for many years for treatment of Narcolepsy and Excessive Daytime Sleepiness, due to a dopamine-related psychostimulant action. Recent studies have indicated that Modafinil prevents neuroinflammation in animal models. Thus, the aim of the present study was to evaluate the effect of Modafinil pretreatment in the Lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors. Adult male C57BL/6J mice were pretreated with Vehicle or Modafinil (90mg/Kg) and, 30min later, received a single saline or LPS (2mg/Kg) administration, and were submitted to the open field and elevated plus maze test 2h later. After 24h, mice were subjected to tail suspension test, followed by either flow cytometry with whole brain for CD11b + CD45 + cells or qPCR in brain areas for cytokine gene expression. Modafinil treatment prevented the LPS-induced motor impairment, anxiety-like and depressive-like behaviors, as well as the increase in brain CD11b + CD45 high cells induced by LPS. Our results indicate that Modafinil pretreatment also decreased the IL-1β gene upregulation caused by LPS in brain areas, which is possibly correlated with the preventive behavioral effects. The pharmacological blockage of the dopaminergic D1R by the drug SCH-23390 counteracted the effect of Modafinil on locomotion and anxiety-like behavior, but not on depressive-like behavior and brain immune cells. The dopaminergic D1 receptor signaling is essential to the Modafinil effects on LPS-induced alterations in locomotion and anxiety, but not on depression and brain macrophages. This evidence suggests that Modafinil treatment might be useful to prevent inflammation-related behavioral alterations, possibly due to a neuroimmune mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    Science.gov (United States)

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2017-09-01

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  5. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-03-01

    Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  6. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Improve Computer Pointing Efficiency through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2009-01-01

    This study evaluated whether two people with multiple disabilities and minimal motor behavior would be able to improve their pointing performance using finger poke ability with a mouse wheel through a Dynamic Pointing Assistive Program (DPAP) and a newly developed mouse driver (i.e., a new mouse driver replaces standard mouse driver, changes a…

  7. Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Boscolo, Camila Nomura Pereira; Pereira, Thiago Scremin Boscolo; Batalhão, Isabela Gertrudes; Dourado, Priscila Leocadia Rosa; Schlenk, Daniel; de Almeida, Eduardo Alves

    2018-01-01

    Diuron and its biodegradation metabolites were recently reported to cause alterations in plasma steroid hormone concentrations with subsequent impacts on reproductive development in fish. Since steroid hormone biosynthesis is regulated through neurotransmission of the central nervous system (CNS), studies were conducted to determine whether neurotransmitters that control hormone biosynthesis could be affected after diuron and diuron metabolites treatment. As the same neurotransmitters and steroid hormones regulate behavioral outcomes, aggression was also evaluated in male Nile tilapia (Oreochromis niloticus). Male tilapias were exposed for 10 days to waterborne diuron and the metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenyl-N-methylurea (DCPMU), at nominal concentrations of 100 ng L -1 . In contrast to Diuron, DCA and DCPMU significantly diminished plasma testosterone concentrations (39.4% and 36.8%, respectively) and reduced dopamine levels in the brain (47.1% and 44.2%, respectively). In addition, concentrations of the stress steroid, cortisol were increased after DCA (71.0%) and DCPMU (57.8-%) exposure. A significant decrease in aggressive behavior was also observed in animals treated with the metabolites DCA (50.9%) and DCPMU (68.8%). These results indicate that biotransformation of diuron to active metabolites alter signaling pathways of the CNS which may impact androgen and the stress response as well as behavior necessary for social dominance, growth, and reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Behavioral disturbances, not cognitive deterioration, are associated with altered food selection in seniors with Alzheimer's disease.

    Science.gov (United States)

    Greenwood, Carol E; Tam, Carolyn; Chan, Mae; Young, Karen W H; Binns, Malcolm A; van Reekum, Robert

    2005-04-01

    We previously reported alterations in circadian patterns of food intake that are associated with measures of functional and cognitive deterioration in seniors with probable Alzheimer's disease (AD). This study further explored disturbed eating patterns in AD, focusing on alterations in macronutrient (protein, carbohydrate, and fat) selection, and their association with measures of functional and behavioral losses. Forty-nine days of food intake collections were conducted on 32 residents (26 females, 6 males; age = 88.4 +/- 4.1 years; body mass index = 24.1 +/- 4.0 kg/m(2)) with probable AD residing at a nursing home (a fully accredited geriatric teaching facility affiliated with the University of Toronto's Medical School). All residents ate their meals independently. The relationships between patterns of habitual food consumption and measures of cognitive function (Severe Impairment Battery), behavioral disturbances (Neuropsychiatric Inventory-Nursing Home Version) and behavioral function (London Psychogeriatric Rating Scale) were examined, cross-sectionally. Consistent with our previous studies, breakfast intakes were not predicted by any of the measures of behavioral, cognitive, or functional deterioration, although those residents with greater functional deterioration, especially disengagement, attained lower 24-hour energy intakes. The presence of "psychomotor disturbances," including irritability, agitation, and disinhibition, were strongly associated with shifts in eating patterns toward carbohydrate and away from protein, placing individuals with these conditions at increased risk for inadequate protein intakes. Between-individual differences in intake patterns could not be explained by the use of either anorexic or orexigenic medications. Behavioral, not cognitive, deterioration is associated with appetite modifications that increase risk of poor protein intake, perhaps indicating a common monoaminergic involvement.

  9. Using dissolved carbon dioxide to alter the behavior of invasive round goby

    Science.gov (United States)

    Cupp, Aaron R.; Tix, John; Smerud, Justin R.; Erickson, Richard A.; Fredricks, Kim; Amberg, Jon; Suski, Cory D.; Wakeman, Robert

    2017-01-01

    Fisheries managers need effective methods to limit the spread of invasive round goby Neogobius melanostomus in North America. Elevating carbon dioxide (CO2) in water at pinch points of rivers (e.g., inside locks) is one approach showing potential to deter the passage of invasive fishes, such as bigheaded carps Hypophthalmichthys spp., but the effectiveness of this method to alter round goby behavior has not been determined. The goal for this study was to determine CO2 concentrations that alter round goby behavior across a range of water temperatures. Free-swimming avoidance (voluntary response) and loss of equilibrium (involuntary response) were quantified by exposing round goby to increasing CO2 concentrations at 5, 15, and 25 °C using a shuttle box choice arena and static tank. Water chemistry was measured concurrent with behavioral endpoints and showed that round goby avoided a threshold of 99–169 mg/L CO2(79,000–178,000 µatm) and lost equilibrium at 197–280 mg/L CO2 (163,000–303,000 µatm). Approximately 50% lower CO2 concentrations were found to modify behavior at 5 °C relative to 25 °C, suggesting greater effectiveness at lower water temperatures. We conclude that CO2 modified round goby behavior and concentrations determined in this study are intended to guide field testing of CO2 as an invasive fish deterrent.

  10. Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats.

    Science.gov (United States)

    Brolese, Giovana; Lunardi, Paula; Broetto, Núbia; Engelke, Douglas S; Lírio, Franciane; Batassini, Cristiane; Tramontina, Ana Carolina; Gonçalves, Carlos-Alberto

    2014-08-01

    Alcohol consumption by women during gestation has become increasingly common. Although it is widely accepted that exposure to high doses of ethanol has long-lasting detrimental effects on brain development, the case for moderate doses is underappreciated, and benchmark studies have demonstrated structural and behavioral defects associated with moderate prenatal alcohol exposure in humans and animal models. This study aimed to investigate the influence of in utero exposure to moderate levels of ethanol throughout pregnancy on learning/memory, anxiety parameters and neuroglial parameters in adolescent offspring. Female rats were exposed to an experimental protocol throughout gestation up to weaning. After mating, the dams were divided into three groups and treated with only water (control), non-alcoholic beer (vehicle) or 10% (vv) beer solution (moderate prenatal alcohol exposure - MPAE). Adolescent male offspring were subjected to the plus-maze discriminative avoidance task to evaluate learning/memory and anxiety-like behavior. Hippocampi were dissected and slices were obtained for immunoquantification of GFAP, NeuN, S100B and the NMDA receptor. The MPAE group clearly presented anxiolytic-like behavior, even though they had learned how to avoid the aversive arm. S100B protein was increased in the cerebrospinal fluid (CSF) in the group treated with alcohol, and alterations in GFAP expression were also shown. This study indicates that moderate ethanol doses administered during pregnancy could induce anxiolytic-like effects, suggesting an increase in risk-taking behavior in adolescent male offspring. Furthermore, the data show the possibility that glial cells are involved in the altered behavior present after prenatal ethanol treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Investigation of the Association Between Motor Stereotypy Behavior With Fundamental Movement Skills, Adaptive Functioning, and Autistic Spectrum Disorder Symptomology in Children With Intellectual Disabilities.

    Science.gov (United States)

    Powell, Joanne L; Pringle, Lydia; Greig, Matt

    2017-02-01

    Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.

  12. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  13. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  14. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity.

    Science.gov (United States)

    Busan, Pierpaolo; Del Ben, Giovanni; Bernardini, Simona; Natarelli, Giulia; Bencich, Marco; Monti, Fabrizio; Manganotti, Paolo; Battaglini, Piero Paolo

    2016-01-01

    Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a "state" condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (Pstuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering "state" in persistent DS, helping to define more focused treatments (e.g. neuro-modulation).

  15. Can group-based reassuring information alter low back pain behavior?

    DEFF Research Database (Denmark)

    Frederiksen, Pernille; Indahl, Aage; Andersen, Lars L.

    2017-01-01

    muscular dysfunction) has been successful at altering beliefs and behavior when delivered with other intervention elements. This study investigates the isolated effect of this specific information on future occupational behavior outcomes when delivered to the workforce. DESIGN: A cluster......BACKGROUND: Low back pain (LBP) is common in the population and multifactorial in nature, often involving negative consequences. Reassuring information to improve coping is recommended for reducing the negative consequences of LBP. Adding a simple non-threatening explanation for the pain (temporary......-randomized controlled trial. METHODS: Publically employed workers (n = 505) from 11 Danish municipality centers were randomized at center-level (cluster) to either intervention (two 1-hour group-based talks at the workplace) or control. The talks provided reassuring information together with a simple non...

  16. 5-HT2A receptor-mediated excitation on cerebellar fastigial nucleus neurons and promotion of motor behaviors in rats.

    Science.gov (United States)

    Zhang, Chang-Zheng; Zhuang, Qian-Xing; He, Ye-Cheng; Li, Guang-Ying; Zhu, Jing-Ning; Wang, Jian-Jun

    2014-07-01

    It has long been known that serotonergic afferent inputs are the third largest afferent population in the cerebellum after mossy fibers and climbing fibers. However, the role of serotonergic inputs in cerebellar-mediated motor behaviors is still largely unknown. Here, we show that only 5-HT2A receptors among the 5-HT2 receptor subfamily are expressed and localized in the rat cerebellar fastigial nucleus (FN), one of the ultimate outputs of the spinocerebellum precisely regulating trunk and limb movements. Remarkably, selective activation of 5-HT2A receptors evokes a postsynaptic excitatory effect on FN neurons in a concentration-dependent manner in vitro, which is in accord with the 5-HT-elicited excitation on the same tested neurons. Furthermore, selective 5-HT2A receptor antagonist M100907 concentration-dependently blocks the excitatory effects of 5-HT and TCB-2, a 5-HT2A receptor agonist, on FN neurons. Consequently, microinjection of 5-HT into bilateral FNs significantly promotes rat motor performances on accelerating rota-rod and balance beam and narrows stride width rather than stride length in locomotion gait. All these motor behavioral effects are highly consistent with those of selective activation of 5-HT2A receptors in FNs, and blockage of the component of 5-HT2A receptor-mediated endogenous serotonergic inputs in FNs markedly attenuates these motor performances. All these results demonstrate that postsynaptic 5-HT2A receptors greatly contribute to the 5-HT-mediated excitatory effect on cerebellar FN neurons and promotion of the FN-related motor behaviors, suggesting that serotonergic afferent inputs may actively participate in cerebellar motor control through their direct modulation on the final output of the spinocerebellum.

  17. Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior.

    Directory of Open Access Journals (Sweden)

    Mark Lyte

    Full Text Available The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group and fed either a normal corn starch diet (NCS or diets rich in resistant starches HA7 diet (HA7 or octenyl-succinate HA7 diet (OS-HA7 for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001. Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to

  18. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors.

    Science.gov (United States)

    Marks, David R; Tucker, Kristal; Cavallin, Melissa A; Mast, Thomas G; Fadool, Debra A

    2009-05-20

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of diabetes mellitus and its associated metabolic and neuronal comorbidities. The insulin receptor (IR) kinase is expressed at high levels in the olfactory bulb, in which it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a 7 d intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and postsynaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made prediabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors.

  19. Awake Intranasal Insulin Delivery Modifies Protein Complexes and Alters Memory, Anxiety, and Olfactory Behaviors

    Science.gov (United States)

    Marks, D.R.; Tucker, K.; Cavallin, M.A.; Mast, T.G.; Fadool, D.A.

    2009-01-01

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of Diabetes mellitus and its associated metabolic and neuronal co-morbidities. The insulin receptor kinase (IR) is expressed at high levels in the olfactory bulb (OB), where it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a seven day intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and post-synaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor-discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made pre-diabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors. PMID:19458242

  20. Comparison of psychopathological dimensions between major depressive disorder and schizophrenia spectrum disorders focusing on language, affectivity and motor behavior.

    Science.gov (United States)

    Steinau, Sarah; Stegmayer, Katharina; Lang, Fabian U; Jäger, Markus; Strik, Werner; Walther, Sebastian

    2017-04-01

    This study tested whether patients with major depressive disorder (MDD) and schizophrenia spectrum disorders would differ in three dimensions of psychopathology (language, affectivity and motor behavior) as assessed by the Bern Psychopathology Scale (BPS) in a cohort of 58 patients with MDD and 146 patients with schizophrenia spectrum disorders. The overall estimation of severity of each of the three dimensions was rated on a seven-point Likert scale from severely inhibited to severely disinhibited. Here, more than half of the patients endorsed ratings that showed normal or mildly (dis-)inhibited behavior. At group level more pronounced negative ratings of affect were seen in MDD. Group comparisons of the severity ratings on language or motor behavior yielded no differences between schizophrenia spectrum disorders and MDD. At the individuals' levels, extreme ratings in the language and motor dimensions were more frequent in schizophrenia spectrum disorders and in the affectivity dimension more frequent in MDD. Shared psychopathological features could be seen across diagnoses, supporting a dimensional approach to psychopathology in endogenous psychoses. However, the groups differ in the severity of affect ratings as well as in the distribution of language, affectivity and motor ratings with more variance among the group of schizophrenia spectrum disorders. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of hippotherapy on motor control, adaptive behaviors, and participation in children with autism spectrum disorder: a pilot study.

    Science.gov (United States)

    Ajzenman, Heather F; Standeven, John W; Shurtleff, Tim L

    2013-01-01

    The purpose of this investigation was to determine whether hippotherapy increased function and participation in children with autism spectrum disorder (ASD). We hypothesized improvements in motor control, which might increase adaptive behaviors and participation in daily activities. Six children with ASD ages 5-12 participated in 12 weekly 45-min hippotherapy sessions. Measures pre- and post-hippotherapy included the Vineland Adaptive Behavior Scales-II and the Child Activity Card Sort. Motor control was measured preintervention and postintervention using a video motion capture system and force plates. Postural sway significantly decreased postintervention. Significant increases were observed in overall adaptive behaviors (receptive communication and coping) and in participation in self-care, low-demand leisure, and social interactions. These results suggest that hippotherapy has a positive influence on children with ASD and can be a useful treatment tool for this population. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  2. Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer.

    Science.gov (United States)

    Loubinoux, Isabelle; Tombari, David; Pariente, Jérémie; Gerdelat-Mas, Angélique; Franceries, Xavier; Cassol, Emmanuelle; Rascol, Olivier; Pastor, Josette; Chollet, François

    2005-08-15

    SSRIs are postulated to modulate motor behavior. A single dose of selective serotoninergic reuptake inhibitors (SSRIs) like fluoxetine, paroxetine, or fluvoxamine, has been shown to improve motor performance and efficiency of information processing for simple sensorimotor tasks in healthy subjects. At a cortical level, a single dose of SSRI was shown to induce a hyperactivation of the primary sensorimotor cortex (S1M1) involved in the movement (Loubinoux, I., Boulanouar, K., Ranjeva, J. P., Carel, C., Berry, I., Rascol, O., Celsis, P., and Chollet, F., 1999. Cerebral functional magnetic resonance imaging activation modulated by a single dose of the monoamine neurotransmission enhancers fluoxetine and fenozolone during hand sensorimotor tasks. J. Cereb. Blood Flow Metab. 19 1365--1375, Loubinoux, I., Pariente, J., Boulanouar, K., Carel, C., Manelfe, C., Rascol, O., Celsis, P., and Chollet, F., 2002. A Single Dose of Serotonin Neurotransmission Agonist Paroxetine Enhances Motor Output. A double-blind, placebo-controlled, fMRI study in healthy subjects. NeuroImage 15 26--36). Since SSRIs are usually given for several weeks, we assessed the behavioral and cerebral effects of a one-month chronic administration of paroxetine on a larger group. In a double-blind, placebo controlled and crossover study, 19 subjects received daily 20 mg paroxetine or placebo, respectively, over a period of 30 days separated by a wash-out period of 3 months. After each period, the subjects underwent an fMRI (active or passive movement, dexterity task, sensory discrimination task) and a behavioral evaluation. Concurrently, a TMS (transcranial magnetic stimulation) study was conducted (Gerdelat-Mas, A., Loubinoux, I., Tombari, D., Rascol, O., Chollet, F., Simonetta-Moreau, M., 2005. Chronic administration of selective serotonin re-uptake inhibitor (SSRI) paroxetine modulates human motor cortex excitability in healthy subjects. NeuroImage 27,314--322). On the one hand, paroxetine improved motor

  3. Modulation ofTcf7l2 expression alters behavior in mice.

    Directory of Open Access Journals (Sweden)

    Daniel Savic

    Full Text Available The comorbidity of type 2 diabetes (T2D with several psychiatric diseases is well established. While environmental factors may partially account for these co-occurrences, common genetic susceptibilities could also be implicated in the confluence of these diseases. In support of shared genetic burdens, TCF7L2, the strongest genetic determinant for T2D risk in the human population, has been recently implicated in schizophrenia (SCZ risk, suggesting that this may be one of many loci that pleiotropically influence both diseases. To investigate whether Tcf7l2 is involved in behavioral phenotypes in addition to its roles in glucose metabolism, we conducted several behavioral tests in mice with null alleles of Tcf7l2 or overexpressing Tcf7l2. We identified a role for Tcf7l2 in anxiety-like behavior and a dose-dependent effect of Tcf7l2 alleles on fear learning. None of the mutant mice showed differences in prepulse inhibition (PPI, which is a well-established endophenotype for SCZ. These results show that Tcf7l2 alters behavior in mice. Importantly, these differences are observed prior to the onset of detectable glucose metabolism abnormalities. Whether these differences are related to human anxiety-disorders or schizophrenia remains to be determined. These animal models have the potential to elucidate the molecular basis of psychiatric comorbidities in diabetes and should therefore be studied further.

  4. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition.

    Science.gov (United States)

    Ormerod, Kiel G; LePine, Olivia K; Abbineni, Prabhodh S; Bridgeman, Justin M; Coorssen, Jens R; Mercier, A Joffre; Tattersall, Glenn J

    2017-07-03

    Diet profoundly influences the behavior of animals across many phyla. Despite this, most laboratories using model organisms, such as Drosophila, use multiple, different, commercial or custom-made media for rearing their animals. In addition to measuring growth, fecundity and longevity, we used several behavioral and physiological assays to determine if and how altering food media influence wild-type (Canton S) Drosophila melanogaster, at larval, pupal, and adult stages. Comparing 2 commonly used commercial food media we observed several key developmental and morphological differences. Third-instar larvae and pupae developmental timing, body weight and size, and even lifespan significantly differed between the 2 diets, and some of these differences persisted into adulthood. Diet was also found to produce significantly different thermal preference, locomotory capacity for geotaxis, feeding rates, and lower muscle response to hormonal stimulation. There were no differences, however, in adult thermal preferences, in the number or viability of eggs laid, or in olfactory learning and memory between the diets. We characterized the composition of the 2 diets and found particularly significant differences in cholesterol and (phospho)lipids between them. Notably, diacylglycerol (DAG) concentrations vary substantially between the 2 diets, and may contribute to key phenotypic differences, including lifespan. Overall, the data confirm that 2 different diets can profoundly influence the behavior, physiology, morphology and development of wild-type Drosophila, with greater behavioral and physiologic differences occurring during the larval stages.

  5. An image processing framework for automated analysis of swimming behavior in tadpoles with vestibular alterations

    Science.gov (United States)

    Zarei, Kasra; Fritzsch, Bernd; Buchholz, James H. J.

    2017-03-01

    Micogravity, as experienced during prolonged space flight, presents a problem for space exploration. Animal models, specifically tadpoles, with altered connections of the vestibular ear allow the examination of the effects of microgravity and can be quantitatively monitored through tadpole swimming behavior. We describe an image analysis framework for performing automated quantification of tadpole swimming behavior. Speckle reducing anisotropic diffusion is used to smooth tadpole image signals by diffusing noise while retaining edges. A narrow band level set approach is used for sharp tracking of the tadpole body. The use of level set method for interface tracking provides an inherent advantage of using level set based image segmentation algorithm (active contouring). Active contour segmentation is followed by two-dimensional skeletonization, which allows the automated quantification of tadpole deflection angles, and subsequently tadpole escape (or C-start) response times. Evaluation of the image analysis methodology was performed by comparing the automated quantifications of deflection angles to manual assessments (obtained using a standard grading scheme), and produced a high correlation (r2 = 0.99) indicating high reliability and accuracy of the proposed method. The methods presented form an important element of objective quantification of the escape response of the tadpole vestibular system to mechanical and biochemical manipulations, and can ultimately contribute to a better understanding of the effects of altered gravity perception on humans.

  6. Deletion of Rictor in catecholaminergic neurons alters locomotor activity and ingestive behavior.

    Science.gov (United States)

    Kaska, Sophia; Brunk, Rebecca; Bali, Vedrana; Kechner, Megan; Mazei-Robison, Michelle S

    2017-05-01

    While the etiology of depression is not fully understood, increasing evidence from animal models suggests a role for the ventral tegmental area (VTA) in pathogenesis. In this paper, we investigate the potential role of VTA mechanistic target of rapamycin 2 (TORC2) signaling in mediating susceptibility to chronic social defeat stress (CSDS), a well-established mouse model of depression. Utilizing genetic and viral knockout of Rictor (rapamycin-insensitive companion of target of rapamycin), a requisite component of TORC2, we demonstrate that decreasing Rictor-dependent TORC2 signaling in catecholaminergic neurons, or within the VTA specifically, does not alter susceptibility to CSDS. Opiate abuse and mood disorders are often comorbid, and previous data demonstrate a role for VTA TORC2 in mediating opiate reward. Thus, we also investigated its potential role in mediating changes in opiate reward following CSDS. Catecholaminergic deletion of Rictor increases water, sucrose, and morphine intake but not preference in a two-bottle choice assay in stress-naïve mice, and these effects are maintained after stress. VTA-specific knockout of Rictor increases water and sucrose intake after physical CSDS, but does not alter consummatory behavior in the absence of stress. These findings suggest a novel role for TORC2 in mediating stress-induced changes in consummatory behaviors that may contribute to some aspects of mood disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Older adults exhibit altered motor coordination during an upper limb object transport task requiring a lateral change in support.

    Science.gov (United States)

    Huntley, Andrew H; Zettel, John L; Vallis, Lori Ann

    2017-04-01

    Investigating an ecologically relevant upper limb task, such as manually transporting an object with a concurrent lateral change in support (sidestepping alongside a kitchen counter), may provide greater insight into potential deficits in postural stability, variability and motor coordination in older adults. Nine healthy young and eleven older, community dwelling adults executed an upper limb object transport task requiring a lateral change in support in two directions at two self-selected speeds, self-paced and fast-paced. Dynamic postural stability and movement variability was quantified via whole-body center of mass motion. The onset of lead lower limb movement in relation to object movement onset was quantified as a measure of motor coordination. Older adults demonstrated similar levels of stability and variability as their younger counterparts, but at slower peak movement velocity and increased task duration. Furthermore, older adults demonstrated asymmetrical motor coordination between left and right task directions, while younger adults remained consistent regardless of task direction. Thus, older adults significantly modulated movement speed and motor coordination to maintain similar levels of stability and variability compared to their younger counterparts. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Co-occurring motor, language and emotional-behavioral problems in children 3-6 years of age.

    Science.gov (United States)

    King-Dowling, Sara; Missiuna, Cheryl; Rodriguez, M Christine; Greenway, Matt; Cairney, John

    2015-02-01

    Developmental Coordination Disorder (DCD) has been shown to co-occur with behavioral and language problems in school-aged children, but little is known as to when these problems begin to emerge, or if they are inherent in children with DCD. The purpose of this study was to determine if deficits in language and emotional-behavioral problems are apparent in preschool-aged children with movement difficulties. Two hundred and fourteen children (mean age 4years 11months, SD 9.8months, 103 male) performed the Movement Assessment Battery for Children 2nd Edition (MABC-2). Children falling at or below the 16th percentile were classified as being at risk for movement difficulties (MD risk). Auditory comprehension and expressive communication were examined using the Preschool Language Scales 4th Edition (PLS-4). Parent-reported emotional and behavioral problems were assessed using the Child Behavior Checklist (CBCL). Preschool children with diminished motor coordination (n=37) were found to have lower language scores, higher externalizing behaviors in the form of increased aggression, as well as increased withdrawn and other behavior symptoms compared with their typically developing peers. Motor coordination, language and emotional-behavioral difficulties tend to co-occur in young children aged 3-6years. These results highlight the need for early intervention. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. ApoE2 Exaggerates PTSD-Related Behavioral, Cognitive, and Neuroendocrine Alterations.

    Science.gov (United States)

    Johnson, Lance A; Zuloaga, Damian G; Bidiman, Erin; Marzulla, Tessa; Weber, Sydney; Wahbeh, Helane; Raber, Jacob

    2015-09-01

    Apolipoprotein E (apoE) is an essential component of lipoprotein particles in both the brain and periphery, and exists in three isoforms in the human population: E2, E3, and E4. ApoE has numerous, well-established roles in neurobiology. Most notably, E4 is associated with earlier onset and increased risk of Alzheimer's disease (AD). Although possession of E2 is protective in the context of AD, E2 appears to confer an increased incidence and severity of posttraumatic stress disorder (PTSD). However, the biological processes underlying this link remain unclear. In this study, we began to elucidate these associations by examining the effects of apoE on PTSD severity in combat veterans, and on PTSD-like behavior in mice with human apoE. In a group of 92 veterans with PTSD, we observed significantly higher Clinician-Administered PTSD Scale and PTSD Checklist scores in E2+ individuals, as well as alterations in salivary cortisol levels. Furthermore, we measured behavioral and biological outcomes in mice expressing human apoE after a single stressful event as well as following a period of chronic variable stress, a model of combat-related trauma. Mice with E2 showed impairments in fear extinction, and behavioral, cognitive, and neuroendocrine alterations following trauma. To the best of our knowledge, these data constitute the first translational demonstration of PTSD severity in men and PTSD-like symptoms in mice with E2, and point to apoE as a novel biomarker of susceptibility, and potential therapeutic target, for PTSD.

  10. Costly myths. An analysis of idling beliefs and behavior in personal motor vehicles

    International Nuclear Information System (INIS)

    Carrico, Amanda R.; Padgett, Paul; Vandenbergh, Michael P.; Gilligan, Jonathan; Wallston, Kenneth A.

    2009-01-01

    Despite the large contribution of individuals and households to climate change, little has been done in the US to reduce the CO 2 emissions attributable to this sector. Motor vehicle idling among individual private citizens is one behavior that may be amenable to large-scale policy interventions. Currently, little data are available to quantify the potential reductions in emissions that could be realized by successful policy interventions. In addition, little is known about the motivations and beliefs that underlie idling. In the fall of 2007, 1300 drivers in the US were surveyed to assess typical idling practices, beliefs and motivations. Results indicate that the average individual idled for over 16 min a day and believed that a vehicle can be idled for at least 3.6 min before it is better to turn it off. Those who held inaccurate beliefs idled, on average, over 1 min longer than the remainder of the sample. These data suggest that idling accounts for over 93 MMt of CO 2 and 10.6 billion gallons (40.1 billion liters) of gasoline a year, equaling 1.6% of all US emissions. Much of this idling is unnecessary and economically disadvantageous to drivers. The policy implications of these findings are discussed. (author)

  11. Characterological, situational, and behavioral risk factors for motor vehicle accidents: a prospective examination.

    Science.gov (United States)

    Norris, F H; Matthews, B A; Riad, J K

    2000-07-01

    The occurrence of motor vehicle accidents (MVAs) was studied prospectively in a sample of 500 drivers aged 19-88. Over a 4-year interval from 1991 to 1995, 36% of these drivers had a minor accident and 9% had a serious (injury-producing) accident. Data collected in 1991 demonstrated that crashes could be predicted from a combination of pre-existing characterological, situational, and behavioral risk factors, and that these risk factors largely explained sex and age differences in accident rates. The best predictors of future MVAs were younger age, high hostility in combination with poor self-esteem, residence in a larger city, recent relocation, high job stress, prior MVAs, and self-reported tendencies to speed and disregard traffic rules. Failure to wear seat belts did not predict accidents but did significantly influence the severity of accidents that did occur; that is, those who had earlier reported using seat belts 'always' were less likely than others to be injured when accidents did occur. Financial stress increased the likelihood of involvement in more serious accidents.

  12. Traffic collisions between electric mobility devices (wheelchairs) and motor vehicles: Accidents, hubris, or self-destructive behavior?

    Science.gov (United States)

    LaBan, Myron M; Nabity, Thomas S

    2010-07-01

    This study had its genesis in a personally observed collision between a motor vehicle and a motorized wheelchair (electric mobility device) on a busy street in the middle of the block at an unmarked crossing. To the observer, at the time, this appeared to be a suicidal act. This investigation was initiated to both delineate the number of these crashes nationally and understand this phenomena as a potentially planned act of self-destruction. An initial survey of police reports was immediately frustrated by an inability to separate motor vehicle and electric mobility device collisions from the much larger group that involved ambulatory citizens because both types were classified together as "pedestrian" accidents. Instead, the search engine NexisLexis was used to identify 107 newspaper articles each of which described a motor vehicle and electric mobility device accident. In the motor vehicle and electric mobility device collisions, men predominated women (3:1 ratio) with an average age of 56 yrs. Sixty of these accidents were fatal. Ninety-four percent involved an electric mobility device and 6% a manual wheelchair. In 50% of the cases, the motor vehicle was a truck, van, or sport utility vehicle. Fifty percent occurred at dusk or dawn or at night. The electric mobility device occupant was cited as the guilty party in 39% of the cases and the driver of the motor vehicle in 27%. Twenty percent were unwitnessed hit-and-run accidents, whereas "no fault" was found in 8% of the cases. Although many accidents do happen by chance, when an electric mobility device operator openly challenges busy traffic by attempting to traverse it in the middle of the block at an unmarked crossing, predisposing psychosocial factors must also be considered. Hubris or premeditated self-destructive behavior or both need to be explored as preeminent issues with reference to the prodromal of the "accident process."

  13. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    Science.gov (United States)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  14. Crickets in space: morphological, physiological and behavioral alterations induced by space flight and hypergravity

    Science.gov (United States)

    Horn, E.; Agricola, H.; Böser, S.; Förster, S.; Kämper, G.; Riewe, P.; Sebastian, C.

    "Crickets in Space" was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal arousal systems activated by locomotion. These advantages allowed to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to micro- and hypergravity while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. The morphology of neuromuscular junctions was not affected by 3g-hypergravity. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity (μg). The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation originating from accessory gravity, proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of μg- or 3g-expo-sure related to the period of neuronal proliferation. The analysis of basic mechanisms of how animals and man adapt to altered gravitational conditions will profit from a continuation of the project "Crickets in Space".

  15. Attention Alters Neural Responses to Evocative Faces in Behaviorally Inhibited Adolescents

    Science.gov (United States)

    Pérez-Edgar, Koraly; Roberson-Nay, Roxann; Hardin, Michael G.; Poeth, Kaitlin; Guyer, Amanda E.; Nelson, Eric E.; McClure, Erin B.; Henderson, Heather A.; Fox, Nathan A.; Pine, Daniel S.; Ernst, Monique

    2007-01-01

    Behavioral inhibition (BI) is a risk factor for anxiety disorders. While the two constructs bear behavioral similarities, previous work has not extended these parallels to the neural level. This study examined amygdala reactivity during a task previously used with clinically anxious adolescents. Adolescents were selected for enduring patterns of BI or non-inhibition (BN). We examined amygdala response to evocative emotion faces in BI (N=10, mean 12.8 years) and BN (N=17, mean 12.5 years) adolescents while systematically manipulating attention. Analyses focused on amygdala response during subjective ratings of internal fear (constrained attention) and passive viewing (unconstrained attention) during the presentation of emotion faces (Happy, Angry, Fearful, and Neutral). BI adolescents, relative to BN adolescents, showed exaggerated amygdala response during subjective fear ratings and deactivation during passive viewing, across all emotion faces. In addition, the BI group showed an abnormally high amygdala response to a task condition marked by novelty and uncertainty (i.e., rating fear state to a Happy face). Perturbations in amygdala function are evident in adolescents temperamentally at risk for anxiety. Attention state alters the underlying pattern of neural processing, potentially mediating the observed behavioral patterns across development. BI adolescents also show a heightened sensitivity to novelty and uncertainty, which has been linked to anxiety. These patterns of reactivity may help sustain early temperamental biases over time and contribute to the observed relation between BI and anxiety. PMID:17376704

  16. Atypical inter-hemispheric communication correlates with altered motor inhibition during learning of a new bimanual coordination pattern in developmental coordination disorder.

    Science.gov (United States)

    Blais, Mélody; Amarantini, David; Albaret, Jean-Michel; Chaix, Yves; Tallet, Jessica

    2017-04-25

    Impairment of motor learning skills in developmental coordination disorder (DCD) has been reported in several studies. Some hypotheses on neural mechanisms of motor learning deficits in DCD have emerged but, to date, brain-imaging investigations are scarce. The aim of the present study is to assess possible changes in communication between brain areas during practice of a new bimanual coordination task in teenagers with DCD (n = 10) compared to matched controls (n = 10). Accuracy, stability and number of mirror movements were computed as behavioural variables. Neural variables were assessed by electroencephalographic coherence analyses of intra-hemispheric and inter-hemispheric fronto-central electrodes. In both groups, accuracy of the new coordination increased concomitantly with right intra-hemispheric fronto-central coherence. Compared to typically developing teenagers, DCD teenagers presented learning difficulties expressed by less stability, no stabilization of the new coordination and a greater number of mirror movements despite practice. These measures correlated with reduced inter-hemispheric communication, even after practice of the new coordination. For the first time, these findings provide neuro-imaging evidence of a kind of inter-hemispheric 'disconnection' related to altered inhibition of mirror movements during motor learning in DCD. © 2017 John Wiley & Sons Ltd.

  17. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?

    Directory of Open Access Journals (Sweden)

    Vivek Murthy

    2008-07-01

    NAc and open-field behaviors and (c ketanserin inhibits 5-HT release in NAc and open-field behaviors produced by caffeine, but, surprisingly, acts to increase DA release in NAc. Importantly, the latter effect may be a possible adverse effect of the moderate dose of caffeine in hypertensive patients. Thus, an antihypertensive medication is shown here to play a role in inhibiting brain reward possibly via antihypertensive mechanisms at DA and 5-HT receptor subtypes within DA motor neurons. An explanatory note for the results obtained, is the role likely played by the G Protein Receptor Complex (GPRC family of proteins. Empirical evidence shows that GPRC dimers, heteromers and heterotrimers may cause cross-talk between distinct signalling cascade pathways in the actions of cocaine and caffeine. Ligand-directed functional selectivity, particularly for ketanserin, in addition to GPRCs, may also cause differential responses. The results promise new therapeutic strategies for drug addiction, brain reward and cardiovascular medicine.

  18. Bronchopulmonary dysplasia as a predictor factor for motor alteration at 6 months corrected age in premature infants

    OpenAIRE

    Martins,Priscila Silveira; Mello,Rosane Reis de; Silva,Kátia Silveira da

    2010-01-01

    OBJECTIVE: The study aimed to assess bronchopulmonary dysplasia (BPD) as a predisposing factor for alteration in the psychomotor development index (PDI) in premature infants and verify the incidence of neuromotor alterations at 6 months corrected age. METHOD: This was a prospective cohort study that followed the neuromotor development of 152 very low birth weight premature infants, with psychomotor development index as the outcome. The study used the Bayley Scale of Infant Development at 6 mo...

  19. Repeated corticosterone injections in adult mice alter stress hormonal receptor expression in the cerebellum and motor coordination without affecting spatial learning.

    Science.gov (United States)

    Harlé, Guillaume; Lalonde, Robert; Fonte, Coralie; Ropars, Armelle; Frippiat, Jean-Pol; Strazielle, Catherine

    2017-05-30

    Receptors for glucocorticoid (GR) and corticotropin-releasing hormone (CRH) are largely found in brain sensorimotor structures, particularly in cerebellum, underlining a potential role of stress hormones in the regulation of motor function. Since CRH is involved in neuroplasticity, known for its trophic effect on synapses, we investigated how manipulations in corticosterone serum levels can modulate the CRH system in the cerebellum and affect motor coordination. Corticosterone at doses of either 15 or 30mg/kg was injected in mice and the status of hormonal expression evaluated in cerebellum, hippocampus, and hypothalamus in undisturbed housing conditions or after different behavioral tests. Under both conditions, metabolic activity in numerous brain regions involved in motor functions and emotion was measured by means of cytochrome oxidase (COX) activity labeling. After six consecutive days of corticosterone administration, CRH-R1 transcription was downregulated in hypothalamic and cerebellar regions and hypometabolic changes were observed in mice treated with the higher dose for several limbic and sensorimotor circuitries, notably basal ganglia, deep cerebellar nuclei, and red nucleus. Corticosterone did not modify motor activity, anxiety, and spatial orientation, but decreased latencies before falling from the rotorod and prevented mice from reaching targets in the coat-hanger test. In addition, COX activities were similar to control mice except in ventromedial thalamus and dorsal neostriatum, possibly indicating that physical activity protected brain energy metabolism against the stress hormone. The present findings showed that the CRH/CRH-R1 system might play a role in mediating the effects of stress on cerebellar function, affecting especially motor learning tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Alterations in resting state oscillations and connectivity in sensory and motor networks in women with interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kilpatrick, Lisa A; Kutch, Jason J; Tillisch, Kirsten; Naliboff, Bruce D; Labus, Jennifer S; Jiang, Zhiguo; Farmer, Melissa A; Apkarian, A Vania; Mackey, Sean; Martucci, Katherine T; Clauw, Daniel J; Harris, Richard E; Deutsch, Georg; Ness, Timothy J; Yang, Claire C; Maravilla, Kenneth; Mullins, Chris; Mayer, Emeran A

    2014-09-01

    The pathophysiology of interstitial cystitis/painful bladder syndrome remains incompletely understood but is thought to involve central disturbance in the processing of pain and viscerosensory signals. We identified differences in brain activity and connectivity between female patients with interstitial cystitis/painful bladder syndrome and healthy controls to advance clinical phenotyping and treatment efforts for interstitial cystitis/painful bladder syndrome. We examined oscillation dynamics of intrinsic brain activity in a large sample of well phenotyped female patients with interstitial cystitis/painful bladder syndrome and female healthy controls. Data were collected during 10-minute resting functional magnetic resonance imaging as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network project. The blood oxygen level dependent signal was transformed to the frequency domain. Relative power was calculated for multiple frequency bands. Results demonstrated altered frequency distributions in viscerosensory (post insula), somatosensory (postcentral gyrus) and motor regions (anterior paracentral lobule, and medial and ventral supplementary motor areas) in patients with interstitial cystitis/painful bladder syndrome. Also, the anterior paracentral lobule, and medial and ventral supplementary motor areas showed increased functional connectivity to the midbrain (red nucleus) and cerebellum. This increased functional connectivity was greatest in patients who reported pain during bladder filling. Findings suggest that women with interstitial cystitis/painful bladder syndrome have a sensorimotor component to the pathological condition involving an alteration in intrinsic oscillations and connectivity in a cortico-cerebellar network previously associated with bladder function. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    impairment in memory. Both glyphosate and Roundup ® reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup ® , altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... that patients with idiopathic RBD (iRBD) have an increased risk of developing an α-synucleinopathy in later life. Although abundant studies have shown that degeneration of the nigrostriatal dopaminergic system is associated with daytime motor function in Parkinson disease, only few studies have investigated......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....

  3. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Spires Tara L

    2008-04-01

    Full Text Available Abstract Background Huntington's disease (HD is a neurodegenerative disorder predominantly affecting the cerebral cortex and striatum. Transgenic mice (R6/1 line, expressing a CAG repeat encoding an expanded polyglutamine tract in the N-terminus of the huntingtin protein, closely model HD. We have previously shown that environmental enrichment of these HD mice delays the onset of motor deficits. Furthermore, wheel running initiated in adulthood ameliorates the rear-paw clasping motor sign, but not an accelerating rotarod deficit. Results We have now examined the effects of enhanced physical activity via wheel running, commenced at a juvenile age (4 weeks, with respect to the onset of various behavioral deficits and their neuropathological correlates in R6/1 HD mice. HD mice housed post-weaning with running wheels only, to enhance voluntary physical exercise, have delayed onset of a motor co-ordination deficit on the static horizontal rod, as well as rear-paw clasping, although the accelerating rotarod deficit remains unaffected. Both wheel running and environmental enrichment rescued HD-induced abnormal habituation of locomotor activity and exploratory behavior in the open field. We have found that neither environment enrichment nor wheel running ameliorates the shrinkage of the striatum and anterior cingulate cortex (ACC in HD mice, nor the overall decrease in brain weight, measured at 9 months of age. At this age, the density of ubiquitinated protein aggregates in the striatum and ACC is also not significantly ameliorated by environmental enrichment or wheel running. Conclusion These results indicate that enhanced voluntary physical activity, commenced at an early presymptomatic stage, contributes to the positive effects of environmental enrichment. However, sensory and cognitive stimulation, as well as motor stimulation not associated with running, may constitute major components of the therapeutic benefits associated with enrichment

  4. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-04-01

    Full Text Available OBJECTIVES: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school-age children. SOURCES: This was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target-population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. SUMMARY OF FINDINGS: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. CONCLUSION: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  5. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    OpenAIRE

    H. Raie; M. Kesmati; M. Zadkarami

    2006-01-01

    Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile) hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and ...

  6. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age

    OpenAIRE

    Roze, Elise; Meijer, Lisethe; Bakker, Attie; Van Braeckel, Koenraad N.J.A.; Sauer, Pieter J.J.; Bos, Arend F.

    2009-01-01

    Background Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. Objective We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age. Methods This study was part of the prospective Groningen infant COMPARE (Comparison of Exposure-Effect Pathways to Improve the Assessment of Human Health Risks of Complex Environmental Mixtures of Organoha...

  7. The use of messages in altering risky gambling behavior in college students: an experimental analogue study.

    Science.gov (United States)

    Jardin, Bianca; Wulfert, Edelgard

    2009-01-01

    This study examined the effects of messages on altering risky gambling behavior in college students. While playing a chance-based computerized game with play money, three groups of participants either viewed occasional accurate messages that correctly described the contingencies of the game, neutral messages unrelated to the contingencies, or no messages. Participants in the accurate message condition spent overall less money gambling, played fewer trials in the final phase of the game when all trials resulted in losses, and were more likely to quit the game while they still had money remaining in the bank. The findings suggest that "reminders" about the random nature of games and the overall negative rate of return might lead to more responsible gaming.

  8. Progress and perspectives of the Brazilian scientific production in international journals in the field of motor behavior

    Directory of Open Access Journals (Sweden)

    Ana Paula Kogake Claudio

    2009-09-01

    Full Text Available In view of the fact that one of the key indicators of scientific production is the number of papers published in international journals, and of the apparent growing interest in the area of motor behavior, we conducted a survey of articles published by Brazilian researchers in this area over the last 10 years (1999-2008 in international journals rated “Qualis International-A” and “Qualis International-B” by CAPES. This quantification was performed to provide a qualified viewpoint regarding the profile of Brazilian scientific production of international repercussion in the area of motor behavior. Articles were identified using the Google Scholar, Pubmed, Science Direct, and Scopus search systems, with the search being restricted to characteristic terms involving motor behavior and to researchers associated with Brazilian universities. The results showed an increase in production over the last 5 years of the period studied, with the peak in 2006. In addition, Brazilian scientific production was concentrated in four public universities. These results suggest that in order to keep growing, the new groups should work in collaboration with productive laboratories, decentralizing the scientific production.

  9. Motor speech signature of behavioral variant frontotemporal dementia: Refining the phenotype.

    Science.gov (United States)

    Vogel, Adam P; Poole, Matthew L; Pemberton, Hugh; Caverlé, Marja W J; Boonstra, Frederique M C; Low, Essie; Darby, David; Brodtmann, Amy

    2017-08-22

    To provide a comprehensive description of motor speech function in behavioral variant frontotemporal dementia (bvFTD). Forty-eight individuals (24 bvFTD and 24 age- and sex-matched healthy controls) provided speech samples. These varied in complexity and thus cognitive demand. Their language was assessed using the Progressive Aphasia Language Scale and verbal fluency tasks. Speech was analyzed perceptually to describe the nature of deficits and acoustically to quantify differences between patients with bvFTD and healthy controls. Cortical thickness and subcortical volume derived from MRI scans were correlated with speech outcomes in patients with bvFTD. Speech of affected individuals was significantly different from that of healthy controls. The speech signature of patients with bvFTD is characterized by a reduced rate (75%) and accuracy (65%) on alternating syllable production tasks, and prosodic deficits including reduced speech rate (45%), prolonged intervals (54%), and use of short phrases (41%). Groups differed on acoustic measures derived from the reading, unprepared monologue, and diadochokinetic tasks but not the days of the week or sustained vowel tasks. Variability of silence length was associated with cortical thickness of the inferior frontal gyrus and insula and speech rate with the precentral gyrus. One in 8 patients presented with moderate speech timing deficits with a further two-thirds rated as mild or subclinical. Subtle but measurable deficits in prosody are common in bvFTD and should be considered during disease management. Language function correlated with speech timing measures derived from the unprepared monologue only. © 2017 American Academy of Neurology.

  10. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae.

    Directory of Open Access Journals (Sweden)

    Stefan Spulber

    Full Text Available Perfluorooctane sulfonate (PFOS is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response, and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.

  11. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  12. The α1 Antagonist Doxazosin Alters the Behavioral Effects of Cocaine in Rats

    Directory of Open Access Journals (Sweden)

    Colin N. Haile

    2012-11-01

    Full Text Available Medications that target norepinephrine (NE neurotransmission alter the behavioral effects of cocaine and may be beneficial for stimulant-use disorders. We showed previously that the short-acting, α1-adrenergic antagonist, prazosin, blocked drug-induced reinstatement of cocaine-seeking in rats and doxazosin (DOX, a longer-acting α1 antagonist blocked cocaine’s subjective effects in cocaine-dependent volunteers. To further characterize DOX as a possible pharmacotherapy for cocaine dependence, we assessed its impact on the development and expression of cocaine-induced locomotor sensitization in rats. Rats (n = 6–8 were administered saline, cocaine (COC, 10 mg/kg or DOX (0.3 or 1.0 mg/kg alone or in combination for 5 consecutive days (development. Following 10-days of drug withdrawal, all rats were administered COC and locomotor activity was again assessed (expression. COC increased locomotor activity across days indicative of sensitization. The high dose (1.0 mg/kg, but not the low dose (0.3 mg/kg of DOX significantly decreased the development and expression of COC sensitization. DOX alone did not differ from saline. These results are consistent with studies showing that α1 receptors are essential for the development and expression of cocaine’s behavioral effects. Results also suggest that blockade of both the development and expression of locomotor sensitization may be important characteristics of possible pharmacotherapies for cocaine dependence in humans.

  13. Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population

    Science.gov (United States)

    Ohayon, Maurice M.; Milesi, Cristina

    2016-01-01

    Study Objectives: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. Methods: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10th Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. Results: Living in areas with greater ONL was associated with delayed bedtime (P sleep duration (P sleep quantity and quality (P sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL. Citation: Ohayon MM, Milesi C. Artificial outdoor nighttime lights associate with altered sleep behavior in the american general population. SLEEP 2016;39(6):1311–1320. PMID:27091523

  14. Can a tablet device alter undergraduate science students' study behavior and use of technology?

    Science.gov (United States)

    Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh

    2012-06-01

    This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.

  15. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.

    Science.gov (United States)

    Bechard, Allison R; Cacodcar, Nadia; King, Michael A; Lewis, Mark H

    2016-02-15

    Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish.

    Science.gov (United States)

    Sachett, Adrieli; Bevilaqua, Fernanda; Chitolina, Rafael; Garbinato, Cristiane; Gasparetto, Henrique; Dal Magro, Jacir; Conterato, Greicy M; Siebel, Anna M

    2018-01-01

    The occurrence of ractopamine (RAC) hydrochloride in water bodies is of significant concern due to its ecological impacts and toxicity to humans. RAC hydrochloride is a β-adrenergic agonist drug used as a feed additive to (1) improve feed efficiency, (2) rate of weight gain, and (3) increase carcass leanness in animals raised for their meat. This drug is excreted by animals in urine and introduced into the environment affecting nontarget organisms including fish. In wastewater released from farms, RAC concentrations were detected from 0.124 µg/L to 30.1 µg/L, and in levels ranging from 1.3 × 10 -5 to 5.4 × 10 -4 μg/L in watersheds. The aim of this study was to examine the effects of exposure to RAC at 0.1, 0.2, 0.85, 8.5, or 85 µg/L dissolved in water on behavior and oxidative status in adult zebrafish. At 0.85 µg/L, RAC treatment increased exploratory behavior of zebrafish; while at 8.5 µg/L, decreased locomotor and exploratory activities were noted. With respect to oxidative stress biomarkers, results showed that RAC at 0.2 µg/L induced lipid peroxidation and elevated total thiol content in zebrafish brain. All drug tested concentrations produced a fall in nonprotein thiol content. Finally, RAC at 0.85, 8.5, or 85 µg/L increased catalase enzyme activity. Our results demonstrated that the exposure to RAC induced behavioral alterations and oxidative stress in zebrafish.

  17. DEPRESSIVE BEHAVIOR AND METABOLIC ALTERATIONS IN MICE ARE MUSICAL STYLE-DEPENDENT

    Directory of Open Access Journals (Sweden)

    V. S. Lima

    2015-10-01

    Full Text Available Nowadays, the world population has been affected by two serious psychological disorders, anxiety and depression, but there are few discoveries for new therapies to combat them. Studies have shown that music therapy has its beneficial behavioral effects. Therefore, the aim of the present study it was to investigate the possible effects of two music styles in some lipids and carbohydrate metabolism parameters resulting from behavioral changes related to anxiety and depression. So, mice were used with 30 days of age, divided into 6 groups: G1: saline, G2: Diazepam (DZP, G3: Fluoxetine (FLX, G4: control (no treatment, G5: Rock, and G6: Mozart Sonata. The animals from groups G1, G2 and G3 received treatments by oral route (gavage for 15 days. The music therapy sessions (2x/day 4 hours/day occurred in the same period of time at a 65dB frequency for G5 and G6 groups. After being evaluated in spontaneous locomotion, elevated plus maze and forced swimming tests, the animals were euthanized. The lactate, total cholesterol and plasma glucose levels were measured from the blood. No change was observed in spontaneous locomotion test and elevated plus maze. In the forced swimming test animals exposed to Rock showed an increase in immobility time. Furthermore, it was observed an increase in glucose and a reduction in cholesterol levels in the groups exposed to Rock and Mozart, while a decrease of lactate was observed only in group Rock. It was concluded that the auditory stimulus caused by music in mice was able to encourage depressive behavior and alter some lipids and carbohydrate metabolism parameters dependently of the musical style.

  18. Benzoylecgonine exposure induced oxidative stress and altered swimming behavior and reproduction in Daphnia magna.

    Science.gov (United States)

    Parolini, Marco; De Felice, Beatrice; Ferrario, Claudia; Salgueiro-González, Noelia; Castiglioni, Sara; Finizio, Antonio; Tremolada, Paolo

    2018-01-01

    Several monitoring studies have shown that benzoylecgonine (BE) is the main illicit drug residue commonly measured in the aquatic system worldwide. Few studies have investigated the potential toxicity of this molecule towards invertebrate and vertebrate aquatic non-target organisms focusing on effects at low levels of the biological organization, but no one has assessed the consequences at higher ones. Thus, the present study was aimed at investigating the toxicity of a 48-h exposure to two concentrations of BE, similar to those found in aquatic ecosystems (0.5 μg/L and 1.0 μg/L), on the cladoceran Daphnia magna at different levels of the ecological hierarchy. We relied on a multi-level approach focusing on the effects at biochemical/biomolecular (biomarkers), individual (swimming activity) and population (reproduction) levels. We measured the amount of reactive oxygen species and of the activity of antioxidant (SOD, CAT, and GPx) and detoxifying (GST) enzymes to assess if BE exposure can alter the oxidative status of D. magna specimens, while the lipid peroxidation (TBARS) was measured as a marker of oxidative damage. Moreover, we also measured the acetylcholinesterase (AChE) activity because it is strictly related to behavioral changes in aquatic organisms. Changes in swimming behavior were investigated by a video tracking analysis, while the consequences on reproduction were assessed by a chronic toxicity test. Our results showed that BE concentrations similar to those found in aquatic ecosystems induced oxidative stress and inhibited AChE activity, affecting swimming behavior and the reproduction of Daphnia magna individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  20. Development and Validation of a Computational Model for Predicting the Behavior of Plumes from Large Solid Rocket Motors

    Science.gov (United States)

    Wells, Jason E.; Black, David L.; Taylor, Casey L.

    2013-01-01

    Exhaust plumes from large solid rocket motors fired at ATK's Promontory test site carry particulates to high altitudes and typically produce deposits that fall on regions downwind of the test area. As populations and communities near the test facility grow, ATK has become increasingly concerned about the impact of motor testing on those surrounding communities. To assess the potential impact of motor testing on the community and to identify feasible mitigation strategies, it is essential to have a tool capable of predicting plume behavior downrange of the test stand. A software package, called PlumeTracker, has been developed and validated at ATK for this purpose. The code is a point model that offers a time-dependent, physics-based description of plume transport and precipitation. The code can utilize either measured or forecasted weather data to generate plume predictions. Next-Generation Radar (NEXRAD) data and field observations from twenty-three historical motor test fires at Promontory were collected to test the predictive capability of PlumeTracker. Model predictions for plume trajectories and deposition fields were found to correlate well with the collected dataset.

  1. C. elegans dopaminergic D2-like receptors delimit recurrent cholinergic-mediated motor programs during a goal-oriented behavior.

    Directory of Open Access Journals (Sweden)

    Paola Correa

    Full Text Available Caenorhabditis elegans male copulation requires coordinated temporal-spatial execution of different motor outputs. During mating, a cloacal circuit consisting of cholinergic sensory-motor neurons and sex muscles maintains the male's position and executes copulatory spicule thrusts at his mate's vulva. However, distinct signaling mechanisms that delimit these behaviors to their proper context are unclear. We found that dopamine (DA signaling directs copulatory spicule insertion attempts to the hermaphrodite vulva by dampening spurious stimulus-independent sex muscle contractions. From pharmacology and genetic analyses, DA antagonizes stimulatory ACh signaling via the D2-like receptors, DOP-2 and DOP-3, and Gα(o/i proteins, GOA-1 and GPA-7. Calcium imaging and optogenetics suggest that heightened DA-expressing ray neuron activities coincide with the cholinergic cloacal ganglia function during spicule insertion attempts. D2-like receptor signaling also attenuates the excitability of additional mating circuits to reduce the duration of mating attempts with unproductive and/or inappropriate partners. This suggests that, during wild-type mating, simultaneous DA-ACh signaling modulates the activity threshold of repetitive motor programs, thus confining the behavior to the proper situational context.

  2. Fish oil diet associated with acute reperfusion related hemorrhage, and with reduced stroke-related sickness behaviors and motor impairment.

    Science.gov (United States)

    Pascoe, Michaela C; Howells, David W; Crewther, David P; Constantinou, Nicki; Carey, Leeanne M; Rewell, Sarah S; Turchini, Giovanni M; Kaur, Gunveen; Crewther, Sheila G

    2014-01-01

    Ischemic stroke is associated with motor impairment and increased incidence of affective disorders such as anxiety/clinical depression. In non-stroke populations, successful management of such disorders and symptoms has been reported following diet supplementation with long chain omega-3-polyunsaturated-fatty-acids (PUFAs). However, the potential protective effects of PUFA supplementation on affective behaviors after experimentally induced stroke and sham surgery have not been examined previously. This study investigated the behavioral effects of PUFA supplementation over a 6-week period following either middle cerebral artery occlusion or sham surgery in the hooded-Wistar rat. The PUFA diet supplied during the acclimation period prior to surgery was found to be associated with an increased risk of acute hemorrhage following the reperfusion component of the surgery. In surviving animals, PUFA supplementation did not influence infarct size as determined 6 weeks after surgery, but did decrease omega-6-fatty-acid levels, moderate sickness behaviors, acute motor impairment, and longer-term locomotor hyperactivity and depression/anxiety-like behavior.

  3. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    Science.gov (United States)

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.

  4. A contribution to the study of the thermal behavior and of the electric performance of squirrel-cage induction motors; Uma contribuicao ao estudo do comportamento termico e do desempenho eletrico de motores de inducao com rotor em gaiola

    Energy Technology Data Exchange (ETDEWEB)

    Avolio, Edwin

    1992-03-01

    A thermal-electric mathematical model for a squirrel cage induction motors which permits to specify the best motor for specific drive, under thermal and electric aspects based, only on manufacturer technical bulletins and technical information is presented. Changes of rotor parameters due Skin Effect and changes of winding resistances (both stator and rotor) with the temperature are considered. The accuracy of this model is appraised using experimental results. The thermal behavior and electric performance for some motors are obtained for continuos and intermittent duties with sinusoidal and non-sinusoidal voltages. (author)

  5. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  6. Diet, age, and prior injury status differentially alter behavioral outcomes following concussion in rats.

    Science.gov (United States)

    Mychasiuk, Richelle; Hehar, Harleen; van Waes, Linda; Esser, Michael J

    2015-01-01

    Mild traumatic brain injury (mTBI) or concussion affects a large portion of the population and although many of these individuals recover completely, a small subset of people experience lingering symptomology and poor outcomes. Little is known about the factors that affect individual susceptibility or resilience to poor outcomes after mTBI and there are currently no biomarkers to delineate mTBI diagnosis or prognosis. Based upon the growing literature associated with caloric intake and altered neurological aging and the ambiguous link between repetitive mTBI and progressive neurodegeneration, the current study was designed to examine the effect of a high fat diet (HFD), developmental age, and repetitive mTBI on behavioral outcomes following a mTBI. In addition, telomere length was examined before and after experimental mTBI. Sprague Dawley rats were maintained on a HFD or standard rat chow throughout life (including the prenatal period) and then experienced an mTBI/concussion at P30, P30 and P60, or only at P60. Behavioral outcomes were examined using a test battery that was administered between P61-P80 and included; beam-walking, open field, elevated plus maze, novel context mismatch, Morris water task, and forced swim task. Animals with a P30 mTBI often demonstrated lingering symptomology that was still present during testing at P80. Injuries at P30 and P60 rarely produced cumulative effects, and in some tests (i.e., beam walking), the first injury may have protected the brain from the second injury. Exposure to the high fat diet exacerbated many of the behavioral deficits associated with concussion. Finally, telomere length was shortened following mTBI and was influenced by the animal's dietary intake. Diet, age at the time of injury, and the number of prior concussion incidents differentially contribute to behavioral deficits and may help explain individual variations in susceptibility and resilience to poor outcomes following an mTBI. Copyright © 2014

  7. Enhancement of Extinction Learning Attenuates Ethanol-Seeking Behavior and Alters Plasticity in the Prefrontal Cortex

    Science.gov (United States)

    Trantham-Davidson, Heather; Kassab, Amanda S.; Glen, William B.; Olive, M. Foster; Chandler, L. Judson

    2014-01-01

    Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. PMID:24872560

  8. Enhancement of extinction learning attenuates ethanol-seeking behavior and alters plasticity in the prefrontal cortex.

    Science.gov (United States)

    Gass, Justin T; Trantham-Davidson, Heather; Kassab, Amanda S; Glen, William B; Olive, M Foster; Chandler, L Judson

    2014-05-28

    Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. Copyright © 2014 the authors 0270-6474/14/347562-13$15.00/0.

  9. Simulacija prelaznih pojava asinhronog motora na personalnom računaru / Simulation of transient behavior of an induction motor using personal computer

    Directory of Open Access Journals (Sweden)

    Dragan Stanković

    2003-07-01

    Full Text Available U raduje predstavljena simulaciona blok-šema asinhronog motora, dobijena uz pomoć jednačina prostora stanja, namenjena za analizu prelaznih pojava raznih režima rada asinhronog motora. Analiziranje primer simulacije zaletanja neopterećenog asinhronog motora. / The simulation block diagram, obtained by using the state-space model of an induction motor, is presented in this paper. The simulation block diagram is intended for transient behavior investigation of an induction motor. The transient behavior of an unloaded induction motor during simulated run-up is analyzed.

  10. Risky behavior of drivers of motorized two wheeled vehicles in India.

    Science.gov (United States)

    Dandona, Rakhi; Kumar, G Anil; Dandona, Lalit

    2006-01-01

    Motorized two-wheeled vehicles (MTV) account for a large proportion of road traffic in India and the riders of these vehicles have a high risk of road traffic injuries. We report on the availability of drivers licenses, use of a helmet, driver behavior, and condition of vehicles for MTV drivers in Hyderabad, a city in India Drivers of a MTV aged >16 years were interviewed at petrol filling stations There were 4,183 MTV drivers who participated in the study. Four hundred sixty one (11%; 95% CI 9.7-12.3%) drivers had not obtained a drivers license and 798 (21.4%) had obtained a license without taking the mandatory driving test. Two thousand nine hundred twenty (69.8%; 95% CI 67.9-71.7%) drivers reported no/very occasional use of a helmet, the significant predictors of which included that those driving borrowed a MTV (odds ratio 7.90; 95% CI 3.40-18.40) or driving moped/scooterette/scooter as compared with motorcycle (3.32; 2.76-3.98), lower education (3.10; 2.66-3.61), age >45 years (2.41; 1.63-3.57), and males (1.57; 1.16-2.13). Two thousand five hundred and eight (59.9%) drivers reported committing a traffic law violation at least once within the last 3 months. Overall, 1,222 (29.2%) drivers reported ever being caught by traffic police for a traffic law violation with data on violations available for 1,205 of these drivers, of whom 680 (56.4%) paid a fine, 310 (25.7%) paid by bribe, and 215 (17.8%) made no payment. The proportion of those who did not make payment for committed violation was significantly higher among females (46.8%) than males (16.3%). Two thousand fifty two (49%) of all MTVs had no rearview mirror These data suggest the need to enact and enforce policy interventions for improving the drivers license system, mandatory use of a helmet, effective traffic law enforcement, and ensuring good vehicle condition to reduce the risk factors that potentially contribute to mortality and morbidity in road traffic crashes in MTV drivers in Indian cities.

  11. Acute illness-induced behavioral alterations are similar to those observed during withdrawal from acute alcohol exposure

    Science.gov (United States)

    Richey, Laura; Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Deak, Terrence

    2012-01-01

    Exposure to an immunogen results in a constellation of behavioral changes collectively referred to as “sickness behaviors,” with alterations in cytokine expression previously shown to contribute to this sickness response. Since behaviors observed during ethanol withdrawal are strikingly similar to sickness behaviors, we hypothesized that behavioral manifestations of ethanol withdrawal might be an expression of sickness behaviors induced by ethanol-related changes in peripheral and/or central cytokine expression. Accordingly, behaviors exhibited during a modified social investigation test were first characterized in male rats following an acute injection of lipopolysaccharide (LPS; 100 μg/kg). Subsequently, behavioral changes after either a high (4-g/kg; Experiment 2) or low dose (0.5 g/kg; Experiment 3) of ethanol were also examined in the same social investigation test, as well as in the forced-swim test (FST; Experiment 4). Results from these experiments demonstrated similar reductions in both exploration and social investigatory behavior during acute illness and ethanol withdrawal, while a seemingly paradoxical decrease in immobility was observed in the FST during acute ethanol withdrawal. In follow-up studies, neither indomethacin (Experiment 5) nor interleukin-1 receptor antagonist (Experiment 6) pre-exposure reversed the ethanol withdrawal-induced behavioral changes observed in this social investigation test. Taken together, these studies demonstrate that the behavioral sequelae of acute illness and ethanol withdrawal are similar in nature, while antagonist studies suggest that these behavioral alterations are not reversed by blockade of IL-1 receptors or inhibition of prostaglandin synthesis. Though a direct mechanistic link between cytokines and the expression of acute ethanol withdrawal-related behaviors has yet to be found, future studies examining the involvement of brain cytokines as potential mediators of ethanol effects are greatly needed. PMID

  12. Short and long term neuro-behavioral alterations in type 1 diabetes mellitus pediatric population

    Science.gov (United States)

    Litmanovitch, Edna; Geva, Ronny; Rachmiel, Marianna

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is one of the most prevalent chronic conditions affecting individuals under the age of 18 years, with increasing incidence worldwide, especially among very young age groups, younger than 5. There is still no cure for the disease, and therapeutic goals and guidelines are a challenge. Currently, despite T1DM intensive management and technological interventions in therapy, the majority of pediatric patients do not achieve glycemic control goals. This leads to a potential prognosis of long term diabetic complications, nephrological, cardiac, ophthalmological and neurological. Unfortunately, the neurological manifestations, including neurocognitive and behavioral complications, may present soon after disease onset, during childhood and adolescence. These manifestations may be prominent, but at times subtle, thus they are often not reported by patients or physicians as related to the diabetes. Furthermore, the metabolic mechanism for such manifestations has been inconsistent and difficult to interpret in practical clinical care, as reported in several reviews on the topic of brain and T1DM. However, new technological methods for brain assessment, as well as the introduction of continuous glucose monitoring, provide new insights and information regarding brain related manifestations and glycemic variability and control parameters, which may impact the clinical care of children and youth with T1DM. This paper provides a comprehensive review of the most recently reported behavioral, cognitive domains, sleep related, electrophysiological, and structural alterations in children and adolescences from a novel point of view. The review focuses on reported impairments based on duration of T1DM, its timeline, and modifiable disease related risk parameters. These findings are not without controversy, and limitations of data are presented in addition to recommendations for future research direction. PMID:25789107

  13. Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model.

    Science.gov (United States)

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Rezaei-Tavirani, Mostafa; Najafi Abedi, Akram

    2016-01-01

    Naturally, the presence of electromagnetic waves in our living environment affects all components of organisms, particularly humans and animals, as the large part of their body consists of water. In the present study, we tried to investigate the relation between exposure to the extremely low-frequency electromagnetic field (ELF-EMF) and common behaviors such as body weight, food and water intake, anorexia (poor appetite), plasma glucose concentration, movement, rearing and sniffing in rats. For this purpose, rats were exposed to 40  Hz ELF-EMF once a day for 21 days, then at days 1, 3, 7, 14 and 21 after exposure, any changes in the above-mentioned items were assessed in the exposed rats and compared to the non-exposed group as control. Body weight of irradiated rats significantly increased only a week after exposure and decreased after that. No significant change was observed in food and water intake of irradiated rats compared to the control, and the anorexia parameter in the group exposed to ELF-EMF was significantly decreased at one and two weeks after irradiation. A week after exposure, the level of glucose was significantly increased but at other days these changes were not significant. Movements, rearing and sniffing of rats at day 1 after exposure were significantly decreased and other days these changes did not follow any particular pattern. However, the result of this study demonstrated that exposure to ELF-EMF can alter the normal condition of animals and may represent a harmful impact on behavior.

  14. Transgenic mice with increased astrocyte expression of CCL2 show altered behavioral effects of alcohol.

    Science.gov (United States)

    Bray, Jennifer G; Roberts, Amanda J; Gruol, Donna L

    2017-06-23

    Emerging research provides strong evidence that activation of CNS glial cells occurs in neurological diseases and brain injury and results in elevated production of neuroimmune factors. These factors can contribute to pathophysiological processes that lead to altered CNS function. Recently, studies have also shown that both acute and chronic alcohol consumption can produce activation of CNS glial cells and the production of neuroimmune factors, particularly the chemokine ligand 2 (CCL2). The consequences of alcohol-induced increases in CCL2 levels in the CNS have yet to be fully elucidated. Our studies focus on the hypothesis that increased levels of CCL2 in the CNS produce neuroadaptive changes that modify the actions of alcohol on the CNS. We utilized behavioral testing in transgenic mice that express elevated levels of CCL2 to test this hypothesis. The increased level of CCL2 in the transgenic mice involves increased astrocyte expression. Transgenic mice and their non-transgenic littermate controls were subjected to one of two alcohol exposure paradigms, a two-bottle choice alcohol drinking procedure that does not produce alcohol dependence or a chronic intermittent alcohol procedure that produces alcohol dependence. Several behavioral tests were carried out including the Barnes maze, Y-maze, cued and contextual conditioned fear test, light-dark transfer, and forced swim test. Comparisons between alcohol naïve, non-dependent, and alcohol-dependent CCL2 transgenic and non-transgenic mice show that elevated levels of CCL2 in the CNS interact with alcohol in tests for alcohol drinking, spatial learning, and associative learning. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Neonatal exposure to sucralose does not alter biochemical markers of neuronal development or adult behavior.

    Science.gov (United States)

    Viberg, Henrik; Fredriksson, Anders

    2011-01-01

    Sucralose, a high-intensity sweetener, has been approved as a general-purpose sweetener in all food since the late 1990s. Due to its good taste and physiochemical profile, its use has increased and sucralose is considered a way of managing health and an option to improve the quality of life in the diabetic population. Recently high concentrations of sucralose have been found in the environment. Other environmental pollutants have been shown to induce neurotoxic effects when administered during a period of rapid brain growth and development. This period of rapid brain growth and development is postnatal in mice and rats, spanning the first 3-4 wk of life, reaching its peak around postnatal day 10, whereas in humans, brain growth and development is perinatal. The proteins calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau play important roles during brain growth and development. In the present study, mice were orally exposed to 5-125 mg of sucralose per kilogram of body weight per day during postnatal days 8-12. Twenty-four hours after last exposure, brains were analyzed for calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau, and at the age of 2 mo the animals were tested for spontaneous behavior. The protein analysis showed no alterations in calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, or tau. Furthermore, there were no disturbances in adult behavior or habituation after neonatal sucralose exposure. The present study shows that repeated neonatal exposure to the artificial sweetener sucralose does not result in neurotoxicity, which supports that sucralose seems to be a safe alternative for people who want or need to reduce or substitute glucose in their diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Altered Neuronal Dynamics in the Striatum on the Behavior of Huntingtin Interacting Protein 14 (HIP14 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Ana María Estrada-Sánchez

    2013-11-01

    Full Text Available Huntington’s disease (HD, a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene, impairs information processing in the striatum, which, as part of the basal ganglia, modulates motor output. Growing evidence suggests that huntingtin interacting protein 14 (HIP14 contributes to HD neuropathology. Here, we recorded local field potentials (LFPs in the striatum as HIP14 knockout mice and wild-type controls freely navigated a plus-shaped maze. Upon entering the choice point of the maze, HIP14 knockouts tend to continue in a straight line, turning left or right significantly less often than wild-types, a sign of motor inflexibility that also occurs in HD mice. Striatal LFP activity anticipates this difference. In wild-types, the power spectral density pattern associated with entry into the choice point differs significantly from the pattern immediately before entry, especially at low frequencies (≤13 Hz, whereas HIP14 knockouts show no change in LFP activity as they enter the choice point. The lack of change in striatal activity may explain the turning deficit in the plus maze. Our results suggest that HIP14 plays a critical role in the aberrant behavioral modulation of striatal neuronal activity underlying motor inflexibility, including the motor signs of HD.

  17. Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Russell Vivienne A

    2009-06-01

    and prefrontal cortex while SD prefrontal cortex released more [3H]norepinephrine than WKY. SHR were resilient, cross-fostering did not reduce their ADHD-like behavior or change their neurochemistry. Cross-fostering of SD pups onto SHR or WKY dams increased their exploratory behavior without altering their anxiety-like behavior. Conclusion The ADHD-like behavior of SHR and their neurochemistry is genetically determined and not dependent on nurturing by SHR dams. The similarity between WKY and SD supports the continued use of WKY as a control for SHR and suggests that SD may be a useful additional reference strain for SHR. The fact that SD behaved similarly to WKY in the elevated-plus maze argues against the use of WKY as a model for anxiety-like disorders.

  18. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    International Nuclear Information System (INIS)

    Flora, Swaran J.S.; Bhatt, Kapil; Mehta, Ashish

    2009-01-01

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  19. Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research

    Directory of Open Access Journals (Sweden)

    Sergio Tufik

    2009-09-01

    Full Text Available Sleep comprises approximately one-third of a person's lifetime, but its impact on health and medical conditions remains partially unrecognized. The prevalence of sleep disorders is increasing in modern societies, with significant repercussions on people's well-being. This article reviews past and current literature on the paradoxical sleep deprivation method as well as data on its consequences to animals, ranging from behavioral changes to alterations in the gene expression. More specifically, we highlight relevant experimental studies and our group's contribution over the last three decades.O sono ocupa cerca de um terço de nossas vidas, entretanto seu impacto na saúde e sua influência nas condições patológicas ainda não foi completamente elucidado. A prevalência dos distúrbios de sono é cada vez maior, sobretudo nas regiões mais industrializadas, repercutindo diretamente no bem-estar da população. Este artigo tem como objetivo sintetizar e atualizar a literatura a respeito do método de privação de sono paradoxal e seu panorama de conseqüências desde comportamentais até genéticas em animais. Ainda, destacamos a contribuição e relevância dos estudos experimentais realizados por nosso grupo nas ultimas três décadas.

  20. Alcohol during adolescence selectively alters immediate and long-term behavior and neurochemistry.

    Science.gov (United States)

    Maldonado-Devincci, Antoniette M; Badanich, Kimberly A; Kirstein, Cheryl L

    2010-02-01

    Alcohol use increases across adolescence and is a concern in the United States. In humans, males and females consume different amounts of alcohol depending on the age of initiation, and the long-term consequences of early ethanol consumption are not readily understood. The purpose of our work was to better understand the immediate and long-term impact of ethanol exposure during adolescence and the effects it can have on behavior and dopaminergic responsivity. We have assessed sex differences in voluntary ethanol consumption during adolescence and adulthood and the influence of binge ethanol exposure during adolescence. We have observed that males are sensitive to passive social influences that mediate voluntary ethanol consumption, and early ethanol exposure induces long-term changes in responsivity to ethanol in adulthood. Exposure to moderate doses of ethanol during adolescence produced alterations in dopamine in the nucleus accumbens septi during adolescence and later in adulthood. Taken together, all of these data indicate that the adolescent brain is sensitive to the impact of early ethanol exposure during this critical developmental period. 2010 Elsevier Inc. All rights reserved.

  1. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats.

    Science.gov (United States)

    Flora, Swaran J S; Bhatt, Kapil; Mehta, Ashish

    2009-10-15

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  2. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment.

    Science.gov (United States)

    Keshner, Emily A; Slaboda, Jill C; Buddharaju, Ravi; Lanaria, Lois; Norman, Jeremy

    2011-01-01

    We present results from a series of studies that investigated how multimodal mismatches in a virtual environment modified postural response organization. Adaptation of motor commands to functional circumstances is driven directly by error signals. Thus, motor relearning should increase when performing in environments containing sensory mismatch. We hypothesized that kinematics of the response would be linked to specific characteristics of the sensory array. Sensory weighting was varied by: 1) rotating the visual field about the talo-crural joint or the interaural axis, 2) adding stochastic vibrations at the sole of the foot, and 3) combining galvanic vestibular stimulation with rotations of the visual field. Results indicated that postural responses are shaped by the location of a sensory disturbance and also by the processing demands of the environmental array. Sensory-motor demands need to be structured when developing therapeutic interventions for patients with balance disorders.

  3. Mouse model for PTPRD associations with WED/RLS and addiction: reduced expression alters locomotion, sleep behaviors and cocaine-conditioned place preference.

    Science.gov (United States)

    Drgonova, Jana; Walther, Donna; Wang, Katherine J; Hartstein, G Luke; Lochte, Bryson; Troncoso, Juan; Uetani, Noriko; Iwakura, Yoichiro; Uhl, George R

    2015-07-14

    The receptor type protein tyrosine phosphatase D (PTPRD) gene encodes a cell adhesion molecule likely to influence development and connections of addiction-, locomotion- and sleep-related brain circuits in which it is expressed. The PTPRD gene harbors genome wide association signals in studies of restless leg syndrome (Willis-Ekbom/RLS; p p > 10 -8 associations in several reports). We now report work that seeks a) association between PTPRD genotypes and expression of its mRNA in postmortem human brains and b) RLS-related, addiction-related and comparison behavioral phenotypes in hetero- and homozygous PTPRD knockout mice. We identify associations between PTPRD SNPs and levels of PTPRD mRNA in human brain samples that support validity of mouse models with altered PTPRD expression. Knockouts display less behaviorally-defined sleep at the end of their active periods. Heterozygotes move more despite motor weakness/impersistence. Heterozygotes display shifted dose-response relationships for cocaine reward. They display greater preference for places paired with 5 mg/kg cocaine and less preference for places paired with 10 or 20 mg/kg. The combined data provide support for roles for common, level-of-expression PTPRD variation in locomotor, sleep and drug reward phenotypes relevant to RLS and addiction. Taken together, mouse and human results identify PTPRD as a novel therapeutic target for RLS and addiction phenotypes.

  4. Mandibular Motor Control during the Early Development of Speech and Nonspeech Behaviors

    Science.gov (United States)

    Steeve, Roger W.; Moore, Christopher A.

    2009-01-01

    Purpose: The mandible is often portrayed as a primary structure of early babble production, but empiricists still need to specify (a) how mandibular motor control and kinematics vary among different types of multisyllabic babble, (b) whether chewing or jaw oscillation relies on a coordinative infrastructure that can be exploited for early types of…

  5. Force and complexity of tongue task training influences behavioral measures of motor learning

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Huo, Xueliang

    2012-01-01

    Relearning of motor skills is important in neurorehabilitation. We investigated the improvement of training success during simple tongue protrusion (two force levels) and a more complex tongue-training paradigm using the Tongue Drive System (TDS). We also compared subject-based reports of fun, pa...

  6. Anxiety and performance : perceptual-motor behavior in high-pressure contexts

    NARCIS (Netherlands)

    Nieuwenhuys, Arne; Oudejans, Raôul RD

    When the pressure is on and anxiety levels increase it is not easy to perform well. In search of mechanisms explaining the anxiety-performance relationship, we revisit the integrated model of anxiety and perceptual-motor performance (Nieuwenhuys and Oudejans, 2012) and provide a critical review of

  7. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.

  8. Lamotrigine does not impair motor performance and spontaneous behavior in developing rats

    Czech Academy of Sciences Publication Activity Database

    Mikulecká, Anna; Kubová, Hana; Mareš, Pavel

    2004-01-01

    Roč. 5, č. 4 (2004), s. 464-471 ISSN 1525-5050 Grant - others:IGA MZd(CZ) NF6474 Institutional research plan: CEZ:AV0Z5011922 Keywords : motor performance * open field * ontogeny Subject RIV: FH - Neurology Impact factor: 1.630, year: 2002

  9. Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits.

    Science.gov (United States)

    Liu, Yuxin; Qin, Liya; Wilson, Belinda; Wu, Xuefei; Qian, Li; Granholm, Ann-Charlotte; Crews, Fulton T; Hong, Jau-Shyong

    2008-09-01

    We have previously reported that a single injection of endotoxin, lipopolysaccharide (LPS, 5mg/kg, i.p.), causes a delayed and progressive loss of TH-IR neurons in the substantia nigra (SN) in C57BL/six male mice. In this study, we determined sex differences and behavioral deficits accompanying the loss of TH-IR neurons in response to peripheral LPS injection. A single injection of LPS (5mg/kg, i.p.) failed to produce any loss of TH-IR neurons in the SN of female mice over a 12-month period. To determine if multiple-injections were required, female mice received five injections of LPS (5mg/kg, i.p.) at either weekly or monthly intervals. Behavioral motor ability and TH-IR neuronal loss were determined after the first injection of LPS. We found significant differences in both behavioral activities and neuronal loss between these two injection paradigms. Between 7 and 20 months after the first injection of LPS, progressive behavioral changes, measured by rotor-rod and open-field activities, and neuronal loss in SN were observed in monthly injected, but not in weekly injected mice. In addition, reduced rotor-rod ability in monthly injected mice were restored following treatment of l-dopa/carbidopa (30 mg/3mg/kg), i.p.). Approximately 40 and 50% loss of TH-IR neurons at 9 and 20 months, respectively, was observed after exposure to LPS, suggesting that the behavioral deficit is related to loss of dopamine function in the nigra-striatal pathway. More intense immuno-staining of alpha-synuclein and inflammatory markers were detected in brain sections exposed to LPS. In conclusion, these results show that multi-LPS monthly injections can induce a delayed and progressive loss of TH-IR neurons and motor deficits which resemble the progressive nature of Parkinson's disease. Further, the present study reveals a clear sex difference: female mice are more resistant to LPS than male mice. Repeated monthly LPS injections are required to cause both motor behavioral deficits and DA

  10. Gestational Exposure to the Synthetic Cathinone Methylenedioxypyrovalerone Results in Reduced Maternal Care and Behavioral Alterations in Mouse Pups

    Directory of Open Access Journals (Sweden)

    László I. Gerecsei

    2018-02-01

    Full Text Available The member of synthetic cathinone family, methylenedioxypyrovalerone (MDPV, is a frequently used psychoactive drug of abuse. The objective of our study was to determine the effect of MDPV (administered from the 8th to the 14th day of gestation on the behavior of neonatal and adolescent mice, as well as its effect on maternal care. We measured maternal care (pup retrieval test, nest building, locomotor activity (open field test, and motor coordination (grip strength test of dams, whereas on pups we examined locomotor activity at postnatal day 7 and day 21 (open field test and motor coordination on day 21 (grip strength test. On fresh-frozen brain samples of the dams we examined the expression of two important peptides implicated in the regulation of maternal behavior and lactation: tuberoinfundibular peptide 39 (TIP39 mRNA in the thalamic posterior intralaminar complex, and amylin mRNA in the medial preoptic nucleus. We detected decreased birth rate and survival of offspring, and reduced maternal care in the drug-treated animals, whereas there was no difference between the motility of treated and control mothers. Locomotor activity of the pups was increased in the MDPV treated group both at 7 and 21 days of age, while motor coordination was unaffected by MDPV treatment. TIP39 and amylin were detected in their typical location but failed to show a significant difference of expression between the drug-treated and control groups. The results suggest that chronic systemic administration of the cathinone agent MDPV to pregnant mice can reduce birth rate and maternal care, and it also enhances motility (without impairment of motor coordination of the offspring.

  11. Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior.

    Science.gov (United States)

    Sakaguchi, Yutaka; Tanaka, Masato; Inoue, Yasuyuki

    2015-07-01

    It is a fundamental question how our brain performs a given motor task in a real-time fashion with the slow sensorimotor system. Computational theory proposed an influential idea of feed-forward control, but it has mainly treated the case that the movement is ballistic (such as reaching) because the motor commands should be calculated in advance of movement execution. As a possible mechanism for operating feed-forward control in continuous motor tasks (such as target tracking), we propose a control model called "adaptive intermittent control" or "segmented control," that brain adaptively divides the continuous time axis into discrete segments and executes feed-forward control in each segment. The idea of intermittent control has been proposed in the fields of control theory, biological modeling and nonlinear dynamical system. Compared with these previous models, the key of the proposed model is that the system speculatively determines the segmentation based on the future prediction and its uncertainty. The result of computer simulation showed that the proposed model realized faithful visuo-manual tracking with realistic sensorimotor delays and with less computational costs (i.e., with fewer number of segments). Furthermore, it replicated "motor intermittency", that is, intermittent discontinuities commonly observed in human movement trajectories. We discuss that the temporally segmented control is an inevitable strategy for brain which has to achieve a given task with small computational (or cognitive) cost, using a slow control system in an uncertain variable environment, and the motor intermittency is the side-effect of this strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Motor patterns during active electrosensory acquisition

    Directory of Open Access Journals (Sweden)

    Volker eHofmann

    2014-05-01

    Full Text Available Motor patterns displayed during active electrosensory acquisition of information seem to be an essential part of a sensory strategy by which weakly electric fish actively generate and shape sensory flow. These active sensing strategies are expected to adaptively optimize ongoing behavior with respect to either motor efficiency or sensory information gained. The tight link between the motor domain and sensory perception in active electrolocation make weakly electric fish like Gnathonemus petersii an ideal system for studying sensory-motor interactions in the form of active sensing strategies. Analyzing the movements and electric signals of solitary fish during unrestrained exploration of objects in the dark, we here present the first formal quantification of motor patterns used by fish during electrolocation. Based on a cluster analysis of the kinematic values we categorized the basic units of motion. These were then analyzed for their associative grouping to identify and extract short coherent chains of behavior. This enabled the description of sensory behavior on different levels of complexity: from single movements, over short behaviors to more complex behavioral sequences during which the kinematics alter between different behaviors. We present detailed data for three classified patterns and provide evidence that these can be considered as motor components of active sensing strategies. In accordance with the idea of active sensing strategies, we found categorical motor patterns to be modified by the sensory context. In addition these motor patterns were linked with changes in the temporal sampling in form of differing electric organ discharge frequencies and differing spatial distributions.The ability to detect such strategies quantitatively will allow future research to investigate the impact of such behaviors on sensing.

  13. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Science.gov (United States)

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  14. Neuroecology: Neural Mechanisms of Sensory and Motor Processes that Mediate Ecologically Relevant Behaviors: An Introduction to the Symposium.

    Science.gov (United States)

    Riffell, Jeffrey A; Rowe, Ashlee H

    2016-11-01

    What is Neuroecology? Animal behavior mediates many critical ecological processes that, in turn, have implications for the evolution of organismal interactions. Because the peripheral and central nervous systems ultimately control behavior, research in neuroecology seeks to link the neural basis of behavior with behavioral control of ecological interactions, and to determine how specific processes (e.g., environmental and genetic constraints, ecological and evolutionary forces) operating to alter nervous system function might constrain or facilitate adaptive behavior. Our goal for this symposium was to promote a general framework for neuroecology by exploring fundamental questions germane to this new area of research, and to develop a "toolbox" of techniques and approaches for addressing those questions. In the following series of papers, we provide a starting point for future work on neuroecology, including evolutionary context, the role of plasticity in shaping nervous system function and behavior, and an exploration of various sensorimotor systems that control ecological interactions. By promoting an integration of observational and experimental approaches at different levels of organization, we can reveal much about how the neural bases of behaviors influence interactions that occur under ecologically relevant contexts that would otherwise be impossible from isolated physiological, behavioral, or ecological components. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Comparison of Behavioral Problems and Skills of 7-12-Year-Old Students With a Physical/Motor Disability at Mainstream aewnd Special Schools

    Directory of Open Access Journals (Sweden)

    Tahereh Hendi

    2018-03-01

    Discussion: Our data demonstrate that behavioral problems of students with a physical/motor disability are fewer in mainstream schools indicating stronger behavior skills than their peers in special schools. In view of our data, we recommend the possibility of integrating the education of special needs students at regular schools.

  16. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Hanaa Malloul

    2017-09-01

    revealed only in the prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring.

  17. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2004-12-01

    protein (UCP-1 mRNA levels in brown adipose tissue (BAT were seen in Phyto-600 fed males. However, decreased core body temperature was recorded in these same animals compared to Phyto-free fed animals. Conclusions This study demonstrates that consumption of a soy-based (isoflavone-rich diet, significantly alters several parameters involved in maintaining body homeostatic balance, energy expenditure, feeding behavior, hormonal, metabolic and neuroendocrine function in male rats.

  18. Differentiating children with attention-deficit/hyperactivity disorder, conduct disorder, learning disabilities and autistic spectrum disorders by means of their motor behavior characteristics.

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N=22), Conduct Disorder (CD; N=17), Learning Disabilities (LD; N=24) and Autistic Spectrum Disorders (ASD; N=20). Physical education teachers used the MBC for children to rate their pupils based on their motor related behaviors. A multivariate analysis revealed significant differences among the groups on different problem scales. The results indicated that the MBC for children may be effective in discriminating children with similar disruptive behaviors (e.g., ADHD, CD) and autistic disorders, based on their motor behavior characteristics, but not children with Learning Disabilities (LD), when used by physical education teachers in school settings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Inducing disbelief in free will alters brain correlates of preconscious motor preparation: the brain minds whether we believe in free will or not.

    Science.gov (United States)

    Rigoni, Davide; Kühn, Simone; Sartori, Giuseppe; Brass, Marcel

    2011-05-01

    The feeling of being in control of one's own actions is a strong subjective experience. However, discoveries in psychology and neuroscience challenge the validity of this experience and suggest that free will is just an illusion. This raises a question: What would happen if people started to disbelieve in free will? Previous research has shown that low control beliefs affect performance and motivation. Recently, it has been shown that undermining free-will beliefs influences social behavior. In the study reported here, we investigated whether undermining beliefs in free will affects brain correlates of voluntary motor preparation. Our results showed that the readiness potential was reduced in individuals induced to disbelieve in free will. This effect was evident more than 1 s before participants consciously decided to move, a finding that suggests that the manipulation influenced intentional actions at preconscious stages. Our findings indicate that abstract belief systems might have a much more fundamental effect than previously thought.

  20. Effects of Cottonseed Meal on Hematological, Biochemical and Behavioral Alterations in Male Japanese Quail (Coturnix japonica

    Directory of Open Access Journals (Sweden)

    M. Moazam Jalees, M. Zargham Khan*, M. Kashif Saleemi and Ahrar Khan

    2011-06-01

    Full Text Available The present study was carried out to find toxico-pathological effects of cottonseed meal (CSM in male Japanese quail (Coturnix japonica. Male birds (n=48 were equally divided into four groups (A to D. Three isonitric and isocaloric experimental feeds were formulated by replacing soybean meal with three levels of CSM i.e., 13, 27 and 41%. The respective feed was offered to the birds ad libitum for the duration of experiment (42 days. Clinical signs, behavioral alterations, feed consumption, body weight, absolute and relative organ weight, hematological and biochemical parameters along with gross and histopathological lesions were studied. In group B and C, birds were temporarily depressed but later on became active. In group D, birds remained dull and depressed and 66.7% mortality was recorded. Body weight, absolute and relative organ weight was non-significantly different in treatment groups compared with control. Feed intake at week 1 was significantly low in group D while during remaining experiment; it differed non-significantly in all the treatment groups compared with control. Testicular volume at day 21 was significantly (P<0.05 low in group D. Significantly low serum total proteins and albumin in groups B and C and hematocrit values in all the groups and hemoglobin concentration in group D were recorded at day 42 of experiment. It was concluded that CSM 13% level did not have any deleterious effect on the feed conversion and body weight but the reproductive performance of the male Japanese quail was affected.

  1. Polyunsaturated fatty acid supplementation during pregnancy alters neonatal behavior in sheep.

    Science.gov (United States)

    Capper, Judith L; Wilkinson, Robert G; Mackenzie, Alexander M; Sinclair, Liam A

    2006-02-01

    The objectives of the study were to determine whether supplementation of pregnant ewes with long-chain (n-3) fatty acids present in fish oil, in combination with dietary vitamin E, would alter neonatal behavior in sheep. Twin- (n=36) and triplet- (n=12) bearing ewes were allocated at d 103 of gestation to 1 of 4 dietary treatments containing 1 of 2 fat sources [Megalac, a calcium soap of palm fatty acid distillate or a fish oil mixture, high in 20:5(n-3) and 22:6(n-3)] and 1 of 2 dietary vitamin E concentrations (50 or 500 mg/kg) in a 2 x 2 factorial design. Feeding fish oil increased gestation length by 2 d and increased the proportion of 22:6(n-3) within neonatal plasma by 5.1-fold and brain by 10%, whereas brain 20:5(n-3) was increased 5-fold. Supranutritional dietary vitamin E concentrations decreased the latency of lambs to stand in ewes fed fish oil but not Megalac, whereas latency to suckle was decreased from 43 to 34 min by fish oil supplementation. Supplementation with fish oil also substantially decreased the secretion rate (mL/h) of colostrum and the yield (g/h) of fat and protein. We conclude that supplementation of ewes with fish oil decreases the latency to suckle, increases gestation length and the 22:6(n-3):20:4(n-6) ratio in the neonatal brain, and may improve lamb survival rate. However, further work is required to determine how to mitigate the negative effects of fish oil on colostrum production.

  2. Acquisition and Analysis of Information Relative to the Industrial Behavior of the Major National and International Motor Vehicle Manufacturers.

    Science.gov (United States)

    1983-04-01

    This report summarizes data collected from 1978 to 1980 relating to the following motor vehicle companies: General Motors, Chrysler, Ford, American Motors, International Harvester, BL, Fiat, Peugeot, Renault, Saab, Volvo, Daimler-Benz, Volkswagen, BM...

  3. Comments on "the Feldenkrais Method: a dynamic approach to changing motor behavior".

    Science.gov (United States)

    Ives, Jeffrey C

    2003-06-01

    The Feldenkrais Method has recently been discussed to fit within a dynamic systems model of human movement. One basis for this discussion is that small changes in one system--for example, enhanced body awareness--has far reaching implications across the whole of human performance. An alternative view on the Feldenkrais Method is argued here. It is argued that the clinical data do not support the Feldenkrais Method as being an effective way to improve motor performance. Further, it is argued that positive outcomes in pain and other wellness measures following Feldenkrais interventions can be ascribed to self-regulation. As part of this discussion, the role of body awareness, attentional focus, and kinesthesia in motor leaning and control are explored.

  4. The Impact of Motor Axon Misdirection and Attrition on Behavioral Deficit Following Experimental Nerve Injuries

    Science.gov (United States)

    Alant, Jacob Daniel de Villiers; Senjaya, Ferry; Ivanovic, Aleksandra; Forden, Joanne; Shakhbazau, Antos; Midha, Rajiv

    2013-01-01

    Peripheral nerve transection and neuroma-in-continuity injuries are associated with permanent functional deficits, often despite successful end-organ reinnervation. Axonal misdirection with non-specific reinnervation, frustrated regeneration and axonal attrition are believed to be among the anatomical substrates that underlie the poor functional recovery associated with these devastating injuries. Yet, functional deficits associated with axonal misdirection in experimental neuroma-in-continuity injuries have not yet been studied. We hypothesized that experimental neuroma-in-continuity injuries would result in motor axon misdirection and attrition with proportional persistent functional deficits. The femoral nerve misdirection model was exploited to assess major motor pathway misdirection and axonal attrition over a spectrum of experimental nerve injuries, with neuroma-in-continuity injuries simulated by the combination of compression and traction forces in 42 male rats. Sciatic nerve injuries were employed in an additional 42 rats, to evaluate the contribution of axonal misdirection to locomotor deficits by a ladder rung task up to 12 weeks. Retrograde motor neuron labeling techniques were utilized to determine the degree of axonal misdirection and attrition. Characteristic histological neuroma-in-continuity features were demonstrated in the neuroma-in-continuity groups and poor functional recovery was seen despite successful nerve regeneration and muscle reinnervation. Good positive and negative correlations were observed respectively between axonal misdirection (pinjuries of mixed motor nerves that contribute to the long-term functional deficits. Although widely accepted in theory, to our knowledge, this is the first experimental evidence to convincingly demonstrate these correlations with data inclusive of the neuroma-in-continuity spectrum. This work emphasizes the need to focus on strategies that promote both robust and accurate nerve regeneration to optimize

  5. Motor Priming in Neurorehabilitation

    OpenAIRE

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2015-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few ...

  6. Walking in School-Aged Children in a Dual-Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning

    OpenAIRE

    Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander

    2016-01-01

    Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive...

  7. Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus.

    Science.gov (United States)

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Hartmann, Klaas; Semmens, Jayson M

    2017-10-03

    Seismic surveys map the seabed using intense, low-frequency sound signals that penetrate kilometers into the Earth's crust. Little is known regarding how invertebrates, including economically and ecologically important bivalves, are affected by exposure to seismic signals. In a series of field-based experiments, we investigate the impact of exposure to seismic surveys on scallops, using measurements of physiological and behavioral parameters to determine whether exposure may cause mass mortality or result in other sublethal effects. Exposure to seismic signals was found to significantly increase mortality, particularly over a chronic (months postexposure) time scale, though not beyond naturally occurring rates of mortality. Exposure did not elicit energetically expensive behaviors, but scallops showed significant changes in behavioral patterns during exposure, through a reduction in classic behaviors and demonstration of a nonclassic "flinch" response to air gun signals. Furthermore, scallops showed persistent alterations in recessing reflex behavior following exposure, with the rate of recessing increasing with repeated exposure. Hemolymph (blood analog) physiology showed a compromised capacity for homeostasis and potential immunodeficiency, as a range of hemolymph biochemistry parameters were altered and the density of circulating hemocytes (blood cell analog) was significantly reduced, with effects observed over acute (hours to days) and chronic (months) scales. The size of the air gun had no effect, but repeated exposure intensified responses. We postulate that the observed impacts resulted from high seabed ground accelerations driven by the air gun signal. Given the scope of physiological disruption, we conclude that seismic exposure can harm scallops.

  8. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor.

    Science.gov (United States)

    Tsai, Meng-Li; Kozłowska, Anna; Li, Yu-Sheng; Shen, Wen-Ling; Huang, Andrew Chih Wei

    2017-08-01

    The present study examines whether housing style (e.g., single housing, same-strain-grouped housing, and different-strain-grouped housing) and rat strain (e.g., spontaneous hypertension rats [SHR] and Wistar-Kyoto rats [WKY]) mediate motor function and anxiety behavior in the open field task. From week 4 through week 10 following birth, the rats were measured 30min for locomotor activity and anxiety once per week in the open field task. The SHR rats exhibited hyperactivity in total distance traveled and movement time to form the animal model of ADHD. The SHR rats spent more time inside the square and crossed the inside-outside line more often than the WKY rats, indicating the SHR rats exhibited less anxiety behavior. The different-strain-grouped housing style (but neither the same-strain-grouped housing style nor the single housing style) decreased total distance traveled and facilitated anxiety behavior. The motor function was negatively correlated with anxiety behavior for SHR rats but not for WKY rats. Housing styles had a negative correlation between motor function and anxiety behavior. The present findings provide some insights regarding how social factors (such as housing style) affect motor function and anxiety behavior related to ADHD in a clinical setting. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. The kinesin-13 KLP10A motor regulates oocyte spindle length and affects EB1 binding without altering microtubule growth rates

    Directory of Open Access Journals (Sweden)

    Kevin K. Do

    2014-06-01

    Full Text Available Kinesin-13 motors are unusual in that they do not walk along microtubules, but instead diffuse to the ends, where they remove tubulin dimers, regulating microtubule dynamics. Here we show that Drosophila kinesin-13 klp10A regulates oocyte meiosis I spindle length and is haplo-insufficient – KLP10A, reduced by RNAi or a loss-of-function P element insertion mutant, results in elongated and mispositioned oocyte spindles, and abnormal cortical microtubule asters and aggregates. KLP10A knockdown by RNAi does not significantly affect microtubule growth rates in oocyte spindles, but, unexpectedly, EB1 binding and unbinding are slowed, suggesting a previously unobserved role for kinesin-13 in mediating EB1 binding interactions with microtubules. Kinesin-13 may regulate spindle length both by disassembling subunits from microtubule ends and facilitating EB1 binding to plus ends. We also observe an increased number of paused microtubules in klp10A RNAi knockdown spindles, consistent with a reduced frequency of microtubule catastrophes. Overall, our findings indicate that reduced kinesin-13 decreases microtubule disassembly rates and affects EB1 interactions with microtubules, rather than altering microtubule growth rates, causing spindles to elongate and abnormal cortical microtubule asters and aggregates to form.

  10. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  11. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  12. The role of ECoG magnitude and phase in decoding position, velocity and acceleration during continuous motor behavior

    Directory of Open Access Journals (Sweden)

    Jiri eHammer

    2013-11-01

    Full Text Available In neuronal population signals, including the electroencephalogram (EEG and electrocorticogram (ECoG, the low-frequency component (LFC is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy copy of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative low-frequency component of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.

  13. Non-motor parkinsonian pathology in aging A53T α-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function.

    Science.gov (United States)

    Farrell, Kaitlin F; Krishnamachari, Sesha; Villanueva, Ernesto; Lou, Haiyan; Alerte, Tshianda N M; Peet, Eloise; Drolet, Robert E; Perez, Ruth G

    2014-02-01

    Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α-synuclein levels in substantia nigra pars compacta (SNc). Excess α-synuclein spurs Lewy-like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate-limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α-synuclein for behavior and α-synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α-synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α-synuclein. Low adrenal PP2A activity co-occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α-synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α-synuclein pathology associated with pre-motor stages of PD. © 2013 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  14. The effects of load-sensitive behavior on the operability margins of motor-operated gate valves

    International Nuclear Information System (INIS)

    Steele, R. Jr.; Russell, M.J.; DeWall, K.G.; Watkins, J.C.

    1993-01-01

    Testing of motor-operated gate valves at various loads has produced a phenomenon we call load-sensitive behavior. This phenomenon has a significant effect on the accuracy of the methods used (and proposed) in the nuclear industry for determining that these valves can perform their design basis function. A valve subjected to tests with low flow and pressure loadings may achieve a stem thrust (at seating) analytically determined to be adequate for design basis flows and pressures, but this is no guarantee that the valve will achieve the same stem thrust when actually subjected to those design basis loads. This is because the friction at the interface between the stem and the stem nut is higher in tests with higher flow and pressure loadings, and this loss to friction is outside the control of the motor-operator's torque switch. This paper identifies a tentative method for determining, a stable, useful value for the stem/stem-nut coefficient of friction, one that can possibly be extrapolated and used in calculations to accurately estimate the design basis thrust requirements of these valves

  15. Depressive-like history alters persistent pain behavior in rats: Opposite contribution of frontal cortex and amygdala implied.

    Science.gov (United States)

    Qi, Wei-Jing; Wang, Wei; Wang, Ning; Wang, Jin-Yan; Luo, Fei

    2013-08-01

    Numerous studies have shown that pain perception is strongly influenced by depression. However, very few studies have examined whether pain perception is altered in the remission period of depression, and what role the fronto-limbic circuits may play in the behavioral changes associated with remission. Using an unpredictable chronic mild stress (UCMS) animal model of depression, the present study investigated pain-related behaviors in rats with prior exposure to a UCMS stimulus. The γ-aminobutyric acid (GABA) A receptor agonist muscimol was microinjected bilaterally into the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) to examine the modulation of pain by these brain regions in the recovery state. Rats with a depression-like history displayed increased ongoing pain behavior in the formalin test, although their thermal pain thresholds were unchanged. Intra-BLA muscimol during the recovery phase dramatically decreased formalin-induced pain behavior and also significantly increased rats' sucrose preference. By contrast, in the mPFC, muscimol produced the opposite effect, suggesting different, perhaps opposing, roles of the BLA and mPFC in mediating the influence of prior UCMS exposure on pain perception. Taken together, these results demonstrated that a depressive experience may cause long-term alterations in limbic circuit excitability and thus lead to long-lasting changes in pain perception.

  16. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior

    OpenAIRE

    Sprenger, Andreas; Weber, Frederik D.; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-01-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as w...

  17. The wake-promoting drug Modafinil prevents motor impairment in sickness behavior induced by LPS in mice

    DEFF Research Database (Denmark)

    Zager, Adriano; Brandão, Wesley Nogueira; Margatho, Rafael Oliveira

    2018-01-01

    to the open field and elevated plus maze test 2h later. After 24h, mice were subjected to tail suspension test, followed by either flow cytometry with whole brain for CD11b+CD45+ cells or qPCR in brain areas for cytokine gene expression. Modafinil treatment prevented the LPS-induced motor impairment, anxiety...... was to evaluate the effect of Modafinil pretreatment in the Lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors. Adult male C57BL/6J mice were pretreated with Vehicle or Modafinil (90mg/Kg) and, 30min later, received a single saline or LPS (2mg/Kg) administration, and were submitted...

  18. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior

    Directory of Open Access Journals (Sweden)

    Matz Lennart Larsson

    2015-07-01

    Full Text Available Ipsilateral retinal projections (IRP in the optic chiasm (OC vary considerably. Most animal groups possess laterally situated eyes and no or few IRP, but, e.g. cats and primates have frontal eyes and high proportions of IRP. The traditional hypothesis that bifocal vision developed to enable predation or to increase perception in restricted light conditions applies mainly to mammals. The eye-forelimb (EF hypothesis presented here suggests that the reception of visual feedback of limb movements in the limb steering cerebral hemisphere was the fundamental mechanism behind the OC evolution. In other words, that evolutionary change in the OC was necessary to preserve hemispheric autonomy. In the majority of vertebrates, motor processing, tactile, proprioceptive, and visual information involved in steering the hand (limb, paw, fin is primarily received only in the contralateral hemisphere, while multisensory information from the ipsilateral limb is minimal. Since the involved motor nuclei, somatosensory areas, and vision neurons are situated in same hemisphere, the neuronal pathways involved will be relatively short, optimizing the size of the brain. That would not have been possible without, evolutionary modifications of IRP. Multiple axon-guidance genes, which determine whether axons will cross the midline or not, have shaped the OC anatomy. Evolutionary change in the OC seems to be key to preserving hemispheric autonomy when the body and eye evolve to fit new ecological niches. The EF hypothesis may explain the low proportion of IRP in birds, reptiles, and most fishes; the relatively high proportions of IRP in limbless vertebrates; high proportions of IRP in arboreal, in contrast to ground-dwelling, marsupials; the lack of IRP in dolphins; abundant IRP in primates and most predatory mammals, and why IRP emanate exclusively from the temporal retina. The EF hypothesis seams applicable to vertebrates in general and hence more parsimonious than

  19. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation

    Directory of Open Access Journals (Sweden)

    Michail Pavlidis

    2017-04-01

    Full Text Available Zebrafish, Danio rerio, is an emerging model organism in stress and neurobehavioral studies. In nature, the species forms shoals, yet when kept in pairs it exhibits an agonistic and anxiety-like behavior that leads to the establishment of dominant-subordinate relationships. Fluoxetine, a selective serotonin reuptake inhibitor, is used as an anxiolytic tool to alter aggressive behavior in several vertebrates and as an antidepressant drug in humans. Pairs of male zebrafish were held overnight to develop dominant—subordinate behavior, either treated or non-treated for 2 h with fluoxetine (5 mg L−1, and allowed to interact once more for 1 h. Behavior was recorded both prior and after fluoxetine administration. At the end of the experiment, trunk and brain samples were also taken for cortisol determination and mRNA expression studies, respectively. Fluoxetine treatment significantly affected zebrafish behavior and the expression levels of several genes, by decreasing offensive aggression in dominants and by eliminating freezing in the subordinates. There was no statistically significant difference in whole-trunk cortisol concentrations between dominant and subordinate fish, while fluoxetine treatment resulted in higher (P = 0.004 cortisol concentrations in both groups. There were statistically significant differences between dominant and subordinate fish in brain mRNA expression levels of genes involved in stress axis (gr, mr, neural activity (bdnf, c-fos, and the serotonergic system (htr2b, slc6a4b. The significant decrease in the offensive and defensive aggression following fluoxetine treatment was concomitant with a reversed pattern in c-fos expression levels. Overall, an acute administration of a selective serotonin reuptake inhibitor alters aggressive behavior in male zebrafish in association with changes in the neuroendocrine mediators of coping styles.

  20. Dietary exposure to technical hexabromocyclododecane (HBCD) alters courtship, incubation and parental behaviors in American kestrels (Falco sparverius).

    Science.gov (United States)

    Marteinson, Sarah C; Bird, David M; Letcher, Robert J; Sullivan, Katrina M; Ritchie, Ian J; Fernie, Kim J

    2012-11-01

    Hexabromocyclododecane (HBCD) is a high production volume brominated flame retardant that has been detected in the environment and wildlife at increasing concentrations. This study was designed to determine potential effects of dietary exposure to environmentally relevant levels of HBCD on behavior during reproduction in captive American kestrels. Twenty kestrel pairs were exposed to 0.51 μg technical HBCD g(-1) kestrel d(-1) from 4 weeks prior to pairing until chicks hatched (~75 d). Ten pairs of controls received the safflower oil vehicle only and were used for comparison. During the courtship period the chitter-calls were reduced in both sexes (p=0.038) and females performed fewer bonding displays (p=0.053). Both sexes showed a propensity to be less active than controls during courtship. The reduction in male courtship behavior was correlated with reduced courtship behaviors of females (p=0.008) as well as reduced egg mass (p=0.019). During incubation, nest temperatures of treatment pairs were lower at mid-incubation (p=0.038). HBCD-exposed males performed fewer key parental behaviors when rearing nestlings, including entering the nest-box, pair-bonding displays and food-retrievals. HBCD-exposed females appeared to compensate for the reduced parental behavior of their mates by performing these same behaviors more frequently than controls (p=0.004, p=0.027, p=0.025, respectively). This study demonstrates that HBCD affects breeding behavior in American kestrels throughout the reproductive season and behavioral alterations were linked to reproductive changes (egg size). This is the first study to report HBCD effects on reproductive behavior in any animal model. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Altered diurnal pattern of steroid hormones in relation to various behaviors, external factors and pathologies: A review.

    Science.gov (United States)

    Collomp, K; Baillot, A; Forget, H; Coquerel, A; Rieth, N; Vibarel-Rebot, N

    2016-10-01

    The adrenal and gonadal stress steroids [i.e., cortisol, testosterone and dehydroepiandrosterone (DHEA)] have gathered considerable attention in the last few decades due to their very broad physiological and psychological actions. Their diurnal patterns have become a particular focus following new data implicating altered diurnal hormone patterns in various endocrine, behavioral and cardiovascular risk profiles. In this review of the current literature, we present a brief overview of the altered diurnal patterns of these hormones that may occur in relation to chronic stress, nutritional behaviors, physical exercise, drugs and sleep deprivation/shift. We also present data on the altered diurnal hormone patterns implicated in cardiometabolic and psychiatric/neurologic diseases, cancer and other complex pathologies. We consider the occasionally discrepant results of the studies, and summarize the current knowledge in this new field of interest, underlining the potential effects on both biological and psychological functioning, and assess the implications of these effects. Last, we conclude with some practical considerations and perspectives. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    The establishment of cause–effect relationships is fundamental for the interpretation and the predictive value of biomarker responses measured at all levels of biological complexity. In the present study, the biochemical exposure biomarker acetylcholinesterase (AChE) inhibition was related...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer......-dependent difference in behavioral sensitivity to minor AChE depressions. The results demonstrate that automated measurements of locomotor behavior is at least as sensitive an endpoint to organophosphate poisoning as the AChE assay. Further, the correlation between the molecular and behavioral responses in individual...

  3. Limbic and motor circuits involved in symmetry behavior in Tourette's syndrome

    NARCIS (Netherlands)

    de Vries, F.E.; van den Heuvel, O.A.; Cath, D.C.; Groenewegen, H.J.; van Balkom, A.J.L.M.; Boellaard, R.; Lammertsma, A.A.; Veltman, D.J.

    2013-01-01

    The need for symmetry and ordering objects related to a "just right"-feeling is a common symptom in Tourette's syndrome (TS) and resembles symmetry behavior in obsessive-compulsive disorder, but its pathophysiology is unknown. We used a symptom provocation paradigm to investigate the neural

  4. Group Cognitive Behavioral Treatment for PTSD: Treatment of Motor Vehicle Accident Survivors

    Science.gov (United States)

    Beck, J. Gayle; Coffey, Scott F.

    2005-01-01

    Individual cognitive behavioral therapies (CBT) are now considered the first-line treatment for posttraumatic stress disorder (PTSD; Foa, Keane, & Friedman, 2000). As mental health reimbursement becomes more restricted, it is imperative that we adapt individual-format therapies for use in a small group format. Group therapies have a number of…

  5. Baseline Cognition, Behavior, and Motor Skills in Children with New-Onset, Idiopathic Epilepsy

    Science.gov (United States)

    Bhise, Vikram V.; Burack, Gail D.; Mandelbaum, David E.

    2010-01-01

    Aim: Epilepsy is associated with difficulties in cognition and behavior in children. These problems have been attributed to genetics, ongoing seizures, psychosocial issues, underlying abnormality of the brain, and/or antiepileptic drugs. In a previous study, we found baseline cognitive differences between children with partial versus generalized…

  6. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation.

    Science.gov (United States)

    LaPlante, Charlotte D; Catanese, Mary C; Bansal, Ruby; Vandenberg, Laura N

    2017-10-01

    High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pups were less likely to initiate nursing. Pup growth and development were also stunted. These data indicate that low doses of BPS can alter lactational behaviors and the maternal mammary gland. Together, they support the hypothesis that pregnancy and lactation are sensitive to low-dose xenoestrogen exposures. Copyright © 2017 Endocrine Society.

  7. 5-HT2Areceptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress.

    Science.gov (United States)

    Jaggar, Minal; Weisstaub, Noelia; Gingrich, Jay A; Vaidya, Vidita A

    2017-12-01

    Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin 2A (5-HT 2A ) receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS) on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC) and hippocampus in 5-HT 2A receptor knockout (5-[Formula: see text]) and wild-type mice of both sexes. While 5-[Formula: see text] male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-[Formula: see text] female mice with a hyperlipidemic baseline phenotype. 5-[Formula: see text] male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes ( Crh , Crhr1 , Nr3c1, and Nr3c2 ), trophic factors ( Bdnf , Igf1 ) and immediate early genes (IEGs) ( Arc , Fos , Fosb , Egr1-4 ) in the PFC and hippocampus were altered in 5-[Formula: see text] mice both under baseline and CUS conditions. Our results support a role for the 5-HT 2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT 2A receptor to stress-evoked changes is sexually dimorphic.

  8. Differentiating Children with Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, Learning Disabilities and Autistic Spectrum Disorders by Means of Their Motor Behavior Characteristics

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N = 22), Conduct Disorder (CD; N = 17), Learning Disabilities (LD; N = 24) and Autistic Spectrum Disorders (ASD; N = 20).…

  9. The Effect of Voice Ambulatory Biofeedback on the Daily Performance and Retention of a Modified Vocal Motor Behavior in Participants With Normal Voices.

    Science.gov (United States)

    Van Stan, Jarrad H; Mehta, Daryush D; Hillman, Robert E

    2015-06-01

    Ambulatory biofeedback has potential to improve carryover of newly established vocal motor behaviors into daily life outside of the clinic and warrants systematic research that is lacking in the literature. This proof-of-concept study was designed to establish an empirical basis for future work in this area by formally assessing whether ambulatory biofeedback reduces daily vocal intensity (performance) and the extent to which this change remains after biofeedback removal (retention). Six participants with normal voices wore the KayPENTAX Ambulatory Phonation Monitor for 3 baseline days followed by 4 days with biofeedback provided on odd days. Compared to baseline days, participants exhibited a statistically significant decrease in mean vocal intensity (4.4 dB) and an increase in compliance (16.8 percentage points) when biofeedback was provided above a participant-specific intensity threshold. After biofeedback removal, mean vocal intensity and compliance reverted back to baseline levels. These findings suggest that although current ambulatory biofeedback approaches have potential to modify a vocal motor behavior, the modified behavior may not be retained after biofeedback removal. Future work calls for the testing of more innovative ambulatory biofeedback approaches on the basis of motor control and learning theories to improve retention of a desired vocal motor behavior.

  10. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Improve Computer Drag-and-Drop Efficiency through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang

    2011-01-01

    This study evaluated whether two people with multiple disabilities and minimal motor behavior would be able to improve their Drag-and-Drop (DnD) performance using their finger/thumb poke ability with a mouse scroll wheel through a Dynamic Drag-and-Drop Assistive Program (DDnDAP). A multiple probe design across participants was used in this study…

  11. The effect of geography and citizen behavior on motor vehicle deaths in the United States.

    Directory of Open Access Journals (Sweden)

    Nicole Abaid

    Full Text Available Death due to motor vehicle collisions (MVCs remains a leading cause of death in the US and alcohol plays a prominent role in a large proportion of these fatalities nationwide. Rates for these incidents vary widely among states and over time. Here, we explore the extent to which driving volume, alcohol consumption, legislation, political ideology, and geographical factors influence MVC deaths across states and time. We specify structural equation models for extracting associations between the factors and outcomes for MVC deaths and compute correlation functions of states' relative geographic and political positions to elucidate the relative contribution of these factors. We find evidence that state-level variation in MVC deaths is associated with time-varying driving volume, alcohol consumption, and legislation. These relationships are modulated by state spatial proximity, whereby neighboring states are found to share similar MVC death rates over the thirty-year observation period. These results support the hypothesis that neighboring states exhibit similar risk and protective characteristics, despite differences in political ideology.

  12. Quinolinic acid released from polymeric brain implants causes behavioral and neuroanatomical alterations in a rodent model of Huntington's disease.

    Science.gov (United States)

    Haik, K L; Shear, D A; Schroeder, U; Sabel, B A; Dunbar, G L

    2000-06-01

    Quinolinic acid (QA) is an N-methyl-d-aspartate agonist that has been shown to produce neurotoxic effects that mimic certain neurodegenerative diseases when administered to laboratory animals. Intrastriatal injections of QA in rats have been used extensively to produce some of the neuropathological and behavioral deficits that are analogous to Huntington's disease (HD). However, acute intrastriatal injections of QA produce symptoms that are not analogous to the progressive nature of HD. Thus far, models using chronic administration of QA that produce HD-like behavioral and neuroanatomical changes have necessitated the use of a relatively bulky and fragile microdialytic pump apparatus. The present study tested an alternative way of chronically administering QA. Specifically, this study tested whether gradual release of QA from ethylene vinylacetate (EVA) polymers could produce symptoms analogous to HD. Rats received either no implants or bilateral intrastriatal implants of polymers with or without QA. Subsequent tests for spontaneous motor activity (SMA), grip strength, balance, and learning ability in a radial-arm-water-maze task revealed QA-induced impairments in balance and learning ability, but did not affect grip strength or SMA. Histological analysis revealed QA-induced enlargement of lateral ventricles, striatal atrophy, and striatal neuronal loss, with relative sparing of NADPH-diaphorase-positive neurons. These results suggest that QA released from polymers can produce behavioral and neuropathological profiles analogous to early stages of HD and that EVA polymers offer a useful means of chronically delivering QA in rodent models of neurodegeneration. Copyright 2000 Academic Press.

  13. Residential development alters behavior, movement, and energetics in an apex predator, the puma

    OpenAIRE

    Wang, Yiwei; Smith, Justine A.; Wilmers, Christopher C.

    2017-01-01

    Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and pro...

  14. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    Science.gov (United States)

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (pcaffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.

  15. THE ESTROGENIC AND ANTIANDROGENIC PESTICIDE METHOXYCHLOR ALTERS THE REPRODUCTIVE TRACT AND BEHAVIOR WITHOUT AFFECTING PITUITARY SIZE OR LH AND PROLACTIN SECRETION IN MALE RATS

    Science.gov (United States)

    The estrogenic and antiandrogenic pesticide methoxychlor alters the reproductive tract and behavior without affecting pituitary size or LH and prolactin secretion in male rats.Gray LE Jr, Ostby J, Cooper RL, Kelce WR.Endocrinology Branch, United States Environment...

  16. The Eating-Disorder Associated HDAC4A778TMutation Alters Feeding Behaviors in Female Mice.

    Science.gov (United States)

    Lutter, Michael; Khan, Michael Z; Satio, Kenji; Davis, Kevin C; Kidder, Ian J; McDaniel, Latisha; Darbro, Benjamin W; Pieper, Andrew A; Cui, Huxing

    2017-05-01

    While eating disorders (EDs) are thought to result from a combination of environmental and psychological stressors superimposed on genetic vulnerability, the neurobiological basis of EDs remains incompletely understood. We recently reported that a rare missense mutation in the gene for the transcriptional repressor histone deacetylase 4 (HDAC4) is associated with the risk of developing an ED in humans. To understand the biological consequences of this missense mutation, we created transgenic mice carrying this mutation by introducing the alanine to threonine mutation at position 778 of mouse Hdac4 (corresponding to position 786 of the human protein). Bioinformatic analysis to identify Hdac4-regulated genes was performed using available databases. Male mice heterozygous for HDAC4 A778T did not show any metabolic or behavioral differences. In contrast, female mice heterozygous for HDAC4 A778T display several ED-related feeding and behavioral deficits depending on housing condition. Individually housed HDAC4 A778T female mice exhibit reduced effortful responding for high-fat diet and compulsive grooming, whereas group-housed female mice display increased weight gain on high-fat diet, reduced behavioral despair, and increased anxiety-like behaviors. Bioinformatic analysis identifies mitochondrial biogenesis including synthesis of glutamate/gamma-aminobutyric acid as a potential transcriptional target of HDAC4 A778T activity relevant to the behavioral deficits identified in this new mouse model of disordered eating. The HDAC4 A778T mouse line is a novel model of ED-related behaviors and identifies mitochondrial biogenesis as a potential molecular pathway contributing to behavioral deficits. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Gaze and motor behavior of people with PD during obstacle circumvention.

    Science.gov (United States)

    Simieli, Lucas; Vitório, Rodrigo; Rodrigues, Sérgio Tosi; Zago, Paula Fávaro Polastri; Ignacio Pereira, Vinícius Alota; Baptista, André Macari; de Paula, Pedro Henrique Alves; Penedo, Tiago; Almeida, Quincy J; Barbieri, Fabio Augusto

    2017-10-01

    The aim of this study was to analyze the motor and visual strategies used when walking around (circumvention) an obstacle in patients with Parkinson's disease (PD), in addition to the effects of dopaminergic medication on these strategies. To answer the study question, people with PD (15) and neurologically healthy individuals (15 - CG) performed the task of obstacle circumvention during walking (5 trials of unobstructed walking and obstacle circumvention). The following parameters were analyzed: body clearance (longer mediolateral distance during obstacle circumvention of the center of mass -CoM- to the obstacle), horizontal distance (distance of the CoM at the beginning of obstacle circumvention to the obstacle), circumvention strategy ("lead-out" or "lead-in" strategy), spatial-temporal of each step, and number of fixations, the mean duration of the fixations and time of fixations according to areas of interest. In addition, the variability of each parameter was calculated. The results indicated that people with PD and the CG presented similar obstacle circumvention strategies (no differences between groups for body clearance, horizontal distance to obstacle, or obstacle circumvention strategy), but the groups used different adjustments to perform these strategies (people with PD performed adjustments during both the approach and circumvention steps and presented greater visual dependence on the obstacle; the CG adjusted only the final step before obstacle circumvention). Moreover, without dopaminergic medication, people with PD reduced body clearance and increased the use of a "lead-out" strategy, variability in spatial-temporal parameters, and dependency on obstacle information, increasing the risk of contact with the obstacle during circumvention. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones

    NARCIS (Netherlands)

    Highley, J. Robin; Kirby, Janine; Jansweijer, Joeri A.; Webb, Philip S.; Hewamadduma, Channa A.; Heath, Paul R.; Higginbottom, Adrian; Raman, Rohini; Ferraiuolo, Laura; Cooper-Knock, Johnathan; McDermott, Christopher J.; Wharton, Stephen B.; Shaw, Pamela J.; Ince, Paul G.

    2014-01-01

    Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor

  19. Foraging behavior under starvation conditions is altered via photosynthesis by the marine gastropod, Elysia clarki.

    Directory of Open Access Journals (Sweden)

    Michael L Middlebrooks

    Full Text Available It has been well documented that nutritional state can influence the foraging behavior of animals. However, photosynthetic animals, those capable of both heterotrophy and symbiotic photosynthesis, may have a delayed behavioral response due to their ability to photosynthesize. To test this hypothesis we subjected groups of the kleptoplastic sea slug, Elysia clarki, to a gradient of starvation treatments of 4, 8, and 12 weeks plus a satiated control. Compared to the control group, slugs starved 8 and 12 weeks displayed a significant increase in the proportion of slugs feeding and a significant decrease in photosynthetic capability, as measured in maximum quantum yield and [chl a]. The 4 week group, however, showed no significant difference in feeding behavior or in the metrics of photosynthesis compared to the control. This suggests that photosynthesis in E. clarki, thought to be linked to horizontally-transferred algal genes, delays a behavioral response to starvation. This is the first demonstration of a link between photosynthetic capability in an animal and a modification of foraging behavior under conditions of starvation.

  20. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development.

    Science.gov (United States)

    Rodriguez, Carlos I; Magcalas, Christy M; Barto, Daniel; Fink, Brandi C; Rice, James P; Bird, Clark W; Davies, Suzy; Pentkowski, Nathan S; Savage, Daniel D; Hamilton, Derek A

    2016-10-15

    Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex (Hamilton et al., 2014) [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex (Hamilton et al., 2010) [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (∼3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in (Hamilton et al., 2014) [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development

    Science.gov (United States)

    Rodriguez, Carlos I.; Magcalas, Christy M.; Barto, Daniel; Fink, Brandi C.; Rice, James P.; Bird, Clark W.; Davies, Suzy; Pentkowski, Nathan S.; Savage, Daniel D.; Hamilton, Derek A.

    2016-01-01

    Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (~3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups. PMID:27424779

  2. Nonmotorized recreation and motorized recreation in shrub-steppe habitats affects behavior and reproduction of golden eagles (Aquila chrysaetos).

    Science.gov (United States)

    Spaul, Robert J; Heath, Julie A

    2016-11-01

    Different forms of outdoor recreation have different spatiotemporal activity patterns that may have interactive or cumulative effects on wildlife through human disturbance, physical habitat change, or both. In western North America, shrub-steppe habitats near urban areas are popular sites for motorized recreation and nonmotorized recreation and can provide important habitat for protected species, including golden eagles. Our objective was to determine whether recreation use (i.e., number of recreationists) or recreation features (e.g., trails or campsites) predicted golden eagle territory occupancy, egg-laying, or the probability a breeding attempt resulted in ≥1 offspring (nest survival). We monitored egg-laying, hatching and fledging success, eagle behavior, and recreation activity within 23 eagle territories near Boise, Idaho, USA. Territories with more off-road vehicle (ORV) use were less likely to be occupied than territories with less ORV use (β = -1.6, 85% CI: -2.8 to -0.8). At occupied territories, early season pedestrian use (β = -1.6, 85% CI: -3.8 to -0.2) and other nonmotorized use (β = -3.6, 85% CI: -10.7 to -0.3) reduced the probability of egg-laying. At territories where eagles laid eggs, short, interval-specific peaks in ORV use were associated with decreased nest survival (β = -0.5, 85% CI: -0.8 to -0.2). Pedestrians, who often arrived near eagle nests via motorized vehicles, were associated with reduced nest attendance (β = -11.9, 85% CI: -19.2 to -4.5), an important predictor of nest survival. Multiple forms of recreation may have cumulative effects on local populations by reducing occupancy at otherwise suitable territories, decreasing breeding attempts, and causing nesting failure. Seasonal no-stopping zones for motorized vehicles may be an alternative to trail closures for managing disturbance. This study demonstrates the importance of considering human disturbance across different parts of the annual cycle, particularly where

  3. Preschool-Aged Children with Iron Deficiency Anemia Show Altered Affect and Behavior1,2

    Science.gov (United States)

    Lozoff, Betsy; Corapci, Feyza; Burden, Matthew J.; Kaciroti, Niko; Angulo-Barroso, Rosa; Sazawal, Sunil; Black, Maureen

    2012-01-01

    This study compared social looking and response to novelty in preschool-aged children (47–68 mo) with or without iron deficiency anemia (IDA). Iron status of the participants from a low-income community in New Delhi, India, was based on venous hemoglobin, mean corpuscular volume, and red cell distribution width. Children’s social looking toward adults, affect, and wary or hesitant behavior in response to novelty were assessed in a semistructured paradigm during an in-home play observation. Affect and behavior were compared as a function of iron status: IDA (n = 74) vs. nonanemic (n = 164). Compared with nonanemic preschoolers, preschoolers with IDA displayed less social looking toward their mothers, moved close to their mothers more quickly, and were slower to display positive affect and touch novel toys for the first time. These results indicate that IDA in the preschool period has affective and behavioral effects similar to those reported for IDA in infancy. PMID:17311960

  4. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles.

    Science.gov (United States)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders; Linse, Sara; Malmendal, Anders; Cedervall, Tommy

    2015-01-06

    The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene nanoparticles have severe effects on both behavior and metabolism in fish and that commonly used nanosized particles may have considerable effects on natural systems and ecosystem services derived from them.

  5. Neonatal oxytocin and vasopressin manipulation alter social behavior during the juvenile period in Mongolian gerbils.

    Science.gov (United States)

    Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A

    2017-07-01

    Oxytocin and vasopressin are important modulators of a wide variety of social behaviors, and increasing evidence is showing that these neuropeptides are important organizational effectors of later-life behavior as well. We treated day-old gerbil pups with oxytocin, vasopressin, an oxytocin receptor antagonist, a vasopressin V1a receptor antagonist, or saline control, and then measured received parental responsiveness during the early postnatal period and juvenile social behavior during weaning. Neonatal vasopressin treatment enhanced sociality in males, but not females, at both developmental time points. When pups were individually placed outside the nest, parents were more responsive to male pups treated with vasopressin compared with littermates, and vasopressin treated male pups exhibited increased play with littermates as juveniles. These results show that vasopressin during very early life can enhance social interactions throughout early development. © 2017 Wiley Periodicals, Inc.

  6. The roles of physical activity and sedentary behavior on Hispanic children's mental health: a motor skill perspective.

    Science.gov (United States)

    Gu, Xiangli; Keller, M Jean; Weiller-Abels, Karen H; Zhang, Tao

    2018-01-01

    Motor competence (MC) has been recognized as the foundation for life-time moderate-to-vigorous physical activity (MVPA) as well as an influential factor in reducing sedentary behavior during childhood. Guided by Blair et al.'s health model, the purpose of this study was to examine the behavioral mechanism of mental health including physical, psychosocial, and cognitive health among Hispanic children related to MC and MVPA. A prospective research design was used with two-wave assessments across one academic year. A total of 141 Hispanic kindergarteners (Mean age  = 5.37, SD = 0.48) were recruited in Texas. Nearly all (94.3%) of the participants were from low-income families based on the Income Eligibility Guidelines. The study was approved by the University Research Review Board, and informed consent was obtained from parents/guardians prior to starting the study. Multiple regressions indicated that manipulative skill was a significant predictor of physical and psychosocial health (β = 0.21, β = 0.26, p health (β = 0.22, p mental health outcomes through MVPA (95% CI [0.031, 0.119]) and sedentary behavior (95% CI [0.054, 0.235]), respectively. The results suggest that skill-based activities/games, with instructions, should be encouraged during school-based physical activity and health promotion programs in childhood education. Better understanding of the early effects of MC may contribute to designing strategies to promote Hispanic children's well-being.

  7. Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression.

    Science.gov (United States)

    Savalli, Giorgia; Diao, Weifei; Berger, Stefanie; Ronovsky, Marianne; Partonen, Timo; Pollak, Daniela D

    2015-07-01

    Mood disorders are frequently paralleled by disturbances in circadian rhythm-related physiological and behavioral states and genetic variants of clock genes have been associated with depression. Cryptochrome 2 (Cry2) is one of the core components of the molecular circadian machinery which has been linked to depression, both, in patients suffering from the disease and animal models of the disorder. Despite this circumstantial evidence, a direct causal relationship between Cry2 expression and depression has not been established. Here, a genetic mouse model of Cry2 deficiency (Cry2 (-/-) mice) was employed to test the direct relevance of Cry2 for depression-like behavior. Augmented anhedonic behavior in the sucrose preference test, without alterations in behavioral despair, was observed in Cry2 (-/-) mice. The novelty suppressed feeding paradigm revealed reduced hyponeophagia in Cry2 (-/-) mice compared to wild-type littermates. Given the importance of the amygdala in the regulation of emotion and their relevance for the pathophysiology of depression, potential alterations in diurnal patterns of basolateral amygdala gene expression in Cry2 (-/-) mice were investigated focusing on core clock genes and neurotrophic factor systems implicated in the pathophysiology of depression. Differential expression of the clock gene Bhlhe40 and the neurotrophic factor Vegfb were found in the beginning of the active (dark) phase in Cry2 (-/-) compared to wild-type animals. Furthermore, amygdala tissue of Cry2 (-/-) mice contained lower levels of Bdnf-III. Collectively, these results indicate that Cry2 exerts a critical role in the control of depression-related emotional states and modulates the chronobiological gene expression profile in the mouse amygdala.

  8. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    DEFF Research Database (Denmark)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders

    2015-01-01

    The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products...... administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...

  9. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  10. Altered ingestive behavior, weight changes, and intact olfactory sense in an APP overexpression model.

    Science.gov (United States)

    Vloeberghs, Ellen; Van Dam, Debby; Franck, Frieda; Serroyen, Jan; Geert, Molenberghs; Staufenbiel, Matthias; De Deyn, Peter Paul

    2008-06-01

    Transgenic APP23 mice were generated to model Alzheimer's disease. The APP23 model develops pathological features, learning deficits, and memory deficits analogous to dementing patients. In this report, transgenic mice exhibited several behavioral disturbances indicating the presence of neuropsychiatric symptoms of dementia. Aiming to verify whether the model also develops other behavioral problems, the authors investigated ingestive behavior in APP23 males of 3, 6 and 12 months. In addition, body weights of a naive male group were longitudinally monitored starting at weaning. Olfactory acuity was evaluated in mice of different age groups. Although olfactory functioning of APP23 mice appeared intact, they drank more and took more food pellets compared with wild-type littermates during a 1-week registration period. From the age of 4.5 weeks onward, APP23 males weighed significantly less than their control littermates, whereas this difference became more prominent with increasing age. Our results suggest the presence of a hypermetabolic state in this model. This is the first report, evidencing the presence of changes in eating and drinking behavior in a single transgenic Alzheimer mouse model. (Copyright) 2008 APA, all rights reserved.

  11. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    Science.gov (United States)

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  12. Effect of St. John's Wort (Hypericum perforatum treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Directory of Open Access Journals (Sweden)

    Prakash Atish K

    2010-05-01

    Full Text Available Abstract Background A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (Hypericum perforatum in restraint stress-induced behavioral and biochemical alterations in mice. Methods Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein subsequently. Results 6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect and oxidative damage as compared to control (restraint stress. Conclusion Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.

  13. Severe postnatal iron deficiency alters emotional behavior and dopamine levels in the prefrontal cortex of young male rats.

    Science.gov (United States)

    Li, Yuan; Kim, Jonghan; Buckett, Peter D; Böhlke, Mark; Maher, Timothy J; Wessling-Resnick, Marianne

    2011-12-01

    Iron deficiency in early human life is associated with abnormal neurological development. The objective of this study was to evaluate the effect of postnatal iron deficiency on emotional behavior and dopaminergic metabolism in the prefrontal cortex in a young male rodent model. Weanling, male, Sprague-Dawley rats were fed standard nonpurified diet (220 mg/kg iron) or an iron-deficient diet (2-6 mg/kg iron). After 1 mo, hematocrits were 0.42 ± 0.0043 and 0.16 ± 0.0068 (mean ± SEM; P emotional behavior. Iron-deficient rats displayed anxious behavior with fewer entries and less time spent in open arms compared to control rats (0.25 ± 0.25 vs. 1.8 ± 0.62 entries; 0.88 ± 0.88 vs. 13 ± 4.6 s; P effects were associated with reduced concentrations of extracellular dopamine in the prefrontal cortex of the iron-deficient rats (79 ± 7.0 vs. 110 ± 14 ng/L; P < 0.05; n = 4). Altered dopaminergic signaling in the prefrontal cortex most likely contributes to the anxious behavior observed in young male rats with severe iron deficiency.

  14. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  15. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  16. The effect of dietary alterations during rearing on growth, productivity, and behavior in broiler breeder females.

    Science.gov (United States)

    Morrissey, K L H; Widowski, T; Leeson, S; Sandilands, V; Arnone, A; Torrey, S

    2014-02-01

    Parent stocks of meat birds are severely feed restricted to avoid obesity-related health and fertility problems. This restriction often leads to chronic hunger, accompanied by stereotypic behavior. Research based in the United Kingdom has shown that using diets containing fiber and appetite suppressants may relieve some of the symptoms of hunger. However, few data are available regarding North American-sourced ingredients or nondaily feeding regimens. This study investigated the effects of 2 alternative diets, in combination with 2 feeding frequencies on growth, productivity, and behavior in broiler breeders. Six dietary treatments were tested, each with 5 replicate pens of 12 or 13 birds. Control diets consisted of a commercial crumble, fed on a daily or skip-a-day (SAD) basis. Alternative diets included soybean hulls as a fiber source, and calcium propionate as an appetite suppressant of either a feed-grade or purified quality, fed on either a daily or SAD basis. Birds were weighed weekly and egg production was recorded daily. Video cameras were used to record behavior during and following the morning feeding bout every 2 wk from 11 to 28 wk. Data were analyzed with a mixed model ANOVA, with repeated measures. Diet, feeding frequency, time, or an interaction of the 3 had significant effects on all observed behavior during rearing. These differences appeared to diminish during lay, with most stereotypic behavior no longer present. Very little object pecking and aggression was observed during and immediately following feeding bouts; however, daily-fed control birds still displayed this behavior more often, especially during rearing (P = 0.015). During feeding bouts, SAD birds feather pecked (P = 0.003) and rested more (P = 0.0002) than daily-fed birds. Control birds feather pecked most often (P = 0.033) after feeding bouts. Overall, the feed-grade diet appeared most effective at reducing hunger-related behavior, and the control diet appeared the least effective

  17. Mercury alters initiation and construction of nests by zebra finches, but not incubation or provisioning behaviors.

    Science.gov (United States)

    Chin, Stephanie Y; Hopkins, William A; Cristol, Daniel A

    2017-11-01

    Mercury is an environmental contaminant that impairs avian reproduction, but the behavioral and physiological mechanisms underlying this effect are poorly understood. The objective of this study was to determine whether lifetime dietary exposure to mercury (1.2 µg/g wet weight in food) impacted avian parental behaviors, and how this might influence reproductive success. To distinguish between the direct effects of mercury on parents and offspring, we created four treatment groups of captive-bred zebra finches (Taeniopygia guttata), with control and mercury-exposed adults raising cross-fostered control or mercury-exposed eggs (from maternal transfer). Control parents were 23% more likely to fledge young than parents exposed to mercury, regardless of egg exposure. Mercury-exposed parents were less likely to initiate nests than controls and spent less time constructing them. Nests of mercury-exposed pairs were lighter, possibly due to an impaired ability to bring nest material into the nestbox. However, nest temperature, incubation behavior, and provisioning rate did not differ between parental treatments. Unexposed control eggs tended to have shorter incubation periods and higher hatching success than mercury-exposed eggs, but there was no effect of parental exposure on these parameters. We accidentally discovered that parent finches transfer some of their body burden of mercury to nestlings during feeding through secretion in the crop. These results suggest that, in mercury-exposed songbirds, pre-laying parental behaviors, combined with direct exposure of embryos to mercury, likely contribute to reduced reproductive success and should be considered in future studies. Further research is warranted in field settings, where parents are exposed to greater environmental challenges and subtle behavioral differences might have more serious consequences than were observed in captivity.

  18. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA.

    Science.gov (United States)

    Hirsch, Mauro Mozael; Deckmann, Iohanna; Fontes-Dutra, Mellanie; Bauer-Negrini, Guilherme; Della-Flora Nunes, Gustavo; Nunes, Walquiria; Rabelo, Bruna; Riesgo, Rudimar; Margis, Rogerio; Bambini-Junior, Victorio; Gottfried, Carmem

    2018-03-03

    Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD. Copyright © 2018. Published by Elsevier Ltd.

  19. Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates, Callithrix penicillata.

    Science.gov (United States)

    Smith, Adam S; Agmo, Anders; Birnie, Andrew K; French, Jeffrey A

    2010-02-01

    The establishment and maintenance of stable, long-term male-female relationships, or pair-bonds, are marked by high levels of mutual attraction, selective preference for the partner, and high rates of sociosexual behavior. Central oxytocin (OT) affects social preference and partner-directed social behavior in rodents, but the role of this neuropeptide has yet to be studied in heterosexual primate relationships. The present study evaluated whether the OT system plays a role in the dynamics of social behavior and partner preference during the first 3 weeks of cohabitation in male and female marmosets, Callithrix penicillata. OT activity was stimulated by intranasal administration of OT, and inhibited by oral administration of a non-peptide OT-receptor antagonist (L-368,899; Merck). Social behavior throughout the pairing varied as a function of OT treatment. Compared to controls, marmosets initiated huddling with their social partner more often after OT treatments but reduced proximity and huddling after OT antagonist treatments. OT antagonist treatment also eliminated food sharing between partners. During the 24-h preference test, all marmosets interacted more with an opposite-sex stranger than with the partner. By the third-week preference test, marmosets interacted with the partner and stranger equally with the exception that intranasal-OT treatments facilitated initial partner-seeking behavior over initial contact with the stranger. Our findings demonstrate that pharmacological manipulations of OT activity alter partner-directed social behavior during pair interactions, suggesting that central OT may facilitate the process of pair-bond formation and social relationships in marmoset monkeys. Published by Elsevier Inc.

  20. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  1. Influence of lactation on motor activity and elevated plus maze behavior

    Directory of Open Access Journals (Sweden)

    Silva M.R.P.

    1997-01-01

    Full Text Available Lactating rats show less noise-induced freezing and fewer inhibitory responses on the 6th day post-delivery when submitted to water and food deprivation in a classical conflict paradigm. Lactating mice go more often to the illuminated chamber in a light-dark cage and stay longer in it than virgin females. The present study was designed to assess the influence of this physiological state, i.e. lactation, on the elevated plus maze (EPM and open-field behavior in adult female rats. Total (TL and central (CL locomotion and rearing (RF frequencies were measured in an open-field. Number of entries into the open and closed arms as well as the time spent in each of these arms were measured in the EPM. Percent time spent and number of entries into the open arms were calculated and compared. In the open-field, TL was significantly decreased (115 ± 10.6 vs 150 ± 11.6 while CL and RF did not differ from those presented by virgin rats. In the EPM, lactating rats displayed a significant reduction in percent time spent (10.9 ± 1.5 vs 17.4 ± 2.3 in the open arms as well as a tendency to a reduction in percent entries into the open arms (35.7 ± 4.7 vs 45.7 ± 4.3. These results show that the physiological state of lactation modulates the open-field and EPM behaviors in rats

  2. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    Science.gov (United States)

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  3. Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.

    Science.gov (United States)

    Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D

    2018-02-28

    The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered

  4. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    Science.gov (United States)

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  5. Sublethal Lead Exposure Alters Movement Behavior in Free-Ranging Golden Eagles.

    Science.gov (United States)

    Ecke, Frauke; Singh, Navinder J; Arnemo, Jon M; Bignert, Anders; Helander, Björn; Berglund, Åsa M M; Borg, Hans; Bröjer, Caroline; Holm, Karin; Lanzone, Michael; Miller, Tricia; Nordström, Åke; Räikkönen, Jannikke; Rodushkin, Ilia; Ågren, Erik; Hörnfeldt, Birger

    2017-05-16

    Lead poisoning of animals due to ingestion of fragments from lead-based ammunition in carcasses and offal of shot wildlife is acknowledged globally and raises great concerns about potential behavioral effects leading to increased mortality risks. Lead levels in blood were correlated with progress of the moose hunting season. Based on analyses of tracking data, we found that even sublethal lead concentrations in blood (25 ppb, wet weight), can likely negatively affect movement behavior (flight height and movement rate) of free-ranging scavenging Golden Eagles (Aquila chrysaetos). Lead levels in liver of recovered post-mortem analyzed eagles suggested that sublethal exposure increases the risk of mortality in eagles. Such adverse effects on animals are probably common worldwide and across species, where game hunting with lead-based ammunition is widespread. Our study highlights lead exposure as a considerably more serious threat to wildlife conservation than previously realized and suggests implementation of bans of lead ammunition for hunting.

  6. Residential development alters behavior, movement, and energetics in an apex predator, the puma.

    Science.gov (United States)

    Wang, Yiwei; Smith, Justine A; Wilmers, Christopher C

    2017-01-01

    Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and proximity to housing influenced the activity patterns of both male and female pumas in the Santa Cruz Mountains. We used spatial GPS location data in combination with Overall Dynamic Body Acceleration measurements recorded by onboard accelerometers to quantify how development density affected the average distances traveled and energy expended by pumas. Pumas responded to development differently depending on the time of day; at night, they were generally more active and moved further when they were in developed areas, but these relationships were not consistent during the day. Higher nighttime activity in developed areas increased daily caloric expenditure by 10.1% for females and 11.6% for males, resulting in increases of 3.4 and 4.0 deer prey required annually by females and males respectively. Our results support that pumas have higher energetic costs and resource requirements in human-dominated habitats due to human-induced behavioral change. Increased energetic costs for pumas are likely to have ramifications on prey species and exacerbate human-wildlife conflict, especially as exurban growth continues. Future conservation work should consider the consequences of behavioral shifts on animal energetics, individual fitness, and population viability.

  7. Residential development alters behavior, movement, and energetics in an apex predator, the puma.

    Directory of Open Access Journals (Sweden)

    Yiwei Wang

    Full Text Available Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and proximity to housing influenced the activity patterns of both male and female pumas in the Santa Cruz Mountains. We used spatial GPS location data in combination with Overall Dynamic Body Acceleration measurements recorded by onboard accelerometers to quantify how development density affected the average distances traveled and energy expended by pumas. Pumas responded to development differently depending on the time of day; at night, they were generally more active and moved further when they were in developed areas, but these relationships were not consistent during the day. Higher nighttime activity in developed areas increased daily caloric expenditure by 10.1% for females and 11.6% for males, resulting in increases of 3.4 and 4.0 deer prey required annually by females and males respectively. Our results support that pumas have higher energetic costs and resource requirements in human-dominated habitats due to human-induced behavioral change. Increased energetic costs for pumas are likely to have ramifications on prey species and exacerbate human-wildlife conflict, especially as exurban growth continues. Future conservation work should consider the consequences of behavioral shifts on animal energetics, individual fitness, and population viability.

  8. Caffeine consuming children and adolescents show altered sleep behavior and deep sleep

    OpenAIRE

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar; Huber, Reto

    2015-01-01

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children?s and adolescents? sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10?16 years). While later habitual bedtimes (Caffeine 23:14 ? 11...

  9. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice.

    Directory of Open Access Journals (Sweden)

    Jennifer T Wolstenholme

    Full Text Available Bisphenol A (BPA is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5 because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.

  10. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    Science.gov (United States)

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  11. Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations.

    Science.gov (United States)

    Kumar, Anil; Garg, Ruchika

    2009-02-01

    Chronic fatigue syndrome (CFS) is characterized by profound fatigue, which substantially interferes with daily activities. The aim of this study was to explore the protective effects of antidepressants in an animal model of CFS in mice. Male albino mice were forced to swim individually for a period of 6-min session each for 7 days. Imipramine (10 and 20 mg/kg), desipramine (10 and 20 mg/kg) and citalopram (5 and 10 mg/kg) were administered 30 min before forced swimming test on each day. Various behavior tests (immobility time, locomotor activity, anxiety-like behavior by plus maze and mirror chamber) followed by biochemical parameters (lipid peroxidation, reduced glutathione, catalase and nitrite level) were assessed in chronic stressed mice. Chronic forced swimming for 7 days significantly caused increase in immobility period, impairment in locomotor activity, anxiety-like behavior, and oxidative stress (raised lipid peroxidation, nitrite activity and reduced glutathione and catalase activity) as compared with naïve mice (P immobility time, improved locomotor activity and anti-anxiety effect (in both plus maze and mirror chamber test), and attenuated oxidative stress in chronic stressed mice as compared with control (chronic fatigues) (P < 0.05). These results suggested that these drugs have protective effect and could be used in the management of chronic fatigue like conditions.

  12. Subchronic and mild social defeat stress alter mouse nest building behavior.

    Science.gov (United States)

    Otabi, Hikari; Goto, Tatsuhiko; Okayama, Tsuyoshi; Kohari, Daisuke; Toyoda, Atsushi

    2016-01-01

    Behavioral and physiological evaluations of animal models of depression are essential to thoroughly understand the mechanisms of depression in humans. Various models have been developed and characterized, and the socially defeated mouse has been widely used for studying depression. Here, we developed and characterized a mouse model of social aversion using a subchronic and mild social defeat stress (sCSDS) paradigm. Compared to control mice, sCSDS mice showed significantly increased body weight gain, water intake, and social aversion to dominant mice on the social interaction test. We observed nest building behavior in sCSDS mice using the pressed cotton as a nest material. Although sCSDS mice eventually successfully built nests, the onset of nest building was severely delayed compared to control mice. The underlying mechanism of this significant delay in nest building by sCSDS mice is unclear. However, our results demonstrate that nest building evaluation is a simple and useful assay for understanding behavior in socially defeated mice and screening drugs such as antidepressants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice

    Science.gov (United States)

    Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.

    2015-01-01

    The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833

  14. Optic and motor alteration in Balint syndrome: computer assisted occupational therapy ALTERACIONES OCULOMOTORAS EN EL SÍNDROME DE BALINT: TERAPIA OCUPACIONAL ASISTIDA POR ORDENADOR

    OpenAIRE

    L.P. Rodríguez; R. Moreno; C. Flórez

    2010-01-01

    Balint Syndrome, which was reported in 1909, is an affection produced by bilateral parieto-occipital lesions affecting the connections between the visual cortical regions and the prerolandic motor areas and caracterized by visual ataxia, failure to grasp or touch objects, and visual inatention. Beyond traditional evaluation and treatment methods applied from Occupational Therapy to the motor diseases produced by syndrome, we propose a new way to do them using new tec...

  15. Examination of muscle composition and motor unit behavior of the first dorsal interosseous of normal and overweight children.

    Science.gov (United States)

    Miller, Jonathan Daniel; Sterczala, Adam J; Trevino, Michael A; Herda, Trent J

    2018-02-07

    Examine differences between normal weight (NW) and overweight (OW) children aged 8 to 10 years in strength, muscle composition, and motor unit (MU) behavior of the first dorsal interosseous (FDI). Ultrasonography determined muscle cross-sectional area (CSA), subcutaneous fat (sFAT), and echo intensity (EI). MU behavior was assessed during isometric muscle actions at 20% and 50% of maximal voluntary contraction (MVC) by analyzing EMG amplitude (EMGRMS) and relationships between mean firing rates (MFR), recruitment thresholds (RT), MU action potential amplitudes (MUAPSIZE) and durations (MUAPTIME). The OW group had significantly greater EI than the NW group (P=0.002, NW=47.99{plus minus}6.01 AU, OW=58.90{plus minus}10.63 AU) with no differences between groups for CSA (P=0.688) or MVC force (P=0.790). MUAPSIZES were larger for NW than OW in relation to RT (P=0.002), and for MUs expressing similar MFRs (P=0.011). There were no significant differences (P=0.279-0.969) between groups for slopes or y-intercepts from the MFR vs. RT relationships. MUAPTIMES were larger in OW (P=0.015) and EMGRMS was attenuated in OW compared to NW (P=0.034), however, there were no significant correlations (P=0.133‒0.164, r=0.270‒0.291) between sFAT and EMGRMS. In a muscle that does not support body mass, the OW children had smaller MUAPSIZES as well as greater EI although anatomical CSA was similar. This contradicts previous studies examining larger limb muscles. Despite evidence of smaller MUs, the OW children had similar isometric strength in comparison to NW children.

  16. The study of the mineralogy and rare earth elements behavior in the hydrothermal alteration zones of the Astaneh granitoid massif (SW Arak, Markazi province, Iran)

    International Nuclear Information System (INIS)

    Esmaeily, D.; Afshooni, S. Z.; Valizadeh, M. V.

    2009-01-01

    The Astaneh granitoid massif is located about 40 km to Arak city, central Iran, is a part of Sanandaj-Sirjan structural zone. These intrusive rocks which are mainly composed of gronodioritic rocks, widely affected under hydrothermal alteration. The alteration zones, on the basis of field studies and mineralogy as well as the study of the REE behavior, are investigated in this paper. Eight alteration zones including phyllic (sericitic) with quartz, sericite and pyrite; chloritic with quartz, sericite and chlorite; propylitic with chlorite, epidot, calcite and albite; argillic with clay minerals (chlorite and illite); silicic with abundant quartz; albitic with albite, chlorite and quartz; hematitisation with hematite, Fe-carbonates (ankerite and siderite) and tourmalinisation with tourmaline (dravite) are identified. The results demonstrate notable differences in the REE behavior in the different alteration zones. Accordingly, comparison with the fresh rocks, in the phyllic (sericitic) alteration, LREE are enriched, but HREE, except Yb which enriched, unchanged. Also in chloritic alteration zone, LREEs are depleted, but HREEs represent different behaviors. In the argillic and propylitic alteration zones, all REE are depleted, but compared with HREE, the LREE represent more depletion. In the silicic and hematitisation alteration zones, compared with HREE, the LREE are enriched. Finally, in the albitic and tourmalinisation alteration zones all REE are depleted. These features indicate that the behavior of REE in the hydrothermal alteration zones of the Astaneh granitoid rocks is mainly controlled by p H, availability of complexing ions in the fluid as well as the presence of secondary phases as host REE minerals

  17. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters.

    Science.gov (United States)

    Catanese, Mary C; Vandenberg, Laura N

    2017-03-01

    Estrogenic endocrine disrupting chemicals have been shown to disrupt maternal behavior in rodents. We investigated the effects of an emerging xenoestrogen, bisphenol S (BPS), on maternal behavior and brain in CD-1 mice exposed during pregnancy and lactation (F0 generation) and in female offspring exposed during gestation and perinatal development (F1 generation). We observed different effects in F0 and F1 dams for a number of components of maternal behavior, including time on the nest, time spent on nest building, latency to retrieve pups, and latency to retrieve the entire litter. We also characterized expression of estrogen receptor α in the medial preoptic area (MPOA) and quantified tyrosine hydroxylase immunoreactive cells in the ventral tegmental area, 2 brain regions critical for maternal care. BPS-treated females in the F0 generation had a statistically significant increase in estrogen receptor α expression in the caudal subregion of the central MPOA in a dose-dependent manner. In contrast, there were no statistically significant effects of BPS on the MPOA in F1 dams or the ventral tegmental area in either generation. This work demonstrates that BPS affects maternal behavior and brain with outcomes depending on generation, dose, and postpartum period. Many studies examining effects of endocrine disrupting chemicals view the mother as a means by which offspring can be exposed during critical periods of development. Here, we demonstrate that pregnancy and lactation are vulnerable periods for the mother. We also show that developmental BPS exposure alters maternal behavior later in adulthood. Both findings have potential public health implications. Copyright © 2017 by the Endocrine Society.

  18. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress

    Directory of Open Access Journals (Sweden)

    Minal Jaggar

    2017-12-01

    Full Text Available Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC and hippocampus in 5-HT2A receptor knockout (5-HT2A−/− and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2, trophic factors (Bdnf, Igf1 and immediate early genes (IEGs (Arc, Fos, Fosb, Egr1-4 in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic. Keywords: 5-HT2A−/− mice, Prefrontal cortex, Hippocampus, Gene expression, Sexual dimorphism, Despair

  19. Impact of A Waning Vaccine and Altered Behavior on the Spread of Influenza

    Directory of Open Access Journals (Sweden)

    Kasia A. Pawelek

    2017-06-01

    Full Text Available Influenza remains one of the major infectious diseases that targets humankind. Understanding within-host dynamics of the virus and how it translates into the spread of the disease at a population level can help us obtain more accurate disease outbreak predictions. We created an ordinary differential equation model with parameter estimates based on the disease symptoms score data to determine various disease stages and parameters associated with infectiousness and disease progression. Having various stages with different intensities of symptoms enables us to incorporate spontaneous behavior change due to the onset/offset of disease symptoms. Additionally, we incorporate the effect of a waning vaccine on delaying the time and decreasing the size of an epidemic peak. Our results showed that the epidemic peak in the model was significantly lowered when public vaccination was performed up to two months past the onset of an epidemic. Also, behavior change in the earliest stages of the epidemic lowers and delays the epidemic peak. This study further provides information on the potential impact of pharmaceutical and non-pharmaceutical interventions during an influenza epidemic.

  20. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats.

    Science.gov (United States)

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-12-28

    Aluminium is a potent neurotoxin and has been associated with Alzheimer's disease (AD) causality for decades. Prolonged aluminium exposure induces oxidative stress and increases amyloid beta levels in vivo. Current treatment modalities for AD provide only symptomatic relief thus necessitating the development of new drugs with fewer side effects. The aim of the study was to demonstrate the protective effect of chronic curcumin administration against aluminium-induced cognitive dysfunction and oxidative damage in rats. Aluminium chloride (100 mg/kg, p.o.) was administered to rats daily for 6 weeks. Rats were concomitantly treated with curcumin (per se; 30 and 60 mg/kg, p.o.) daily for a period of 6 weeks. On the 21st and 42nd day of the study behavioral studies to evaluate memory (Morris water maze and elevated plus maze task paradigms) and locomotion (photoactometer) were done. The rats were sacrificed on 43rd day following the last behavioral test and various biochemical tests were performed to assess the extent of oxidative damage. Chronic aluminium chloride administration resulted in poor retention of memory in Morris water maze, elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant increase in the acetylcholinesterase activity and aluminium concentration in aluminium treated rats. Chronic administration of curcumin significantly improved memory retention in both tasks, attenuated oxidative damage, acetylcholinesterase activity and aluminium concentration in aluminium treated rats (Paluminium-induced cognitive dysfunction and oxidative damage.

  1. Exposure to sublethal levels of waterborne lead alters reproductive behavior patterns in fathead minnows (Pimephales promelas).

    Science.gov (United States)

    Weber, D N

    1993-01-01

    Lead (Pb) caused multiple effects on reproductive behavior and overall reproductive success. Adult fathead minnows (Pimephales promelas) were acclimated at a 16L:8D photoperiod to stimulate reproductive development. Reproductively mature adults were separated as male-female pairs and maintained for 4 weeks in either 0.0 or 0.5 ppm Pb. High lead accumulations occurred in testes and ovaries of treated fish; lead concentrations in control fish gonads were not detectable. Lead suppressed spermatocyte production and retarded ovarian development, although no lead-induced gonadosomatic index changes for either sex were noted. Lead decreased the number of eggs oviposited, increased interspawn periods and suppressed embryo development. Control males displayed maximum secondary sex characteristic development (banding, tubercle formation, head and eye darkening); lead-exposed fish displayed less. Control males spent more time in ceiling-directed behaviors associated with nest preparation and maintenance than lead-exposed. These variables were affected differentially with respect to stage of reproductive maturity at time of lead exposure, i.e., fish displaying greater secondary sex characteristic development before exposure were less affected by lead than those fish that showed less development.

  2. Does respondent driven sampling alter the social network composition and health-seeking behaviors of illicit drug users followed prospectively?

    Directory of Open Access Journals (Sweden)

    Abby E Rudolph

    2011-05-01

    Full Text Available Respondent driven sampling (RDS was originally developed to sample and provide peer education to injection drug users at risk for HIV. Based on the premise that drug users' social networks were maintained through sharing rituals, this peer-driven approach to disseminate educational information and reduce risk behaviors capitalizes and expands upon the norms that sustain these relationships. Compared with traditional outreach interventions, peer-driven interventions produce greater reductions in HIV risk behaviors and adoption of safer behaviors over time, however, control and intervention groups are not similarly recruited. As peer-recruitment may alter risk networks and individual risk behaviors over time, such comparison studies are unable to isolate the effect of a peer-delivered intervention. This analysis examines whether RDS recruitment (without an intervention is associated with changes in health-seeking behaviors and network composition over 6 months. New York City drug users (N = 618 were recruited using targeted street outreach (TSO and RDS (2006-2009. 329 non-injectors (RDS = 237; TSO = 92 completed baseline and 6-month surveys ascertaining demographic, drug use, and network characteristics. Chi-square and t-tests compared RDS- and TSO-recruited participants on changes in HIV testing and drug treatment utilization and in the proportion of drug using, sex, incarcerated and social support networks over the follow-up period. The sample was 66% male, 24% Hispanic, 69% black, 62% homeless, and the median age was 35. At baseline, the median network size was 3, 86% used crack, 70% used cocaine, 40% used heroin, and in the past 6 months 72% were tested for HIV and 46% were enrolled in drug treatment. There were no significant differences by recruitment strategy with respect to changes in health-seeking behaviors or network composition over 6 months. These findings suggest no association between RDS recruitment and changes in

  3. Spared behavioral repetition effects in Alzheimer's disease linked to an altered neural mechanism at posterior cortex.

    Science.gov (United States)

    Broster, Lucas S; Li, Juan; Wagner, Benjamin; Smith, Charles D; Jicha, Gregory A; Schmitt, Frederick A; Munro, Nancy; Haney, Ryan H; Jiang, Yang

    2018-02-20

    Individuals with dementia of the Alzheimer type (AD) classically show disproportionate impairment in measures of working memory, but repetition learning effects are relatively preserved. As AD affects brain regions implicated in both working memory and repetition effects, the neural basis of this discrepancy is poorly understood. We hypothesized that the posterior repetition effect could account for this discrepancy due to the milder effects of AD at visual cortex. Participants with early AD, amnestic mild cognitive impairment (MCI), and healthy controls performed a working memory task with superimposed repetition effects while electroencephalography was collected to identify possible neural mechanisms of preserved repetition effects. Participants with AD showed preserved behavioral repetition effects and a change in the posterior repetition effect. Visual cortex may play a role in maintained repetition effects in persons with early AD.

  4. La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Jackson, Bryan T; Brewster, Carlyle C; Paulson, Sally L

    2012-11-01

    The effects of La Crosse virus (LACV) infection on blood feeding behavior in Aedes triseriatus (Say) and Aedes albopictus (Skuse) were investigated in the laboratory by measuring the size of the bloodmeal imbibed and the extent of refeeding by virus-infected and uninfected mosquitoes. LACV-infected Ae. triseriatus and Ae. albopictus took significantly less blood compared with uninfected mosquitoes. Twice as many virus-infected Ae. triseriatus mosquitoes refed compared with uninfected individuals (18 vs. 9%; P < 0.05); however, virus infection had no significant effect on the refeeding rate of Ae. albopictus. Reduction in bloodmeal size followed by an increased avidity for refeeding may lead to enhanced horizontal transmission of the LACV by its principal vector, Ae. triseriatus.

  5. Malnutrition during brain growth spurt alters the effect of fluoxetine on aggressive behavior in adult rats.

    Science.gov (United States)

    Barreto-Medeiros, J M; Feitoza, E G; Magalhaes, K; Cabral-Filho, J E; Manhaes-De-Castro, F M; De-Castro, C M; Manhaes-De-Castro, R

    2004-02-01

    Malnutrition effect during the suckling period on aggressive behavior was investigated in adult rats treated and not treated with fluoxetine, a selective serotonin reuptake inhibitor. Sixty-four Wistar male rats were allocated in two groups, according to their mothers' diet during lactation. The well-nourished group was fed by mothers receiving a 23% protein diet; the malnourished one by mothers receiving a 8% protein diet. Following weaning, all rats received the 23% protein diet. On the 90th day after birth, each nutritional group was divided into two subgroups, one receiving a single daily injection of fluoxetine (10 mg/kg) and the other of a saline solution (0.9% NaCl) for 14 days. Treatment with Fluoxetine reduced aggressive response in well-nourished but not in malnourished rats. These findings suggest that the serotoninergic system was affected by malnutrition during the critical period of brain development, and persisted even after a long period of nutritional recovery.

  6. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.

  7. Does switching to reduced ignition propensity cigarettes alter smoking behavior or exposure to tobacco smoke constituents?

    Science.gov (United States)

    O'Connor, Richard J; Rees, Vaughan W; Norton, Kaila J; Cummings, K Michael; Connolly, Gregory N; Alpert, Hillel R; Sjödin, Andreas; Romanoff, Lovisa; Li, Zheng; June, Kristie M; Giovino, Gary A

    2010-10-01

    Since 2004, several jurisdictions have mandated that cigarettes show reduced ignition propensity (RIP) in laboratory testing. RIP cigarettes may limit fires caused by smoldering cigarettes, reducing fire-related deaths and injury. However, some evidence suggests that RIP cigarettes emit more carbon monoxide and polycyclic aromatic hydrocarbons, and smokers may alter their smoking patterns in response to RIP cigarettes. Both of these could increase smokers' exposures to harmful constituents in cigarettes. An 18-day switching study with a comparison group was conducted in Boston, MA (N = 77), and Buffalo, NY (N = 83), in 2006-2007. Current daily smokers completed 4 laboratory visits and two 48-hr field data collections. After a 4-day baseline, Boston participants switched to RIP cigarettes for 14 days, whereas Buffalo participants smoked RIP cigarettes throughout. Outcome measures included cigarettes smoked per day; smoking topography; salivary cotinine; breath CO; and hydroxylated metabolites of pyrene, naphthalene, phenanthrene, and fluorene. Because the groups differed demographically, analyses adjusted for race, age, and sex. We observed no significant changes in smoking topography or CO exposure among participants who switched to RIP cigarettes. Cigarette use decreased significantly in the switched group (37.7 cigarettes/48 hr vs. 32.6 cigarettes/48 hr, p = .031), while hydroxyphenanthrenes increased significantly (555 ng/g creatinine vs. 669 ng/g creatinine, p = .007). No other biomarkers were significantly affected. Small increases in exposure to phenanthrene among smokers who switched to RIP versions were observed, while other exposures and smoking topography were not significantly affected. Toxicological implications of these findings are unclear. These findings should be weighed against the potential public health benefits of adopting RIP design standards for cigarette products.

  8. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.

    Directory of Open Access Journals (Sweden)

    Ji-Ae Yoon

    Full Text Available In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA, body temperature (BT, blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42% of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.

  9. Altered explicit recognition of facial disgust associated with predisposition to suicidal behavior but not depression.

    Science.gov (United States)

    Richard-Devantoy, Stéphane; Guillaume, Sébastien; Olié, Emilie; Courtet, Philippe; Jollant, Fabrice

    2013-09-05

    Suicidal acts result from a complex interplay between vulnerability factors, such as reduced social and cognitive abilities, social stressors. To our knowledge nothing is known about the explicit recognition of others' facial emotions, a major component of social interactions, in patients at long-term risk for suicide. Thirty-five non-depressed patients with a history of a serious suicide attempt and mood disorders were compared with 31 patients with a history of mood disorders but no personal history of suicidal acts, and with 37 healthy controls with no personal history of mood disorders or suicide attempts. The explicit recognition of six facial emotions (anger, disgust, fear, sadness, happiness, and neutral) was assessed. Suicide attempters made significantly more errors in the explicit recognition of disgust, relative to the other groups, with no differences between the control groups or for the other emotions examined. Semantic verbal fluency and verbal working memory performances were also reduced in suicide attempters relative to the other two groups but could not explain the facial recognition deficits. Our results need replication with a larger sample size. Most patients were medicated. Explicit recognition of disgust appears to be specifically altered in relation to vulnerability to suicide but not to depression. Reduced ability to recognize some social emotions may impair the patient's capacity to adequately interact with his own social environment, potentially increasing the risk of interpersonal conflict, negative emotions and suicidal crisis. Improving cognitive and social skills may be a target for future individual suicide prevention. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Schneider, Tomasz; Roman, Adam; Basta-Kaim, Agnieszka; Kubera, Marta; Budziszewska, Bogusława; Schneider, Karolina; Przewłocki, Ryszard

    2008-07-01

    Autism is a severe behavioral disorder characterized by pervasive impairments in social interactions, deficits in verbal and non-verbal communication, and stereotyped behaviors, with a four times higher incidence in boys than in girls. The core symptoms are frequently accompanied by a spectrum of neurobehavioral and immunological derangements, including: aberrant sensitivity to sensory stimulation, anxiety, and decreased cellular immune capacity. Recently, a new potential rodent model of autism induced by prenatal exposure to valproic acid (VPA rats) has been proposed. In order to determine if gender has an influence on alterations observed in VPA rats, male and female rats have been evaluated in a battery of behavioral, immunological, and endocrinological tests. A plethora of aberrations has been found in male VPA rats: lower sensitivity to pain, increased repetitive/stereotypic-like activity, higher anxiety, decreased level of social interaction, increased basal level of corticosterone, decreased weight of the thymus, decreased splenocytes proliferative response to concanavaline A, lower IFN-gamma/IL-10 ratio, and increased production of NO by peritoneal macrophages. Female VPA rats exhibited only increased repetitive/stereotypic-like activity and decreased IFN-gamma/IL-10 ratio. Sexual dimorphism characteristics for measured parameters have been observed in both groups of animals, except social interaction in VPA rats. Our results confirm existence of similarities between the observed pattern of aberrations in VPA rats and features of disturbed behavior and immune function in autistic patients, and suggest that they are gender-specific, which is intriguing in light of disproportion in boys to girls ratio in autism.

  11. Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models.

    Science.gov (United States)

    Farr, Tracy D; Liu, Lily; Colwell, Keri L; Whishaw, Ian Q; Metz, Gerlinde A

    2006-05-15

    Mice are becoming increasingly popular to model neurological disease and motor system dysfunction. For evaluation of discrete, chronic motor impairments, skilled limb movements represent a valuable extension of standard mouse test batteries. This study introduces an efficient and sensitive test strategy for comprehensive assessment of skilled fore- and hind-limb stepping in mice. Adult C57BL/6 mice were trained and video-recorded in two walking tasks, the widely used rotorod test and a new ladder rung task. The animals then received a unilateral ischemic lesion in the motor cortex forelimb and hind limb area and were video-recorded on days 12 and 26 post-lesion. Forelimb and hind limb stepping movements were rated using a combination of endpoint measures and qualitative assessment. The results showed that while animals maintained a weight-supported gait, posture and stepping movements were abnormal at both post-operative intervals. The rotorod analysis revealed stepping deficits in both forelimbs that led to adoption of compensatory movement strategies. The ladder rung task revealed stepping errors in ipsi- and contralateral fore- and hind-limbs. The findings demonstrate that this test strategy provides comprehensive assessment of motor impairments in mice and that qualitative movement analysis is a valuable tool for elaborating subtle motor disturbances.

  12. Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity - Applicability in Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian

    2017-06-01

    Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.

  13. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    Science.gov (United States)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  14. Antiretroviral treatment initiation does not differentially alter neurocognitive functioning over time in youth with behaviorally acquired HIV.

    Science.gov (United States)

    Nichols, Sharon L; Bethel, James; Kapogiannis, Bill G; Li, Tiandong; Woods, Steven P; Patton, E Doyle; Ren, Weijia; Thornton, Sarah E; Major-Wilson, Hanna O; Puga, Ana M; Sleasman, John W; Rudy, Bret J; Wilson, Craig M; Garvie, Patricia A

    2016-04-01

    Although youth living with behaviorally acquired HIV (YLWH) are at risk for cognitive impairments, the relationship of impairments to HIV and potential to improve with antiretroviral therapy (ART) are unclear. This prospective observational study was designed to examine the impact of initiation and timing of ART on neurocognitive functioning in YLWH in the Adolescent Medicine Trials Network for HIV/AIDS Interventions. Treatment naïve YLWH age 18-24 completed baseline and four additional assessments of attention/working memory, complex executive, and motor functioning over 3 years. Group 1 co-enrolled in an early ART initiation study and initiated ART at enrollment CD4 >350 (n = 56); group 2 had CD4 >350 and were not initiating ART (n = 66); group 3 initiated ART with CD4 treatment guidelines at the time. Treatment was de-intensified to boosted protease inhibitor monotherapy at 48 weeks for those in group 1 with suppressed viral load. Covariates included demographic, behavioral, and medical history variables. Analyses used hierarchical linear modeling. All groups showed improved performance with peak at 96 weeks in all three functional domains. Trajectories of change were not significantly associated with treatment, timing of treatment initiation, or ART de-intensification. Demographic variables and comorbidities were associated with baseline functioning but did not directly interact with change over time. In conclusion, YLWH showed improvement in neurocognitive functioning over time that may be related to practice effects and nonspecific impact of study participation. Neither improvement nor decline in functioning was associated with timing of ART initiation or therapy de-intensification.

  15. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice.

    Science.gov (United States)

    Egashira, Nobuaki; Iwasaki, Katsunori; Takashima, Akihiko; Watanabe, Takuya; Kawabe, Hideyuki; Matsuda, Tomomi; Mishima, Kenichi; Chidori, Shozo; Nishimura, Ryoji; Fujiwara, Michihiro

    2005-10-12

    Mutant R406W human tau was originally identified in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and causes a hereditary tauopathy that clinically resembles Alzheimer's disease (AD). In the current study, we examined the performance of R406W transgenic (Tg) mice in the forced swimming test, a test with high predictivity of antidepressant efficacy in human depression, and found an enhancement of the immobility time. In contrast, the motor function and anxiety-related emotional response of R406W Tg mice were normal. Furthermore, a selective serotonin reuptake inhibitor (SSRI), fluvoxamine (100 mg/kg, p.o.), significantly reduced this enhancement of the immobility time, whereas a noradrenaline reuptake inhibitor, desipramine, had no effect. In an in vivo microdialysis study, R406W Tg mice exhibited a significantly decreased extracellular 5-hydroxyindoleacetic acid (5-HIAA) level in the frontal cortex and also exhibited a tendency toward a decreased extracellular 5-hydroxytryptamine (5-HT) level. Moreover, fluvoxamine, which reduced the enhancement of the immobility time, significantly increased the extracellular 5-HT level in R406W Tg mice. These results suggest that R406W Tg mice exhibit changes in depression-related behavior involving serotonergic neurons and provide an animal model for investigating AD with depression.

  16. Side of Onset in Parkinson’s Disease and Alterations in Religiosity: Novel Behavioral Phenotypes

    Directory of Open Access Journals (Sweden)

    Paul M. Butler

    2011-01-01

    Full Text Available Behavioral neurologists have long been interested in changes in religiosity following circumscribed brain lesions. Advances in neuroimaging and cognitive experimental techniques have been added to these classical lesion-correlational approaches in attempt to understand changes in religiosity due to brain damage. In this paper we assess processing dynamics of religious cognition in patients with Parkinson’s disease (PD. We administered a four-condition story-based priming procedure, and then covertly probed for changes in religious belief. Story-based priming emphasized mortality salience, religious ritual, and beauty in nature (Aesthetic. In neurologically intact controls, religious belief-scores significantly increased following the Aesthetic prime condition. When comparing effects of right (RO versus left onset (LO in PD patients, a double-dissociation in religious belief-scores emerged based on prime condition. RO patients exhibited a significant increase in belief following the Aesthetic prime condition and LO patients significantly increased belief in the religious ritual prime condition. Results covaried with executive function measures. This suggests lateral cerebral specialization for ritual-based (left frontal versus aesthetic-based (right frontal religious cognition. Patient-centered individualized treatment plans should take religiosity into consideration as a complex disease-associated phenomenon connected to other clinical variables and health outcomes.

  17. Does cognitive behavioral therapy alter mental defeat and cognitive flexibility in patients with panic disorder?

    Science.gov (United States)

    Nagata, Shinobu; Seki, Yoichi; Shibuya, Takayuki; Yokoo, Mizue; Murata, Tomokazu; Hiramatsu, Yoichi; Yamada, Fuminori; Ibuki, Hanae; Minamitani, Noriko; Yoshinaga, Naoki; Kusunoki, Muga; Inada, Yasushi; Kawasoe, Nobuko; Adachi, Soichiro; Oshiro, Keiko; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yoshimura, Kensuke; Nakazato, Michiko; Iyo, Masaomi; Nakagawa, Akiko; Shimizu, Eiji

    2018-01-12

    Mental defeat and cognitive flexibility have been studied as explanatory factors for depression and posttraumatic stress disorder. This study examined mental defeat and cognitive flexibility scores in patients with panic disorder (PD) before and after cognitive behavioral therapy (CBT), and compared them to those of a gender- and age-matched healthy control group. Patients with PD (n = 15) received 16 weekly individual CBT sessions, and the control group (n = 35) received no treatment. Patients completed the Mental Defeat Scale and the Cognitive Flexibility Scale before the intervention, following eight CBT sessions, and following 16 CBT sessions, while the control group did so only prior to receiving CBT (baseline). The patients' pre-CBT Mental Defeat and Cognitive Flexibility Scale scores were significantly higher on the Mental Defeat Scale and lower on the Cognitive Flexibility Scale than those of the control group participants were. In addition, the average Mental Defeat Scale scores of the patients decreased significantly, from 22.2 to 12.4, while their average Cognitive Flexibility Scale scores increased significantly, from 42.8 to 49.5. These results suggest that CBT can reduce mental defeat and increase cognitive flexibility in patients with PD Trial registration The study was registered retrospectively in the national UMIN Clinical Trials Registry on June 10, 2016 (registration ID: UMIN000022693).

  18. Obesity alters circadian behavior and metabolism in sex dependent manner in the volcano mouse Neotomodon alstoni.

    Science.gov (United States)

    Carmona-Alcocer, Vania; Fuentes-Granados, Citlalli; Carmona-Castro, Agustín; Aguilar-González, Ivette; Cárdenas-Vázquez, René; Miranda-Anaya, Manuel

    2012-02-01

    The aim of the present study is to evaluate whether circadian locomotor activity, and the daily profile of plasma parameters related to metabolic syndrome (nutrients: glucose and triacylglycerides, and hormones: insulin and leptin), differ between male and female Neotomodon alstoni mice, both lean and obese. Young adult animals were captured in the field and kept at the laboratory animal facility. After 6 to 7 months feeding the animals ad libitum with a regular diet for laboratory rodents, 50-60% of mice became obese. Comparisons between sexes indicated that lean females were more active than males; however obese females reduced their nocturnal activity either in LD or DD, and advanced the phase of their activity-onset with respect to lights off. No differences in food intake between lean and obese mice, either during the day or night, were observed. Daily profiles of metabolic syndrome-related plasma parameters showed differences between sexes, and obesity was associated with increased values, especially leptin (500% in females and 273% in males) and insulin (150% in both females and males), as compared with lean mice. Our results indicate that lean mice display behavioral and endocrine differences between sexes, and obesity affects the parameters tested in a sex-dependent manner. The aforementioned leads us to propose N. alstoni, studied in captivity, could be an interesting model for the study of sex differences in the effects of obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population.

    Science.gov (United States)

    Ohayon, Maurice M; Milesi, Cristina

    2016-06-01

    Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. Living in areas with greater ONL was associated with delayed bedtime (P sleep duration (P sleep quantity and quality (P sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL. © 2016 Associated Professional Sleep Societies, LLC.

  20. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system.

    Science.gov (United States)

    Rielly-Carroll, Elizabeth; Freestone, Amy L

    2017-03-01

    Seagrass, an important subtidal marine ecosystem, is being lost at a rate of 110 km 2  year -1 , leading to fragmented seagrass seascapes. Habitat fragmentation is predicted to affect trophic levels differently, with higher trophic levels being more sensitive, stressing the importance of a multi-trophic perspective. Utilizing the trophic relationship between the blue crab (Callinectes sapidus) and hard clam (Mercenaria mercenaria), where adult blue crabs prey on juvenile blue crabs, and juvenile blue crabs prey on small hard clams, we examined whether predation rates, abundance, and behavior of predators and prey differed between continuous and fragmented seagrass in a multi-trophic context at two sites in Barnegat Bay, NJ. We tested the hypothesis that fragmented habitats would differentially affect trophic levels within a tri-trophic system, and our results supported this hypothesis. Densities of adult blue crabs were higher in fragmented than continuous habitats. Densities of juvenile blue crabs, the primary predator of hard clams, were lower in fragmented habitats than continuous, potentially due to increased predation by adult blue crabs. Clams experienced lower predation and burrowed to a shallower depth in fragmented habitats than in continuous habitat, likely due in part to the low densities of juvenile blue crabs, their primary predator. Our results suggest that while trophic levels are differentially affected, the impact of habitat fragmentation may be stronger on intermediate rather than top trophic levels in some marine systems.

  1. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep.

    Science.gov (United States)

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar G; Huber, Reto

    2015-10-15

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children's and adolescents' sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10-16 years). While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4) and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1), morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1-4.5 Hz) at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects). Comparable reductions were found for alpha activity (8.25-9.75 Hz). These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development.

  2. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep

    Directory of Open Access Journals (Sweden)

    Andrina Aepli

    2015-10-01

    Full Text Available Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children’s and adolescents’ sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG in children and adolescents (10–16 years. While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4 and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1, morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1–4.5 Hz at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects. Comparable reductions were found for alpha activity (8.25–9.75 Hz. These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development.

  3. Neuroimmune mechanisms of behavioral alterations in a syngeneic murine model of human papilloma virus-related head and neck cancer.

    Science.gov (United States)

    Vichaya, Elisabeth G; Vermeer, Daniel W; Christian, Diana L; Molkentine, Jessica M; Mason, Kathy A; Lee, John H; Dantzer, Robert

    2017-05-01

    Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1β, and TNF-α expression in the liver and increased IL-1β expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1β, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic

  4. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults.

    Science.gov (United States)

    King, Bradley R; Fogel, Stuart M; Albouy, Geneviève; Doyon, Julien

    2013-01-01

    As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.

  5. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults

    Directory of Open Access Journals (Sweden)

    Bradley R King

    2013-04-01

    Full Text Available As the world’s population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL and motor adaptation (MA with respect to behavioral, neurological and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.

  6. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-02-07

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder.

    Science.gov (United States)

    Goodman, Marianne; Carpenter, David; Tang, Cheuk Y; Goldstein, Kim E; Avedon, Jennifer; Fernandez, Nicolas; Mascitelli, Kathryn A; Blair, Nicholas J; New, Antonia S; Triebwasser, Joseph; Siever, Larry J; Hazlett, Erin A

    2014-10-01

    Siever and Davis' (1991) psychobiological framework of borderline personality disorder (BPD) identifies affective instability (AI) as a core dimension characterized by prolonged and intense emotional reactivity. Recently, deficient amygdala habituation, defined as a change in response to repeated relative to novel unpleasant pictures within a session, has emerged as a biological correlate of AI in BPD. Dialectical behavior therapy (DBT), an evidence-based treatment, targets AI by teaching emotion-regulation skills. This study tested the hypothesis that BPD patients would exhibit decreased amygdala activation and improved habituation, as well as improved emotion regulation with standard 12-month DBT. Event-related fMRI was obtained pre- and post-12-months of standard-DBT in unmedicated BPD patients. Healthy controls (HCs) were studied as a benchmark for normal amygdala activity and change over time (n = 11 per diagnostic-group). During each scan, participants viewed an intermixed series of unpleasant, neutral and pleasant pictures presented twice (novel, repeat). Change in emotion regulation was measured with the Difficulty in Emotion Regulation (DERS) scale. fMRI results showed the predicted Group × Time interaction: compared with HCs, BPD patients exhibited decreased amygdala activation with treatment. This post-treatment amygdala reduction in BPD was observed for all three pictures types, but particularly marked in the left hemisphere and during repeated-emotional pictures. Emotion regulation measured with the DERS significantly improved with DBT in BPD patients. Improved amygdala habituation to repeated-unpleasant pictures in patients was associated with improved overall emotional regulation measured by the DERS (total score and emotion regulation strategy use subscale). These findings have promising treatment implications and support the notion that DBT targets amygdala hyperactivity-part of the disturbed neural circuitry underlying emotional dysregulation

  8. Does cognitive behavior therapy alter emotion regulation in inpatients with a depressive disorder?

    Directory of Open Access Journals (Sweden)

    Forkmann T

    2014-05-01

    Full Text Available Thomas Forkmann,1 Anne Scherer,1 Markus Pawelzik,2 Verena Mainz,1 Barbara Drueke,1 Maren Boecker,1 Siegfried Gauggel11Institute of Medical Psychology and Medical Sociology, University Hospital of RWTH Aachen, Aachen, Germany; 2EOS Hospital for Psychotherapy, Hammer Münster, GermanyIntroduction: Emotion regulation plays an important role in the development and treatment of depression. The present study investigated whether the emotion regulation strategies, expressive suppression (ES and cognitive reappraisal (CR change in the course of cognitive behavior therapy (CBT of depressive inpatients. Furthermore, it also examined whether changes in CR and ES correlated with positive treatment outcomes.Methods: Forty-four inpatients from a psychotherapeutic hospital who suffered from a depressive disorder (mean age =36.4 years, standard deviation =13.4 years; 63.6% female filled in the Emotion Regulation Questionnaire and the Beck Depression Inventory at admission and discharge. To detect changes in emotion regulation, and depression across treatment, data were analyzed using multivariate analyses of variance (MANOVA for repeated measures, effect sizes, and Spearman correlations. A P-value of ≤0.05 was considered statistically significant.Results: Depression severity (F[1]=10.42, P=0.003; η2=0.22 and CR (F[1]=4.71, P=0.04; η2=0.11 changed significantly across CBT treatment. ES remained virtually stable. Post-treatment scores of CR were also positively correlated with reduction in depressive symptoms across treatment (ρ=0.30, P=0.05.Conclusion: The results suggest that CBT affects emotion regulation in depressive inpatients only for CR and that higher post-treatment scores in CR were related to greater reduction in depressive symptoms across treatment.Keywords: emotion regulation, depression, major depressive disorder, psychotherapy

  9. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  10. Vaccinium virgatum fruit extract as an important adjuvant in biochemical and behavioral alterations observed in animal model of metabolic syndrome.

    Science.gov (United States)

    Oliveira, Pathise Souto; Gazal, Marta; Flores, Natália Porto; Zimmer, Aline Rigon; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Kaster, Manuella Pinto; Tavares, Rejane Giacomelli; Spanevello, Roselia Maria; Lencina, Claiton Leoneti; Stefanello, Francieli Moro

    2017-04-01

    The aim of this study was to investigate the effect of blueberry (Vaccinium virgatum) fruit extract on metabolic, behavioral and oxidative stress parameters in the hippocampus and cerebral cortex of mice submitted to an experimental model of metabolic syndrome induced by a highly palatable diet (HPD). Mice C57BL/6 were divided into 4 experimental groups: (1) received standard chow and saline orally, (2) received standard chow and blueberry hydroalcoholic extract, (3) received HPD and saline orally, (4) received HPD and blueberry hydroalcoholic extract. The animals were treated for 150days. Our results showed that the animals fed with HPD presented insulin resistance, increased body weight, visceral fat, glucose, triglycerides, and total cholesterol when compared to the control group. The blueberry extract prevented the increase of these metabolic parameters. Also, the extract was able to reduce the levels of thiobarbituric acid reactive substances in the cerebral cortex and hippocampus of animals submitted to HPD. In contrast, no differences were observed in the total thiol content, activity of the antioxidant enzymes catalase and superoxide dismutase. In addition, the HPD fed animals showed a significant increase in immobility time in the forced swimming test and blueberry prevented this alteration, although no changes were observed in the ambulatory behavior, as well as in the anxiolytic profile of these animals. Overall, our findings suggest that chronic consumption of blueberry extract exhibits hypoglycemic, hypolipidemic, antidepressant-like and antiperoxidative effects in an animal model of metabolic syndrome. Copyright © 2017. Published by Elsevier Masson SAS.

  11. Lack of long-term behavioral alterations after early postnatal treatment with tropisetron: implications for developmental psychobiology.

    Science.gov (United States)

    Inta, Dragos; Vogt, Miriam A; Lima-Ojeda, Juan M; Pfeiffer, Natascha; Schneider, Miriam; Gass, Peter

    2011-07-01

    The early postnatal period represents a critical time window for brain development. Transient Cajal-Retzius cells in layer I of the cortex play an important role in cortical lamination by modulating neuronal migration and maturation. Recent data have demonstrated that the 5-HT(3) receptor antagonist and alpha7 nicotinic receptor partial agonist tropisetron, acting via 5-HT(3) receptors expressed on Cajal-Retzius cells, can disturb the formation of cortical columns at perinatal stages. This process is thought to be involved in several neuropsychiatric disorders. Here we investigated the possible long-term behavioral effects of exposure to tropisetron at early postnatal stages in mice. We found that the administration of 1mg/kg, intraperitoneal (i.p.) tropisetron from postnatal days 2-12 (P2-P12) did not induce significant cognitive, schizophrenia-like or emotional alterations in tropisetron-treated animals as compared to controls, when tested in multiple behavioral assays. These results may be of relevance regarding the possible protracted deleterious neuropsychiatric effects of tropisetron during early life. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Motor sequence learning and movement disorders.

    Science.gov (United States)

    Doyon, Julien

    2008-08-01

    New insights into the psychophysiological determinants of performance changes and brain plasticity associated with motor sequence learning have recently been gained through behavioral and imaging studies in healthy individuals. In addition, using a variety of motor sequential paradigms in groups of patients affected by a movement disorder, major advances have been achieved in our understanding of the pathophysiological mechanisms underlying Parkinson's and Huntington's diseases, as well as primary forms of dystonia. This review begins by describing the latest findings in normal participants with regards to the dynamic alterations in neural networks observed across the different phases of motor sequence learning. It then focuses on the hotly debated issue of motor memory consolidation, highlighting the results of novel studies that investigated the role of both day and night sleep, the neural substrates and the developmental evolution mediating this process. Finally, this paper addresses current work looking at motor sequence learning in movement disorders that helps to better comprehend the functional contribution of basal ganglia structures to this type of memory, to assess the impact of such diseases on related patterns of brain activation, as well as to identify the neuronal compensatory mechanisms educed by these basal ganglia disorders. Such advances have major implications, not only for optimizing ways to learn new skilled behaviors in real-life situations, but also for guiding therapeutic approaches in patients with movement disorders.

  13. Distributed task-specific processing of somatosensory feedback for voluntary motor control.

    Science.gov (United States)

    Omrani, Mohsen; Murnaghan, Chantelle D; Pruszynski, J Andrew; Scott, Stephen H

    2016-04-14

    Corrective responses to limb disturbances are surprisingly complex, but the neural basis of these goal-directed responses is poorly understood. Here we show that somatosensory feedback is transmitted to many sensory and motor cortical regions within 25 ms of a mechanical disturbance applied to the monkey's arm. When limb feedback was salient to an ongoing motor action (task engagement), neurons in parietal area 5 immediately (~25 ms) increased their response to limb disturbances, whereas neurons in other regions did not alter their response until 15 to 40 ms later. In contrast, initiation of a motor action elicited by a limb disturbance (target selection) altered neural responses in primary motor cortex ~65 ms after the limb disturbance, and then in dorsal premotor cortex, with no effect in parietal regions until 150 ms post-perturbation. Our findings highlight broad parietofrontal circuits that provide the neural substrate for goal-directed corrections, an essential aspect of highly skilled motor behaviors.

  14. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk.

    Science.gov (United States)

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2010-06-02

    Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes.

  15. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine.

    Science.gov (United States)

    Felger, Jennifer C; Treadway, Michael T

    2017-01-01

    Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation.

  16. Differential analysis of behavior and diazepam-induced alterations in C57BL/6N and BALB/c mice using the modified hole board test.

    Science.gov (United States)

    Ohl, F; Sillaber, I; Binder, E; Keck, M E; Holsboer, F

    2001-01-01

    A variety of test procedures are used in preclinical research on behavioral pharmacology and to dissociate behavioral differences or pharmacologically induced behavioral alterations several independent tests are usually performed. In the present study we introduce a modified hole board procedure for mice which allows us to investigate a variety of behavioral parameters such as anxiety, risk assessment, exploration, locomotion, food-intake inhibition, novelty seeking, and arousal by using only one test. The modified hole board was established by investigating the behavior of two inbred mouse strains, C57BL/6 and BALB. Significant differences in terms of locomotor activity, general exploration, and other parameters were found. Moreover, strain-specific exploration strategies could be detected in the modified hole board. Further, the test was validated by investigating the effects of diazepam as standard anxiolytic on the behavior in both mouse strains. Acute administration of diazepam (1 and 3 mg/kg) induced strong sedative effects in a dose-dependent manner in C57BL/6 mice. In BALB mice, the lower dosage of diazepam showed an activating and anxiolytic action while the 3 mg dosage revealed a slight sedative but still anxiolytic effect in these animals. Taken together, the results demonstrate that the modified hole board enables to differentially investigate behavioral phenotypes and also pharmacologically-induced behavioral alterations in mice. Therefore, this new strategy allows to reduce the number of experimental animals and the time needed, thus, representing an effective screening-tool for behavioral investigations.

  17. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Orlando, Edward F.

    2016-01-01

    differences were not significant between the two treatments. LNG caused significant increases in the 4:6 anal fin ratio of males exposed to 100 ng/L, with no effects observed in the 10 ng/L treatment. In addition, the reproductive behavior of control males paired with female mosquitofish exposed to 100 ng/L LNG was also altered, for these males spent more time exhibiting no reproductive behavior, had decreased attending behavior, and a lower number of gonopodial thrusts compared to control males paired to control female mosquitofish. Given the rapid effects on both anal fin morphology and behavior observed in this study, the mosquitofish is an excellent sentinel species for the detection of exposure to LNG and likely other 19-nortestosterone derived contraceptive progestins in the environment.

  18. Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: A DTI tractography study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan, E-mail: jelly_66@126.com; Fan, Guo Guang, E-mail: cjr.fanguoguang@vip.163.com; Xu, Ke, E-mail: cjr.xuke@vip.163.com; Wang, Ci, E-mail: xiangxuehai19850224@yahoo.cn

    2014-06-15

    Purpose: To investigate the microstructural integrity of superior cerebellar peduncles (SCP) and middle cerebellar peduncles (MCP) by using DTI tractography method, and further to detect whether the microstructural integrity of these major cerebellar pathways is related to motor function in children with diffuse periventricular leucomalacia (PVL) born preterm. Materials and methods: 46 children with diffuse PVL (30 males and 16 females; age range 3–48 months; mean age 22.4 ± 6.7 months; mean gestational age 30.5 ± 2.2 weeks) and 40 healthy controls (27 males and 13 females; age range 3.5–48 months; mean age 22.1 ± 5.8 months) were enrolled in this study. DTI outcome measurements, fractional anisotropy (FA), for the SCP, MCP and cortical spinal tract (CST) were calculated. The gross motor function classification system (GMFCS) was used for assessing motor functions. Results: Compared to the controls, patients with diffuse PVL had a significantly lower FA in bilateral SCP, MCP and CST. There was a significant negative correlation between GMFCS levels and FA in bilateral SCP, MCP and CST in the patients group. In addition, significant inverse correlation of FA value was found between not only the contralateral but also the ipsilateral CST and SCP/MCP. Conclusions: These findings suggest that the injury of SCP and MCP may contribute to the motor dysfunction of diffuse PVL. Moreover, the correlations we found between supratentorial and subtentorial injured white matter extend our knowledge about the cerebro-cerebellar white matter interaction in children with diffuse PVL.

  19. Preparing the Periphery for a Subsequent Behavior: Motor Neuronal Activity during Biting Generates Little Force but Prepares a Retractor Muscle to Generate Larger Forces during Swallowing in Aplysia

    Science.gov (United States)

    Lu, Hui; McManus, Jeffrey M.; Cullins, Miranda J.

    2015-01-01

    Some behaviors occur in obligatory sequence, such as reaching before grasping an object. Can the earlier behavior serve to prepare the musculature for the later behavior? If it does, what is the underlying neural mechanism of the preparation? To address this question, we examined two feeding behaviors in the marine mollusk Aplysia californica, one of which must precede the second: biting and swallowing. Biting is an attempt to grasp food. When that attempt is successful, the animal immediately switches to swallowing to ingest food. The main muscle responsible for pulling food into the buccal cavity during swallowing is the I3 muscle, whose motor neurons B6, B9, and B3 have been previously identified. By performing recordings from these neurons in vivo in intact, behaving animals or in vitro in a suspended buccal mass preparation, we demonstrated that the frequencies and durations of these motor neurons increased from biting to swallowing. Using the physiological patterns of activation to drive these neurons intracellularly, we further demonstrated that activating them using biting-like frequencies and durations, either alone or in combination, generated little or no force in the I3 muscle. When biting-like patterns preceded swallowing-like patterns, however, the forces during the subsequent swallowing-like patterns were significantly enhanced. Sequences of swallowing-like patterns, either with these neurons alone or in combination, further enhanced forces in the I3 muscle. These results suggest a novel mechanism for enhancing force production in a muscle, and may be relevant to understanding motor control in vertebrates. PMID:25810534

  20. Exposure to the contraceptive progestin, gestodene, alters reproductive behavior, arrests egg deposition, and masculinizes development in the fathead minnow (Pimephales promelas)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Kolpin, Dana W.; Gillis, Amanda B.; Alvarez, David A.; Orlando, Edward F.

    2016-01-01

    Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected.

  1. Exposure to the Contraceptive Progestin, Gestodene, Alters Reproductive Behavior, Arrests Egg Deposition, and Masculinizes Development in the Fathead Minnow (Pimephales promelas).

    Science.gov (United States)

    Frankel, Tyler E; Meyer, Michael T; Kolpin, Dana W; Gillis, Amanda B; Alvarez, David A; Orlando, Edward F

    2016-06-07

    Endogenous progestogens and pharmaceutical progestins enter the environment through wastewater treatment plant effluent and agricultural field runoff. Lab studies demonstrate strong, negative exposure effects of these chemicals on aquatic vertebrate reproduction. Behavior can be a sensitive, early indicator of exposure to environmental contaminants associated with altered reproduction yet is rarely examined in ecotoxicology studies. Gestodene is a human contraceptive progestin and a potent activator of fish androgen receptors. Our objective was to test the effects of gestodene on reproductive behavior and associated egg deposition in the fathead minnow. After only 1 day, males exposed to ng/L of gestodene were more aggressive and less interested in courtship and mating, and exposed females displayed less female courtship behavior. Interestingly, 25% of the gestodene tanks contained a female that drove the male out of the breeding tile and displayed male-typical courtship behaviors toward the other female. Gestodene decreased or arrested egg deposition with no observed gonadal histopathology. Together, these results suggest that effects on egg deposition are primarily due to altered reproductive behavior. The mechanisms by which gestodene disrupts behavior are unknown. Nonetheless, the rapid and profound alterations of the reproductive biology of gestodene-exposed fish suggest that wild populations could be similarly affected.

  2. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  3. Effect of Intraperitoneal Administration of Hydroalcoholic and Hexanic Extract of Heated Female Cannabis Sativa Flowertops on Anxiety Behavior, Motor Coordination and Locomotor Activity in the Male Rats

    Directory of Open Access Journals (Sweden)

    B Farhadi Moghadam

    2016-01-01

    Full Text Available Introduction: Decarboxylated phytocannabinoids activates CB1 receptors of endocannabinoid system in the central nervous system. Endocannabinoid system interacts with dopaminergic and serotoninergic systems, which seems to be effective on the behavior processes. Therefore, this study aimed to investigate the effect of hydroalcoholic and hexanic extract of heated female Cannabis sativa flowertops containing decarboxylated cannabinoids on anxiety, motor coordination and locomotor activity. Methods: In this experimental study, adult male Wistar rats were randomly (200 to 250 g used in two groups(n=7 of control and sham (administration of the solution vehicle (Tween 80, ethanol and saline with 1:1:8 proportions. IP administration of hydroalcoholic extract (50mg/kg dosage, and hexanic extract (50mg/kg dosage were applied. The elevated plus maze, open field and rotarod apparatus were used in order to measure the anxiety, locomotor activity and motor coordination in each group, respectively. Moreover, the data analysis was carried out by one-way ANOVA and Neumann-keuls post-hoc test. Results: The study results indicated that IP administration of hexanic extract (50mg/kg dosage significantly reduced the numbers of entries into the open arms (P<0.05 as well as time of stay in the open arms (P<0.01 in evaluated plus maze. Furthermore, motor activity (P <0.01 and time coordination (P <0.001 were reported to significantly reduce. Conclusion: The study findings revealed thst administration of hexanic extract has probably more decarboxylated cannabinoids than hydroalcoholic extract resulting in a decrease in the motor activity and time of motor coordination, yet an increase in anxiety via activation of CB1 receptors.

  4. Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: A 3D finite element modeling study.

    Science.gov (United States)

    Katti, Dinesh R; Katti, Kalpana S

    2017-12-01

    A robust computational model of a cancer cell is presented using finite element modeling. The model accurately captures nuances of the various components of the cellular substructure. The role of degradation of cytoskeleton on overall elastic properties of the cancer cell is reported. The motivation for degraded cancer cellular substructure, the cytoskeleton is the observation that the innate mechanics of cytoskeleton is disrupted by various anti-cancer drugs as therapeutic treatments for the destruction of the cancer tumors. We report a significant influence on the degradation of the cytoskeleton on the mechanics of cancer cell. Further, a simulations based study is reported where we evaluate mechanical properties of the cancer cell attached to a variety of substrates. The loading of the cancer cell is less influenced by nature of the substrate, but low modulus substrates such as osteoblasts and hydrogels indicate a significant change in unloading behavior and also the plastic deformation. Overall, softer substrates such as osteoblasts and other bone cells result in a much altered unloading response as well as significant plastic deformation. These substrates are relevant to metastasis wherein certain type of cancers such as prostate and breast cancer cells migrate to the bone and colonize through mesenchymal to epithelial transition. The modeling study presented here is an important first step in the development of strong predictive methodologies for cancer progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  6. Single motor unit firing behavior in the right trapezius muscle during rapid movement of right or left index finger

    DEFF Research Database (Denmark)

    Søgaard, Karen; Olsen, Henrik B; Blangsted, Anne K

    2014-01-01

    of a general multi joint motor program, while a generally increased and continuous firing rate would support the attention related muscle activation. METHOD: Twelve healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC) were performed with right......BACKGROUND: Computer work is associated with low level sustained activity in the trapezius muscle that may cause development of trapezius myalgia. Such a low level activity may be attention related or alternatively, be part of a general multi joint motor program providing stabilization...... of the shoulder joint as a biomechanical prerequisite for precise finger manipulation. This study examines single motor unit (MU) firing pattern in the right trapezius muscle during fast movements of ipsilateral or contralateral index finger. A modulation of the MU firing rate would support the existence...

  7. Prediction of kindergarteners' behavior on Metropolitan Readiness Tests from preschool perceptual and perceptual-motor performances: a validation study.

    Science.gov (United States)

    Belka, D E

    1981-06-01

    Multiple regression equations were generated to predict cognitive achievement for 40 children (ages 57 to 68 mo.) 1 yr. after administration of a battery of 6 perceptual and perceptual-motor tests to determine if previous results from Toledo could be replicated. Regression equations generated from maximum R2 improvement techniques indicated that performance at prekindergarten is useful for prediction of cognitive performance (total score and total score without the copying subtest on the Metropolitan Readiness Tests) 1 yr. later at the end of kindergarten. The optimal battery included scores on auditory perception, fine perceptual-motor, and gross perceptual-motor tasks. The moderate predictive power of the equations obtained was compared with high predictive power generated in the Toledo study.

  8. Pretherapeutic Functional Imaging Allows Prediction of Head Tremor Arrest After Thalamotomy for Essential Tremor: The Role of Altered Interconnectivity Between Thalamolimbic and Supplementary Motor Circuits.

    Science.gov (United States)

    Tuleasca, Constantin; Régis, Jean; Najdenovska, Elena; Witjas, Tatiana; Girard, Nadine; Champoudry, Jérôme; Faouzi, Mohamed; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Van De Ville, Dimitri

    2018-04-01

    To correlate pretherapeutic resting-state functional magnetic resonance imaging (rs-fMRI) measures with pretherapeutic head tremor presence and/or further improvement 1 year after stereotactic radiosurgical thalamotomy (SRS-T) for essential tremor (ET). We prospectively collected head tremor scores (range, 0-3) and rs-fMRI data for a cohort of 17 consecutive ET patients in pretherapeutic and 1 year after SRS-T states. We additionally acquired rs-fMRI data for a healthy control (HC) group (n = 12). Group-level independent component analysis (n = 17 for pretherapeutic rs-fMRI) was applied to decompose neuroimaging data into 20 large-scale brain networks using a standard approach. Through spatial regression, we projected 1 year after SRS-T and HC rs-fMRI time points, on the same 20 brain networks. Pretherapeutic interconnectivity (IC) strength between the network including bilateral thalamus and limbic system with left supplementary motor area predicted head tremor improvement at 1 year after SRS-T (family-wise corrected P < 0.001, cluster size K c  = 146). For the statistically significant cluster, IC strength was strongest in HCs (mean, 4.6; median, 3.8) compared with pre- (mean, 0.1; median, 0.2) or posttherapeutic (mean, -0.2; median, 0.09) states. Baseline measures of IC between bilateral thalamus and limbic system with left supplementary motor area may predict head tremor arrest after thalamotomy. However, procedures such as SRS-T, for this particular clinical feature, do not align patients to HCs in terms of functional brain connectivity. We postulate that supplementary motor area is modulating head tremor appearance, by abnormal connectivity with the thalamolimbic system. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning.

    Directory of Open Access Journals (Sweden)

    Pieranna Arrighi

    Full Text Available Modulation of frontal midline theta (fmθ is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error, at the time when visual feedback (hand appearance became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi

  10. Identifying Motor, Emotional-Behavioral, and Cognitive Deficits that Comprise the Triad of HD Symptoms from Patient, Caregiver, and Provider Perspectives

    Directory of Open Access Journals (Sweden)

    David Victorson

    2014-04-01

    Full Text Available Background: The objective of this study was to identify important attributes associated with the triad of symptoms (cognition, emotional–behavioral, and motor of Huntington's disease (HD from patient, caregiver, and medical provider perspectives to facilitate development of a new disease‐specific, health‐related quality of life (HRQOL instrument. Methods: We conducted a targeted literature review of HD and HRQOL instruments, expert surveys, and patient and caregiver phone‐based interviews to extract information on the symptoms and issues most relevant to the HD symptom triad (HD triad. The data collected from these sources were used to generate themes and subdomains and to develop an integrated schema that highlights the key dimensions of the triad. Results: The search identified the following areas: emotional functioning/behavioral changes (e.g., positive emotions, sadness/depression; cognitive functioning (e.g., memory/learning, attention/comprehension; physical functioning (e.g., motor functioning, medication; social functioning (e.g., leisure, interpersonal relationships; end‐of‐life concerns/planning; and gene testing. Fifteen individuals diagnosed with HD and 16 HD caregivers, recruited from several Huntington's Disease Society of America support group networks, completed phone interviews. Nineteen US medical providers who specialize in HD completed the online survey. Twenty‐six subdomains of the HD symptom triad (seven cognition, 12 emotional–behavioral, and seven motor emerged relatively consistently across patient, caregiver, and provider samples. These included movements/chorea, memory impairment, depression, and anxiety. Discussion: Based on an integrated, mixed‐methods approach, important HD triad symptom were identified and organized into a guiding schema. These patient‐, caregiver‐, and provider‐triangulated data served as the basis for development of a HD‐specific HRQOL instrument, the HD‐PRO‐TRIAD™.

  11. Control of motor activity in crayfish by the steroid hormone 20-hydroxyecdysone via motoneuron excitability and sensory-motor integration.

    Science.gov (United States)

    Bacqué-Cazenave, Julien; Bouvet, Flora; Fossat, Pascal; Cattaert, Daniel; Delbecque, Jean Paul

    2013-05-15

    We studied the effects of the molting hormone 20-hydroxyecdysone (20E) on leg sensory-motor networks of the red swamp crayfish, Procambarus clarkii. The hormone was injected in isolated crayfish and network activity was analyzed 3 days after injection using electrophysiology on an in vitro preparation of the leg locomotor network. This 20E treatment deeply reduced motor activity, by affecting both intrinsic motoneuron (MN) properties and sensory-motor integration. Indeed, we noticed a general decrease in motor nerve tonic activities, principally in depressor and promotor nerves. Moreover, intracellular recordings of depressor MNs confirmed a decrease of MN excitability due to a drop in input resistance. In parallel, sensory inputs originating from a proprioceptor, which codes joint movements controlled by these MNs, were also reduced. The shape of excitatory post-synaptic potentials (PSPs) triggered in MNs by sensory activity of this proprioceptor showed a reduction of polysynaptic components, whereas inhibitory PSPs were suppressed, demonstrating that 20E acted also on interneurons relaying sensory to motor inputs. Consequently, 20E injection modified the whole sensory-motor loop, as demonstrated by the alteration of the resistance reflex amplitude. These locomotor network changes induced by 20E were consistent with the decrease of locomotion observed in a behavioral test. In summary, 20E controls locomotion during crayfish premolt by acting on both MN excitability and sensory-motor integration. Among these cooperative effects, the drop of input resistance of MNs seems to be mostly responsible for the reduction of motor activity.

  12. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  13. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M.; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic–functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration. PMID:24999327

  14. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE

    Directory of Open Access Journals (Sweden)

    David ePerruchoud

    2014-06-01

    Full Text Available Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE. Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  15. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE).

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  16. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    Science.gov (United States)

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-06-01

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated

  17. Driver`s behavior and the motion of motorized wheelchair when driving over rough surfaces; Dansa nado fuseichi sokoji no dendo kurumaisu no undo to join no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, A.; Yokomori, M.; Yamaguchi, S. [Meijo University, Aichi (Japan)

    1997-10-01

    We analyzed about the motion of motorized wheelchairs and the driver`s behavior when passing over the small obstacles in place of the rough surface road or the gateway of house and road by experiment. The tested two type wheelchairs are the front wheel drive and the rear wheel drive. The lean angle of head and the pulse rate of driver, the feeling for stability and the yaw angle and the roll angle of the wheelchair bodies, and the deflection angle of front wheels of rear drive. 4 refs., 11 figs., 1 tab.

  18. Differences in the Transmission of Sensory Input into Motor Output between Introverts and Extraverts: Behavioral and Psychophysiological Analyses

    Science.gov (United States)

    Stahl, J.; Rammsayer, T.

    2004-01-01

    The present study was designed to investigate extraversion-related individual differences in the speed of transmission of sensory input into motor output. In a sample of 16 introverted and 16 extraverted female volunteers, event-related potentials, lateralized readiness potentials (LRPs), and electromyogram (EMG) were recorded as participants…

  19. Expression of a Mutant SEMA3A Protein with Diminished Signalling Capacity Does Not Alter ALS-Related Motor Decline, or Confer Changes in NMJ Plasticity after BotoxA-Induced Paralysis of Male Gastrocnemic Muscle.

    Directory of Open Access Journals (Sweden)

    Elizabeth B Moloney

    Full Text Available Terminal Schwann cells (TSCs are specialized cells that envelop the motor nerve terminal, and play a role in the maintenance and regeneration of neuromuscular junctions (NMJs. The chemorepulsive protein semaphorin 3A (SEMA3A is selectively up-regulated in TSCs on fast-fatigable muscle fibers following experimental denervation of the muscle (BotoxA-induced paralysis or crush injury to the sciatic nerve or in the motor neuron disease amyotrophic lateral sclerosis (ALS. Re-expression of SEMA3A in this subset of TSCs is thought to play a role in the selective plasticity of nerve terminals as observed in ALS and following BotoxA-induced paralysis. Using a mouse model expressing a mutant SEMA3A with diminished signaling capacity, we studied the influence of SEMA3A signaling at the NMJ with two denervation paradigms; a motor neuron disease model (the G93A-hSOD1 ALS mouse line and an injury model (BotoxA-induced paralysis. ALS mice that either expressed 1 or 2 mutant SEMA3A alleles demonstrated no difference in ALS-induced decline in motor behavior. We also investigated the effects of BotoxA-induced paralysis on the sprouting capacity of NMJs in the K108N-SEMA3A mutant mouse, and observed no change in the differential neuronal plasticity found at NMJs on fast-fatigable or slow muscle fibers due to the presence of the SEMA3A mutant protein. Our data may be explained by the residual repulsive activity of the mutant SEMA3A, or it may imply that SEMA3A alone is not a key component of the molecular signature affecting NMJ plasticity in ALS or BotoxA-induced paralysis. Interestingly, we did observe a sex difference in motor neuron sprouting behavior after BotoxA-induced paralysis in WT mice which we speculate may be an important factor in the sex dimorphic differences seen in ALS.

  20. Language and motor abilities of preschool children who stutter: Evidence from behavioral and kinematic indices of nonword repetition performance

    Science.gov (United States)

    Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine

    2012-01-01

    Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4–5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. Educational objectives The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence

  1. Language and motor abilities of preschool children who stutter: evidence from behavioral and kinematic indices of nonword repetition performance.

    Science.gov (United States)

    Smith, Anne; Goffman, Lisa; Sasisekaran, Jayanthi; Weber-Fox, Christine

    2012-12-01

    Stuttering is a disorder of speech production that typically arises in the preschool years, and many accounts of its onset and development implicate language and motor processes as critical underlying factors. There have, however, been very few studies of speech motor control processes in preschool children who stutter. Hearing novel nonwords and reproducing them engages multiple neural networks, including those involved in phonological analysis and storage and speech motor programming and execution. We used this task to explore speech motor and language abilities of 31 children aged 4-5 years who were diagnosed as stuttering. We also used sensitive and specific standardized tests of speech and language abilities to determine which of the children who stutter had concomitant language and/or phonological disorders. Approximately half of our sample of stuttering children had language and/or phonological disorders. As previous investigations would suggest, the stuttering children with concomitant language or speech sound disorders produced significantly more errors on the nonword repetition task compared to typically developing children. In contrast, the children who were diagnosed as stuttering, but who had normal speech sound and language abilities, performed the nonword repetition task with equal accuracy compared to their normally fluent peers. Analyses of interarticulator motions during accurate and fluent productions of the nonwords revealed that the children who stutter (without concomitant disorders) showed higher variability in oral motor coordination indices. These results provide new evidence that preschool children diagnosed as stuttering lag their typically developing peers in maturation of speech motor control processes. The reader will be able to: (a) discuss why performance on nonword repetition tasks has been investigated in children who stutter; (b) discuss why children who stutter in the current study had a higher incidence of concomitant language

  2. Robotic set-up to quantify hand-eye behavior in motor execution and learning of children with autism spectrum disorder.

    Science.gov (United States)

    Casellato, Claudia; Gandolla, Marta; Crippa, Alessandro; Pedrocchi, Alessandra

    2017-07-01

    Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized by a persistence of social and communication impairment, and restricted and repetitive behaviors. However, motor disorders have also been described, but not objectively assessed. Most studies showed inefficient eye-hand coordination and motor learning in children with ASD; in other experiments, mechanisms of acquisition of internal models in self-generated movements appeared to be normal in autism. In this framework, we have developed a robotic protocol, recording gaze and hand data during upper limb tasks, in which a haptic pen-like handle is moved along specific trajectories displayed on the screen. The protocol includes trials of reaching under a perturbing force field and catching moving targets, with or without visual availability of the whole path. We acquired 16 typically-developing scholar-age children and one child with ASD as a case study. Speed-accuracy tradeoff, motor performance, and gaze-hand spatial coordination have been evaluated. Compared to typically developing peers, in the force field sequence, the child with ASD showed an intact but delayed learning, and more variable gazehand patterns. In the catching trials, he showed less efficient movements, but an intact capability of exploiting the available a-priori plan. The proposed protocol represents a powerful tool, easily tunable, for quantitative (longitudinal) assessment, and for subject-tailored training in ASD.

  3. Sociocultural Influence on Obesity and Lifestyle in Children: A Study of Daily Activities, Leisure Time Behavior, Motor Skills, and Weight Status.

    Science.gov (United States)

    Hilpert, Martin; Brockmeier, Konrad; Dordel, Sigrid; Koch, Benjamin; Weiß, Verena; Ferrari, Nina; Tokarski, Walter; Graf, Christine

    2017-01-01

    Juvenile overweight is increasing, and effective preventive measures are needed. After years of arbitrarily assigning these measures disregarding socioeconomic and/or cultural differences, it has become necessary to tailor interventions more specific to these target groups. Providing data for such an intervention is the objective of this study. Influencing variables on children's weight status, motor skills and lifestyle have been analyzed among 997 first graders (53.2% male) involved in the Children's Health InterventionaL Trial (CHILT). Median age was 6.9 years; 7.3% were obese, 8.8% were overweight. Children with low socioeconomic status (SES) were more likely to be obese (p = 0.029). Low SES (p ˂ 0.001), migration background (p = 0.001) and low sports activity levels (p = 0.007) contributed most to an increased consumption of television. Migration background (p = 0.003) and male gender (p video games. Children with higher SES (p = 0.02), lower BMI (p = 0.035), and males (p = 0.001) performed better in motor tests. Children with a low SES and migration background were more likely to exhibit unfavorable health behavior patterns, higher BMI scores, and poorer motor skills. Interventions should integrate motivational and targeting strategies and consider cultural and educational differences to address these vulnerable groups. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  4. Multimodal Therapy Involving High-Intensity Interval Training Improves the Physical Fitness, Motor Skills, Social Behavior, and Quality of Life of Boys With ADHD: A Randomized Controlled Study.

    Science.gov (United States)

    Meßler, Carolin Friederike; Holmberg, Hans-Christer; Sperlich, Billy

    2016-03-24

    To compare the effects of multimodal therapy including supervised high-intensity interval training (HIIT) with those of standard multimodal therapy (TRAD) concerning key variables of physical fitness (peak power and oxygen uptake), motor skills, social behavior, and quality of life in boys with ADHD. A single-center, two-arm randomized, controlled design was used, with 28 boys (8-13 years of age, IQ = 83-136) being randomly assigned to multimodal HIIT (three sessions/week, 4 × 4-min intervals at 95% of peak heart rate) or TRAD. The Movement Assessment Battery for Children II evaluated motor skills and the German version of the hyperkinetic disorder questionnaire for external evaluation by the guardians (FBB-HKS) or German version of the hyperkinetic disorder questionnaire for self-assessment by the children (SBB-HKS) and the KINDL-R questionnaires mental health and health-related quality of life. Both interventions enhanced peak power, and HIIT also reduced submaximal oxygen uptake. HIIT was more effective than TRAD in improving the total score for motor skills (including manual dexterity and ball skills;pskills, certain aspects of quality of life, competence, and attention in boys with ADHD. © The Author(s) 2016.

  5. Sociocultural Influence on Obesity and Lifestyle in Children: A Study of Daily Activities, Leisure Time Behavior, Motor Skills, and Weight Status

    Science.gov (United States)

    Hilpert, Martin; Brockmeier, Konrad; Dordel, Sigrid; Koch, Benjamin; Weiß, Verena; Ferrari, Nina; Tokarski, Walter; Graf, Christine

    2017-01-01

    Background Juvenile overweight is increasing, and effective preventive measures are needed. After years of arbitrarily assigning these measures disregarding socioeconomic and/or cultural differences, it has become necessary to tailor interventions more specific to these target groups. Providing data for such an intervention is the objective of this study. Methods Influencing variables on children's weight status, motor skills and lifestyle have been analyzed among 997 first graders (53.2% male) involved in the Children's Health InterventionaL Trial (CHILT). Results Median age was 6.9 years; 7.3% were obese, 8.8% were overweight. Children with low socioeconomic status (SES) were more likely to be obese (p = 0.029). Low SES (p ˂ 0.001), migration background (p = 0.001) and low sports activity levels (p = 0.007) contributed most to an increased consumption of television. Migration background (p = 0.003) and male gender (p games. Children with higher SES (p = 0.02), lower BMI (p = 0.035), and males (p = 0.001) performed better in motor tests. Conclusion Children with a low SES and migration background were more likely to exhibit unfavorable health behavior patterns, higher BMI scores, and poorer motor skills. Interventions should integrate motivational and targeting strategies and consider cultural and educational differences to address these vulnerable groups. PMID:28528341

  6. Can group-based reassuring information alter low back pain behavior? A cluster-randomized controlled trial.

    Science.gov (United States)

    Frederiksen, Pernille; Indahl, Aage; Andersen, Lars L; Burton, Kim; Hertzum-Larsen, Rasmus; Bendix, Tom

    2017-01-01

    Low back pain (LBP) is common in the population and multifactorial in nature, often involving negative consequences. Reassuring information to improve coping is recommended for reducing the negative consequences of LBP. Adding a simple non-threatening explanation for the pain (temporary muscular dysfunction) has been successful at altering beliefs and behavior when delivered with other intervention elements. This study investigates the isolated effect of this specific information on future occupational behavior outcomes when delivered to the workforce. A cluster-randomized controlled trial. Publically employed workers (n = 505) from 11 Danish municipality centers were randomized at center-level (cluster) to either intervention (two 1-hour group-based talks at the workplace) or control. The talks provided reassuring information together with a simple non-threatening explanation for LBP-the 'functional-disturbance'-model. Data collections took place monthly over a 1-year period using text message tracking (SMS). Primary outcomes were self-reported days of cutting down usual activities and work participation. Secondary outcomes were self-reported back beliefs, work ability, number of healthcare visits, bothersomeness, restricted activity, use of pain medication, and sadness/depression. There was no between-group difference in the development of LBP during follow-up. Cumulative logistic regression analyses showed no between-group difference on days of cutting down activities, but increased odds for more days of work participation in the intervention group (OR = 1.83 95% CI: 1.08-3.12). Furthermore, the intervention group was more likely to report: higher work ability, reduced visits to healthcare professionals, lower bothersomeness, lower levels of sadness/depression, and positive back beliefs. Reassuring information involving a simple non-threatening explanation for LBP significantly increased the odds for days of work participation and higher work ability among

  7. Brain and behavioral evidence for altered social learning mechanisms among women with assault-related posttraumatic stress disorder.

    Science.gov (United States)

    Cisler, Josh M; Bush, Keith; Scott Steele, J; Lenow, Jennifer K; Smitherman, Sonet; Kilts, Clinton D

    2015-04-01

    Current neurocircuitry models of PTSD focus on the neural mechanisms that mediate hypervigilance for threat and fear inhibition/extinction learning. Less focus has been directed towards explaining social deficits and heightened risk of revictimization observed among individuals with PTSD related to physical or sexual assault. The purpose of the present study was to foster more comprehensive theoretical models of PTSD by testing the hypothesis that assault-related PTSD is associated with behavioral impairments in a social trust and reciprocity task and corresponding alterations in the neural encoding of social learning mechanisms. Adult women with assault-related PTSD (n = 25) and control women (n = 15) completed a multi-trial trust game outside of the MRI scanner. A subset of these participants (15 with PTSD and 14 controls) also completed a social and non-social reinforcement learning task during 3T fMRI. Brain regions that encoded the computationally modeled parameters of value expectation, prediction error, and volatility (i.e., uncertainty) were defined and compared between groups. The PTSD group demonstrated slower learning rates during the trust game and social prediction errors had a lesser impact on subsequent investment decisions. PTSD was also associated with greater encoding of negative expected social outcomes in perigenual anterior cingulate cortex and bilateral middle frontal gyri, and greater encoding of social prediction errors in the left temporoparietal junction. These data suggest mechanisms of PTSD-related deficits in social functioning and heightened risk for re-victimization in assault victims; however, comorbidity in the PTSD group and the lack of a trauma-exposed control group temper conclusions about PTSD specifically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    Science.gov (United States)

    Kozai, Naofumi; Ohnuki, Toshihiko; Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro

    2011-10-01

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  9. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro

    2011-01-01

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  10. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, Naofumi, E-mail: kozai.naofumi@jaea.go.jp [Advanced Sciences Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Ohnuki, Toshihiko [Advanced Sciences Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, JAEA, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2011-10-15

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  11. Altered dermal fibroblast behavior in a collagen V haploinsufficient murine model of classic Ehlers-Danlos syndrome.

    Science.gov (United States)

    DeNigris, John; Yao, Qingmei; Birk, Erika K; Birk, David E

    2016-01-01

    Mutations in collagen V are associated with classic Ehlers-Danlos syndrome (EDS). A significant percentage of these mutations result in haploinsufficiency for collagen V. The purpose of this work was to determine if changes in collagen V expression are associated with altered dermal fibroblast behavior contributing to the poor wound healing response. A haploinsufficient Col5a1(+/-) mouse model of EDS was utilized. In vivo wound healing studies demonstrated that mutant mice healed significantly slower than Col5a1(+/+) mice. The basis for this difference was examined in vitro using dermal fibroblast strains isolated from Col5a1(+/-) and Col5a1(+/+) mice. Fibroblast proliferation was determined for each strain by counting cells at different time points after seeding as well as using the proliferation marker Ki-67. Fibroblast attachment to collagens I and III and fibronectin also was analyzed. In addition, in vitro scratch wounds were used to analyze fibroblast wound closure. Significantly decreased fibroblast proliferation was observed in Col5a1(+/-) compared to Col5a1(+/+) fibroblasts. Our data indicate that the decreased fibroblast number was not due to apoptosis. Wildtype Col5a1(+/+) fibroblasts attached significantly better to components of the wound matrix (collagens I and III and fibronectin) than Col5a1(+/-) fibroblasts. A significant difference in in vitro scratch wound closure rates also was observed. Col5a1(+/+) fibroblasts closed wounds in 22 h, while Col5a1(+/-) fibroblasts demonstrated ~80% closure. There were significant differences in closure at all time points analyzed. Our data suggest that decreased fibroblast proliferation, extracellular matrix attachment, and migration contribute to the decreased wound healing response in classic EDS.

  12. Environmental and simulation facility conditions can modulate a behavioral-driven altered gravity response of Drosophila imagoes transcriptome

    Data.gov (United States)

    National Aeronautics and Space Administration — Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene...

  13. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice

    Science.gov (United States)

    Blake, Camille B.

    2014-01-01

    Pathologies in which insulin is dysregulated, including diabetes, can disrupt central vagal circuitry, leading to gastrointestinal and other autonomic dysfunction. Insulin affects whole body metabolism through central mechanisms and is transported into the brain stem dorsal motor nucleus of the vagus (DMV) and nucleus tractus solitarius (NTS), which mediate parasympathetic visceral regulation. The NTS receives viscerosensory vagal input and projects heavily to the DMV, which supplies parasympathetic vagal motor output. Normally, insulin inhibits synaptic excitation of DMV neurons, with no effect on synaptic inhibition. Modulation of synaptic inhibition in DMV, however, is often sensitive to cAMP-dependent mechanisms. We hypothesized that an effect of insulin on GABAergic synaptic transmission may be uncovered by elevating resting cAMP levels in GABAergic terminals. We used whole cell patch-clamp recordings in brain stem slices from control and diabetic mice to identify insulin effects on inhibitory neurotransmission in the DMV in the presence of forskolin to elevate cAMP levels. In the presence of forskolin, insulin decreased the frequency of inhibitory postsynaptic currents (IPSCs) and the paired-pulse ratio of evoked IPSCs in DMV neurons from control mice. This effect was blocked by brefeldin-A, a Golgi-disrupting agent, or indinavir, a GLUT4 blocker, indicating that protein trafficking and glucose transport were involved. In streptozotocin-treated, diabetic mice, insulin did not affect IPSCs in DMV neurons in the presence of forskolin. Results suggest an impairment of cAMP-induced insulin effects on GABA release in the DMV, which likely involves disrupted protein trafficking in diabetic mice. These findings provide insight into mechanisms underlying vagal dysregulation associated with diabetes. PMID:24990858

  14. ALTERACIONES OCULOMOTORAS EN EL SÍNDROME DE BALINT: TERAPIA OCUPACIONAL ASISTIDA POR ORDENADOR Optic and motor alteration in Balint syndrome: computer assisted occupational therapy

    Directory of Open Access Journals (Sweden)

    L.P. Rodríguez

    2010-09-01

    Full Text Available

     

    El Síndrome de Balint, descrito en 1909, es un trastorno producido por las lesiones bilaterales de ambos lóbulos parieto-occipitales, que afecta a la conexión entre las regiones corticales de la visión y las áreas motrices prerrolándicas y caracterizado por la presencia de ataxia visual, incapacidad para ver y coger objetos e inatención visual. Amén de los métodos tradicionales de evaluación y tratamiento desde Terapia Ocupacional de los trastornos motrices producidos por el Síndrome, proponemos aquí una nueva vía de realización de ambas utilizando las nuevas tecnologías, haciendo realidad la Terapia Ocupacional Asistida por Ordenador.
    PALABRAS CLAVE: Terapia Ocupacional, ataxia óptica, atención visual, movimientos sacádicos.

    Balint Syndrome, which was reported in 1909, is an affection produced by bilateral parieto-occipital lesions affecting the connections between the visual cortical regions and the prerolandic motor areas and caracterized by visual ataxia, failure to grasp or touch objects, and visual inatention. Beyond traditional evaluation and treatment methods applied from Occupational Therapy to the motor diseases produced by syndrome, we propose a new way to do them using new technologies, doing reality Computer Assisted Occupational Therapy.
    KEY WORDS: Occupational Therapy, optic ataxia, visual attention, saccades movements

  15. QCM-4 a novel 5-HT3 antagonist attenuates the behavioral and biochemical alterations on chronic unpredictable mild stress model of depression in Swiss albino mice.

    Science.gov (United States)

    Kurhe, Yeshwant; Radhakrishnan, Mahesh; Gupta, Deepali; Devadoss, Thangaraj

    2014-01-01

    The inconsistent therapeutic outcome necessitates identifying novel compounds for the treatment of depression. Therefore, the present study is aimed at evaluating the antidepressant-like effects of a novel 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alterations in mice. Animals were subjected to different stressors for a period of 28 days. Thereafter, battery tests like locomotor score, sucrose preference test, forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM) and open field test (OFT) were performed. Biochemical assays like lipid peroxidation, nitrite levels, reduced glutathione (GSH), catalase and superoxide dismutase (SOD) were assessed in brain homogenate. QCM-4 dose dependently reversed the CUMS induced behavioral and biochemical alterations by increasing the sucrose consumption, reducing the immobility time in FST and TST, increasing the percent time in open arm in EPM and increasing the ambulation along with the rearings and decreased number of fecal pellets in OFT. Further, biochemical alterations were attenuated by QCM-4 as indicated by reduced lipid peroxidation and nitrite levels and elevated antioxidant enzyme levels like GSH, catalase and SOD. QCM-4 attenuated the behavioral and biochemical derangements induced by CUMS in mice, indicating antidepressant behavior of the novel compound. © 2013 Royal Pharmaceutical Society.

  16. Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus).

    Science.gov (United States)

    Harris, Breanna N; de Jong, Trynke R; Yang, Vanessa; Saltzman, Wendy

    2013-11-01

    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions. © 2013.

  17. Structural and Functional Brain Patterns of Non-Motor Syndromes in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Tino Prell

    2018-03-01

    Full Text Available Parkinson’s disease (PD is a common, progressive and multisystem neurodegenerative disorder characterized by motor and non-motor symptoms. Advanced magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging can render the view toward understanding the neural basis of these non-motor syndromes, as they help to understand the underlying pathophysiological abnormalities. This review provides an up-to-date description of structural and functional brain alterations in patients with PD with cognitive deficits, visual hallucinations, fatigue, impulsive behavior disorders, sleep disorders, and pain.

  18. Perceptual-cognitive changes during motor learning: The influence of mental and physical practice on mental representation, gaze behavior, and performance of a complex action

    Directory of Open Access Journals (Sweden)

    Cornelia eFrank

    2016-01-01

    Full Text Available Despite the wealth of research on differences between experts and novices with respect to their perceptual-cognitive background (e.g., mental representations, gaze behavior, little is known about the change of these perceptual-cognitive components over the course of motor learning. In the present study, changes in one’s mental representation, quiet eye behavior, and outcome performance were examined over the course of skill acquisition as it related to physical and mental practice. Novices (N = 45 were assigned to one of three conditions: physical practice, physical practice plus mental practice, and no practice. Participants in the practice groups trained on a golf putting task over the course of three days, either by repeatedly executing the putt, or by both executing and imaging the putt. Findings revealed improvements in putting performance across both practice conditions. Regarding the perceptual-cognitive changes, participants practicing mentally and physically revealed longer quiet eye durations as well as more elaborate representation structures in comparison to the control group, while this was not the case for participants who underwent physical practice only. Thus, in the present study, combined mental and physical practice led to both formation of mental representations in long-term memory and longer quiet eye durations. Interestingly, the length of the quiet eye directly related to the degree of elaborateness of the underlying mental representation, supporting the notion that the quiet eye reflects cognitive processing. This study is the first to show that the quiet eye becomes longer in novices practicing a motor action. Moreover, the findings of the present study suggest that perceptual and cognitive adaptations co-occur over the course of motor learning.

  19. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Eric W Fish

    Full Text Available Fragile X syndrome (FXS is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y mice with intracranial self-stimulation (ICSS and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynylpyridine (MPEP, was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  20. Perceptual-Cognitive Changes During Motor Learning: The Influence of Mental and Physical Practice on Mental Representation, Gaze Behavior, and Performance of a Complex Action.

    Science.gov (United States)

    Frank, Cornelia; Land, William M; Schack, Thomas

    2015-01-01

    Despite the wealth of research on differences between experts and novices with respect to their perceptual-cognitive background (e.g., mental representations, gaze behavior), little is known about the change of these perceptual-cognitive components over the course of motor learning. In the present study, changes in one's mental representation, quiet eye behavior, and outcome performance were examined over the course of skill acquisition as it related to physical and mental practice. Novices (N = 45) were assigned to one of three conditions: physical practice, combined physical plus mental practice, and no practice. Participants in the practice groups trained on a golf putting task over the course of 3 days, either by repeatedly executing the putt, or by both executing and imaging the putt. Findings revealed improvements in putting performance across both practice conditions. Regarding the perceptual-cognitive changes, participants practicing mentally and physically revealed longer quiet eye durations as well as more elaborate representation structures in comparison to the control group, while this was not the case for participants who underwent physical practice only. Thus, in the present study, combined mental and physical practice led to both formation of mental representations in long-term memory and longer quiet eye durations. Interestingly, the length of the quiet eye directly related to the degree of elaborateness of the underlying mental representation, supporting the notion that the quiet eye reflects cognitive processing. This study is the first to show that the quiet eye becomes longer in novices practicing a motor action. Moreover, the findings of the present study suggest that perceptual and cognitive adaptations co-occur over the course of motor learning.

  1. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Science.gov (United States)

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  2. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research-A Behavioral Study.

    Science.gov (United States)

    Furlan, Leonardo; Sterr, Annette

    2018-01-01

    Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed

  3. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Directory of Open Access Journals (Sweden)

    Kelly A Foley

    Full Text Available Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD. The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS, a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA, a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg on gestation days G12-16, LPS (50 µg/kg on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg or vehicle twice a day, every second day from postnatal days (P 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42 in the elevated plus maze (EPM and o