WorldWideScience

Sample records for alters motor behavior

  1. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    Science.gov (United States)

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  2. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    Science.gov (United States)

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups.

    Science.gov (United States)

    Venerosi, Aldina; Ricceri, Laura; Scattoni, Maria Luisa; Calamandrei, Gemma

    2009-03-30

    Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Late gestational exposure [gestational day (GD) 14-17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  4. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    Science.gov (United States)

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  6. Motor unit recruitment strategies are altered during deep-tissue pain.

    Science.gov (United States)

    Tucker, Kylie; Butler, Jane; Graven-Nielsen, Thomas; Riek, Stephan; Hodges, Paul

    2009-09-02

    Muscle pain is associated with decreased motor unit discharge rate during constant force contractions. As discharge rate is a determinant of force, other adaptations in strategy must explain force maintenance during pain. Our aim was to determine whether motor unit recruitment strategies are altered during pain to maintain force despite reduced discharge rate. Motor unit discharge behavior was recorded in two muscles, one with (quadriceps) and one without [flexor pollicis longus (FPL)] synergists. Motor units were recruited during matched low-force contractions with and without experimentally induced pain, and at higher force without pain. A total of 52 and 34 units were recorded in quadriceps and FPL, respectively, during low-force contractions with and without pain. Of these, 20 quadriceps and 9 FPL units were identified during both trials. The discharge rate of these units reduced during pain in both muscles [quadriceps: 8.7 (1.5) to 7.5 (1.3) Hz, p units discharged only with or without pain, but not in both conditions. Only one-third of the additional units recruited during pain (quadriceps n = 7/19, FPL n = 3/15) were those expected given orderly recruitment of the motor unit pool as determined during higher-force contractions. We conclude that reduced motor unit discharge rate with pain is accompanied by changes in the population of units used to maintain force. The recruitment of new units is partly inconsistent with generalized inhibition of the motoneuron pool predicted by the "pain adaptation" theory, and provides the basis for a new mechanism of motor adaptation with pain.

  7. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  8. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    Science.gov (United States)

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465

  9. Chronic bisphenol A exposure alters behaviors of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Wang, Ju; Wang, Xia; Xiong, Can; Liu, Jian; Hu, Bing; Zheng, Lei

    2015-01-01

    The adult zebrafish (Danio rerio) were exposed to treated-effluent concentration of bisphenol A (BPA) or 17β-estradiol (E2) for 6 months to evaluate their effects on behavioral characteristics: motor behavior, aggression, group preference, novel tank test and light/dark preference. E2 exposure evidently dampened fish locomotor activity, while BPA exposure had no marked effect. Interestingly, BPA-exposed fish reduced their aggressive behavior compared with control or E2. Both BPA and E2 exposure induced a significant decrease in group preference, as well as a weaker adaptability to new environment, exhibiting lower latency to reach the top, more entries to the top, longer time spent in the top, fewer frequent freezing, and fewer erratic movements. Furthermore, the circadian rhythmicity of light/dark preference was altered by either BPA or E2 exposure. Our results suggest that chronic exposure of treated-effluent concentration BPA or E2 induced various behavioral anomalies in adult fish and enhanced ecological risk to wildlife. - Highlights: • BPA exposure induces various adult behavioral anomalies. • BPA exposure decreases social interaction and environmental adaptation of zebrafish. • BPA exposure increases ecological risk to wildlife. - Chronic bisphenol A exposure alters zebrafish behaviors.

  10. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  11. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  12. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    Science.gov (United States)

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  13. Cognitive alterations in motor imagery process after left hemispheric ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available BACKGROUND: Motor imagery training is a promising rehabilitation strategy for stroke patients. However, few studies had focused on the neural mechanisms in time course of its cognitive process. This study investigated the cognitive alterations after left hemispheric ischemic stroke during motor imagery task. METHODOLOGY/PRINCIPAL FINDINGS: Eleven patients with ischemic stroke in left hemisphere and eleven age-matched control subjects participated in mental rotation task (MRT of hand pictures. Behavior performance, event-related potential (ERP and event-related (desynchronization (ERD/ERS in beta band were analyzed to investigate the cortical activation. We found that: (1 The response time increased with orientation angles in both groups, called "angle effect", however, stoke patients' responses were impaired with significantly longer response time and lower accuracy rate; (2 In early visual perceptual cognitive process, stroke patients showed hypo-activations in frontal and central brain areas in aspects of both P200 and ERD; (3 During mental rotation process, P300 amplitude in control subjects decreased while angle increased, called "amplitude modulation effect", which was not observed in stroke patients. Spatially, patients showed significant lateralization of P300 with activation only in contralesional (right parietal cortex while control subjects showed P300 in both parietal lobes. Stroke patients also showed an overall cortical hypo-activation of ERD during this sub-stage; (4 In the response sub-stage, control subjects showed higher ERD values with more activated cortical areas particularly in the right hemisphere while angle increased, named "angle effect", which was not observed in stroke patients. In addition, stroke patients showed significant lower ERD for affected hand (right response than that for unaffected hand. CONCLUSIONS/SIGNIFICANCE: Cortical activation was altered differently in each cognitive sub-stage of motor imagery after

  14. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Science.gov (United States)

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that

  15. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    Science.gov (United States)

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  16. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    Science.gov (United States)

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats.

    Science.gov (United States)

    Thomas, Jennifer D; Idrus, Nirelia M; Monk, Bradley R; Dominguez, Hector D

    2010-10-01

    Prenatal alcohol exposure can alter physical and behavioral development, leading to a range of fetal alcohol spectrum disorders. Despite warning labels, pregnant women continue to drink alcohol, creating a need to identify effective interventions to reduce the severity of alcohol's teratogenic effects. Choline is an essential nutrient that influences brain and behavioral development. Recent studies indicate that choline supplementation can reduce the teratogenic effects of developmental alcohol exposure. The present study examined whether choline supplementation during prenatal ethanol treatment could mitigate the adverse effects of ethanol on behavioral development. Pregnant Sprague-Dawley rats were intubated with 6 g/kg/day ethanol in a binge-like manner from gestational days 5-20; pair-fed and ad libitum chow controls were included. During treatment, subjects from each group were intubated with either 250 mg/kg/day choline chloride or vehicle. Spontaneous alternation, parallel bar motor coordination, Morris water maze, and spatial working memory were assessed in male and female offspring. Subjects prenatally exposed to alcohol exhibited delayed development of spontaneous alternation behavior and deficits on the working memory version of the Morris water maze during adulthood, effects that were mitigated with prenatal choline supplementation. Neither alcohol nor choline influenced performance on the motor coordination task. These data indicate that choline supplementation during prenatal alcohol exposure may reduce the severity of fetal alcohol effects, particularly on alterations in tasks that require behavioral flexibility. These findings have important implications for children of women who drink alcohol during pregnancy. © 2010 Wiley-Liss, Inc.

  18. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P motor units were recruited ∼30 ms earlier (P motor unit onset discharge frequencies were significantly higher (P Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  19. Differential motor alterations in children with three types of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Adrián Poblano

    2014-11-01

    Full Text Available Objective To determine frequency of motor alterations in children with attention deficit hyperactivity disorder (ADHD. Method We evaluated 19 children aged 7-12 years with ADHD classified in three sub-types: Combined (ADHD-C, with Inattention (ADHD-I, and with Hyperactivity (ADHD-H. Controls were age- and gender matched healthy children. We utilized Bruininks-Oseretsky Test of Motor Proficiency (BOTMP for measuring motor skills. Results We observed differences between children with ADHD and controls in BOTMP general score and in static coordination, dynamic general- and hand- coordination, and in synkinetic movements. We also found differences in dynamic hand coordination between controls and children with ADHD-C; in dynamic general coordination between controls and children with ADHD-H; and in frequency of synkinetic movements between controls and children with ADHD-H. Conclusion Children with ADHD with a major degree of hyperactivity showed greater frequency of motor alterations.

  20. Analysis of the motor behavior of a patient submitted to radical mastectomy - doi:10.5020/18061230.2009.p61

    Directory of Open Access Journals (Sweden)

    Lucas Flocke Hack

    2012-01-01

    Full Text Available Objective: To analyze the motor behavior of a patient in late postoperative of radical mastectomy during the accomplishment of some daily life activities, her gait and her body posture. Methods: This was an observational and descriptive case report study developed in an academic institution at Novo Hamburgo/RS, Brazil. By means of video recording, the accomplishment of daily life activities, the gait and body posture of a mastectomy patient were evaluated. Results: The most important alterations found were: increased base of support, torso swinging on gait, “S” shape scoliosis, accentuation of the spine physiologic curves and compensatory attitudes for reaching greater amplitudes of arm elevation at the same side of the surgery. Conclusion: We conclude that motor behavior alterations after surgery of radical mastectomy can be reasonably minimized, remaining a small reduction of movement amplitude and of muscular strength on upper limb and torso.

  1. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  2. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  3. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  4. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  5. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  6. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction.

    Science.gov (United States)

    Eixarch, Elisenda; Muñoz-Moreno, Emma; Bargallo, Nuria; Batalle, Dafnis; Gratacos, Eduard

    2016-06-01

    Intrauterine growth restriction is associated with short- and long-term neurodevelopmental problems. Structural brain changes underlying these alterations have been described with the use of different magnetic resonance-based methods that include changes in whole structural brain networks. However, evaluation of specific brain circuits and its correlation with related functions has not been investigated in intrauterine growth restriction. In this study, we aimed to investigate differences in tractography-related metrics in cortico-striatal-thalamic and motor networks in intrauterine growth restricted children and whether these parameters were related with their specific function in order to explore its potential use as an imaging biomarker of altered neurodevelopment. We included a group of 24 intrauterine growth restriction subjects and 27 control subjects that were scanned at 1 year old; we acquired T1-weighted and 30 directions diffusion magnetic resonance images. Each subject brain was segmented in 93 regions with the use of anatomical automatic labeling atlas, and deterministic tractography was performed. Brain regions included in motor and cortico-striatal-thalamic networks were defined based in functional and anatomic criteria. Within the streamlines that resulted from the whole brain tractography, those belonging to each specific circuit were selected and tractography-related metrics that included number of streamlines, fractional anisotropy, and integrity were calculated for each network. We evaluated differences between both groups and further explored the correlation of these parameters with the results of socioemotional, cognitive, and motor scales from Bayley Scale at 2 years of age. Reduced fractional anisotropy (cortico-striatal-thalamic, 0.319 ± 0.018 vs 0.315 ± 0.015; P = .010; motor, 0.322 ± 0.019 vs 0.319 ± 0.020; P = .019) and integrity cortico-striatal-thalamic (0.407 ± 0.040 vs 0.399 ± 0.034; P = .018; motor, 0.417 ± 0.044 vs 0

  7. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration.

    Science.gov (United States)

    Branchu, Julien; Boutry, Maxime; Sourd, Laura; Depp, Marine; Leone, Céline; Corriger, Alexandrine; Vallucci, Maeva; Esteves, Typhaine; Matusiak, Raphaël; Dumont, Magali; Muriel, Marie-Paule; Santorelli, Filippo M; Brice, Alexis; El Hachimi, Khalid Hamid; Stevanin, Giovanni; Darios, Frédéric

    2017-06-01

    Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Similar alteration of motor unit recruitment strategies during the anticipation and experience of pain.

    Science.gov (United States)

    Tucker, Kylie; Larsson, Anna-Karin; Oknelid, Stina; Hodges, Paul

    2012-03-01

    A motor unit consists of a motoneurone and the multiple muscle fibres that it innervates, and forms the final neural pathway that influences movement. Discharge of motor units is altered (decreased discharge rate and/or cessation of firing; and increased discharge rate and/or recruitment of new units) during matched-force contractions with pain. This is thought to be mediated by nociceptive (pain) input on motoneurones, as demonstrated in animal studies. It is also possible that motoneurone excitability is altered by pain related descending inputs, that these changes persist after noxious stimuli cease, and that direct nociceptive input is not necessary to induce pain related changes in movement. We aimed to determine whether anticipation of pain (descending pain related inputs without nociceptor discharge) alters motor unit discharge, and to observe motor unit discharge recovery after pain has ceased. Motor unit discharge was recorded with fine-wire electrodes in the quadriceps of 9 volunteers. Subjects matched isometric knee-extension force during anticipation of pain (anticipation: electrical shocks randomly applied over the infrapatellar fat-pad); pain (hypertonic saline injected into the fat-pad); and 3 intervening control conditions. Discharge rate of motor units decreased during pain (Precruitment of 1 population of units and new recruitment of another population were observed during both anticipation and pain; some changes in motor unit recruitment persisted after pain ceased. This challenges the fundamental theory that pain-related changes in muscle activity result from direct nociceptor discharge, and provides a mechanism that may underlie long-term changes in movement/chronicity in some musculoskeletal conditions. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy.

    Science.gov (United States)

    Dhanda, Saurabh; Sandhir, Rajat

    2015-06-01

    The present study was designed to evaluate the role of biogenic amines in behavioral alterations observed in rat model of hepatic encephalopathy (HE) following bile duct ligation (BDL). Male Wistar rats subjected to BDL developed biliary fibrosis after four weeks which was supported by altered liver function tests, increased ammonia levels and histological staining (Sirius red). Animals were assessed for their behavioral performance in terms of cognitive, anxiety and motor functions. The levels of dopamine (DA), serotonin (5-HT), epinephrine and norepinephrine (NE) were estimated in different regions of brain viz. cortex, hippocampus, striatum and cerebellum using HPLC along with activity of monoamine oxidase (MAO). Cognitive assessment of BDL rats revealed a progressive decline in learning, memory formation, retrieval, exploration of novel environment and spontaneous locomotor activity along with decrease in 5-HT and NE levels. This was accompanied by an increase in MAO activity. Motor functions of BDL rats were also altered which were evident from decrease in the time spent on the rotating rod and higher foot faults assessed using narrow beam walk task. A global decrease was observed in the DA content along with an increase in MAO activity. Histopathological studies using hematoxylin-eosin (H&E) and cresyl violet exhibited marked neuronal degeneration, wherein neurons appeared more pyknotic, condensed and damaged. The results reveal that dopaminergic and serotonergic pathways are disturbed in chronic liver failure post-BDL which may be responsible for behavioral impairments observed in HE. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    OpenAIRE

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has ...

  12. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    Science.gov (United States)

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  13. Effect of the home environment on motor and cognitive behavior of infants.

    Science.gov (United States)

    Miquelote, Audrei F; Santos, Denise C C; Caçola, Priscila M; Montebelo, Maria Imaculada de L; Gabbard, Carl

    2012-06-01

    Although information is sparse, research suggests that affordances in the home provide essential resources that promote motor and cognitive skills in young children. The present study assessed over time, the association between motor affordances in the home and infant motor and cognitive behavior. Thirty-two (32) infants were assessed for characteristics of their home using the Affordances in the Home Environment for Motor Development--Infant Scale and motor and cognitive behavior with the Bayley Scales of Infant and Toddler Development--III. Infant's home and motor behavior were assessed at age 9 months and 6 months later with the inclusion of cognitive ability. Results for motor ability indicated that there was an overall improvement in performance from the 1st to the 2nd assessment. We found significant positive correlations between the dimensions of the home (daily activities and play materials) and global motor performance (1st assessment) and fine-motor performance on the 2nd assessment. In regard to cognitive performance (2nd assessment), results indicated a positive association with fine-motor performance. Our results suggest that motor affordances can have a positive impact on future motor ability and speculatively, later cognitive behavior in infants. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Gonadotropin-releasing hormone receptor (Gnrhr gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Directory of Open Access Journals (Sweden)

    Ellen R Busby

    Full Text Available Gonadotropin-releasing hormone (GnRH is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  15. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Science.gov (United States)

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  16. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    Science.gov (United States)

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  17. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Directory of Open Access Journals (Sweden)

    Chuanming Wang

    2016-01-01

    Full Text Available Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  18. A framework to describe, analyze and generate interactive motor behaviors.

    Directory of Open Access Journals (Sweden)

    Nathanaël Jarrassé

    Full Text Available While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

  19. Trained, generalized, and collateral behavior changes of preschool children receiving gross-motor skills training.

    OpenAIRE

    Kirby, K C; Holborn, S W

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Ten target behaviors were measured in the training setting to assess direct effects of the program. Generalization probes for two gross-motor behaviors, one fine-motor skill, and two social behaviors were conducted in other settings. Results indicated that the training program improved the gross-motor skills trained and that improvements sometimes generalized to other settings. Contrary...

  20. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  1. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  2. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Costa, Lidiane M; Pedroso, Taíse F; Fonseca, Mariana M; Bernardi, Jamile S; Fiuza, Tiago L; Pereira, Maria E

    2016-10-01

    The aim of this work was to investigate the effects of HgCl 2 exposure in the doses of 0, 10 and 50μg Hg 2+ /mL in drinking water during pregnancy on tissue essential metal homeostasis, as well as the effects of HgCl 2 exposure in utero and breast milk on behavioral tasks. Pregnant rats exposed to both inorganic mercury doses presented high renal Hg content and an increase in renal Cu and hepatic Zn levels. Mercury exposure increased fecal Hg and essential metal contents. Pups exposed to inorganic Hg presented no alterations in essential metal homeostasis or in behavioral task markers of motor function. In conclusion, this work showed that the physiologic pregnancy and lactation states protected the offspring from adverse effects of low doses of Hg 2+ . This protection is likely to be related to the endogenous scavenger molecule, metallothionein, which may form an inert complex with Hg 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    Science.gov (United States)

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  4. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    to motoneurons during rhythmic motor behaviors, and specifically the hypothesis that motoneurons receive concurrent excitatory and inhibitory (E/I) inputs. Berg et al. (2007) presented the concurrent hypothesis, which goes against the classical feed forward reciprocal model for spinal motor networks that has...... gained widespread acceptance. We developed an adult turtle preparation where the spinal motor network was intact, which also allowed us to perform intracellular recordings from motoneurons during rhythmic motor activity. We estimated the synaptic excitatory and inhibitory conductances by two individual...... (Buzsáki and Mizuseki, 2014). Roxin et al. (2011) detailed the firing rate distribution in networks in the balanced regime, and found it to be similar to a lognormal distribution and describing the data from the population studies very well. Our experimental observations and analysis are in agreement...

  5. MicroRNA-128 governs neuronal excitability and motor behavior in mice

    DEFF Research Database (Denmark)

    Tan, Chan Lek; Plotkin, Joshua L.; Venø, Morten Trillingsgaard

    2013-01-01

    The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excita...

  6. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    Science.gov (United States)

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Neuromodulation during motor development and behavior.

    Science.gov (United States)

    Pflüger, H J

    1999-12-01

    Important recent advances have been made in understanding the role of aminergic modulation during the maturation of Xenopus larvae swimming rhythms, including effects on particular ion channel types of component neurons, and the role of peptidergic modulation during development of adult central patterns generators in the stomatogastric ganglion of crustaceans. By recording from octopaminergic neuromodulatory neurons during ongoing motor behavior in the locust, new insights into the role of this peripheral neuromodulatory mechanism have been gained. In particular, it is now clear that the octopaminergic neuromodulatory system is automatically activated in parallel to the motor systems, and that both excitation and inhibition play important functional roles.

  8. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States); Lansdell, Theresa A., E-mail: lansdel1@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Lookingland, Keith J., E-mail: lookingl@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Baker, Lisa E., E-mail: lisa.baker@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States)

    2015-12-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  9. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Walters, Jennifer L.; Lansdell, Theresa A.; Lookingland, Keith J.; Baker, Lisa E.

    2015-01-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  10. Adult-onset stereotypical motor behaviors.

    Science.gov (United States)

    Maltête, D

    Stereotypies have been defined as non-goal-directed movement patterns repeated continuously for a period of time in the same form and on multiple occasions, and which are typically distractible. Stereotypical motor behaviors are a common clinical feature of a variety of neurological conditions that affect cortical and subcortical functions, including autism, tardive dyskinesia, excessive dopaminergic treatment of Parkinson's disease and frontotemporal dementia. The main differential diagnosis of stereotypies includes tic disorders, motor mannerisms, compulsion and habit. The pathophysiology of stereotypies may involve the corticostriatal pathways, especially the orbitofrontal and anterior cingulated cortices. Because antipsychotics have long been used to manage stereotypical behaviours in mental retardation, stereotypies that present in isolation tend not to warrant pharmacological intervention, as the benefit-to-risk ratio is not great enough. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain.

    Science.gov (United States)

    Ijomone, Omamuyovwi Meashack; Okori, Stephen Odey; Ijomone, Olayemi Kafilat; Ebokaiwe, Azubike Peter

    2018-02-26

    Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl 2 ) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl 2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.

  12. Trained, Generalized, and Collateral Behavior Changes of Preschool Children Receiving Gross-Motor Skills Training.

    Science.gov (United States)

    Kirby, Kimberly C.; Holborn, Stephen W.

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Results indicated that the program improved the 10 targeted gross-motor skills and that improvements sometimes generalized to other settings. The program did not produce changes in fine-motor skills or social behaviors. Implications are…

  13. Low-Back Pain Patients Learn to Adapt Motor Behavior with Adverse Secondary Consequences

    NARCIS (Netherlands)

    van Dieën, Jaap H.; Flor, Herta; Hodges, Paul W.

    2017-01-01

    ABSTRACT: We hypothesize that changes in motor behavior in individuals with low-back pain are adaptations aimed at minimizing the real or perceived risk of further pain. Through reinforcement learning, pain and subsequent adaptions result in less dynamic motor behavior, leading to increased loading

  14. Neonatal Stroke Causes Poor Midline Motor Behaviors and Poor Fine and Gross Motor Skills during Early Infancy

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.

    2013-01-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…

  15. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  16. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  17. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl

    Directory of Open Access Journals (Sweden)

    Mariam Alaverdashvili

    2017-05-01

    Full Text Available Manganese-enhanced magnetic resonance imaging (MEMRI has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg. The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are

  18. Physiological markers of motor inhibition during human behavior

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  19. Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping

    Science.gov (United States)

    Thomas, Jerry R.

    2006-01-01

    Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…

  20. Altered synaptic plasticity in Tourette's syndrome and its relationship to motor skill learning.

    Directory of Open Access Journals (Sweden)

    Valerie Cathérine Brandt

    Full Text Available Gilles de la Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics that can be considered motor responses to preceding inner urges. It has been shown that Tourette patients have inferior performance in some motor learning tasks and reduced synaptic plasticity induced by transcranial magnetic stimulation. However, it has not been investigated whether altered synaptic plasticity is directly linked to impaired motor skill acquisition in Tourette patients. In this study, cortical plasticity was assessed by measuring motor-evoked potentials before and after paired associative stimulation in 14 Tourette patients (13 male; age 18-39 and 15 healthy controls (12 male; age 18-33. Tic and urge severity were assessed using the Yale Global Tic Severity Scale and the Premonitory Urges for Tics Scale. Motor learning was assessed 45 minutes after inducing synaptic plasticity and 9 months later, using the rotary pursuit task. On average, long-term potentiation-like effects in response to the paired associative stimulation were present in healthy controls but not in patients. In Tourette patients, long-term potentiation-like effects were associated with more and long-term depression-like effects with less severe urges and tics. While motor learning did not differ between patients and healthy controls 45 minutes after inducing synaptic plasticity, the learning curve of the healthy controls started at a significantly higher level than the Tourette patients' 9 months later. Induced synaptic plasticity correlated positively with motor skills in healthy controls 9 months later. The present study confirms previously found long-term improvement in motor performance after paired associative stimulation in healthy controls but not in Tourette patients. Tourette patients did not show long-term potentiation in response to PAS and also showed reduced levels of motor skill consolidation after 9 months compared to healthy controls. Moreover

  1. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    NARCIS (Netherlands)

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  2. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  3. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  4. Primary motor cortex alterations in Alzheimer disease: A study in the 3xTg-AD model.

    Science.gov (United States)

    Orta-Salazar, E; Feria-Velasco, A I; Díaz-Cintra, S

    2017-04-19

    In humans and animal models, Alzheimer disease (AD) is characterised by accumulation of amyloid-β peptide (Aβ) and hyperphosphorylated tau protein, neuronal degeneration, and astrocytic gliosis, especially in vulnerable brain regions (hippocampus and cortex). These alterations are associated with cognitive impairment (loss of memory) and non-cognitive impairment (motor impairment). The purpose of this study was to identify cell changes (neurons and glial cells) and aggregation of Aβ and hyperphosphorylated tau protein in the primary motor cortex (M1) in 3xTg-AD mouse models at an intermediate stage of AD. We used female 3xTg-AD mice aged 11 months and compared them to non-transgenic mice of the same age. In both groups, we assessed motor performance (open field test) and neuronal damage in M1 using specific markers: BAM10 (extracellular Aβ aggregates), tau 499 (hyperphosphorylated tau protein), GFAP (astrocytes), and Klüver-Barrera staining (neurons). Female 3xTg-AD mice in intermediate stages of the disease displayed motor and cellular alterations associated with Aβ and hyperphosphorylated tau protein deposition in M1. Patients with AD display signs and symptoms of functional impairment from early stages. According to our results, M1 cell damage in intermediate-stage AD affects motor function, which is linked to progression of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    OpenAIRE

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  6. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Electrocorticographic Temporal Alteration Mapping: A Clinical Technique for Mapping the Motor Cortex with Movement-Related Cortical Potentials

    Directory of Open Access Journals (Sweden)

    Zehan Wu

    2017-06-01

    Full Text Available We propose electrocorticographic temporal alteration mapping (ETAM for motor cortex mapping by utilizing movement-related cortical potentials (MRCPs within the low-frequency band [0.05-3] Hz. This MRCP waveform-based temporal domain approach was compared with the state-of-the-art electrocorticographic frequency alteration mapping (EFAM, which is based on frequency spectrum dynamics. Five patients (two epilepsy cases and three tumor cases were enrolled in the study. Each patient underwent intraoperative direct electrocortical stimulation (DECS procedure for motor cortex localization. Moreover, the patients were required to perform simple brisk wrist extension task during awake craniotomy surgery. Cross-validation results showed that the proposed ETAM method had high sensitivity (81.8% and specificity (94.3% in identifying sites which exhibited positive DECS motor responses. Moreover, although the sensitivity of the ETAM and EFAM approaches was not significantly different, ETAM had greater specificity compared with EFAM (94.3 vs. 86.1%. These results indicate that for the intraoperative functional brain mapping, ETAM is a promising novel approach for motor cortex localization with the potential to reduce the need for cortical electrical stimulation.

  8. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  9. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  10. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Deficient inhibition in alcohol-dependence: let's consider the role of the motor system!

    Science.gov (United States)

    Quoilin, Caroline; Wilhelm, Emmanuelle; Maurage, Pierre; de Timary, Philippe; Duque, Julie

    2018-04-26

    Impaired inhibitory control contributes to the development, maintenance, and relapse of alcohol-dependence, but the neural correlates of this deficit are still unclear. Because inhibitory control has been labeled as an executive function, most studies have focused on prefrontal areas, overlooking the contribution of more "primary" structures, such as the motor system. Yet, appropriate neural inhibition of the motor output pathway has emerged as a central aspect of healthy behavior. Here, we tested the hypothesis that this motor inhibition is altered in alcohol-dependence. Neural inhibitory measures of motor activity were obtained in 20 detoxified alcohol-dependent (AD) patients and 20 matched healthy subjects, using a standard transcranial magnetic stimulation procedure whereby motor-evoked potentials (MEPs) are elicited in a choice reaction time task. Moreover, behavioral inhibition and trait impulsivity were evaluated in all participants. Finally, the relapse status of patients was assessed 1 year after the experiment. As expected, AD patients displayed poorer behavioral inhibition and higher trait impulsivity than controls. More importantly, the MEP data revealed a considerable shortage of neural motor inhibition in AD patients. Interestingly, this neural defect was strongest in the patients who ended up relapsing during the year following the experiment. Our data suggest a strong motor component in the neural correlates of altered inhibitory control in AD patients. They also highlight an intriguing relationship with relapse and the perspective of a new biomarker to follow strategies aiming at reducing relapse in AD patients.

  12. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors.

    Science.gov (United States)

    Claassen, Daniel O; van den Wildenberg, Wery P M; Harrison, Madaline B; van Wouwe, Nelleke C; Kanoff, Kristen; Neimat, Joseph S; Wylie, Scott A

    2015-02-01

    Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. We used the stop-signal task in a cohort of patients with and without active symptoms of ICD to evaluate motor-impulsivity. Of those with PD, 12 were diagnosed with ICD symptoms (PD-ICD) and were assessed before clinical reduction of dopamine agonist medication; 12 were without symptoms of ICD [PD-control] and taking equivalent dosages of dopamine agonist. Levodopa, if present, was maintained in both settings. Groups were similar in age, duration, and severity of motor symptoms, levodopa co-therapy, and total levodopa daily dose. All were tested in the dopamine agonist medicated and acutely withdrawn (24 h) state, in a counterbalanced manner. Primary outcome measures were mean reaction time to correct go trials (go reaction time), and mean stop-signal reaction time (SSRT). ICD patients produce faster SSRT than both Healthy Controls, and PD-Controls. Faster SSRT in ICD patients is apparent in both dopamine agonist medication states. Also, we show unique dopamine medication effects on Go Reaction time (GoRT). In dopamine agonist monotherapy patients, dopamine agonist administration speeds GoRT. Conversely, in those with levodopa co-therapy, dopamine agonist administration slows. PD patients with active ICD symptoms are significantly faster at stopping initiated motor actions, and this is not altered by acute dopamine agonist withdrawal. In addition, the effect of dopamine agonist on GoRT is strongly influenced by the presence or absence of levodopa, even though levodopa co-therapy does not appear to influence SSRT. We discuss these findings as they pertain to the multifaceted definition of 'impulsivity,' the lack of evidence for motor-impulsivity in PD-ICD, and dopamine effects on motor-control in PD. Copyright © 2014 Elsevier Inc

  13. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Directory of Open Access Journals (Sweden)

    Orban de Xivry J-J

    Full Text Available Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm was varied either on a trial-to-trial basis (random schedule or in blocks (blocked schedule. On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  14. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers.

    Science.gov (United States)

    Bernardo, Melissa A; Singer, Michael S

    2017-08-15

    Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.

  15. Fast social-like learning of complex behaviors based on motor motifs

    Science.gov (United States)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  16. The relationship between the behavior problems and motor skills of students with intellectual disability.

    Science.gov (United States)

    Lee, Yangchool; Jeoung, Bogja

    2016-12-01

    The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.

  17. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    Science.gov (United States)

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    Energy Technology Data Exchange (ETDEWEB)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Cooney, Craig A. [Department of Research and Development, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205-5484 (United States); Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J. [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Wessinger, William D. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham St., Little Rock, AR 72205 (United States)

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  19. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-01-01

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  20. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  1. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    Science.gov (United States)

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGAmotor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    Science.gov (United States)

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  3. Motor development in individuals with congenital adrenal hyperplasia: strength, targeting, and fine motor skill.

    Science.gov (United States)

    Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa

    2009-02-01

    This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.

  4. Alterations in Striatal Circuits Underlying Addiction-Like Behaviors.

    Science.gov (United States)

    Kim, Hyun Jin; Lee, Joo Han; Yun, Kyunghwa; Kim, Joung-Hun

    2017-06-30

    Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

  5. The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance.

    Science.gov (United States)

    Heise, Kirstin-F; Zimerman, Maximo; Hoppe, Julia; Gerloff, Christian; Wegscheider, Karl; Hummel, Friedhelm C

    2013-05-22

    Since GABAA-mediated intracortical inhibition has been shown to underlie plastic changes throughout the lifespan from development to aging, here, the aging motor system was used as a model to analyze the interdependence of plastic alterations within the inhibitory motorcortical network and level of behavioral performance. Double-pulse transcranial magnetic stimulation (dpTMS) was used to examine inhibition by means of short-interval intracortical inhibition (SICI) of the contralateral primary motor cortex in a sample of 64 healthy right-handed human subjects covering a wide range of the adult lifespan (age range 20-88 years, mean 47.6 ± 20.7, 34 female). SICI was evaluated during resting state and in an event-related condition during movement preparation in a visually triggered simple reaction time task. In a subgroup (N = 23), manual motor performance was tested with tasks of graded dexterous demand. Weak resting-state inhibition was associated with an overall lower manual motor performance. Better event-related modulation of inhibition correlated with better performance in more demanding tasks, in which fast alternating activation of cortical representations are necessary. Declining resting-state inhibition was associated with weakened event-related modulation of inhibition. Therefore, reduced resting-state inhibition might lead to a subsequent loss of modulatory capacity, possibly reflecting malfunctioning precision in GABAAergic neurotransmission; the consequence is an inevitable decline in motor function.

  6. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  7. The role of pre-school children motor behavior in developing their self-concept

    Directory of Open Access Journals (Sweden)

    Perić Dušan

    2014-01-01

    Full Text Available The assessment of motor behavior and general intellectual abilities were performed on a sample of 42 pre-school children (22 boys and 20 girls aged 6 (±3 months; moreover, the self-concept of those children was analysed. For the assessment of their motor behavior six movement tasks were chosen and the Mary Gutrich scale was applied for the analysis of the results. The children's intellectual abilities were assessed by the means of Raven's colored progressive matrices so as to enable the groups to homogenise, as well as to eliminate potential parasite factors when drawing conclusions. The self-concept analysis was performed using the pshychological interview during the course of which the children described their impression of their own abilities with regard to the past, present and future. The data related to the self-concept were complemented with the analysis of the children's drawings. The statistical analysis of the data gathered showed that motor behavior plays a significant role in developing one's self-concept, which is especially true of boys. Even though there is no significant statistical difference between boys and girls with respect to the quality of their motor behavior, there are significant differences between them pertaining to the vocabulary they use when describing their own selves, i.e. their self-concept, especially with respect to the present and future. Boys seem to use more extensive motor-related vocabulary when describing themselves, especially those with greater motor skills. Both boys and girls show a tendency to describe themselves as incapable in the past. When describing their present moment capabilities, girls tend to use vocabulary related to play and independence, whereas they mostly use vocabulary related to professions and sex roles when referring to the future. These findings indicate that social factors are of immense importance from a very early age, especially among girls. Moreover, the results show that

  8. Chronic Stress Impairs Spatial Memory and Motivation for Reward Without Disrupting Motor Ability and Motivation to Explore

    OpenAIRE

    Kleen, Jonathan K.; Sitomer, Matthew T.; Killeen, Peter R.; Conrad, Cheryl D.

    2006-01-01

    This study uses an operant, behavioral model to assess the daily changes in the decay rate of short-term memory, motivation, and motor ability in rats exposed to chronic restraint. Restraint decreased reward-related motivation by 50% without altering memory decay rate or motor ability. Moreover, chronic restraint impaired hippocampal-dependent spatial memory on the Y maze (4-hr delay) and produced CA3 dendritic retraction without altering hippocampal-independent maze navigation (1-min delay) ...

  9. Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

    Directory of Open Access Journals (Sweden)

    Julia Schiemann

    2015-05-01

    Full Text Available Neuronal activity in primary motor cortex (M1 correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1 a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons, and (2 a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.

  10. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia

    Directory of Open Access Journals (Sweden)

    Stefano Cinque

    2018-02-01

    Full Text Available Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD and obsessive-compulsive disorder (OCD. Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT knockout (KO and heterozygous (HET mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1. Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT–HET dams bred with DAT–HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats’ sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT. During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH and RO-5203648, a trace amine-associated receptor 1 (TAAR1 partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2, serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research.

  11. Associations of Gross Motor Delay, Behavior, and Quality of Life in Young Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry

    2018-04-01

    Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross

  12. Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol.

    Science.gov (United States)

    Becker, Jérôme A J; Kieffer, Brigitte L; Le Merrer, Julie

    2017-09-01

    Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse. © 2016 Society for the Study of Addiction.

  13. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Directory of Open Access Journals (Sweden)

    Volker Kast

    Full Text Available Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers and untrained individuals (novices in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  14. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Science.gov (United States)

    Kast, Volker; Leukel, Christian

    2016-01-01

    Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers) and untrained individuals (novices) in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  15. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    Science.gov (United States)

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  16. White matter alterations and their associations with motor function in young adults born preterm with very low birth weight

    Directory of Open Access Journals (Sweden)

    Ingrid Marie Husby Hollund

    2018-01-01

    Full Text Available Very low birth weight (VLBW: ≤1500 g individuals have an increased risk of white matter alterations and neurodevelopmental problems, including fine and gross motor problems. In this hospital-based follow-up study, the main aim was to examine white matter microstructure and its relationship to fine and gross motor function in 31 VLBW young adults without cerebral palsy compared with 31 term-born controls, at mean age 22.6 ± 0.7 years. The participants were examined with tests of fine and gross motor function (Trail Making Test-5: TMT-5, Grooved Pegboard, Triangle from Movement Assessment Battery for Children-2: MABC-2 and High-level Mobility Assessment Tool: HiMAT and diffusion tensor imaging (DTI. Probabilistic tractography of motor pathways of the corticospinal tract (CST and corpus callosum (CC was performed. Fractional anisotropy (FA was calculated in non-crossing (capsula interna in CST, body of CC and crossing (centrum semiovale fibre regions along the tracts and examined for group differences. Associations between motor test scores and FA in the CST and CC were investigated with linear regression. Tract-based spatial statistics (TBSS was used to examine group differences in DTI metrics in all major white matter tracts. The VLBW group had lower scores on all motor tests compared with controls, however, only statistically significant for TMT-5. Based on tractography, FA in the VLBW group was lower in non-crossing fibre regions and higher in crossing fibre regions of the CST compared with controls. Within the VLBW group, poorer fine motor function was associated with higher FA in crossing fibre regions of the CST, and poorer bimanual coordination was additionally associated with lower FA in crossing fibre regions of the CC. Poorer gross motor function was associated with lower FA in crossing fibre regions of the CST and CC. There were no associations between motor function and FA in non-crossing fibre regions of the CST and CC within

  17. White matter alterations and their associations with motor function in young adults born preterm with very low birth weight.

    Science.gov (United States)

    Hollund, Ingrid Marie Husby; Olsen, Alexander; Skranes, Jon; Brubakk, Ann-Mari; Håberg, Asta K; Eikenes, Live; Evensen, Kari Anne I

    2018-01-01

    Very low birth weight (VLBW: ≤ 1500 g) individuals have an increased risk of white matter alterations and neurodevelopmental problems, including fine and gross motor problems. In this hospital-based follow-up study, the main aim was to examine white matter microstructure and its relationship to fine and gross motor function in 31 VLBW young adults without cerebral palsy compared with 31 term-born controls, at mean age 22.6 ± 0.7 years. The participants were examined with tests of fine and gross motor function (Trail Making Test-5: TMT-5, Grooved Pegboard, Triangle from Movement Assessment Battery for Children-2: MABC-2 and High-level Mobility Assessment Tool: HiMAT) and diffusion tensor imaging (DTI). Probabilistic tractography of motor pathways of the corticospinal tract (CST) and corpus callosum (CC) was performed. Fractional anisotropy (FA) was calculated in non-crossing (capsula interna in CST, body of CC) and crossing (centrum semiovale) fibre regions along the tracts and examined for group differences. Associations between motor test scores and FA in the CST and CC were investigated with linear regression. Tract-based spatial statistics (TBSS) was used to examine group differences in DTI metrics in all major white matter tracts. The VLBW group had lower scores on all motor tests compared with controls, however, only statistically significant for TMT-5. Based on tractography, FA in the VLBW group was lower in non-crossing fibre regions and higher in crossing fibre regions of the CST compared with controls. Within the VLBW group, poorer fine motor function was associated with higher FA in crossing fibre regions of the CST, and poorer bimanual coordination was additionally associated with lower FA in crossing fibre regions of the CC. Poorer gross motor function was associated with lower FA in crossing fibre regions of the CST and CC. There were no associations between motor function and FA in non-crossing fibre regions of the CST and CC within the VLBW

  18. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  19. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  20. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Byrnes, E M; Bruno, J P

    1994-09-01

    The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.

  1. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  2. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    International Nuclear Information System (INIS)

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-01-01

    At date the major neuroreceptors i.e. γ-aminobutyric acid A (GABA A R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA A R agonist (muscimol, MUS; 0,1 μg/g body weight) and/or its antagonist bicuculline (BIC; 1 μg/g body weight) have corroborated a GABA A ergic role on motor behaviors. In particular, MUS induced moderate (p A R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA A R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  3. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Spinetta, Michael J; Thomas, Jennifer D; Riley, Edward P

    2011-01-01

    The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    Science.gov (United States)

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  5. Altered cortical processing of motor inhibition in schizophrenia.

    Science.gov (United States)

    Lindberg, Påvel G; Térémetz, Maxime; Charron, Sylvain; Kebir, Oussama; Saby, Agathe; Bendjemaa, Narjes; Lion, Stéphanie; Crépon, Benoît; Gaillard, Raphaël; Oppenheim, Catherine; Krebs, Marie-Odile; Amado, Isabelle

    2016-12-01

    Inhibition is considered a key mechanism in schizophrenia. Short-latency intracortical inhibition (SICI) in the motor cortex is reduced in schizophrenia and is considered to reflect locally deficient γ-aminobutyric acid (GABA)-ergic modulation. However, it remains unclear how SICI is modulated during motor inhibition and how it relates to neural processing in other cortical areas. Here we studied motor inhibition Stop signal task (SST) in stabilized patients with schizophrenia (N = 28), healthy siblings (N = 21) and healthy controls (n = 31) matched in general cognitive status and educational level. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were used to investigate neural correlates of motor inhibition. SST performance was similar in patients and controls. SICI was modulated by the task as expected in healthy controls and siblings but was reduced in patients with schizophrenia during inhibition despite equivalent motor inhibition performance. fMRI showed greater prefrontal and premotor activation during motor inhibition in schizophrenia. Task-related modulation of SICI was higher in subjects who showed less inhibition-related activity in pre-supplementary motor area (SMA) and cingulate motor area. An exploratory genetic analysis of selected markers of inhibition (GABRB2, GAD1, GRM1, and GRM3) did not explain task-related differences in SICI or cortical activation. In conclusion, this multimodal study provides direct evidence of a task-related deficiency in SICI modulation in schizophrenia likely reflecting deficient GABA-A related processing in motor cortex. Compensatory activation of premotor areas may explain similar motor inhibition in patients despite local deficits in intracortical processing. Task-related modulation of SICI may serve as a useful non-invasive GABAergic marker in development of therapeutic strategies in schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Plasticity Induced by Intermittent Theta Burst Stimulation in Bilateral Motor Cortices Is Not Altered in Older Adults

    Directory of Open Access Journals (Sweden)

    Daina S. E. Dickins

    2015-01-01

    Full Text Available Numerous studies have reported that plasticity induced in the motor cortex by transcranial magnetic stimulation (TMS is attenuated in older adults. Those investigations, however, have focused solely on the stimulated hemisphere. Compared to young adults, older adults exhibit more widespread activity across bilateral motor cortices during the performance of unilateral motor tasks, suggesting that the manifestation of plasticity might also be altered. To address this question, twenty young (65 years underwent intermittent theta burst stimulation (iTBS whilst attending to the hand targeted by the plasticity-inducing procedure. The amplitude of motor evoked potentials (MEPs elicited by single pulse TMS was used to quantify cortical excitability before and after iTBS. Individual responses to iTBS were highly variable, with half the participants showing an unexpected decrease in cortical excitability. Contrary to predictions, however, there were no age-related differences in the magnitude or manifestation of plasticity across bilateral motor cortices. The findings suggest that advancing age does not influence the capacity for, or manifestation of, plasticity induced by iTBS.

  7. Plasticity Induced by Intermittent Theta Burst Stimulation in Bilateral Motor Cortices Is Not Altered in Older Adults

    Science.gov (United States)

    Dickins, Daina S. E.; Sale, Martin V.

    2015-01-01

    Numerous studies have reported that plasticity induced in the motor cortex by transcranial magnetic stimulation (TMS) is attenuated in older adults. Those investigations, however, have focused solely on the stimulated hemisphere. Compared to young adults, older adults exhibit more widespread activity across bilateral motor cortices during the performance of unilateral motor tasks, suggesting that the manifestation of plasticity might also be altered. To address this question, twenty young (65 years) underwent intermittent theta burst stimulation (iTBS) whilst attending to the hand targeted by the plasticity-inducing procedure. The amplitude of motor evoked potentials (MEPs) elicited by single pulse TMS was used to quantify cortical excitability before and after iTBS. Individual responses to iTBS were highly variable, with half the participants showing an unexpected decrease in cortical excitability. Contrary to predictions, however, there were no age-related differences in the magnitude or manifestation of plasticity across bilateral motor cortices. The findings suggest that advancing age does not influence the capacity for, or manifestation of, plasticity induced by iTBS. PMID:26064691

  8. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    Science.gov (United States)

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-06-01

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated

  9. Force and complexity of tongue task training influences behavioral measures of motor learning

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Huo, Xueliang

    2012-01-01

    Relearning of motor skills is important in neurorehabilitation. We investigated the improvement of training success during simple tongue protrusion (two force levels) and a more complex tongue-training paradigm using the Tongue Drive System (TDS). We also compared subject-based reports of fun, pain...... training influences behavioral aspects of tongue motor learning....

  10. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients.

    Science.gov (United States)

    Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2017-01-01

    Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n  = 14) and healthy controls ( n  = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the

  11. Feeding behaviors and other motor development in healthy children (2-24 months).

    Science.gov (United States)

    Carruth, Betty Ruth; Skinner, Jean D

    2002-04-01

    To monitor infant's gross, fine and oral motor development patterns related to feeding. An incomplete block design was used with 57 to 60 (sample = 98) mothers interviewed when their children were 2, 3, 4, 6, 8, 10, 12, 16 and 24 months (within +/- 5 days of birth date). Each mother had 5 to 6 interviews. Selected developmental feeding behaviors were monitored using in-home interviews conducted by trained interviewers (n = 2). At each interview, mothers reported the child's age when behaviors first occurred, and anthropometric measurements were performed. Subjects were healthy white children who lived mostly in homes with educated two-parent families of upper socioeconomic status. Mean behavioral ages were within normal ranges reported in the literature, whereas individuals exhibited a wide diversity in reported ages. Examples of gross motor skills (age in months, +/- SD) included sitting without help (5.50+/-2.08) and crawling (8.00+/-1.55). Mean ages for self-feeding fine motor skills showed children reaching for a spoon when hungry (5.47+/-1.44), using fingers to rake food toward self (8.87+/-2.58) and using fingers to self-feed soft foods (13.52+/-2.83). Oral behaviors included children opening their mouth when food approached (4.46+/-1.37), eating food with tiny lumps (8.70+/-2.03) and chewing and swallowing firmer foods without choking (12.17+/-2.28). Mean ages for feeding behaviors occurred within expected age ranges associated with normal development. However, mothers reported that individual children exhibited a wide age range for achieving these behaviors. Our results should be considered in counseling mothers about infant feeding practices.

  12. Dietary restriction alters fine motor function in rats.

    Science.gov (United States)

    Smith, Lori K; Metz, Gerlinde A

    2005-08-07

    A number of standard behavioral tasks in animal research utilize food rewards for positive reinforcement. In order to enhance the motivation to participate in these tasks, animals are usually placed on a restricted diet. While dietary restriction (DR) has been shown to have beneficial effects on recovery after brain injury, life span and aging processes, it might also represent a stressor. Since stress can influence a broad range of behaviors, the purpose of this study was to assess whether DR may have similar effects on skilled movement. Adult male Long-Evans rats were trained and tested in a skilled reaching task both prior to and during a mild food restriction regimen that maintained their body weights at 90-95% of baseline weight for eight days. The observations revealed that DR decreased reaching success and increased the number of attempts to grasp a single food pellet. The animals appeared to be more frantic when attempting to reach for food pellets, and the time taken to reach for 20 pellets decreased following the onset of DR. A second experiment investigating behaviors that do not require food rewards, including a ladder rung walking task and an open field test, confirmed that rats on DR display deficits in skilled movements and are hyperactive. These findings suggest that results obtained in motor tasks using food rewards need to be interpreted with caution. The findings are discussed with respect to stress associated with DR.

  13. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    Science.gov (United States)

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    Science.gov (United States)

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  15. Is there an association among actual motor competence, perceived motor competence, physical activity, and sedentary behavior in preschool children?

    OpenAIRE

    Lopes, Vítor P.; Barnett, L.M.; Rodrigues, Luis Paulo

    2016-01-01

    The purpose is to explore relationships among moderate to vigorous physical activity (MVPA), sedentary behavior (SB), and actual gross motor competence (MC) and perceived motor competence (PMC) in young children. Data were collected in 101 children (M age = 4.9 ± 0.93 years). MVPA was measured with accelerometry. Gross MC was assessed with the Portuguese version of the Movement Assessment Battery for Children. PMC was evaluated with the Pictorial Scale of Perceived Competence and Social Accep...

  16. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  17. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    Directory of Open Access Journals (Sweden)

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  18. Causal Role of Motor Simulation in Turn-Taking Behavior.

    Science.gov (United States)

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  19. Investigation of the Association Between Motor Stereotypy Behavior With Fundamental Movement Skills, Adaptive Functioning, and Autistic Spectrum Disorder Symptomology in Children With Intellectual Disabilities.

    Science.gov (United States)

    Powell, Joanne L; Pringle, Lydia; Greig, Matt

    2017-02-01

    Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.

  20. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    Science.gov (United States)

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  1. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism

    Institute of Scientific and Technical Information of China (English)

    Hong Jin; Jin-Ru Zhang; Yun Shen; Chun-Feng Liu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism,and it may serve as a prodromal marker of neurodegenerative disease.The mechanism underlying RBD is unclear.Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease,including olfactory dysfunction,abnormal color vision,autonomic dysfunction,excessive daytime sleepiness,depression,and cognitive impairment.Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD.In this review,we describe the main clinical and pathogenic features of RBD,focusing on its association with other non-motor symptoms of parkinsonism.

  2. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.

    Science.gov (United States)

    Trevino, Michael A; Herda, Trent J; Cooper, Michael A

    2014-09-06

    Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike

  3. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients

    Directory of Open Access Journals (Sweden)

    Svenja Diekhoff-Krebs

    2017-01-01

    Full Text Available Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1 excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients (n = 14 and healthy controls (n = 12 were scanned with functional magnetic resonance imaging (fMRI while performing a simple hand motor task. Dynamic causal modeling (DCM was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that

  4. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    Science.gov (United States)

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  5. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.

    Science.gov (United States)

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2013-11-01

    To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.

  6. Brief rewarming blunts hypothermia-induced alterations in sensation, motor drive and cognition

    Directory of Open Access Journals (Sweden)

    Marius Brazaitis

    2016-12-01

    hypothermia-induced alterations in neural drive transmission (4.3±0.5 versus 3.4±0.8 mV H-reflex and 4.9±0.2 versus 4.4±0.4 mV V-wave, P<0.05, which increased central fatigue during a 2-min maximum load (P<0.05. Furthermore, only in brief warm water rewarming cerebral alterations were restored to the control level and it was indicated by shortened reaction times (P<0.05.Conclusions: Brief rewarming in warm water rather than the same duration rewarming in thermoneutral environment blunted the hypothermia-induced alterations for thermoregulation, sensation, motor drive and cognition, despite the fact that rectal and deep muscle temperature remained lowered.

  7. Antioxidant-Rich Fraction of Urtica dioica Mediated Rescue of Striatal Mito-Oxidative Damage in MPTP-Induced Behavioral, Cellular, and Neurochemical Alterations in Rats.

    Science.gov (United States)

    Bisht, Rohit; Joshi, Bhuwan Chandra; Kalia, Ajudhiya Nath; Prakash, Atish

    2017-09-01

    Parkinson's disease (PD) having a complex and multi-factorial neuropathology includes mainly the degeneration of the dopaminergic nigrostriatal pathway, which is a cumulative effect of depleted endogenous antioxidant enzymes, increased oxidative DNA damage, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. The present study was designed to investigate the neuroprotective effect of a potent antioxidant from Urtica dioica in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of parkinsonism. MPTP was administered intranigrally for the induction of PD in male Wistar rats. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and different biochemical, cellular, and neurochemical parameters were measured. Intranigrally repeated administration of MPTP showed significant impairment of motor co-ordination and marked increase of mito-oxidative damage and neuroinflammation in rats. Intranigral MPTP significantly decreases the dopamine and its metabolites with impairment of dopaminergic cell density in rat brain. However, post-treatment with the potent antioxidant fraction of Urtica dioica Linn. (UD) (20, 40, 80 mg/kg) improved the motor function, mito-oxidative defense alteration significantly and dose dependently in MPTP-treated rats. In addition, the potent antioxidant fraction of UD attenuated the pro-inflammatory cytokines (TNF-α and IL-β) and restored the level of dopamine and its metabolites in MPTP-induced PD in rats. Moreover, minocycline (30 mg/kg) with lower dose of UD (20 mg/kg) had significantly potentiated the protective effect of minocycline as compared to its effect with other individual drug-treated groups. In conclusion, Urtica dioica protected the dopaminergic neurons probably by reducing mito-oxidative damage, neuroinflammation, and cellular alteration along with enhanced neurotrophic potential. The above results revealed that the antioxidant rich

  8. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether.

    Science.gov (United States)

    Markowski, Vincent P; Miller-Rhodes, Patrick; Cheung, Randy; Goeke, Calla; Pecoraro, Vincent; Cohen, Gideon; Small, Deena J

    2017-09-01

    Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  10. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  11. Among Early Appearing Non-Motor Signs of Parkinson’s Disease, Alteration of Olfaction but Not Electroencephalographic Spectrum Correlates with Motor Function

    Directory of Open Access Journals (Sweden)

    Vitalii V. Cozac

    2017-10-01

    Full Text Available Olfactory decline is a frequent and early non-motor symptom in Parkinson’s disease (PD, which is increasingly used for diagnostic purposes. Another early appearing sign of PD consists in electroencephalographic (EEG alterations. The combination of olfactory and EEG assessment may improve the identification of patients with early stages of PD. We hypothesized that olfactory capacity would be correlated with EEG alterations and motor and cognitive impairment in PD patients. To the best of our knowledge, the mutual influence of both markers of PD—olfactory decrease and EEG changes—was not studied before. We assessed the function of odor identification using olfactory “Screening 12 Test” (“Sniffin’ Sticks®”, between two samples: patients with PD and healthy controls (HC. We analyzed correlations between the olfactory function and demographical parameters, Unified Parkinson’s Disease Rating Scale (UPDRS-III, cognitive task performance, and spectral alpha/theta ratio (α/θ. In addition, we used receiver operating characteristic-curve analysis to check the classification capacity (PD vs HC of olfactory function, α/θ, and a combined marker (olfaction and α/θ. Olfactory capacity was significantly decreased in PD patients, and correlated with age, disease duration, UPDRS-III, and with items of UPDRS-III related to gait and axial rigidity. In HC, olfaction correlated with age only. No correlation with α/θ was identified in both samples. Combined marker showed the largest area under the curve. In addition to EEG, the assessment of olfactory function may be a useful tool in the early characterization and follow-up of PD.

  12. Monoaminergic orchestration of motor programs in a complex C. elegans behavior.

    Directory of Open Access Journals (Sweden)

    Jamie L Donnelly

    Full Text Available Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.

  13. REM Sleep Behavior and Motor Findings in Parkinson's Disease: A Cross-sectional Analysis

    Directory of Open Access Journals (Sweden)

    Abhimanyu Mahajan

    2014-06-01

    Full Text Available Background: Parkinson's disease (PD represents a major public health challenge that will only grow in our aging population. Understanding the connection between PD and associated prodromal conditions, such as rapid eye movement sleep behavioral disorder (RBD, is critical to identifying prevention strategies. However, the relationship between RBD and severity of motor findings in early PD is unknown. This study aims to examine this relationship. Methods: The study population consisted of 418 PD patients who completed the Movement Disorders Society‐United Parkinson's Disease Rating Scale (MDS‐UPDRS and rapid eye movement sleep (REM disorder questionnaires at the baseline visit of the Michael J. Fox's Parkinson's Progression Markers Initiative (PPMI. Cross‐sectional analysis was carried out to assess the association between REM Sleep Behavior Screening Questionnaire score and MDS UPDRS‐3 (motor score categories. Correlation with a higher score category was described as “worse motor findings”. A score of 5 on the REM disorder questionnaire was defined as predictive of RBD.Results: Out of the 418 PD patients, 113 (27.0% had RBD. With univariate logistic regression analysis, individuals with scores predictive of RBD were 1.66 times more likely to have worse motor findings (p = 0.028. Even with age, gender, and Geriatric Depression Scale scores taken into account, individuals with scores predictive of RBD were 1.69 times more likely to have worse motor findings (p = 0.025.Discussion: PD patients with RBD symptoms had worse motor findings than those unlikely to have RBD. This association provides further evidence for the relationship between RBD and PD.

  14. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    Science.gov (United States)

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  16. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.

    Science.gov (United States)

    Yang, Xingfu; Wu, Ning

    2018-01-23

    As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.

  17. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats.

    Science.gov (United States)

    Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F

    2018-05-01

    Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.

  18. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-10-02

    Oct 2, 2013 ... contrasting root growth behavior and salinity tolerance in rice will help us to identify key genes controlling ..... In order to screen plants showing altered response ... were found to remain green even after 15 days of salinity.

  19. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Asha eKishore

    2014-05-01

    Full Text Available Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration and normal functioning of these net works. Strong topography-specific connections among the basal ganglia, cerebellum and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD.

  20. Changes in motor unit recruitment strategy during pain alters force direction.

    Science.gov (United States)

    Tucker, Kylie J; Hodges, Paul W

    2010-10-01

    Motor unit (MU) recruitment is altered (decreased discharge rate and cessation of discharge in some units, and recruitment of new units) in force-matched contractions during pain compared to contractions performed before pain. As MU's within a motoneurone pool have different force direction properties we hypothesised that altered MU recruitment during experimental knee pain would change the force vector (total force (F(T)): amplitude and angle) generated by the quadriceps. Force was produced at two levels during 1 × 60-s and 3 × 10-s isometric contractions of knee extensors, and recorded by two force transducers at right angles. This enabled calculation of both F(E) (extension force) and F(T). MU recruitment was recorded from the medial and lateral vastii with four fine-wire electrodes. Pain was induced by hypertonic saline injection in the infra-patella fat pad. Nine subjects matched F(E) and six subjects also matched both medial and lateral forces (F(T)) before and during pain. Changes in MU discharge pattern (decreased discharge rate (Precruitment of new units) during pain were associated with a ∼5° change in absolute force angle. As force angle changed in both directions (left/right) for individual subjects with pain there was no change in average F(T) amplitude between conditions. When both medial and lateral forces were matched MU discharge rate decreased (Punits ceased firing or were newly recruited during pain. Change in motoneurone recruitment during pain alters direction of muscle force. This may be a strategy to avoid pain or protect the painful part. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  1. Quantitative assessment of finger motor performance: Normative data.

    Directory of Open Access Journals (Sweden)

    Alessio Signori

    Full Text Available Finger opposition movements are the basis of many daily living activities and are essential in general for manipulating objects; an engineered glove quantitatively assessing motor performance during sequences of finger opposition movements has been shown to be useful to provide reliable measures of finger motor impairment, even subtle, in subjects affected by neurological diseases. However, the obtained behavioral parameters lack published reference values.To determine mean values for different motor behavioral parameters describing the strategy adopted by healthy people in performing repeated sequences of finger opposition movements, examining associations with gender and age.Normative values for finger motor performance parameters were obtained on a sample of 255 healthy volunteers executing sequences of finger-to-thumb opposition movements, stratified by gender and over a wide range of ages. Touch duration, inter-tapping interval, movement rate, correct sequences (%, movements in advance compared with a metronome (% and inter-hand interval were assessed.Increasing age resulted in decreased movement speed, advance movements with respect to a cue, correctness of sequences, and bimanual coordination. No significant performance differences were found between male and female subjects except for the duration of the finger touch, the interval between two successive touches and their ratio.We report age- and gender-specific normal mean values and ranges for different parameters objectively describing the performance of finger opposition movement sequences, which may serve as useful references for clinicians to identify possible deficits in subjects affected by diseases altering fine hand motor skills.

  2. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  3. REM sleep behavior disorder: association with motor complications and impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Kim, Young Eun; Jeon, Beom S; Yang, Hui-Jun; Ehm, Gwanhee; Yun, Ji Young; Kim, Han-Joon; Kim, Jong-Min

    2014-10-01

    Clinical phenotypes such as old age, longer disease duration, motor disability, akineto-rigid type, dementia and hallucinations are known to be associated with REM sleep behavior disorder (RBD) in Parkinson's disease (PD). However, the relationship between motor fluctuations/impulse control and related behaviors (ICRB) and RBD is not clear. We designed this study to elucidate the clinical manifestations associated with RBD to determine the implications of RBD in PD. In a cross-sectional study, a total of 994 patients with PD were interviewed to determine the presence of RBD and their associated clinical features including motor complications and ICRB. Of the 944 patients, 578 (61.2%) had clinical RBD. When comparing the clinical features between patients with RBD (RBD group) and without RBD (non-RBD group), older age, longer disease duration, higher Hoehn and Yahr stage (H&Y stage), higher levodopa equivalent daily dose (LEDD), and the existence of wearing off, dyskinesia, freezing, and ICRB, especially punding, were associated with the RBD group compared to the non-RBD group (P < .05 in all). Multivariate analysis showed that motor complications including wearing off, peak dose dyskinesia, and diphasic dyskinesia were the only relevant factors for RBD after adjusting for age and disease duration. Motor complications and ICRB are more frequent in patients with RBD than in patients without RBD. In addition, motor complications are related to RBD even after adjusting for age and disease duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    Science.gov (United States)

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  5. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  6. Behavior of medial gastrocnemius motor units during postural reactions to external perturbations after stroke.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2015-10-01

    This study investigated the behavior of medial gastrocnemius (GM) motor units (MU) during external perturbations in standing in people with chronic stroke. GM MUs were recorded in standing while anteriorly-directed perturbations were introduced by applying loads of 1% body mass (BM) at the pelvis every 25-40s until 5% BM was maintained. Joint kinematics, surface electromyography (EMG), and force platform measurements were assessed. Although external loads caused a forward progression of the anterior-posterior centre of pressure (APCOP), people with stroke decreased APCOP velocity and centre of mass (COM) velocity immediately following the highest perturbations, thereby limiting movement velocity in response to perturbations. MU firing rate did not increase with loading but the GM EMG magnitude increased, reflecting MU recruitment. MU inter spike interval (ISI) during the dynamic response was negatively correlated with COM velocity and hip angular velocity. The GM utilized primarily MU recruitment to maintain standing during external perturbations. The lack of MU firing rate modulation occurred with a change in postural central set. However, the relationship of MU firing rate with kinematic variables suggests underlying long-loop responses may be somewhat intact after stroke. People with stroke demonstrate alterations in postural control strategies which may explain MU behavior with external perturbations. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Thomas W Elston

    Full Text Available There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.

  8. Aniracetam Does Not Alter Cognitive and Affective Behavior in Adult C57BL/6J Mice

    Science.gov (United States)

    Elston, Thomas W.; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Gao, Nanjing; Lugo, Joaquin N.

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639

  9. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    Science.gov (United States)

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  10. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  11. Chronic stress impairs spatial memory and motivation for reward without disrupting motor ability and motivation to explore.

    Science.gov (United States)

    Kleen, Jonathan K; Sitomer, Matthew T; Killeen, Peter R; Conrad, Cheryl D

    2006-08-01

    This study uses an operant, behavioral model to assess the daily changes in the decay rate of short-term memory, motivation, and motor ability in rats exposed to chronic restraint. Restraint decreased reward-related motivation by 50% without altering memory decay rate or motor ability. Moreover, chronic restraint impaired hippocampal-dependent spatial memory on the Y maze (4-hr delay) and produced CA3 dendritic retraction without altering hippocampal-independent maze navigation (1-min delay) or locomotion. Thus, mechanisms underlying motivation for food reward differ from those underlying Y maze exploration, and neurobiological substrates of spatial memory, such as the hippocampus, differ from those that underlie short-term memory. Chronic restraint produces functional, neuromorphological, and physiological alterations that parallel symptoms of depression in humans. Copyright 2006 APA, all rights reserved.

  12. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration.

    Science.gov (United States)

    Mysoet, Julien; Canu, Marie-Hélène; Gillet, Christophe; Fourneau, Julie; Garnier, Cyril; Bastide, Bruno; Dupont, Erwan

    2017-01-15

    Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor.

    Science.gov (United States)

    Tsai, Meng-Li; Kozłowska, Anna; Li, Yu-Sheng; Shen, Wen-Ling; Huang, Andrew Chih Wei

    2017-08-01

    The present study examines whether housing style (e.g., single housing, same-strain-grouped housing, and different-strain-grouped housing) and rat strain (e.g., spontaneous hypertension rats [SHR] and Wistar-Kyoto rats [WKY]) mediate motor function and anxiety behavior in the open field task. From week 4 through week 10 following birth, the rats were measured 30min for locomotor activity and anxiety once per week in the open field task. The SHR rats exhibited hyperactivity in total distance traveled and movement time to form the animal model of ADHD. The SHR rats spent more time inside the square and crossed the inside-outside line more often than the WKY rats, indicating the SHR rats exhibited less anxiety behavior. The different-strain-grouped housing style (but neither the same-strain-grouped housing style nor the single housing style) decreased total distance traveled and facilitated anxiety behavior. The motor function was negatively correlated with anxiety behavior for SHR rats but not for WKY rats. Housing styles had a negative correlation between motor function and anxiety behavior. The present findings provide some insights regarding how social factors (such as housing style) affect motor function and anxiety behavior related to ADHD in a clinical setting. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  15. Graphonomics and its contribution to the field of motor behavior: A position statement.

    Science.gov (United States)

    Van Gemmert, Arend W A; Contreras-Vidal, Jose L

    2015-10-01

    The term graphonomics was conceived in the early 1980s; it defined a multidisciplinary emerging field focused on handwriting and drawing movements. Researchers in the field of graphonomics have made important contribution to the field of motor behavior by developing models aimed to conceptualize the production of fine motor movements using graphical tools. Although skeptics have argued that recent technological advancements would reduce the impact of graphonomic research, a shift of focus within in the field of graphonomics into fine motor tasks in general proves the resilience of the field. Moreover, it has been suggested that the use of fine motor movements due to technological advances has increased in importance in everyday life. It is concluded that the International Graphonomics Society can have a leading role in fostering collaborative multidisciplinary efforts and can help with the dissemination of findings contributing to the field of human movement sciences to a larger public. Copyright © 2015. Published by Elsevier B.V.

  16. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE

    Directory of Open Access Journals (Sweden)

    David ePerruchoud

    2014-06-01

    Full Text Available Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE. Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  17. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE).

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  18. Alteration of a motor learning rule under mirror-reversal transformation does not depend on the amplitude of visual error.

    Science.gov (United States)

    Kasuga, Shoko; Kurata, Makiko; Liu, Meigen; Ushiba, Junichi

    2015-05-01

    Human's sophisticated motor learning system paradoxically interferes with motor performance when visual information is mirror-reversed (MR), because normal movement error correction further aggravates the error. This error-increasing mechanism makes performing even a simple reaching task difficult, but is overcome by alterations in the error correction rule during the trials. To isolate factors that trigger learners to change the error correction rule, we manipulated the gain of visual angular errors when participants made arm-reaching movements with mirror-reversed visual feedback, and compared the rule alteration timing between groups with normal or reduced gain. Trial-by-trial changes in the visual angular error was tracked to explain the timing of the change in the error correction rule. Under both gain conditions, visual angular errors increased under the MR transformation, and suddenly decreased after 3-5 trials with increase. The increase became degressive at different amplitude between the two groups, nearly proportional to the visual gain. The findings suggest that the alteration of the error-correction rule is not dependent on the amplitude of visual angular errors, and possibly determined by the number of trials over which the errors increased or statistical property of the environment. The current results encourage future intensive studies focusing on the exact rule-change mechanism. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  20. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats.

    Science.gov (United States)

    Viaro, Riccardo; Morari, Michele; Franchi, Gianfranco

    2011-03-23

    Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.

  1. Apomorphine effects on frog locomotor behavior.

    Science.gov (United States)

    Chu, Joanne; Wilczynski, Walter

    2007-05-16

    The neuroanatomical pathways of the DA systems have been shown to be largely conserved across many vertebrate taxa. It is less certain whether the structural similarities seen between mammals and amphibians reflect a similar functional homology. DA is well known for its role in facilitating motor behaviors in mammals. We examined whether a similar role for DA exists in amphibians using the Northern Leopard Frog (Rana pipiens). We investigated the effects of the nonspecific DA agonist, apomorphine (APO) on a complex motor task that included two distinct components known to be differentially modulated by DA in mammals: swimming and climbing. We demonstrated that a high single dose of APO (20 mg/kg, body weight) strongly increased the amount of time spent completing the motor task. Furthermore, we showed that although APO did not significantly alter several aspects of swimming behavior, two aspects of climbing behavior were disrupted. Both climbing speed and climbing ability were impaired by APO treatment. These results increase our understanding of DA function in amphibians and add to our understanding of structure-function homologies of dopamine function across vertebrate taxa.

  2. Visual strategies underpinning the development of visual-motor expertise when hitting a ball.

    Science.gov (United States)

    Sarpeshkar, Vishnu; Abernethy, Bruce; Mann, David L

    2017-10-01

    It is well known that skilled batters in fast-ball sports do not align their gaze with the ball throughout ball-flight, but instead adopt a unique sequence of eye and head movements that contribute toward their skill. However, much of what we know about visual-motor behavior in hitting is based on studies that have employed case study designs, and/or used simplified tasks that fall short of replicating the spatiotemporal demands experienced in the natural environment. The aim of this study was to provide a comprehensive examination of the eye and head movement strategies that underpin the development of visual-motor expertise when intercepting a fast-moving target. Eye and head movements were examined in situ for 4 groups of cricket batters, who were crossed for playing level (elite or club) and age (U19 or adult), when hitting balls that followed either straight or curving ('swinging') trajectories. The results provide support for some widely cited markers of expertise in batting, while questioning the legitimacy of others. Swinging trajectories alter the visual-motor behavior of all batters, though in large part because of the uncertainty generated by the possibility of a variation in trajectory rather than any actual change in trajectory per se. Moreover, curving trajectories influence visual-motor behavior in a nonlinear fashion, with targets that curve away from the observer influencing behavior more than those that curve inward. The findings provide a more comprehensive understanding of the development of visual-motor expertise in interception. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Bonett, Austin H. [IEEE, (United States)

    2001-09-01

    The energy efficiency is one of the main parameters in the design of the industrial motors of general purpose; nevertheless, it is avoided that it is at the cost of the reliability or to the global performance of the motor. Exist user groups of this equipment that consider that, in the search of a greater efficiency, the useful life period is diminished and the characteristics of operation of the motor are affected. During the past last years, the author has studied the aspects of quality and reliability, as well as the operative advantages of the high efficiency motors and written down the increasing interest for these aspects. Also he has detected that a great number of users has realized that, additionally to the obvious energy saving, the efficient motor offers a greater reliability and a longer useful life in most of the industrial applications. The objective of this article is to present the differences in the quality levels, reliability and operation parameters of high efficiency squirrel cage type electrical motors with those of the motors of standard manufacture. [Spanish] La eficiencia energetica es uno de los principales parametros en el diseno de los motores industriales de proposito general; sin embargo, se evita que sea a costa de la confiabilidad o del desempeno global del motor. Existen grupos de usuarios de estos equipos que consideran que, en la busqueda de una mayor eficiencia, se disminuye el periodo de vida util y se afectan las caracteristicas de operacion del motor. Durante los ultimos anos, el autor ha estudiado los aspectos de calidad y confiabilidad, asi como las ventajas operativas de los motores de alta eficiencia y anotado el incremento del interes por estos aspectos. Tambien ha detectado que un gran numero de usuarios se ha dado cuenta que, adicionalmente a los obvios ahorros de energia, el motor eficiente ofrece una mayor confiabilidad y una vida util mas larga en la mayoria de las aplicaciones industriales. El objetivo de este

  4. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    Science.gov (United States)

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  5. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors

    NARCIS (Netherlands)

    Claassen, D.O.; van den Wildenberg, W.P.; Harrison, M.B.; van Wouwe, N.C.; Kanoff, K.; Neimat, J.S.; Wylie, S.A.

    2015-01-01

    BACKGROUND: Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. METHODS: We used the stop-signal task in a cohort

  6. Fine motor skills in adult Tourette patients are task-dependent

    Directory of Open Access Journals (Sweden)

    Neuner Irene

    2012-10-01

    Full Text Available Abstract Background Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player. Methods For the investigation of fine motor skills we conducted a motor performance test battery in an adult Tourette sample and an age matched group of healthy controls. Results The Tourette patients showed a significant lower performance in the categories steadiness of both hands and aiming of the right hand in comparison to the healthy controls. A comparison of patients’ subgroup without comorbidities or medication and healthy controls revealed a significant difference in the category steadiness of the right hand. Conclusions Our results show that steadiness and visuomotor integration of fine motor skills are altered in our adult sample but not precision and speed of movements. This alteration pattern might be the clinical vignette of complex adaptations in the excitability of the motor system on the basis of altered cortical and subcortical components. The structurally and functionally altered neuronal components could encompass orbitofrontal, ventrolateral prefrontal and parietal cortices, the anterior cingulate, amygdala, primary motor and sensorimotor areas including altered corticospinal projections, the corpus callosum and the basal ganglia.

  7. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with

  8. A structured assessment of motor function, behavior, and communication in patients with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Nag, Heidi E; Bergsaker, David K; Hunn, Bente S; Schmidt, Susanne; Hoxmark, Lise B

    2017-11-01

    The present study aimed to increase the knowledge about Wolf-Hirschhorn syndrome (WHS), especially concerning motor function, autism spectrum disorders (ASD), and adapted behavior, but also regarding clinical symptoms in general. Motor function was evaluated via systematic observation. Standardized assessments such as the Vineland Adapted Behavior Scales II (VABS II), the Social Communication Questionnaire (SCQ), and the Child Behavior Checklist (CBCL) or Adult Behavior Checklist (ABCL) were used for the behavioral assessment. In total, two males and eight females between one and 48 years of age with a genetically confirmed diagnosis of WHS and their parents participated in this study. Deletion sizes were known for seven of the ten patients and varied between 55 Kb and 20 Mb. The chromosome coordinates were known for six of them, and none of those had the same break points in their deletion. The main finding in this study was that patients with WHS may have a better outcome regarding motor skills and expressive communication than previously described. We could confirm the main medical findings described earlier, but found also a population with a less severe dysmorphology, fewer congenital malformations, and fewer medical challenges than expected. Sleep problems may persist into adulthood and need a more thorough investigation. Research on possible indications of ASD is strongly needed for targeted interventions. In conclusion, a more thorough assessment of communication, possible ASD, and sleep in larger groups of patients with WHS are needed to confirm and further investigate the findings from this study and to provide more targeted interventions for WHS patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. [Formula: see text]Current knowledge on motor disorders in children with autism spectrum disorder (ASD).

    Science.gov (United States)

    Paquet, A; Olliac, B; Golse, B; Vaivre-Douret, L

    2016-01-01

    Motor symptomatology in autism is currently poorly understood, and still not included in the autism spectrum disorder (ASD) diagnostic criteria, although some studies suggest the presence of motor disturbances in this syndrome. We provide here a literature review on early motor symptoms in autism, focusing on studies on psychomotor issues (tone, postural control, manual dexterity, handedness, praxis). The approach adopted in research to study altered motor behaviors is generally global and there is no detailed semiology of the motor or neuromotor disorders observed in people with ASD. This global approach does not enable understanding of the neuro-developmental mechanisms involved in ASD. Identification of clinical neuro-psychomotor profiles in reference to a standard would help to better understand the origin and the nature of the disorders encountered in ASD, and would thus give new directions for treatment.

  10. Co-occurring motor, language and emotional-behavioral problems in children 3-6 years of age.

    Science.gov (United States)

    King-Dowling, Sara; Missiuna, Cheryl; Rodriguez, M Christine; Greenway, Matt; Cairney, John

    2015-02-01

    Developmental Coordination Disorder (DCD) has been shown to co-occur with behavioral and language problems in school-aged children, but little is known as to when these problems begin to emerge, or if they are inherent in children with DCD. The purpose of this study was to determine if deficits in language and emotional-behavioral problems are apparent in preschool-aged children with movement difficulties. Two hundred and fourteen children (mean age 4years 11months, SD 9.8months, 103 male) performed the Movement Assessment Battery for Children 2nd Edition (MABC-2). Children falling at or below the 16th percentile were classified as being at risk for movement difficulties (MD risk). Auditory comprehension and expressive communication were examined using the Preschool Language Scales 4th Edition (PLS-4). Parent-reported emotional and behavioral problems were assessed using the Child Behavior Checklist (CBCL). Preschool children with diminished motor coordination (n=37) were found to have lower language scores, higher externalizing behaviors in the form of increased aggression, as well as increased withdrawn and other behavior symptoms compared with their typically developing peers. Motor coordination, language and emotional-behavioral difficulties tend to co-occur in young children aged 3-6years. These results highlight the need for early intervention. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    Science.gov (United States)

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  12. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2013-11-01

    Full Text Available When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the ‘moving’ (healthy hand would be caused by the constraints imposed by the ongoing motor program of the ‘impaired’ hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia. They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person’s arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  13. Algal Toxins Alter Copepod Feeding Behavior

    Science.gov (United States)

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  14. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  15. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-04-01

    Full Text Available OBJECTIVES: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school-age children. SOURCES: This was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target-population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. SUMMARY OF FINDINGS: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. CONCLUSION: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  16. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  17. Motor behavior during the first chewing cycle in subjects with fixed tooth- or implant-supported prostheses.

    Science.gov (United States)

    Grigoriadis, Joannis; Trulsson, Mats; Svensson, Krister G

    2016-04-01

    Appropriate sensory information from periodontal mechanoreceptors (PMRs) is important for optimizing the positioning of food and adjustment of force vectors during precision biting. This study was designed to describe motor behavior during the first cycle of a natural chewing task and to evaluate the role of such sensory input in this behavior. While 10 subjects with natural dentition, 11 with bimaxillary fixed tooth-supported prostheses (TSP) and 10 with bimaxillary fixed implant-supported prostheses (ISP) (mean age 69 [range 61-83]) chewed a total of five hazelnuts, their vertical and lateral jaw movements were recorded. Data obtained during the first chewing cycle of each hazelnut were analyzed. The amplitude of vertical and lateral mandibular movement and duration of jaw opening did not differ between the groups, indicating similar behavior during this part of the chewing cycle. However, only 30% of the subjects in the natural dentate group, but 82% of those in the TSP and 70% in the ISP group exhibited slippage of the hazelnut during jaw closure in at least one of five trials. The TSP and ISP groups also exhibited more irregular and narrower patterns of motion (total lateral/vertical movement = 0.15 and 0.19, respectively, compared to 0.27 for the natural group). Subjects with fixed tooth- or implant-supported prostheses in both jaws show altered behavior, including inadequate control of the hazelnut, during the first chewing cycle. We propose that these differences are due to impairment or absence of sensory signaling from PMRs in these individuals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  19. Differentiating children with attention-deficit/hyperactivity disorder, conduct disorder, learning disabilities and autistic spectrum disorders by means of their motor behavior characteristics.

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N=22), Conduct Disorder (CD; N=17), Learning Disabilities (LD; N=24) and Autistic Spectrum Disorders (ASD; N=20). Physical education teachers used the MBC for children to rate their pupils based on their motor related behaviors. A multivariate analysis revealed significant differences among the groups on different problem scales. The results indicated that the MBC for children may be effective in discriminating children with similar disruptive behaviors (e.g., ADHD, CD) and autistic disorders, based on their motor behavior characteristics, but not children with Learning Disabilities (LD), when used by physical education teachers in school settings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Progress and perspectives of the Brazilian scientific production in international journals in the field of motor behavior

    Directory of Open Access Journals (Sweden)

    Ana Paula Kogake Claudio

    2009-09-01

    Full Text Available In view of the fact that one of the key indicators of scientific production is the number of papers published in international journals, and of the apparent growing interest in the area of motor behavior, we conducted a survey of articles published by Brazilian researchers in this area over the last 10 years (1999-2008 in international journals rated “Qualis International-A” and “Qualis International-B” by CAPES. This quantification was performed to provide a qualified viewpoint regarding the profile of Brazilian scientific production of international repercussion in the area of motor behavior. Articles were identified using the Google Scholar, Pubmed, Science Direct, and Scopus search systems, with the search being restricted to characteristic terms involving motor behavior and to researchers associated with Brazilian universities. The results showed an increase in production over the last 5 years of the period studied, with the peak in 2006. In addition, Brazilian scientific production was concentrated in four public universities. These results suggest that in order to keep growing, the new groups should work in collaboration with productive laboratories, decentralizing the scientific production.

  1. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  2. On the Behavior of Phosphorus During the Aqueous Alteration of CM2 Carbonaceous Chondrites

    Science.gov (United States)

    Brearley, Adrian J.; Chizmadia, Lysa J.

    2005-01-01

    During the earliest period of solar system formation, water played an important role in the evolution of primitive dust, both after accretion of planetesimals and possible before accretion within the protoplanetary disk. Many chondrites show evidence of variable degrees of aqueous alteration, the CM2 chondrites being among the most studied [1]. This group of chondrites is characterized by mineral assemblages of both primary and secondary alteration phases. Hence, these meteorites retain a particularly important record of the reactions that occurred between primary high temperature nebular phases and water. Studies of these chondrites can provide information on the conditions and environments of aqueous alteration and the mobility of elements during alteration. This latter question is at the core of a debate concerning the location of aqueous alteration, i.e. whether alteration occurred predominantly within a closed system after accretion (parent body alteration) or whether some degree of alteration occurred within the solar nebula or on ephemeral protoplanetary bodies prior to accretion. At the core of the parent body alteration model is the hypothesis that elemental exchange between different components, principally chondrules and matrix, must have occurred. chondrules and matrix, must have occurred. In this study, we focus on the behavior of the minor element, phosphorus. This study was stimulated by observations of the behavior of P during the earliest stages of alteration in glassy mesostasis in type II chondrules in CR chondrites and extends the preliminary observations of on Y791198 to other CM chondrites.

  3. Effect of Aging on Motor Inhibition during Action Preparation under Sensory Conflict

    Science.gov (United States)

    Duque, Julie; Petitjean, Charlotte; Swinnen, Stephan P.

    2016-01-01

    the MIB context was associated with an attenuated suppression of MEPs at the time of the imperative signal (i.e., before conflict is actually detected) in older individuals, suggesting altered motor inhibition, compared to young individuals. In addition, the behavioral analysis suggests that young and older adults rely on different strategies to cope with conflict, including a change in speed-accuracy tradeoff. PMID:28082896

  4. On the origin of grasshopper oviposition behavior: structural homology in pregenital and genital motor systems.

    Science.gov (United States)

    Thompson, Karen J; Jones, Alaine D; Miller, Sandra A

    2014-01-01

    In female grasshoppers, oviposition is a highly specialized behavior involving a rhythm-generating neural circuit, the oviposition central pattern generator, unusual abdominal appendages, and dedicated muscles. This study of Schistocerca americana (Drury) grasshoppers was undertaken to determine whether the simpler pregenital abdominal segments, which do not contain ovipositor appendages, share common features with the genital segment, suggesting a roadmap for the genesis of oviposition behavior. Our study revealed that although 5 of the standard pregenital body wall muscles were missing in the female genital segment, homologous lateral nerves were, indeed, present and served 4 ovipositor muscles. Retrograde labeling of the corresponding pregenital nerve branches in male and female grasshoppers revealed motor neurons, dorsal unpaired median neurons, and common inhibitor neurons which appear to be structural homologues of those filled from ovipositor muscles. Some pregenital motor neurons displayed pronounced contralateral neurites; in contrast, some ovipositor motor neurons were exclusively ipsilateral. Strong evidence of structural homology was also obtained for pregenital and ovipositor skeletal muscles supplied by the identified neurons and of the pregenital and ovipositor skeletons. For example, transient embryonic segmental appendages were maintained in the female genital segments, giving rise to ovipositor valves, but were lost in pregenital abdominal segments. Significant proportional differences in sternal apodemes and plates were observed, which partially obscure the similarities between the pregenital and genital skeletons. Other changes in reorganization included genital muscles that displayed adult hypertrophy, 1 genital muscle that appeared to represent 2 fused pregenital muscles, and the insertion points of 2 ovipositor muscles that appeared to have been relocated. Together, the comparisons support the idea that the oviposition behavior of genital

  5. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  6. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    Science.gov (United States)

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  7. Priming of disability and elderly stereotype in motor performance: similar or specific effects?

    Science.gov (United States)

    Ginsberg, Frederik; Rohmer, Odile; Louvet, Eva

    2012-04-01

    In three experimental studies, the effects of priming participants with the disability stereotype were investigated with respect to their subsequent motor performance. Also explored were effects of activating two similar stereotypes, persons with a disability and elderly people. In Study 1, participants were primed with the disability stereotype versus with a neutral prime, and then asked to perform on a motor coordination task. In Studies 2 and 3, a third condition was introduced: priming participants with the elderly stereotype. Results indicated that priming participants with the disability stereotype altered their motor performance: they showed decreased manual dexterity and performed slower than the non-primed participants. Priming with the elderly stereotype decreased only performance speed. These findings underline that prime-to-behavior effects may depend on activation of specific stereotype content.

  8. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function.

    Science.gov (United States)

    Manfré, Giuseppe; Clemensson, Erik K H; Kyriakou, Elisavet I; Clemensson, Laura E; van der Harst, Johanneke E; Homberg, Judith R; Nguyen, Huu Phuc

    2017-01-01

    Rationale : Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype. Objective : The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping. Methods : Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance. Results : BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected. Conclusions : The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  9. Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice.

    Directory of Open Access Journals (Sweden)

    Fanny Mochel

    Full Text Available The pattern of cerebral dopamine (DA abnormalities in Huntington disease (HD is complex, as reflected by the variable clinical benefit of both DA antagonists and agonists in treating HD symptoms. In addition, little is known about serotonin metabolism despite the early occurrence of anxiety and depression in HD. Post-mortem enzymatic changes are likely to interfere with the in vivo profile of biogenic amines. Hence, in order to reliably characterize the regional and chronological profile of brain neurotransmitters in a HD mouse model, we used a microwave fixation system that preserves in vivo concentrations of dopaminergic and serotoninergic amines. DA was decreased in the striatum of R6/2 mice at 8 and 12 weeks of age while DA metabolites, 3-methoxytyramine and homovanillic acid, were already significantly reduced in 4-week-old motorically asymptomatic R6/2 mice. In the striatum, hippocampus and frontal cortex of 4, 8 and 12-week-old R6/2 mice, serotonin and its metabolite 5-hydroxyindoleacetic acid were significantly decreased in association with a decreased turnover of serotonin. In addition, automated high-resolution behavioural analyses displayed stress-like behaviours such as jumping and grooming and altered spatial learning in R6/2 mice at age 4 and 6 weeks respectively. Therefore, we describe the earliest alterations of DA and serotonin metabolism in a HD murine model. Our findings likely underpin the neuropsychological symptoms at time of disease onset in HD.

  10. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Moderate traumatic brain injury (TBI in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1

  11. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Science.gov (United States)

    Ouyang, Wei; Yan, Qichao; Zhang, Yu; Fan, Zhiheng

    2017-01-01

    Moderate traumatic brain injury (TBI) in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP) method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI) 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR) ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1 subregion.

  12. Motor control is decision-making.

    Science.gov (United States)

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Motor rehabilitation after traumatic brain injury and stroke - Advances in assessment and therapy.

    Science.gov (United States)

    Platz, Thomas; Hesse, S.; Mauritz, K.-H.

    1999-01-01

    A long-term goal in motor rehabilitation is that treatment is not selected on the basis of 'schools of thought', but rather, based on knowledge about efficacy and effectiveness of specific interventions for specific situations (e.g. functional syndromes). Motor dysfunction after stroke or TBI can be caused by many different functional syndromes such as paresis, ataxia, deafferentaion, visuo-perceptual deficits, or apraxia. Examples are provided showing that theory-based analysis of motor behavior makes it possible to describe 'syndrome-specific motor deficits'. Its potential implications for motor rehabilitation are that our understanding of altered motor behavior as well as specific therapeutic approaches might be promoted. A methodological prerequisite for clinical trials in rehabilitation is knowledge about test properties of assessment tools in follow-up situations such as test-retest reliability and responsiveness to change. Test-retest reliability assesses whether a test can produce stable measures with test repetition, while sensitivity to change reflects whether a test detects changes that occur over time. Exemplifying these considerations, a reliability and validity study of a kinematic arm movement analysis is summarized. In terms of new therapeutic developments, two examples of clinical therapeutic studies are provided assessing the efficacy of specific inter-ventions for specific situations in arm and gait rehabilitation: the Arm Ability Training for high functioning hemiparetic stroke and TBI patients, and the treadmill training for non-ambulatory hemiparetic patients. In addition, a new technical development, a machine-controlled gait trainer ist introduced.

  14. The Utility of Impulsive Bias and Altered Decision Making as Predictors of Drug Efficacy and Target Selection: Rethinking Behavioral Screening for Antidepressant Drugs.

    Science.gov (United States)

    Marek, Gerard J; Day, Mark; Hudzik, Thomas J

    2016-03-01

    Cognitive dysfunction may be a core feature of major depressive disorder, including affective processing bias, abnormal response to negative feedback, changes in decision making, and increased impulsivity. Accordingly, a translational medicine paradigm predicts clinical action of novel antidepressants by examining drug-induced changes in affective processing bias. With some exceptions, these concepts have not been systematically applied to preclinical models to test new chemical entities. The purpose of this review is to examine whether an empirically derived behavioral screen for antidepressant drugs may screen for compounds, at least in part, by modulating an impulsive biasing of responding and altered decision making. The differential-reinforcement-of-low-rate (DRL) 72-second schedule is an operant schedule with a documented fidelity for discriminating antidepressant drugs from nonantidepressant drugs. However, a theoretical basis for this empirical relationship has been lacking. Therefore, this review will discuss whether response bias toward impulsive behavior may be a critical screening characteristic of DRL behavior requiring long inter-response times to obtain rewards. This review will compare and contrast DRL behavior with the five-choice serial reaction time task, a test specifically designed for assessing motoric impulsivity, with respect to psychopharmacological testing and the neural basis of distributed macrocircuits underlying these tasks. This comparison suggests that the existing empirical basis for the DRL 72-second schedule as a pharmacological screen for antidepressant drugs is complemented by a novel hypothesis that altering impulsive response bias for rodents trained on this operant schedule is a previously unrecognized theoretical cornerstone for this screening paradigm. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    Science.gov (United States)

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  16. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

    Science.gov (United States)

    Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.

    2018-02-01

    Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  17. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  18. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    Science.gov (United States)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  19. Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia

    NARCIS (Netherlands)

    Vermeiren, Yannick; Le Bastard, Nathalie; Van Hemelrijck, An; Drinkenburg, Wilhelmus H.; Engelborghs, Sebastiaan; De Deyn, Peter P.

    Background: Behavioral and psychological signs and symptoms of dementia (BPSD) are a heterogeneous group of behavioral and psychiatric disturbances occurring in dementia patients of any etiology. Research suggests that altered activities of dopaminergic, serotonergic, (nor)adrenergic, as well as

  20. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders.

    Science.gov (United States)

    Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Azuma, Junji; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako

    2013-10-01

    Many studies have reported motor impairments in autistic spectrum disorders (ASD). However, the brain mechanism underlying motor impairment in ASD remains unclear. Recent neuroimaging studies have suggested that underconnectivity between the cerebellum and other brain regions contributes to the features of ASD. In this study, we investigated the microstructural integrity of the cerebellar pathways, including the superior, middle, and inferior cerebellar peduncles, of children with and without ASD by using diffusion tensor imaging (DTI) tractography to determine whether the microstructural integrity of the cerebellar pathways is related to motor function in children with ASD. Thirteen children with ASD and 11 age-, gender-, handedness-, and IQ-matched typically developing (TD) controls were enrolled in this study. DTI outcome measurements, such as fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), for the cerebellar pathways were calculated. The Movement Assessment Battery for Children 2 (M-ABC 2) was used for assessing motor functions. There were no significant differences between the two groups in RD. However, compared to the TD subjects, patients with ASD had a significantly lower FA in the right superior cerebellar peduncle and lower AD in the left superior cerebellar peduncle, in addition to a significantly lower score in ball skills and the total test score of M-ABC 2. There was a significant positive correlation between the total test score of M-ABC 2 and FA in the right superior cerebellar peduncle in the ASD group. These findings suggest that the altered microstructural integrity of the superior cerebellar peduncle may be related to motor impairment in ASD.

  1. Are we missing non-motor seizures in Parkinson's disease? Two case reports.

    Science.gov (United States)

    Son, Andre Y; Cucca, Alberto; Agarwal, Shashank; Liu, Anli; Di Rocco, Alessandro; Biagioni, Milton C

    2017-01-01

    Parkinson's disease (PD) is predominantly recognized for its motor symptoms, but patients struggle from a morbid and heterogeneous collection of non-motor symptoms (NMS-PD) that can affect their quality of life even more. NMS-PD is a rather generalized term and the heterogeneity and non-specific nature of many symptoms poses a clinical challenge when a PD patient presents with non-motor complaints that may not be NMS-PD. We report two patients with idiopathic PD who presented with acute episodes of cognitive changes. Structural brain images, cardiovascular and laboratory assessment were unremarkable. Both patients experienced a considerable delay before receiving an epilepsy-evaluation, at which point electroencephalogram abnormalities supported the diagnosis of focal non-motor seizures with alteration of awareness. Antiepileptic therapy was implemented and was effective in both cases. Diagnosing non-motor seizures can be challenging. However, PD patients pose an even greater challenge given their eclectic non-motor clinical manifestations and other disease-related complications that could confound and mislead adequate clinical interpretation. Our two cases provide examples of non-motor seizures that may mimic non-motor symptoms of PD. Treating physicians should always consider other possible causes of non-motor symptoms that may coexist in PD patients. Epilepsy work-up should be contemplated in the differential of acute changes in cognition, behavior, or alertness.

  2. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  3. The effect of ACTH analogues on motor behavior and visual evoked responses in rats

    NARCIS (Netherlands)

    Wolthuis, O.L.; Wied, D. de

    1976-01-01

    Averaged visual evoked responses (VER) in cortical area 17 were recorded one hour after the administration of 7-l-phe ACTH(4-10) or 7-d-phe ACTH(4-10) to artificially ventilated rats, paralysed with gallamine. In addition, the effects of these peptides on spontaneous motor behavior were analyzed.

  4. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    Science.gov (United States)

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  5. Invasive plant species alters consumer behavior by providing refuge from predation.

    Science.gov (United States)

    Dutra, Humberto P; Barnett, Kirk; Reinhardt, Jason R; Marquis, Robert J; Orrock, John L

    2011-07-01

    Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.

  6. Structural and functional brain signatures of C9orf72 in motor neuron disease.

    Science.gov (United States)

    Agosta, Federica; Ferraro, Pilar M; Riva, Nilo; Spinelli, Edoardo Gioele; Domi, Teuta; Carrera, Paola; Copetti, Massimiliano; Falzone, Yuri; Ferrari, Maurizio; Lunetta, Christian; Comi, Giancarlo; Falini, Andrea; Quattrini, Angelo; Filippi, Massimo

    2017-09-01

    This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  8. Altered Sensory Feedbacks in Pianist's Dystonia: the altered auditory feedback paradigm and the glove effect

    Directory of Open Access Journals (Sweden)

    Felicia Pei-Hsin Cheng

    2013-12-01

    Full Text Available Background: This study investigates the effect of altered auditory feedback (AAF in musician's dystonia (MD and discusses whether altered auditory feedback can be considered as a sensory trick in MD. Furthermore, the effect of AAF is compared with altered tactile feedback, which can serve as a sensory trick in several other forms of focal dystonia. Methods: The method is based on scale analysis (Jabusch et al. 2004. Experiment 1 employs synchronization paradigm: 12 MD patients and 25 healthy pianists had to repeatedly play C-major scales in synchrony with a metronome on a MIDI-piano with 3 auditory feedback conditions: 1. normal feedback; 2. no feedback; 3. constant delayed feedback. Experiment 2 employs synchronization-continuation paradigm: 12 MD patients and 12 healthy pianists had to repeatedly play C-major scales in two phases: first in synchrony with a metronome, secondly continue the established tempo without the metronome. There are 4 experimental conditions, among them 3 are the same altered auditory feedback as in Experiment 1 and 1 is related to altered tactile sensory input. The coefficient of variation of inter-onset intervals of the key depressions was calculated to evaluate fine motor control. Results: In both experiments, the healthy controls and the patients behaved very similarly. There is no difference in the regularity of playing between the two groups under any condition, and neither did AAF nor did altered tactile feedback have a beneficial effect on patients’ fine motor control. Conclusions: The results of the two experiments suggest that in the context of our experimental designs, AAF and altered tactile feedback play a minor role in motor coordination in patients with musicians' dystonia. We propose that altered auditory and tactile feedback do not serve as effective sensory tricks and may not temporarily reduce the symptoms of patients suffering from MD in this experimental context.

  9. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    Science.gov (United States)

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task

    DEFF Research Database (Denmark)

    Kumar, Abhishek; Grigoriadis, Joannis; Trulsson, Mats

    2015-01-01

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor...... movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with ten 10 trials) of the task before and after a short-term (approximately 30min) training. The accuracy of the split and vertical jaw...... task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights on into how humans learn oral motor behaviors or the kind of adaptation...

  11. Characterization of motor units in behaving adult mice shows a wide primary range.

    Science.gov (United States)

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.

  12. Frictional Behavior of Altered Basement Approaching the Nankai Trough

    Science.gov (United States)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.

    2017-12-01

    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in

  13. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels

    OpenAIRE

    Brembs, Björn; Christiansen, F.; Pflüger, J.; Duch, C.

    2007-01-01

    Insect flight is one of the fastest, most intense and most energy-demanding motor behaviors. It is modulated on multiple levels by the biogenic amine octopamine. Within the CNS, octopamine acts directly on the flight central pattern generator, and it affects motivational states. In the periphery, octopamine sensitizes sensory receptors, alters muscle contraction kinetics, and enhances flight muscle glycolysis. This study addresses the roles for octopamine and its precursor tyramine in flight ...

  14. Transgenerational Social Stress Alters Immune–Behavior Associations and the Response to Vaccination

    Directory of Open Access Journals (Sweden)

    Alexandria Hicks-Nelson

    2017-07-01

    Full Text Available Similar to the multi-hit theory of schizophrenia, social behavior pathologies are mediated by multiple factors across generations, likely acting additively, synergistically, or antagonistically. Exposure to social adversity, especially during early life, has been proposed to induce depression symptoms through immune mediated mechanisms. Basal immune factors are altered in a variety of neurobehavioral models. In the current study, we assessed two aspects of a transgenerational chronic social stress (CSS rat model and its effects on the immune system. First, we asked whether exposure of F0 dams and their F1 litters to CSS changes basal levels of IL-6, TNF, IFN-γ, and social behavior in CSS F1 female juvenile rats. Second, we asked whether the F2 generation could generate normal immunological responses following vaccination with Mycobacterium bovis Bacillus Calmette–Guérin (BCG. We report several changes in the associations between social behaviors and cytokines in the F1 juvenile offspring of the CSS model. It is suggested that changes in the immune–behavior relationships in F1 juveniles indicate the early stages of immune mediated disruption of social behavior that becomes more apparent in F1 dams and the F2 generation. We also report preliminary evidence of elevated IL-6 and impaired interferon-gamma responses in BCG-vaccinated F2 females. In conclusion, transgenerational social stress alters both immune–behavior associations and responses to vaccination. It is hypothesized that the effects of social stress may accumulate over generations through changes in the immune system, establishing the immune system as an effective preventative or treatment target for social behavior pathologies.

  15. Ivermectin reduces motor coordination, serum testosterone, and central neurotransmitter levels but does not affect sexual motivation in male rats.

    Science.gov (United States)

    Moreira, N; Sandini, T M; Reis-Silva, T M; Navas-Suáresz, P; Auada, A V V; Lebrun, I; Flório, J C; Bernardi, M M; Spinosa, H S

    2017-12-01

    Ivermectin (IVM) is a macrocyclic lactone used for the treatment of parasitic infections and widely used in veterinary medicine as endectocide. In mammals, evidence indicates that IVM interacts with γ-aminobutyric acid (GABA)-mediated chloride channels. GABAergic system is involved in the manifestation of sexual behavior. We previously found that IVM at therapeutic doses did not alter sexual behavior in male rats, but at a higher dose, the appetitive phase of sexual behavior was impaired. Thus, we investigated whether the reduction of sexual behavior that was previously observed was a consequence of motor or motivational deficits that are induced by IVM. Data showed significant decrease in striatal dopaminergic system activity and lower testosterone levels but no effects on sexual motivation or penile erection. These findings suggest IVM may activate the GABAergic system and reduce testosterone levels, resulting in a reduction of motor coordination as consequence of the inhibition of striatal dopamine release. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Using dissolved carbon dioxide to alter the behavior of invasive round goby

    Science.gov (United States)

    Cupp, Aaron R.; Tix, John; Smerud, Justin R.; Erickson, Richard A.; Fredricks, Kim; Amberg, Jon J.; Suski, Cory D.; Wakeman, Robert

    2017-01-01

    Fisheries managers need effective methods to limit the spread of invasive round goby Neogobius melanostomus in North America. Elevating carbon dioxide (CO2) in water at pinch points of rivers (e.g., inside locks) is one approach showing potential to deter the passage of invasive fishes, such as bigheaded carps Hypophthalmichthys spp., but the effectiveness of this method to alter round goby behavior has not been determined. The goal for this study was to determine CO2 concentrations that alter round goby behavior across a range of water temperatures. Free-swimming avoidance (voluntary response) and loss of equilibrium (involuntary response) were quantified by exposing round goby to increasing CO2 concentrations at 5, 15, and 25 °C using a shuttle box choice arena and static tank. Water chemistry was measured concurrent with behavioral endpoints and showed that round goby avoided a threshold of 99–169 mg/L CO2(79,000–178,000 µatm) and lost equilibrium at 197–280 mg/L CO2 (163,000–303,000 µatm). Approximately 50% lower CO2 concentrations were found to modify behavior at 5 °C relative to 25 °C, suggesting greater effectiveness at lower water temperatures. We conclude that CO2 modified round goby behavior and concentrations determined in this study are intended to guide field testing of CO2 as an invasive fish deterrent.

  17. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    OpenAIRE

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls? physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh?s Self-Description Questionnaire. Children?s physical activit...

  18. The effects of yoga practice in school physical education on children's motor abilities and social behavior.

    Science.gov (United States)

    Folleto, Júlia C; Pereira, Keila Rg; Valentini, Nadia Cristina

    2016-01-01

    In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6-8-year-old children. The study included 16 children from the 1(st) grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each session. To assess children's performance, we used the Bruininks-Oseretsky Test of Motor Proficiency - Second Edition, the flexibility test (sit and reach - Eurofit, 1988), the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children and semi-structured interviews with children, parents, and classroom' teacher. Data were analyzed with Wilcoxon test and level of significance was 5%. The yoga program was well accepted by children, children also demonstrated significant and positive changes in overall motor abilities scores (balance, strength, and flexibility). In addition, the interviews reported changing in social behavior and the use of the knowledge learned in the program in contexts outside of school. These findings suggest that the implementation of yoga practice in physical education lessons contributed to children's development.

  19. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    -aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer...... the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...

  20. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Science.gov (United States)

    Vallone, Fabio; Lai, Stefano; Spalletti, Cristina; Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo

    2016-01-01

    Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance

  1. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Directory of Open Access Journals (Sweden)

    Fabio Vallone

    Full Text Available Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA, generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral.Local field potentials (LFPs were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis.Spectral analysis demonstrated an early decrease (day 9 in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23, inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance.These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating

  2. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Filipa I Baptista

    Full Text Available Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM or mannitol (osmotic control; 25 mM plus 25 mM glucose for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal

  3. Imitation in patients with Gilles de la Tourette syndrome--a behavioral study

    DEFF Research Database (Denmark)

    Jonas, Melanie; Thomalla, Götz; Biermann-Ruben, Katja

    2010-01-01

    Echophenomena in Gilles de la Tourette syndrome (GTS) may relate to deficient processing of observed biological movements. This would be reflected in altered effects of movement observation on motor responses in these patients. We studied reaction times in 11 unmedicated GTS patients without...... in both groups, provided stimulus presentation and response initiation coincided. Healthy subjects responded faster to compatible biological than nonbiological stimuli. In contrast, GTS patients responded slower to incompatible biological than nonbiological stimuli. Patients' mean reaction time...... in experiment 2 correlated with phonic tic-frequency. Motor facilitation by observing biological movements appears to rely on concomitance of stimuli and responses in GTS patients and healthy individuals. Differing behavioral effects of movement observation in GTS might reflect altered activation of an action...

  4. Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs.

    Science.gov (United States)

    Hayase, T; Yamamoto, Y; Yamamoto, K

    2000-12-01

    The present study evaluated the effects of mixed opioid drugs on the severity of cocaine (COCA) toxicity by examining stress-related behavioral alterations in mice. In order to ascertain the strength of the stress, the continuous observation of the behavioral symptoms in the cage and the forced swimming test (Porsolt test) were performed in the COCA (75 mg/kg, i.p.)-treated groups, with or without the mixed mu-kappa receptor-related opioid drugs, buprenorphine (BUP) and pentazocine (PEN). Using the high-sensitivity activity measuring instrument Supermex, both the spontaneous behaviors in the cage and the forced swimming behaviors in the water were assessed as activity counts. The behavioral alterations in the COCA-treated groups were compared with a group of mice given a 10 min immobilization stress (IM group). In the COCA-only group, a prolonged increase in the spontaneous behaviors accompanied by convulsive seizures was observed even in the surviving mice, unlike in the IM group. However, an acceleration of behavioral despair in the Porsolt test similar to that observed in the IM group was observed in the COCA group after the disappearance of the acute toxic symptoms (5 hours after the COCA treatment). Among the opioid-treated groups, the mortality rate was attenuated only in the COCA-BUP (0.25 mg/kg, i.p.) group. In the COCA-BUP group, a prolonged suppression of the morbid hyperactivity in the cage except for the convulsive seizures, and a normalization of the swimming behavior in the Porsolt test were observed in the survivors. On the other hand, in the COCA-PEN (5 mg/kg, i.p.) group, the swimming behavior in the Porsolt test was abnormally increased in addition to the prolonged morbid hyperactivity in the cage. Therefore, the COCA-induced stress-related behaviors were normalized in the group of mice treated with BUP, a group with a good prognosis.

  5. Alterations in offspring behavior induced by chronic prenatal cocaine dosing.

    Science.gov (United States)

    Smith, R F; Mattran, K M; Kurkjian, M F; Kurtz, S L

    1989-01-01

    Sperm-positive female Long-Evans hooded rats were dosed subcutaneously with 10 mg/kg/day cocaine or an equal volume of vehicle (0.9% sterile saline) from gestation day 4 (GD4) through GD18. Offspring were assessed for development of negative geotaxis, righting reflex, spontaneous alternation, and open field activity, and for adult behaviors including DRL-20 acquisition, water maze, visual discrimination, barbiturate sleep time, shuttlebox avoidance, footshock sensitivity, and tail flick latency. Cocaine dosing produced no significant effects on dam weight gain, any measure of litter size and weight, or early postnatal behavioral tests, but there were significant drug effects on development of spontaneous alternation, development of open field activity, DRL-20 acquisition, water maze performance, tail flick, and footshock sensitivity. These data suggest that chronic administration of a modest dose of cocaine during gestation in the rat alters a number of behaviors in the offspring.

  6. Prenatal exposure to low-level methylmercury alters the child's fine motor skills at the age of 18 months.

    Science.gov (United States)

    Prpić, Igor; Milardović, Ana; Vlašić-Cicvarić, Inge; Špiric, Zdravko; Radić Nišević, Jelena; Vukelić, Petar; Snoj Tratnik, Janja; Mazej, Darja; Horvat, Milena

    2017-01-01

    To compare motor, cognitive and language characteristics in children aged 18 months who were prenatally exposed to low-level methyl-mercury (MeHg), and to analyze the eventual differences in these characteristics in relation to cord blood THg concentration. The total number of 205 child-mother pairs was included in the study, and total cord blood mercury was measured in 198 of them. Out of the 198 already measured samples, 47 of them have also been tested for methyl-mercury in cord blood. Data regarding the 47 samples of MeHg levels has been used for calculating the correlation between cord blood THg and cord blood MeHg. MeHg and THg showed a significant correlation (r=0.95, pmotor, cognitive and language skills were conducted on 168 children using The Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Regarding the cord blood THg concentration, 135 children were divided in 4 quartile groups. Their neurodevelopmental characteristics have been compared. The cord blood THg concentration median and inter-quartile range was 2.98ng/g (1.41-5.61ng/g). There was a negative correlation between cord blood THg concentration and fine motor skills (rho=-0.22, p=0.01). It is evident that children grouped in 2nd ,3rd and 4th quartile had statistically significant lower fine motor skills assessment related to those grouped in 1st quartile (2nd quartile -1.24, p=0.03; 3rd quartile -1.28, p=0.03; 4th quartile -1.45, p=0.01). The differences in fine motor skills assessments between children in 2nd and 3rd and 3rd and 4th quartile were not statistically significant. Intrauterine exposure to low-level THg (MeHg) is associated with alterations in fine motor skills at the age of 18 months. Copyright © 2016. Published by Elsevier Inc.

  7. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  9. Handling newborn monkeys alters later exploratory, cognitive, and social behaviors.

    Science.gov (United States)

    Simpson, Elizabeth A; Sclafani, Valentina; Paukner, Annika; Kaburu, Stefano S K; Suomi, Stephen J; Ferrari, Pier F

    2017-08-18

    Touch is one of the first senses to develop and one of the earliest modalities for infant-caregiver communication. While studies have explored the benefits of infant touch in terms of physical health and growth, the effects of social touch on infant behavior are relatively unexplored. Here, we investigated the influence of neonatal handling on a variety of domains, including memory, novelty seeking, and social interest, in infant monkeys (Macaca mulatta; n=48) from 2 to 12 weeks of age. Neonates were randomly assigned to receive extra holding, with or without accompanying face-to-face interactions. Extra-handled infants, compared to standard-reared infants, exhibited less stress-related behavior and more locomotion around a novel environment, faster approach of novel objects, better working memory, and less fear towards a novel social partner. In sum, infants who received more tactile stimulation in the neonatal period subsequently demonstrated more advanced motor, social, and cognitive skills-particularly in contexts involving exploration of novelty-in the first three months of life. These data suggest that social touch may support behavioral development, offering promising possibilities for designing future early interventions, particularly for infants who are at heightened risk for social disorders. Copyright © 2017. Published by Elsevier Ltd.

  10. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age

    NARCIS (Netherlands)

    Roze, Elise; Meijer, Lisethe; Bakker, Attie; Van Braeckel, Koenraad N. J. A.; Sauer, Pieter J. J.; Bos, Arend F.

    2009-01-01

    BACKGROUND: Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. OBJECTIVE: We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age.

  11. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  12. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  13. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Chang, Wei-Ju; O'Connell, Neil E; Beckenkamp, Paula R; Alhassani, Ghufran; Liston, Matthew B; Schabrun, Siobhan M

    2018-04-01

    Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Meta-analyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Effect of hippotherapy on motor control, adaptive behaviors, and participation in children with autism spectrum disorder: a pilot study.

    Science.gov (United States)

    Ajzenman, Heather F; Standeven, John W; Shurtleff, Tim L

    2013-01-01

    The purpose of this investigation was to determine whether hippotherapy increased function and participation in children with autism spectrum disorder (ASD). We hypothesized improvements in motor control, which might increase adaptive behaviors and participation in daily activities. Six children with ASD ages 5-12 participated in 12 weekly 45-min hippotherapy sessions. Measures pre- and post-hippotherapy included the Vineland Adaptive Behavior Scales-II and the Child Activity Card Sort. Motor control was measured preintervention and postintervention using a video motion capture system and force plates. Postural sway significantly decreased postintervention. Significant increases were observed in overall adaptive behaviors (receptive communication and coping) and in participation in self-care, low-demand leisure, and social interactions. These results suggest that hippotherapy has a positive influence on children with ASD and can be a useful treatment tool for this population. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  15. Impact of fluorescent protein fusions on the bacterial flagellar motor.

    Science.gov (United States)

    Heo, M; Nord, A L; Chamousset, D; van Rijn, E; Beaumont, H J E; Pedaci, F

    2017-10-03

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.

  16. Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats

    Science.gov (United States)

    Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.

    2013-01-01

    Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060

  17. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  18. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    Science.gov (United States)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  19. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder

    Directory of Open Access Journals (Sweden)

    Thomas Hassa

    2017-01-01

    Full Text Available Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  20. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    Science.gov (United States)

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  1. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kevin R. McLeod

    2016-01-01

    Full Text Available Developmental coordination disorder (DCD and attention-deficit hyperactivity disorder (ADHD are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1 cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD, a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  2. The effects of the administration of two different doses of manganese on short-term spatial memory and anxiety-like behavior in rats

    Directory of Open Access Journals (Sweden)

    Hogas M.

    2011-01-01

    Full Text Available Manganese is a very well known neurotoxic agent. It has been mainly linked to impaired motor skills and disturbed psychomotor development. However, very few aspects are known about the cognitive deficits and behavioral consequences of chronic manganese exposure. In this context, we report herein our findings regarding short-term spatial memory, motor and anxiety-like behavior assessments in male Wistar rats exposed for 45 days to two different doses (3 mg/kg b.w., i.p. and 10 mg/kg b.w., i.p. of manganese. Behavior testing (Y-maze task and elevated plus maze was performed after 45 days of manganese administration. Chronic manganese exposure in Wistar rats led to behavioral alterations consisting of cognitive deficiencies in the Y-maze task and anxiety/compulsive-like behaviors in the elevated plus maze, but no motor disturbances as tested by the number of arm entries in the Y-maze. Additional work is necessary to understand the longterm effects of different doses and dosing regimens of manganese on cognitive/affective and motor functioning.

  3. Passive listening to preferred motor tempo modulates corticospinal excitability.

    Science.gov (United States)

    Michaelis, Kelly; Wiener, Martin; Thompson, James C

    2014-01-01

    Rhythms are an essential characteristic of our lives, and auditory-motor coupling affects a variety of behaviors. Previous research has shown that the neural regions associated with motor system processing are coupled to perceptual rhythmic and melodic processing such that the perception of rhythmic stimuli can entrain motor system responses. However, the degree to which individual preference modulates the motor system is unknown. Recent work has shown that passively listening to metrically strong rhythms increases corticospinal excitability, as indicated by transcranial magnetic stimulation (TMS). Furthermore, this effect is modulated by high-groove music, or music that inspires movement, while neuroimaging evidence suggests that premotor activity increases with tempos occurring within a preferred tempo (PT) category. PT refers to the rate of a hypothetical endogenous oscillator that may be indicated by spontaneous motor tempo (SMT) and preferred perceptual tempo (PPT) measurements. The present study investigated whether listening to a rhythm at an individual's PT preferentially modulates motor system excitability. SMT was obtained in human participants through a tapping task in which subjects were asked to tap a response key at their most comfortable rate. Subjects listened a 10-beat tone sequence at 11 log-spaced tempos and rated their preference for each (PPT). We found that SMT and PPT measurements were correlated, indicating that preferred and produced tempos occurred at a similar rate. Crucially, single-pulse TMS delivered to left M1 during PPT judgments revealed that corticospinal excitability, measured by motor-evoked potentials (MEPs), was modulated by tempos traveling closer to individual PT. However, the specific nature of this modulation differed across individuals, with some exhibiting an increase in excitability around PT and others exhibiting a decrease. These findings suggest that auditory-motor coupling induced by rhythms is preferentially

  4. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    Science.gov (United States)

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  5. Does practicing a skill with the expectation of teaching alter motor preparatory cortical dynamics?

    Science.gov (United States)

    Daou, Marcos; Lohse, Keith R; Miller, Matthew W

    2018-05-01

    Recent evidence suggests practicing a motor skill with the expectation of teaching it enhances learning by increasing information processing during motor preparation. However, the specific motor preparatory processes remain unknown. The present study sought to address this shortcoming by employing EEG to assess participants' motor preparatory processes while they completed a golf putting pretest, and then practiced putting with the expectation of (a) teaching another participant how to putt the next day (teach group, n = 30), or (b) being tested on their putting the next day (test group, n = 30). Participants' EEG during the 3-s prior to and 1-s after initiating putter movement was analyzed. All participants completed posttests 1 day after the practice session. The teach group exhibited better posttest performance (superior learning) relative to the test group, but no group differences in motor preparatory processing (EEG) emerged. However, participants in both groups exhibited linear decreases in both theta power at frontal midline and upper-alpha power over motor areas during putt initiation. These results suggest a decrease in working memory and action monitoring (frontal midline theta), and an increase in motor programming (motor upper-alpha) during putt initiation. Further, participants in both groups exhibited increased frontal midline theta from pretest to practice, but decreases in both upper motor-alpha and upper-alpha coherence between left/right temporal and motor planning regions. These results suggest participants utilized working memory and action monitoring to a greater extent during practice relative to pretest, while refining their motor programming and verbal-analytic/visuospatial involvement in motor programming. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  7. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    Science.gov (United States)

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  8. Continuous theta-burst stimulation of the primary motor cortex in essential tremor

    DEFF Research Database (Denmark)

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R

    2012-01-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation.......We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation....

  9. Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome.

    Science.gov (United States)

    de Cossío, Lourdes Fernández; Fourrier, Célia; Sauvant, Julie; Everard, Amandine; Capuron, Lucile; Cani, Patrice D; Layé, Sophie; Castanon, Nathalie

    2017-08-01

    Mounting evidence shows that the gut microbiota, an important player within the gut-brain communication axis, can affect metabolism, inflammation, brain function and behavior. Interestingly, gut microbiota composition is known to be altered in patients with metabolic syndrome (MetS), who also often display neuropsychiatric symptoms. The use of prebiotics, which beneficially alters the microbiota, may therefore be a promising way to potentially improve physical and mental health in MetS patients. This hypothesis was tested in a mouse model of MetS, namely the obese and type-2 diabetic db/db mice, which display emotional and cognitive alterations associated with changes in gut microbiota composition and hippocampal inflammation compared to their lean db/+ littermates. We assessed the impact of chronic administration (8weeks) of prebiotics (oligofructose) on both metabolic (body weight, food intake, glucose homeostasis) and behavioral (increased anxiety-like behavior and impaired spatial memory) alterations characterizing db/db mice, as well as related neurobiological correlates, with particular attention to neuroinflammatory processes. Prebiotic administration improved excessive food intake and glycemic dysregulations (glucose tolerance and insulin resistance) in db/db mice. This was accompanied by an increase of plasma anti-inflammatory cytokine IL-10 levels and hypothalamic mRNA expression of the anorexigenic cytokine IL-1β, whereas unbalanced mRNA expression of hypothalamic orexigenic (NPY) and anorexigenic (CART, POMC) peptides was unchanged. We also detected signs of improved blood-brain-barrier integrity in the hypothalamus of oligofructose-treated db/db mice (normalized expression of tight junction proteins ZO-1 and occludin). On the contrary, prebiotic administration did not improve behavioral alterations and associated reduction of hippocampal neurogenesis displayed by db/db mice, despite normalization of increased hippocampal IL-6 mRNA expression. Of note

  10. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding.

    Science.gov (United States)

    Charalambous, Charalambos C; Bowden, Mark G; Adkins, DeAnna L

    2016-01-01

    Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking. © The Author(s) 2015.

  11. The motor way: Clinical implications of understanding and shaping actions with the motor system in autism and drug addiction.

    Science.gov (United States)

    Casartelli, Luca; Chiamulera, Cristiano

    2016-04-01

    To understand others' minds is crucial for survival; however, it is quite puzzling how access to others' minds can be--to some extent--direct and not necessarily mediated by conceptual reasoning. Recent advances in neuroscience have led to hypothesize a role for motor circuits not only in controlling the elementary physical features of movement (e.g., force, direction, and amplitude), but also in understanding and shaping human behavior. The concept of "motor cognition" refers to these aspects, and neurophysiological, neuroimaging, and behavioral studies in human and nonhuman primates support this view. From a clinical perspective, motor cognition represents a challenge in several domains. A thorough investigation of the neural mechanisms mediating motor action/intention understanding and automatized/compulsive behaviors seems to be a promising way to tackle a range of neurodevelopmental and drug-related disorders. On the one hand, anomalies in motor cognition may have cascade effects on social functioning in individuals with autism spectrum disorder (ASD); on the other, motor cognition may help explain the pathophysiology of drug-seeking and drug-taking behaviors in the most severe phase of drug addiction (i.e., see drug dependence, motor low-order cue reactivity). This may represent a promising approach that could improve the efficacy of rehabilitative interventions. The only way to shed light on multifactorial disorders such as ASD and drug addiction is through the investigation of their multiple factors. This motor way can promote new theoretical and experimental perspectives that would help bridge the gap between the basic neuroscience approach and clinical practice.

  12. A Synergetic Approach to Describe the Stability and Variability of Motor Behavior

    Science.gov (United States)

    Witte, Kersttn; Bock, Holger; Storb, Ulrich; Blaser, Peter

    At the beginning of the 20th century, the Russian physiologist and biomechanist Bernstein developed his cyclograms, in which he showed in the non-repetition of the same movement under constant conditions. We can also observe this phenomenon when we analyze several cyclic sports movements. For example, we investigated the trajectories of single joints and segments of the body in breaststroke, walking, and running. The problem of the stability and variability of movement, and the relation between the two, cannot be satisfactorily tackled by means of linear methods. Thus, several authors (Turvey, 1977; Kugler et al., 1980; Haken et al., 1985; Schöner et al., 1986; Mitra et al., 1997; Kay et al., 1991; Ganz et al., 1996; Schöllhorn, 1999) use nonlinear models to describe human movement. These models and approaches have shown that nonlinear theories of complex systems provide a new understanding of the stability and variability of motor control. The purpose of this chapter is a presentation of a common synergetic model of motor behavior and its application to foot tapping, walking, and running.

  13. Effect of preterm birth on motor development, behavior, and school performance of school‐age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-03-01

    Full Text Available Objectives: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school‐age children. Sources: this was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target‐population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. Summary of findings: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions. Resumo: Objetivos: examinar e sintetizar o conhecimento da literatura sobre os efeitos do nascimento prematuro no desenvolvimento de crianças em idade escolar. Fontes de dados: revisão sistemática de estudos dos últimos 10 anos indexados nas bases de dados Medline/Pubmed; Medline/BVS; Lilacs/BVS; IBECS/BVS; Cochrane/BVS; Cinahl

  14. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  15. Sensorimotor oscillations prior to speech onset reflect altered motor networks in adults who stutter

    Directory of Open Access Journals (Sweden)

    Anna-Maria Mersov

    2016-09-01

    Full Text Available Adults who stutter (AWS have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG. Twelve AWS and twelve age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset and speech execution (following speech onset. Compared to controls, AWS showed stronger beta (15-25Hz suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.

  16. Time-varying motor control of autotomized leopard gecko tails: multiple inputs and behavioral modulation.

    Science.gov (United States)

    Higham, Timothy E; Russell, Anthony P

    2012-02-01

    Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.

  17. Beauty and the burn: tanning and other appearance-altering attitudes and behaviors.

    Science.gov (United States)

    Gillen, Meghan M; Markey, Charlotte H

    2017-12-01

    Tanning is often prompted by appearance concerns, yet little is known about associations between tanning and other appearance-altering behaviors. In the current study, we examined potential correlates of indoor and outdoor tanning that, like tanning, may enhance appearance but present health risks. College students (N = 284; Mage = 20.14, SD = 3.39) completed a survey. The main outcome measures were indoor tanning and outdoor sunbathing. Participants also answered questions pertaining to piercings and tattoos, healthy and unhealthy dieting behaviors, cigarette smoking, and interest in cosmetic surgery and enhancements. Results indicate that indoor tanners were more likely to have piercings, tattoos, to engage in healthy dieting behaviors, and to express interest in cosmetic enhancements. Outdoor sunbathers were more interested in cosmetic enhancements than non-outdoor sunbathers, and female outdoor sunbathers reported more unhealthy dieting behaviors than male outdoor sunbathers. These findings provide evidence for college students' engagement in a constellation of appearance-oriented risk behaviors.

  18. Orthodontic treatment-induced temporal alteration of jaw-opening reflex excitability.

    Science.gov (United States)

    Sasaki, Au; Hasegawa, Naoya; Adachi, Kazunori; Sakagami, Hiroshi; Suda, Naoto

    2017-10-01

    The impairment of orofacial motor function during orthodontic treatment needs to be addressed, because most orthodontic patients experience pain and motor excitability would be affected by pain. In the present study, the temporal alteration of the jaw-opening reflex excitability was investigated to determine if orthodontic treatment affects orofacial motor function. The excitability of jaw-opening reflex evoked by electrical stimulation on the gingiva and recorded bilaterally in the anterior digastric muscles was evaluated at 1 (D1), 3 (D3), and 7 days (D7) after orthodontic force application to the teeth of right side; morphological features (e.g., osteoclast genesis and tooth movement) were also evaluated. To clarify the underlying mechanism of orthodontic treatment-induced alteration of orofacial motor excitability, analgesics were administrated for 1 day. At D1 and D3, orthodontic treatment significantly decreased the threshold for inducing the jaw-opening reflex but significantly increased the threshold at D7. Other parameters of the jaw-opening reflex were also evaluated (e.g., latency, duration and area under the curve of anterior digastric muscles activity), and only the latency of the D1 group was significantly different from that of the other groups. Temporal alteration of the jaw-opening reflex excitability was significantly correlated with changes in morphological features. Aspirin (300 mg·kg -1 ·day -1 ) significantly increased the threshold for inducing the jaw-opening reflex, whereas a lower dose (75-150 mg·kg -1 ·day -1 ) of aspirin or acetaminophen (300 mg·kg -1 ·day -1 ) failed to alter the jaw-opening reflex excitability. These results suggest that an increase of the jaw-opening reflex excitability can be induced acutely by orthodontic treatment, possibly through the cyclooxygenase activation. NEW & NOTEWORTHY It is well known that motor function is affected by pain, but the effect of orthodontic treatment-related pain on the trigeminal

  19. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  20. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Altered steering strategies for goal-directed locomotion in stroke

    Science.gov (United States)

    2013-01-01

    Background Individuals who have sustained a stroke can manifest altered locomotor steering behaviors when exposed to optic flows expanding from different locations. Whether these alterations persist in the presence of a visible goal and whether they can be explained by the presence of a perceptuo-motor disorder remain unknown. The purpose of this study was to compare stroke participants and healthy participants on their ability to control heading while exposed to changing optic flows and target locations. Methods Ten participants with stroke (55.6 ± 9.3 yrs) and ten healthy controls (57.0 ± 11.5 yrs) participated in a mouse-driven steering task (perceptuo-motor task) while seated and in a walking steering task. In the seated steering task, participants were instructed to head or ‘walk’ toward a target in the virtual environment by using a mouse while wearing a helmet-mounted display (HMD). In the walking task, participants performed a similar steering task in the same virtual environment while walking overground at their comfortable speed. For both experiments, the target and/or the focus of expansion (FOE) of the optic flow shifted to the side (±20°) or remained centered. The main outcome measure was net heading errors (NHE). Secondary outcomes included mediolateral displacement, horizontal head orientation, and onsets of heading and head reorientation. Results In the walking steering task, the presence of FOE shifts modulated the extent and timing of mediolateral displacement and head rotation changes, as well as NHE magnitudes. Participants overshot and undershot their net heading, respectively, in response to ipsilateral and contralateral FOE and target shifts. Stroke participants made larger NHEs, especially when the FOE was shifted towards the non-paretic side. In the seated steering task, similar NHEs were observed between stroke and healthy participants. Conclusions The findings highlight the fine coordination between rotational and

  2. Alterations in choice behavior by manipulations of world model.

    Science.gov (United States)

    Green, C S; Benson, C; Kersten, D; Schrater, P

    2010-09-14

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.

  3. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  4. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  5. Prospective associations between measures of gross and fine motor coordination in infants and objectively measured physical activity and sedentary behavior in childhood.

    Science.gov (United States)

    Sánchez, Guillermo F López; Williams, Genevieve; Aggio, Daniel; Vicinanza, Domenico; Stubbs, Brendon; Kerr, Catherine; Johnstone, James; Roberts, Justin; Smith, Lee

    2017-11-01

    One important determinant of childhood physical activity and sedentary behavior may be that of motor development in infancy. The present analyses aimed to investigate whether gross and fine motor delays in infants were associated with objective and self-reported activity in childhood. Data were from the UK Millennium Cohort Study, a prospective cohort study, involving UK children born on or around the millennium (September 2000 and January 2002). When children were 9 months old, parents reported children's fine and gross motor-coordination, and at 7 years, sports club attendance and daily TV viewing time. Children's physical activity was measured using accelerometers at 7 years. Adjusted regression models were used to examine associations between delayed motor development and accelerometry measured moderate-to-vigorous physical activity and sedentary behavior, and parent-reported sport club attendance and TV viewing time. In this sample (n = 13,021), gross motor delay in infancy was associated with less time in moderate-to-vigorous physical activity (B -5.0 95% confidence interval [CI] -6.8, -3.2) and more time sedentary (B 13.5 95% CI 9.3, 17.8) in childhood. Gross and fine motor delays during infancy were associated with a reduced risk of having high attendance at sports clubs in childhood (both relative risk [RR] 0.7, 95% CI 0.6, 0.9). Fine motor delays, but not gross delays, were also associated with an increased risk of having high TV viewing time (RR 1.3 95% CI 1.0, 1.6). Findings from the present study suggest that delays in motor development in infancy are associated with physical activity and sedentary time in childhood.

  6. Studies in Motor Behavior: 75 Years of Research in Motor Development, Learning, and Control

    Science.gov (United States)

    Ulrich, Beverly D.; Reeve, T. Gilmour

    2005-01-01

    Research focused on human motor development, learning, and control has been a prominent feature in the Research Quarterly for Exercise and Sport (RQES) since it was first published in 1930. The purpose of this article is to provide an overview of the papers in the RQES that demonstrate the journal's contributions to the study of motor development,…

  7. Environmental prenatal stress eliminates brain and maternal behavioral sex differences and alters hormone levels in female rats.

    Science.gov (United States)

    Del Cerro, M C R; Ortega, E; Gómez, F; Segovia, S; Pérez-Laso, C

    2015-07-01

    Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Garcinia kola seeds may prevent cognitive and motor dysfunctions in a type 1 diabetes mellitus rat model partly by mitigating neuroinflammation.

    Science.gov (United States)

    Seke Etet, Paul F; Farahna, Mohammed; Satti, Gwiria M H; Bushara, Yahia M; El-Tahir, Ahmed; Hamza, Muaawia A; Osman, Sayed Y; Dibia, Ambrose C; Vecchio, Lorella

    2017-04-15

    Background We reported recently that extracts of seeds of Garcinia kola, a plant with established hypoglycemic properties, prevented the loss of inflammation-sensible neuronal populations like Purkinje cells in a rat model of type 1 diabetes mellitus (T1DM). Here, we assessed G. kola extract ability to prevent the early cognitive and motor dysfunctions observed in this model. Methods Rats made diabetic by single injection of streptozotocin were treated daily with either vehicle solution (diabetic control group), insulin, or G. kola extract from the first to the 6th week post-injection. Then, cognitive and motor functions were assessed using holeboard and vertical pole behavioral tests, and animals were sacrificed. Brains were dissected out, cut, and processed for Nissl staining and immunohistochemistry. Results Hyperglycemia (209.26 %), body weight loss (-12.37 %), and T1DM-like cognitive and motor dysfunctions revealed behavioral tests in diabetic control animals were not observed in insulin and extract-treated animals. Similar, expressions of inflammation markers tumor necrosis factor (TNF), iba1 (CD68), and Glial fibrillary acidic protein (GFAP), as well as decreases of neuronal density in regions involved in cognitive and motor functions (-49.56 % motor cortex, -33.24 % medial septal nucleus, -41.8 % /-37.34 % cerebellar Purkinje /granular cell layers) were observed in diabetic controls but not in animals treated with insulin or G. kola. Conclusions Our results indicate that T1DM-like functional alterations are mediated, at least partly, by neuroinflammation and neuronal loss in this model. The prevention of the development of such alterations by early treatment with G. kola confirms the neuroprotective properties of the plant and warrant further mechanistic studies, considering the potential for human disease.

  9. A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors

    Science.gov (United States)

    Nalbandian, Ruben; Blais, Thierry; Horth, Richard

    2014-01-01

    Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized

  10. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  11. Traffic collisions between electric mobility devices (wheelchairs) and motor vehicles: Accidents, hubris, or self-destructive behavior?

    Science.gov (United States)

    LaBan, Myron M; Nabity, Thomas S

    2010-07-01

    This study had its genesis in a personally observed collision between a motor vehicle and a motorized wheelchair (electric mobility device) on a busy street in the middle of the block at an unmarked crossing. To the observer, at the time, this appeared to be a suicidal act. This investigation was initiated to both delineate the number of these crashes nationally and understand this phenomena as a potentially planned act of self-destruction. An initial survey of police reports was immediately frustrated by an inability to separate motor vehicle and electric mobility device collisions from the much larger group that involved ambulatory citizens because both types were classified together as "pedestrian" accidents. Instead, the search engine NexisLexis was used to identify 107 newspaper articles each of which described a motor vehicle and electric mobility device accident. In the motor vehicle and electric mobility device collisions, men predominated women (3:1 ratio) with an average age of 56 yrs. Sixty of these accidents were fatal. Ninety-four percent involved an electric mobility device and 6% a manual wheelchair. In 50% of the cases, the motor vehicle was a truck, van, or sport utility vehicle. Fifty percent occurred at dusk or dawn or at night. The electric mobility device occupant was cited as the guilty party in 39% of the cases and the driver of the motor vehicle in 27%. Twenty percent were unwitnessed hit-and-run accidents, whereas "no fault" was found in 8% of the cases. Although many accidents do happen by chance, when an electric mobility device operator openly challenges busy traffic by attempting to traverse it in the middle of the block at an unmarked crossing, predisposing psychosocial factors must also be considered. Hubris or premeditated self-destructive behavior or both need to be explored as preeminent issues with reference to the prodromal of the "accident process."

  12. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model.

    Science.gov (United States)

    Muley, Milind M; Thakare, Vishnu N; Patil, Rajesh R; Bafna, Pallavi A; Naik, Suresh R

    2013-07-19

    The neuroprotective activities of silymarin, piracetam and protocatechuic acid ethyl ester (PCA) on cerebral global ischemic/reperfusion were evaluated in a rat model. A midline ventral incision was made in the throat region. The right and left common carotid arteries were located and a bilateral common carotid artery occlusion (BCCAO) was performed for 30min using atraumatic clamps followed by a 24h period of reperfusion. Neurological/behavioral functions (cognitive and motor), endogenous defense systems (lipid peroxidation, glutathione, catalase, and superoxide dismutase), reduced water content and infarct size and histopathological alterations were then studied. Silymarin and PCA treatments significantly improved cognitive, motor and endogenous defense functions, histopathological alterations, and, reduced both water content and infarct size compared to the vehicle-treated ischemic control group. Piracetam treatment improved neurological and histopathological alterations, reduced water content and infarct size, but failed to restore/prevent the impaired endogenous defense functions significantly. Silymarin showed better neuroprotection than piracetam and PCA in experimentally induced global ischemic/reperfusion and was able to facilitate mnemonic performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Training for Micrographia Alters Neural Connectivity in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Evelien Nackaerts

    2018-01-01

    Full Text Available Despite recent advances in clarifying the neural networks underlying rehabilitation in Parkinson's disease (PD, the impact of prolonged motor learning interventions on brain connectivity in people with PD is currently unknown. Therefore, the objective of this study was to compare cortical network changes after 6 weeks of visually cued handwriting training (= experimental with a placebo intervention to address micrographia, a common problem in PD. Twenty seven early Parkinson's patients on dopaminergic medication performed a pre-writing task in both the presence and absence of visual cues during behavioral tests and during fMRI. Subsequently, patients were randomized to the experimental (N = 13 or placebo intervention (N = 14 both lasting 6 weeks, after which they underwent the same testing procedure. We used dynamic causal modeling to compare the neural network dynamics in both groups before and after training. Most importantly, intensive writing training propagated connectivity via the left hemispheric visuomotor stream to an increased coupling with the supplementary motor area, not witnessed in the placebo group. Training enhanced communication in the left visuomotor integration system in line with the learned visually steered training. Notably, this pattern was apparent irrespective of the presence of cues, suggesting transfer from cued to uncued handwriting. We conclude that in early PD intensive motor skill learning, which led to clinical improvement, alters cortical network functioning. We showed for the first time in a placebo-controlled design that it remains possible to enhance the drive to the supplementary motor area through motor learning.

  16. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  17. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-03-01

    Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  18. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    Science.gov (United States)

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Structural Alterations in the Corpus Callosum Are Associated with Suicidal Behavior in Women with Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lischke

    2017-04-01

    Full Text Available Structural alterations in the corpus callosum (CC, the major white matter tract connecting functionally related brain regions in the two hemispheres, have been shown to be associated with emotional instability, impulsivity and suicidality in various mental disorders. To explore whether structural alterations of the CC would be similarly associated with emotional instability, impulsivity and suicidality in borderline personality disorder (BPD, we used diffusion tensor imaging (DTI to assess the structural integrity of the CC in 21 BPD and 20 healthy control (HC participants. Our hypothesis-driven analyses revealed a positive correlation between BPD participants’ suicidal behavior and fractional anisotropy (FA in the splenium and genu of the CC and a negative correlation between BPD participants’ suicidal behavior and mean diffusivity (MD in the splenium of CC. Our exploratory analyses suggested that suicidal BPD participants showed less FA and more MD in these regions than HC participants but that non-suicidal BPD participants showed similar FA and MD in these regions as HC participants. Taken together, our findings suggest an association between BPD participants’ suicidal behavior and structural alterations in regions of the CC that are connected with brain regions implicated in emotion regulation and impulse control. Structural alterations of the CC may, thus, account for deficits in emotion regulation and impulse control that lead to suicidal behavior in BPD. However, these findings should be considered as preliminary until replicated and extended in future studies that comprise larger samples of suicidal and non-suicidal BPD participants.

  20. Behavioral evidence for left-hemisphere specialization of motor planning

    NARCIS (Netherlands)

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  1. Stabilization of dendritic spine clusters and hyperactive Ras-MAPK signaling predict enhanced motor learning in an autistic savant mouse model

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Ash

    2014-03-01

    Full Text Available That both prominent behavioral inflexibility and exceptional learning abilities are seen occasionally in autistic patients is a mystery. We hypothesize that these altered patterns of learning and memory can arise from a pathological imbalance between the stability and plasticity of internal neural representations. We evaluated this hypothesis in the mouse model of MECP2 duplication syndrome, which demonstrates enhanced motor learning, stereotyped behaviors, and social avoidance. Learning-associated structural plasticity was measured in the motor cortex of MECP2 duplication mice by 2-photon imaging (Fig. 1A. An increased stabilization rate of learning-associated dendritic spines was observed in mutants, and this correlated with rotarod performance. Analysis of the spatial distribution of stabilized spines revealed that the mutant’s increased spine stabilization was due to a specific increase in the stability of spines jointly formed in ~9-micron clusters. Clustered spine stabilization but not isolated spine stabilization predicted enhanced motor performance in MECP2 duplication mice (Fig. 1B. Biochemical assays of Ras-MAPK and mTOR pathway activation demonstrated profound hyperphosphorylation of MAPK in the motor cortex of MECP2 duplication mice with motor training (Fig. 1C. Taken together these data suggest that a pathological bias towards hyperstability of learning-associated dendritic spine clusters driven by hyperactive Ras-MAPK signaling could contribute to neurobehavioral phenotypes in this form of syndromic autism.

  2. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  3. Comparison of Behavioral Problems and Skills of 7-12-Year-Old Students With a Physical/Motor Disability at Mainstream aewnd Special Schools

    Directory of Open Access Journals (Sweden)

    Tahereh Hendi

    2018-03-01

    Discussion: Our data demonstrate that behavioral problems of students with a physical/motor disability are fewer in mainstream schools indicating stronger behavior skills than their peers in special schools. In view of our data, we recommend the possibility of integrating the education of special needs students at regular schools.

  4. Influence of Sports' Programs and Club Activities on Alcohol Use Intentions and Behaviors among Adolescent Males

    Science.gov (United States)

    Leaver-Dunn, Deidre; Turner, Lori; Newman, Brian M.

    2007-01-01

    In the United States, more than 70 percent of all deaths among youth and young adults each year are related to four causes: motor vehicle crashes, other unintentional injuries, homicide, and suicide. Alcohol misuse and abuse contribute to each of these behaviors. Alcohol is the most frequently consumed mind-altering substance among…

  5. Constraining movement alters the recruitment of motor processes in mental rotation.

    Science.gov (United States)

    Moreau, David

    2013-02-01

    Does mental rotation depend on the readiness to act? Recent evidence indicates that the involvement of motor processes in mental rotation is experience-dependent, suggesting that different levels of expertise in sensorimotor interactions lead to different strategies to solve mental rotation problems. Specifically, experts in motor activities perceive spatial material as objects that can be acted upon, triggering covert simulation of rotations. Because action simulation depends on the readiness to act, movement restriction should therefore disrupt mental rotation performance in individuals favoring motor processes. In this experiment, wrestlers and non-athletes judged whether pairs of three-dimensional stimuli were identical or different, with their hands either constrained or unconstrained. Wrestlers showed higher performance than controls in the rotation of geometric stimuli, but this difference disappeared when their hands were constrained. However, movement restriction had similar consequences for both groups in the rotation of hands. These findings suggest that expert's advantage in mental rotation of abstract objects is based on the readiness to act, even when physical manipulation is impossible.

  6. Relationships between Fine-Motor, Visual-Motor, and Visual Perception Scores and Handwriting Legibility and Speed

    Science.gov (United States)

    Klein, Sheryl; Guiltner, Val; Sollereder, Patti; Cui, Ying

    2011-01-01

    Occupational therapists assess fine motor, visual motor, visual perception, and visual skill development, but knowledge of the relationships between scores on sensorimotor performance measures and handwriting legibility and speed is limited. Ninety-nine students in grades three to six with learning and/or behavior problems completed the Upper-Limb…

  7. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    Science.gov (United States)

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    Science.gov (United States)

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  9. Improvement of the thermal behavior of linear motors through insulation layer

    International Nuclear Information System (INIS)

    Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.

    2001-01-01

    Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented

  10. Two is better than one: Physical interactions improve motor performance in humans

    OpenAIRE

    G. Ganesh; A. Takagi; R. Osu; T. Yoshioka; M. Kawato; E. Burdet

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor...

  11. A Perceptual Motor Intervention Improves Play Behavior In Children With Moderate To Severe Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Brigette Oliver Ryalls

    2016-05-01

    Full Text Available For children with moderate or severe cerebral palsy (CP, a foundational early goal is independent sitting. Sitting offers additional opportunities for object exploration, play and social engagement. The achievement of sitting coincides with important milestones in other developmental areas, such as social engagement with others, understanding of spatial relationships, and the use of both hands to explore objects. These milestones are essential skills necessary for play behavior. However, little is known about how sitting and play behavior might be affected by a physical therapy intervention in children with moderate or severe CP. Therefore, our overall purpose in this study was to determine if sitting skill could be advanced in children with moderate to severe CP using a perceptual motor intervention, and if play skills would change significantly as sitting advanced. Thirty children between the ages of 18 months and 6 years who were able to hold prop sitting for at least 10 seconds were recruited for this study. Outcome measures were the sitting subsection of the Gross Motor Function Measure (GMFM, and the Play Assessment of Children with Motor Impairment (PACMI play assessment scale, which is a modified version of the Play in Early Childhood Evaluation System (PIECES. Significant improvements in GMFM sitting scores (p<0.001 and marginally significant improvement in play assessment scores (p=0.067 were found from pre- to post-intervention. Sitting change explained a significant portion of the variance in play change for children over the age of 3 years, who were more severely affected by CP. The results of this study indicate that advances in sitting skill may be a factor in supporting improvements in functional play, along with age and severity of physical impairment.

  12. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats

    Science.gov (United States)

    Lotan, Dafna; Benhar, Itai; Alvarez, Kathy; Mascaro-Blanco, Adita; Brimberg, Lior; Frenkel, Dan; Cunningham, Madeleine W.; Joel, Daphna

    2014-01-01

    Group A β-hemolytic streptococcal (GAS) infection is associated with a spectrum of neuropsychiatric disorders. The leading hypothesis regarding this association proposes that a GAS infection induces the production of auto-antibodies, which cross-react with neuronal determinants in the brain through the process of molecular mimicry. We have recently shown that exposure of rats to GAS antigen leads to the production of anti-neuronal antibodies concomitant with the development of behavioral alterations. The present study tested the causal role of the antibodies by assessing the behavior of naïve rats following passive transfer of purified antibodies from GAS-exposed rats. Immunoglobulin G (IgG) purified from the sera of GAS-exposed rats was infused directly into the striatum of naïve rats over a 21-day period. Their behavior in the induced-grooming, marble burying, food manipulation and beam walking assays was compared to that of naïve rats infused with IgG purified from adjuvant-exposed rats as well as of naïve rats. The pattern of in vivo antibody deposition in rat brain was evaluated using immunofluorescence and colocalization. Infusion of IgG from GAS-exposed rats to naïve rats led to behavioral and motor alterations partially mimicking those seen in GAS-exposed rats. IgG from GAS-exposed rats reacted with D1 and D2 dopamine receptors and 5HT-2A and 5HT-2C serotonin receptors in vitro. In vivo, IgG deposits in the striatum of infused rats colocalized with specific brain proteins such as dopamine receptors, the serotonin transporter and other neuronal proteins. Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders. PMID:24561489

  13. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  14. Gestational Exposure to the Synthetic Cathinone Methylenedioxypyrovalerone Results in Reduced Maternal Care and Behavioral Alterations in Mouse Pups

    Directory of Open Access Journals (Sweden)

    László I. Gerecsei

    2018-02-01

    Full Text Available The member of synthetic cathinone family, methylenedioxypyrovalerone (MDPV, is a frequently used psychoactive drug of abuse. The objective of our study was to determine the effect of MDPV (administered from the 8th to the 14th day of gestation on the behavior of neonatal and adolescent mice, as well as its effect on maternal care. We measured maternal care (pup retrieval test, nest building, locomotor activity (open field test, and motor coordination (grip strength test of dams, whereas on pups we examined locomotor activity at postnatal day 7 and day 21 (open field test and motor coordination on day 21 (grip strength test. On fresh-frozen brain samples of the dams we examined the expression of two important peptides implicated in the regulation of maternal behavior and lactation: tuberoinfundibular peptide 39 (TIP39 mRNA in the thalamic posterior intralaminar complex, and amylin mRNA in the medial preoptic nucleus. We detected decreased birth rate and survival of offspring, and reduced maternal care in the drug-treated animals, whereas there was no difference between the motility of treated and control mothers. Locomotor activity of the pups was increased in the MDPV treated group both at 7 and 21 days of age, while motor coordination was unaffected by MDPV treatment. TIP39 and amylin were detected in their typical location but failed to show a significant difference of expression between the drug-treated and control groups. The results suggest that chronic systemic administration of the cathinone agent MDPV to pregnant mice can reduce birth rate and maternal care, and it also enhances motility (without impairment of motor coordination of the offspring.

  15. Current and investigational non-dopaminergic agents for management of motor symptoms (including motor complications) in Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas

    2017-10-01

    Parkinson's disease is characterized by a heterogeneous combination of motor and non motor symptoms. The nigrostriatal dopamine deficit is one of its essential pathophysiologic features. Areas covered: This invited narrative review provides an overlook over current available and future promising non dopaminergic therapeutics to modulate altered dopaminergic neurotransmission in Parkinson's disease. Current research strategies aim to proof clinical efficacy by amelioration of motor symptoms and preponderant levodopa related movement fluctuations. These so-called motor complications are characterized by involuntary movements as a result of an overstimulation of the nigrostriatal dopaminergic system or by temporary recurrence of motor symptoms, when beneficial effects of dopamine substituting drugs vane. Expert opinion: Non dopaminergic modulation of dopamine replacement is currently mostly investigated in well defined and selected patients with motor complications to get approval. However, the world of daily maintenance of patients with its individually adapted, so-called personalised, therapy will determine the real value of these therapeutics. Here the clinical experience of the treating neurologists and the courage to use unconventional drug combinations are essential preconditions for successful treatments of motor and associated non motor complications in cooperation with the patients and their care giving surroundings.

  16. Phenomenological and neuropsychological profile across motor variants of delirium in a palliative care unit

    LENUS (Irish Health Repository)

    Leonard, Maeve

    2011-01-01

    Studies using composite measurement of cognition suggest that cognitive performance is similar across motor variants of delirium. The authors assessed neuropsychological and symptom profiles in 100 consecutive cases of DSM-IV delirium allocated to motor subtypes in a palliative-care unit: Hypoactive (N=33), Hyperactive (N=18), Mixed (N=26), and No-Alteration motor groups (N=23). The Mixed group had more severe delirium, with highest scores for DRS-R-98 sleep-wake cycle disturbance, hallucinations, delusions, and language abnormalities. Neither the total Cognitive Test for Delirium nor its five neuropsychological domains differed across Hyperactive, Mixed, and Hypoactive motor groups. Most patients (70%) with no motor alteration had DRS-R-98 scores in the mild or subsyndromal range even though they met DSM-IV criteria. Motor variants in delirium have similar cognitive profiles, but mixed cases differ in expression of several noncognitive features.

  17. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  18. A contribution to the study of the thermal behavior and of the electric performance of squirrel-cage induction motors; Uma contribuicao ao estudo do comportamento termico e do desempenho eletrico de motores de inducao com rotor em gaiola

    Energy Technology Data Exchange (ETDEWEB)

    Avolio, Edwin

    1992-03-01

    A thermal-electric mathematical model for a squirrel cage induction motors which permits to specify the best motor for specific drive, under thermal and electric aspects based, only on manufacturer technical bulletins and technical information is presented. Changes of rotor parameters due Skin Effect and changes of winding resistances (both stator and rotor) with the temperature are considered. The accuracy of this model is appraised using experimental results. The thermal behavior and electric performance for some motors are obtained for continuos and intermittent duties with sinusoidal and non-sinusoidal voltages. (author)

  19. Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats

    Directory of Open Access Journals (Sweden)

    Tetsuro eTamaki

    2014-10-01

    Full Text Available Qualitative changes in the peripheral motor system were examined using Young, Adult, Middle-aged and Old-aged rats in order to assess before and after the appearance of sarcopenia symptoms. Significant loss of muscle mass and strength, and slow-type fiber grouping with a loss of innervated nerve fibers were used as typical markers of sarcopenia. Dynamic twitch and tetanus tension and evoked electromyogram (EEMG were measured via electrical stimulation through the sciatic nerve under anesthesia using our force-distance transducer system before and after sciatectomy. Digital and analogue data sampling was performed and shortening and relaxing velocity of serial twitches was calculated with tension force. Muscle tenderness in passive stretching was also measured as stretch absorption ability, associated with histological quantitation of muscle connective tissues. The results indicated the validity of the present model, in which Old-aged rats clearly showed the typical signs of sarcopenia, specifically in the fast-type plantaris muscles, while the slow-type soleus showed relatively mild syndromes. These observations suggest the following qualitative alterations as the pathophysiological mechanism of sarcopenia: 1 reduction of shortening and relaxing velocity of twitch; 2 decline of muscle tenderness following an increase in the connective tissue component; 3 impaired recruitment of motor units (sudden depression of tetanic force and EEMG in higher stimulation frequencies over 50-60 Hz; and 4 easy fatigability in the neuromuscular junctions. These findings are likely to be closely related to significant losses in fast-type motor units, muscle strength and contraction velocity, which could be a causative factor in falls in the elderly. Importantly, some of these symptoms began in Middle-aged rats that showed no other signs of sarcopenia. Thus, prevention should be started in middle age that could be retained relatively higher movement ability.

  20. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  1. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review

    Science.gov (United States)

    Lefebvre, Stephanie; Liew, Sook-Lei

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain–behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system. PMID:28232816

  2. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  3. Sexual motivation is reflected by stimulus-dependent motor cortex excitability.

    Science.gov (United States)

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B

    2015-08-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. An alter-centric perspective on employee innovation: The importance of alters' creative self-efficacy and network structure.

    Science.gov (United States)

    Grosser, Travis J; Venkataramani, Vijaya; Labianca, Giuseppe Joe

    2017-09-01

    While most social network studies of employee innovation behavior examine the focal employees' ("egos'") network structure, we employ an alter-centric perspective to study the personal characteristics of employees' network contacts-their "alters"-to better understand employee innovation. Specifically, we examine how the creative self-efficacy (CSE) and innovation behavior of employees' social network contacts affects their ability to generate and implement novel ideas. Hypotheses were tested using a sample of 144 employees in a U.S.-based product development organization. We find that the average CSE of alters in an employee's problem solving network is positively related to that employee's innovation behavior, with this relationship being mediated by these alters' average innovation behavior. The relationship between the alters' average innovation behavior and the employee's own innovation behavior is strengthened when these alters have less dense social networks. Post hoc results suggest that having network contacts with high levels of CSE also leads to an increase in ego's personal CSE 1 year later in cases where the employee's initial level of CSE was relatively low. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    Science.gov (United States)

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound

    International Nuclear Information System (INIS)

    Wang, Q; Zheng, Y P; Leung, G; Mak, A F T; Lam, W L; Guo, X; Lu, H B; Qin, L

    2008-01-01

    Swelling behavior is an electrochemical mechanical property of articular cartilage. It plays an important role in weight bearing and joint lubrication. In this study, the altered transient and inhomogeneous swelling behavior of the degenerated articular cartilage was observed and quantified in situ using ultrasound. Three groups of bovine patellar articular cartilage samples (n = 10 x 3) were obtained and digested by trypsin for 10, 20 and 30 min respectively to mimic different levels of degeneration. The osmotic-free shrinkage and swelling behavior induced by changing the concentration of the bathing saline solution from 0.15 M to 2 M and then back to 0.15 M were characterized using high-frequency ultrasound (central frequency = 35 MHz) before and after digestion. It was found that the degenerated cartilage specimens showed a weaker shrinkage-swelling behavior compared with the normal cartilage samples. However, no significant differences in the peak shrinkage or swelling strains were observed between different groups. The absolute values of the peak shrinkage strain significantly (p < 0.05) decreased by 45.4%, 42.1% and 50.6% respectively after the trypsin digestion for 10, 20 and 30 min, but such significance was not demonstrated for the peak swelling strains. Due to the potential alterations in the collagen-PG matrix during trypsin digestion, the correlation between the swelling strain and the shrinkage strain of the degenerated samples changed slightly in comparison with the normal samples. The proposed ultrasound method has been successfully used to measure the transient and inhomogeneous swelling behavior of the degenerated articular cartilage and has the potential for the characterization of osteoarthritis

  7. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment.

    Science.gov (United States)

    Puga, Sónia; Pereira, Patrícia; Pinto-Ribeiro, Filipa; O'Driscoll, Nelson J; Mann, Erin; Barata, Marisa; Pousão-Ferreira, Pedro; Canário, João; Almeida, Armando; Pacheco, Mário

    2016-11-01

    The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg -1 ), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where

  8. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    Science.gov (United States)

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  9. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    Science.gov (United States)

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  10. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  11. Motor function deficits in schizophrenia: an fMRI and VBM study

    International Nuclear Information System (INIS)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2014-01-01

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  12. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Science.gov (United States)

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  13. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    Science.gov (United States)

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  14. Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.

    Science.gov (United States)

    Sugimoto, H; Ikeda, K; Kawakami, K

    2017-10-23

    Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Peripheral nerve injury in developing rats reorganizes representation pattern in motor cortex.

    OpenAIRE

    Donoghue, J P; Sanes, J N

    1987-01-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stim...

  16. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    Science.gov (United States)

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  17. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    Full Text Available Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities, but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicate an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation there is nearly no evidence about enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap movement sonification is used here in applied research on motor learning in sports.Based on the current knowledge on the multimodal organization of the perceptual system we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error feedback in motor learning settings we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting participants were asked to

  18. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  19. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  20. Deletion of Rictor in catecholaminergic neurons alters locomotor activity and ingestive behavior.

    Science.gov (United States)

    Kaska, Sophia; Brunk, Rebecca; Bali, Vedrana; Kechner, Megan; Mazei-Robison, Michelle S

    2017-05-01

    While the etiology of depression is not fully understood, increasing evidence from animal models suggests a role for the ventral tegmental area (VTA) in pathogenesis. In this paper, we investigate the potential role of VTA mechanistic target of rapamycin 2 (TORC2) signaling in mediating susceptibility to chronic social defeat stress (CSDS), a well-established mouse model of depression. Utilizing genetic and viral knockout of Rictor (rapamycin-insensitive companion of target of rapamycin), a requisite component of TORC2, we demonstrate that decreasing Rictor-dependent TORC2 signaling in catecholaminergic neurons, or within the VTA specifically, does not alter susceptibility to CSDS. Opiate abuse and mood disorders are often comorbid, and previous data demonstrate a role for VTA TORC2 in mediating opiate reward. Thus, we also investigated its potential role in mediating changes in opiate reward following CSDS. Catecholaminergic deletion of Rictor increases water, sucrose, and morphine intake but not preference in a two-bottle choice assay in stress-naïve mice, and these effects are maintained after stress. VTA-specific knockout of Rictor increases water and sucrose intake after physical CSDS, but does not alter consummatory behavior in the absence of stress. These findings suggest a novel role for TORC2 in mediating stress-induced changes in consummatory behaviors that may contribute to some aspects of mood disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The study of the mineralogy and rare earth elements behavior in the hydrothermal alteration zones of the Astaneh granitoid massif (SW Arak, Markazi province, Iran)

    International Nuclear Information System (INIS)

    Esmaeily, D.; Afshooni, S. Z.; Valizadeh, M. V.

    2009-01-01

    The Astaneh granitoid massif is located about 40 km to Arak city, central Iran, is a part of Sanandaj-Sirjan structural zone. These intrusive rocks which are mainly composed of gronodioritic rocks, widely affected under hydrothermal alteration. The alteration zones, on the basis of field studies and mineralogy as well as the study of the REE behavior, are investigated in this paper. Eight alteration zones including phyllic (sericitic) with quartz, sericite and pyrite; chloritic with quartz, sericite and chlorite; propylitic with chlorite, epidot, calcite and albite; argillic with clay minerals (chlorite and illite); silicic with abundant quartz; albitic with albite, chlorite and quartz; hematitisation with hematite, Fe-carbonates (ankerite and siderite) and tourmalinisation with tourmaline (dravite) are identified. The results demonstrate notable differences in the REE behavior in the different alteration zones. Accordingly, comparison with the fresh rocks, in the phyllic (sericitic) alteration, LREE are enriched, but HREE, except Yb which enriched, unchanged. Also in chloritic alteration zone, LREEs are depleted, but HREEs represent different behaviors. In the argillic and propylitic alteration zones, all REE are depleted, but compared with HREE, the LREE represent more depletion. In the silicic and hematitisation alteration zones, compared with HREE, the LREE are enriched. Finally, in the albitic and tourmalinisation alteration zones all REE are depleted. These features indicate that the behavior of REE in the hydrothermal alteration zones of the Astaneh granitoid rocks is mainly controlled by p H, availability of complexing ions in the fluid as well as the presence of secondary phases as host REE minerals

  2. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  3. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis.

    Science.gov (United States)

    Latash, Mark L

    2008-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time.

  4. Motor sequence learning occurs despite disrupted visual and proprioceptive feedback

    Directory of Open Access Journals (Sweden)

    Boyd Lara A

    2008-07-01

    Full Text Available Abstract Background Recent work has demonstrated the importance of proprioception for the development of internal representations of the forces encountered during a task. Evidence also exists for a significant role for proprioception in the execution of sequential movements. However, little work has explored the role of proprioceptive sensation during the learning of continuous movement sequences. Here, we report that the repeated segment of a continuous tracking task can be learned despite peripherally altered arm proprioception and severely restricted visual feedback regarding motor output. Methods Healthy adults practiced a continuous tracking task over 2 days. Half of the participants experienced vibration that altered proprioception of shoulder flexion/extension of the active tracking arm (experimental condition and half experienced vibration of the passive resting arm (control condition. Visual feedback was restricted for all participants. Retention testing was conducted on a separate day to assess motor learning. Results Regardless of vibration condition, participants learned the repeated segment demonstrated by significant improvements in accuracy for tracking repeated as compared to random continuous movement sequences. Conclusion These results suggest that with practice, participants were able to use residual afferent information to overcome initial interference of tracking ability related to altered proprioception and restricted visual feedback to learn a continuous motor sequence. Motor learning occurred despite an initial interference of tracking noted during acquisition practice.

  5. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  6. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  7. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  8. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development.

    Science.gov (United States)

    Rodriguez, Carlos I; Magcalas, Christy M; Barto, Daniel; Fink, Brandi C; Rice, James P; Bird, Clark W; Davies, Suzy; Pentkowski, Nathan S; Savage, Daniel D; Hamilton, Derek A

    2016-10-15

    Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex (Hamilton et al., 2014) [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex (Hamilton et al., 2010) [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (∼3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in (Hamilton et al., 2014) [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    Science.gov (United States)

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-03

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    Science.gov (United States)

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  11. Behavioral characterization of mouse models of neuroferritinopathy.

    Science.gov (United States)

    Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  12. Relationship between motor abilities and severity of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Cvijetić Marija

    2017-01-01

    Full Text Available According to the findings in literature, motor skills of children with autism spectrum disorders generally differ from age expectations and are increasingly being associated with speech and language and social development, and adaptive behavior. The aim of the research was to determine the relationship between the development level of fine and gross motor skills and autism severity of children with autism spectrum disorder. The sample included 30 children with autism spectrum disorder and associated intellectual disability, seven to 19 years of age (M=11.97; SD=3.70. The assessment was conducted using the Peabody Motor Development Scale, the Vineland Adaptive Behavior Scale, and the criteria for describing the level of severity of autism spectrum disorder (APA, 2013. The results have shown that participants' motor skills significantly correlate with social communication (Peabody fine motor skills r=-0.452; p=0.012; Vineland fine motor skills r=-0.511; p=0.004; Vineland total r=-0.391; p=0.032 and restricted, repetitive behaviors (Peabody fine motor skills r=-0.383; p=0.037; Vineland fine motor skills r=-0.433; p=0.017; Vineland total r=-0.371; p=0.044. Lower level of autistic symptomatology is associated with higher motor achievements. It is necessary to pay more attention to the assessment and treatment of motor skills in children with autism spectrum disorder, given the established delay in the development of these skills, and bearing in mind their relationship with the severity of the symptoms of autism spectrum disorder. Timely identification of motor disorders would allow the use of early treatment and potentially lead to better results, compared to later inclusion in intervention programs.

  13. Motor control and the management of musculoskeletal dysfunction.

    Science.gov (United States)

    van Vliet, Paulette M; Heneghan, Nicola R

    2006-08-01

    This paper aims to develop understanding of three important motor control issues--feedforward mechanisms, cortical plasticity and task-specificity and assess the implications for musculoskeletal practice. A model of control for the reach-to-grasp movement illustrates how the central nervous system integrates sensorimotor processes to control complex movements. Feedforward mechanisms, an essential element of motor control, are altered in neurologically intact patients with chronic neck pain and low back pain. In healthy subjects, cortical mapping studies using transcranial magnetic stimulation have demonstrated that neural pathways adapt according to what and how much is practised. Neuroplasticity has also been demonstrated in a number of musculoskeletal conditions, where cortical maps are altered compared to normal. Behavioural and neurophysiological studies indicate that environmental and task constraints such as the goal of the task and an object's shape and size, are determinants of the motor schema for reaching and other movements. Consideration of motor control issues as well as signs and symptoms, may facilitate management of musculoskeletal conditions and improve outcome. Practice of entire everyday tasks at an early stage and systematic variation of the task is recommended. Training should be directed with the aim of re-educating feedforward mechanisms where necessary and the amount of practice should be sufficient to cause changes in cortical activity.

  14. Motor heuristics and embodied choices: how to choose and act.

    Science.gov (United States)

    Raab, Markus

    2017-08-01

    Human performance requires choosing what to do and how to do it. The goal of this theoretical contribution is to advance understanding of how the motor and cognitive components of choices are intertwined. From a holistic perspective I extend simple heuristics that have been tested in cognitive tasks to motor tasks, coining the term motor heuristics. Similarly I extend the concept of embodied cognition, that has been tested in simple sensorimotor processes changing decisions, to complex sport behavior coining the term embodied choices. Thus both motor heuristics and embodied choices explain complex behavior such as studied in sport and exercise psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fundamental motor skill, physical activity, and sedentary behavior in socioeconomically disadvantaged kindergarteners.

    Science.gov (United States)

    Gu, Xiangli

    2016-10-01

    Guided by Stodden et al's conceptual model, the main purpose of the study was to examine the relation between fundamental motor skills (FMS; locomotor and objective control skills), different intensity levels of physical activity (light PA [LPA], moderate-to-vigorous PA [MVPA], and vigorous PA[VPA]), and sedentary behavior (SB) in socioeconomically disadvantaged kindergarteners. A prospective design was used in this study and the data were collected across the 2013-2014 academic school year. Participants were 256 (129 boys; 127 girls; Mage = 5.37, SD = 0.48) kindergarteners recruited from three public schools in the southern United States. Results found that FMS were significantly related to LPA, MVPA, VPA, and SB. Regression analyses indicate that locomotor skills explained significant variance for LPA (6.4%; p < .01), MVPA (7.9%; p < .001), and VPA (5.3%; p < .01) after controlling for weight status. Mediational analysis supports the significant indirect effect of MVPA on the relation between FMS and SB (95% CI: [-0.019, -0.006]). Adequate FMS development during early childhood may result in participating in more varied physical activities, thus leading to lower risk of obesity-related behaviors.

  16. Robust mechanobiological behavior emerges in heterogeneous myosin systems

    Science.gov (United States)

    Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-01

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  17. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  18. Effects of capsaicin in the motor nerve.

    Science.gov (United States)

    Pettorossi, V E; Bortolami, R; Della Torre, G; Brunetti, O

    1994-08-01

    The injection of capsaicin into the lateral gastrocnemius (LG) muscle of the rat induced an immediate and sustained reduction in the A delta and C components of the compound action potential (CAP) of the LG motor nerve. Conversely, the drug did not immediately affect the CAP wave belonging to fast-conducting fibers or the motor responses to LG nerve stimulation. It seems that capsaicin only affects the group III and IV afferents of LG nerve. However, a week after the injection the capsaicin also altered the motor responses, as shown by the threshold enhancement and amplitude reduction of the muscle twitch and by the decrease of the A alpha-beta CAP components. This late motor impairment was attributed to a central depression following a reduction of capsaicin-sensitive neuron input into the CNS. However, this motor effect was transient since the LG nerve regained the preinjection excitability level in a week and the muscle twitch amplitude reached the control value in a month.

  19. Plasticity in the Human Speech Motor System Drives Changes in Speech Perception

    Science.gov (United States)

    Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.

    2014-01-01

    Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594

  20. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E.; Taylor, Janet L.

    2010-01-01

    of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) contribute to drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal output...... magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression...

  1. Fetal behavioral teratology.

    Science.gov (United States)

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  2. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  3. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  4. Intrinsic and extrinsic neuromodulation of motor circuits.

    Science.gov (United States)

    Katz, P S

    1995-12-01

    Neuromodulation of motor circuits by extrinsic inputs provides enormous flexibility in the production of behavior. Recent work has shown that neurons intrinsic to central pattern-generating circuits can evoke neuromodulatory effects in addition to their neurotransmitting actions. Modulatory neurons often elicit a multitude of different effects attributable to actions at different receptors and/or through the release of co-transmitters. Differences in neuromodulation between species can account for differences in behavior. Modulation of neuromodulation may provide an additional level of flexibility to motor circuits.

  5. The effects of yoga practice in school physical education on children's motor abilities and social behavior

    OpenAIRE

    Folleto, J?lia C; Pereira, Keila RG; Valentini, Nadia Cristina

    2016-01-01

    Background: In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. Aim: To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6–8-year-old children. Methods: The study included 16 children from the 1st grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each sessi...

  6. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis

    OpenAIRE

    Latash, Mark L.

    2008-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of m...

  7. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors.

    Science.gov (United States)

    Marks, David R; Tucker, Kristal; Cavallin, Melissa A; Mast, Thomas G; Fadool, Debra A

    2009-05-20

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of diabetes mellitus and its associated metabolic and neuronal comorbidities. The insulin receptor (IR) kinase is expressed at high levels in the olfactory bulb, in which it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a 7 d intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and postsynaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made prediabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors.

  8. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Hongmei eWang

    2015-03-01

    Full Text Available Objective: Internet gaming disorder (IGD has been investigated by many behavioral and neuroimaging studies, for it has became one of the main behavior disorders among adolescents. However, few studies focused on the relationship between alteration of gray matter volume (GMV and cognitive control feature in IGD adolescents. Methods: Twenty-eight participants with IAD and twenty-eight healthy age and gender matched controls participated in the study. Brain morphology of adolescents with IGD and healthy controls was investigated using an optimized voxel-based morphometry (VBM technique. Cognitive control performances were measured by Stroop task, and correlation analysis was performed between brain structural change and behavioral performance in IGD group. Results: The results showed that GMV of the bilateral anterior cingulate cortex (ACC, precuneus, supplementary motor area (SMA, superior parietal cortex, left dorsal lateral prefrontal cortex (DLPFC, left insula, and bilateral cerebellum decreased in the IGD participants compared with healthy controls. Moreover, GMV of the ACC was negatively correlated with the incongruent response errors of Stroop task in IGD group. Conclusion: Our results suggest that the alteration of GMV is associated with the performance change of cognitive control in adolescents with IGD, which indicating substantial brain image effects induced by IGD.

  9. The effects of load-sensitive behavior on the operability margins of motor-operated gate valves

    International Nuclear Information System (INIS)

    Steele, R. Jr.; Russell, M.J.; DeWall, K.G.; Watkins, J.C.

    1993-01-01

    Testing of motor-operated gate valves at various loads has produced a phenomenon we call load-sensitive behavior. This phenomenon has a significant effect on the accuracy of the methods used (and proposed) in the nuclear industry for determining that these valves can perform their design basis function. A valve subjected to tests with low flow and pressure loadings may achieve a stem thrust (at seating) analytically determined to be adequate for design basis flows and pressures, but this is no guarantee that the valve will achieve the same stem thrust when actually subjected to those design basis loads. This is because the friction at the interface between the stem and the stem nut is higher in tests with higher flow and pressure loadings, and this loss to friction is outside the control of the motor-operator's torque switch. This paper identifies a tentative method for determining, a stable, useful value for the stem/stem-nut coefficient of friction, one that can possibly be extrapolated and used in calculations to accurately estimate the design basis thrust requirements of these valves

  10. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    impairment in memory. Both glyphosate and Roundup ® reduced aggressive behavior. Our data suggest that there are small differences between the effects induced by glyphosate and Roundup ® , altering morphological and behavioral parameters in zebrafish, suggesting common mechanisms of toxicity and cellular response. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Comportamento motor oral e global de recém-nascidos de mães usuárias de crack e/ou cocaína Oral and general motor behavior of newborns from crack and/or cocaine using mothers

    Directory of Open Access Journals (Sweden)

    Marisa Gasparin

    2012-12-01

    Full Text Available OBJETIVO: Analisar o comportamento motor oral e global de recém-nascidos de mães que fizeram uso de crack e/ou cocaína durante a gestação e verificar se há relação entre o desenvolvimento dos sistemas sensório motor oral (SSMO e motor global. MÉTODOS: Estudo transversal, em que foram avaliados 25 recém-nascidos prematuros e a termo de mães usuárias de crack e/ou cocaína, pareados com outro grupo de 25 recém-nascidos sem o fator em estudo. As avaliações do SSMO e motor global foram realizadas por meio do Instrumento de Avaliação da Prontidão do Prematuro para Início da Alimentação Oral e do Test of Infant Motor Performance (TIMP, respectivamente. Os resultados compararam os escores encontrados nas duas escalas e a relação destes com o uso materno do crack e/ou cocaína durante a gestação. RESULTADOS: No TIMP não foi constatada diferença na comparação entre os escores de recém-nascidos de mães usuárias de crack e/ou cocaína e os de mães não usuárias. No Instrumento de Avaliação da Prontidão do Prematuro para Início da Alimentação Oral, os resultados apresentaram diferença. Foi observada associação entre os resultados de bebês que apresentaram atraso no TIMP com menor escore no Instrumento de Avaliação da Prontidão do Prematuro para Início da Alimentação Oral. CONCLUSÃO: O baixo desempenho observado no Instrumento de Avaliação da Prontidão do Prematuro para Início da Alimentação Oral sugere que as respostas motoras orais estão alteradas pelo uso materno das drogas. A correlação entre os dois instrumentos mostra que o desenvolvimento do SSMO pode estar relacionado ao desenvolvimento motor global.PURPOSE: analyzing the oral and general motor behavior of newborns from women who used crack and/or cocaine during pregnancy, and verifying if there is a relation between the development of the oral and general sensory motor system. METHODS: Cross-sectional study with 25 premature and full

  12. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Vicente Felipo

    2006-01-01

    Patients with liver disease may present hepatic encephalopathy (HE), a complex neuropsychiatric syndrome covering a wide range of neurological alterations,including cognitive and motor disturbances. HE reduces the quality of life of the patients and is associated with poor prognosis. In the worse cases HE may lead to coma or death.The mechanisms leading to HE which are not well known are being studied using animal models. The neurological alterations in HE are a consequence of impaired cerebral function mainly due to alterations in neurotransmission. We review here some studies indicating that alterations in neurotransmission associated to different types of glutamate receptors are responsible for some of the cognitive and motor alterations present in HE.These studies show that the function of the signal transduction pathway glutamate-nitric oxide-cGMP associated to the NMDA type of glutamate receptors is impaired in brain in vivo in HE animal models as well as in brain of patients died of HE. Activation of NMDA receptors in brain activates this pathway and increases cGMP. In animal models of HE this increase in cGMP induced by activation of NMDA receptors is reduced,which is responsible for the impairment in learning ability in these animal models. Increasing cGMP by pharmacological means restores learning ability in rats with HE and may be a new therapeutic approach to improve cognitive function in patients with HE.However, it is necessary to previously assess the possible secondary effects.Patients with HE may present psychomotor slowing,hypokinesia and bradykinesia. Animal models of HE also show hypolocomotion. It has been shown in rats with HE that hypolocomotion is due to excessive activation of metabotropic glutamate receptors (mGluRs) in substantia nigra pars reticulata. Blocking mGluR1 in this brain area normalizes motor activity in the rats, suggesting that a similar treatment for patients with HE could be useful to treat psychomotor slowing and

  13. Modulation ofTcf7l2 expression alters behavior in mice.

    Directory of Open Access Journals (Sweden)

    Daniel Savic

    Full Text Available The comorbidity of type 2 diabetes (T2D with several psychiatric diseases is well established. While environmental factors may partially account for these co-occurrences, common genetic susceptibilities could also be implicated in the confluence of these diseases. In support of shared genetic burdens, TCF7L2, the strongest genetic determinant for T2D risk in the human population, has been recently implicated in schizophrenia (SCZ risk, suggesting that this may be one of many loci that pleiotropically influence both diseases. To investigate whether Tcf7l2 is involved in behavioral phenotypes in addition to its roles in glucose metabolism, we conducted several behavioral tests in mice with null alleles of Tcf7l2 or overexpressing Tcf7l2. We identified a role for Tcf7l2 in anxiety-like behavior and a dose-dependent effect of Tcf7l2 alleles on fear learning. None of the mutant mice showed differences in prepulse inhibition (PPI, which is a well-established endophenotype for SCZ. These results show that Tcf7l2 alters behavior in mice. Importantly, these differences are observed prior to the onset of detectable glucose metabolism abnormalities. Whether these differences are related to human anxiety-disorders or schizophrenia remains to be determined. These animal models have the potential to elucidate the molecular basis of psychiatric comorbidities in diabetes and should therefore be studied further.

  14. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Ágatha Oliveira-Giacomelli

    2018-04-01

    Full Text Available Since proving adenosine triphosphate (ATP functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD, motor neuron diseases (MND, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington's Disease (HD, restless leg syndrome (RLS, and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.

  15. Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters.

    Science.gov (United States)

    Abboud, R; Noronha, C; Diwadkar, V A

    2017-07-01

    Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Science.gov (United States)

    Bai, Fan; Lo, Chien-Jung; Berry, Richard M.; Xing, Jianhua

    2009-01-01

    Abstract The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification. PMID:19383460

  17. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Energy Technology Data Exchange (ETDEWEB)

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  18. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  19. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  20. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    Directory of Open Access Journals (Sweden)

    Fernando B. R. da Silva

    2018-05-01

    Full Text Available Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF, pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  1. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function.

    Science.gov (United States)

    Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario

    2017-10-18

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.

  2. Two is better than one: Physical interactions improve motor performance in humans

    Science.gov (United States)

    Ganesh, G.; Takagi, A.; Osu, R.; Yoshioka, T.; Kawato, M.; Burdet, E.

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.

  3. Voltage directive drive with claw pole motor and control without rotor position indicator

    Science.gov (United States)

    Stroenisch, Volker Ewald

    Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.

  4. MOTOR FUEL TAXES AND THE ENVIRONMENTAL PROTECTION

    OpenAIRE

    Michal Ptak

    2011-01-01

    Motor fuel taxes are primarily revenue-raising taxes. However, due to high fuel consumption these taxes can be quite an efficient source of general budget revenue in many countries. It seems that the taxes on motor fuels may also be useful instruments for environmental policy or climate change policy. Environmental objectives can be achieved through change of behavior of drivers. The paper presents theoretical basis for taxes levied on motor fuels. Attention is paid to the problem of external...

  5. Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.

    Science.gov (United States)

    Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik

    2016-12-01

    Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP

    Directory of Open Access Journals (Sweden)

    Jason J. Kutch

    2015-01-01

    Full Text Available Brain network activity associated with altered motor control in individuals with chronic pain is not well understood. Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS is a debilitating condition in which previous studies have revealed altered resting pelvic floor muscle activity in men with CP/CPPS compared to healthy controls. We hypothesized that the brain networks controlling pelvic floor muscles would also show altered resting state function in men with CP/CPPS. Here we describe the results of the first test of this hypothesis focusing on the motor cortical regions, termed pelvic-motor, that can directly activate pelvic floor muscles. A group of men with CP/CPPS (N = 28, as well as group of age-matched healthy male controls (N = 27, had resting state functional magnetic resonance imaging scans as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network study. Brain maps of the functional connectivity of pelvic-motor were compared between groups. A significant group difference was observed in the functional connectivity between pelvic-motor and the right posterior insula. The effect size of this group difference was among the largest effect sizes in functional connectivity between all pairs of 165 anatomically-defined subregions of the brain. Interestingly, many of the atlas region pairs with large effect sizes also involved other subregions of the insular cortices. We conclude that functional connectivity between motor cortex and the posterior insula may be among the most important markers of altered brain function in men with CP/CPPS, and may represent changes in the integration of viscerosensory and motor processing.

  7. Behavioral disturbances, not cognitive deterioration, are associated with altered food selection in seniors with Alzheimer's disease.

    Science.gov (United States)

    Greenwood, Carol E; Tam, Carolyn; Chan, Mae; Young, Karen W H; Binns, Malcolm A; van Reekum, Robert

    2005-04-01

    We previously reported alterations in circadian patterns of food intake that are associated with measures of functional and cognitive deterioration in seniors with probable Alzheimer's disease (AD). This study further explored disturbed eating patterns in AD, focusing on alterations in macronutrient (protein, carbohydrate, and fat) selection, and their association with measures of functional and behavioral losses. Forty-nine days of food intake collections were conducted on 32 residents (26 females, 6 males; age = 88.4 +/- 4.1 years; body mass index = 24.1 +/- 4.0 kg/m(2)) with probable AD residing at a nursing home (a fully accredited geriatric teaching facility affiliated with the University of Toronto's Medical School). All residents ate their meals independently. The relationships between patterns of habitual food consumption and measures of cognitive function (Severe Impairment Battery), behavioral disturbances (Neuropsychiatric Inventory-Nursing Home Version) and behavioral function (London Psychogeriatric Rating Scale) were examined, cross-sectionally. Consistent with our previous studies, breakfast intakes were not predicted by any of the measures of behavioral, cognitive, or functional deterioration, although those residents with greater functional deterioration, especially disengagement, attained lower 24-hour energy intakes. The presence of "psychomotor disturbances," including irritability, agitation, and disinhibition, were strongly associated with shifts in eating patterns toward carbohydrate and away from protein, placing individuals with these conditions at increased risk for inadequate protein intakes. Between-individual differences in intake patterns could not be explained by the use of either anorexic or orexigenic medications. Behavioral, not cognitive, deterioration is associated with appetite modifications that increase risk of poor protein intake, perhaps indicating a common monoaminergic involvement.

  8. Motor learning and working memory in children born preterm: a systematic review.

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  9. Motor learning and working memory in children born preterm: A systematic review

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  10. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  11. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    Science.gov (United States)

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  12. Identifying Motor, Emotional-Behavioral, and Cognitive Deficits that Comprise the Triad of HD Symptoms from Patient, Caregiver, and Provider Perspectives

    Directory of Open Access Journals (Sweden)

    David Victorson

    2014-04-01

    Full Text Available Background: The objective of this study was to identify important attributes associated with the triad of symptoms (cognition, emotional–behavioral, and motor of Huntington's disease (HD from patient, caregiver, and medical provider perspectives to facilitate development of a new disease‐specific, health‐related quality of life (HRQOL instrument. Methods: We conducted a targeted literature review of HD and HRQOL instruments, expert surveys, and patient and caregiver phone‐based interviews to extract information on the symptoms and issues most relevant to the HD symptom triad (HD triad. The data collected from these sources were used to generate themes and subdomains and to develop an integrated schema that highlights the key dimensions of the triad. Results: The search identified the following areas: emotional functioning/behavioral changes (e.g., positive emotions, sadness/depression; cognitive functioning (e.g., memory/learning, attention/comprehension; physical functioning (e.g., motor functioning, medication; social functioning (e.g., leisure, interpersonal relationships; end‐of‐life concerns/planning; and gene testing. Fifteen individuals diagnosed with HD and 16 HD caregivers, recruited from several Huntington's Disease Society of America support group networks, completed phone interviews. Nineteen US medical providers who specialize in HD completed the online survey. Twenty‐six subdomains of the HD symptom triad (seven cognition, 12 emotional–behavioral, and seven motor emerged relatively consistently across patient, caregiver, and provider samples. These included movements/chorea, memory impairment, depression, and anxiety. Discussion: Based on an integrated, mixed‐methods approach, important HD triad symptom were identified and organized into a guiding schema. These patient‐, caregiver‐, and provider‐triangulated data served as the basis for development of a HD‐specific HRQOL instrument, the HD‐PRO‐TRIAD™.

  13. Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus).

    Science.gov (United States)

    Harris, Breanna N; de Jong, Trynke R; Yang, Vanessa; Saltzman, Wendy

    2013-11-01

    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions. © 2013.

  14. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    Science.gov (United States)

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Developmental profile and diagnoses in children presenting with motor stereotypies

    Directory of Open Access Journals (Sweden)

    Francesco Cardona

    2016-11-01

    Full Text Available Introduction: Motor stereotypies represent a typical example of the difficulty in distinguishing non-clinical behaviors (physiological and transient from symptoms or among different disorders (primary stereotypies, associated with Autistic Spectrum Disorder (ASD, Intellectual Disabilities, genetic syndromes, sensory impairment. The aim of this study was to obtain an accurate assessment on the relationship between stereotypies and neurodevelopmental disorders.Methods: We studied 23 children (3 girls aged 36 to 95 months, who requested a consultation due to the persistence or increased severity of motor stereotypies. None of patients had a previous diagnosis of ASD. The assessment included the Motor Severity Stereotypy Scale (MSSS, the Repetitive Behavior Scale-Revised (RBS-R, the Raven’s Colored Progressive Matrices (CPM, the Child Behavior Checklist for ages 1 ½ -5 or 4-18 (CBCL, the Social Responsiveness Scale (SRS and the Autism Diagnostic Observation Schedule- Second edition (ADOS 2. Results: All patients were showing motor stereotypies for periods of time varying from 6 to 77 months. The MSSS showed each child had a limited number of stereotypies; their frequency and intensity were mild. The interference of stereotypies was variable; the impairment in daily life was mild. The RBS-R scores were positive for the subscale of Stereotypic behaviors in all children. Moreover, several children presented other repetitive behaviors, mainly Ritualistic behavior and Sameness behavior. All patients showed a normal cognitive level. The CBCL evidenced behavioral problems in 22% of the children: Internalizing problems, Attention and Withdrawn were the main complaints. On the SRS, all but one of the tested patients obtained clinical scores in the clinical range for at least one area. On the ADOS 2, four patients obtained scores indicating a moderate level of ASD symptoms, four had a mild level and fifteen showed no or minimal signs of ASD

  16. Altered resting state brain networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37 compared to healthy controls (n = 20. Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine, but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence

  17. The role of the dorsolateral tegmentum in the control of male sexual behavior: a reevaluation.

    Science.gov (United States)

    Romero-Carbente, J C; Camacho, F J; Paredes, R G

    2006-06-30

    The medial preoptic area/anterior hypothalamus (MPOA/AH) plays a key role in the control of male sexual behavior. Independently of the type, MPOA/AH lesions permanently eliminate male sexual behavior in the rat. The MPOA/AH projects among other structures to the dorsolateral tegmentum (DLT). Bilateral electrolytic lesions of the DLT or the unilateral electrolytic destruction of the MPOA/HA combined with a contralateral electrolytic lesion of the DLT eliminate male sexual behavior. In the present experiment, we evaluated if neurotoxic lesions of the DLT produce the same behavioral deficits as those observed after electrolytic lesions. This would allow us to evaluate if neurons of the DLT or the fibers passing through this area are important in the control of male sexual behavior. To this aim, sexually experience male rats were tested for socio-sexual behavior, partner preference and motor execution in order to determine if the possible behavioral changes could be attributed to alterations in sexual motivation or motor execution. One week after the bilateral DLT lesions the animals were evaluated in the same behavioral tests. The lesions were identified by glial fibrillary acidic protein (GFAP) and neuronal nuclear protein (Neu-N) immunohistochemistry. No significant consistent effects upon sexual behavior were observed in any of the groups, including the group with clear bilateral damage of the DLT. A reduction in the percentage of males displaying ejaculation in the first post-lesion test was observed for all groups injected with quinolinic acid. No effects upon partner preference or motor coordination were observed after the lesion in any of the groups. The lack of effect of DLT neurotoxic lesions upon mating suggests that neurons of this structure are not involved in the control of male sexual behavior.

  18. Behavioral and Physiological Effects of Hindlimb Unloading in Rats

    Science.gov (United States)

    Fox, Robert A.

    1998-01-01

    The overarching objective of this project was to identify changes in neural and biochemical systems of the central and peripheral nervous systems (the CNS and PNS) that are related to disruptions of functional motor responses, or motor control. The identification of neural and biochemical changes that are related to sensory-motor adaptation elicited as animals react to changes in the gravitational field was of particular interest. Thus, the major objective of this work was to study disruptions of motor responses that arise after (sic. due to) chronic exposure to altered gravity (G). To do this, parallel studies investigating changes in neural, sensory, and neuromuscular systems were conducted after animals (rats) experienced chronic exposure to conditions of altered-G. Conditions of altered-G included hyper-G produced by centrifugation, micro-G produced by orbital flight, and simulated micro-G produced by hind limb suspension. A second major interest was to examine the contribution of putative changes in sensory systems to disruptions of motor responses. To do this, motor responses and reflexes of rats were studied following chronic treatment with streptomycin sulfate (STP, an ototoxic chemical) to damage the vestibular hair cells.

  19. Odd sensation induced by moving-phantom which triggers subconscious motor program.

    Science.gov (United States)

    Fukui, Takao; Kimura, Toshitaka; Kadota, Koji; Shimojo, Shinsuke; Gomi, Hiroaki

    2009-06-03

    Our motor actions are sometimes not properly performed despite our having complete understanding of the environmental situation with a suitable action intention. In most cases, insufficient skill for motor control can explain the improper performance. A notable exception is the action of stepping onto a stopped escalator, which causes clumsy movements accompanied by an odd sensation. Previous studies have examined short-term sensorimotor adaptations to treadmills and moving sleds, but the relationship between the odd sensation and behavioral properties in a real stopped-escalator situation has never been examined. Understanding this unique action-perception linkage would help us to assess the brain function connecting automatic motor controls and the conscious awareness of action. Here we directly pose a question: Does the odd sensation emerge because of the unfamiliar motor behavior itself toward the irregular step-height of a stopped escalator or as a consequence of an automatic habitual motor program cued by the escalator itself. We compared the properties of motor behavior toward a stopped escalator (SE) with those toward moving escalator and toward a wooden stairs (WS) that mimicked the stopped escalator, and analyzed the subjective feeling of the odd sensation in the SE and WS conditions. The results show that moving escalator-specific motor actions emerged after participants had stepped onto the stopped escalator despite their full awareness that it was stopped, as if the motor behavior was guided by a "phantom" of a moving escalator. Additionally, statistical analysis reveals that postural forward sway that occurred after the stepping action is directly linked with the odd sensation. The results suggest a dissociation between conscious awareness and subconscious motor control: the former makes us perfectly aware of the current environmental situation, but the latter automatically emerges as a result of highly habituated visual input no matter how unsuitable

  20. Mind wandering and motor control: off-task thinking disrupts the online adjustment of behavior.

    Science.gov (United States)

    Kam, Julia W Y; Dao, Elizabeth; Blinn, Patricia; Krigolson, Olav E; Boyd, Lara A; Handy, Todd C

    2012-01-01

    Mind wandering episodes have been construed as periods of "stimulus-independent" thought, where our minds are decoupled from the external sensory environment. In two experiments, we used behavioral and event-related potential (ERP) measures to determine whether mind wandering episodes can also be considered as periods of "response-independent" thought, with our minds disengaged from adjusting our behavioral outputs. In the first experiment, participants performed a motor tracking task and were occasionally prompted to report whether their attention was "on-task" or "mind wandering." We found greater tracking error in periods prior to mind wandering vs. on-task reports. To ascertain whether this finding was due to attenuation in visual perception per se vs. a disruptive effect of mind wandering on performance monitoring, we conducted a second experiment in which participants completed a time-estimation task. They were given feedback on the accuracy of their estimations while we recorded their EEG, and were also occasionally asked to report their attention state. We found that the sensitivity of behavior and the P3 ERP component to feedback signals were significantly reduced just prior to mind wandering vs. on-task attentional reports. Moreover, these effects co-occurred with decreases in the error-related negativity elicited by feedback signals (fERN), a direct measure of behavioral feedback assessment in cortex. Our findings suggest that the functional consequences of mind wandering are not limited to just the processing of incoming stimulation per se, but extend as well to the control and adjustment of behavior.

  1. Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia.

    Science.gov (United States)

    Young, Jared W; Markou, Athina

    2015-09-01

    Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients' inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. A Hybrid Model of a Brushless DC Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose

    2007-01-01

    in this work consists of a general automaton with discrete states, combined with a set of continuous dynamic equations describing the electro-mechanical behavior of the motor. One of the significant benefits of this strategy is that the model describes the motor under all possible operating conditions...

  3. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  4. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice.

    Science.gov (United States)

    Fortuna, Juliana T S; Gralle, Matthias; Beckman, Danielle; Neves, Fernanda S; Diniz, Luan P; Frost, Paula S; Barros-Aragão, Fernanda; Santos, Luís E; Gonçalves, Rafaella A; Romão, Luciana; Zamberlan, Daniele C; Soares, Felix A A; Braga, Carolina; Foguel, Debora; Gomes, Flávia C A; De Felice, Fernanda G; Ferreira, Sergio T; Clarke, Julia R; Figueiredo, Cláudia P

    2017-08-30

    Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening. Copyright © 2017 Elsevier B.V. All

  5. Modeling an electric motor in 1-D

    Science.gov (United States)

    Butler, Thomas G.

    1991-01-01

    Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams.

  6. Learning-performance distinction and memory processes for motor skills: a focused review and perspective.

    Science.gov (United States)

    Kantak, Shailesh S; Winstein, Carolee J

    2012-03-01

    Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain.

    Science.gov (United States)

    Lee, Min-Young; Yu, Ji Hea; Kim, Ji Yeon; Seo, Jung Hwa; Park, Eun Sook; Kim, Chul Hoon; Kim, Hyongbum; Cho, Sung-Rae

    2013-01-01

    Housing animals in an enriched environment (EE) enhances behavioral function. However, the mechanism underlying this EE-mediated functional improvement and the resultant changes in gene expression have yet to be elucidated. We attempted to investigate the underlying mechanisms associated with long-term exposure to an EE by evaluating gene expression patterns. We housed 6-week-old CD-1 (ICR) mice in standard cages or an EE comprising a running wheel, novel objects, and social interaction for 2 months. Motor and cognitive performances were evaluated using the rotarod test and passive avoidance test, and gene expression profile was investigated in the cerebral hemispheres using microarray and gene set enrichment analysis (GSEA). In behavioral assessment, an EE significantly enhanced rotarod performance and short-term working memory. Microarray analysis revealed that genes associated with neuronal activity were significantly altered by an EE. GSEA showed that genes involved in synaptic transmission and postsynaptic signal transduction were globally upregulated, whereas those associated with reuptake by presynaptic neurotransmitter transporters were downregulated. In particular, both microarray and GSEA demonstrated that EE exposure increased opioid signaling, acetylcholine release cycle, and postsynaptic neurotransmitter receptors but decreased Na+ / Cl- -dependent neurotransmitter transporters, including dopamine transporter Slc6a3 in the brain. Western blotting confirmed that SLC6A3, DARPP32 (PPP1R1B), and P2RY12 were largely altered in a region-specific manner. An EE enhanced motor and cognitive function through the alteration of synaptic activity-regulating genes, improving the efficient use of neurotransmitters and synaptic plasticity by the upregulation of genes associated with postsynaptic receptor activity and downregulation of presynaptic reuptake by neurotransmitter transporters.

  8. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats

    Science.gov (United States)

    Arndt, David L.; Peterson, Christy J.; Cain, Mary E.

    2015-01-01

    Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST) is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC), standard (SC), or isolated (IC) conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p.) was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg) rats and EC-fluoxetine (20 mg/kg) rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression. PMID:26154768

  9. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats.

    Directory of Open Access Journals (Sweden)

    David L Arndt

    Full Text Available Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC, standard (SC, or isolated (IC conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p. was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg rats and EC-fluoxetine (20 mg/kg rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression.

  10. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats.

    Science.gov (United States)

    Arndt, David L; Peterson, Christy J; Cain, Mary E

    2015-01-01

    Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST) is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC), standard (SC), or isolated (IC) conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p.) was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg) rats and EC-fluoxetine (20 mg/kg) rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression.

  11. [X tetrasomy (48,XXXX karyotype) in a girl with altered behavior].

    Science.gov (United States)

    Rodado, Maria José; Manchón Trives, Irene; Lledó Bosch, Belén; Galán Sánchez, Francisco

    2010-07-01

    We report the case of a 14-year-old girl with mental retardation and dysmorphic features referred to child psychiatry because of altered behavior at school. Karyotyping (GTG banding), in situ fluorescent hybridization (FISH) and molecular study of parental origin by polymorphic STS were performed. Genetic study revealed a 48,XXXX karyotype with a maternal origin of the X-tetrasomy. The mechanism was successive non-dysjunction at meiosis I and II. The interest of this case lies in the rarity of the chromosomal anomaly and its late diagnosis, leading to a failure to adapt the girl's education to her needs, with consequences for her psyche. Copyright © 2010 SEP y SEPB. Published by Elsevier Espana. All rights reserved.

  12. Psychiatric Symptoms in Children with Gross Motor Problems

    Science.gov (United States)

    Emck, Claudia; Bosscher, Ruud J.; van Wieringen, Piet C. W.; Doreleijers, Theo; Beek, Peter J.

    2012-01-01

    Children with psychiatric disorders often demonstrate gross motor problems. This study investigates if the reverse also holds true by assessing psychiatric symptoms present in children with gross motor problems. Emotional, behavioral, and autism spectrum disorders (ASD), as well as psychosocial problems, were assessed in a sample of 40 children…

  13. 49 CFR 390.35 - Certificates, reports, and records: Falsification, reproduction, or alteration.

    Science.gov (United States)

    2010-10-01

    ..., reproduction, or alteration. 390.35 Section 390.35 Transportation Other Regulations Relating to Transportation... § 390.35 Certificates, reports, and records: Falsification, reproduction, or alteration. No motor... requirement of this subchapter or part 325 of subchapter A; or (c) A reproduction, for fraudulent purposes, of...

  14. Cognitive aspects of human motor activity: Contribution of right hemisphere and cerebellum

    Directory of Open Access Journals (Sweden)

    Sedov A. S.

    2017-09-01

    Full Text Available Background. Concepts of movement and action are not completely synonymous, but what distinguishes one from the other? Movement may be defined as stimulus- driven motor acts, while action implies realization of a specific motor goal, essential for cognitively driven behavior. Although recent clinical and neuroimaging studies have revealed some areas of the brain that mediate cognitive aspects of human motor behavior, the identification of the basic neural circuit underlying the interaction between cognitive and motor functions remains a challenge for neurophysiology and psychology. Objective. In the current study, we used functional magnetic resonance imaging (fMRI to investigate elementary cognitive aspects of human motor behavior. Design. Twenty healthy right-handed volunteers were asked to perform stimulus-driven and goal-directed movements by clenching the right hand into a fist (7 times. The cognitive component lay in anticipation of simple stimuli signals. In order to disentangle the purely motor component of stimulus-driven movements, we used the event-related (ER paradigm. FMRI was performed on a 3 Tesla Siemens Magnetom Verio MR-scanner with 32-channel head coil. Results. We have shown differences in the localization of brain activity depending on the involvement of cognitive functions. These differences testify to the role of the cerebellum and the right hemisphere in motor cognition. In particular, our results suggest that right associative cortical areas, together with the right posterolateral cerebellum (Crus I and lobule VI and basal ganglia, de ne cognitive control of motor activity, promoting a shift from a stimulus-driven to a goal-directed mode. Conclusion. These results, along with recent data from research on cerebro-cerebellar circuitry, redefine the scope of tasks for exploring the contribution of the cerebellum to diverse aspects of human motor behavior and cognition.

  15. Analysis and Stabilization of Chaos in Permanent Magnet DC Motor Driver

    Science.gov (United States)

    Tahir, Fadhil Rahma; Abdul-Hassan, Khalid M.; Abdullah, Mohammed Abbas; Pham, Viet-Thanh; Hoang, Thang Manh; Wang, Xiong

    In this paper, the nonlinear dynamics of permanent magnet (PM) DC motor drive with proportional (P) controller have been investigated. The drive system shows different dynamical behaviors; periodic, quasi-periodic, and chaotic behaviors, and those are characterized by using bifurcation diagram, phase portrait, and time series. The stability analysis of period-1 behavior is studied by using Filippov’s method, the analytic results show good agreement with simulation ones. Then, the stabilization of chaos to fixed point is carried out by using the sliding mode control (SMC). In addition, experimentally the nonlinear dynamics and the proposed stabilization method to PM DC motor drive system have been achieved by using a microcontroller. For the first time, it is noted that when the system is in chaotic dynamics, the vibration of the motor is increased approximately 400% compared with the system in periodic dynamical behavior.

  16. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children.

    Science.gov (United States)

    Chilosi, Anna Maria; Lorenzini, Irene; Fiori, Simona; Graziosi, Valentina; Rossi, Giuseppe; Pasquariello, Rosa; Cipriani, Paola; Cioni, Giovanni

    2015-11-01

    Childhood apraxia of speech (CAS) is a neurogenic Speech Sound Disorder whose etiology and neurobiological correlates are still unclear. In the present study, 32 Italian children with idiopathic CAS underwent a comprehensive speech and language, genetic and neuroradiological investigation aimed to gather information on the possible behavioral and neurobiological markers of the disorder. The results revealed four main aggregations of behavioral symptoms that indicate a multi-deficit disorder involving both motor-speech and language competence. Six children presented with chromosomal alterations. The familial aggregation rate for speech and language difficulties and the male to female ratio were both very high in the whole sample, supporting the hypothesis that genetic factors make substantial contribution to the risk of CAS. As expected in accordance with the diagnosis of idiopathic CAS, conventional MRI did not reveal macrostructural pathogenic neuroanatomical abnormalities, suggesting that CAS may be due to brain microstructural alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    Science.gov (United States)

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  18. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: A network based statistics analysis

    Directory of Open Access Journals (Sweden)

    G. Olivito

    2017-01-01

    In the present study, the network-based statistics (NBS approach was used to assess differences in functional connectivity between specific cerebellar and cerebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes.

  19. The Case for Motor Involvement in Perceiving Conspecifics

    Science.gov (United States)

    Wilson, Margaret; Knoblich, Gunther

    2005-01-01

    Perceiving other people's behaviors activates imitative motor plans in the perceiver, but there is disagreement as to the function of this activation. In contrast to other recent proposals (e.g., that it subserves overt imitation, identification and understanding of actions, or working memory), here it is argued that imitative motor activation…

  20. Relative contribution of different altered motor unit control to muscle weakness in stroke: a simulation study

    Science.gov (United States)

    Shin, Henry; Suresh, Nina L.; Zev Rymer, William; Hu, Xiaogang

    2018-02-01

    Objective. Chronic muscle weakness impacts the majority of individuals after a stroke. The origins of this hemiparesis is multifaceted, and an altered spinal control of the motor unit (MU) pool can lead to muscle weakness. However, the relative contribution of different MU recruitment and discharge organization is not well understood. In this study, we sought to examine these different effects by utilizing a MU simulation with variations set to mimic the changes of MU control in stroke. Approach. Using a well-established model of the MU pool, this study quantified the changes in force output caused by changes in MU recruitment range and recruitment order, as well as MU firing rate organization at the population level. We additionally expanded the original model to include a fatigue component, which variably decreased the output force with increasing length of contraction. Differences in the force output at both the peak and fatigued time points across different excitation levels were quantified and compared across different sets of MU parameters. Main results. Across the different simulation parameters, we found that the main driving factor of the reduced force output was due to the compressed range of MU recruitment. Recruitment compression caused a decrease in total force across all excitation levels. Additionally, a compression of the range of MU firing rates also demonstrated a decrease in the force output mainly at the higher excitation levels. Lastly, changes to the recruitment order of MUs appeared to minimally impact the force output. Significance. We found that altered control of MUs alone, as simulated in this study, can lead to a substantial reduction in muscle force generation in stroke survivors. These findings may provide valuable insight for both clinicians and researchers in prescribing and developing different types of therapies for the rehabilitation and restoration of lost strength after stroke.

  1. Motoring through: the role of kinesin superfamily proteins in female meiosis.

    Science.gov (United States)

    Camlin, Nicole J; McLaughlin, Eileen A; Holt, Janet E

    2017-07-01

    The kinesin motor protein family consists of 14 distinct subclasses and 45 kinesin proteins in humans. A large number of these proteins, or their orthologues, have been shown to possess essential function(s) in both the mitotic and the meiotic cell cycle. Kinesins have important roles in chromosome separation, microtubule dynamics, spindle formation, cytokinesis and cell cycle progression. This article contains a review of the literature with respect to the role of kinesin motor proteins in female meiosis in model species. Throughout, we discuss the function of each class of kinesin proteins during oocyte meiosis, and where such data are not available their role in mitosis is considered. Finally, the review highlights the potential clinical importance of this family of proteins for human oocyte quality. To examine the role of kinesin motor proteins in oocyte meiosis. A search was performed on the Pubmed database for journal articles published between January 1970 and February 2017. Search terms included 'oocyte kinesin' and 'meiosis kinesin' in addition to individual kinesin names with the terms oocyte or meiosis. Within human cells 45 kinesin motor proteins have been discovered, with the role of only 13 of these proteins, or their orthologues, investigated in female meiosis. Furthermore, of these kinesins only half have been examined in mammalian oocytes, despite alterations occurring in gene transcripts or protein expression with maternal ageing, cryopreservation or behavioral conditions, such as binge drinking, for many of them. Kinesin motor proteins have distinct and important roles throughout oocyte meiosis in many non-mammalian model species. However, the functions these proteins have in mammalian meiosis, particularly in humans, are less clear owing to lack of research. This review brings to light the need for more experimental investigation of kinesin motor proteins, particularly those associated with maternal ageing, cryopreservation or exposure to

  2. Differentiating Children with Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, Learning Disabilities and Autistic Spectrum Disorders by Means of Their Motor Behavior Characteristics

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N = 22), Conduct Disorder (CD; N = 17), Learning Disabilities (LD; N = 24) and Autistic Spectrum Disorders (ASD; N = 20).…

  3. Online maintenance of sensory and motor representations: effects on corticospinal excitability.

    NARCIS (Netherlands)

    Hurk, P. van den; Mars, R.B.; Elswijk, G.A.F. van; Hegeman, J.; Pasman, J.W.; Bloem, B.R.; Toni, I.

    2007-01-01

    Flexible behavior requires the ability to delay a response until it is appropriate. This can be achieved by holding either a sensory or a motor representation online. Here we assess whether maintenance of sensory or motor material drives the motor system to different functional states, as indexed by

  4. Online maintenance of sensory and motor representations: Effects on corticospinal excitability

    NARCIS (Netherlands)

    Hurk, P.A.M. van den; Mars, R.B.; Elswijk, G.A.F. van; Hegeman, J.; Pasman, J.W.; Bloem, B.R.; Toni, I.

    2007-01-01

    Flexible behavior requires the ability to delay a response until it is appropriate. This can be achieved by holding either a sensory or a motor representation online. Here we assess whether maintenance of sensory or motor material drives the motor system to different functional states, as indexed by

  5. The frames of reference of the motor-visual aftereffect.

    Directory of Open Access Journals (Sweden)

    Guido Barchiesi

    Full Text Available Repeatedly performing similar motor acts produces short-term adaptive changes in the agent's motor system. One striking use-dependent effect is the motor-to-visual aftereffect (MVA, a short-lasting negative bias in the conceptual categorization of visually-presented training-related motor behavior. The MVA is considered the behavioral counterpart of the adaptation of visuomotor neurons that code for congruent executed and observed motor acts. Here we characterize which features of the motor training generate the MVA, along 3 main dimensions: a the relative role of motor acts vs. the semantics of the task-set; b the role of muscular-specific vs. goal-specific training and c the spatial frame of reference with respect to the whole body. Participants were asked to repeatedly push or pull some small objects in a bowl as we varied different components of adapting actions across three experiments. The results show that a the semantic value of the instructions given to the participant have no role in generating the MVA, which depends only on the motor meaning of the training act; b both intrinsic body movements and extrinsic action goals contribute simultaneously to the genesis of the MVA and c changes in the relative position of the acting hand compared to the observed hand, when they do not involve changes to the movement performed or to the action meaning, do not have an effect on the MVA. In these series of experiments we confirm that recent motor experiences produce measurable changes in how humans see each others' actions. The MVA is an exquisite motor effect generated by two distinct motor sub-systems, one operating in an intrinsic, muscular specific, frame of reference and the other operating in an extrinsic motor space.

  6. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    Science.gov (United States)

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Tobias Bracht

    Full Text Available Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD. However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC, the rostral anterior cingulate cortex (rACC, the pre-supplementary motor area (pre-SMA, the SMA-proper, the primary motor cortex (M1, the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

  8. Condition monitoring of machinery using motor current signature analysis

    International Nuclear Information System (INIS)

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs

  9. Mothers say "baby" and their newborns do not choose to listen: a behavioral preference study to compare with ERP results

    Directory of Open Access Journals (Sweden)

    Christine M Moon

    2015-03-01

    Full Text Available Previously published results from neonatal brain evoked response potential (ERP experiments revealed different brain responses to the single word baby depending on whether it was recorded by the mother or an unfamiliar female. These results are consistent with behavioral preference studies in which infants altered pacifier sucking to contingently activate recordings of the maternal vs. an unfamiliar female voice, but the speech samples were much longer and information-rich than in the ERP studies. Both types of neonatal voice recognition studies imply postnatal retention of prenatal learning. The preference studies require infant motor and motivation systems to mount a response in addition to voice recognition. The current contingent sucking preference study was designed to test neonatal motivation to alter behavior when the reward is the single word baby recorded by the mother or an unfamiliar speaker. Results showed an absent or weak contingent sucking response to the brief maternal voice sample, and they demonstrate the complementary value of electrophysiological and behavioral studies for very early development. Neonates can apparently recognize the maternal voice in brief recorded sample (previous ERP results but they are not sufficiently motivated by it to alter sucking behavior.

  10. Facilitating behavioral learning and habit change in voice therapy—theoretic premises and practical strategies

    DEFF Research Database (Denmark)

    Iwarsson, Jenny

    2014-01-01

    A typical goal of voice therapy is a behavioral change in the patient’s everyday speech. The SLP’s plan for voice therapy should therefore optimally include strategies for automatization. The aim of the present study was to identify and describe factors that promote behavioral learning and habit...... are described and discussed from a learning theory perspective. Nine factors that seem to be relevant to facilitate behavioral learning and habit change in voice therapy are presented, together with related practical strategies and theoretical underpinnings. These are: 1) Cue-altering; 2) Attention exercises; 3...... change in voice behavior and have the potential to affect patient compliance and thus therapy outcome. Research literature from the areas of motor and behavioral learning, habit formation, and habit change was consulted. Also, specific elements from personal experience of clinical voice therapy...

  11. Comprehensive Behavioral Analysis of Male Ox1r−/− Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior

    Science.gov (United States)

    Abbas, Md. G.; Shoji, Hirotaka; Soya, Shingo; Hondo, Mari; Miyakawa, Tsuyoshi; Sakurai, Takeshi

    2015-01-01

    Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R) is involved in physiological processes that regulate emotion, the reward system, and autonomic nervous system. Here, we examined Ox1r−/− mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r−/− mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response, and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behavior and sensory motor gating in addition to roles in mood and anxiety. PMID:26696848

  12. Behavioral characterization of mouse models of neuroferritinopathy.

    Directory of Open Access Journals (Sweden)

    Sara Capoccia

    Full Text Available Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK promoter. Transgenic (Tg mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests. The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help

  13. Research on combustion instability and application to solid propellant rocket motors. II.

    Science.gov (United States)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  14. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  15. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  16. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  17. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  18. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723

  19. A Direct Comparison of Self-Injurious and Stereotyped Motor Behavior Between Preschool-Aged Children With and Without Developmental Delays.

    Science.gov (United States)

    Hoch, John; Spofford, Lisa; Dimian, Adele; Tervo, Raymond; MacLean, William E; Symons, Frank J

    2016-06-01

    To compare the prevalence of self-injurious behavior (SIB) and stereotyped motor behavior (STY) of preschool-aged children with developmental delays (DD group) and their peers without developmental delays (TD group) using a standardized caregiver report scale. The Repetitive Behavior Scale-Revised was completed by caregivers of children with developmental delays and their peers without developmental delays. Frequency of occurrence and severity ratings for SIB and STY were compared between groups. SIB and STY were reported more often and at a greater level of severity in the DD group. Older chronological age was associated with more severe STY in the DD group but not the TD group. Gender was not related to STY or SIB for either group. Differences in STY and SIB were evident between preschoolers with and without DD. Findings are discussed from developmental and behavioral psychology perspectives regarding the expression of repetitive behavior in developmentally at-risk pediatric populations. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    Science.gov (United States)

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Comprehensive behavioral analysis of Ox1r-/- mice showed implication of orexin receptor-1 in mood, anxiety and social behavior

    Directory of Open Access Journals (Sweden)

    Md Golam Abbas

    2015-12-01

    Full Text Available Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R is involved in physiological processes that regulate emotion, the reward system and autonomic nervous system. Here, we examined Ox1r-/- mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r-/- mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behaviour and sensory motor gating in addition to roles in mood and anxiety.

  2. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  3. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  4. Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors

    Science.gov (United States)

    Liu, Kuang-Chen; Friend, James; Yeo, Leslie

    2009-10-01

    Pizza tossing and certain forms of standing-wave ultrasonic motors (SWUMs) share a similar process for converting reciprocating input into continuous rotary motion. We show that the key features of this motion conversion process such as collision, separation and friction coupling are captured by the dynamics of a disk bouncing on a vibrating platform. The model shows that the linear or helical hand motions commonly used by pizza chefs and dough-toss performers for single tosses maximize energy efficiency and the dough’s airborne rotational speed; on the other hand, the semielliptical hand motions used for multiple tosses make it easier to maintain dough rotation at the maximum speed. The system’s bifurcation diagram and basins of attraction also provide a physical basis for understanding the peculiar behavior of SWUMs and provide a means to design them. The model is able to explain the apparently chaotic oscillations that occur in SWUMs and predict the observed trends in steady-state speed and stall torque as preload is increased.

  5. Altered Amygdala Development and Fear Processing in Prematurely Born Infants

    Science.gov (United States)

    Cismaru, Anca Liliana; Gui, Laura; Vasung, Lana; Lejeune, Fleur; Barisnikov, Koviljka; Truttmann, Anita; Borradori Tolsa, Cristina; Hüppi, Petra S.

    2016-01-01

    Context: Prematurely born children have a high risk of developmental and behavioral disabilities. Cerebral abnormalities at term age have been clearly linked with later behavior alterations, but existing studies did not focus on the amygdala. Moreover, studies of early amygdala development after premature birth in humans are scarce. Objective: To compare amygdala volumes in very preterm infants at term equivalent age (TEA) and term born infants, and to relate premature infants’ amygdala volumes with their performance on the Laboratory Temperament Assessment Battery (Lab-TAB) fear episode at 12 months. Participants: Eighty one infants born between 2008 and 2014 at the University Hospitals of Geneva and Lausanne, taking part in longitudinal and functional imaging studies, who had undergone a magnetic resonance imaging (MRI) scan at TEA enabling manual amygdala delineation. Outcomes: Amygdala volumes assessed by manual segmentation of MRI scans; volumes of cortical and subcortical gray matter, white matter and cerebrospinal fluid (CSF) automatically segmented in 66 infants; scores for the Lab-TAB fear episode for 42 premature infants at 12 months. Results: Amygdala volumes were smaller in preterm infants at TEA than term infants (mean difference 138.03 mm3, p amygdala volumes were larger than left amygdala volumes (mean difference 36.88 mm3, p Amygdala volumes showed significant correlation with the intensity of the escape response to a fearsome toy (rs = 0.38, p = 0.013), and were larger in infants showing an escape response compared to the infants showing no escape response (mean difference 120.97 mm3, p = 0.005). Amygdala volumes were not significantly correlated with the intensity of facial fear, distress vocalizations, bodily fear and positive motor activity in the fear episode. Conclusion: Our results indicate that premature birth is associated with a reduction in amygdala volumes and white matter volumes at TEA, suggesting that altered amygdala development

  6. Masseter motor unit recruitment is altered in experimental jaw muscle pain.

    Science.gov (United States)

    Minami, I; Akhter, R; Albersen, I; Burger, C; Whittle, T; Lobbezoo, F; Peck, C C; Murray, G M

    2013-02-01

    Some management strategies for chronic orofacial pain are influenced by models (e.g., Vicious Cycle Theory, Pain Adaptation Model) proposing either excitation or inhibition within a painful muscle. The aim of this study was to determine if experimental painful stimulation of the masseter muscle resulted in only increases or only decreases in masseter activity. Recordings of single-motor-unit (SMU, basic functional unit of muscle) activity were made from the right masseters of 10 asymptomatic participants during biting trials at the same force level and direction under infusion into the masseter of isotonic saline (no-pain condition), and in another block of biting trials on the same day, with 5% hypertonic saline (pain condition). Of the 36 SMUs studied, 2 SMUs exhibited a significant (p units were present only during the no-pain block and 10 units during the pain block only. The findings suggest that, rather than only excitation or only inhibition within a painful muscle, a re-organization of activity occurs, with increases and decreases occurring within the painful muscle. This suggests the need to re-assess management strategies based on models that propose uniform effects of pain on motor activity.

  7. Generalized motor abilities and timing behavior in children with specific language impairment.

    Science.gov (United States)

    Zelaznik, Howard N; Goffman, Lisa

    2010-04-01

    To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing tasks, including tapping and drawing circles in time with a metronome or a visual target. Fourteen children with SLI (age 6 to 8 years) and 14 age-matched peers who were typically developing participated. As expected, children with SLI showed poorer performance on a standardized test of gross and fine motor skill than did their normally developing peers. However, timing skill in the manual domain was equivalent to that seen in typically developing children. Consistent with earlier findings, relatively poor gross and fine motor performance is observed in children with SLI. Surprisingly, rhythmic timing is spared.

  8. CRIEPI's research results (2006-2011) and clarified future issues on alteration behavior of bentonite barrier by alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2013-01-01

    In radioactive waste disposal facilities, bentonite barrier would be altered by alkaline solutions which arise by leaching of cementitious materials. Consequently suitable properties of the bentonite barrier would be degraded for a long time period. In CRIEPI, the investigation on the alteration of the bentonite under alkaline conditions was started in 2006, and several CRIEPI reports have been published. Specifically, we have investigated the kinetics of montmorillonite dissolution, the mineralogical alteration of compacted bentonite (with high- and low-dry density) and the change of permeability of the compacted bentonite (with high- and low-dry density) during alteration under the alkaline conditions. Furthermore, stability of saponite, which has similar physical properties to the bentonite, under the alkaline conditions was also examined. In this report, we show the outline of those research results, and lay out the clarified future issues extracted from our results. Ten clarified future issues were divided three categories as follows: 1) the estimation of the alteration behavior of the bentonite by alkaline solutions, 2) the elucidation of the mechanism of physical properties (e.g., permeability, swelling properties and mechanistic properties) change of the compacted bentonites during alteration, and 3) the development of the model building and simulation technology concerning the change in physical properties during alteration under alkaline conditions. (author)

  9. Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia.

    Science.gov (United States)

    Kesby, James P; Burne, Thomas H J; McGrath, John J; Eyles, Darryl W

    2006-09-15

    Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. The behavioral phenotype of adult rats subjected to transient low prenatal vitamin D is characterized by spontaneous hyperlocomotion but normal prepulse inhibition of acoustic startle (PPI). The aim of this study was to examine the impact of selected psychotropic agents and one well-known antipsychotic agent on the behavioral phenotype of DVD deplete rats. Control versus DVD deplete adult rats were assessed on holeboard, open field and PPI. In the open field, animals were given MK-801 and/or haloperidol. For PPI, the animals were given apomorphine or MK-801. DVD deplete rats had increased baseline locomotion on the holeboard task and increased locomotion in response to MK-801 compared to control rats. At low doses, haloperidol antagonized the MK-801 hyperactivity of DVD deplete rats preferentially and, at a high dose, resulted in a more pronounced reduction in spontaneous locomotion in DVD deplete rats. DVD depletion did not affect either baseline or drug-mediated PPI response. These results suggest that DVD deficiency is associated with a persistent alteration in neuronal systems associated with motor function but not those associated with sensory motor gating. In light of the putative association between low prenatal vitamin D and schizophrenia, the discrete behavioral differences associated with the DVD model may help elucidate the neurobiological correlates of schizophrenia.

  10. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  11. Structural integrity of callosal midbody influences intermanual transfer in a motor reaction-time task.

    Science.gov (United States)

    Bonzano, Laura; Tacchino, Andrea; Roccatagliata, Luca; Mancardi, Giovanni Luigi; Abbruzzese, Giovanni; Bove, Marco

    2011-02-01

    Training one hand on a motor task results in performance improvements in the other hand, also when stimuli are randomly presented (nonspecific transfer). Corpus callosum (CC) is the main structure involved in interhemispheric information transfer; CC pathology occurs in patients with multiple sclerosis (PwMS) and is related to altered performance of tasks requiring interhemispheric transfer of sensorimotor information. To investigate the role of CC in nonspecific transfer during a pure motor reaction-time task, we combined motor behavior with diffusion tensor imaging analysis in PwMS. Twenty-two PwMS and 10 controls, all right-handed, were asked to respond to random stimuli with appropriate finger opposition movements with the right (learning) and then the left (transfer) hand. PwMS were able to improve motor performance reducing response times with practice with a trend similar to controls and preserved the ability to transfer the acquired motor information from the learning to the transfer hand. A higher variability in the transfer process, indicated by a significantly larger standard deviation of mean nonspecific transfer, was found in the PwMS group with respect to the control group, suggesting the presence of subtle impairments in interhemispheric communication in some patients. Then, we correlated the amount of nonspecific transfer with mean fractional anisotropy (FA) values, indicative of microstructural damage, obtained in five CC subregions identified on PwMS's FA maps. A significant correlation was found only in the subregion including posterior midbody (Pearson's r = 0.74, P = 0.003), which thus seems to be essential for the interhemispheric transfer of information related to pure sensorimotor tasks. Copyright © 2010 Wiley-Liss, Inc.

  12. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light.

    Science.gov (United States)

    Tosi, S; Nieh, J C

    2017-11-09

    Honey bees provide key ecosystem services. To pollinate and to sustain the colony, workers must walk, climb, and use phototaxis as they move inside and outside the nest. Phototaxis, orientation to light, is linked to sucrose responsiveness and the transition of work from inside to outside the nest, and is also a key component of division of labour. However, the sublethal effects of pesticides on locomotion and movement to light are relatively poorly understood. Thiamethoxam (TMX) is a common neonicotinoid pesticide that bees can consume in nectar and pollen. We used a vertical arena illuminated from the top to test the effects of acute and chronic sublethal exposures to TMX. Acute consumption (1.34 ng/bee) impaired locomotion, caused hyperactivity (velocity: +109%; time moving: +44%) shortly after exposure (30 min), and impaired motor functions (falls: +83%; time top: -43%; time bottom: +93%; abnormal behaviours: +138%; inability to ascend: +280%) over a longer period (60 min). A 2-day chronic exposure (field-relevant daily intakes of 1.42-3.48 ng/bee/day) impaired bee ability to ascend. TMX increased movement to light after acute and chronic exposure. Thus, TMX could reduce colony health by harming worker locomotion and, potentially, alter division of labour if bees move outside or remain outdoors.

  13. Picrotoxin-induced behavioral tolerance and altered susceptibility to seizures: effects of naloxone.

    Science.gov (United States)

    Thomas, J; Nores, W L; Pariser, R

    1993-07-01

    The role of opiate mechanisms in the development of tolerance and altered susceptibility to seizures after repeated injections of picrotoxin was investigated. Independent groups of rats were pretreated with naloxone (0.3, 1.0, 3.0, and 10.0 mg/kg) or the saline vehicle and then tested for seizures induced by picrotoxin. The procedure was performed on 3 days at 1-week intervals, for a total of 3 testing days. Latencies to different types of seizures, the duration of postseizure immobility, and the number of focal seizure episodes were scored. In the vehicle-treated group, repeated picrotoxin injections led to an increased susceptibility to myoclonic and focal seizures and to decreased duration of postseizure immobility. Naloxone pretreatment significantly decreased the duration of the postseizure akinetic periods in the 1.0- and 10.0-mg/kg groups across all days, suggesting that endogenous opiates are involved in postseizure immobility and that there are interactions between opiate and picrotoxin mechanisms in some seizure-related behaviors. Naloxone did not alter the development of tolerance or sensitivity, indicating that naloxone-insensitive opiate mechanisms or nonopiate mechanisms may be involved in these processes.

  14. Prenatal Cigarette Smoke Exposure Causes Hyperactivity and Agressive Behavior: Role of Altered Catcholamines and BDNF

    Science.gov (United States)

    Yochum, Carrie; Doherty-Lyon, Shannon; Hoffman, Carol; Hossain, Muhammad M.; Zellikoff, Judith T.; Richardson, Jason R.

    2014-01-01

    Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4 hr/d and 5 d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25 ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior assessed on at 4 weeks of age and again at 4–6 months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders and suggest a role for monoaminergic and BDNF alterations in these effects. PMID:24486851

  15. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation.

    Science.gov (United States)

    LaPlante, Charlotte D; Catanese, Mary C; Bansal, Ruby; Vandenberg, Laura N

    2017-10-01

    High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pup