WorldWideScience

Sample records for alters mitochondrial distribution

  1. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  2. Diabetes and mitochondrial bioenergetics: Alterations with age

    OpenAIRE

    Ferreira, Fernanda M.; Palmeira, Carlos M.; Seiça, Raquel; Moreno, António J.; Santos, Maria S.

    2003-01-01

    Several studies have been carried out to evaluate the alterations in mitochondrial functions of diabetic rats. However, some of the results reported are controversial, since experimental conditions, such as aging, and/or strain of animals used were different. The purpose of this study was to evaluate the metabolic changes in liver mitochondria, both in the presence of severe hyperglycaemia (STZ-treated rats) and mild hyperglycaemia (Goto-Kakizaki (GK) rats). Moreover, metabolic alterations we...

  3. Altered mitochondrial regulation in quadriceps muscles of patients with COPD

    DEFF Research Database (Denmark)

    Naimi, Ashley I; Bourbeau, Jean; Perrault, Helene;

    2011-01-01

    Evidence exists for locomotor muscle impairment in patients with chronic obstructive pulmonary disease (COPD), including fiber type alterations and reduced mitochondrial oxidative capacity. In this study high-resolution respirometry was used to quantify oxygen flux in permeabilized fibres from...

  4. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.

    Science.gov (United States)

    Ferree, Andrew W; Trudeau, Kyle; Zik, Eden; Benador, Ilan Y; Twig, Gilad; Gottlieb, Roberta A; Shirihai, Orian S

    2013-11-01

    To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport.

  5. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    Science.gov (United States)

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  6. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  7. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  8. Data for mitochondrial proteomic alterations in the developing rat brain.

    Science.gov (United States)

    Villeneuve, Lance M; Stauch, Kelly L; Fox, Howard S

    2014-12-01

    Mitochondria are a critical organelle involved in many cellular processes, and due to the nature of the brain, neuronal cells are almost completely reliant on these organelles for energy generation. Due to the fact that biomedical research tends to investigate disease state pathogenesis, one area of mitochondrial research commonly overlooked is homeostatic responses to energy demands. Therefore, to elucidate mitochondrial alterations occurring during the developmentally important phase of E18 to P7 in the brain, we quantified the proteins in the mitochondrial proteome as well as proteins interacting with the mitochondria. We identified a large number of significantly altered proteins involved in a variety of pathways including glycolysis, mitochondrial trafficking, mitophagy, and the unfolded protein response. These results are important because we identified alterations thought to be homeostatic in nature occurring within mitochondria, and these results may be used to identify any abnormal deviations in the mitochondrial proteome occurring during this period of brain development. A more comprehensive analysis of this data may be obtained from the article "Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands" in the Journal of Proteomics. PMID:26217684

  9. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    Science.gov (United States)

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  10. Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism

    Directory of Open Access Journals (Sweden)

    Mario Negrette-Guzmán

    2015-01-01

    Full Text Available It has been shown that curcumin (CUR, a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM- induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2-related factor 2 (Nrf2 nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.

  11. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-β: A Protective Role of Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio A.; Lopez-Armas, Gabriela; Cruz-Ramos, Jose; Melnikov, Valery G.; Tan, Dun-Xian; Manchester, Lucien C.; Munoz, Ruben; Reiter, Russel J.

    2012-01-01

    Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-β (Aβ) generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-β (Aβ). The purpose was to determine how Aβ may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aβ in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid β was injected, favoring an endogenous anti-inflammatory pathway. PMID:22666620

  12. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio A. Rosales-Corral

    2012-01-01

    Full Text Available Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-ß (Aß generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-ß (Aß. The purpose was to determine how Aß may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aß in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid ß was injected, favoring an endogenous anti-inflammatory pathway.

  13. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Science.gov (United States)

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  14. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  15. Detection of mitochondrial deoxyribonucleic acid alterations in urine from urothelial cell carcinoma patients.

    NARCIS (Netherlands)

    Dasgupta, S.; Shao, C.; Keane, T.E.; Duberow, D.P.; Mathies, R.A.; Fisher, P.B.; Kiemeney, L.A.L.M.; Sidransky, D.

    2012-01-01

    Our study aims at understanding the timing and nature of mitochondrial deoxyribonucleic acid (mtDNA) alterations in urothelial cell carcinoma (UCC) and their detection in urine sediments. The entire 16.5 kb mitochondrial genome was sequenced in matched normal lymphocytes, tumor and urine sediments f

  16. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  17. Altered expression of mitochondrial related genes in the native Tibetan placents by mitochondrial cDNA array analysis

    Institute of Scientific and Technical Information of China (English)

    Luo Yongjun; Gao Wenxiang; Zhao Xiuxin; Suo Lang; Chen Li; Liu Fuyu; Song Tonglin; Chen Jian; Gao Yuqi

    2009-01-01

    Objective: To explore the mechanism of native Tibetan fetuses adaptation to hypoxia, we tried to find the different expression genes about mitochondrial function in the native Tibetan placents. Methods: In this study, the placents of native Tibetan and the high-altitude Han (ha-Han) were collected. After the total RNA extraction, the finally synthesized cDNAs were hybridized to mitochondrial array to find the altered expression genes between them. Then, the cytochrome c oxidase 17 (Coxl7), dynactin 2 (DCTN2, also known as p50), and vascular endothelial growth factor receptor (VEGFR, also known as KDR) were chosen from the altered expression genes to further verify the array results using the SYBR Green real-time PCR. Because the altered expression genes (such as Cybb and Coxl 7) in the array results related to the activities of COXI and COXIV, the placental mitochondria activities of COXI and COXIV were measured to find their changes in the hypoxia. Results: By a standard of >1.5 or <0.67, there were 24 different expressed genes between the native Tibetan and the ha-Han placents, including 3 up-regulated genes and 21 down-regulated genes. These genes were related to energy metabolism, signal transduction, cell proliferation, electron transport, cell adhesion, nucleotide-excision repair. The array results of Coxl7, DCTN2 and KDR were further verified by the real-time RT-PCR. Through the mitochondria respiration measurements, the activity of COXI in the native Tibetan placents were higher than that of ha-Han, there was no difference in COXIV activity between them. Conclusion: The altered mitochondrial related genes in the native Tibetan placents may have a role in the high altitude adaptation for fetuses through changing the activity of mitochondrial COX.

  18. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  19. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  20. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J;

    2002-01-01

    The distribution of postmortem damage in mitochondrial DNA retrieved from 37 ancient human DNA samples was analyzed by cloning and was compared with a selection of published animal data. A relative rate of damage (rho(v)) was calculated for nucleotide positions within the human hypervariable region...

  1. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N; Ellis, Ronald J; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2016-02-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.

  2. Altered Mitochondrial Function, Mitochondrial DNA and Reduced Metabolic Flexibility in Patients With Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Czajka

    2015-06-01

    Full Text Available The purpose of this study was to determine if mitochondrial dysfunction plays a role in diabetic nephropathy (DN, a kidney disease which affects >100 million people worldwide and is a leading cause of renal failure despite therapy. A cross-sectional study comparing DN with diabetes patients without kidney disease (DC and healthy controls (HCs; and renal mesangial cells (HMCs grown in normal and high glucose, was carried out. Patients with diabetes (DC had increased circulating mitochondrial DNA (MtDNA, and HMCs increased their MtDNA within 24 h of hyperglycaemia. The increased MtDNA content in DCs and HMCs was not functional as transcription was unaltered/down-regulated, and MtDNA damage was present. MtDNA was increased in DC compared to HC, conversely, patients with DN had lower MtDNA than DC. Hyperglycaemic HMCs had fragmented mitochondria and TLR9 pathway activation, and in diabetic patients, mitophagy was reduced. Despite MtDNA content and integrity changing within 4 days, hyperglycaemic HMCs had a normal bio-energetic profile until 8 days, after which mitochondrial metabolism was progressively impaired. Peripheral blood mononuclear cells (PBMCs from DN patients had reduced reserve capacity and maximal respiration, loss of metabolic flexibility and reduced Bioenergetic Health Index (BHI compared to DC. Our data show that MtDNA changes precede bioenergetic dysfunction and that patients with DN have impaired mitochondrial metabolism compared to DC, leading us to propose that systemic mitochondrial dysfunction initiated by glucose induced MtDNA damage may be involved in the development of DN. Longitudinal studies are needed to define a potential cause–effect relationship between changes in MtDNA and bioenergetics in DN.

  3. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  4. Altered Gene Expression, Mitochondrial Damage and Oxidative Stress: Converging Routes in Motor Neuron Degeneration

    Directory of Open Access Journals (Sweden)

    Luisa Rossi

    2012-01-01

    Full Text Available Motor neuron diseases (MNDs are a rather heterogeneous group of diseases, with either sporadic or genetic origin or both, all characterized by the progressive degeneration of motor neurons. At the cellular level, MNDs share features such as protein misfolding and aggregation, mitochondrial damage and energy deficit, and excitotoxicity and calcium mishandling. This is particularly well demonstrated in ALS, where both sporadic and familial forms share the same symptoms and pathological phenotype, with a prominent role for mitochondrial damage and resulting oxidative stress. Based on recent data, however, altered control of gene expression seems to be a most relevant, and previously overlooked, player in MNDs. Here we discuss which may be the links that make pathways apparently as different as altered gene expression, mitochondrial damage, and oxidative stress converge to generate a similar motoneuron-toxic phenotype.

  5. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    Science.gov (United States)

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  6. Interleukin-15 modulates adipose tissue by altering mitochondrial mass and activity.

    Directory of Open Access Journals (Sweden)

    Nicole G Barra

    Full Text Available Interleukin-15 (IL-15 is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg, overweight IL-15 deficient (IL-15-/-, and control C57Bl/6 (B6 mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15-/- mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function.

  7. Alteration of mitochondrial function in adult rat offspring of malnourished dams

    Science.gov (United States)

    Reusens, Brigitte; Theys, Nicolas; Remacle, Claude

    2011-01-01

    Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life. PMID:21954419

  8. Mitochondrial control region alterations and breast cancer risk: a study in South Indian population.

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Tipirisetti

    Full Text Available BACKGROUND: Mitochondrial displacement loop (D-loop is the hot spot for mitochondrial DNA (mtDNA alterations which influence the generation of cellular reactive oxygen species (ROS. Association of D-loop alterations with breast cancer has been reported in few ethnic groups; however none of the reports were documented from Indian subcontinent. METHODOLOGY: We screened the entire mitochondrial D-loop region (1124 bp of breast cancer patients (n = 213 and controls (n = 207 of south Indian origin by PCR-sequencing analysis. Haplotype frequencies for significant loci, the standardized disequilibrium coefficient (D' for pair-wise linkage disequilibrium (LD were assessed by Haploview Software. PRINCIPAL FINDINGS: We identified 7 novel mutations and 170 reported polymorphisms in the D-loop region of patients and/or controls. Polymorphisms were predominantly located in hypervariable region I (60% than in II (30% of D-loop region. The frequencies of 310'C' insertion (P = 0.018, T16189C (P = 0.0019 variants and 310'C'ins/16189C (P = 0.00019 haplotype were significantly higher in cases than in controls. Furthermore, strong LD was observed between nucleotide position 310 and 16189 in controls (D' = 0.49 as compared to patients (D' = 0.14. CONCLUSIONS: Mitochondrial D-loop alterations may constitute inherent risk factors for breast cancer development. The analysis of genetic alterations in the D-loop region might help to identify patients at high risk for bad progression, thereby helping to refine therapeutic decisions in breast cancer.

  9. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics

    OpenAIRE

    Marzetti, Emanuele; Csiszar, Anna; Dutta, Debapriya; Balagopal, Gauthami; Calvani, Riccardo; Leeuwenburgh, Christiaan

    2013-01-01

    Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also p...

  10. Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities

    OpenAIRE

    Carvalho, Cristina; Cardoso, Susana; Correia, Sónia C; Santos, Renato X.; Santos, Maria S.; Baldeiras, Inês; oliveira, catarina r.; Moreira, Paula I.

    2012-01-01

    Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-A...

  11. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    Science.gov (United States)

    Natale, Gianfranco; Lenzi, Paola; Lazzeri, Gloria; Falleni, Alessandra; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a

  12. Do Alterations in Mitochondrial DNA Play a Role in Breast Carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Thomas E. Rohan

    2010-01-01

    Full Text Available A considerable body of evidence supports a role for oxidative stress in breast carcinogenesis. Due to their role in producing energy via oxidative phosphorylation, the mitochondria are a major source of production of reactive oxygen species, which may damage DNA. The mitochondrial genome may be particularly susceptible to oxidative damage leading to mitochondrial dysfunction. Genetic variants in mtDNA and nuclear DNA may also contribute to mitochondrial dysfunction. In this review, we address the role of alterations in mtDNA in the etiology of breast cancer. Several studies have shown a relatively high frequency of mtDNA mutations in breast tumor tissue in comparison with mutations in normal breast tissue. To date, several studies have examined the association of genetic variants in mtDNA and breast cancer risk. The G10398A mtDNA polymorphism has received the most attention and has been shown to be associated with increased risk in some studies. Other variants have generally been examined in only one or two studies. Genome-wide association studies may help identify new mtDNA variants which modify breast cancer risk. In addition to assessing the main effects of specific variants, gene-gene and gene-environment interactions are likely to explain a greater proportion of the variability in breast cancer risk.

  13. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson’s Disease Patients

    Directory of Open Access Journals (Sweden)

    William Haylett

    2016-01-01

    Full Text Available Mutations in the parkin gene are the most common cause of early-onset Parkinson’s disease (PD. Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093, while exhibiting more fragmented mitochondrial networks (p=0.0304. Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p=0.0001. These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.

  14. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    Science.gov (United States)

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  15. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients

    Science.gov (United States)

    Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  16. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    Science.gov (United States)

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.

  17. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis.

    Science.gov (United States)

    Gonçalves, Inês O; Passos, Emanuel; Diogo, Cátia V; Rocha-Rodrigues, Sílvia; Santos-Alves, Estela; Oliveira, Paulo J; Ascensão, António; Magalhães, José

    2016-03-01

    Mitochondrial quality control and apoptosis have been described as key components in the pathogenesis of nonalcoholic steatohepatitis (NASH); exercise is recognized as a nonpharmacological strategy to counteract NASH-associated consequences. We aimed to analyze the effect of voluntary physical activity (VPA) and endurance training (ET) against NASH-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial and cellular quality control deleterious alterations. Forty-eight male Sprague-Dawley rats were divided into standard-diet sedentary (SS, n = 16), standard-diet VPA (n = 8), high-fat diet sedentary (HS, n = 16), and high-fat diet VPA (n = 8). After 9 weeks of diet treatment, half of the SS and HS groups were engaged in an ET program for 8 weeks, 5 days/week, 1 h/day. Liver mPTP susceptibility through osmotic swelling, mPTP-related proteins (cyclophilin D, Sirtuin3, Cofilin-1), markers of mitochondrial biogenesis ((mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor gamma co-activator protein (PGC-1α)), dynamics (Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Dynamin related protein 1, and Optic atrophy 1)), auto/mitophagy (Beclin-1, microtubule-associated protein 1 light chain 3, p62, PINK1, and Parkin), and apoptotic signaling (Bax, Bcl-2) and caspases-like activities were assessed. HS animals showed an increased susceptibility to mPTP, compromised expression of Tfam, Mfn1, PINK1, and Parkin and an increase in Bax content (HS vs. SS). ET and VPA improved biogenesis-related proteins (PGC-1α) and autophagy signaling (Beclin-1 and Beclin-1/Bcl-2 ratio) and decreased apoptotic signaling (caspases 8 activity, Bax content, and Bax/Bcl-2 ratio). However, only ET decreased mPTP susceptibility and positively modulated Bcl-2, Tfam, Mfn1, Mfn2, PINK1, and Parkin content. In conclusion, exercise reduces the increased susceptibility to mPTP induced by NASH and promotes the increase of auto/mitophagy and mitochondrial

  18. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    Science.gov (United States)

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  19. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    Science.gov (United States)

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism. PMID:26634890

  20. Nuclear and Mitochondrial DNA Alterations in Newborns with Prenatal Exposure to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Francesca Pirini

    2015-01-01

    Full Text Available Newborns exposed to maternal cigarette smoke (CS in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal and assesses how such changes may have consequences for both fetal growth and development.

  1. Dietary ω-3 Fatty Acids Alter Cardiac Mitochondrial Phospholipid Composition and Delay Ca2+-Induced Permeability Transition

    OpenAIRE

    O’Shea, Karen M.; Khairallah, Ramzi J.; Sparagna, Genevieve C.; Xu, Wenhong; Hecker, Peter A; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Kristian, Tibor; Robert C. Murphy; Fiskum, Gary; Stanley, William C.

    2009-01-01

    Consumption of ω-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA+DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA+DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospho...

  2. Sequence alterations of the whole mitochondrial genome in primary and recurrent ovarian carcinomas

    Institute of Scientific and Technical Information of China (English)

    Shi Hong-hui; Song Tian; Pan Ling-ya

    2007-01-01

    Objective: To investigate mitochondrial DNA (mtDNA) alterations in primary and recurrent ovarian carcinomas to illuminate the impact of chemotherapy on mtDNA.Methods.Complete mtDNA genomes of tumor tissue from 7 pimary ovarian carcinoma patients without treatment and 9 recurrent ones with prior chemotherapies were sequenced as well as their matched normal tissue.MtDNA alterations, including somatic mutations and new polymorphisms and consequent amino-acid alterations were compared between the two groups.Results, A large number of mtDNA new polymorphisms (69) and somatic mutations (17) were found in 16 ovarian carcinoma samples.Chemotherapy might not lead to more, heteroplasmic mutations and consequent aminoacid alterations (P>0.05) in the recurrent ovarian carcinoma patients than in the untreated ones.Conclusions: MtDNA damage was not so certainly made by chemotherapies and some of the mtDNA defects might be part of the disease process rather than a consequence of treatment.

  3. Distributed and Conditional Documents: Conceptualizing Bibliographical Alterities

    Directory of Open Access Journals (Sweden)

    Johanna Drucker

    2014-11-01

    Full Text Available To conceptualize a future history of the book we have to recognize that our understanding of the bibliographical object of the past is challenged by the ontologically unbound, distributed, digital, and networked conditions of the present. As we draw on rich intellectual traditions, we must keep in view the need to let go of the object-centered approach that is at the heart of book history. My argument begins, therefore, with a few assertions. First, that we have much to learn from the scholarship on Old and New World contact that touches on bibliography, document studies, and book history for formulating a non-object centered conception of what a book is. Second, that the insights from these studies can be usefully combined with a theory of the “conditional” document to develop the model of the kinds of distributed artifacts we encounter on a daily basis in the networked conditions of current practices. Finally, I would suggest that this model provides a different conception of artifacts (books, documents, works of textual or graphic art, one in which reception is production and therefore all materiality is subject to performative engagement within varied, and specific, conditions of encounter.

  4. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2.

    Directory of Open Access Journals (Sweden)

    Qun S Zang

    Full Text Available Our previous research demonstrated that sepsis produces mitochondrial dysfunction with increased mitochondrial oxidative stress in the heart. The present study investigated the role of mitochondria-localized signaling molecules, tyrosine kinase Src and tyrosine phosphatase SHP2, in sepsis-induced cardiac mitochondrial dysfunction using a rat pneumonia-related sepsis model. SD rats were given an intratracheal injection of Streptococcus pneumoniae, 4×10(6 CFU per rat, (or vehicle for shams; heart tissues were then harvested and subcellular fractions were prepared. By Western blot, we detected a gradual and significant decrease in Src and an increase in SHP2 in cardiac mitochondria within 24 hours post-inoculation. Furthermore, at 24 hours post-inoculation, sepsis caused a near 70% reduction in tyrosine phosphorylation of all cardiac mitochondrial proteins. Decreased tyrosine phosphorylation of certain mitochondrial structural proteins (porin, cyclophilin D and cytochrome C and functional proteins (complex II subunit 30kD and complex I subunit NDUFB8 were evident in the hearts of septic rats. In vitro, pre-treatment of mitochondrial fractions with recombinant active Src kinase elevated OXPHOS complex I and II-III activity, whereas the effect of SHP2 phosphatase was opposite. Neither Src nor SHP2 affected complex IV and V activity under the same conditions. By immunoprecipitation, we showed that Src and SHP2 consistently interacted with complex I and III in the heart, suggesting that complex I and III contain putative substrates of Src and SHP2. In addition, in vitro treatment of mitochondrial fractions with active Src suppressed sepsis-associated mtROS production and protected aconitase activity, an indirect marker of mitochondrial oxidative stress. On the contrary, active SHP2 phosphatase overproduced mtROS and deactivated aconitase under the same in vitro conditions. In conclusion, our data suggest that changes in mitochondria

  5. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy

    International Nuclear Information System (INIS)

    Mitochondrial DNA (mtDNA) alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD), are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI) treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL) patients as well as to take them as predictors for radiation toxicity. Peripheral blood lymphocytes were isolated from 26 ALL patients 24 hours after TBI preconditioning (4.5 and 9 Gy, respectively). Extracted DNA was analyzed by real-time PCR method. Average 2.31 times mtDNA and 0.53 fold CD levels were observed after 4.5 Gy exposure compared to their basal levels. 9 Gy TBI produced a greater response of both mtDNA and CD levels than 4.5 Gy. Significant inverse correlation was found between mtDNA content and CD level at 4.5 and 9 Gy (P = 0.037 and 0.048). Moreover, mtDNA content of lymphocytes without irradiation was found to be correlated to age. mtDNA and CD content may be considered as predictive factors to radiation toxicity

  6. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy

    Directory of Open Access Journals (Sweden)

    Ji Fuyun

    2011-10-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD, are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL patients as well as to take them as predictors for radiation toxicity. Methods Peripheral blood lymphocytes were isolated from 26 ALL patients 24 hours after TBI preconditioning (4.5 and 9 Gy, respectively. Extracted DNA was analyzed by real-time PCR method. Results Average 2.31 times mtDNA and 0.53 fold CD levels were observed after 4.5 Gy exposure compared to their basal levels. 9 Gy TBI produced a greater response of both mtDNA and CD levels than 4.5 Gy. Significant inverse correlation was found between mtDNA content and CD level at 4.5 and 9 Gy (P = 0.037 and 0.048. Moreover, mtDNA content of lymphocytes without irradiation was found to be correlated to age. Conclusions mtDNA and CD content may be considered as predictive factors to radiation toxicity.

  7. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    Science.gov (United States)

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.

  8. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1.

    Science.gov (United States)

    Asterholm, Ingrid Wernstedt; Mundy, Dorothy I; Weng, Jian; Anderson, Richard G W; Scherer, Philipp E

    2012-02-01

    Caveolin-1 is a major structural component of raft structures within the plasma membrane and has been implicated as a regulator of cellular signal transduction with prominent expression in adipocytes. Here, we embarked on a comprehensive characterization of the metabolic pathways dysregulated in caveolin-1 null mice. We found that these mice display decreased circulating levels of total and high molecular weight adiponectin and a reduced ability to change substrate use in response to feeding/fasting conditions. Caveolin-1 null mice are extremely lean but retain muscle mass despite lipodystrophy and massive metabolic dysfunction. Hepatic gluconeogenesis is chronically elevated, while hepatic steatosis is reduced. Our data suggest that the complex phenotype of the caveolin-1 null mouse is caused by altered metabolic and mitochondrial function in adipose tissue with a subsequent compensatory response driven mostly by the liver. This mouse model highlights the central contributions of adipose tissue for system-wide preservation of metabolic flexibility. PMID:22326219

  9. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes.

    Science.gov (United States)

    Golic, I; Velickovic, K; Markelic, M; Stancic, A; Jankovic, A; Vucetic, M; Otasevic, V; Buzadzic, B; Korac, B; Korac, A

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  10. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup.

    Science.gov (United States)

    Kuo, Hsiao-Mei; Weng, Shao-Wen; Chang, Alice Y W; Huang, Hung-Tu; Lin, Hung-Yu; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Tai, Ming-Hong; Lin, Ching-Yi; Wang, Pei-Wen

    2016-07-01

    The advantage of using a cytoplasmic hybrid (cybrid) model to study the genetic effects of mitochondria is that the cells have the same nuclear genomic background. We previously demonstrated the independent role of mitochondria in the pathogenesis of insulin resistance (IR) and pro-inflammation in type 2 diabetes. In this study, we compared mitochondrial dynamics and related physiological functions between cybrid cells harboring diabetes-susceptible (B4) and diabetes-protective (D4) mitochondrial haplogroups, especially the responses before and after insulin stimulation. Cybrid B4 showed a more fragmented mitochondrial network, impaired mitochondrial biogenesis and bioenergetics, increased apoptosis and ineffective mitophagy and a low expression of fusion-related molecules. Upon insulin stimulation, increases in network formation, mitochondrial DNA (mtDNA) content, and ATP production were observed only in cybrid D4. Insulin promoted a pro-fusion dynamic status in both cybrids, but the trend was greater in cybrid D4. In cybrid B4, the imbalance of mitochondrial dynamics and impaired biogenesis and bioenergetics, and increased apoptosis were significantly improved in response to antioxidant treatment. We concluded that diabetes-susceptible mtDNA variants are themselves resistant to insulin. PMID:27107769

  11. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes

    Directory of Open Access Journals (Sweden)

    I. Golic

    2014-09-01

    Full Text Available Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1 and mitofusin 2 (MFN2 were increased, and mitochondrial fission as dynamin related protein 1 (DRP1 was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER. The level of uncoupling protein-1 (UCP1 was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes

  12. Early Stress History Alters Serum Insulin-Like Growth Factor-1 and Impairs Muscle Mitochondrial Function in Adult Male Rats.

    Science.gov (United States)

    Ghosh, S; Banerjee, K K; Vaidya, V A; Kolthur-Seetharam, U

    2016-09-01

    Early-life adversity is associated with an enhanced risk for adult psychopathology. Psychiatric disorders such as depression exhibit comorbidity for metabolic dysfunction, including obesity and diabetes. However, it is poorly understood whether, besides altering anxiety and depression-like behaviour, early stress also evokes dysregulation of metabolic pathways and enhances vulnerability for metabolic disorders. We used the rodent model of the early stress of maternal separation (ES) to examine the effects of early stress on serum metabolites, insulin-like growth factor (IGF)-1 signalling, and muscle mitochondrial content. Adult ES animals exhibited dyslipidaemia, decreased serum IGF1 levels, increased expression of liver IGF binding proteins, and a decline in the expression of specific metabolic genes in the liver and muscle, including Pck1, Lpl, Pdk4 and Hmox1. These changes occurred in the absence of alterations in body weight, food intake, glucose tolerance, insulin tolerance or insulin levels. ES animals also exhibited a decline in markers of muscle mitochondrial content, such as mitochondrial DNA levels and expression of TFAM (transcription factor A, mitochondrial). Furthermore, the expression of several genes involved in mitochondrial function, such as Ppargc1a, Nrf1, Tfam, Cat, Sesn3 and Ucp3, was reduced in skeletal muscle. Adult-onset chronic unpredictable stress resulted in overlapping and distinct consequences from ES, including increased circulating triglyceride levels, and a decline in the expression of specific metabolic genes in the liver and muscle, with no change in the expression of genes involved in muscle mitochondrial function. Taken together, our results indicate that a history of early adversity can evoke persistent changes in circulating IGF-1 and muscle mitochondrial function and content, which could serve to enhance predisposition for metabolic dysfunction in adulthood. PMID:27196416

  13. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Thomas F Rau

    Full Text Available Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD decreased the levels of free carnitines (FC and increased the acylcarnitine (AC: FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.

  14. Hypoxia-reoxygenation differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial oxidative capacity.

    Science.gov (United States)

    Onukwufor, John O; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2016-11-01

    Hypoxia-reoxygenation (H-R) transitions and temperature fluctuations occur frequently in biological systems and likely interact to alter cell function. To test how H-R modulates mitochondrial function at different temperatures we measured the effects of H-R on isolated fish liver mitochondrial oxidation rates over a wide temperature range (5-25°C). Subsequently, the mechanisms underlying H-R induced mitochondrial responses were examined. H-R inhibited the complex I (CI) maximal (state 3) and stimulated the basal (state 4) mitochondrial oxidation rates with temperature enhancing both effects. As a result, the thermal sensitivity (Q10) for CI maximal respiration was reduced while that for basal respiration was increased by H-R. H-R reduced both the coupling and phosphorylation efficiencies more profoundly at high temperature suggesting that mitochondria were more resistant to H-R at low temperature. The H-R induced mitochondrial impairments were associated with increased reactive oxygen species (ROS) production and proton leak, dissipation of membrane potential, and loss of structural integrity of the organelles. Overall, our study provides insight into the mechanisms of H-R induced mitochondrial morphofunctional disruption and shows that the moderation of effects of H-R on oxidative phosphorylation by temperature depends on the functional state. PMID:27387443

  15. Signs of Selection in Synonymous Sites of the Mitochondrial Cytochrome b Gene of Baikal Oilfish (Comephoridae by mRNA Secondary Structure Alterations

    Directory of Open Access Journals (Sweden)

    Veronika I. Teterina

    2015-01-01

    Full Text Available Studies over the past decade have shown a significant role of synonymous mutations in posttranscriptional regulation of gene expression, which is particularly associated with messenger RNA (mRNA secondary structure alterations. Most studies focused on prokaryote genomes and the nuclear genomes of eukaryotes while little is known about the regulation of mitochondrial DNA (mtDNA gene expression. This paper reveals signs of selection in synonymous sites of the mitochondrial cytochrome b gene (Cytb of Baikal oilfish or golomyankas (Comephoridae directed towards altering the secondary structure of the mRNA and probably altering the character of mtDNA gene expression. Our findings are based on comparisons of intraspecific genetic variation patterns of small golomyanka (Comephorus dybowski and two genetic groups of big golomyanka (Comephorus dybowskii. Two approaches were used: (i analysis of the distribution of synonymous mutations between weak-AT (W and strong-GC (S nucleotides within species and groups in accordance with mutation directions from central to peripheral haplotypes and (ii approaches based on the predicted mRNA secondary structure.

  16. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Michael L Nickerson

    Full Text Available Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD. SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure.We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules.Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly

  17. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Allen, Scott P; Duffy, Lynn M; Shaw, Pamela J; Grierson, Andrew J

    2015-10-01

    Mitochondria play a key role in aging, which is a well-established risk factor in amyotrophic lateral sclerosis (ALS). We have previously modeled metabolic dysregulation in ALS using fibroblasts isolated from sporadic ALS (SALS) and familial ALS patients. In the present study, we show that fibroblasts from SALS patients have an altered metabolic response to aging. Control fibroblasts demonstrated increased mitochondrial network complexity and spare respiratory capacity with age which was not seen in the SALS cases. SALS cases displayed an increase in uncoupled mitochondrial respiration, which was not evident in control cases. Unlike SALS cases, controls showed a decrease in glycolysis and an increase in the oxygen consumption rate/extracellular acidification rate ratio, indicating an increased reliance on mitochondrial function. Switching to a more oxidative state by removing glucose with in the culture media resulted in a loss of the mitochondrial interconnectivity and spare respiratory capacity increases observed in controls grown in glucose. Glucose removal also led to an age-independent increase in glycolysis in the SALS cases. This study is, to the best our knowledge, the first to assess the effect of aging on both mitochondrial and glycolytic function simultaneously in intact human fibroblasts and demonstrates that the SALS disease state shifts the cellular metabolic response to aging to a more glycolytic state compared with age-matched control fibroblasts. This work highlights that ALS alters the metabolic equilibrium even in peripheral tissues outside the central nervous system. Elucidating at a molecular level how this occurs and at what stage in the disease process is crucial to understanding why ALS affects cellular energy metabolism and how the disease alters the natural cellular response to aging. PMID:26344876

  18. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish.

    Science.gov (United States)

    Chen, Danni; Li, Feng; Yang, Qingxian; Tian, Miao; Zhang, Zengming; Zhang, Qinghai; Chen, Ye; Guan, Min-Xin

    2016-08-01

    Human mitochondrial DNA (mtDNA) mutations have been associated with a wide spectrum of clinical abnormalities. However, nuclear modifier gene(s) modulate the phenotypic expression of pathogenic mtDNA mutations. In our previous investigation, we identified the human GTPBP3 related to mitochondrial tRNA modification, acting as a modifier to influence of deafness-associated mtDNA mutation. Mutations in GTPBP3 have been found to be associated with other human diseases. However, the pathophysiology of GTPBP3-associated disorders is still not fully understood. Here, we reported the generation and characterization of Gtpbp3 depletion zebrafish model using antisense morpholinos. Zebrafish gtpbp3 has three isoforms localized at mitochondria. Zebrafish gtpbp3 is expressed at various embryonic stages and in multiple tissues. In particular, the gtpbp3 was expressed more abundantly in adult zebrafish ovary and testis. The expression of zebrafish gtpbp3 can functionally restore the growth defects caused by the mss1/gtpbp3 mutation in yeast. A marked decrease of mitochondrial ATP generation accompanied by increased levels of apoptosis and reactive oxygen species were observed in gtpbp3 knockdown zebrafish embryos. The Gtpbp3 morphants exhibited defective in embryonic development including bleeding, melenin, oedema and curved tails within 5days post fertilization, as compared with uninjected controls. The co-injection of wild type gtpbp3 mRNA partially rescued these defects in Gtpbp3 morphants. These data suggest that zebrafish Gtpbp3 is a structural and functional homolog of human and yeast GTPBP3. The mitochondrial dysfunction caused by defective Gtpbp3 may alter the embryonic development in the zebrafish. In addition, this zebrafish model of mitochondrial disease may provide unique opportunities for studying defective tRNA modification, mitochondrial biogenesis, and pathophysiology of mitochondrial disorders. PMID:27184967

  19. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients.

    Directory of Open Access Journals (Sweden)

    Victor M Victor

    Full Text Available CONTEXT: Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE: The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING: A multi-centre, cross-sectional case-control study was performed. PATIENTS: Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. MAIN OUTCOME MEASURES: Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. RESULTS: Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05, mitochondrial membrane potential (P<0.01 and GSH levels (P<0.05, and an increase in ROS production (P<0.05 with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05, while the activity of mitochondrial complex I (P<0.001, but not that of complex III, was found to be inhibited in the same population. CONCLUSIONS: Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.

  20. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus.

    Science.gov (United States)

    Koliaki, Chrysi; Roden, Michael

    2016-07-17

    Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans. PMID:27146012

  1. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    Science.gov (United States)

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  2. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  3. Alteration of ROS Homeostasis and Decreased Lifespan in S. cerevisiae Elicited by Deletion of the Mitochondrial Translocator FLX1

    Directory of Open Access Journals (Sweden)

    Teresa Anna Giancaspero

    2014-01-01

    Full Text Available This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts.

  4. Exercise alters liver mitochondria phospholipidomic profile and mitochondrial activity in non-alcoholic steatohepatitis

    OpenAIRE

    Gonçalves, Inês O; Maciel, Elisabete; Passos, Emanuel; Torrella, Joan R.; Rizo, David; Viscor, Ginés; Rocha-Rodrigues, Silvia; Santos-Alves, Estela; Domingues, Maria R.; Oliveira, Paulo J; Ascensão, António; Magalhães, José

    2014-01-01

    Mitochondrial membrane lipid composition is a critical factor in non-alcoholic steatohepatitis (NASH). Exercise is the most prescribed therapeutic strategy against NASH and a potential modulator of lipid membrane. Thus, we aimed to analyze whether physical exercise exerted preventive (voluntary physical activity – VPA) and therapeutic (endurance training – ET) effect on NASH-induced mitochondrial membrane changes. Sprague-Dawley rats (n = 36) were divided into standard-diet sedentary (SS, n =...

  5. The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function

    OpenAIRE

    Lidell, Martin E.; Seifert, Erin L.; Westergren, Rickard; Heglind, Mikael; Gowing, Adrienne; Sukonina, Valentina; Arani, Zahra; Itkonen, Paula; Wallin, Simonetta; Westberg, Fredrik; Fernandez-Rodriguez, Julia; Laakso, Markku; Nilsson, Tommy; Peng, Xiao-Rong; Harper, Mary-Ellen

    2011-01-01

    OBJECTIVE Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitati...

  6. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease.

    Science.gov (United States)

    Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta

    2016-02-01

    Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states.

  7. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Du, Sherry N N; Mahalingam, Sajeni; Borowiec, Brittney G; Scott, Graham R

    2016-04-15

    Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish ( ITALIC! Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2) or intermittent diel cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, leak respiration, coupling control or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2kinetics, but ITALIC! P50(the O2tension at which hypoxia inhibits respiration by 50%) was lower in the leak state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. PMID:26896545

  8. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    OpenAIRE

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA tre...

  9. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells.

    Science.gov (United States)

    Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient. PMID:27221760

  10. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  11. Phylogeographic distribution of mitochondrial DNA macrohaplogroup M in India

    Indian Academy of Sciences (India)

    Suvendu Maji; S. Krithika; T. S. Vasulu

    2009-04-01

    Indian subcontinent harbours both the human mtDNA macrohaplogroups M and N, of which M is the most prevalent. In this study, we discuss the overall distribution of the various haplogroups and sub-haplogroups of M among the different castes and tribes to understand their diverse pattern with respect to geographical location and linguistic affiliation of the populations. An overview of about 170 studied populations, belonging to four distinct linguistic families and inhabiting different geographic zones, revealed wide diversity of about 22 major haplogroups of M. The tribal populations belonging to the same linguistic family but inhabiting different geographical regions (Dravidian and Austro–Asiatic speakers) exhibited differences in their haplogroup diversity. The northern and southern region castes showed greater diversity than the castes of other regions.

  12. Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing

    OpenAIRE

    Ohtani, Kouhei; Yamamoto, Hiroyuki; Akimitsu, Kazuya

    2002-01-01

    Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia co...

  13. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    Science.gov (United States)

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. PMID:22608205

  14. Alterations of rat liver mitochondrial oxidative phosphorylation and calcium uptake by benzo[a]pyrene

    International Nuclear Information System (INIS)

    We report that oxidative phosphorylation and Ca2+ uptake processes are enhanced in liver mitochondria isolated from benzo[a]pyrene (B[a]P)-treated rats. The carcinogen did not affect either the respiratory control index or the Ca2+ control ratio. B[a]P treatment increased the oxidation rate of several substrates that donate electrons at the level of all three coupling sites, either the ADP- or Ca2+-stimulated rates or those observed after ADP or Ca2+ exhaustion. However, the efficiency of energy coupling was maintained because both ADP/O and Ca2+/site ratios remained unchanged. The electron flow through NADH-oxidase, NADH-duroquinone reductase, NADH-juglone reductase, NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome c oxidase was enhanced by B[a]P; however, succinate dehydrogenase activity was not affected. All these effects depended on the time post B[a]P administration, with a greater increase close to 48 h after administration of the carcinogen. The contents of cytochromes b, c1, and a + a3 from liver mitochondria, especially those isolated 48 h after B[a]P, were also significantly increased, although cytochrome c levels was just lightly increased 24 h after B[a]P treatment. These results suggest that B[a]P treatment stimulates mitochondrial respiration by increasing the level of several components of the mitochondrial respiratory chain. This may reflect mitochondrial adaptation to the cellular energy requirements of cell division in the neoplastic transformation process

  15. Therapeutic Approaches in Mitochondrial Dysfunction, Proteolysis, and Structural Alterations of Diaphragm and Gastrocnemius in Rats With Chronic Heart Failure.

    Science.gov (United States)

    Barreiro, Esther; Puig-Vilanova, Ester; Marin-Corral, Judith; Chacón-Cabrera, Alba; Salazar-Degracia, Anna; Mateu, Xavier; Puente-Maestu, Luis; García-Arumí, Elena; Andreu, Antoni L; Molina, Luis

    2016-07-01

    Patients with chronic heart failure (CHF) experience exercise intolerance, fatigue and muscle wasting, which negatively influence their survival. We hypothesized that treatment with either the antioxidant N-acetyl cysteine (NAC) or the proteasome inhibitor bortezomib of rats with monocrotaline-induced CHF may restore inspiratory and limb muscle mass, function, and structure through several molecular mechanisms involved in protein breakdown and metabolism in the diaphragm and gastrocnemius. In these muscles of CHF-cachectic rats with and without treatment with NAC or bortezomib (N = 10/group) and non-cachectic controls, proteolysis (tyrosine release, proteasome activities, ubiquitin-proteasome markers), oxidative stress, inflammation, mitochondrial function, myosin, NF-κB transcriptional activity, muscle structural abnormalities, and fiber morphometry were analyzed together with muscle and cardiac functions. In diaphragm and gastrocnemius of CHF-cachectic rats, tyrosine release, proteasome activity, protein ubiquitination, atrogin-1, MURF-1, NF-κB activity, oxidative stress, inflammation, and structural abnormalities were increased, while muscle and cardiac functions, myosin content, slow- and fast-twitch fiber sizes, and mitochondrial activity were decreased. Concomitant treatment of CHF-cachectic rats with NAC or bortezomib improved protein catabolism, oxidative stress, inflammation, muscle fiber sizes, function and damage, superoxide dismutase and myosin levels, mitochondrial function (complex I, gastrocnemius), cardiac function and decreased NF-κB transcriptional activity in both muscles. Treatment of CHF-cachectic animals with NAC or bortezomib attenuated the functional (heart, muscles), biological, and structural alterations in muscles. Nonetheless, future studies conducted in actual clinical settings are warranted in order to assess the potential beneficial effects and safety concerns of these pharmacological agents on muscle mass loss and wasting in

  16. Role of metabolic modulator Bet-CA in altering mitochondrial hyperpolarization to suppress cancer associated angiogenesis and metastasis

    Science.gov (United States)

    Saha, Suchandrima; Ghosh, Monisankar; Dutta, Samir Kumar

    2016-01-01

    Solid tumors characteristically reflect a metabolic switching from glucose oxidation to glycolysis that plays a fundamental role in angiogenesis and metastasis to facilitate aggressive tumor outcomes. Hyperpolarized mitochondrial membrane potential is a manifestation of malignant cells that compromise the intrinsic pathways of apoptosis and confer a suitable niche to promote the cancer associated hallmark traits. We have previously reported that co-drug Bet-CA selectively targets cancer cells by inducing metabolic catastrophe without a manifest in toxicity. Here we report that the same molecule at a relatively lower concentration deregulates the cardinal phenotypes associated with angiogenesis and metastasis. In mice syngeneic 4T1 breast cancer model, Bet-CA exhibited effective abrogation of angiogenesis and concomitantly obliterated lung metastasis consistent with altered mitochondrial bioenergetics. Furthermore, Bet-CA significantly lowered vascular endothelial growth factor (VEGF) levels and obviated matrix metalloproteases (MMP-2/9) production directly to the criterion where abrogation of autocrine VEGF/VEGFR2 signalling loop was documented. In vitro studies anticipatedly documented the role of Bet-CA in inhibiting actin remodeling, lamellipodia formation and cell membrane ruffling to constitutively suppress cell motility and invasion. Results comprehensively postulate that Bet-CA, a mitochondria targeting metabolic modulator may serve as an excellent candidate for combating angiogenesis and metastasis. PMID:27003027

  17. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  18. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    OpenAIRE

    Thomas F. Rau; Qing Lu; Shruti Sharma; Xutong Sun; Gregory Leary; Beckman, Matthew L.; Yali Hou; Wainwright, Mark S; Michael Kavanaugh; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neurop...

  19. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation.

    Science.gov (United States)

    Agarwal, Swati; Yadav, Anuradha; Tiwari, Shashi Kant; Seth, Brashket; Chauhan, Lalit Kumar Singh; Khare, Puneet; Ray, Ratan Singh; Chaturvedi, Rajnish Kumar

    2016-07-29

    The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and

  20. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients

    DEFF Research Database (Denmark)

    Maynard, Scott; Hejl, Anne-Mette; Dinh, Tran Thuan Son;

    2015-01-01

    AIMS: Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics...... as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay...... on adjustments for gender and/or age. CONCLUSIONS: This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD....

  1. Errantum: Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Directory of Open Access Journals (Sweden)

    Lai JCK

    2010-12-01

    Full Text Available Lai JCK, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723.The wrong image was used in Figure 5 on page 719.

  2. Distribution of nuclear mitochondrial pseudogenes in three pollinator fig wasps associated with Ficus pumila

    Science.gov (United States)

    Chen, Yan; Liu, Min; Compton, Stephen G.; Chen, Xiao-Yong

    2014-05-01

    Nuclear mitochondrial pseudogenes (NUMTs) are nuclear sequences transferred from mitochondrial genomes. Although widespread, their distribution patterns among populations or closely related species are rarely documented. We amplified and sequenced the mitochondrial cytochrome b (Cytb) gene to check for NUMTs in three fig wasp species that pollinate Ficus pumila (Wiebesia sp. 1, 2 and 3) in Southeastern China using direct and cloned sequencing. Unambiguous sequences (332) of 487 bp in length belonging to 33 haplotypes were found by direct sequencing. Their distribution was highly concordant with those of cytochrome c oxidase subunit I (COI). Obvious signs of co-amplification of NUMTs were indicated by their uneven distribution. NUMTs were observed in all individuals of 12 populations of Wiebesia sp. 3, and 13 individuals of three northern populations of Wiebesia sp. 1. Sequencing clones of potential co-amplification products confirmed that they were NUMTs. These NUMTs either clustered as NUMT clades basal to mtDNA Cytb clades (basal NUMTs), or together with Cytb haplotypes. Basal NUMTs had either stop codons or frame-shifting mutations resulting from deletion of a 106 bp fragment. In addition, no third codon or synonymous substitutions were detected within each NUMT clade. The phylogenetic tree indicated that basal NUMTs had been inserted into nuclei before divergence of the three species. No significant pairwise differences were detected in their ratios of third codon substitutions, suggesting that these NUMTs originated from one transfer event, with duplication in the nuclear genome resulting in the coexistence of the 381 bp copy. No significant substitution differences were detected between Cytb haplotypes and NUMTs that clustered with Cytb haplotypes. However, these NUMTs coexisted with Cytb haplotypes in multiple populations, suggesting that these NUMT haplotypes were recently inserted into the nuclear genome. Both basal and recently inserted NUMTs were rare

  3. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  4. Leber Hereditary Optic Neuropathy: Do Folate Pathway Gene Alterations Influence the Expression of Mitochondrial DNA Mutation?

    Directory of Open Access Journals (Sweden)

    A Aleyasin

    2010-09-01

    Full Text Available "nBackground: Leber hereditary optic neuropathy (LHON is an inherited form of bilateral optic atrophy leading to the loss of central vision.  The primary cause of vision loss is mutation in the mitochondrial DNA (mtDNA, however, unknown secon­dary genetic and/or epigenetic risk factors are suggested to influence its neuropathology.  In this study folate gene polymor­phisms were examined as a possible LHON secondary genetic risk factor in Iranian patients."nMethods: Common polymorphisms in the MTHFR (C677T and A1298C and MTRR (A66G genes were tested in 21 LHON patients and 150 normal controls."nResults:  Strong associations were observed between the LHON syndrome and C677T (P= 0.00 and A66G (P= 0.00 polymor­phisms.  However, no significant association was found between A1298C (P =0.69 and the LHON syndrome."nConclusion: This is the first study that shows MTHFR C677T and MTRR A66G polymorphisms play a role in the etiology of the LHON syndrome.  This finding may help in the better understanding of mechanisms involved in neural degeneration and vision loss by LHON and hence the better treatment of patients.

  5. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    Science.gov (United States)

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation. PMID:26745549

  6. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans.

    Directory of Open Access Journals (Sweden)

    Dorit Samocha-Bonet

    Full Text Available BACKGROUND: Mitochondrial dysfunction and increased oxidative stress are associated with obesity and type 2 diabetes. High fat feeding induces insulin resistance and increases skeletal muscle oxidative stress in rodents, but there is controversy as to whether skeletal muscle mitochondrial biogenesis and function is altered. METHODOLOGY AND PRINCIPAL FINDINGS: Forty (37 ± 2 y non-obese (25.6 ± 0.6 kg/m(2 sedentary men (n = 20 and women (n = 20 were overfed (+1040 ± 100 kcal/day, 46 ± 1% of energy from fat for 28 days. Hyperinsulinemic-euglycemic clamps were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28 of overfeeding in a sub cohort of 26 individuals (13 men and 13 women that consented to having all 3 biopsies performed. Weight increased on average in the whole cohort by 0.6 ± 0.1 and 2.7 ± 0.3 kg at days 3 and 28, respectively (P<0.0001, without a significant difference in the response between men and women (P = 0.4. Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8 ± 2.8 at baseline to 50.3 ± 2.5 µmol/min/kg FFM at day 28 of overfeeding (P = 0.03 without a significant difference between men and women (P = 0.4. Skeletal muscle protein carbonyls and urinary F2-isoprostanes increased with overfeeding (P<0.05. Protein levels of muscle peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α and subunits from complex I, II and V of the electron transport chain were increased at day 3 (all P<0.05 and returned to basal levels at day 28. No changes were detected in muscle citrate synthase activity or ex vivo CO(2 production at either time point. CONCLUSIONS: Peripheral insulin resistance was induced by overfeeding, without reducing any of the markers of mitochondrial content that were examined. Oxidative stress was however increased, and may have contributed to the reduction in insulin sensitivity observed.

  7. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  8. Alteration in expression of the rat mitochondrial ATPase 6 gene during Pneumocystis carinii infection

    Directory of Open Access Journals (Sweden)

    Bartlett Marilyn S

    2001-06-01

    Full Text Available Abstract Background Pneumocystis carinii causes pneumonia in immunocompromised patients with a high morbidity and mortality rate, but the interaction between this organism and the host cell is not well understood. The purpose of this research was to study the response of host cells to P. carinii infection on a molecular level. Results The technique of mRNA differential display was used to detect genes whose expression may be affected by P. carinii infection. The nucleotide sequence of one differentially displayed DNA fragment was found to be identical to that of the rat mitochondrial ATPase 6 gene, which is a subunit of the F0F1-ATP synthase complex. A four-fold increase in expression of this gene was verified by Northern blot analysis of total RNA extracted from P. carinii-infected rat lung versus that from mock-infected rat lung. Localization of the cells containing ATPase 6 mRNA was accomplished by in situ hybridization. In sections of non-infected rat lung, these cells were found lining the distal parts of the respiratory tree and in apical areas of the alveoli. Histological location of these cells suggested that they were Clara cells and type II pneumocytes. This hypothesis was confirmed by co-localizing the mRNAs for ATPase 6 and surfactant protein B (SP-B to the same cells by two-color fluorescent in situ hybridization. Conclusions The ATPase 6 gene is over expressed during P. carinii infection, and type II pneumocytes and Clara cells are the cell types responsible for this over-expression.

  9. Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines

    Directory of Open Access Journals (Sweden)

    Atossa Shaltouki

    2015-05-01

    Full Text Available In this study, we used patient-specific and isogenic PARK2-induced pluripotent stem cells (iPSCs to show that mutations in PARK2 alter neuronal proliferation. The percentage of TH+ neurons was decreased in Parkinson’s disease (PD patient-derived neurons carrying various mutations in PARK2 compared with an age-matched control subject. This reduction was accompanied by alterations in mitochondrial:cell volume fraction (mitochondrial volume fraction. The same phenotype was confirmed in isogenic PARK2 null lines. The mitochondrial phenotype was also seen in non-midbrain neurons differentiated from the PARK2 null line, as was the functional phenotype of reduced proliferation in culture. Whole genome expression profiling at various stages of differentiation confirmed the mitochondrial phenotype and identified pathways altered by PARK2 dysfunction that include PD-related genes. Our results are consistent with current model of PARK2 function where damaged mitochondria are targeted for degradation via a PARK2/PINK1-mediated mechanism.

  10. [Distribution of foreign mitochondrial DNA during the first splittings of the transmitochondrial mouse embryos].

    Science.gov (United States)

    Kustova, M E; Sokolova, V A; Bass, M G; Zakharova, F M; Sorokin, A V; Vasil'ev, V B

    2008-01-01

    Distribution of human mitochondrial DNA (mtDNA) among separate murine blastomeres was analyzed during the splitting of embryos in which the suspension of human mitochondria had been injected at the one- or two-cell stage. Human mtDNA was detected by PCR with species specific primers. The total amount of the two- and four-cell murine embryos analyzed in the study was 339. In all embryos examined the copies of human mitochondrial genome were revealed along with murine mtDNA, which indicated the phenomenon of an artificially modeled heteroplasmy. The foreign mtDNA was not ubiquitous among the blastomeres of transmitochondrial embryos. Mathematical analysis of the results showed that in the period between the injection of human mitochondria and the subsequent splitting no equal distribution of the human mtDNA occurred in the cytoplasm. These results also point at the presence of more than 2-3 segregation units of mtDNA in the entire pool of mitochondria (about 5 x 10(2)) introduced into an embryo by microinjection.

  11. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  12. Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Sara Freitas

    2016-08-01

    Full Text Available Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50 concentration of hierridin B (100.2 μM for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function.

  13. Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells

    Science.gov (United States)

    Freitas, Sara; Martins, Rosário; Costa, Margarida; Leão, Pedro N.; Vitorino, Rui; Vasconcelos, Vitor; Urbatzka, Ralph

    2016-01-01

    Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50 concentration of hierridin B (100.2 μM) for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA) provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function. PMID:27589771

  14. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons

    Directory of Open Access Journals (Sweden)

    Robert eNiescier

    2013-09-01

    Full Text Available Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca2+ plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  15. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons.

    Science.gov (United States)

    Niescier, Robert F; Chang, Karen T; Min, Kyung-Tai

    2013-09-10

    Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca(2) (+) plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  16. Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function

    Directory of Open Access Journals (Sweden)

    Carola Stockburger

    2016-01-01

    Full Text Available The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer’s disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function.

  17. Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal

    NARCIS (Netherlands)

    Luttikhuizen, PC; Drent, J; Baker, AJ

    2003-01-01

    Mitochondrial DNA sequence data for 295 individuals of the marine bivalve Macoma balthica (L.) were collected from 10 sites across the European distribution, and from Alaska. The data were used to infer population subdivision history and estimate current levels of gene flow. Inferred historical biog

  18. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    International Nuclear Information System (INIS)

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive

  19. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Simon, Felipe; Riedel, Claudia [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile); Ferrick, David [Seahorse Bioscience, Billerica, MA (United States); Elorza, Alvaro A., E-mail: aelorza@unab.cl [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile)

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  20. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress.

    Science.gov (United States)

    Baret, Pascal; Septembre-Malaterre, Axelle; Rigoulet, Michel; Lefebvre d'Hellencourt, Christian; Priault, Muriel; Gonthier, Marie-Paule; Devin, Anne

    2013-01-01

    Numerous studies indicate that an increase in reactive oxygen species (ROS) significantly affects white adipose tissue biology and leads to an inflammatory profile and insulin resistance, which could contribute to obesity-associated diabetes and cardiovascular diseases. Mitochondria play a key role in adipose tissue energy metabolism and constitute the main source of cellular ROS such as H(2)O(2). Polyphenols constitute the most abundant antioxidants provided by the human diet. Indeed, they are widely distributed in fruits, vegetables and some plant-derived beverages such as coffee and tea. Thus, the biological effects of dietary polyphenols that may increase the antioxidant capacity of the body against obesity-induced oxidative stress are of high interest. Here, we studied the capacity of polyphenols to modulate the impact of oxidative stress on the mitochondria of preadipocytes, which are important cells governing the adipose tissue development for energy homeostasis. Whereas H(2)O(2) treatment induces a proliferation arrest associated with an increase in mitochondrial content in 3T3-L1 preadipocytes, preconditioning with some major dietary polyphenols totally or partially protects the cells against oxidative stress consequences. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

  1. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi.

    Science.gov (United States)

    Britta, Elizandra Aparecida; Scariot, Débora Botura; Falzirolli, Hugo; da Silva, Cleuza Conceição; Ueda-Nakamura, Tânia; Dias Filho, Benedito Prado; Borsali, Redouane; Nakamura, Celso Vataru

    2015-06-01

    Trypanosoma cruzi is the causative agent of Chagas' disease, a parasitic disease that remains a serious health concern with unsatisfactory treatment. Drugs that are currently used to treat Chagas' disease are partially effective in the acute phase but ineffective in the chronic phase of the disease. The aim of the present study was to evaluate the antitrypanosomal activity and morphological, ultrastructural and biochemical alterations induced by a new molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-(-)-limonene against epimastigote, trypomastigote and intracellular amastigote forms of T. cruzi. BZTS inhibited the growth of epimastigotes (IC50 = 9·2 μ m), intracellular amastigotes (IC50 = 3·23 μ m) and inhibited the viability of trypomastigotes (EC50 = 1·43 μ m). BZTS had a CC50 of 37·45 μ m in LLCMK2 cells. BZTS induced rounding and distortion of the cell body and severely damaged parasite mitochondria, reflected by extensive swelling and disorganization in the inner mitochondrial membrane and the presence of concentric membrane structures inside the organelle. Cytoplasmic vacuolization, endoplasmic reticulum that surrounded organelles, the loss of mitochondrial membrane potential, and increased mitochondrial O2 •- production were also observed. Our results suggest that BZTS alters the ultrastructure and physiology of mitochondria, which could be closely related to parasite death. PMID:25711881

  2. Leukocyte Mitochondrial DNA Alteration in Systemic Lupus Erythematosus and Its Relevance to the Susceptibility to Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Yau-Huei Wei

    2012-07-01

    Full Text Available The role of mitochondrial DNA (mtDNA alterations in the pathophysiology of systemic lupus erythematosus (SLE remains unclear. We investigated sequence variations in the D310 region and copy number change of mtDNA in 85 SLE patients and 45 normal subjects. Leukocyte DNA and RNA were extracted from leukocytes of the peripheral venous blood. The D310 sequence variations and copy number of mtDNA, and mRNA expression levels of mtDNA-encoded genes in leukocytes were determined by quantitative real-time polymerase chain reaction (Q-PCR and PCR-based direct sequencing, respectively. We found that leukocyte mtDNA in SLE patients exhibited higher frequency of D310 heteroplasmy (69.4% vs. 48.9%, p = 0.022 and more D310 variants (2.2 vs. 1.7, p = 0.014 than those found in controls. Among normal controls and patients with low, medium or high SLE disease activity index (SLEDAI, an ever-increasing frequency of D310 heteroplasmy was observed (p = 0.021. Leukocyte mtDNA copy number tended to be low in patients of high SLEDAI group (p = 0.068, especially in those harboring mtDNA with D310 heteroplasmy (p = 0.020. Moreover, the mtDNA copy number was positively correlated with the mRNA level of mtDNA-encoded ND1 (NADH dehydrogenase subunit 1 (p = 0.041 and ATPase 6 (ATP synthase subunit 6 (p = 0.030 genes. Patients with more D310 variants were more susceptible to lupus nephritis (p = 0.035. Taken together, our findings suggest that decrease in the mtDNA copy number and increase in D310 heteroplasmy of mtDNA are related to the development and progression of SLE, and that the patients harboring more D310 variants of mtDNA are more susceptible to lupus nephritis.

  3. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Émilie Pepin

    Full Text Available Diet induced obese (DIO mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR and high responders (HDR. This allows the study of β-cell failure and the transitions to prediabetes (LDR and early diabetes (HDR. C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed, but were prominent between HDR and ND islets (1508 differentially expressed. In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR is largely independent of transcriptional adaptive changes, whereas the

  4. Mitochondrial cytopathies.

    Science.gov (United States)

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  5. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. Methods: C57BL/6 and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. Results: The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE−/− mice. In ApoE−/−, no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. Conclusion: This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle

  6. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D;

    2011-01-01

    mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle.......Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout...

  7. Exercise‐induced alterations in pancreatic oxidative stress and mitochondrial function in type 2 diabetic Goto‐Kakizaki rats

    OpenAIRE

    Raza, Haider; John, Annie; Shafarin, Jasmin; Howarth, Frank C.

    2016-01-01

    Abstract Progressive metabolic complications accompanied by oxidative stress are the hallmarks of type 2 diabetes. The precise molecular mechanisms of the disease complications, however, remain elusive. Exercise‐induced nontherapeutic management of type 2 diabetes is the first line of choice to control hyperglycemia and diabetes associated complications. In this study, using 11‐month‐old type 2 Goto‐Kakizaki (GK) rats, we have investigated the effects of exercise on mitochondrial metabolic an...

  8. Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737

    OpenAIRE

    Kutuk, Ozgur; Letai, Anthony

    2008-01-01

    Paclitaxel is a microtubule-targeting antineoplastic drug widely used in human cancers. Even when tumors are initially responsive, progression of disease despite continued taxane therapy is all too common in the treatment of many of the most common epithelial cancers, including breast cancer. However, the mechanisms underlying paclitaxel resistance in cancer cells are not completely understood. Our hypothesis is that changes in the intrinsic (or mitochondrial) cell death pathway controlled by...

  9. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia.

    Science.gov (United States)

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  10. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function.

    Directory of Open Access Journals (Sweden)

    Lauren G MacNeil

    Full Text Available Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ♂, 8 ♀ to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES or following (RES>END resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1α, PRC, PPARγ, hypertrophy (PGC-1α4, REDD2, Rheb and atrophy (MuRF-1, Runx1, increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO 2peak. However, the order in which exercise was completed (END>RES or RES>END only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed.

  11. Rag1 aphid resistant soybeans alter the movement and distribution of soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Whalen, Rebecca; Harmon, Jason P

    2012-12-01

    Herbivorous insects often move and distribute according to the quality of the plant they are on, and this behavior could influence interactions with plants bred for herbivore resistance. However, when an insect is normally considered sedentary, less is known about the potential importance of movement. We performed experiments to determine if a resistant soybean variety alters the movement and distribution, both within and between plants, of the soybean aphid Aphis glycines Matsumura. We did this by counting apterous aphids on leaves of resistant and susceptible soybean plants across several days. In individual plant tests aphid distribution was different between susceptible and resistant soybeans. Most notably aphids on resistant plants were quickly found off the original leaf on which they were placed and were ultimately distributed throughout the resistant soybean. Aphids on susceptible plants, however, tended to stay on their initial leaf of placement. Follow up experiments indicated this was primarily because of the movement of individuals and not differential demography on various plant parts. In experiments where aphids were able to walk to an adjacent plant there appeared to be a net movement of aphids off resistant plants and on to susceptible plants. Aphid populations on susceptible plants were higher when the plant was adjacent to a resistant plant than when adjacent to another susceptible plant. The effect of resistant plants on aphid movement and distribution could lead to unintended side-effects such as greater spread of plant viruses or altered effectiveness of biological control agents.

  12. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  13. Dynamics of Mitochondrial Transport in Axons.

    Science.gov (United States)

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  14. Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease.

    Science.gov (United States)

    Kingma, Sandra D K; Wagemans, Tom; IJlst, Lodewijk; Bronckers, Antonius L J J; van Kuppevelt, Toin H; Everts, Vincent; Wijburg, Frits A; van Vlies, Naomi

    2016-07-01

    The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect on these symptoms. By elucidating pathophysiological mechanisms underlying bone disease, new therapeutic targets may be identified. Longitudinal growth is regulated by interaction between GAGs and growth factors. Because GAGs accumulate in the MPSs, we hypothesized that altered interaction between growth factors and GAGs contribute to the pathogenesis of MPS bone disease. In this study, binding between GAGs from MPS I chondrocytes and fibroblast growth factor 2 (FGF2) was not significantly different from binding of FGF2 to GAGs from control chondrocytes. FGF2 signaling, however, was increased in MPS I chondrocytes after incubation with FGF2, as compared to control chondrocytes. Using bone cultures, we demonstrated decreased growth of WT mouse bones after incubation with FGF2, but no effect on MPS I bone growth. However, MPS I bones showed decreased growth in the presence of GAGs from MPS I chondrocytes. Finally, we demonstrate altered GAG distribution in MPS I chondrocytes, and altered GAG, FGF2 and Indian hedgehog distribution in growth plates from MPS I mice. In summary, our results suggest that altered interaction and distribution of growth factors and accumulated GAGs may contribute to the pathogenesis of MPS bone disease. In the future, targeting growth factor regulation or the interaction between in growth factors and GAGs might be a promising therapeutic strategy for MPS bone disease. PMID:27105565

  15. Mitochondrial DNA mutations provoke dominant inhibition of mitochondrial inner membrane fusion.

    Directory of Open Access Journals (Sweden)

    Cécile Sauvanet

    Full Text Available Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA. We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP or to maternally inherited Leigh Syndrome (MILS in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from

  16. Desmodium gangeticum (Linn.) DC. exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations.

    Science.gov (United States)

    Sankar, Vandana; Pangayarselvi, Balasubramaniam; Prathapan, Ayyappan; Raghu, Kozhiparambil Gopalan

    2013-01-01

    Cardiac hypertrophy occurs in response to increased workload, such as hypertension or valvular heart disease. Oxidative stress has been implicated in cardiac hypertrophy and in its transition to heart failure. This study was taken up with the objective to evaluate the role of oxidative stress in cardiomyoblast hypertrophy and its modulation by Desmodium gangeticum (DG) that has been traditionally used in Ayurveda, an Indian system of medicine. The methanolic root extract was analyzed for total phenolic content and tested for antioxidant potential. Hypertrophy was induced by exposing H9c2 cell line to β-adrenergic receptor agonist, isoproterenol (ISO), for 96 hours. Analyses of reactive oxygen species (ROS) generation, mitochondrial transmembrane potential ([INCREMENT]Ψm), and integrity of permeability transition were performed in ISO as well as Desmodium and ISO-cotreated cells. The results demonstrated potent free radical scavenging activity of DG. Cell line studies showed significant increase in ROS generation, dissipation of [INCREMENT]Ψm, and permeability transition pore opening in ISO-treated cells. Desmodium was found to attenuate ISO-induced hypertrophy by reduction of ROS generation, restoration of [INCREMENT]Ψm, and prevention of permeability transition pore opening. This study is the first documentation of the modulatory effect of DG on cardiac hypertrophy. PMID:23052030

  17. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Science.gov (United States)

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  18. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Directory of Open Access Journals (Sweden)

    M. E. Gettings

    2005-01-01

    Full Text Available Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same

  19. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2012-11-01

    Full Text Available The Zucker diabetic fatty (ZDF rat is a genetic model in which the homozygous (FA/FA male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old rat heart compared to age matched Zucker lean (ZL controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats. An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention.

  20. Altered mitochondrial DNA copy number contributes to human cancer risk: evidence from an updated meta-analysis

    Science.gov (United States)

    Hu, Liwen; Yao, Xinyue; Shen, Yi

    2016-01-01

    Accumulating epidemiological evidence indicates that the quantitative changes in human mitochondrial DNA (mtDNA) copy number could affect the genetic susceptibility of malignancies in a tumor-specific manner, but the results are still elusive. To provide a more precise estimation on the association between mtDNA copy number and risk of diverse malignancies, a meta-analysis was conducted by calculating the pooled odds ratios (OR) and the 95% confidence intervals (95% CI). A total of 36 case-control studies involving 11,847 cases and 15,438 controls were finally included in the meta-analysis. Overall analysis of all studies suggested no significant association between mtDNA content and cancer risk (OR = 1.044, 95% CI = 0.866–1.260, P = 0.651). Subgroup analyses by cancer types showed an obvious positive association between mtDNA content and lymphoma and breast cancer (OR = 1.645, 95% CI = 1.117–2.421, P = 0.012; OR = 1.721, 95% CI = 1.130–2.622, P = 0.011, respectively), and a negative association for hepatic carcinoma. Stratified analyses by other confounding factors also found increased cancer risk in people with drinking addiction. Further analysis using studies of quartiles found that populations with the highest mtDNA content may be under more obvious risk of melanoma and that Western populations were more susceptible than Asians. PMID:27775013

  1. Altered distribution of mitochondria in rat soleus muscle fibers after spaceflight

    Science.gov (United States)

    Bell, Gordon J.; Martin, Thomas P.; Il'ina-Kakueva, E. I.; Oganov, V. S.; Edgerton, V. R.

    1992-01-01

    The effect of an exposure to microgravity on the distribution of the succinate dehydrogenase (SDH) activity throughout the soleus muscle fibers was investigated by measuring SDH activity throughout the cross section of 20-30 fibers each of the slow-twitch oxidative and fast-twitch oxidative-glycolytic types of fibers in rats exposed to 12.5 days in space aboard Cosmos 1887. It was found that, after the spaceflight, the entire regional distribution of SDH activity was significantly altered (as compared to ground controls) in the slow-twitch oxidative fibers, whereas the fast-twitch oxidative-glycolytic fibers from muscles of flown rats exhibited a significantly lower SDH activity only in their subsarcolemmal region.

  2. Polymorphic distribution of Y-chromosome haplotype and mitochondrial DNA in the Bouyei people in China

    Institute of Scientific and Technical Information of China (English)

    李永念; 左丽; 文波; 柯越海; 黄薇; 金力

    2004-01-01

    @@ In the evolution of humans, many kinds of mutations in the human genome have been accumulated, providing credible genetic evidence for the study of human origins and migrations. The "out-of-Africa" hypothesis of modern human evolution and the genetic origin of the Japanese has come about by studying mitochondrial DNA.l,2 Recently, researchers have recognized the power of Y-chromosome markers in resolving migratory patterns of modern humans as more and more Y-chromosome single nucleotide polymorphism markers have been found. The markers on the nonrecombinant part of the Y-chromosome allows for the reconstruction of intact haplotypes which are probably the best genetic tools to study human migrations. We can analyze the paternal history of some people in different areas by Y-chromosome haplotypes.

  3. 猪卵母细胞线粒体分布及线粒体DNA拷贝数变化%Mitochondrial Distribution and Mitochondrial DNA Copy Number in Porcine Oocvte at Different Periods during in vitro Maturation

    Institute of Scientific and Technical Information of China (English)

    成文敏; 霍金龙; 信吉阁; 潘伟荣; 黄言; 魏红江; 曾养志

    2011-01-01

    To observe mitochondrial distribution and mitochondrial DNA copy number changes in porcine oocytes at different periods during in vitro maturation. Mito-Tracker Green and real-time Quantitative PCR were used to respectively detect the mitochondrial distribution and mitochondrial DNA copy number in porcine oocytes. The results showed that the mitochondrial distribution was gradually translocated from the cortex to the perinuclear area of oocytes, and then spread in the cytoplasm thoroughly, and mitochondrial clusters became larger, stain became deeper. Mitochondrial DNA copy number of 0, 11, 22 h were (2519. 52±940. 39), (3421. 47±345. 71) ,(9747. 58±1928. 24), respectively, and there was no significant difference (P>0. 05) among them. Mitochondrial DNA copy number of 33 h was (39913. 61±1180. 26), which was significantly higher than those of 0,11,22 h (P<0. 05). Mitochondrial DNA copy number of 44 h was (130074. 30±78119. 45), which was significantly higher than that of 33 h (P<0. 05). In conclusion, as the oocyte maturation process forward, mitochondrial activity enhanced and mitochondrial DNA copy number increased.%本研究旨在观察猪卵母细胞线粒体分布及线粒体DNA拷贝数变化,以期作为判定哺乳动物卵母细胞胞质成熟的指标,同时也为今后克隆技术的发展和相关基因表达调控的研究提供基础.运用线粒体分子探针标记技术检测体外成熟不同时期卵母细胞中线粒体的分布变化,运用实时荧光定量PCR技术检测其线粒体DNA拷贝数的变化趋势,揭示线粒体分布、线粒体DNA拷贝数变化与卵母细胞发育潜能的关系.结果表明,猪卵母细胞成熟前后,线粒体分布由未成熟的周边分布变为成熟后的均匀分布,并且线粒体簇变大,着色变深.卵母细胞成熟0、11、22 h的mtDNA拷贝数分别为(2 519.52士940.39)、(3 421.47士345.71)和(9 747.58士1 928.24),他们之间无显著性差异(P>0.05).卵母细胞成熟33 h

  4. Tracing glacial refugia fo triturus newts based on mitochondrial DNA phylogeography and species distribution modeling

    NARCIS (Netherlands)

    Wielstra, Ben; Crnobrnja-Isailovic, Jelka; Litvinchuk, Spartak N.; Reijnen, Bastian T.; Skidmore, Andrew K.; Sotiropoulos, Konstantinos; Toxopeus, Albertus G.; Tzankov, Nikolay; Vukov, Tanja; Arntzen, Jan W.

    2013-01-01

    Introduction The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We te

  5. Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling

    NARCIS (Netherlands)

    Wielstra, B.M.; Crnobrnja-Isailovic, J.; Litvinchuk, S.N.; Reijnen, B.T.; Skidmore, A.K.; Sotiropoulos, K.; Toxopeus, A.G.; Tzankov, N.; Vukov, T.; Arntzen, J.W.

    2013-01-01

    Introduction The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We te

  6. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    Science.gov (United States)

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  7. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I.

    Science.gov (United States)

    Tapia, E; Sánchez-Lozada, L G; García-Niño, W R; García, E; Cerecedo, A; García-Arroyo, F E; Osorio, H; Arellano, A; Cristóbal-García, M; Loredo, M L; Molina-Jijón, E; Hernández-Damián, J; Negrette-Guzmán, M; Zazueta, C; Huerta-Yepez, S; Reyes, J L; Madero, M; Pedraza-Chaverrí, J

    2014-11-01

    The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

  8. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  9. Mitochondrial genome sequencing in Mesolithic North East Europe Unearths a new sub-clade within the broadly distributed human haplogroup C1.

    Directory of Open Access Journals (Sweden)

    Clio Der Sarkissian

    Full Text Available The human mitochondrial haplogroup C1 has a broad global distribution but is extremely rare in Europe today. Recent ancient DNA evidence has demonstrated its presence in European Mesolithic individuals. Three individuals from the 7,500 year old Mesolithic site of Yuzhnyy Oleni Ostrov, Western Russia, could be assigned to haplogroup C1 based on mitochondrial hypervariable region I sequences. However, hypervariable region I data alone could not provide enough resolution to establish the phylogenetic relationship of these Mesolithic haplotypes with haplogroup C1 mitochondrial DNA sequences found today in populations of Europe, Asia and the Americas. In order to obtain high-resolution data and shed light on the origin of this European Mesolithic C1 haplotype, we target-enriched and sequenced the complete mitochondrial genome of one Yuzhnyy Oleni Ostrov C1 individual. The updated phylogeny of C1 haplogroups indicated that the Yuzhnyy Oleni Ostrov haplotype represents a new distinct clade, provisionally coined "C1f". We show that all three C1 carriers of Yuzhnyy Oleni Ostrov belong to this clade. No haplotype closely related to the C1f sequence could be found in the large current database of ancient and present-day mitochondrial genomes. Hence, we have discovered past human mitochondrial diversity that has not been observed in modern-day populations so far. The lack of positive matches in modern populations may be explained by under-sampling of rare modern C1 carriers or by demographic processes, population extinction or replacement, that may have impacted on populations of Northeast Europe since prehistoric times.

  10. TNF-alpha-induced mitochondrial alterations in human T cells requires FADD and caspase-8 activation but not RIP and caspase-3 activation.

    Science.gov (United States)

    Shakibaei, Mehdi; Sung, Bokyung; Sethi, Gautam; Aggarwal, Bharat B

    2010-09-15

    Although much is known about how TNF-alpha induces apoptosis in the presence of inhibitors of protein synthesis, little is known about how it induces apoptosis without these inhibitors. In this report we investigated temporal sequence of events induced by TNF-alpha in the absence of protein synthesis. Regardless of whether we measured the effects by plasma membrane phosphotidylserine accumulation, by DNA strand breaks, or activation of caspases, significant changes were observed only between 12-24 h of TNF-alpha treatment. One of the earliest changes observed after TNF-alpha treatment was mitochondrial swelling at 10 min; followed by cytochrome c and Smac release at 10-30 min, and then heterochromatin clumping occurred at 60 min. While genetic deletion of receptor-interaction protein (RIP) had no effect on TNF-alpha-induced mitochondrial damage, deletion of Fas-associated death domain (FADD) abolished the TNF-induced mitochondrial swelling. Since pan-caspase inhibitor z-VAD-fmk abolished the TNF-alpha-induced mitochondrial changes, z-DEVD-fmk, an inhibitor of caspase-3 had no effect, suggesting that TNF-alpha-induced mitochondrial changes or cytochrome c and Smac release requires caspase-8 but not caspase-3 activation. Overall, our results indicated that mitochondrial changes are early events in TNF-alpha-induced apoptosis and that these mitochondrial changes require recruitment of FADD and caspase-8 activation, but not caspase-3 activation or RIP recruitment. PMID:20136500

  11. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

    Science.gov (United States)

    Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely; Nandakumar, Renu; Huang, Yuting; Madayiputhiya, Nandakumar; Stanton, Robert C; Dodds, Eric D; Powers, Robert; Franco, Rodrigo

    2014-09-19

    Parkinson's disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in

  12. A revised molecular phylogeny of the globally distributed hawkmoth genus Hyles (Lepidoptera: Sphingidae), based on mitochondrial and nuclear DNA sequences.

    Science.gov (United States)

    Hundsdoerfer, Anna K; Rubinoff, Daniel; Attié, Marc; Wink, Michael; Kitching, Ian J

    2009-09-01

    The hawkmoth genus Hyles comprises some 29 species with a global distribution. In this study, we augment the previous taxon sampling with more species and add sequences from a nuclear gene to produce a refined phylogenetic hypothesis. A total evidence reconstruction based on Bayesian analysis of the combined mitochondrial (COI, t-RNA-Leu, COII; 2284 bp) and nuclear (EF1alpha; 773 bp) sequences is discussed and compared with the results from separate analyses of the two genes. The total evidence phylogeny corroborates many of the phylogenetic relationships previously postulated within the genus. In addition, the hitherto unsampled enigmatic species Hyles biguttata from Madagascar appears as sister group to Hyles livornicoides from Australia, although support for the relationship is relatively weak. The high level of differentiation of Hyles perkinsi from H. calida (both Hawaii), and the status of these two as sister species, is corroborated by both sources of sequence data. However, their phylogenetic position when mt DNA sequences alone are considered differs markedly from that under total evidence. The previously postulated relationships within the Hyles euphorbiae complex (HEC) s.s. are largely corroborated, but H. dahlii is now more closely related and the HEC s.l. is redefined to include H. zygophylli and H. stroehlei (two species that had not been studied previously using molecular data) and to exclude H. siehei and H. hippophaes. The nuclear sequences alone are insufficiently variable to fully resolve all lineages and the phylogeny suggests that nuclear gene swapping and incomplete lineage sorting have occurred implying recent divergence. The results from the total evidence analysis provide a phylogenetic hypothesis that both corroborates and complements the previous biogeographic scenario, and provides new insights into the origins of several of the included taxa. PMID:19482093

  13. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Esteban R Fernández

    Full Text Available Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  14. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Science.gov (United States)

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  15. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  16. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    Science.gov (United States)

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals

  17. Species-specific fine root biomass distribution alters competition in mixed forests under climate change

    Science.gov (United States)

    Reyer, Christopher; Gutsch, Martin; Lasch, Petra; Suckow, Felicitas; Sterck, Frank; Mohren, Frits

    2010-05-01

    The importance of mixed forests in European silviculture has increased due to forest conversion policies and multifunctional forest management. Concurrently, evidences for substantial impacts of climate change on forest ecosystems accumulate. Projected drier and warmer conditions alter the water relations of tree species, their growth and ultimately their inter-specific competition in mixed stands. Process-based models are scientific tools to study the impact of climate change on and to deepen the understanding of the functioning of these systems based on ecological mechanisms. They allow for long-term, stand-level studies of forest dynamics which could only be addressed with great difficulty in an experimental or empirical setup. We used the process-based forest model 4C to simulate inter-specific competition in mixed stands of Douglas-fir (Pseudotsuga menziesii) and Common beech (Fagus sylvatica) as well as Scots pine (Pinus sylvestris) and Sessile / Pedunculate oak (Quercus petraea and Quercus robur) under a) historical climate for model verification and b) under climate change scenario realizations of the climate model STAR 2.0 in Brandenburg, Germany. Some of the climate change scenario realizations feature a substantially drier and warmer summer climate which decreases the climatic water balance during the growing season. We assumed species-specific fine root biomass distributions which feature broadleaved fine roots in deeper soil layers and coniferous fine roots in upper soil layers according to several root excavation studies from mixed stands. The stands themselves were constructed from yield tables of the contributing species. The model verification provided good results for the basal area predictions under the historical climate. Under climate change, the number of days when the tree water demand exceeded the soil water supply was higher for the coniferous species than for broadleaved species. Furthermore, after 45 simulation years the basal area

  18. Impact of depositional facies on the distribution of diagenetic alterations in the Devonian shoreface sandstone reservoirs, Southern Ghadamis Basin, Libya

    Science.gov (United States)

    Khalifa, Muftah Ahmid; Morad, Sadoon

    2015-11-01

    The middle Devonian, shoreface quartz arenites (present-day burial depths 2833-2786 m) are important oil and gas reservoirs in the Ghadamis Basin, western Libya. This integrated petrographic and geochemical study aims to unravel the impact of depositional facies on distribution of diagenetic alterations and, consequently, related reservoir quality and heterogeneity of the sandstones. Eogenetic alterations include the formation of kaolinite, pseudomatrix, and pyrite. The mesogenetic alterations include cementation by quartz overgrowths, Fe-dolomite/ankerite, and illite, transformation of kaolinite to dickite, illitization of smectite, intergranular quartz dissolution, and stylolitization, and albitization of feldspar. The higher energy of deposition of the coarser-grained upper shoreface sandstones combined with less extensive chemical compaction and smaller amounts of quartz overgrowths account for their better primary reservoir quality compared to the finer-grained, middle-lower shoreface sandstones. The formation of kaolin in the upper and middle shoreface sandstones is attributed to a greater flux of meteoric water. More abundant quartz overgrowths in the middle and lower shoreface is attributed to a greater extent of stylolitization, which was promoted by more abundant illitic clays. This study demonstrated that linking the distribution of diagenetic alterations to depositional facies of shoreface sandstones leads to a better understanding of the impact of these alterations on the spatial and temporal variation in quality and heterogeneity of the reservoirs.

  19. The spatial distribution and chemical heterogeneity of clinoptilolite at Yucca Mountain, Nye County, Nevada: Evidence for polygenetic hypogene alteration

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, D.E.; Szymanski, J.S.

    1994-01-01

    This part of TRAC`s Annual Report for 1993 summarizes the finding of previous reports on the major element geochemistry of zeolitic alteration of the tuffs at Yucca Mountain and updates the status of work. In this report we examine the spatial distribution of zeolites by stratigraphic units and boreholes and the various types of chemical alteration of clinoptilolite indicated by the data reported in Broxton et al. and Bish and Chipera. The purpose is to evaluate the extent of the metasomatic alteration and to test the hypogene hypothesis of Szymanski. In this regard, it is of prime importance to evaluate whether the metasomatic alteration at Yucca Mountain is due to supergene or hypogene processes. In this report, the term {open_quotes}supergene{close_quotes} denotes alteration and mineralization produced by fluids derived directly from atmospheric precipitation and infiltration through the vadose zone, and the term {open_quotes}hypogene{close_quotes} denotes alteration and mineralization produced by fluids from the phreatic zone regardless of their former location or residence time in the Earth`s crust. This report begins with a review of previous work on the genesis of zeolites of the Nevada Test Site.

  20. Distribution of trace elements in altered pyroclastites from Monte Vulture volcano (southern Italy

    Directory of Open Access Journals (Sweden)

    Piccarreta, G.

    1995-08-01

    Full Text Available Three pyroclastic deposits from Monte Yulture volcanic area (Potenza, southern Italy looking like paleosols in the field were investigated in a previous study for mineralogy and major elements to estimate the stage of the weathering. Here is dealt with the behaviour of sorne trace elements (Ce, La, Ba, Ni, Cr, Y, Rb, Sr, Y, Zr and Nb in the same deposits to give a comprehensive geochemical picture. The distribution of the chemical elements within the whole rock and after its attack with Na-pyrosulfate (residue + solute has been considered. Ba and Sr, as well as their distribution, appear to be controlled by the residual crystals in each of the deposits; La, Ce, Y and Nb are more concentrated in the solute that once was represented by vitric component, allophane, and Fe-Si-Al gels, biotite, carbonates and analcite; Y, Cr, and Ni show similar trends in whole rock and in solute. In particular La, Ce, Y, Y, Cr and Ni in the lowermost unit increase with the depth, as well as the contents of gels and allophane. Probably this behaviour was superimposed by the fluctuation of the water tables, as documented by the occurrence of a carbonate level upon the unit lies. It is concluded that the earliest stage of weathering did not affect the trace element distribution and that interpretations about chemical changes in deeply altered pyroclastic rocks should be always the outcome of careful accurate analyses.En un trabajo previo se estudiaron tres depósitos piroclásticos, considerados como paleosuelos, del área volcánica del Monte Yulture (Potenza, Italia para deducir su grado de meteorización. En el presente trabajo se estudia el comportamiento de algunos elementos traza (Ce, La, Ba, Ni, Cr, Y, Rb, Sr, Y, Zr, Nb en esos depósitos para intentar obtener una imagen geoquímica más completa. Se ha estudiado la distribución de elementos traza en la roca total y después de un ataque con pirosulfato-Na (residuo + solución. Ba y Sr parecen estar controlados

  1. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    Science.gov (United States)

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  2. Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation.

    Science.gov (United States)

    Kowaltowski, A J; Castilho, R F; Grijalba, M T; Bechara, E J; Vercesi, A E

    1996-02-01

    Addition of high concentrations (>1 mm) of inorganic phosphate (Pi) or arsenate to Ca2+-loaded mitochondria was followed by increased rates of H2O2 production, membrane lipid peroxidation, and swelling. Mitochondrial swelling was only partially prevented either by butylhydroxytoluene, an inhibitor of lipid peroxidation, or cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. This swelling was totally prevented by the simultaneous presence of these compounds. At lower Pi concentrations (1 mm), mitochondrial swelling is reversible and prevented by cyclosporin A, but not by butylhydroxytoluene. In any case (low or high phosphate concentration) exogenous catalase prevented mitochondrial swelling, suggesting that reactive oxygen species (ROS) participate in these mechanisms. Altogether, the data suggest that, at low Pi concentrations, membrane permeabilization is reversible and mediated by opening of the mitochondrial permeability transition pore, whereas at high Pi concentrations, membrane permeabilization is irreversible because lipid peroxidation also takes place. Under these conditions, lipid peroxidation is strongly inhibited by sorbate, a putative quencher of triplet carbonyl species. This suggests that high Pi or arsenate concentrations stimulate propagation of the peroxidative reactions initiated by mitochondrial-generated ROS because these anions are able to catalyze Cn-aldehyde tautomerization producing enols, which can be oxidized by hemeproteins to yield the lower Cn - 1-aldehyde in the triplet state. This proposition was also supported by experiments using a model system consisting of phosphatidylcholine/dicethylphosphate liposomes and the triplet acetone-generating system isobutanal/horseradish peroxidase, where phosphate and Ca2+ cooperate to increase the yield of thiobarbituric acid-reactive substances. PMID:8621682

  3. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    Science.gov (United States)

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (Panimals (Panimals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  4. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects.

    Science.gov (United States)

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg(-1)) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  5. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Eugenia Trushina

    Full Text Available BACKGROUND: The identification of early mechanisms underlying Alzheimer's Disease (AD and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD mutations on mitochondrial function, dynamics, and brain energetics. METHODS AND FINDINGS: We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L and the double mutation of human amyloid precursor protein APP(Tg2576 and PS1(M146L contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. CONCLUSIONS: Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy

  6. Altered distribution of hippocampal interneurons in the murine Down Syndrome model Ts65Dn.

    Science.gov (United States)

    Hernández-González, Samuel; Ballestín, Raúl; López-Hidalgo, Rosa; Gilabert-Juan, Javier; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2015-01-01

    Down Syndrome, with an incidence of one in 800 live births, is the most common genetic alteration producing intellectual disability. We have used the Ts65Dn model, that mimics some of the alterations observed in Down Syndrome. This genetic alteration induces an imbalance between excitation and inhibition that has been suggested as responsible for the cognitive impairment present in this syndrome. The hippocampus has a crucial role in memory processing and is an important area to analyze this imbalance. In this report we have analysed, in the hippocampus of Ts65Dn mice, the expression of synaptic markers: synaptophysin, vesicular glutamate transporter-1 and isoform 67 of the glutamic acid decarboxylase; and of different subtypes of inhibitory neurons (Calbindin D-28k, parvalbumin, calretinin, NPY, CCK, VIP and somatostatin). We have observed alterations in the inhibitory neuropil in the hippocampus of Ts65Dn mice. There was an excess of inhibitory puncta and a reduction of the excitatory ones. In agreement with this observation, we have observed an increase in the number of inhibitory neurons in CA1 and CA3, mainly interneurons expressing calbindin, calretinin, NPY and VIP, whereas parvalbumin cell numbers were not affected. These alterations in the number of interneurons, but especially the alterations in the proportion of the different types, may influence the normal function of inhibitory circuits and underlie the cognitive deficits observed in DS.

  7. Study on Distribution and location of selenium and other elements in different mitochondrial compartments of human liver by neutron activation analysis

    International Nuclear Information System (INIS)

    Mitochondria are membrane-bound organelles and contain many kinds of enzymes and proteins. Mitochondria are the energy factories of the eukaryote cells, which play essential physiological roles in cells and principally produce the bulk of cellular ATP through oxidative metabolism. Mitochondria not only play crucial roles in the process of energy conversion but also take part in other functions, including maintaining ion homeostasis, metabolism and apoptosis. Therefore, it is considered as a key biomonitor of cell apoptosis, which is closely relevant to cell survival or death. As the main place of metabolism and detoxification, liver may contain relatively high levels of many trace elements. Subcellular distribution patterns of some elements in human liver have been analyzed in our previous work. However, the distribution of trace elements in mitochondrial ultrastructure has not been investigated yet. In present study, the distribution patterns of eleven elements in mitochondrial subfractions of normal human liver specimens were studied by applying the separating techniques of chemical treatment and differential centrifugation combined with element-specific detection of instrumental neutron activation analysis (INAA) and hydrid-generation atomic fluorescence spectrometry (HG-AFS). The quality assurance of INAA was checked by the analysis of the reference material of NIST bovine liver (1577a) and the Chinese reference materials of mussel (GBW 08571) and poplar leave (GBW 07604). Because selenium is possible to be lost via volatilization under such a long irradiation of 48 hrs, its content was determined with HG-AFS. We found that 3.3 % of the total mitochondrial protein were located in the outer membrane, 20.4 % in the intermembrane space, 63.8 % in the inner membrane and 12.5 % in the matrix of human liver mitochondria. The concentrations of Ca, Co and Zn were highest in the matrix and Ba, Cr, Fe, Sb, Sc, and Th in the outer membrane, whereas, the highest

  8. Mitochondrial transplantation for therapeutic use

    OpenAIRE

    McCully, James Donald; Levitsky, Sidney; del Nido, Pedro J.; Cowan, Douglas Burr

    2016-01-01

    Mitochondria play a key role in the homeostasis of the vast majority of the body’s cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium i...

  9. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); MacDougald, Michelle [Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John’s, NL, A1B 3V6 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada)

    2015-08-15

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  10. Mitochondrial DNA sequence variation and haplogroup distribution in Chinese patients with LHON and m.14484T>C.

    Directory of Open Access Journals (Sweden)

    Dandan Yu

    Full Text Available BACKGROUND: Leber hereditary optic neuropathy (LHON, MIM 535000 is one of the most common mitochondrial genetic disorders caused by three primary mtDNA mutations (m.3460G>A, m.11778G>A and m. 14484T>C. The clinical expression of LHON is affected by many additional factors, e.g. mtDNA background, nuclear genes, and environmental factors. Hitherto, there is no comprehensive study of Chinese LHON patients with m.14484T>C. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we analyzed the mtDNA sequence variations and haplogroup distribution pattern of the largest number of Chinese LHON patients with m.14484T>C to date. We first determined the complete mtDNA sequences in eleven LHON probands with m.14484T>C, to discern the potentially pathogenic mutations that co-segregate with m.14484T>C. We then dissected the matrilineal structure of 52 patients with m.14484T>C (including 14 from unrelated families and 38 sporadic cases and compared it with the reported Han Chinese from general populations. Complete mtDNA sequencing showed that the eleven matrilines belonged to nine haplogroups including Y2, C4a, M8a, M10a1a, G1a1, G2a1, G2b2, D5a2a1, and D5c. We did not identify putatively pathogenic mutation that was co-segregated with m.14484T>C in these lineages based on the evolutionary analysis. Compared with the reported Han Chinese from general populations, the LHON patients with m.14484T>C had significantly higher frequency of haplogroups C, G, M10, and Y, but a lower frequency of haplogroup F. Intriguingly, we also observed a lower prevalence of F lineages in LHON subjects with m.11778G>A in our previous study, suggesting that this haplogroup may enact similar role during the onset of LHON in the presence of m.14484T>C or m.11778G>A. CONCLUSIONS/SIGNIFICANCE: Our current study provided a comprehensive profile regarding the mtDNA variation and background of Chinese patients with LHON and m.14484T>C. Matrilineal background might affect the expression of LHON

  11. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    Science.gov (United States)

    Wolcott, J A; Zee, Y C; Osebold, J W

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity. PMID:6182839

  12. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers.

    Science.gov (United States)

    Aguiar, Paula Fernandes; Magalhães, Sílvia Mourão; Fonseca, Ivana Alice Teixeira; da Costa Santos, Vanessa Batista; de Matos, Mariana Aguiar; Peixoto, Marco Fabrício Dias; Nakamura, Fábio Yuzo; Crandall, Craig; Araújo, Hygor Nunes; Silveira, Leonardo Reis; Rocha-Vieira, Etel; de Castro Magalhães, Flávio; Amorim, Fabiano Trigueiro

    2016-09-01

    This study aims to evaluate the effect of regular post-exercise cold water immersion (CWI) on intramuscular markers of cellular stress response and signaling molecules related to mitochondria biogenesis and exercise performance after 4 weeks of high intensity interval training (HIIT). Seventeen healthy subjects were allocated into two groups: control (CON, n = 9) or CWI (n = 8). Each HIIT session consisted of 8-12 cycling exercise stimuli (90-110 % of peak power) for 60 s followed by 75 s of active recovery three times per week, for 4 weeks (12 HIIT sessions). After each HIIT session, the CWI had their lower limbs immersed in cold water (10 °C) for 15 min and the CON recovered at room temperature. Exercise performance was evaluated before and after HIIT by a 15-km cycling time trial. Vastus lateralis biopsies were obtained pre and 72 h post training. Samples were analyzed for heat shock protein 72 kDa (Hsp72), adenosine monophosphate-activated protein kinase (AMPK), and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) assessed by western blot. In addition, the mRNA expression of heat shock factor-1 (HSF-1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 and 2 (NRF1 and 2), mitochondrial transcription factor A (Tfam), calcium calmodulin-dependent protein kinase 2 (CaMK2) and enzymes citrate synthase (CS), carnitine palmitoyltransferase I (CPT1), and pyruvate dehydrogenase kinase (PDK4) were assessed by real-time PCR. Time to complete the 15-km cycling time trial was reduced with training (p  0.05). No differences were observed with training or condition for mRNA expression of PGC-1α (p = 0.31), CPT1 (p = 0.14), CS (p = 0.44), and NRF-2 (p = 0.82). However, HFS-1 (p = 0.007), PDK4 (p = 0.03), and Tfam (p = 0.03) mRNA were higher in CWI. NRF-1 decrease in both groups after training (p = 0.006). CaMK2 decreased with HIIT (p = 0.003) but

  13. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    OpenAIRE

    Nathan P Lemoine

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate chang...

  14. Population variability in Chironomus (Camptochironomus) species (Diptera, Nematocera) with a Holarctic distribution : evidence of mitochondrial gene flow

    NARCIS (Netherlands)

    Martin, J; Guryev, V; Blinov, A

    2002-01-01

    Phylogenetic analysis of DNA sequences from mitochondrial (mt) genes (Cytochrome b and Cytochrome oxidase I) and one nuclear gene (globin 2b) was used for the investigation of Nearctic and Palearctic populations representing four Chironomus species of the subgenus Camptochironomus, namely C. biwapri

  15. Altered Frequency Distribution in the Electroencephalogram is Correlated to the Analgesic Effect of Remifentanil

    DEFF Research Database (Denmark)

    Graversen, Carina; Malver, Lasse P; Kurita, Geana P;

    2015-01-01

    Opioids alter resting state brain oscillations by multiple and complex factors, which are still to be elucidated. To increase our knowledge, multi-channel electroencephalography (EEG) was subjected to multivariate pattern analysis (MVPA), to identify the most descriptive frequency bands and scalp...... individual changes in heat pain in the delta (p = 0.045), theta (p = 0.038) and alpha (p = 0.039) bands and to bone pain in the alpha band (p = 0.0092). Hence, MVPA of multi-channel EEG was able to identify frequency bands and corresponding channels most sensitive to altered brain activity during...... locations altered by remifentanil in healthy volunteers. Sixty-two channels of resting EEG followed by independent measures of pain scores to heat and bone pain were recorded in 21 healthy males before and during remifentanil infusion in a placebo-controlled, double-blind crossover study. EEG frequency...

  16. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G;

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  17. Mitochondrial Diseases

    Science.gov (United States)

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  18. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  19. Activation-induced spatiotemporal cerebral blood flow changes and behavioral deficit after developmental mTBI in rats can be favorably altered by facilitating mitochondrial calcium uptake

    Directory of Open Access Journals (Sweden)

    Madhuvika eMurugan

    2016-03-01

    Full Text Available Mild to moderate traumatic brain injury (mTBI leads to secondary neuronal loss via excitotoxic mechanisms, including mitochondrial Ca2+ overload. However in the surviving cellular population, mitochondrial Ca2+ influx and oxidative metabolism are diminished leading to suboptimal neuronal circuit activity and poor prognosis. Hence we tested the impact of boosting neuronal electrical activity and oxidative metabolism by facilitating mitochondrial Ca2+ uptake in a rat model of mTBI. In developing rats (P25-P26 sustaining an mTBI, we demonstrate post-traumatic changes in cerebral blood flow (CBF in the sensorimotor cortex in response to whisker stimulation compared to sham using functional Laser Doppler Imaging (fLDI at adulthood (P67-P73. Compared to sham, whisker stimulation-evoked positive CBF responses decreased while negative CBF responses increased in the mTBI animals. The spatiotemporal CBF changes representing underlying neuronal activity suggested profound changes to neurovascular activity after mTBI. Behavioral assessment of the same cohort of animals prior to fLDI showed that mTBI resulted in persistent contralateral sensorimotor behavioral deficit along with ipsilateral neuronal loss compared to sham. Treating mTBI rats with Kaempferol, a dietary flavonol compound that enhanced mitochondrial Ca2+ uptake, eliminated the inter-hemispheric asymmetry in the whisker stimulation-induced positive CBF responses and the ipsilateral negative CBF responses otherwise observed in the untreated and vehicle-treated mTBI animals in adulthood. Kaempferol also improved somatosensory behavioral measures compared to untreated and vehicle treated mTBI animals without augmenting post-injury neuronal loss. The results indicate that reduced mitochondrial Ca2+ uptake in the surviving populations affect post-traumatic neural activation leading to persistent behavioral deficits. Improvement in sensorimotor behavior and spatiotemporal neurovascular activity

  20. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats

    Directory of Open Access Journals (Sweden)

    Sadaf A Karbelkar

    2016-01-01

    Conclusion: Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also.

  1. Dietary Supplementation with Docosahexaenoic Acid, but Not Eicosapentanoic Acid, Dramatically Alters Cardiac Mitochondrial Phospholipid Fatty Acid Composition and Prevents Permeability Transition

    OpenAIRE

    Khairallah, Ramzi J.; Sparagna, Genevieve C.; Khanna, Nishanth; O’Shea, Karen M.; Hecker, Peter A; Kristian, Tibor; Fiskum, Gary; Rosiers, Christine Des; Polster, Brian M.; Stanley, William C.

    2010-01-01

    Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effe...

  2. Warming Alters the Size Spectrum and Shifts the Distribution of Biomass in Aquatic Ecosystems

    OpenAIRE

    Yvon-Durocher, Gabriel; Montoya, Jose Maria; Trimmer, Mark; Woodward, Guy

    2010-01-01

    Abstract Body size is one of the key determinants of community structure. The relationship between abundance and body size can explain how community biomass is partitioned among the biota of an ecosystem. We used an aquatic mesocosm experiment to determine how warming of ~4?C would affect the body size, biomass and taxonomic structure of planktonic communities. We found that warming increased the steepness of the slope of the community size spectrum, primarily by altering the phyto...

  3. Altered bio-distribution of Gallium-67 following chemotherapy in a patient of Hodgkin's lymphoma: A case report

    International Nuclear Information System (INIS)

    Ga-67 imaging of lymphoma provides information regarding the presence or absence of active lymphoma. Using SPECT imaging, the literature quotes sensitivities mostly in the 85% - 95% range, and sensitivities greater than 98%. Most importantly, the positive predictive value for the presence of active disease has consistently been shown to be greater than that for morphologic imaging techniques (such as CT and MRI), primarily due to the presence of residual mass in treated lymphoma. In spite of the advent of positron emission tomography, which is now considered one of the most important tools in the management of lymphoma, Ga-67 imaging is still considered invaluable and cost-effective investigation, especially in centres, where PET is not yet available. Ga-67 provides a useful index for assessing response to chemotherapy and overall survival in patients with Hodgkin's lymphoma. A positive Ga-67 scan midway through a patient's chemotherapy course provides valuable clues to the management, especially with regard to continuation, modification or change of the chemotherapeutic drug(s). Several chemotherapeutic agents have been reported to alter the normal natural biodistribution of Gallium-67 in the body, which may have certain implications in the interpretation of the results in the follow up of such patients during and after chemotherapy. The altered bio-distribution has been attributed to inhibition of erythropoiesis - raising serum iron levels and reducing the availability of gallium-binding sites in serum, resulting in altered Ga-67 tissue distribution. We present in this report an 11 year old child with a confirmed diagnosis of recurrent Hodgkin's Lymphoma showing altered biodistribution of Ga-67 citrate following chemotherapy with a combination of Cyclofosfamide, Carboplatine and Etoposide. (author)

  4. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus via range expansion of Asclepias host plants.

    Directory of Open Access Journals (Sweden)

    Nathan P Lemoine

    Full Text Available Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp. host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in

  5. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    Science.gov (United States)

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  6. Activation of protein kinase A alters subnuclear distribution pattern of human steroidogenic factor 1 in living cells

    Institute of Scientific and Technical Information of China (English)

    LIU Wei刘伟; FAN Wu-qiang范吴强; Toshihiko Yanase; Masayuki Saitoh; WU Yin吴茵

    2004-01-01

    Background The aim of this study was to identify the subnuclear distribution pattern of human orphan nuclear receptor steroidogenic factor 1 (SF-1) in living cells with and without the activation of protein kinase A (PKA) signal pathway, and thus try to explain the unknown mechanism by which PKA potentiates SF-1 transactivation. Methods Full-length cDNAs of wild type and a naturally occurring mutant (G35E) human SF-1 were cloned and fused with green fluorescent protein (GFP). Subcellular distribution pattern of human SF-1 in living cells, whose PKA signaling was either activated or not, was studied by laser confocal microscopy after the validity of the gene sequence was confirmed.Results The transactivation ability of the GFP-SF-1 chimeric protein was highly conserved. Wild type human SF-1 diffused homogeneously within the nuclei of cells when PKA was not active, and converged to clear foci when PKA was activated. Mutant SF-1 diffused within the nuclei even in the presence of PKA activation, surprisingly aggregating as fluorescent dots inside the nucleoli, a phenomenon not altered by PKA.Conclusions Activation of PKA causes wild type, but not mutant SF-1 to alter its subnuclear distribution pattern to a transactivationally active form (foci formation). This finding may throw new light on the mechanism by which PKA activates the orphan nuclear receptor.

  7. Mitochondrial DNA reveals population structuring in Macrodon atricauda (Perciformes: Sciaenidae): a study covering the whole geographic distribution of the species in the southwestern Atlantic.

    Science.gov (United States)

    Rodrigues, Rosa; Santos, Simoni; Haimovici, Manuel; Saint-Paul, Ulrich; Sampaio, Iracilda; Schneider, Horacio

    2014-04-01

    We investigated the genetic structure and diversity of M. atricauda, based on 266 specimens collected off the coast of southern Brazil and Argentina at seven locations, covering the whole geographic distribution of this species. A DNA sequence alignment of 904 base pairs of the mitochondrial Control Region revealed a total of 85 haplotypes. F(ST) analyses suggest that M. atricauda does not comprise a single demographic stock. Two different genetic units are identified, which possibly are related to ecological adaptations of the species within its range. Genetic diversity, Bayesian analysis of population structure, and significant negative results for the D and FS tests indicate that M. atricauda populations have undergone recent expansion. The spatial distribution of genetic variation seems to be related to historical colonization from south to north, followed by expansion.

  8. Treatment with tianeptine induces antidepressive-like effects and alters the neurotrophin levels, mitochondrial respiratory chain and cycle Krebs enzymes in the brain of maternally deprived adult rats.

    Science.gov (United States)

    Della, Franciela P; Abelaira, Helena M; Réus, Gislaine Z; Santos, Maria Augusta B dos; Tomaz, Débora B; Antunes, Altamir R; Scaini, Giselli; Morais, Meline O S; Streck, Emilio L; Quevedo, João

    2013-03-01

    Maternally deprived rats were treated with tianeptine (15 mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming and open field tests. The BDNF, NGF and energy metabolism were assessed in the rat brain. Deprived rats increased the immobility time, but tianeptine reversed this effect and increased the swimming time; the BDNF levels were decreased in the amygdala of the deprived rats treated with saline and the BDNF levels were decreased in the nucleus accumbens within all groups; the NGF was found to have decreased in the hippocampus, amygdala and nucleus accumbens of the deprived rats; citrate synthase was increased in the hippocampus of non-deprived rats treated with tianeptine and the creatine kinase was decreased in the hippocampus and amygdala of the deprived rats; the mitochondrial complex I and II-III were inhibited, and tianeptine increased the mitochondrial complex II and IV in the hippocampus of the non-deprived rats; the succinate dehydrogenase was increased in the hippocampus of non-deprived rats treated with tianeptine. So, tianeptine showed antidepressant effects conducted on maternally deprived rats, and this can be attributed to its action on the neurochemical pathways related to depression.

  9. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  10. Alterations of RNA Editing for the Mitochondrial ATP9 Gene in a New orf220-type Cytoplasmic Male-sterile Line of Stem Mustard (Brassica juncea var. tumida)

    Institute of Scientific and Technical Information of China (English)

    Jing-Hua Yang; Ming-Fang Zhang; Jing-Quan Yu

    2007-01-01

    RNA editing for the mitochondrial ATP9 gene of encoding regions has been observed in both cytoplasmic malesterile and maintainer lines of stem mustard, where its editing capacity varied spatially and temporally in the cytoplasmic male sterility (CMS) line. There were four RNA editing sites for the mitochondrial ATP9 gene according to its normal editing sites in mustard, of which three sites occurred as C-to-U changes and one as a U-to-C change.As a result, the hydrophobicity of deduced ATP9 protein was reduced due to the conversions at its 17th, 45th and 64th positions. Meanwhile, the conservation of deduced ATP9 protein was enhanced by changes at the 56th position.Loss of a specific editing site for ATP9 was observed in juvenile roots, senile roots, senile leaves and floret buds of the CMS line. Comparatively, complete RNA editing for ATP9 gene was retained in juvenile roots, juvenile leaves and floret buds of its maintainer line; however, the loss of a specific editing site for ATP9 gene occurred at senile roots and senile leaves in its maintainer line. These observations allow us to produce a hypothesis that the dysfunction of a specific mitochondrisl gene arising from RNA editing could probably be a factor triggering CMS and organ senescence through unknown cross-talk pathways during development.

  11. Altered distribution of extracellular matrix proteins in the periodontal ligament of periostin-deficient mice.

    Science.gov (United States)

    Tabata, Chihiro; Hongo, Hiromi; Sasaki, Muneteru; Hasegawa, Tomoka; de Freitas, Paulo Henrique Luiz; Yamada, Tamaki; Yamamoto, Tomomaya; Suzuki, Reiko; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Li, Minqi; Kudo, Akira; Iida, Junichiro; Amizuka, Norio

    2014-06-01

    Verifying whether periostin affects the distribution of type I collagen, fibronectin and tenascin C in the periodontal ligament (PDL) is important to contribute to a more thorough understanding of that protein's functions. In this study, we have histologically examined incisor PDL of mandibles in 20 week-old male wild-type and periostin-deficient (periostin-/-) mice, by means of type I collagen, fibronectin, tenascin C, proliferating cell nuclear antigen, matrix metallo-proteinase (MMP)-1 and F4/80-positive monocyte/macrophage immunostaining, transmission electron microscopy and quantitative analysis of cell proliferation. Wild-type PDL featured well-arranged layers of collagen bundles intertwined with PDL cells, whose longitudinal axis ran parallel to the collagen fibers. However, cells in the periostin-/- PDL were irregularly distributed among collagen fibrils, which were also haphazardly arranged. Type I collagen and fibronectin reactivity was seen throughout the wild-type PDL, while in the periostin-/- PDL, only focal, uneven staining for these proteins could be seen. Similarly, tenascin C staining was evenly distributed in the wild-type PDL, but hardly seen in the periostin-/- PDL. MMP-1 immunoreactivity was uniformly distributed in the wild-type PDL, but only dotted staining could be discerned in the periostin-/- PDL. F4/80-positive monocyte/macrophages were found midway between tooth- and bone-related regions in the wild-type PDL, a pattern that could not be observed in the periostin-/- PDL. In summary, periostin deficiency may not only cause PDL collagen fibril disorganization, but could also affect the distribution of other major extracellular matrix proteins such as fibronectin and tenascin C.

  12. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and

  13. Sub-seafloor epidosite alteration: Timing, depth and stratigraphic distribution in the Semail ophiolite, Oman

    Science.gov (United States)

    Gilgen, Samuel A.; Diamond, Larryn W.; Mercolli, Ivan

    2016-09-01

    Pervasive epidotization of igneous rocks is a common feature in the ophiolite record of hydrothermally altered oceanic crust. Current genetic models view epidosites as markers of focussed upflow of hydrothermal fluid beneath oceanic spreading ridges. The epidosites are envisaged to form at the base of the sheeted dike complex (SDC) during active plate spreading. Our mapping of the Semail ophiolite in Oman has revealed abundant epidosites in the volcanic sequence, some exceeding 1 km2 in extent. They are more frequent and far larger than the mineralogically identical epidosites in the SDC. We have also found epidosites that traverse the entire SDC from bottom to top. Thus, rather than being restricted to the base of the SDC, as implied by current models, epidosites in fact occur throughout the SDC and dominantly within the overlying volcanic pile. We report the occurrence of 19 epidosite bodies and their crosscutting relations with respect to host lava units, dikes, intrusive stocks and also seafloor umbers. The volcanostratigraphic affiliation of the dikes is identified by their whole-rock and clinopyroxene compositions. The relations set constraints on the timing of epidotization with respect to igneous activity in the ophiolite. At least one of the epidosites in the SDC formed during Lasail off-axis volcanism. Another epidosite in the SDC and many in the volcanic units formed later during post-spreading, Alley and Boninitic Alley supra-subduction zone volcanism. Only permissive, not compelling, evidence allows just two of the epidosites to have formed within the main-stage SDC during or shortly after its emplacement. We conclude that epidotization of the oceanic crust is not necessarily coupled to spreading ridges and that it can occur during fore-arc volcanism. This finding is consistent with evidence from the modern seafloor and it requires a different hydrothermal environment to that traditionally associated with alteration beneath spreading axes. The timing

  14. Altered expression of genes involved in mitochondrial oxidative phosphorylation and insulin signaling in skeletal muscle of obese women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    be of similar importance for insulin resistance in the polycystic ovary syndrome (PCOS).   Materials and methods: Using the HG-U133 Plus 2.0 expression array from Affymetrix, we analyzed gene expression in skeletal muscle from obese women with PCOS (n=16) and age- and body mass index-matched control women (n=13...... a sum statistic and conducting a permutation test. Subsequently, we performed biological pathway analysis using Gene Set Enrichment Analysis (GSEA) and Gene Microarray Pathway Profiler (GenMAPP).   Results: Women with PCOS were characterized by fasting hyperinsulinemia and impaired insulin...... validated by quantitative real-time PCR and immunoblot analyses.   Conclusion: Our results, for the first time, provide evidence for an association between insulin resistance and impaired mitochondrial oxidative metabolism in skeletal muscle in women with PCOS. Furthermore, differential expression of genes...

  15. Altered subcellular distribution of nucleolar protein fibrillarin by actinomycin D in Hep-2 cells

    Institute of Scientific and Technical Information of China (English)

    Min CHEN; Ping JIANG

    2004-01-01

    AIM: To study the effects of actinomycin D on subcellular distribution of nucleolar protein fibrillarin in HEp-2(human esophageal epithelial type 2) cells, and molecular mechanisms for maintenance of fibrillarin in nucleolus.METHODS: Indirect immunofiuorescence assay was employed to investigate subcellular distribution of nucleolar protein fibrillarin and immunoblotting analysis was used to detect the total cellular amount of fibrillarin. RESULTS:Control cells with no drug treatment showed bright clumpy nucleolar staining, which indicated that fibrillarin decorated the nucleolus only. Treatment with actinomycin D caused dislocation of fibrillarin from nucleoli to nucleoplasm with numerous stained small nucleoplasmic entities. Immunoblotting showed that neither total cellular amount of fibrillarin nor the integrity of fibrillarin was changed upon the treatment. The dislocation of fibrillarin in cells treated at a lower concentration (0.05 mg/L) of actinomycin D, was totally reversible after removal of the drug from the medium. However, this reversion was not observed at a high drug concentration (1 mg/L). CONCLUSION:Actinomycin D induced dislocation of fibrillarin from nucleoli to nucleoplasm in HEp-2 cells. The retention of fibrillarin within the nucleolus was related to active RNA synthesis.

  16. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    Science.gov (United States)

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. PMID:27033551

  17. Menstrual cycle distribution of uterine natural killer cells is altered in heavy menstrual bleeding.

    Science.gov (United States)

    Biswas Shivhare, Sourima; Bulmer, Judith N; Innes, Barbara A; Hapangama, Dharani K; Lash, Gendie E

    2015-11-01

    Heavy menstrual bleeding (HMB) affects 30% of women of reproductive age and significantly interferes with quality of life. Altered endometrial vascular maturation has been reported in HMB and recurrent miscarriage, the latter associated with increased uterine natural killer (uNK) cell numbers. This study compared endometrial leukocyte populations in controls and women with HMB. Formalin-fixed paraffin-embedded endometrial biopsies from controls (without endometrial pathology) and HMB were immunostained for CD14 (macrophages), CD56 (uNK cells), CD83 (dendritic cells), FOXP3 (regulatory T cells/Tregs), CD3 and CD8 (T cells). Leukocyte numbers were analysed as a percentage of total stromal cells in five randomly selected fields of view in the stratum functionalis of each sample. In control women across the menstrual cycle, 2-8% of total stromal cells were CD3(+) cells, 2-4% were CD8(+) T cells and 6-8% were CD14(+) macrophages. Compared with controls, CD3(+) cells were reduced during the mid-secretory phase (4%, P<0.01) and increased in the late secretory phase (12%, P=0.01) in HMB. CD83(+) dendritic cells and FOXP3(+) Tregs were scarce throughout the menstrual cycle in both groups. In controls, 2% of stromal cells in proliferative endometrium were CD56(+) uNK cells, increasing to 17% during the late secretory phase. In HMB, CD56(+) uNK cells were increased in the proliferative (5%, P<0.01) and early secretory (4%, P<0.02) phases, but reduced (10%, P<0.01) in the late secretory phase. This study demonstrates dysregulation of uNK cells in HMB, the functional consequence of which may have an impact on endometrial vascular development and/or endometrial preparation for menstruation.

  18. Mitochondrial Myopathy

    Science.gov (United States)

    ... NINDS supports research focused on effective treatments and cures for mitochondrial myopathies and other mitochondrial diseases. Scientists are investigating the possible benefits of exercise programs and nutritional supplements, primarily natural and synthetic versions of CoQ10. While CoQ10 has ...

  19. Mitochondrial dysfunction in heart failure.

    Science.gov (United States)

    Rosca, Mariana G; Hoppel, Charles L

    2013-09-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.

  20. Alters Intratumoral Drug Distribution and Affects Therapeutic Synergy of Antiangiogenic Organoselenium Compound

    Directory of Open Access Journals (Sweden)

    Youcef M. Rustum

    2010-01-01

    Full Text Available Tumor differentiation enhances morphologic and microvascular heterogeneity fostering hypoxia that retards intratumoral drug delivery, distribution, and compromise therapeutic efficacy. In this study, the influence of tumor biologic heterogeneity on the interaction between cytotoxic chemotherapy and selenium was examined using a panel of human tumor xenografts representing cancers of the head and neck and lung along with tissue microarray analysis of human surgical samples. Tumor differentiation status, microvessel density, interstitial fluid pressure, vascular phenotype, and drug delivery were correlated with the degree of enhancement of chemotherapeutic efficacy by selenium. Marked potentiation of antitumor activity was observed in H69 tumors that exhibited a well-vascularized, poorly differentiated phenotype. In comparison, modulation of chemotherapeutic efficacy by antiangiogenic selenium was generally lower or absent in well-differentiated tumors with multiple avascular hypoxic, differentiated regions. Tumor histomorphologic heterogeneity was found prevalent in the clinical samples studied and represents a primary and critical physiological barrier to chemotherapy.

  1. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis

    Science.gov (United States)

    Areta, José L; Burke, Louise M; Ross, Megan L; Camera, Donny M; West, Daniel W D; Broad, Elizabeth M; Jeacocke, Nikki A; Moore, Daniel R; Stellingwerff, Trent; Phillips, Stuart M; Hawley, John A; Coffey, Vernon G

    2013-01-01

    Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n= 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-13C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1–12 h recovery (88–148%, P INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass. PMID:23459753

  2. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  3. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  4. A Common Polymorphism in EC-SOD Affects Cardiopulmonary Disease Risk by Altering Protein Distribution

    Science.gov (United States)

    Hartney, John M.; Stidham, Timothy; Goldstrohm, David A.; Oberley-Deegan, Rebecca E.; Weaver, Michael R.; Valnickova-Hansen, Zuzana; Scavenius, Carsten; Benninger, Richard K.P.; Leahy, Katelyn F.; Johnson, Richard; Gally, Fabienne; Kosmider, Beata; Zimmermann, Angela K.; Enghild, Jan J.; Nozik-Grayck, Eva; Bowler, Russell P.

    2014-01-01

    Background The enzyme extracellular superoxide dismutase (EC-SOD; SOD3) is a major antioxidant defense in lung and vasculature. A nonsynonomous single nucleotide polymorphism (SNP) in EC-SOD (rs1799895) leads to an arginine to glycine (Arg->Gly) amino acid substitution at position 213 (R213G) in the heparin-binding domain (HBD). In recent human genetic association studies, this SNP attenuates the risk of lung disease, yet paradoxically increases the risk of cardiovascular disease. Methods and Results Capitalizing on the complete sequence homology between human and mouse in the HBD, we created an analogous R213G SNP knockin mouse. The R213G SNP did not change enzyme activity, but shifted the distribution of EC-SOD from lung and vascular tissue to extracellular fluid (e.g. bronchoalveolar lavage fluid (BALF) and plasma). This shift reduces susceptibility to lung disease (lipopolysaccharide-induced lung injury) and increases susceptibility to cardiopulmonary disease (chronic hypoxic pulmonary hypertension). Conclusions We conclude that EC-SOD provides optimal protection when localized to the compartment subjected to extracellular oxidative stress: thus, the redistribution of EC-SOD from the lung and pulmonary circulation to the extracellular fluids is beneficial in alveolar lung disease but detrimental in pulmonary vascular disease. These findings account for the discrepant risk associated with R213G in humans with lung diseases compared with cardiovascular diseases. PMID:25085920

  5. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.

    Science.gov (United States)

    Wagner, Roselyne Y; Luciani, Flavie; Cario-André, Muriel; Rubod, Alain; Petit, Valérie; Benzekri, Laila; Ezzedine, Khaled; Lepreux, Sébastien; Steingrimsson, Eirikur; Taieb, A; Gauthier, Yvon; Larue, Lionel; Delmas, Véronique

    2015-07-01

    Vitiligo is the most common depigmenting disorder resulting from the loss of melanocytes from the basal epidermal layer. The pathogenesis of the disease is likely multifactorial and involves autoimmune causes, as well as oxidative and mechanical stress. It is important to identify early events in vitiligo to clarify pathogenesis, improve diagnosis, and inform therapy. Here, we show that E-cadherin (Ecad), which mediates the adhesion between melanocytes and keratinocytes in the epidermis, is absent from or discontinuously distributed across melanocyte membranes of vitiligo patients long before clinical lesions appear. This abnormality is associated with the detachment of the melanocytes from the basal to the suprabasal layers in the epidermis. Using human epidermal reconstructed skin and mouse models with normal or defective Ecad expression in melanocytes, we demonstrated that Ecad is required for melanocyte adhesiveness to the basal layer under oxidative and mechanical stress, establishing a link between silent/preclinical, cell-autonomous defects in vitiligo melanocytes and known environmental stressors accelerating disease expression. Our results implicate a primary predisposing skin defect affecting melanocyte adhesiveness that, under stress conditions, leads to disappearance of melanocytes and clinical vitiligo. Melanocyte adhesiveness is thus a potential target for therapy aiming at disease stabilization.

  6. Alteration of mitochondrial membrane potential (DELTA_PSI_m and phosphatidylserine translocation as early indicators of heavy metal-induced apoptosis in the earthworm Eisenia hortensis

    Directory of Open Access Journals (Sweden)

    FM Bearoff

    2011-06-01

    Full Text Available The effects of the heavy metals cadmium and copper (50-500 ìM on the apoptotic events involving changes in mitochondrial membrane potential (ÄØm and phosphatidylserine (PS translocation were investigated in the immune cells (celomocytes of the earthworm Eisenia hortensis. Using the fluorescent probe JC-1, loss of membrane potential due to depolarization was detected in a greater proportion of cases when induced by cadmium compared to copper (58.7 % vs. 37 % and at a lower concentration (50 ìM vs. 125ìM. With the use of the general caspase inhibitor Z-VAD-fmk, PS translocation detected by annexin V-FITC was found to be caspase-dependent when induced by cadmium at 125-250 ìM but not at 50 ìM or 500 ìM; a high proportion of earthworms (60 % exhibited inhibitory effects. Additionally, the collapse in membrane potential and PS translocation were found to strongly correlate (r > 0.5 in 89 % of cases when induced by cadmium and copper. Thus, heavy metals appear to induce death in celomocytes of E. hortensis through apoptosis by means of caspase dependent pathways

  7. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    Science.gov (United States)

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. PMID:27451341

  8. A feasibility study of altered spatial distribution of losses induced by eddy currents in body composition analysis

    Directory of Open Access Journals (Sweden)

    Sepponen Raimo E

    2010-11-01

    Full Text Available Abstract Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA. Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis.

  9. Cancer: Mitochondrial Origins.

    Science.gov (United States)

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial

  10. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  11. Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease.

    Science.gov (United States)

    Woś, Marcin; Szczepanowska, Joanna; Pikuła, Sławomir; Tylki-Szymańska, Anna; Zabłocki, Krzysztof; Bandorowicz-Pikuła, Joanna

    2016-03-01

    Mutations in the NPC1 or NPC2 genes lead to Niemann-Pick type C (NPC) disease, a rare lysosomal storage disorder characterized by progressive neurodegeneration. These mutations result in cholesterol and glycosphingolipid accumulation in the late endosomal/lysosomal compartment. Complications in the storage of cholesterol in NPC1 mutant cells are associated with other anomalies, such as altered distribution of intracellular organelles and properties of the plasma membrane. The pathomechanism of NPC disease is largely unknown. Interestingly, other storage diseases such as Gaucher and Farber diseases are accompanied by severe mitochondrial dysfunction. This prompted us to investigate the effect of absence or dysfunction of the NPC1 protein on mitochondrial properties to confirm or deny a putative relationship between NPC1 mutations and mitochondrial function. This study was performed on primary skin fibroblasts derived from skin biopsies of two NPC patients, carrying mutations in the NPC1 gene. We observed altered organization of mitochondria in NPC1 mutant cells, significant enrichment in mitochondrial cholesterol content, increased respiration, altered composition of the respiratory chain complex, and substantial reduction in cellular ATP level. Thus, a primary lysosomal defect in NPC1 mutant fibroblasts is accompanied by deregulation of the organization and function of the mitochondrial network. PMID:26869201

  12. Cdk5-mediated mitochondrial fission: A key player in dopaminergic toxicity in Huntington's disease.

    Science.gov (United States)

    Cherubini, Marta; Puigdellívol, Mar; Alberch, Jordi; Ginés, Silvia

    2015-10-01

    The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD. PMID:26143143

  13. Investigating complex I deficiency in Purkinje cells and synapses in patients with mitochondrial disease

    Science.gov (United States)

    Chrysostomou, Alexia; Grady, John P.; Laude, Alex; Taylor, Robert W.; Turnbull, Doug M.

    2015-01-01

    Aims Cerebellar ataxia is common in patients with mitochondrial disease, and despite previous neuropathological investigations demonstrating vulnerability of the olivocerebellar pathway in patients with mitochondrial disease, the exact neurodegenerative mechanisms are still not clear. We use quantitative quadruple immunofluorescence to enable precise quantification of mitochondrial respiratory chain protein expression in Purkinje cell bodies and their synaptic terminals in the dentate nucleus. Methods We investigated NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 protein expression in 12 clinically and genetically defined patients with mitochondrial disease and ataxia and 10 age‐matched controls. Molecular genetic analysis was performed to determine heteroplasmy levels of mutated mitochondrial DNA in Purkinje cell bodies and inhibitory synapses. Results Our data reveal that complex I deficiency is present in both Purkinje cell bodies and their inhibitory synapses which surround dentate nucleus neurons. Inhibitory synapses are fewer and enlarged in patients which could represent a compensatory mechanism. Mitochondrial DNA heteroplasmy demonstrated similarly high levels of mutated mitochondrial DNA in cell bodies and synapses. Conclusions This is the first study to use a validated quantitative immunofluorescence technique to determine complex I expression in neurons and presynaptic terminals, evaluating the distribution of respiratory chain deficiencies and assessing the degree of morphological abnormalities affecting synapses. Respiratory chain deficiencies detected in Purkinje cell bodies and their synapses and structural synaptic changes are likely to contribute to altered cerebellar circuitry and progression of ataxia. PMID:26337858

  14. Spatial memory decline after masticatory deprivation and aging is associated with altered laminar distribution of CA1 astrocytes

    Directory of Open Access Journals (Sweden)

    Frota de Almeida Marina

    2012-02-01

    Full Text Available Abstract Background Chewing imbalances are associated with neurodegeneration and are risk factors for senile dementia in humans and memory deficits in experimental animals. We investigated the impact of long-term reduced mastication on spatial memory in young, mature and aged female albino Swiss mice by stereological analysis of the laminar distribution of CA1 astrocytes. A soft diet (SD was used to reduce mastication in the experimental group, whereas the control group was fed a hard diet (HD. Assays were performed in 3-, 6- and 18-month-old SD and HD mice. Results Eating a SD variably affected the number of astrocytes in the CA1 hippocampal field, and SD mice performed worse on water maze memory tests than HD mice. Three-month-old mice in both groups could remember/find a hidden platform in the water maze. However, 6-month-old SD mice, but not HD mice, exhibited significant spatial memory dysfunction. Both SD and HD 18-month-old mice showed spatial memory decline. Older SD mice had astrocyte hyperplasia in the strata pyramidale and oriens compared to 6-month-old mice. Aging induced astrocyte hypoplasia at 18 months in the lacunosum-moleculare layer of HD mice. Conclusions Taken together, these results suggest that the impaired spatial learning and memory induced by masticatory deprivation and aging may be associated with altered astrocyte laminar distribution and number in the CA1 hippocampal field. The underlying molecular mechanisms are unknown and merit further investigation.

  15. Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships.

    Science.gov (United States)

    Keeney, Paula M; Dunham, Lisa D; Quigley, Caitlin K; Morton, Stephanie L; Bergquist, Kristen E; Bennett, James P

    2009-12-01

    Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1 alpha, a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded K(m) values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model.

  16. Mitochondrial efficiency and insulin resistance.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  17. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana.

    Science.gov (United States)

    Corcoran, Mark J; Wetherbee, Bradley M; Shivji, Mahmood S; Potenski, Matthew D; Chapman, Demian D; Harvey, Guy M

    2013-01-01

    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (pecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively). Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing operations, and develop precautionary policies regarding proposed feeding sites.

  18. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana.

    Science.gov (United States)

    Corcoran, Mark J; Wetherbee, Bradley M; Shivji, Mahmood S; Potenski, Matthew D; Chapman, Demian D; Harvey, Guy M

    2013-01-01

    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (pecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively). Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing operations, and develop precautionary policies regarding proposed feeding sites. PMID:23527144

  19. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana.

    Directory of Open Access Journals (Sweden)

    Mark J Corcoran

    Full Text Available Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS, Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (p<0.05 smaller 24 hour activity spaces compared to wild conspecifics, staying in close proximity to the ecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively. Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing

  20. Genetic counseling in mitochondrial disease.

    Science.gov (United States)

    Vento, Jodie M; Pappa, Belen

    2013-04-01

    Mitochondrial diseases are a genetically and clinically diverse group of disorders that arise as a result of dysfunction of the mitochondria. Mitochondrial disorders can be caused by alterations in nuclear DNA and/or mitochondrial DNA. Although some mitochondrial syndromes have been described clearly in the literature many others present as challenging clinical cases with multisystemic involvement at variable ages of onset. Given the clinical variability and genetic heterogeneity of these conditions, patients and their families often experience a lengthy and complicated diagnostic process. The diagnostic journey may be characterized by heightened levels of uncertainty due to the delayed diagnosis and the absence of a clear prognosis, among other factors. Uncertainty surrounding issues of family planning and genetic testing may also affect the patient. The role of the genetic counselor is particularly important to help explain these complexities and support the patient and family's ability to achieve effective coping strategies in dealing with increased levels of uncertainty.

  1. Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Directory of Open Access Journals (Sweden)

    Herr Caroline EW

    2010-08-01

    Full Text Available Abstract Background Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month. Methods Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3+ cells and their subsets, CD4+ and CD8+, B lymphocytes (CD19+ and natural killer (NK cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH and particulate matter 2.5 were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM2.5 and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births. Results The adjusted models show significant associations between PAHs or PM2.5 during early gestation and increases in CD3+ and CD4+ lymphocytes percentages and decreases in CD19+ and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3+ and CD4+ fractions and increases in CD19+ and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation. Conclusions PAHs and PM2.5 in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.

  2. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  3. Mitochondrial Dysfunction in Neurodegenerative Diseases

    OpenAIRE

    Johri, Ashu; Beal, M. Flint

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyo...

  4. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    Science.gov (United States)

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  5. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  6. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Science.gov (United States)

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  7. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    Directory of Open Access Journals (Sweden)

    Stéphane Demine

    2014-09-01

    Full Text Available Mitochondrial dysfunction(s (MDs can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy in the obesity and insulin resistance thematic.

  8. The importance of mitochondrial DNA in aging and cancer

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Espersen, Maiken Lise Marcker; Singh, Keshav K;

    2011-01-01

    Mitochondrial dysfunction has been implicated in premature aging, age-related diseases, and tumor initiation and progression. Alterations of the mitochondrial genome accumulate both in aging tissue and tumors. This paper describes our contemporary view of mechanisms by which alterations of the mi...

  9. Mitochondrial Metabolism in Aging Heart.

    Science.gov (United States)

    Lesnefsky, Edward J; Chen, Qun; Hoppel, Charles L

    2016-05-13

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  10. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    DEFF Research Database (Denmark)

    Blein, Sophie; Bardel, Claire; Danjean, Vincent;

    2015-01-01

    mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter...

  11. Altered crystalline rock distributed along groundwater conductive fractures and the retardation capacity in the orogenic field of Japan - 16332

    International Nuclear Information System (INIS)

    In the orogenic field Japanese islands, there are wide areas of crystalline rocks that inevitably contain groundwater conductive fractures associated with alteration zones. However, little attention has been given to the formation process and possible influence on the radionuclides migration from radioactive waste repository that might be sited within crystalline rock. In particular, the influences of alteration minerals and micro-fractures, due to chemical sorption and/or physical retardation are required to assess the realistic barrier function. In order to understand the alteration process and the retardation capacity, detailed mineralogical and physico-chemical characterization of altered crystalline rocks have been carried out. Mineralogical analysis reveals that the altered crystalline rocks have been formed through basically two stages of water-rock interaction during and after uplift. Physico-chemical characteristics including laboratory sorption experiments show that altered crystalline rock has a certain volume of accessible porosity, particularly in plagioclase grains, which would influence on nuclide retardation more than the accessible porosity in other minerals present, such as biotite. These results provide confidence that even altered and fractured parts of any crystalline rock that might be encountered in a site for the disposal of high-level radioactive waste may still play a role of barrier function. (authors)

  12. Mitochondrial Dynamics in Cardiovascular Health and Disease

    OpenAIRE

    Ong, Sang-Bing; Andrew R. Hall; Hausenloy, Derek J

    2013-01-01

    Significance: Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently be...

  13. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  14. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  15. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Brian M Shamblin

    Full Text Available Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for

  16. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  17. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs.

    OpenAIRE

    Wolcott, J A; Zee, Y. C.; Osebold, J W

    1982-01-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in ...

  18. Resveratrol ameliorates mitochondrial dysfunction but increases the risk of hypoglycemia following hemorrhagic shock

    DEFF Research Database (Denmark)

    Widlund, Anne Lykkegaard; Wang, H.; Guan, Y.;

    2014-01-01

    Background: Hemorrhagic shock (HS) may contribute to organ failure, by profoundly altering mitochondrial function. Resveratrol (RSV), a naturally occurring polyphenol, has been shown to promote mitochondrial function and regulate glucose homeostasis in diabetes. We hypothesized that RSV during...

  19. The use of fluorescence correlation spectroscopy to probe mitochondrial mobility and intramatrix protein diffusion

    NARCIS (Netherlands)

    P.H.G.M. Willems; H.G. Swarts; M.A. Hink; W.J.H. Koopman

    2009-01-01

    Within cells, functional changes in mitochondrial metabolic state are associated with alterations in organelle mobility, shape, and configuration of the mitochondrial matrix. Fluorescence correlation spectroscopy (FCS) is a technique that measures intensity fluctuations caused by single fluorescent

  20. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43.

    Directory of Open Access Journals (Sweden)

    Merlin Nanayakkara

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP gene was identified as strongly associated with CD using genome-wide association studies (GWAS. The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD and controls, without and with treatment with A-gliadin peptide P31-43. We observed a "CD cellular phenotype" in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

  1. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  2. Induction of Mitochondrial Changes Associated with Oxidative Stress on Very Long Chain Fatty Acids (C22:0, C24:0, or C26:0-Treated Human Neuronal Cells (SK-NB-E

    Directory of Open Access Journals (Sweden)

    Amira Zarrouk

    2012-01-01

    Full Text Available In Alzheimer's disease, lipid alterations point towards peroxisomal dysfunctions. Indeed, a cortical accumulation of saturated very long chain fatty acids (VLCFAs: C22:0, C24:0, C26:0, substrates for peroxisomal β-oxidation, has been found in Alzheimer patients. This study was realized to investigate the effects of VLCFAs at the mitochondrial level since mitochondrial dysfunctions play crucial roles in neurodegeneration. On human neuronal SK-NB-E cells treated with C22:0, C24:0, or C26:0 (0.1–20 μM; 48 h, an inhibition of cell growth and mitochondrial dysfunctions were observed by cell counting with trypan blue, MTT assay, and measurement of mitochondrial transmembrane potential (Δψm with DiOC6(3. A stimulation of oxidative stress was observed with DHE and MitoSOX used to quantify superoxide anion production on whole cells and at the mitochondrial level, respectively. With C24:0 and C26:0, by Western blotting, lower levels of mitochondrial complexes III and IV were detected. After staining with MitoTracker and by transmission electron microscopy used to study mitochondrial topography, mass and morphology, major changes were detected in VLCFAs treated-cells: modification of the cytoplasmic distribution of mitochondria, presence of large mitochondria, enhancement of the mitochondrial mass. Thus, VLCFAs can be potential risk factors contributing to neurodegeneration by inducing neuronal damages via mitochondrial dysfunctions.

  3. Distributions of Irritative Zones Are Related to Individual Alterations of Resting-State Networks in Focal Epilepsy.

    Directory of Open Access Journals (Sweden)

    Yinchen Song

    Full Text Available Alterations in the connectivity patterns of the fMRI-based resting-state networks (RSNs have been reported in several types of epilepsies. Evidence pointed out these alterations might be associated with the genesis and propagation of interictal epileptiform discharges (IEDs. IEDs also evoke blood-oxygen-level dependent (BOLD responses, which have been used to delineate irritative zones during preoperative work-up. Therefore, one may expect a relationship between the topology of the IED-evoked BOLD response network and the altered spatial patterns of the RSNs. In this study, we used EEG recordings and fMRI data obtained simultaneously from a chronic model of focal epilepsy in Wistar rats to verify our hypothesis. We found that IED-evoked BOLD response networks comprise both cortical and subcortical structures with a rat-dependent topology. In all rats, IEDs evoke both activation and deactivation types of BOLD responses. Using a Granger causality method, we found that in many cases areas with BOLD deactivation have directed influences on areas with activation (p<0.05. We were able to predict topological properties (i.e., focal/diffused, unilateral/bilateral of the IED-evoked BOLD response network by performing hierarchical clustering analysis on major spatial features of the RSNs. All these results suggest that IEDs and disruptions in the RSNs found previously in humans may be different manifestations of the same transient events, probably reflecting altered consciousness. In our opinion, the shutdown of specific nodes of the default mode network may cause uncontrollable excitability in other functionally connected brain areas. We conclude that IED-evoked BOLD responses (i.e., activation and deactivation and alterations of RSNs are intrinsically related, and speculate that an understanding of their interplay is necessary to discriminate focal epileptogenesis and network propagation phenomena across different brain modules via hub

  4. Grapes, galls, and geography: the distribution of nuclear and mitochondrial DNA variation across host-plant species and regions in a specialist herbivore.

    Science.gov (United States)

    Downie, D A; Fisher, J R; Granett, J

    2001-07-01

    Studies of patterns of molecular variation in natural populations can provide important insights into a number of evolutionary problems. Among these, the question of whether geographic factors are more important than ecological factors in promoting population differentiation and ultimately speciation has been an important and contentious area in evolutionary biology. Systems involving herbivorous insects have played a leading role in this discussion. This study examined the distribution of molecular variation in a highly specialized gall-forming insect, grape phylloxera (Daktulosphaira vitifoliae Fitch), that is found on both sympatric and allopatric host-plant species of the genus Vitis. In addition, the relationship of insects in the introduced range in the United States to ancestral populations in the native range was examined. Evidence for differentiation along host-plant lines from both nuclear (RAPD) and mitochondrial (COI) DNA was confounded with the effect of geography. Differentiation was found where hosts were allopatric or parapatric, but no evidence was found for such differentiation on two hosts, V. vulpina and V. aestivalis, that are broadly sympatric. The question of population differentiation onto these sympatric hosts can be considered to be resolved--it has not occurred in spite of a long history of association. Evidence was equivocal, but suggestive of a period of divergence in allopatry prior to reestablishment of contact, for insects associated with another host plant species, V. cinerea, found in both sympatric and parapatric populations. A low level of diversity and placement of samples collected from the grape species V. riparia at the tip of a phylogenetic tree supports the hypothesis that this host has been recently colonized from populations from the Mississippi Valley. A polyphyletic origin for biotype B grape phylloxera was supported: Although most samples collected from vineyards in the introduced range in California had similar

  5. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  6. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    International Nuclear Information System (INIS)

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed

  7. Soy Isoflavone Supplementation Does Not Alter Distribution of Circulating Lymphocytes or Natural Killer Cell Activity in Postmenopausal Women

    OpenAIRE

    Girmes-Grieco, Nicolin Katleen

    2001-01-01

    A growing body of evidence has demonstrated that soy isoflavone consumption may protect against the development of various chronic diseases. This defense could be linked to isoflavone-induced alterations in immune function. However, to date, no study has examined the effect of soy isoflavone supplementation on human immunity in vivo. Establishing whether isoflavones affect immunity in aging adults is particularly relevant since compromised immune function has been observed in this population....

  8. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    Science.gov (United States)

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  9. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  10. Distribution of Potential Hydrothermally Altered Rocks in Central Colorado Derived From Landsat Thematic Mapper Data: A Geographic Information System Data Set

    Science.gov (United States)

    Knepper, Daniel H.

    2010-01-01

    As part of the Central Colorado Mineral Resource Assessment Project, the digital image data for four Landsat Thematic Mapper scenes covering central Colorado between Wyoming and New Mexico were acquired and band ratios were calculated after masking pixels dominated by vegetation, snow, and terrain shadows. Ratio values were visually enhanced by contrast stretching, revealing only those areas with strong responses (high ratio values). A color-ratio composite mosaic was prepared for the four scenes so that the distribution of potentially hydrothermally altered rocks could be visually evaluated. To provide a more useful input to a Geographic Information System-based mineral resource assessment, the information contained in the color-ratio composite raster image mosaic was converted to vector-based polygons after thresholding to isolate the strongest ratio responses and spatial filtering to reduce vector complexity and isolate the largest occurrences of potentially hydrothermally altered rocks.

  11. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    Science.gov (United States)

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  12. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus;

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  13. Mitochondrial Dysfunction: Different Routes to Alzheimer’s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Pasquale Picone

    2014-01-01

    Full Text Available Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ, an important component in Alzheimer’s disease (AD pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dysfunction. One of the most accepted hypotheses for AD onset implicates that mitochondrial dysfunction and oxidative stress are one of the primary events in the insurgence of the pathology. Here, we examine structural and functional mitochondrial changes in presence of Aβ. In particular we review data concerning Aβ import into mitochondrion and its involvement in mitochondrial oxidative stress, bioenergetics, biogenesis, trafficking, mitochondrial permeability transition pore (mPTP formation, and mitochondrial protein interaction. Moreover, the development of AD therapy targeting mitochondria is also discussed.

  14. Mitochondrial genomes and divergence times of crocodile newts : Inter-islands distribution of Echinotriton andersoni and the origin of a unique repetitive sequence found in Tylototriton mt genomes

    OpenAIRE

    Kurabayashi, Atsushi; Nishitani, Takuma; Katsuren, Seiki; Oumi, Shohei; Sumida, Masayuki

    2012-01-01

    Crocodile newts, which constitute the genera Echinotriton and Tylototriton, are known as living fossils, and these genera comprise many endangered species. To identify mitochondrial (mt) genes suitable for future population genetic analyses for endangered taxa, we determined the complete nucleotide sequences of the mt genomes of the Japanese crocodile newt Echinotriton andersoni and Himalayan crocodile newt Tylototriton verrucosus. Although the control region (CR) is known as the most variabl...

  15. The presence of a below-ground neighbour alters within-plant seed size distribution in Phaseolus vulgaris

    NARCIS (Netherlands)

    Chen, B.; During, H.J.; Vermeulen, P.J.; Anten, N.P.R.

    2014-01-01

    * Background and Aims Considerable variation in seed size commonly exists within plants, and is believed to be favoured under natural selection. This study aims to examine the extent to which seed size distribution depends on the presence of competing neighbour plants. * Methods Phaseolus vulgaris p

  16. Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rocks and their environmental impact, southwestern Sinai, Egypt

    International Nuclear Information System (INIS)

    The contents of natural radionuclides in various types of sedimentary rocks in Um Bogma Formation and base of El Hashash Formation were determined by gamma-ray spectrometry. Three types of lower Carboniferous sedimentary rocks were investigated; sandstone (El Hashash Formation), dolostone and argillaceous sediments (Um Bogma Formation). The alteration processes are dolomitization, dedolomitization, karstification and lateritization. The specific radioactivity of 238U, 226Ra, 232Th and 40K determined in different samples, indicate that 238U and its decay products contribute primarily to the high natural radioactivity of rocks. The maximum concentration of 238U reached up to 2129.36 ppm in argillaceous sediments. The average concentrations of determined radionuclides (238U, 226Ra, 232Th and 40K) are 8.34 ppm, 7.88 ppm, 4.68 ppm and 0.3%, respectively in sandstone. In dolostones the average concentrations are 418.69 ppm, 808.75 ppm, 3.14 ppm and 0.29%, respectively. For argillaceous sediments are 276.88 ppm, 419.49 ppm, 11.47 ppm and 0.93%, respectively. The 238U/226Ra ratio in sandstone ranges between 0.89 and 1.25, while in dolostones and argillaceous sediments are 0.27-2.63 and 0.27-1.83, respectively. These variations in the concentrations of radioelements and their ratios are due to the action of the alteration processes affected these different sedimentary rocks in different times. Environmentally, the Raeq in dolostones and argillaceous sediments exceeds the permitted limits, while in the sandstone samples; it is within the permissible levels. (author)

  17. Natural Compounds Modulating Mitochondrial Functions

    Directory of Open Access Journals (Sweden)

    Lara Gibellini

    2015-01-01

    Full Text Available Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS. In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu, resveratrol (RSV, and curcumin (Cur being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation, by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications.

  18. Altered distribution of regulatory lymphocytes by oral administration of soy-extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non-alcoholic steatohepatitis and insulin resistance

    Science.gov (United States)

    Khoury, Tawfik; Ben Ya'acov, Ami; Shabat, Yehudit; Zolotarovya, Lidya; Snir, Ram; Ilan, Yaron

    2015-01-01

    AIM: To determine the immune-modulatory and the hepatoprotective effects of oral administration of two soy extracts in immune mediated liver injury and non-alcoholic steatohepatitis (NASH). METHODS: Two soy extracts, M1 and OS, were orally administered to mice with concanavalin A (ConA) immune-mediated hepatitis, to high-fat diet (HFD) mice and to methionine and choline reduced diet combined with HFD mice. Animals were followed for disease and immune biomarkers. RESULTS: Oral administration of OS and M1 had an additive effect in alleviating ConA hepatitis manifested by a decrease in alanine aminotransferase and aspartate aminotransferase serum levels. Oral administration of the OS and M1 soy derived fractions, ameliorated liver injury in the high fat diet model of NASH, manifested by a decrease in hepatic triglyceride levels, improvement in liver histology, decreased serum cholesterol and triglycerides and improved insulin resistance. In the methionine and choline reduced diet combined with the high fat diet model, we noted a decrease in hepatic triglycerides and improvement in blood glucose levels and liver histology. The effects were associated with reduced serum tumor necrosis factor alpha and alteration of regulatory T cell distribution. CONCLUSION: Oral administration of the combination of OS and M1 soy derived extracts exerted an adjuvant effect in the gut-immune system, altering the distribution of regulatory T cells, and alleviating immune mediated liver injury, hyperlipidemia and insulin resistance. PMID:26139990

  19. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts

    DEFF Research Database (Denmark)

    Guillery, O.; Malka, F.; Frachon, P.;

    2008-01-01

    Mitochondria are dynamic organelles with continuous fusion and fission, the equilibrium of which results in mitochondrial morphology. Evidence points to there being an intricate relationship between mitochondrial dynamics and oxidative phosphorylation. We investigated the bioenergetics modulation...... mitochondria under basal conditions, although when challenged some of them presented with mild alteration of fission or fusion efficacy. Severely defective cells disclosed complete mitochondrial fragmentation under glycolysis inhibition. In conclusion, mitochondrial morphology is modulated by D Psi m but...... loosely linked to mitochondrial oxidative phosphorylation. Its alteration by glycolysis, inhibition points to a severe oxidative phosphorylation defect. (C) 2008 Elsevier B.V. All rights reserved Udgivelsesdato: 2008/4...

  20. Potential effects of alterations to the hydrologic system on the distribution of salinity in the Biscayne aquifer in Broward County, Florida

    Science.gov (United States)

    Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy T.

    2016-03-15

    To address concerns about the effects of water-resource management practices and rising sea level on saltwater intrusion, the U.S. Geological Survey in cooperation with the Broward County Environmental Planning and Community Resilience Division, initiated a study to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. A three-dimensional, variable-density solute-transport model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. These types of models are typically difficult to calibrate by matching to observed groundwater salinities because of spatial variability in aquifer properties that are unknown, and natural and anthropogenic processes that are complex and unknown; therefore, the primary goal was to reproduce major trends and locally generalized distributions of salinity in the Biscayne aquifer. The methods used in this study are relatively new, and results will provide transferable techniques for protecting groundwater resources and maximizing groundwater availability in coastal areas. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping, and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and use of drainage recharge wells on the future distribution of salinity in the aquifer.

  1. Mitochondrial dynamics in mammalian health and disease.

    Science.gov (United States)

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  2. Acute local inflammation alters synthesis, distribution, and catabolism of third component of complement (C3) in rabbits.

    OpenAIRE

    Manthei, U; Strunk, R. C.; Giclas, P. C.

    1984-01-01

    In order to evaluate the basis for changes in plasma concentrations of the third component of complement (C3) during inflammation, we injected purified radiolabeled C3 into normal New Zealand White rabbits and into rabbits with turpentine-induced pleurisy. In the normal animals, C3 was distributed between the intravascular compartment (75%) and the extravascular space (25%), with an exchange rate of 1.8 +/- 0.1% of the plasma pool per hour. The fractional catabolic rate (FCR) was 2.7 +/- 0.3%...

  3. Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p

    OpenAIRE

    Hermann, Greg J.; Thatcher, John W.; Mills, John P.; Hales, Karen G.; Fuller, Margaret T.; Nunnari, Jodi; Shaw, Janet M.

    1998-01-01

    Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role in mitochondrial fusion. A conditional fzo1 mutation causes the mitochondrial reticulum to fragment and blocks mitochondrial fusion during ...

  4. Distribution of myogenic progenitor cells and myonuclei is altered in women with vs. those without chronically painful trapezius muscle

    DEFF Research Database (Denmark)

    Mackey, Abigail; Andersen, Lars L; Frandsen, Ulrik;

    2010-01-01

    was not in line with our hypothesis and suggests that the elevated SC content of MYA was not due to heightened inflammatory cell contents, but rather to provide new myonuclei. The findings of greater numbers of SCs in type I fibers of muscle subjected to repeated low-intensity work support our hypothesis......It is hypothesized that repeated recruitment of low-threshold motor units is an underlying cause of chronic pain in trapezius myalgia. This study investigated the distribution of satellite cells (SCs), myonuclei, and macrophages in muscle biopsies from the trapezius muscle of 42 women performing...... repetitive manual work, diagnosed with trapezius myalgia (MYA; 44 ± 8 yr; mean ± SD) and 20 matched healthy controls (CON; 45 ± 9 yr). Our hypothesis was that muscle of MYA, in particular type I fibers, would demonstrate higher numbers of SCs, myonuclei, and macrophages compared with CON. SCs were identified...

  5. LHON and other optic nerve atrophies: the mitochondrial connection.

    Science.gov (United States)

    Howell, Neil

    2003-01-01

    The clinical, biochemical and genetic features of Leber's hereditary optic neuropathy (LHON) are reviewed. The etiology of LHON is complex, but the primary risk factor is a mutation in one of the seven mitochondrial genes that encode subunits of respiratory chain complex I. The pathogenesis of LHON is not yet understood, but one plausible model is that increased or altered mitochondrial ROS production renders the retinal ganglion cells vulnerable to apoptotic cell death. In addition to LHON, there are a large number of other optic nerve degenerative disorders including autosomal dominant optic atrophy, the toxic/nutritional optic neuropathies and glaucoma. A review of the recent scientific literature suggests that these disorders also involve mitochondrial dysfunction or altered mitochondrial signaling pathways in their pathogenesis. This mitochondrial link provides new avenues of experimental investigation to these major causes of loss of vision.

  6. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Science.gov (United States)

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  7. Changes in positive end-expiratory pressure alter the distribution of ventilation within the lung immediately after birth in newborn rabbits.

    Directory of Open Access Journals (Sweden)

    Marcus J Kitchen

    Full Text Available Current recommendations suggest the use of positive end-expiratory pressures (PEEP to assist very preterm infants to develop a functional residual capacity (FRC and establish gas exchange at birth. However, maintaining a consistent PEEP is difficult and so the lungs are exposed to changing distending pressures after birth, which can affect respiratory function. Our aim was to determine how changing PEEP levels alters the distribution of ventilation within the lung. Preterm rabbit pups (28 days gestation were delivered and mechanically ventilated with one of three strategies, whereby PEEP was changed in sequence; 0-5-10-5-0 cmH2O, 5-10-0-5-0 cmH2O or 10-5-0-10-0 cmH2O. Phase contrast X-ray imaging was used to analyse the distribution of ventilation in the upper left (UL, upper right (UR, lower left (LL and lower right (LR quadrants of the lung. Initiating ventilation with 10PEEP resulted in a uniform increase in FRC throughout the lung whereas initiating ventilation with 5PEEP or 0PEEP preferentially aerated the UR than both lower quadrants (p<0.05. Consequently, the relative distribution of incoming VT was preferentially directed into the lower lobes at low PEEP, primarily due to the loss of FRC in those lobes. Following ventilation at 10PEEP, the distribution of air at end-inflation was uniform across all quadrants and remained so regardless of the PEEP level. Uniform distribution of ventilation can be achieved by initiating ventilation with a high PEEP. After the lungs have aerated, small and stepped reductions in PEEP result in more uniform changes in ventilation.

  8. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke.

    Science.gov (United States)

    Yang, Hui; Hu, Jinxiang; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    The interaction between roots and bacterial communities in halophytic species is poorly understood. Here, we used Jerusalem artichoke cultivar Nanyu 1 (NY-1) to characterise root distribution patterns and determine diversity and abundance of bacteria in the rhizosphere soil under variable salinity. Root growth was not inhibited within the salinity range 1.2 to 1.9 g salt/kg, but roots were mainly confined to 0-20 cm soil layer vertically and 0-30 cm horizontally from the plant centre. Root concentrations of K(+), Na(+), Mg(2+) and particularly Ca(2+) were relatively high under salinity stress. High salinity stress decreased soil invertase and catalase activity. Using a next-generation, Illumina-based sequencing approach, we determined higher diversity of bacteria in the rhizosphere soil at high than low salinity. More than 15,500 valid reads were obtained, and Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria predominated in all samples, accounting for >80% of the reads. On a genus level, 636 genera were common to the low and high salinity treatments at 0-5 cm and 5-10 cm depth. The abundance of Steroidobacter and Sphingomonas was significantly decreased by increasing salinity. Higher Shannon and Chao 1 indices with increasing severity of salt stress indicated that high salt stress increased diversity in the bacterial communities. PMID:26852800

  9. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    OpenAIRE

    Omar Ortiz-Avila; Mauricio Esquivel-Martínez; Berenice Eridani Olmos-Orizaba; Alfredo Saavedra-Molina; Alain R. Rodriguez-Orozco; Christian Cortés-Rojo

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the...

  10. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    International Nuclear Information System (INIS)

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (∼ 5 log) and VSV (∼ 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells

  11. Genetic blockade of the dopamine D3 receptor enhances hippocampal expression of PACAP and receptors and alters their cortical distribution.

    Science.gov (United States)

    Marzagalli, R; Leggio, G M; Bucolo, C; Pricoco, E; Keay, K A; Cardile, V; Castorina, S; Salomone, S; Drago, F; Castorina, A

    2016-03-01

    Dopamine D3 receptors (D3Rs) are implicated in several aspects of cognition, but their role in aversive conditioning has only been marginally uncovered. Investigations have reported that blockade of D3Rs enhances the acquisition of fear memories, a phenomenon tightly linked to the neuropeptide pituitary adenylate cyclase-activating peptide (PACAP). However, the impact of D3R ablation on the PACAPergic system in regions critical for the formation of new memories remains unexplored. To address this issue, levels of PACAP and its receptors were compared in the hippocampus and cerebral cortex (CX) of mice devoid of functional D3Rs (D3R(-/-)) and wild-types (WTs) using a series of comparative immunohistochemical and biochemical analyses. Morphometric and stereological data revealed increased hippocampal area and volume in D3R(-/-) mice, and augmented neuronal density in CA1 and CA2/3 subfields. PACAP levels were increased in the hippocampus of D3R(-/-) mice. Expression of PACAP receptors was also heightened in mutant mice. In the CX, PACAP immunoreactivity (IR), was restricted to cortical layer V in WTs, but was distributed throughout layers IV-VI in D3R(-/-) mice, along with increased mRNAs, protein concentration and staining scores. Consistently, PAC1, VPAC1 and VPAC2 IRs were variably redistributed in CX, with a general upregulation in cortical layers II-IV in knockout animals. Our interpretation of these findings is that disturbed dopamine neurotransmission due to genetic D3R blockade may enhance the PACAP/PAC1-VPAC axis, a key endogenous system for the processing of fear memories. This could explain, at least in part, the facilitated acquisition and consolidation of aversive memories in D3R(-/-) mice. PMID:26718601

  12. Mitochondrial plasticity in pathophysiological conditions

    OpenAIRE

    Padrão, Ana Isabel Martins Novais

    2013-01-01

    Both skeletal and cardiac muscles daily burn tremendous amounts of ATP to meet the energy requirements for contraction. So, it is not surprising that the maintenance of mitochondrial morphology, number, distribution and functionality in striated muscle are important for muscle homeostasis. In these tissues mitochondria present the added dimension of two populations, the intermyofibrillar (IMF) and the subsarcolemmal (SS) mitochondria, being IMF the most abundant one. In the present thesis, th...

  13. Genetic deficiency of carnitine/organic cation transporter 2 (slc22a5) is associated with altered tissue distribution of its substrate pyrilamine in mice.

    Science.gov (United States)

    Kato, Sayaka; Kato, Yukio; Nakamura, Tadakatsu; Sugiura, Tomoko; Kubo, Yoshiyuki; Deguchi, Yoshiharu; Tsuji, Akira

    2009-12-01

    Carnitine/organic cation transporter 2 (OCTN2) recognizes various cationic compounds as substrates in vitro, but information on its pharmacokinetic role in vivo is quite limited. This paper demonstrates altered tissue distribution of the OCTN2 substrate pyrilamine in juvenile visceral steatosis (jvs) mice, which have a hereditary defect of the octn2 gene. At 30 min after intravenous injection of pyrilamine, the tissue-to-plasma concentration ratio (K(p)) in the heart and pancreas was higher, whereas the K(p) in kidney and testis was lower in jvs mice compared with wild-type mice. Pyrilamine transport studies in isolated heart slices confirmed higher accumulation, together with lower efflux, of pyrilamine in the heart of jvs mice. The higher accumulation in heart slices of jvs mice was abolished by lowering the temperature, by increasing the substrate concentration, and in the presence of other H(1) antagonists or another OCTN2 substrate, carnitine, suggesting that OCTN2 extrudes pyrilamine from heart tissue. On the other hand, the lower distribution to the kidney of jvs mice was probably due to down-regulation of a basolateral transporter coupled with OCTN2, because, in jvs mice, (i) the K(p) of pyrilamine in kidney assessed immediately after intravenous injection (approximately 1 min) was also lower, (ii) the urinary excretion of pyrilamine was lower, and (iii) the uptake of pyrilamine in kidney slices was lower. The renal uptake of pyrilamine was saturable (K(m) approximately 236 microM) and was strongly inhibited by cyproheptadine, astemizole, ebastine and terfenadine. The present study thus indicates that genetic deficiency of octn2 alters pyrilamine disposition tissue-dependently. PMID:19821448

  14. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats

    Directory of Open Access Journals (Sweden)

    Daniela eNavarro

    2015-02-01

    Full Text Available Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic and vesicular inhibitory amino acid transporter (VGAT; GABAergic immunoreactive (ir boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism and E21 (early postnatal hypothyroidism until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention and the elevated plus-maze (anxiety-like assessment tests. The distribution, density and size of VGlut1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.

  15. SEAWAT model used to evaluate the potential effects of alterations to the hydrologic system on the distribution of salinity in the Biscayne aquifer in Broward County, Florida

    Science.gov (United States)

    Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy

    2016-01-01

    A three-dimensional, variable-density solute-transport model (SEAWAT) was developed to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. The model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping , and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and use of drainage recharge wells on the future distribution of salinity in the aquifer. This USGS data release contains all of the input and output files for the simulations described in the associated model documentation report (http://dx.doi.org/10.3133/sir20165022). This data release also includes (1) preprocessing python scripts and associated input data files for creating the sensitivity and scenarios runs, (2) flopy source code, and (3) SEAWAT (v4) source code. This groundwater model was created to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. The development of the model input and output files included in this data release are documented in U.S. Geological Survey Scientific Investigations Report 2016-5022 (http://dx.doi.org/10.3133/sir20165022). The models, along with pre- and post-processing tools, will run successfully only if the original directory structure is correctly restored. The model archive is broken into several pieces to reduce the likelihood of download timeouts. Instructions for reconstructing the original directory structure and running the models included in this data release and described in the model

  16. Strokes in mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    N V Pizova

    2012-01-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  17. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  18. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    Science.gov (United States)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated

  19. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function.

    Science.gov (United States)

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function. PMID:26930489

  20. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2 and 4 (PDK4. In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function.

  1. Modulation of the matrix redox signaling by mitochondrial Ca2+

    Institute of Scientific and Technical Information of China (English)

    Jaime; Santo-Domingo; Andreas; Wiederkehr; Umberto; De; Marchi

    2015-01-01

    Mitochondria sense,shape and integrate signals,and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance,the molecular nature of the proteins involvedin mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and downstream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio,but at the same time will increase reactive oxygen species(ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state,which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redoxsensitive sensors,real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review,we describe mitochondrial Ca2+ handling,focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings,revealing how mitochondrial Ca2+ influences the matrix redox state. As a result,mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.

  2. Unsolved issues related to human mitochondrial diseases.

    Science.gov (United States)

    Lombès, Anne; Auré, Karine; Bellanné-Chantelot, Christine; Gilleron, Mylène; Jardel, Claude

    2014-05-01

    Human mitochondrial diseases, defined as the diseases due to a mitochondrial oxidative phosphorylation defect, represent a large group of very diverse diseases with respect to phenotype and genetic causes. They present with many unsolved issues, the comprehensive analysis of which is beyond the scope of this review. We here essentially focus on the mechanisms underlying the diversity of targeted tissues, which is an important component of the large panel of these diseases phenotypic expression. The reproducibility of genotype/phenotype expression, the presence of modifying factors, and the potential causes for the restricted pattern of tissular expression are reviewed. Special emphasis is made on heteroplasmy, a specific feature of mitochondrial diseases, defined as the coexistence within the cell of mutant and wild type mitochondrial DNA molecules. Its existence permits unequal segregation during mitoses of the mitochondrial DNA populations and consequently heterogeneous tissue distribution of the mutation load. The observed tissue distributions of recurrent human mitochondrial DNA deleterious mutations are diverse but reproducible for a given mutation demonstrating that the segregation is not a random process. Its extent and mechanisms remain essentially unknown despite recent advances obtained in animal models.

  3. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  4. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omar Ortiz-Avila

    2015-01-01

    Full Text Available Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats. Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential ΔΨm, besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  5. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  6. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  7. Separating Population Structure from Population History: A Cladistic Analysis of the Geographical Distribution of Mitochondrial DNA Haplotypes in the Tiger Salamander, Ambystoma Tigrinum

    Science.gov (United States)

    Templeton, A. R.; Routman, E.; Phillips, C. A.

    1995-01-01

    Nonrandom associations of alleles or haplotypes with geographical location can arise from restricted gene flow, historical events (fragmentation, range expansion, colonization), or any mixture of these factors. In this paper, we show how a nested cladistic analysis of geographical distances can be used to test the null hypothesis of no geographical association of haplotypes, test the hypothesis that significant associations are due to restricted gene flow, and identify patterns of significant association that are due to historical events. In this last case, criteria are given to discriminate among contiguous range expansion, long-distance colonization, and population fragmentation. The ability to make these discriminations depends critically upon an adequate geographical sampling design. These points are illustrated with a worked example: mitochondrial DNA haplotypes in the salamander Ambystoma tigrinum. For this example, prior information exists about restricted gene flow and likely historical events, and the nested cladistic analyses were completely concordant with this prior information. This concordance establishes the plausibility of this nested cladistic approach, but much future work will be necessary to demonstrate robustness and to explore the power and accuracy of this procedure. PMID:7498753

  8. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter.

    Science.gov (United States)

    Pan, Xin; Liu, Jie; Nguyen, Tiffany; Liu, Chengyu; Sun, Junhui; Teng, Yanjie; Fergusson, Maria M; Rovira, Ilsa I; Allen, Michele; Springer, Danielle A; Aponte, Angel M; Gucek, Marjan; Balaban, Robert S; Murphy, Elizabeth; Finkel, Toren

    2013-12-01

    Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU(-/-) mice have no apparent capacity to rapidly uptake calcium. Whereas basal metabolism seems unaffected, the skeletal muscle of MCU(-/-) mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU(-/-) mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU(-/-) mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not seem to protect MCU(-/-) cells and tissues from cell death, although MCU(-/-) hearts fail to respond to the PTP inhibitor cyclosporin A. Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.

  9. Production of Reactive Oxygen Species, Alteration of Cytosolic Ascorbate Peroxidase, and Impairment of Mitochondrial Metabolism Are Early Events in Heat Shock-Induced Programmed Cell Death in Tobacco Bright-Yellow 2 Cells1

    Science.gov (United States)

    Vacca, Rosa Anna; de Pinto, Maria Concetta; Valenti, Daniela; Passarella, Salvatore; Marra, Ersilia; De Gara, Laura

    2004-01-01

    To gain some insight into the mechanisms by which plant cells die as a result of abiotic stress, we exposed tobacco (Nicotiana tabacum) Bright-Yellow 2 cells to heat shock and investigated cell survival as a function of time after heat shock induction. Heat treatment at 55°C triggered processes leading to programmed cell death (PCD) that was complete after 72 h. In the early phase, cells undergoing PCD showed an immediate burst in hydrogen peroxide (H2O2) and superoxide (O2·-) anion production. Consistently, death was prevented by the antioxidants ascorbate (ASC) and superoxide dismutase (SOD). Actinomycin D and cycloheximide, inhibitors of transcription and translation, respectively, also prevented cell death, but with a lower efficiency. Induction of PCD resulted in gradual oxidation of endogenous ASC; this was accompanied by a decrease in both the amount and the specific activity of the cytosolic ASC peroxidase (cAPX). A reduction in cAPX gene expression was also found in the late PCD phase. Moreover, changes of cAPX kinetic properties were found in PCD cells. Production of ROS in PCD cells was accompanied by early inhibition of glucose (Glc) oxidation, with a strong impairment of mitochondrial function as shown by an increase in cellular NAD(P)H fluorescence, and by failure of mitochondria isolated from cells undergoing PCD to generate membrane potential and to oxidize succinate in a manner controlled by ADP. Thus, we propose that in the early phase of tobacco Bright-Yellow 2 cell PCD, ROS production occurs, perhaps because of damage of the cell antioxidant system, with impairment of the mitochondrial oxidative phosphorylation. PMID:15020761

  10. Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma.

    Science.gov (United States)

    Lennon, Frances E; Cianci, Gianguido C; Kanteti, Rajani; Riehm, Jacob J; Arif, Qudsia; Poroyko, Valeriy A; Lupovitch, Eitan; Vigneswaran, Wickii; Husain, Aliya; Chen, Phetcharat; Liao, James K; Sattler, Martin; Kindler, Hedy L; Salgia, Ravi

    2016-01-01

    Malignant mesothelioma (MM), is an intractable disease with limited therapeutic options and grim survival rates. Altered metabolic and mitochondrial functions are hallmarks of MM and most other cancers. Mitochondria exist as a dynamic network, playing a central role in cellular metabolism. MM cell lines display a spectrum of altered mitochondrial morphologies and function compared to control mesothelial cells. Fractal dimension and lacunarity measurements are a sensitive and objective method to quantify mitochondrial morphology and most importantly are a promising predictor of response to mitochondrial inhibition. Control cells have high fractal dimension and low lacunarity and are relatively insensitive to mitochondrial inhibition. MM cells exhibit a spectrum of sensitivities to mitochondrial inhibitors. Low mitochondrial fractal dimension and high lacunarity correlates with increased sensitivity to the mitochondrial inhibitor metformin. Lacunarity also correlates with sensitivity to Mdivi-1, a mitochondrial fission inhibitor. MM and control cells have similar sensitivities to cisplatin, a chemotherapeutic agent used in the treatment of MM. Neither oxidative phosphorylation nor glycolytic activity, correlated with sensitivity to either metformin or mdivi-1. Our results suggest that mitochondrial inhibition may be an effective and selective therapeutic strategy in mesothelioma, and identifies mitochondrial morphology as a possible predictor of response to targeted mitochondrial inhibition. PMID:27080907

  11. Spatial distribution, risk factors and haemato-biochemical alterations associated with Theileria equi infected equids of Punjab (India) diagnosed by indirect ELISA and nested PCR.

    Science.gov (United States)

    Sumbria, Deepak; Singla, L D; Kumar, Sanjay; Sharma, Amrita; Dahiya, Rajesh K; Setia, Raj

    2016-03-01

    Equine piroplasmosis is a febrile, tick-borne disease of equids predominately caused by obligatory intra-erythrocytic protozoa Theileria equi in the Indian sub-continent. A cross-sectional study was carried out on 464 equids (426 horses and 38 donkeys/mules) in Punjab, India to assess the level of exposure to equine piroplasmosis by 18S rRNA gene nested polymerase chain reaction (nPCR) and equine merozoite antigen-2 (EMA2) indirect-ELISA (enzyme linked immunosorbent assay), to investigate risk factors and haemato-biochemical alterations associated with the infection. The endemicity of the disease was confirmed by positive PCR amplification in 21.77% and positive antibody titers in 49.78% equid samples. There was a fair agreement between these two diagnostic techniques (Kappa coefficient=0.326). The spatial distribution analysis revealed an increasing trend of T. equi prevalence from north-eastern to south-western region of Punjab by both the techniques correspondingly, which proffered a direct relation with temperature and inverse with humidity variables. The relatively prominent risk factor associated with sero-positivity was the presence of other domestic animals in the herd, while the propensity of finding a positive PCR amplification was higher in donkeys/mules, animal kept at unorganised farm or those used for commercial purposes as compared to their counterparts. There was a significant increase in globulins, gamma glutamyl-transferase, total bilirubin, direct bilirubin, indirect bilirubin, glucose levels and decrease in total erythrocyte count, haemoglobin, packed cell volume by animals, which were revealed positive by nPCR (may or may not positive by indirect-ELISA) and increase in creatinine, total bilirubin, direct bilirubin, glucose and decrease in total erythrocytes count by animals, which were revealed positive by indirect-ELISA (alone). To our knowledge, this study, for the first time, brings out a comprehensive report on the status on spatial

  12. Scoliosis in Mitochondrial Myopathy

    OpenAIRE

    Li, Zheng; Shen, Jianxiong; Liang, Jinqian

    2015-01-01

    Abstract The mitochondrial myopathies include a diverse group of disorders characterized by morphological abnormalities of muscle mitochondria. Little is reported about spinal deformity associated with this syndrome. This study presents a case of scoliosis occurring in the setting of mitochondrial myopathies and explores the possible mechanisms between the 2 diseases. A previously unreported scoliosis in mitochondrial myopathies is described. The patient was a 16-year-old Chinese adolescent b...

  13. Distribution of electrophoretically separated serum high density lipoprotein subfraction levels among healthy students and its alteration in patients with liver diseases.

    Directory of Open Access Journals (Sweden)

    Ikeda,Satoru

    1986-06-01

    Full Text Available In an attempt to evaluate high density lipoprotein (HDL subfraction levels in liver diseases, HDL was separated by a precipitation method with dextran sulfate-Mg2+ from sera of 289 healthy adults and 50 patients with liver diseases. The HDL was subdivided into HDL2e and HDL3e by Utermann's polyacrylamide gel electrophoresis with lauric acid. Ultracentrifugally separated HDL2 and HDL3 roughly corresponded to HDL2e and HDL3e, respectively. Male and female groups had different distributions of HDL2e/HDL3e ratios. Among healthy males, 121 cases had ratios less than 1.0 (mean +/- SD = 0.72 +/- 0.39, n = 150, while among healthy females, the ratios were generally larger than those of males and varied widely from 0.2 to 6.6 (mean +/- SD = 1.77 +/- 1.05, n = 139. Low levels of HDL-cholesterol were found in patients with liver diseases, except those with mild alcoholic liver injury and intrahepatic cholestasis. Apparent decreases in HDL3e, but not in HDL2e, were found in all cases with liver diseases investigated, even in those who did not show decreases in the total HDL level, when male and female patients were analyzed separately. The analysis of HDL subfractions by the present method is simple and useful for the study on altered lipid metabolism in liver diseases.

  14. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  15. Mitophagy plays a central role in mitochondrial ageing.

    Science.gov (United States)

    Diot, Alan; Morten, Karl; Poulton, Joanna

    2016-08-01

    The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing. PMID:27352213

  16. Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia.

    Directory of Open Access Journals (Sweden)

    Jeiczon Jaimes-Dueñez

    2015-04-01

    Full Text Available Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4, Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV.Mitochondrial cytochrome oxidase C subunit 1 (COI--NADH dehydrogenase subunit 4 (ND4 genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations was found in all the cities throughout the sampling while the second group (associated with East African populations was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities.Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is widespread and related to a West

  17. Mitochondrial Proteases as Emerging Pharmacological Targets.

    Science.gov (United States)

    Gibellini, Lara; De Biasi, Sara; Nasi, Milena; Iannone, Anna; Cossarizza, Andrea; Pinti, Marcello

    2016-01-01

    The preservation of mitochondrial function and integrity is critical for cell viability. Under stress conditions, unfolded, misfolded or damaged proteins accumulate in a certain compartment of the organelle, interfering with oxidative phosphorylation and normal mitochondrial functions. In stress conditions, several mechanisms, including mitochondrial unfolded protease response (UPRmt), fusion and fission, and mitophagy are engaged to restore normal proteostasis of the organelle. Mitochondrial proteases are a family of more than 20 enzymes that not only are involved in the UPRmt, but actively participate at multiple levels in the stress-response system. Alterations in their expression levels, or mutations that determine loss or gain of function of these proteases deeply impair mitochondrial functionality and can be associated with the onset of inherited diseases, with the development of neurodegenerative disorders and with the process of carcinogenesis. In this review, we focus our attention on six of them, namely CLPP, HTRA2 and LONP1, by analysing the current knowledge about their functions, their involvement in the pathogenesis of human diseases, and the compounds currently available for inhibiting their functions. PMID:26831646

  18. Mitochondrial Dysfunction: Different Routes to Alzheimer’s Disease Therapy

    OpenAIRE

    Pasquale Picone; Domenico Nuzzo; Luca Caruana; Valeria Scafidi; Marta Di Carlo

    2014-01-01

    Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ), an important component in Alzheimer's disease (AD) pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dys...

  19. Mechanisms of Mitochondrial Damage in Keratinocytes by Pemphigus Vulgaris Antibodies*

    OpenAIRE

    Kalantari-Dehaghi, Mina; Chen, Yumay; Deng, Wu; Chernyavsky, Alex; Marchenko, Steve; Wang, Ping H.; Grando, Sergei A.

    2013-01-01

    Background: Previous studies suggested that mitochondrial antibodies contribute to pemphigus vulgaris (PV).Results: PV sera elicited mitochondrial damage, and mitochondria-protecting drugs exhibited protective effect in cell culture and mouse skin.Conclusion: PV antibodies altered O2 respiration, disrupted electron transfer chain, and increased reactive oxygen species.Significance: Results provide the mechanism of therapeutic action and justify the use of mitochondria-protecting drugs in PV.T...

  20. Analysis of mitochondrial haemoglobin in Parkinson's disease brain

    OpenAIRE

    Shephard, Freya; Greville-Heygate, Oliver; Liddell, Susan; Emes, Richard D.; Chakrabarti, Lisa

    2016-01-01

    Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of ha...

  1. Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements

    OpenAIRE

    Nicolson, Garth L.

    2014-01-01

    Loss of function in mitochondria, the key organelle responsible for cellular energy production, can result in the excess fatigue and other symptoms that are common complaints in almost every chronic disease. At the molecular level, a reduction in mitochondrial function occurs as a result of the following changes: (1) a loss of maintenance of the electrical and chemical transmembrane potential of the inner mitochondrial membrane, (2) alterations in the function of the electron transport chain,...

  2. Mitochondrial Dynamics in Diabetes

    OpenAIRE

    Yoon, Yisang; Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emergin...

  3. Heterogeneity of mitochondrial DNA from Saccharomyces carlsbergensis. Denaturation mapping by electron microscopy.

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Bak, AL

    1975-01-01

    Electronmicroscopic observation of the denaturation pattern of 130 partially denaturated linear mitochondrial DNA molecules from Saccharomyces carlsbergensis was used to investigate the distribution of AT-rich sequences within the mitochondrial genome. The molecules were observed after heating...... denaturated sequences in the mitochondrial DNA. These sequences which presumably correspond to the very AT-rich regions, known to exist in the yeast mitochondrial DNA, were found at intervals of about 0.5 - 3 mum on the map....

  4. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  5. Mitochondrial DNA Variation Reveals a Sharp Genetic Break within the Distribution of the Blue Land Crab Cardisoma guanhumi in the Western Central Atlantic

    Directory of Open Access Journals (Sweden)

    Maria Rosimere Xavier Amaral

    2015-08-01

    Full Text Available The blue land crab Cardisoma guanhumi is widely distributed throughout tropical and subtropical estuarine regions in the Western Central Atlantic (WCA. Patterns of population genetic structure and historical demographics of the species were assessed by mtDNA control region sequence analysis to examine the connectivity among five populations (n = 97 within the region for future conservation strategies and decision-making of fishery management. A total of 234 polymorphic nucleotides were revealed within the sequence region, which have defined 93 distinct haplotypes. No dominant mtDNA haplotypes were found but instead a distribution of a few low-frequency recurrent haplotypes with a large number of singletons. A NJ-tree and a median-joining haplotype network revealed two distinct clusters, corresponding to individuals from estuaries located along the Caribbean Sea and Brazilian waters, respectively. AMOVA and FST statistics supported the hypothesis that two main geographic regions exists. Phylogeographical discontinuity was further demonstrated by the Bayesian assignment analysis and a significant pattern of isolation-by-distance. Additionally, tests of neutral evolution and analysis of mismatch distribution indicate a complex demographic history in the WCA, which corresponds to bottleneck and subsequent population growth. Overall, a sharp genetic break between Caribbean and Brazilian populations raised concerns over the conservation status of the blue land crab.

  6. Mitochondrial DNA Variation Reveals a Sharp Genetic Break within the Distribution of the Blue Land Crab Cardisoma guanhumi in the Western Central Atlantic.

    Science.gov (United States)

    Amaral, Maria Rosimere Xavier; Albrecht, Marc; McKinley, Alan Shane; de Carvalho, Adriana Márcia Ferreira; de Sousa Junior, Severino Cavalcante; Diniz, Fabio Mendonça

    2015-08-19

    The blue land crab Cardisoma guanhumi is widely distributed throughout tropical and subtropical estuarine regions in the Western Central Atlantic (WCA). Patterns of population genetic structure and historical demographics of the species were assessed by mtDNA control region sequence analysis to examine the connectivity among five populations (n = 97) within the region for future conservation strategies and decision-making of fishery management. A total of 234 polymorphic nucleotides were revealed within the sequence region, which have defined 93 distinct haplotypes. No dominant mtDNA haplotypes were found but instead a distribution of a few low-frequency recurrent haplotypes with a large number of singletons. A NJ-tree and a median-joining haplotype network revealed two distinct clusters, corresponding to individuals from estuaries located along the Caribbean Sea and Brazilian waters, respectively. AMOVA and FST statistics supported the hypothesis that two main geographic regions exists. Phylogeographical discontinuity was further demonstrated by the Bayesian assignment analysis and a significant pattern of isolation-by-distance. Additionally, tests of neutral evolution and analysis of mismatch distribution indicate a complex demographic history in the WCA, which corresponds to bottleneck and subsequent population growth. Overall, a sharp genetic break between Caribbean and Brazilian populations raised concerns over the conservation status of the blue land crab.

  7. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.

    Science.gov (United States)

    Perier, Celine; Bender, Andreas; García-Arumí, Elena; Melià, Ma Jesus; Bové, Jordi; Laub, Christoph; Klopstock, Thomas; Elstner, Matthias; Mounsey, Ross B; Teismann, Peter; Prolla, Tomas; Andreu, Antoni L; Vila, Miquel

    2013-08-01

    Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA

  8. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.

    Science.gov (United States)

    Perier, Celine; Bender, Andreas; García-Arumí, Elena; Melià, Ma Jesus; Bové, Jordi; Laub, Christoph; Klopstock, Thomas; Elstner, Matthias; Mounsey, Ross B; Teismann, Peter; Prolla, Tomas; Andreu, Antoni L; Vila, Miquel

    2013-08-01

    Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA

  9. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential.

    Science.gov (United States)

    Meeran, Syed M; Katiyar, Santosh K

    2007-05-01

    Dietary grape seed proanthocyanidins (GSPs) prevent photocarcinogenesis in mice. Here, we report that in vitro treatment of human epidermoid carcinoma A431 cells with GSPs inhibited cellular proliferation (13-89%) and induced cell death (1-48%) in a dose (5-100 mug/ml)- and time (24, 48 and 72 h)-dependent manner. GSP-induced inhibition of cell proliferation was associated with an increase in G1-phase arrest at 24 h, which was mediated through the inhibition of cyclin-dependent kinases (Cdk) Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and simultaneous increase in protein expression of cyclin-dependent kinase inhibitors (Cdki), Cip1/p21 and Kip1/p27, and enhanced binding of Cdki-Cdk. The treatment of A431 cells with GSPs (20-80 mug/ml) resulted in a dose-dependent increase in apoptotic cell death (26-58%), which was associated with an increased protein expression of proapoptotic Bax, decreased expression of antiapoptotic Bcl-2 and Bcl-xl, loss of mitochondrial membrane potential, and cleavage of caspase-9, caspase-3 and PARP. Pretreatment with the pan-caspase inhibitor (z-VAD-fmk) blocked the GSP-induced apoptosis in A431 cells suggesting that GSP-induced apoptosis is associated primarily with the caspase-3-dependent pathway. Together, our study suggests that GSPs possess chemotherapeutic potential against human epidermoid carcinoma cells in vitro, further in vivo mechanistic studies are required to verify the chemotherapeutic effect of GSPs in skin cancers. PMID:17437483

  10. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro

    Science.gov (United States)

    Ding, Lianggong; Han, Yanping; Li, Yuhong; Ji, Xunming; Liu, Lei

    2016-01-01

    As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF). However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF) vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF) Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro’s effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson’s disease (PD), caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional. PMID:27716788

  11. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E; Zhang, Xueqian; Guo, Shuchi; Kolesar, Jill E; Hines, Kevin J; Ragheb, Jonathan; Jog, Neelakshi R; Caricchio, Roberto; Baba, Yoshihiro; Zhou, Yandong; Kaufman, Brett A; Cheung, Joseph Y; Kurosaki, Tomohiro; Gill, Donald L; Madesh, Muniswamy

    2015-03-03

    Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.

  12. Phenyl-α-tert-Butyl Nitrone Reverses Mitochondrial Decay in Acute Chagas’ Disease

    OpenAIRE

    Wen, Jian-jun; Bhatia, Vandanajay; Popov, Vsevolod L.; Garg, Nisha Jain

    2006-01-01

    In this study, we investigated the mechanism(s) of mitochondrial functional decline in acute Chagas’ disease. Our data show a substantial decline in respiratory complex activities (39 to 58%) and ATP (38%) content in Trypanosoma cruzi-infected murine hearts compared with normal controls. These metabolic alterations were associated with an approximately fivefold increase in mitochondrial reactive oxygen species production rate, substantial oxidative insult of mitochondrial membranes and respir...

  13. Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness

    OpenAIRE

    Raimundo, Nuno; Song, Lei; Shutt, Timothy E.; McKay, Sharen E.; Cotney, Justin; Guan, Min-Xin; Gilliland, Thomas C.; Hohuan, David; Santos-Sacchi, Joseph; Shadel, Gerald S.

    2012-01-01

    Mitochondrial dysfunction causes poorly understood tissue-specific pathology stemming from primary defects in respiration, coupled with altered reactive oxygen species (ROS), metabolic signaling and apoptosis. The A1555G mtDNA mutation that causes maternally inherited deafness disrupts mitochondrial ribosome function, in part, via increased methylation of the mitochondrial 12S rRNA by the methyltransferase mtTFB1. In patient-derived A1555G cells, we show that 12S rRNA hyper-methylation causes...

  14. clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin

    OpenAIRE

    Cox, Rachel T.; Spradling, Allan C.

    2009-01-01

    Parkinson’s disease has been linked to altered mitochondrial function. Mutations in parkin (park), the Drosophila ortholog of a human gene that is responsible for many familial cases of Parkinson’s disease, shorten life span, abolish fertility and disrupt mitochondrial structure. However, the role played by Park in mitochondrial function remains unclear. Here, we describe a novel Drosophila gene, clueless (clu), which encodes a highly conserved tetratricopeptide repeat protein that is related...

  15. Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangho; Kim, Minjung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Lim, Wonchung [Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 363-764 (Korea, Republic of); Kim, Taeyoung [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Kang, Chounghun, E-mail: kangx119@umn.edu [Department of Physical Education, Hankuk Univrsity of Foreign Studies, Seoul 130-791 (Korea, Republic of); Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, MN 55455 (United States)

    2015-05-29

    Strenuous exercise is known to cause excessive ROS generation and inflammation. However, the mechanisms responsible for the regulation of mitochondrial integrity in the senescent muscle during high-intensity exercise (HE) are not well studied. Here, we show that HE suppresses up-regulation of mitochondrial function despite increase in mitochondrial copy number, following excessive ROS production, proinflammatory cytokines and NFκB activation. Moreover, HE in the old group resulted in the decreasing of both fusion (Mfn2) and fission (Drp1) proteins that may contribute to alteration of mitochondrial morphology. This study suggests that strenuous exercise does not reverse age-related mitochondrial damage and dysfunction by the increased ROS and inflammation. - Highlights: • Effect of exercise on mitochondrial function of aged skeletal muscles was studied. • Strenuous exercise triggered excessive ROS production and inflammatory cytokines. • Strenuous exercise suppressed mitochondrial function in senescent muscle.

  16. Loss of the SIN3 transcriptional corepressor results in aberrant mitochondrial function

    Directory of Open Access Journals (Sweden)

    Hüttemann Maik

    2010-07-01

    Full Text Available Abstract Background SIN3 is a transcriptional repressor protein known to regulate many genes, including a number of those that encode mitochondrial components. Results By monitoring RNA levels, we find that loss of SIN3 in Drosophila cultured cells results in up-regulation of not only nuclear encoded mitochondrial genes, but also those encoded by the mitochondrial genome. The up-regulation of gene expression is accompanied by a perturbation in ATP levels in SIN3-deficient cells, suggesting that the changes in mitochondrial gene expression result in altered mitochondrial activity. In support of the hypothesis that SIN3 is necessary for normal mitochondrial function, yeast sin3 null mutants exhibit very poor growth on non-fermentable carbon sources and show lower levels of ATP and reduced respiration rates. Conclusions The findings that both yeast and Drosophila SIN3 affect mitochondrial activity suggest an evolutionarily conserved role for SIN3 in the control of cellular energy production.

  17. Strenuous exercise induces mitochondrial damage in skeletal muscle of old mice

    International Nuclear Information System (INIS)

    Strenuous exercise is known to cause excessive ROS generation and inflammation. However, the mechanisms responsible for the regulation of mitochondrial integrity in the senescent muscle during high-intensity exercise (HE) are not well studied. Here, we show that HE suppresses up-regulation of mitochondrial function despite increase in mitochondrial copy number, following excessive ROS production, proinflammatory cytokines and NFκB activation. Moreover, HE in the old group resulted in the decreasing of both fusion (Mfn2) and fission (Drp1) proteins that may contribute to alteration of mitochondrial morphology. This study suggests that strenuous exercise does not reverse age-related mitochondrial damage and dysfunction by the increased ROS and inflammation. - Highlights: • Effect of exercise on mitochondrial function of aged skeletal muscles was studied. • Strenuous exercise triggered excessive ROS production and inflammatory cytokines. • Strenuous exercise suppressed mitochondrial function in senescent muscle

  18. United Mitochondrial Disease Foundation

    Science.gov (United States)

    ... to Mitochondrial Disease FAQ's MitoFirst Handbook More Information Mito 101 Symposium Archives Get Connected Find an Event Adult Advisory Council Team Ask The Mito Doc Grand Rounds Kids & Teens Medical Child Abuse ...

  19. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.;

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  20. Mitochondrial metabolism and diabetes

    OpenAIRE

    Kwak, Soo Heon; Park, Kyong Soo; Lee, Ki‐Up; Lee, Hong Kyu

    2010-01-01

    Abstract The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose‐stimulated insulin...

  1. Mitochondrial dynamics and apoptosis

    OpenAIRE

    Suen, Der-Fen; Norris, Kristi L.; Youle, Richard J.

    2008-01-01

    In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondri...

  2. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

    Science.gov (United States)

    Cagalinec, Michal; Liiv, Mailis; Hodurova, Zuzana; Hickey, Miriam Ann; Vaarmann, Annika; Mandel, Merle; Zeb, Akbar; Choubey, Vinay; Kuum, Malle; Safiulina, Dzhamilja; Vasar, Eero; Veksler, Vladimir; Kaasik, Allen

    2016-07-01

    Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases. PMID:27434582

  3. Mitochondrial functions on oocytes and preimplantation embryos

    Institute of Scientific and Technical Information of China (English)

    Li-ya WANG; Da-hui WANG; Xiang-yang ZOU; Chen-ming XU

    2009-01-01

    Oocyte quality has long been considered as a main limiting factor for in vitro fertilization (IVF). In the past decade,extensive observations demonstrated that the mitochondrion plays a vital role in the oocyte cytoplasm, for it can provide adenosine triphosphate (ATP) for fertilization and preimplantation embryo development and also act as stores of intracellular calcium and proapoptotic factors. During the oocyte maturation, mitochondria are characterized by distinct changes of their distribution pattern from being homogeneous to heterogeneous, which is correlated with the cumulus apoptosis. Oocyte quality decreases with the increasing maternal age. Recent studies have shown that low quality oocytes have some age-related dysfunctions, which include the decrease in mitochondrial membrane potential, increase of mitochondrial DNA (mtDNA) damages, chromosomal aneuploidies,the incidence of apoptosis, and changes in mitochondrial gene expression. All these dysfunctions may cause a high level of developmental retardation and arrest of preimplantation embryos. It has been suggested that these mitochondrial changes may arise from excessive reactive oxygen species (ROS) that is closely associated with the oxidative energy production or calcium overload,which may trigger permeability transition pore opening and subsequent apoptosis. Therefore, mitochondria can be seen as signs for oocyte quality evaluation, and it is possible that the oocyte quality can be improved by enhancing the physical function of mitochondria. Here we reviewed recent advances in mitochondrial functions on oocytes.

  4. Control mechanisms in mitochondrial oxidative phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jana Hroudová; Zdeněk Fi(s)ar

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  5. HUMAN MITOCHONDRIAL tRNA MUTATIONS IN MATERNALLY INHERITED DEAFNESS

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jing; GONG Sha-sha; TANG Xiao-wen; ZHU Yi; GUAN Min-xin

    2013-01-01

    Mutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syn-dromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR) 3243A>G associated with syndromic deafness are often present in heteroplasmy, and the non-syndromic deafness-associated tRNA mu-tations including tRNASer(UCN) 7445A>G are often in homoplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary factors underlying the development of hearing loss. However, other tRNA mutations such as tRNAThr 15927G>A and tRNASer(UCN) 7444G>A are insufficient to produce a deafness phe-notype, but always act in synergy with the primary mitochondrial DNA mutations, and can modulate their phenotypic manifestation. These tRNA mutations may alter the structure and function of the corresponding mitochondrial tRNAs and cause failures in tRNAs metabolism. Thereby, the impairment of mitochondrial protein synthesis and subsequent defects in respiration caused by these tRNA mutations, results in mitochon-drial dysfunctions and eventually leads to the development of hearing loss. Here, we summarized the deaf-ness-associated mitochondrial tRNA mutations and discussed the pathophysiology of these mitochondrial tRNA mutations, and we hope these data will provide a foundation for the early diagnosis, management, and treatment of maternally inherited deafness.

  6. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  7. Analysis of Mitochondrial haemoglobin in Parkinson's disease brain.

    Science.gov (United States)

    Shephard, Freya; Greville-Heygate, Oliver; Liddell, Susan; Emes, Richard; Chakrabarti, Lisa

    2016-07-01

    Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of haemoglobin in the mitochondria compared with the cytosol. An additional cycle of hypoxia and recovery led to a significant increase of mitochondrial haemoglobin (pbrains. Relative mitochondrial/cytosolic quantities of haemoglobin were obtained for the cortical region, substantia nigra and cerebellum. In age matched post-mortem brain mitochondrial haemoglobin ratios change, decreasing with disease duration in female cerebellum samples (n=7). The change is less discernible in male cerebellum (n=18). In cerebellar mitochondria, haemoglobin localisation in males with long disease duration shifts from the intermembrane space to the outer membrane of the organelle. These new data illustrate dynamic localisation of mitochondrial haemoglobin within the cell. Mitochondrial haemoglobin should be considered in the context of gender differences characterised in Parkinson's disease. It has been postulated that cerebellar circuitry may be activated to play a protective role in individuals with Parkinson's. The changing localisation of intracellular haemoglobin in response to hypoxia presents a novel pathway to delineate the role of the cerebellum in Parkinson's disease. PMID:27181046

  8. Caenorhabditis elegans ATAD-3 modulates mitochondrial iron and heme homeostasis.

    Science.gov (United States)

    van den Ecker, Daniela; Hoffmann, Michael; Müting, Gesine; Maglioni, Silvia; Herebian, Diran; Mayatepek, Ertan; Ventura, Natascia; Distelmaier, Felix

    2015-11-13

    ATAD3 (ATPase family AAA domain-containing protein 3) is a mitochondrial protein, which is essential for cell viability and organismal development. ATAD3 has been implicated in several important cellular processes such as apoptosis regulation, respiratory chain function and steroid hormone biosynthesis. Moreover, altered expression of ATAD3 has been associated with several types of cancer. However, the exact mechanisms underlying ATAD3 effects on cellular metabolism remain largely unclear. Here, we demonstrate that Caenorhabditis elegans ATAD-3 is involved in mitochondrial iron and heme homeostasis. Knockdown of atad-3 caused mitochondrial iron- and heme accumulation. This was paralleled by changes in the expression levels of several iron- and heme-regulatory genes as well as an increased heme uptake. In conclusion, our data indicate a regulatory role of C. elegans ATAD-3 in mitochondrial iron and heme metabolism.

  9. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.;

    2009-01-01

    -derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican...

  10. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    Science.gov (United States)

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  11. Neurological mitochondrial cytopathies.

    Directory of Open Access Journals (Sweden)

    Mehndiratta M

    2002-04-01

    Full Text Available The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years. Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes, three had MERRF (myoclonic epilepsy and ragged red fibre myopathy, three cases had KSS (Kearns-Sayre Syndrome and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%. Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.

  12. Mitochondrial fusion and inheritance of the mitochondrial genome.

    Science.gov (United States)

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  13. Connexin 43 impacts on mitochondrial potassium uptake

    Directory of Open Access Journals (Sweden)

    Kerstin eBoengler

    2013-06-01

    Full Text Available In cardiomyocytes, connexin 43 (Cx43 forms gap junctions and unopposed hemichannels at the plasma membrane, but the protein is also present at the inner membrane of subsarcolemmal mitochondria. Both inhibition and genetic ablation of Cx43 reduce ADP-stimulated complex 1 respiration. Since mitochondrial potassium influx impacts on oxygen consumption, we investigated whether or not inhibition or ablation of mitochondrial Cx43 alters mitochondrial potassium uptake.Subsarcolemmal mitochondria were isolated from rat left ventricular (LV myocardium and loaded with the potassium-sensitive dye PBFI. Intramitochondrial potassium was replaced by TEA (tetraethylammonium. Mitochondria were incubated under control conditions or treated with 250 µM Gap19, a peptide that specifically inhibits Cx43-dependent hemichannels at plasma membranes. Subsequently, 140 mM KCl was added and the slope of the increase in PBFI fluorescence over time was calculated. The slope of the PBFI fluorescence of the control mitochondria was set to 100%. In the presence of Gap19, the mitochondrial potassium influx was reduced from 100±11.6 % in control mitochondria to 65.5±10.7 % (n=6, p<0.05. In addition to the pharmacological inhibition of Cx43, potassium influx was studied in mitochondria isolated from conditional Cx43 knockout mice. Here, the ablation of Cx43 was achieved by the injection of 4-hydroxytamoxifen (Cx43Cre-ER(T/fl + 4-OHT. The mitochondria of the Cx43Cre-ER(T/fl + 4-OHT mice contained 3±1% Cx43 (n=6 of that in control mitochondria (100±11%, n=8, p<0.05. The ablation of Cx43 (n=5 reduced the velocity of the potassium influx from 100±11.2 % in control mitochondria (n=9 to 66.6±5.5 % (p<0.05.Taken together, our data indicate that both pharmacological inhibition and genetic ablation of Cx43 reduce mitochondrial potassium influx.

  14. Adult-onset mitochondrial myopathy.

    Science.gov (United States)

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  15. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Mario eChiong

    2014-12-01

    Full Text Available Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs are essential processes of vascular development. VSMCs have biosynthetic, proliferative and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMCs play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e. mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER. Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial-ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.

  16. Mitochondrial Dysfunction and Psychiatric Disorders

    OpenAIRE

    Shaw-Hwa Jou; Nan-Yin Chiu; Chin-San Liu

    2009-01-01

    Mitochondria are intracellular organelles crucial in the production of cellular energy.Mitochondrial diseases may result from malfunctions in this biochemical cascade. Severalinvestigators have proposed that mitochondrial dysfunction is related to the pathophysiologyof bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). Theauthors reviewed recent study findings and tried to delineate the current understanding of thecorrelation between mitochondrial dysfunction and p...

  17. Age- and gender-related distribution of bone mineral density and mechanical properties of the proximal humerus; Alters- und geschlechtsabhaengige Knochenmineraldichteverteilung und mechanische Eigenschaften des proximalen Humerus

    Energy Technology Data Exchange (ETDEWEB)

    Lill, H.; Hepp, P.; Korner, J.; Josten, C. [Klinik fuer Unfall- und Wiederherstellungschirurgie, Univ. Leipzig (Germany); Gowin, W. [Center of Muscle and Bone Research, Klinik fuer Radiologie und Nuklearmedizin, Universitaetsklinikum Benjamin Franklin, Freie Univ. Berlin (Germany); Oestmann, J.W. [Klinik fuer Radiologie, Charite, Virchow-Klinikum, Humboldt Univ., Berlin (Germany); Haas, N.P.; Duda, G.N. [Klinik fuer Unfall- und Wiederherstellungschirurgie, Charite, Virchow-Klinikum Humboldt-Univ. Berlin (Germany)

    2002-12-01

    Purpose: To evaluate age- and gender-related mechanical properties and bone mineral density (BMD) of the proximal humerus at different levels and regions. Materials and methods: Mechanical indentation testing, DXA, QCT, pQCT and the radiogrammetry (Cortical Index, CI) were carried out in 70 freshly harvested humeri from 46 human cadavers (23 females, 23-males; median age 70.5 years). Results: In the female group, a high correlation between age and BMD was found ({rho}=0.62 to -0.70, p<0.01) with statistically significant differences between specimens of patients 69 years or younger, and 70 years or older (p<0.05). In the group of female specimens of age 70 years or older, BMD values were found to be significantly lower compared to their male counterparts (p<0.05). Regardless of the specimen's age, the highest BMD and bone strength were found in the proximal aspect and in the medial and dorsal regions of the proximal humerus. Conclusion: These findings provide an insight into the fracture mechanism of the proximal humerus and should be the basis for designing structure-oriented implants with improved implant-bone stability in osteoporotic patients. (orig.) [German] Ziel: Das Ziel der vorliegenden Studie war die alters- und geschlechtsspezifische Analyse der mechanischen Eigenschaften und der Knochenmineraldichte (BMD) des proximalen Humerus in verschiedenen Hoehen und Regionen. Methoden: Folgende Verfahren wurden angewandt: Mechanische Indentation Testung, DXA, QCT, pQCT und die Radiogrammetrie (Cortical Index, CI). Die Untersuchungen wurden an 70 frischen Humeri von 46 humanen Praeparaten (23 weiblich, 23 maennlich; Alter median: 70,5 Jahre) durchgefuehrt. Ergebnisse: In der Gruppe der weiblichen Humeri fand sich eine hohe Korrelation zwischen Alter und Knochenmineraldichte ({rho}=-0,62 to -0,70 p<0,01) mit statistisch signifikanten Unterschieden zwischen Praeparaten juenger als 69 Jahre und aelter als 70 Jahre (p<0.05). In der Gruppe der weiblichen Praeparate

  18. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    Michelle L Boland

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  19. Mitochondrial Ion Channels

    Science.gov (United States)

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  20. Microtubules are Essential for Mitochondrial Dynamics-Fission, Fusion, and Motility- in Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Laken C. Woods

    2016-03-01

    Full Text Available Mitochondrial function is dependent upon mitochondrial structure which is in turn dependent upon mitochondrial dynamics, including fission, fusion, and motility. Here we examined the relationship between mitochondrial dynamics and the cytoskeleton in Dictyostelium discoideum. Using time-lapse analysis, we quantified mitochondrial fission, fusion, and motility in the presence of cytoskeleton disrupting pharmaceuticals and the absence of the potential mitochondria-cytoskeleton linker protein, CluA. Our results indicate that microtubules are essential for mitochondrial movement, as well as fission and fusion; actin plays a less significant role, perhaps selecting the mitochondria for transport. We also suggest that CluA is not a linker protein but plays an unidentified role in mitochondrial fission and fusion. The significance of our work is to gain further insight into the role the cytoskeleton plays in mitochondrial dynamics and function. By better understanding these processes we can better appreciate the underlying mitochondrial contributions to many neurological disorders characterized by altered mitochondrial dynamics, structure, and/or function.

  1. Mitochondrial Defects And Their Role In Development Of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Nanuli Kotrikadze

    2012-04-01

    Full Text Available Introduction and Objectives: One of the characteristic changes of tumor formation is accumulation of genetic disorders in mitochondrial and nuclear genome. Mitochondrial disorders, from its side, are responsible for failure of metabolism, apoptosis, cell growth, formation of reactive oxygen species, etc. Overprpoduction of reactive oxygen species (ROS significantly impacts the respiration chain enzymes and entirely the antioxidant system of mitochondria. Finally this may become a favorable condition for normal cells transformation.The purpose of the presented work was to study  the mitochondrial defects and to establish their role in prostate cancer development.Results: Experimental results demonstrate significant increase of the activity of mitochondrial succinate dehydrogenaze (complex II of the malignant epithelial cells of prostate, and slight changes in cytochrome oxydase (complex IV activity. Also significant activation of the antioxidant system (glutathione-dependant system of mitochondria in prostate malignant epithelial cells was revealed.Conclusion: The above mentioned mitochondrial changes (II and IV complexes of respiration chain, activity of the antioxidant system partially demonstrate the alterations in mitochondrial energy metabolism, which from its side, may indicate to resistance of prostate cancer cells and correspondingly to intensification of proliferation processes.

  2. Legionella pneumophila infection of Drosophila S2 cells induces only minor changes in mitochondrial dynamics.

    Directory of Open Access Journals (Sweden)

    Elizabeth Wen Sun

    Full Text Available During infection of cells by Legionella pneumophila, the bacterium secretes a large number of effector proteins into the host cell cytoplasm, allowing it to alter many cellular processes and make the vacuole and the host cell into more hospitable environments for bacterial replication. One major change induced by infection is the recruitment of ER-derived vesicles to the surface of the vacuole, where they fuse with the vacuole membrane and prevent it from becoming an acidified, degradative compartment. However, the recruitment of mitochondria to the region of the vacuole has also been suggested by ultrastructural studies. In order to test this idea in a controlled and quantitative experimental system, and to lay the groundwork for a genome-wide screen for factors involved in mitochondrial recruitment, we examined the behavior of mitochondria during the early stages of Legionella pneumophila infection of Drosophila S2 cells. We found that the density of mitochondria near vacuoles formed by infection with wild type Legionella was not different from that found in dotA(- mutant-infected cells during the first 4 hours after infection. We then examined 4 parameters of mitochondrial motility in infected cells: velocity of movement, duty cycle of movement, directional persistence and net direction. In the 4 hours following infection, most of these measures were indistinguishable between wild type and dotA(-.infection. However, wild type Legionella did induce a modest shift in the velocity distribution toward faster movement compared dotA(- infection, and a small downward shift in the duty cycle distribution. In addition, wild type infection produced mitochondrial movement that was biased in the direction of the bacterial vacuole relative to dotA-, although not enough to cause a significant accumulation within 10 um of the vacuole. We conclude that in this host cell, mitochondria are not strongly recruited to the vacuole, nor is their motility

  3. Mitochondrial dysfunction in metabolic syndrome and asthma.

    Science.gov (United States)

    Mabalirajan, Ulaganathan; Ghosh, Balaram

    2013-01-01

    Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma. PMID:23840225

  4. Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

    Directory of Open Access Journals (Sweden)

    Ulaganathan Mabalirajan

    2013-01-01

    Full Text Available Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma.

  5. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins.

    Science.gov (United States)

    Birsa, Nicol; Norkett, Rosalind; Higgs, Nathalie; Lopez-Domenech, Guillermo; Kittler, Josef T

    2013-12-01

    Correct mitochondrial dynamics are essential to neuronal function. These dynamics include mitochondrial trafficking and quality-control systems that maintain a precisely distributed and healthy mitochondrial network, so that local energy demands or Ca2+-buffering requirements within the intricate architecture of the neuron can be met. Mitochondria make use of molecular machinery that couples these organelles to microtubule-based transport via kinesin and dynein motors, facilitating the required long-range movements. These motors in turn are associated with a variety of adaptor proteins allowing additional regulation of the complex dynamics demonstrated by these organelles. Over recent years, a number of new motor and adaptor proteins have been added to a growing list of components implicated in mitochondrial trafficking and distribution. Yet, there are major questions that remain to be addressed about the regulation of mitochondrial transport complexes. One of the core components of this machinery, the mitochondrial Rho GTPases Miro1 (mitochondrial Rho 1) and Miro2 have received special attention due to their Ca2+-sensing and GTPase abilities, marking Miro an exceptional candidate for co-ordinating mitochondrial dynamics and intracellular signalling pathways. In the present paper, we discuss the wealth of literature regarding Miro-mediated mitochondrial transport in neurons and recently highlighted involvement of Miro proteins in mitochondrial turnover, emerging as a key process affected in neurodegeneration. PMID:24256248

  6. Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy

    OpenAIRE

    Dhalla, Naranjan S; Rangi, Shashanka; Zieroth, Shelley; Xu, Yan-Jun

    2012-01-01

    Although diabetes due to insulin deficiency or insulin resistance is a major cause of heart disease, the pathogenesis of cardiac dysfunction during the development of diabetic cardiomyopathy is not fully understood. Varying degrees of defects in subcellular organelles, such as sarcolemma, mitochondria, sarcoplasmic reticulum, myofibrils and extracellular matrix have been observed in the diabetic heart. These subcellular abnormalities in chronic diabetes become evident with the occurrence of h...

  7. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    OpenAIRE

    Papsdorf, Katharina; Kaiser, Christoph J. O.; Drazic, Adrian; Grötzinger, Stefan W.; Haeßner, Carmen; Eisenreich, Wolfgang; Richter, Klaus

    2015-01-01

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast...

  8. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  9. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    Science.gov (United States)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is

  10. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  11. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The aim of this study was to determine whether an increase of ROS level in cellular senescence induced by IR could mediate mtDNA deletion via impairment of mitochondria biogenesis in IMR-90 human lung fibroblast cells. Our results showed that IR induced cellular senescence, intracellular ROS, and mtDNA deletion, and in particular, suppressed the expression of mitochondrial biogenesis genes (NRF-1, TFAM). Furthermore, these IR-induced events were abolished using a potent antioxidant, NAC, which suggests that ROS is a key cause of mtDNA deletion in IR-induced cellular senescence, and that the alteration of mitochondrial biogenesis may mediate these processes

  12. Mitochondrial DNA m.3242G > A mutation, an under diagnosed cause of hypertrophic cardiomyopathy and renal tubular dysfunction?

    NARCIS (Netherlands)

    Wortmann, S.B.; Champion, M.P.; Heuvel, L.P. van den; Barth, H.; Trutnau, B.; Craig, K.; Lammens, M.M.; Schreuder, M.F.; Taylor, R.W.; Smeitink, J.A.M.; Wevers, R.A.; Rodenburg, R.J.T.; Morava, E.

    2012-01-01

    We present two new patients with the recently described mitochondrial m.3242G > A mutation. Although the mutation is situated next to the well known m.3243A > G mutation, the most common alteration associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode

  13. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response.

    Science.gov (United States)

    Michel, Sebastien; Canonne, Morgane; Arnould, Thierry; Renard, Patricia

    2015-03-01

    Mitochondria-to-nucleus communication, known as retrograde signaling, is important to adjust the nuclear gene expression in response to organelle dysfunction. Among the transcription factors described to respond to mitochondrial stress, CHOP-10 is activated by respiratory chain inhibition, mitochondrial accumulation of unfolded proteins and mtDNA mutations. In this study, we show that altered/impaired expression of mtDNA induces CHOP-10 expression in a signaling pathway that depends on the eIF2α/ATF4 axis of the integrated stress response rather than on the mitochondrial unfolded protein response.

  14. Pulmonary mitochondrial alterations and oxidative stress in response to ozone exposure: Effects of age and an omega-3 enriched diet; Alterations mitochondriales et stress oxydant pulmonaire en reponse a l'ozone: effets de l'age et d'une supplementation en omega-3

    Energy Technology Data Exchange (ETDEWEB)

    Servais, St.

    2004-04-15

    Ozone (O{sub 3}) is one of the molecular species most reactive to which are exposed living species. O{sub 3} acts primarily on the pulmonary system by inducing oxidative stress. Because susceptibility to oxidative stress varies with age, we studied alterations of pulmonary balance between production of reactive oxygen species (ROS) and their elimination, in immature (21 days), adult (6 months) and old rats (20 months) during O{sub 3} exposure (0,5 ppm, 12 h/day for 7 days). For this purpose we have specifically studied pulmonary mitochondria as ROS source, main antioxidant enzyme activities, contents in stress protein (HSP72), 8-oxodGuo and DNA adducts resulting from lipid peroxidation. These works have shown that our protocol of O{sub 3} exposure did not induce lung oxidative stress in adult rats. We confirmed that immature and old rats were more sensitive during O{sub 3} challenge than adults. Indeed, O{sub 3} generates oxidative stress which leads to modification of ventilatory function and pulmonary DNA oxidation in these two populations. Parameters which take part in greatest susceptibility to O{sub 3} differ according to the age. We concluded that the mitochondria is not a major source of pulmonary ROS in our model of O{sub 3} exposure. Secondly, with the sights of anti-inflammatory properties of polyunsaturated fatty acids {omega}3, we studied the effect of a {omega}3 supplementation in immature and old rats exposed to O{sub 3}. The supplementation in {omega}3 limits the pulmonary DNA oxidation in immature and old rats. Paradoxically, in old rats this supplementation provokes an increase in lipid peroxidation susceptibility. (author)

  15. Smectite alteration

    International Nuclear Information System (INIS)

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  16. Sealing the Mitochondrial Respirasome

    OpenAIRE

    Winge, Dennis R.

    2012-01-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our underst...

  17. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis.

    Directory of Open Access Journals (Sweden)

    Seong-Jun Kim

    Full Text Available Human hepatitis B virus (HBV causes chronic hepatitis and is associated with the development of hepatocellular carcinoma. HBV infection alters mitochondrial metabolism. The selective removal of damaged mitochondria is essential for the maintenance of mitochondrial and cellular homeostasis. Here, we report that HBV shifts the balance of mitochondrial dynamics toward fission and mitophagy to attenuate the virus-induced apoptosis. HBV induced perinuclear clustering of mitochondria and triggered mitochondrial translocation of the dynamin-related protein (Drp1 by stimulating its phosphorylation at Ser616, leading to mitochondrial fission. HBV also stimulated the gene expression of Parkin, PINK1, and LC3B and induced Parkin recruitment to the mitochondria. Upon translocation to mitochondria, Parkin, an E3 ubiquitin ligase, underwent self-ubiquitination and facilitated the ubiquitination and degradation of its substrate Mitofusin 2 (Mfn2, a mediator of mitochondrial fusion. In addition to conventional immunofluorescence, a sensitive dual fluorescence reporter expressing mito-mRFP-EGFP fused in-frame to a mitochondrial targeting sequence was employed to observe the completion of the mitophagic process by delivery of the engulfed mitochondria to lysosomes for degradation. Furthermore, we demonstrate that viral HBx protein plays a central role in promoting aberrant mitochondrial dynamics either when expressed alone or in the context of viral genome. Perturbing mitophagy by silencing Parkin led to enhanced apoptotic signaling, suggesting that HBV-induced mitochondrial fission and mitophagy promote cell survival and possibly viral persistence. Altered mitochondrial dynamics associated with HBV infection may contribute to mitochondrial injury and liver disease pathogenesis.

  18. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  19. Altered fingerprints: analysis and detection.

    Science.gov (United States)

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem. PMID:21808092

  20. Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflammatory bowel diseases.

    OpenAIRE

    Jacobs, L R; Huber, P W

    1985-01-01

    Glycoconjugate composition of colorectal goblet cell mucin was characterized according to the anatomical distribution of lectin-binding sites in mucosal biopsies from 35 control subjects and 55 patients with inflammatory bowel disease. 24 of the controls had mucosal inflammation on biopsy, without clinical evidence of inflammatory bowel disease. These inflamed controls showed a similar rate of presence of lectin-binding sites as the normal noninflamed group. In the controls, the frequency of ...

  1. LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice[S

    OpenAIRE

    Archer, Amena; Stolarczyk, Émilie; Doria, Maria Luisa; Helguero, Luisa; Domingues, Rosário; Howard, Jane K; Mode, Agneta; Korach-André, Marion; Gustafsson, Jan-Åke

    2013-01-01

    To investigate the role of liver X receptor (LXR) in adipose tissue metabolism during obesity, ob/ob mice were treated for 5 weeks with the synthetic LXR agonist GW3965. MRI analysis revealed that pharmacological activation of LXR modified fat distribution by decreasing visceral (VS) fat and inversely increasing subcutaneous (SC) fat storage without affecting whole body fat content. This was concordant with opposite regulation by GW3965 of the lipolytic markers hormone-sensitive lipase (HSL) ...

  2. Clinical usefulness of myocardial iodine-123-15-(p-iodophenyl)-3(R,S)-methyl-pentadecanoic acid distribution abnormality in patients with mitochondrial encephalomyopathy based on normal data file in bull`s-eye polar map

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobukazu; Mitani, Isao; Sumita, Shinichi [Yokohama City Univ. (Japan). School of Medicine] [and others

    1998-01-01

    Visual interpretation of iodine-123-beta-15-(p-iodophenyl)-3(R,S)-methyl-pentadecanoic acid ({sup 123}I-BMIPP) myocardial images cannot easily detect mild reduction in tracer uptake. Objective assessment of myocardial {sup 123}I-BMIPP maldistributions at rest was attempted using a bull`s-eye map and its normal data file for detecting myocardial damage in patients with mitochondrial encephalomyopathy. Six patients, two with Kearns-Sayre syndrome and four with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS), and 10 normal subjects were studied. Fractional myocardial uptake of 1{sup 23}I-BMIPP was also measured by dynamic static imaging to assess the global myocardial free fatty acid. These data were compared with the cardiothoracic ratio measured by chest radiography and left ventricular ejection fraction assessed by echocardiography. Abnormal cardiothoracic ratio and lower ejection fraction were detected in only one patient with Kearns-Sayre syndrome. Abnormal fractional myocardial uptake was detected in two patients (1.61%, 1.91%), whereas abnormal regional {sup 123}I-BMIPP uptake assessed by the bull`s-eye map was detected in five patients (83%). All patients showed abnormal uptake in the anterior portion, and one showed progressive atrioventricular conduction abnormality and systolic dysfunction with extended {sup 123}I-BMIPP abnormal uptake. The results suggest that assessment based on the normal data file in a bull`s-eye polar map is clinically useful for detection of myocardial damage in patients with mitochondrial encephalomyopathy. (author)

  3. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress.

    Science.gov (United States)

    Picard, Martin; McManus, Meagan J; Gray, Jason D; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K; Seifert, Erin L; McEwen, Bruce S; Wallace, Douglas C

    2015-12-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  4. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo.

    Science.gov (United States)

    Principi, Elisa; Girardello, Rossana; Bruno, Antonino; Manni, Isabella; Gini, Elisabetta; Pagani, Arianna; Grimaldi, Annalisa; Ivaldi, Federico; Congiu, Terenzio; De Stefano, Daniela; Piaggio, Giulia; de Eguileor, Magda; Noonan, Douglas M; Albini, Adriana

    2016-01-01

    The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation. PMID:27621623

  5. Wingless signalling alters the levels, subcellular distribution and dynamics of Armadillo and E-cadherin in third instar larval wing imaginal discs.

    Directory of Open Access Journals (Sweden)

    Ildiko M L Somorjai

    Full Text Available BACKGROUND: Armadillo, the Drosophila orthologue of vertebrate ss-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the "degradation complex" is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets. METHODOLOGY/PRINCIPAL FINDINGS: Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the "transcriptional" and "adhesive" pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. Arm(S10 displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, DeltaNArm(1-155 caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-DeltaNArm(1-155 produced comparable nuclear accumulation of Armadillo and signalling to Arm(S10. These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin. CONCLUSIONS/SIGNIFICANCE: Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and

  6. Prediction of risk of fracture in the tibia due to altered bone mineral density distribution resulting from disuse: a finite element study.

    Science.gov (United States)

    Gislason, Magnus K; Coupaud, Sylvie; Sasagawa, Keisuke; Tanabe, Yuji; Purcell, Mariel; Allan, David B; Tanner, K Elizabeth

    2014-02-01

    The disuse-related bone loss that results from immobilisation following injury shares characteristics with osteoporosis in post-menopausal women and the aged, with decreases in bone mineral density leading to weakening of the bone and increased risk of fracture. The aim of this study was to use the finite element method to: (i) calculate the mechanical response of the tibia under mechanical load and (ii) estimate of the risk of fracture; comparing between two groups, an able-bodied group and spinal cord injury patients group suffering from varying degrees of bone loss. The tibiae of eight male subjects with chronic spinal cord injury and those of four able-bodied age-matched controls were scanned using multi-slice peripheral quantitative computed tomography. Images were used to develop full three-dimensional models of the tibiae in Mimics (Materialise) and exported into Abaqus (Simulia) for calculation of stress distribution and fracture risk in response to specified loading conditions - compression, bending and torsion. The percentage of elements that exceeded a calculated value of the ultimate stress provided an estimate of the risk of fracture for each subject, which differed between spinal cord injury subjects and their controls. The differences in bone mineral density distribution along the tibia in different subjects resulted in different regions of the bone being at high risk of fracture under set loading conditions, illustrating the benefit of creating individual material distribution models. A predictive tool can be developed based on these models, to enable clinicians to estimate the amount of loading that can be safely allowed onto the skeletal frame of individual patients who suffer from extensive musculoskeletal degeneration (including spinal cord injury, multiple sclerosis and the ageing population). The ultimate aim is to reduce fracture occurrence in these vulnerable groups. PMID:24503510

  7. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    Science.gov (United States)

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca’ Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator–activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets

  8. Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis.

    Science.gov (United States)

    Maglioni, Silvia; Schiavi, Alfonso; Runci, Alessandra; Shaik, Anjumara; Ventura, Natascia

    2014-08-01

    Progressive neuronal deterioration accompanied by sensory functions decline is typically observed during aging. On the other hand, structural or functional alterations of specific sensory neurons extend lifespan in the nematode Caenorhabditis elegans. Hormesis is a phenomenon by which the body benefits from moderate stress of various kinds which at high doses are harmful. Several studies indicate that different stressors can hormetically extend lifespan in C. elegans and suggest that hormetic effects could be exploited as a strategy to slow down aging and the development of age-associated (neuronal) diseases in humans. Mitochondria play a central role in the aging process and hormetic-like bimodal dose-response effects on C. elegans lifespan have been observed following different levels of mitochondrial stress. Here we tested the hypothesis that mitochondrial stress may hormetically extend C. elegans lifespan through subtle neuronal alterations. In support of our hypothesis we find that life-lengthening dose of mitochondrial stress reduces the functionality of a subset of ciliated sensory neurons in young animals. Notably, the same pro-longevity mitochondrial treatments rescue the sensory deficits in old animals. We also show that mitochondrial stress extends C. elegans lifespan acting in part through genes required for the functionality of those neurons. To our knowledge this is the first study describing a direct causal connection between sensory neuron dysfunction and extended longevity following mitochondrial stress. Our work supports the potential anti-aging effect of neuronal hormesis and open interesting possibility for the development of therapeutic strategy for age-associated neurodegenerative disorders.

  9. Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury.

    Directory of Open Access Journals (Sweden)

    David Williams

    Full Text Available BACKGROUND: Impaired mitochondrial function is fundamental feature of heart failure (HF and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. METHODS AND RESULTS: In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01 compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05. The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1 exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. CONCLUSION: These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.

  10. Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury

    Science.gov (United States)

    Byrne, Melissa; Joshi, Mandar; Horlock, Duncan; Lam, Nicholas T.; Gregorevic, Paul; McGee, Sean L.; Kaye, David M.

    2014-01-01

    Background Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. Methods and Results In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. Conclusion These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury. PMID:25111602

  11. Prediction of renal crystalline size distributions in space using a PBE analytic model. 1. Effect of microgravity-induced biochemical alterations.

    Science.gov (United States)

    Kassemi, Mohammad; Thompson, David

    2016-09-01

    An analytical Population Balance Equation model is developed and used to assess the risk of critical renal stone formation for astronauts during future space missions. The model uses the renal biochemical profile of the subject as input and predicts the steady-state size distribution of the nucleating, growing, and agglomerating calcium oxalate crystals during their transit through the kidney. The model is verified through comparison with published results of several crystallization experiments. Numerical results indicate that the model is successful in clearly distinguishing between 1-G normal and 1-G recurrent stone-former subjects based solely on their published 24-h urine biochemical profiles. Numerical case studies further show that the predicted renal calculi size distribution for a microgravity astronaut is closer to that of a recurrent stone former on Earth rather than to a normal subject in 1 G. This interestingly implies that the increase in renal stone risk level in microgravity is relatively more significant for a normal person than a stone former. However, numerical predictions still underscore that the stone-former subject carries by far the highest absolute risk of critical stone formation during space travel. PMID:27279490

  12. Prediction of renal crystalline size distributions in space using a PBE analytic model. 1. Effect of microgravity-induced biochemical alterations.

    Science.gov (United States)

    Kassemi, Mohammad; Thompson, David

    2016-09-01

    An analytical Population Balance Equation model is developed and used to assess the risk of critical renal stone formation for astronauts during future space missions. The model uses the renal biochemical profile of the subject as input and predicts the steady-state size distribution of the nucleating, growing, and agglomerating calcium oxalate crystals during their transit through the kidney. The model is verified through comparison with published results of several crystallization experiments. Numerical results indicate that the model is successful in clearly distinguishing between 1-G normal and 1-G recurrent stone-former subjects based solely on their published 24-h urine biochemical profiles. Numerical case studies further show that the predicted renal calculi size distribution for a microgravity astronaut is closer to that of a recurrent stone former on Earth rather than to a normal subject in 1 G. This interestingly implies that the increase in renal stone risk level in microgravity is relatively more significant for a normal person than a stone former. However, numerical predictions still underscore that the stone-former subject carries by far the highest absolute risk of critical stone formation during space travel.

  13. N-cadherin mediated distribution of beta-catenin alters MAP kinase and BMP-2 signaling on chondrogenesis-related gene expression.

    Science.gov (United States)

    Modarresi, Rozbeh; Lafond, Toulouse; Roman-Blas, Jorge A; Danielson, Keith G; Tuan, Rocky S; Seghatoleslami, M Reza

    2005-05-01

    We have examined the effect of calcium-dependent adhesion, mediated by N-cadherin, on cell signaling during chondrogenesis of multipotential embryonic mouse C3H10T1/2 cells. The activity of chondrogenic genes, type II collagen, aggrecan, and Sox9 were examined in monolayer (non-chondrogenic), and micromass (chondrogenic) cultures of parental C3H10T1/2 cells and altered C3H10T1/2 cell lines that express a dominant negative form of N-cadherin (delta390-T1/2) or overexpress normal N-cadherin (MNCD2-T1/2). Our findings show that missexpression or inhibition of N-cadherin in C3H10T1/2 cells results in temporal and spatial changes in expression of the chondrogenic genes Sox9, aggrecan, and collagen type II. We have also analyzed activity of the serum response factor (SRF), a nuclear target of MAP kinase signaling implicated in chondrogenesis. In semi-confluent monolayer cultures (minimum cell-cell contact) of C3H10T1/2, MNCD2-T1/2, or delta390-T1/2 cells, there was no significant change in the pattern of MAP kinase or bone morphogenetic protein-2 (BMP-2) regulation of SRF. However, in micromass cultures, the effect of MAP kinase and BMP-2 on SRF activity was proportional to the nuclear localization of beta-catenin, a Wnt stabilized cytoplasmic factor that can associate with lymphoid enhancer-binding factor (LEF) to serve as a transcription factor. Our findings suggest that the extent of adherens junction formation mediated by N-cadherin can modulate the potential Wnt-induced nuclear activity of beta-catenin. PMID:15723280

  14. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species.

    Science.gov (United States)

    Saleh, Navid B; Milliron, Delia J; Aich, Nirupam; Katz, Lynn E; Liljestrand, Howard M; Kirisits, Mary Jo

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics.

  15. Thermal adaptation and clinal mitochondrial DNA variation of European anchovy

    OpenAIRE

    Silva, Gonçalo; Lima, Fernando P.; Martel, Paulo; Castilho, Rita

    2014-01-01

    Natural populations of widely distributed organisms often exhibit genetic clinal variation over their geographical ranges. The European anchovy, Engraulis encrasicolus, illustrates this by displaying a two-clade mitochondrial structure clinally arranged along the eastern Atlantic. One clade has low frequencies at higher latitudes, whereas the other has an anti-tropical distribution, with frequencies decreasing towards the tropics. The distribution pattern of these clades has been explained as...

  16. Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.

    Science.gov (United States)

    Lay, Sui; Sanislav, Oana; Annesley, Sarah J; Fisher, Paul R

    2016-01-01

    Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum. PMID:27271893

  17. Changes in weight loss, body composition and cardiovascular disease risk after altering macronutrient distributions during a regular exercise program in obese women

    Directory of Open Access Journals (Sweden)

    Roberts Mike D

    2010-11-01

    Full Text Available Abstract Background This study's purpose investigated the impact of different macronutrient distributions and varying caloric intakes along with regular exercise for metabolic and physiological changes related to weight loss. Methods One hundred forty-one sedentary, obese women (38.7 ± 8.0 yrs, 163.3 ± 6.9 cm, 93.2 ± 16.5 kg, 35.0 ± 6.2 kg•m-2, 44.8 ± 4.2% fat were randomized to either no diet + no exercise control group (CON a no diet + exercise control (ND, or one of four diet + exercise groups (high-energy diet [HED], very low carbohydrate, high protein diet [VLCHP], low carbohydrate, moderate protein diet [LCMP] and high carbohydrate, low protein [HCLP] in addition to beginning a 3x•week-1 supervised resistance training program. After 0, 1, 10 and 14 weeks, all participants completed testing sessions which included anthropometric, body composition, energy expenditure, fasting blood samples, aerobic and muscular fitness assessments. Data were analyzed using repeated measures ANOVA with an alpha of 0.05 with LSD post-hoc analysis when appropriate. Results All dieting groups exhibited adequate compliance to their prescribed diet regimen as energy and macronutrient amounts and distributions were close to prescribed amounts. Those groups that followed a diet and exercise program reported significantly greater anthropometric (waist circumference and body mass and body composition via DXA (fat mass and % fat changes. Caloric restriction initially reduced energy expenditure, but successfully returned to baseline values after 10 weeks of dieting and exercising. Significant fitness improvements (aerobic capacity and maximal strength occurred in all exercising groups. No significant changes occurred in lipid panel constituents, but serum insulin and HOMA-IR values decreased in the VLCHP group. Significant reductions in serum leptin occurred in all caloric restriction + exercise groups after 14 weeks, which were unchanged in other non

  18. Corosolic acid analogue, a natural triterpenoid saponin, induces apoptosis on human hepatocarcinoma cells through mitochondrial pathway in vitro.

    Science.gov (United States)

    Qu, Liping; Zhang, Huiqing; Yang, Yanlong; Yang, Geliang; Xin, Hailiang; Ling, Changquan

    2016-08-01

    Context 2a,-3a,-24-Trihydroxyurs-12-en-28-oic acid (TEO, a corosolic acid analogue) is a triterpenoid saponin isolated from Actinidia valvata Dunn (Actinidiaceae), a well-known traditional Chinese medicine. Objective This study investigated the anti-proliferation and inducing apoptosis effects of TEO in three human hepatocellular carcinoma (HCC) cell lines. Materials and methods Cytotoxic activity of TEO was determined by the MTT assay at various concentrations from 2.5 to 40 μg/mL in BEL-7402, BEL-7404 and SMMC-7721 cell lines. Cell morphology was assessed by acridine orange/ethidium bromide and 4'-6-diamidino-2-phenylindole dihydrochloride staining and fluorescence microscopy. Cell-cycle distribution and DNA damage were determined by flow cytometry and comet assay. Mitochondrial dysfunction was assessed by JC-1 staining and transmission electron microscopy. Apoptosis changes were explored by Western blot, TNF-α and caspase-3, -8, -9 assays. Results TEO exhibited inhibition effects on BEL-7402, BEL-7404 and SMMC-7721 cells treated for 24 h, the IC50 values were 34.6, 30.8 and 30.5 μg/mL, respectively. TEO (40 μg/mL)-treated three cell lines increased by more than 21% in the G1 phase and presented the morphological change and DNA damage. TEO also declined the mitochondrial membrane potential and altered mitochondrial ultra-structure. Furthermore, caspase-3, caspase-8, caspase-9 and TNF-α were also activated. Mechanism investigation showed that TEO could decrease anti-apoptotic Bcl-2 protein expression, increase proapoptotic Bax and Bid proteins expressions and increase Bax/Bcl-2 ratio. Conclusion Our results demonstrate for the first time that TEO inhibited growth of HCC cell lines and induced G1 phase arrest. Moreover, proapoptotic effects of TEO were mediated through the activation of TNF-α, caspases and mitochondrial pathway. PMID:26810384

  19. Mitochondrial Genetic Variation in Iranian Infertile Men with Varicocele

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2016-09-01

    Full Text Available Background: Several recent studies have shown that mitochondrial DNA mutations lead to major disabilities and premature death in carriers. More than 150 mutations in human mitochondrial DNA (mtDNA genes have been associated with a wide spectrum of disorders. Varicocele, one of the causes of infertility in men wherein abnormal inflexion and distension of veins of the pampiniform plexus is observed within spermatic cord, can increase reactive oxygen species (ROS production in semen and cause oxidative stress and sperm dysfunction in patients. Given that mitochondria are the source of ROS production in cells, the aim of this study was to scan nine mitochondrial genes (MT-COX2, MT-tRNALys, MT-ATP8, MT-ATP6, MT-COX3, MT-tRNAGly, MT-ND3, MT-tRNAArg and MT-ND4L for mutations in infertile patients with varicocele. Materials and Methods: In this cross-sectional study, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP and DNA sequencing were used to detect and identify point mutations respectively in 9 mitochondrial genes in 72 infertile men with varicocele and 159 fertile men. In brief, the samples showing altered electrophoretic patterns of DNA in the SSCP gel were sent for DNA sequencing to identify the exact nucleotide variation. Results: Ten type nucleotide variants were detected exclusively in mitochondrial DNA of infertile men. These include six novel nucleotide changes and four variants previously reported for other disorders. Conclusion: Mutations in mitochondrial genes may affect respiratory complexes in combination with environmental risk factors. Therefore these nucleotide variants probably lead to impaired ATP synthesis and mitochondrial function ultimately interfering with sperm motility and infertility.

  20. Mitochondrial cereblon functions as a Lon-type protease

    Science.gov (United States)

    Kataoka, Kosuke; Nakamura, China; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    Lon protease plays a major role in the protein quality control system in mammalian cell mitochondria. It is present in the mitochondrial matrix, and degrades oxidized and misfolded proteins, thereby protecting the cell from various extracellular stresses, including oxidative stress. The intellectual disability-associated and thalidomide-binding protein cereblon (CRBN) contains a large, highly conserved Lon domain. However, whether CRBN has Lon protease-like function remains unknown. Here, we determined if CRBN has a protective function against oxidative stress, similar to Lon protease. We report that CRBN partially distributes in mitochondria, suggesting it has a mitochondrial function. To specify the mitochondrial role of CRBN, we mitochondrially expressed CRBN in human neuroblastoma SH-SY5Y cells. The resulting stable SH-SY5Y cell line showed no apparent effect on the mitochondrial functions of fusion, fission, and membrane potential. However, mitochondrially expressed CRBN exhibited protease activity, and was induced by oxidative stress. In addition, stably expressed cells exhibited suppressed neuronal cell death induced by hydrogen peroxide. These results suggest that CRBN functions specifically as a Lon-type protease in mitochondria. PMID:27417535

  1. Insulin signaling regulates mitochondrial function in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Siming Liu

    Full Text Available Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in beta-cells that included glucokinase (GK, and the pro-apoptotic protein, BAD(S. Mitochondria isolated from beta-cells derived from beta-cell specific insulin receptor knockout (betaIRKO mice exhibited reduced BAD(S, GK and protein kinase A in the complex, and attenuated function. Similar alterations were evident in islets from patients with type 2 diabetes. Decreased mitochondrial GK activity in betaIRKOs could be explained, in part, by reduced expression and altered phosphorylation of BAD(S. The elevated phosphorylation of p70S6K and JNK1 was likely due to compensatory increase in IGF-1 receptor expression. Re-expression of insulin receptors in betaIRKO cells partially restored the stoichiometry of the complex and mitochondrial function. These data indicate that insulin signaling regulates mitochondrial function and have implications for beta-cell dysfunction in type 2 diabetes.

  2. Mitochondrial dysfunction remodels one-carbon metabolism in human cells

    Science.gov (United States)

    Bao, Xiaoyan Robert; Ong, Shao-En; Goldberger, Olga; Peng, Jun; Sharma, Rohit; Thompson, Dawn A; Vafai, Scott B; Cox, Andrew G; Marutani, Eizo; Ichinose, Fumito; Goessling, Wolfram; Regev, Aviv; Carr, Steven A; Clish, Clary B; Mootha, Vamsi K

    2016-01-01

    Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.10575.001 PMID:27307216

  3. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  4. Dopamine Coupling to Mitochondrial Signaling: Implications for Transplantation.

    Science.gov (United States)

    Stefano, George B; Ramin, Rohina; Kream, Richard M

    2016-01-01

    The persistence of major medical disorders afflicting millions of humans worldwide involves a functional pathophysiological coupling of systemic pro-inflammatory processes and tissue hypoxia. Mechanistically, reciprocal triggering of multiple ischemic/hypoxic and pro-inflammatory events, if not corrected, will promote pathophysiological amplification leading to a deleterious cascade of bio-senescent cellular and molecular signaling pathways that converge to markedly impair mitochondrial energy production. Given the level of energy production and utilization that can vary in and between cells and regionally in the same type of cells found in the body, e.g., dopamine neurons, the metabolic energy regulator, the mitochondrion, assumes a high position in the potential to maintain normal health and develop abnormal activities, resulting in chronic pathologies. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionarily fashioned chemiosmotic production of ATP as a high-efficiency biological proton pump process. The mechanistic evolutionary bases of diabetes have demonstrated the profound alteration of normative mitochondrial function, notably deregulated respiratory processes. This same phenomenon provides evidence of mitochondrial linkages to neurological disorders, such as Parkinson's disease. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial targeted therapies has not been forthcoming. PMID:26790458

  5. Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    David C Hess

    2009-03-01

    Full Text Available Mitochondria are central to many cellular processes including respiration, ion homeostasis, and apoptosis. Using computational predictions combined with traditional quantitative experiments, we have identified 100 proteins whose deficiency alters mitochondrial biogenesis and inheritance in Saccharomyces cerevisiae. In addition, we used computational predictions to perform targeted double-mutant analysis detecting another nine genes with synthetic defects in mitochondrial biogenesis. This represents an increase of about 25% over previously known participants. Nearly half of these newly characterized proteins are conserved in mammals, including several orthologs known to be involved in human disease. Mutations in many of these genes demonstrate statistically significant mitochondrial transmission phenotypes more subtle than could be detected by traditional genetic screens or high-throughput techniques, and 47 have not been previously localized to mitochondria. We further characterized a subset of these genes using growth profiling and dual immunofluorescence, which identified genes specifically required for aerobic respiration and an uncharacterized cytoplasmic protein required for normal mitochondrial motility. Our results demonstrate that by leveraging computational analysis to direct quantitative experimental assays, we have characterized mutants with subtle mitochondrial defects whose phenotypes were undetected by high-throughput methods.

  6. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  7. Sealing the mitochondrial respirasome.

    Science.gov (United States)

    Winge, Dennis R

    2012-07-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our understanding of the structures of supercomplexes and the factors that mediate their stability.

  8. Thermal adaptation and clinal mitochondrial DNA variation of European anchovy.

    Science.gov (United States)

    Silva, Gonçalo; Lima, Fernando P; Martel, Paulo; Castilho, Rita

    2014-10-01

    Natural populations of widely distributed organisms often exhibit genetic clinal variation over their geographical ranges. The European anchovy, Engraulis encrasicolus, illustrates this by displaying a two-clade mitochondrial structure clinally arranged along the eastern Atlantic. One clade has low frequencies at higher latitudes, whereas the other has an anti-tropical distribution, with frequencies decreasing towards the tropics. The distribution pattern of these clades has been explained as a consequence of secondary contact after an ancient geographical isolation. However, it is not unlikely that selection acts on mitochondria whose genes are involved in relevant oxidative phosphorylation processes. In this study, we performed selection tests on a fragment of 1044 bp of the mitochondrial cytochrome b gene using 455 individuals from 18 locations. We also tested correlations of six environmental features: temperature, salinity, apparent oxygen utilization and nutrient concentrations of phosphate, nitrate and silicate, on a compilation of mitochondrial clade frequencies from 66 sampling sites comprising 2776 specimens from previously published studies. Positive selection in a single codon was detected predominantly (99%) in the anti-tropical clade and temperature was the most relevant environmental predictor, contributing with 59% of the variance in the geographical distribution of clade frequencies. These findings strongly suggest that temperature is shaping the contemporary distribution of mitochondrial DNA clade frequencies in the European anchovy. PMID:25143035

  9. Dynamics of morphological changes for mitochondrial fission and fusion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Mitochondria experience continuous fusion and fission in a living cell, but their dynamics remains poorly quantified. Here a theoretical model was developed, upon a simplified population balance equation (PBE), to predict the morphological changes induced by mitochondrial fission and fusion. Assuming that both fission and fusion events are statistically independent, the survival probability of mitochondria staying in the fission or fusion state was formulated as an exponentially-decayed function with time, which depended on the time-dependent distribution of the mitochondrial volume and the fission and fusion rates. Parametric analysis was done for two typical volume distributions. One was Gamma distribution and the other was Gaussian distribution, derived from the measurements of volume distribution for individual mitochondria in a living cell and purified mitochondria in vitro. The predictions indicated that the survival probability strongly depended on morphological changes of individual mitochondria and was inversely correlated to the fission and fusion rates. This work provided a new insight into quantifying the mitochondrial dynamics via monitoring the evolution of the mitochondrial volume.

  10. Mitochondrial dynamics and cell death in heart failure.

    Science.gov (United States)

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  11. Proteomic profiling of adipose tissue from Zmpste24-/- mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing.

    Science.gov (United States)

    Peinado, Juan R; Quirós, Pedro M; Pulido, Marina R; Mariño, Guillermo; Martínez-Chantar, Maria L; Vázquez-Martínez, Rafael; Freije, José M P; López-Otín, Carlos; Malagón, María M

    2011-11-01

    Lipodystrophy is a major disease involving severe alterations of adipose tissue distribution and metabolism. Mutations in genes encoding the nuclear envelope protein lamin A or its processing enzyme, the metalloproteinase Zmpste24, cause diverse human progeroid syndromes that are commonly characterized by a selective loss of adipose tissue. Similarly to humans, mice deficient in Zmpste24 accumulate prelamin A and display phenotypic features of accelerated aging, including lipodystrophy. Herein, we report the proteome and phosphoproteome of adipose tissue as well as serum metabolome in lipodystrophy by using Zmpste24(-/-) mice as experimental model. We show that Zmpste24 deficiency enhanced lipolysis, fatty acid biogenesis and β-oxidation as well as decreased fatty acid re-esterification, thus pointing to an increased partitioning of fatty acid toward β-oxidation and away from storage that likely underlies the observed size reduction of Zmpste24-null adipocytes. Besides the mitochondrial proteins related to lipid metabolism, other protein networks related to mitochondrial function, including those involved in tricarboxylic acid cycle and oxidative phosphorylation, were up-regulated in Zmpste24(-/-) mice. These results, together with the observation of an increased mitochondrial response to oxidative stress, support the relationship between defective prelamin A processing and mitochondrial dysfunction and highlight the relevance of oxidative damage in lipoatrophy and aging. We also show that absence of Zmpste24 profoundly alters the processing of the cytoskeletal protein vimentin and identify a novel protein dysregulated in lipodystrophy, High-Mobility Group Box-1 Protein. Finally, we found several lipid derivates with important roles in energy balance, such as Lysophosphatidylcholine or 2-arachidonoylglycerol, to be dysregulated in Zmpste24(-/-) serum. Together, our findings in Zmpste24(-/-) mice may be useful to unveil the mechanisms underlying adipose tissue

  12. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patie

  13. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D;

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...

  14. Mitochondrial calcium uptake capacity modulates neocortical excitability.

    Science.gov (United States)

    Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed; Kannurpatti, Sridhar S

    2013-07-01

    Local calcium (Ca(2+)) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca(2+) uptake. Mitochondria take up Ca(2+) through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca(2+). Known only in vitro, the in vivo impact of mCU activity may reveal Ca(2+)-mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca(2+) sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca(2+) distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca(2+)-dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca(2+) uptake-mediated integrative role of in vivo mitochondria on neocortical activity.

  15. Mitochondrial dynamics and the cell cycle

    Directory of Open Access Journals (Sweden)

    Penny M.A. Kianian

    2014-05-01

    Full Text Available Nuclear-mitochondrial (NM communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. Genes involved in NM interaction also are believed to play a critical role in evolution of species and interspecific cross incompatibilities.

  16. Impaired Cerebral Mitochondrial Oxidative Phosphorylation Function in a Rat Model of Ventricular Fibrillation and Cardiopulmonary Resuscitation

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2014-01-01

    Full Text Available Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA. Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF. We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP and phosphocreatine (PCr developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.

  17. Mitochondrial DNA in CSF distinguishes LRRK2 from idiopathic Parkinson's disease.

    Science.gov (United States)

    Podlesniy, Petar; Vilas, Dolores; Taylor, Peggy; Shaw, Leslie M; Tolosa, Eduard; Trullas, Ramon

    2016-10-01

    Mitochondrial DNA regulates mitochondrial function which is altered in both idiopathic and familial forms of Parkinson's disease. To investigate whether these two disease forms exhibit an altered regulation of mitochondrial DNA we measured cell free mitochondrial DNA content in cerebrospinal fluid (CSF) from idiopathic and LRRK2-related Parkinson's disease patients. The concentration of mitochondrial DNA was measured using a digital droplet polymerase chain reaction technique in a total of 98 CSF samples from a cohort of subjects including: 20 LRRK2(G2019S) mutation carriers with Parkinson's disease, 26 asymptomatic LRRK2(G2019S) mutation carriers, 31 patients with idiopathic Parkinson's disease and 21 first-degree relatives of LRRK2 Parkinson's disease patients without the mutation. Here we report that LRRK2(G2019S) mutation carriers with Parkinson's disease exhibit a high concentration of mitochondrial DNA in CSF compared with asymptomatic LRRK2(G2019S) mutation carriers and with idiopathic Parkinson's disease patients. In addition, idiopathic, but not LRRK2 Parkinson's disease is associated with low CSF concentration of α-synuclein. These results show that high mitochondrial DNA content in CSF distinguishes idiopathic from LRRK2-related Parkinson's disease suggesting that different biochemical pathways underlie neurodegeneration in these two disorders.

  18. Mitochondrial DNA in CSF distinguishes LRRK2 from idiopathic Parkinson's disease.

    Science.gov (United States)

    Podlesniy, Petar; Vilas, Dolores; Taylor, Peggy; Shaw, Leslie M; Tolosa, Eduard; Trullas, Ramon

    2016-10-01

    Mitochondrial DNA regulates mitochondrial function which is altered in both idiopathic and familial forms of Parkinson's disease. To investigate whether these two disease forms exhibit an altered regulation of mitochondrial DNA we measured cell free mitochondrial DNA content in cerebrospinal fluid (CSF) from idiopathic and LRRK2-related Parkinson's disease patients. The concentration of mitochondrial DNA was measured using a digital droplet polymerase chain reaction technique in a total of 98 CSF samples from a cohort of subjects including: 20 LRRK2(G2019S) mutation carriers with Parkinson's disease, 26 asymptomatic LRRK2(G2019S) mutation carriers, 31 patients with idiopathic Parkinson's disease and 21 first-degree relatives of LRRK2 Parkinson's disease patients without the mutation. Here we report that LRRK2(G2019S) mutation carriers with Parkinson's disease exhibit a high concentration of mitochondrial DNA in CSF compared with asymptomatic LRRK2(G2019S) mutation carriers and with idiopathic Parkinson's disease patients. In addition, idiopathic, but not LRRK2 Parkinson's disease is associated with low CSF concentration of α-synuclein. These results show that high mitochondrial DNA content in CSF distinguishes idiopathic from LRRK2-related Parkinson's disease suggesting that different biochemical pathways underlie neurodegeneration in these two disorders. PMID:27260835

  19. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.

    Science.gov (United States)

    Janer, Alexandre; Prudent, Julien; Paupe, Vincent; Fahiminiya, Somayyeh; Majewski, Jacek; Sgarioto, Nicolas; Des Rosiers, Christine; Forest, Anik; Lin, Zhen-Yuan; Gingras, Anne-Claude; Mitchell, Grant; McBride, Heidi M; Shoubridge, Eric A

    2016-01-01

    Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early-onset neurodegenerative disease and cell fate decisions. PMID:27390132

  20. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Andreas Bender

    Full Text Available Alpha-synuclein (α-Syn accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery--TOM40--might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies.

  1. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson's disease.

    Science.gov (United States)

    Bender, Andreas; Desplats, Paula; Spencer, Brian; Rockenstein, Edward; Adame, Anthony; Elstner, Matthias; Laub, Christoph; Mueller, Sarina; Koob, Andrew O; Mante, Michael; Pham, Emily; Klopstock, Thomas; Masliah, Eliezer

    2013-01-01

    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery--TOM40--might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies. PMID:23626796

  2. Suppressors of superoxide production from mitochondrial complex III.

    Science.gov (United States)

    Orr, Adam L; Vargas, Leonardo; Turk, Carolina N; Baaten, Janine E; Matzen, Jason T; Dardov, Victoria J; Attle, Stephen J; Li, Jing; Quackenbush, Douglas C; Goncalves, Renata L S; Perevoshchikova, Irina V; Petrassi, H Michael; Meeusen, Shelly L; Ainscow, Edward K; Brand, Martin D

    2015-11-01

    Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species, which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies, but its role remains controversial. Using high-throughput screening, we identified compounds that selectively eliminate superoxide production by complex III without altering oxidative phosphorylation; they modulate retrograde signaling including cellular responses to hypoxic and oxidative stress.

  3. Mitochondrial haplogroup U is associated with a reduced risk to develop exfoliation glaucoma in the German population

    Directory of Open Access Journals (Sweden)

    Wissinger Bernd

    2010-01-01

    Full Text Available Abstract Background Various lines of evidence demonstrate the involvement of mitochondrial dysfunction in the pathogenesis of glaucoma. Therefore, mitochondrial DNA is a promising candidate for genetic susceptibility studies on glaucoma. To test the hypothesis that mitochondrial haplogroups influence the risk to develop glaucoma, we genotyped 12 single-nucleotide polymorphisms that define the European mitochondrial DNA haplogroups in healthy controls and two German patient cohorts with either exfoliation glaucoma or the normal tension subgroup of primary open angle glaucoma. Results Mitochondrial haplogroup U was significantly under-represented in patients with exfoliation glaucoma (8.3% compared with 18.9% in controls; p = 0.004. Conclusions People with haplogroup U have a lower risk to develop exfoliation glaucoma. Our results substantiate the suggestion that mitochondrial alterations have an impact on the etiology of glaucoma.

  4. NMDA receptor blockade alters the intracellular distribution of neuronal nitric oxide synthase in the superficial layers of the rat superior colliculus

    Directory of Open Access Journals (Sweden)

    R.E. de Bittencourt-Navarrete

    2009-02-01

    Full Text Available Nitric oxide (NO is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

  5. Miro sculpts mitochondrial dynamics in neuronal health and disease.

    Science.gov (United States)

    Devine, Michael J; Birsa, Nicol; Kittler, Josef T

    2016-06-01

    Neurons are highly polarised cells with an elaborate and diverse cytoarchitecture. But this complex architecture presents a major problem: how to appropriately distribute metabolic resources where they are most needed within the cell. The solution comes in the form of mitochondria: highly dynamic organelles subject to a repertoire of trafficking, fission/fusion and quality control systems which work in concert to orchestrate a precisely distributed and healthy mitochondrial network. Mitochondria are critical for maintaining local energy supply and buffering Ca(2+) flux within neurons, and are increasingly recognised as being essential for healthy neuronal function. Mitochondrial movements are facilitated by their coupling to microtubule-based transport via kinesin and dynein motors. Adaptor proteins are required for this coupling and the mitochondrial Rho GTPases Miro1 and Miro2 are core components of this machinery. Both Miros have Ca(2+)-sensing and GTPase domains, and are therefore ideally suited to coordinating mitochondrial dynamics with intracellular signalling pathways and local energy turnover. In this review, we focus on Miro's role in mediating mitochondrial transport in neurons, and the relevance of these mechanisms to neuronal health and disease. PMID:26707701

  6. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  7. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle.

    Science.gov (United States)

    Fajardo, Val Andrew; McMeekin, Lauren; Saint, Caitlin; LeBlanc, Paul J

    2015-04-01

    Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.

  8. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy.

    Science.gov (United States)

    Jabir, Majid Sakhi; Hopkins, Lee; Ritchie, Neil D; Ullah, Ihsan; Bayes, Hannah K; Li, Dong; Tourlomousis, Panagiotis; Lupton, Alison; Puleston, Daniel; Simon, Anna Katharina; Bryant, Clare; Evans, Thomas J

    2015-01-01

    The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.

  9. Time representation of mitochondrial morphology and function after acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang Jia; Gang Li; Zhen-yu Zhang; Hao-tian Li; Ji-quan Wang; Zhong-kai Fan; Gang Lv

    2016-01-01

    Changes in mitochondrial morphology and function play an important role in secondary damage after acute spinal cord injury. We re-corded the time representation of mitochondrial morphology and function in rats with acute spinal cord injury. Results showed that mitochondria had an irregular shape, and increased in size. Mitochondrial cristae were disordered and mitochondrial membrane rupture was visible at 2–24 hours after injury. Fusion protein mitofusin 1 expression gradually increased, peaked at 8 hours after injury, and then decreased to its lowest level at 24 hours. Expression of dynamin-related protein 1, amitochondrial ifssion protein, showed the opposite kinetics. At 2–24 hours after acute spinal cord injury, malondialdehyde content, cytochrome c levels and caspase-3 expression were in-creased, but glutathione content, adenosine triphosphate content, Na+-K+-ATPase activity and mitochondrial membrane potential were gradually reduced. Furthermore, mitochondrial morphology altered during the acute stage of spinal cord injury. Fusion was important within the ifrst 8 hours, but ifssion played a key role at 24 hours. Oxidative stress was inhibited, biological productivity was diminished, and mitochondrial membrane potential and permeability were reduced in the acute stage of injury. In summary, mitochondrial apoptosis is activated when the time of spinal cord injury is prolonged.

  10. Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI.

    Directory of Open Access Journals (Sweden)

    Basavaraju G Sanganahalli

    Full Text Available Mitochondrial Ca(2+ uptake, central to neural metabolism and function, is diminished in aging whereas enhanced after acute/sub-acute traumatic brain injury. To develop relevant translational models for these neuropathologies, we determined the impact of perturbed mitochondrial Ca(2+ uptake capacities on intrinsic brain activity using clinically relevant markers. From a multi-compartment estimate of probable baseline Ca(2+ ranges in the brain, we hypothesized that reduced or enhanced mitochondrial Ca(2+ uptake capacity would decrease or increase spontaneous neuronal activity respectively. As resting state fMRI-BOLD fluctuations and stimulus-evoked BOLD responses have similar physiological origins [1] and stimulus-evoked neuronal and hemodynamic responses are modulated by mitochondrial Ca(2+ uptake capacity [2], [3] respectively, we tested our hypothesis by measuring hemodynamic fluctuations and spontaneous neuronal activities during normal and altered mitochondrial functional states. Mitochondrial Ca(2+ uptake capacity was perturbed by pharmacologically inhibiting or enhancing the mitochondrial Ca(2+ uniporter (mCU activity. Neuronal electrical activity and cerebral blood flow (CBF fluctuations were measured simultaneously and integrated with fMRI-BOLD fluctuations at 11.7T. mCU inhibition reduced spontaneous neuronal activity and the resting state functional connectivity (RSFC, whereas mCU enhancement increased spontaneous neuronal activity but reduced RSFC. We conclude that increased or decreased mitochondrial Ca(2+ uptake capacities lead to diminished resting state modes of brain functional connectivity.

  11. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    Science.gov (United States)

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.

  12. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    Science.gov (United States)

    Berbusse, Gregory W; Woods, Laken C; Vohra, Bhupinder P S; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson's and Alzheimer's, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  13. Mitochondrial complex I-linked disease.

    Science.gov (United States)

    Rodenburg, Richard J

    2016-07-01

    Complex I deficiency is the most frequently encountered single mitochondrial single enzyme deficiency in patients with a mitochondrial disorder. Although specific genotype-phenotype correlations are very difficult to identify, the majority of patients present with symptoms caused by leukodystrophy. The poor genotype-phenotype correlations can make establishing a diagnosis a challenge. The classical way to establish a complex I deficiency in patients is by performing spectrophotometric measurements of the enzyme in a muscle biopsy or other patient-derived material (liver or heart biopsy, cultured skin fibroblasts). Complex I is encoded by both the mtDNA and nuclear DNA and pathogenic mutations have been identified in the majority of the 44 genes encoding the structural subunits of complex I. In recent years, the increasing possibilities for diagnostic molecular genetic tests of large gene panels, exomes, and even entire genomes has led to the identification of many novel genetic defects causing complex I deficiency. Complex I mutations not only result in a reduced enzyme activity but also induce secondary effects at the cellular level, such as elevated reactive oxygen species production, altered membrane potential and mitochondrial morphology. At this moment there is no cure for complex I deficiency and the treatment options for complex I patients are restricted to symptomatic treatment. Recent developments, amongst others based on the treatment of the secondary effects of complex I deficiency, have shown to be promising as new therapeutic strategies in vitro and have entered clinical trials. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  14. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans.

    Science.gov (United States)

    Luz, Anthony L; Meyer, Joel N

    2016-09-01

    The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.

  15. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans.

    Science.gov (United States)

    Luz, Anthony L; Meyer, Joel N

    2016-09-01

    The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures. PMID:27566481

  16. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  17. Respiratory active mitochondrial supercomplexes.

    Science.gov (United States)

    Acín-Pérez, Rebeca; Fernández-Silva, Patricio; Peleato, Maria Luisa; Pérez-Martos, Acisclo; Enriquez, Jose Antonio

    2008-11-21

    The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.

  18. Role of mitochondrial damage during cardiac apoptosis in septic rats

    Institute of Scientific and Technical Information of China (English)

    LI Li; HU Bang-chuan; CHEN Chang-qin; GONG Shi-jin; YU Yi-hua; DAI Hai-wen; YAN Jing

    2013-01-01

    myocardial apoptosis and mitochondrial damage.Furthermore,mitochondrial damage via alteration of defenses against reactive oxygen species might play an important role in myocardial apoptosis during sepsis.

  19. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.

    Science.gov (United States)

    Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y

    2016-01-01

    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders. PMID:26712328

  20. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.

    Science.gov (United States)

    Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y

    2016-01-01

    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.

  1. Mitochondrial health, the epigenome and healthspan.

    Science.gov (United States)

    Aon, Miguel A; Cortassa, Sonia; Juhaszova, Magdalena; Sollott, Steven J

    2016-08-01

    Food nutrients and metabolic supply-demand dynamics constitute environmental factors that interact with our genome influencing health and disease states. These gene-environment interactions converge at the metabolic-epigenome-genome axis to regulate gene expression and phenotypic outcomes. Mounting evidence indicates that nutrients and lifestyle strongly influence genome-metabolic functional interactions determining disease via altered epigenetic regulation. The mitochondrial network is a central player of the metabolic-epigenome-genome axis, regulating the level of key metabolites [NAD(+), AcCoA (acetyl CoA), ATP] acting as substrates/cofactors for acetyl transferases, kinases (e.g. protein kinase A) and deacetylases (e.g. sirtuins, SIRTs). The chromatin, an assembly of DNA and nucleoproteins, regulates the transcriptional process, acting at the epigenomic interface between metabolism and the genome. Within this framework, we review existing evidence showing that preservation of mitochondrial network function is directly involved in decreasing the rate of damage accumulation thus slowing aging and improving healthspan. PMID:27358026

  2. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper;

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  3. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    International Nuclear Information System (INIS)

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  4. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  5. Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics

    OpenAIRE

    Levente Szalárdy; Dénes Zádori; Péter Klivényi; József Toldi; László Vécsei

    2015-01-01

    Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Huntington’s diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these di...

  6. Mitochondrial Stress: A Bridge between Mitochondrial Dysfunction and Metabolic Diseases?

    OpenAIRE

    Hu, Fang; Liu, Feng

    2011-01-01

    Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective a...

  7. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment.

    Science.gov (United States)

    Pereira, Lílian Cristina; de Souza, Alecsandra Oliveira; Dorta, Daniel Junqueira

    2013-06-01

    Brominated flame retardants are used in various consumer products to increase their resistance to fire and/or high temperatures. Polybrominated diphenyl ethers (PBDEs) are representatives of this class and among the most widely used congeners, and BDE-100 is produced on a large scale. There is a lack of toxicological data about these compounds, which has recently become a matter of concern to the scientific community. The mitochondria are recognized as the main energy-producing organelles, as well as playing a vital role in the maintenance of many cell functions. Therefore, mitochondria were used in the present work as an experimental model to evaluate the effects of the BDE-100 congeners at concentrations ranging from 0.1 μM to 50 μM. The results showed that high concentrations of BDE-100 were able to induce mitochondrial alterations. It was observed that the substance had an affinity for the hydrophilic portion of the mitochondrial membrane, as monitored by ANS, inhibiting the glutamate + malate-stimulated mitochondrial respiration and also inducing dissipation of the mitochondrial membrane potential, deregulation of calcium homoeostasis and mitochondrial swelling, the latter being insensitive to cyclosporin A (CsA) but partially inhibited by Ruthenium Red and N-ethyl maleimide. In addition, a significant reduction in mitochondrial ATP content was found, but on the other hand, no oxidative stress was observed after exposure of the mitochondria to BDE-100. These results show the key role of mitochondria in the cytotoxicity induced by BDE-100. PMID:23302053

  8. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment.

    Science.gov (United States)

    Pereira, Lílian Cristina; de Souza, Alecsandra Oliveira; Dorta, Daniel Junqueira

    2013-06-01

    Brominated flame retardants are used in various consumer products to increase their resistance to fire and/or high temperatures. Polybrominated diphenyl ethers (PBDEs) are representatives of this class and among the most widely used congeners, and BDE-100 is produced on a large scale. There is a lack of toxicological data about these compounds, which has recently become a matter of concern to the scientific community. The mitochondria are recognized as the main energy-producing organelles, as well as playing a vital role in the maintenance of many cell functions. Therefore, mitochondria were used in the present work as an experimental model to evaluate the effects of the BDE-100 congeners at concentrations ranging from 0.1 μM to 50 μM. The results showed that high concentrations of BDE-100 were able to induce mitochondrial alterations. It was observed that the substance had an affinity for the hydrophilic portion of the mitochondrial membrane, as monitored by ANS, inhibiting the glutamate + malate-stimulated mitochondrial respiration and also inducing dissipation of the mitochondrial membrane potential, deregulation of calcium homoeostasis and mitochondrial swelling, the latter being insensitive to cyclosporin A (CsA) but partially inhibited by Ruthenium Red and N-ethyl maleimide. In addition, a significant reduction in mitochondrial ATP content was found, but on the other hand, no oxidative stress was observed after exposure of the mitochondria to BDE-100. These results show the key role of mitochondria in the cytotoxicity induced by BDE-100.

  9. Mitochondrial lineage sorting in action – historical biogeography of the Hyles euphorbiae complex (Sphingidae, Lepidoptera) in Italy

    OpenAIRE

    Mende, Michael; Hundsdörfer, Anna

    2013-01-01

    Background: Mitochondrial genes are among the most commonly used markers in studies of species’ phylogeography and to draw conclusions about taxonomy. The Hyles euphorbiae complex (HEC) comprises six distinct mitochondrial lineages in the Mediterranean region, of which one exhibits a cryptic disjunct distribution. The predominant mitochondrial lineage in most of Europe, euphorbiae, is also present on Malta; however, it is nowadays strangely absent from Southern Italy and Sicily, where it is r...

  10. Bioenergetic roles of mitochondrial fusion.

    Science.gov (United States)

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  11. The assembly of mitochondrial complex I : a product of nuclear-mitochondrial synergy

    NARCIS (Netherlands)

    Vogel, Rutger Oscar

    2007-01-01

    Mitochondria are essential to cellular energy production. Embedded in the mitochondrial inner membrane, the engine of the mitochondrial powerhouse is formed by the five enzymatic complexes of the oxidative phosphorylation (OXPHOS) system. Dysfunction of this system results in mitochondrial disease,

  12. Percolation Model for the Existence of a Mitochondrial Eve

    CERN Document Server

    Neves, A G M

    2005-01-01

    We look at the process of inheritance of mitochondrial DNA as a percolation model on trees equivalent to the Galton-Watson process. The model is exactly solvable for its percolation threshold $p_c$ and percolation probability critical exponent. In the approximation of small percolation probability, and assuming limited progeny number, we are also able to find the maximum and minimum percolation probabilities over all probability distributions for the progeny number constrained to a given $p_c$. As a consequence, we can relate existence of a mitochondrial Eve to quantitative knowledge about demographic evolution of early mankind. In particular, we show that a mitochondrial Eve may exist even in an exponentially growing population, provided that the average number of children per individual is constrained to a small range depending on the probability $p$ that a newborn child is a female.

  13. Mitochondrial Epigenetics and Environmental Exposure.

    Science.gov (United States)

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  14. Mitochondrial dysfunction in Parkinson's disease.

    Science.gov (United States)

    Hu, Qingsong; Wang, Guanghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta and the formation of Lewy bodies and Lewy neurites in surviving DA neurons in most cases. Although the cause of PD is still unclear, the remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. Numerous studies showed that dysfunction of mitochondria may play key roles in DA neuronal loss. Both genetic and environmental factors that are associated with PD contribute to mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provides direct evidence linking mitochondrial dysfunction to PD. Decrease of mitochondrial complex I activity is present in PD brain and in neurotoxin- or genetic factor-induced PD cellular and animal models. Moreover, PINK1 and parkin, two autosomal recessive PD gene products, have important roles in mitophagy, a cellular process to clear damaged mitochondria. PINK1 activates parkin to ubiquitinate outer mitochondrial membrane proteins to induce a selective degradation of damaged mitochondria by autophagy. In this review, we summarize the factors associated with PD and recent advances in understanding mitochondrial dysfunction in PD. PMID:27453777

  15. MOLECULAR NEUROGENETICS OF MITOCHONDRIAL DISEASES

    Directory of Open Access Journals (Sweden)

    E. Cardaioli

    2012-01-01

    Full Text Available Mitochondrial diseases are an expanding group of clinically heterogeneous disorders associated with mitochondrial DNA (mtDNA mutations or nuclear gene defects. Whatever the mechanism, the final common step in mitochondrial disorders is a defect of energy production resulting from respiratory chain impairment. The complexity of the biochemical and genetic features of the respiratory chain accounts for the extraordinarily wide range of clinical presentations of mitochondrial disorders. In general, organs with high aerobic demand, such as skeletal muscle, brain and heart, are the most affected. However, virtually any organ or tissue in the body may be affected and the disorders can be multisystemic (mitochondrial encephalomyopathiesor confined to a single tissue. Moreover, mitochondrial diseases can be sporadic or transmitted by mendelian (nuclear genes or maternal inheritance (mutations in mtDNA. Precise diagnosis is often a challenge; we go through the traditional steps of the diagnostic process, starting with study of inheritance in the family, clinical manifestations in the individual,electrophysiology and imaging techniques at organ level, down to biochemistry, pathology and molecular genetics at tissue, cell and DNA level, respectively. In fact the ultimate goal is to reach, whenever possible, a definitive molecular diagnosis, which can permit rational therapeutic approach and a genetic counseling.

  16. Applied proteomics: mitochondrial proteins and effect on function.

    Science.gov (United States)

    Lopez, Mary F; Melov, Simon

    2002-03-01

    The identification of a majority of the polypeptides in mitochondria would be invaluable because they play crucial and diverse roles in many cellular processes and diseases. The endogenous production of reactive oxygen species (ROS) is a major limiter of life as illustrated by studies in which the transgenic overexpression in invertebrates of catalytic antioxidant enzymes results in increased lifespans. Mitochondria have received considerable attention as a principal source---and target---of ROS. Mitochondrial oxidative stress has been implicated in heart disease including myocardial preconditioning, ischemia/reperfusion, and other pathologies. In addition, oxidative stress in the mitochondria is associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, prion diseases, and amyotrophic lateral sclerosis (ALS) as well as aging itself. The rapidly emerging field of proteomics can provide powerful strategies for the characterization of mitochondrial proteins. Current approaches to mitochondrial proteomics include the creation of detailed catalogues of the protein components in a single sample or the identification of differentially expressed proteins in diseased or physiologically altered samples versus a reference control. It is clear that for any proteomics approach prefractionation of complex protein mixtures is essential to facilitate the identification of low-abundance proteins because the dynamic range of protein abundance within cells has been estimated to be as high as 10(7). The opportunities for identification of proteins directly involved in diseases associated with or caused by mitochondrial dysfunction are compelling. Future efforts will focus on linking genomic array information to actual protein levels in mitochondria. PMID:11884366

  17. Changes in liver mitochondrial plasticity induced by brain tumor

    Directory of Open Access Journals (Sweden)

    Debien Emilie

    2006-10-01

    Full Text Available Abstract Background Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Methods Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost were calculated from Nuclear Magnetic Resonance (NMR measurements. Results The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. Conclusion This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation.

  18. Mitochondrial remodeling” in coronary heart disease

    Directory of Open Access Journals (Sweden)

    Saotome M

    2014-06-01

    Full Text Available Masao Saotome,1 György Hajnóczky,2 Hideki Katoh,1 Hiroshi Satoh,1 Hideharu Hayashi11Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Japan; 2Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USAAbstract: Coronary heart disease is a major cause of morbidity and mortality in advanced countries. Despite remarkable developments and achievements in the field of coronary intervention, such as percutaneous catheter intervention and coronary bypass surgery, the mortality from coronary heart disease remains high because of lack of effective cardioprotective therapy against ischemia/reperfusion injury after coronary recanalization. The mitochondria play a crucial role in determination of cell death in ischemia/reperfusion injury, and furthermore provide myocardial protection against ischemia/reperfusion injury by ischemic preconditioning. Functional and structural alterations in the mitochondria help to decide cell death and survival, and many investigations have been conducted to explore the pathophysiological mechanisms of “mitochondrial remodeling” to gain clues regarding ischemia/reperfusion injury. In this review, we summarize the current state of knowledge concerning the pathophysiological role of bidirectional (detrimental and defensive “mitochondrial remodeling” via which cell death or survival is determined in coronary heart disease. Further, we discuss clinical trials of mitochondria-targeted treatment in patients with coronary heart disease.Keywords: coronary heart disease, mitochondrial remodeling, mitochondrial dynamics

  19. MCU encodes the pore conducting mitochondrial calcium currents.

    Science.gov (United States)

    Chaudhuri, Dipayan; Sancak, Yasemin; Mootha, Vamsi K; Clapham, David E

    2013-06-04

    Mitochondrial calcium (Ca(2+)) import is a well-described phenomenon regulating cell survival and ATP production. Of multiple pathways allowing such entry, the mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective channel complex encoded by several recently-discovered genes. However, the identity of the pore-forming subunit remains to be established, since knockdown of all the candidate uniporter genes inhibit Ca(2+) uptake in imaging assays, and reconstitution experiments have been equivocal. To definitively identify the channel, we use whole-mitoplast voltage-clamping, the technique that originally established the uniporter as a Ca(2+) channel. We show that RNAi-mediated knockdown of the mitochondrial calcium uniporter (MCU) gene reduces mitochondrial Ca(2+) current (I MiCa ), whereas overexpression increases it. Additionally, a classic feature of I MiCa , its sensitivity to ruthenium red inhibition, can be abolished by a point mutation in the putative pore domain without altering current magnitude. These analyses establish that MCU encodes the pore-forming subunit of the uniporter channel. DOI:http://dx.doi.org/10.7554/eLife.00704.001.

  20. Autism and Intellectual Disability Associated with Mitochondrial Disease and Hyperlactacidemia

    Directory of Open Access Journals (Sweden)

    José Guevara-Campos

    2015-02-01

    Full Text Available Autism spectrum disorder (ASD with intellectual disability (ID is a life-long debilitating condition, which is characterized by cognitive function impairment and other neurological signs. Children with ASD-ID typically attain motor skills with a significant delay. A sub-group of ASD-IDs has been linked to hyperlactacidemia and alterations in mitochondrial respiratory chain activity. The objective of this report is to describe the clinical features of patients with these comorbidities in order to shed light on difficult diagnostic and therapeutic approaches in such patients. We reported the different clinical features of children with ID associated with hyperlactacidemia and deficiencies in mitochondrial respiratory chain complex II–IV activity whose clinical presentations are commonly associated with the classic spectrum of mitochondrial diseases. We concluded that patients with ASD and ID presenting with persistent hyperlactacidemia should be evaluated for mitochondrial disorders. Administration of carnitine, coenzyme Q10, and folic acid is partially beneficial, although more studies are needed to assess the efficacy of this vitamin/cofactor treatment combination.

  1. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle

    Science.gov (United States)

    Winter, Lilli; Kuznetsov, Andrey V.; Grimm, Michael; Zeöld, Anikó; Fischer, Irmgard; Wiche, Gerhard

    2015-01-01

    Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion–fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways. PMID:26019234

  2. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies

    Directory of Open Access Journals (Sweden)

    Kirsten Kehrein

    2015-02-01

    Full Text Available Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.

  3. Peripheral Blood Mitochondrial DNA as a Biomarker of Cerebral Mitochondrial Dysfunction following Traumatic Brain Injury in a Porcine Model.

    Directory of Open Access Journals (Sweden)

    Todd J Kilbaugh

    Full Text Available Traumatic brain injury (TBI has been shown to activate the peripheral innate immune system and systemic inflammatory response, possibly through the central release of damage associated molecular patterns (DAMPs. Our main purpose was to gain an initial understanding of the peripheral mitochondrial response following TBI, and how this response could be utilized to determine cerebral mitochondrial bioenergetics. We hypothesized that TBI would increase peripheral whole blood relative mtDNA copy number, and that these alterations would be associated with cerebral mitochondrial bioenergetics triggered by TBI.Blood samples were obtained before, 6 h after, and 25 h after focal (controlled cortical impact injury: CCI and diffuse (rapid non-impact rotational injury: RNR TBI. PCR primers, unique to mtDNA, were identified by aligning segments of nuclear DNA (nDNA to mtDNA, normalizing values to nuclear 16S rRNA, for a relative mtDNA copy number. Three unique mtDNA regions were selected, and PCR primers were designed within those regions, limited to 25-30 base pairs to further ensure sequence specificity, and measured utilizing qRT-PCR.Mean relative mtDNA copy numbers increased significantly at 6 and 25 hrs after following both focal and diffuse traumatic brain injury. Specifically, the mean relative mtDNA copy number from three mitochondrial-specific regions pre-injury was 0.84 ± 0.05. At 6 and 25 h after diffuse non-impact TBI, mean mtDNA copy number was significantly higher: 2.07 ± 0.19 (P < 0.0001 and 2.37 ± 0.42 (P < 0.001, respectively. Following focal impact TBI, relative mtDNA copy number was also significantly higher, 1.35 ± 0.12 (P < 0.0001 at 25 hours. Alterations in mitochondrial respiration in the hippocampus and cortex post-TBI correlated with changes in the relative mtDNA copy number measured in peripheral blood.Alterations in peripheral blood relative mtDNA copy numbers may be a novel biosignature of cerebral mitochondrial bioenergetics

  4. A modern approach to the treatment of mitochondrial disease.

    Science.gov (United States)

    Parikh, Sumit; Saneto, Russell; Falk, Marni J; Anselm, Irina; Cohen, Bruce H; Haas, Richard; Medicine Society, The Mitochondrial

    2009-11-01

    The treatment of mitochondrial disease varies considerably. Most experts use a combination of vitamins, optimize patients' nutrition and general health, and prevent worsening of symptoms during times of illness and physiologic stress. We agree with this approach, and we agree that therapies using vitamins and cofactors have value, though there is debate about the choice of these agents and the doses prescribed. Despite the paucity of high-quality scientific evidence, these therapies are relatively harmless, may alleviate select clinical symptoms, and theoretically may offer a means of staving off disease progression. Like many other mitochondrial medicine physicians, we have observed significant (and at times life-altering) clinical responses to such pharmacologic interventions. However, it is not yet proven that these therapies truly alter the course of the disease, and some experts may choose not to use these medications at all. At present, the evidence of their effectiveness does not rise to the level required for universal use. Based on our clinical experience and judgment, however, we agree that a therapeutic trial of coenzyme Q10, along with other antioxidants, should be attempted. Although individual specialists differ as to the exact drug cocktail, a common approach involves combinations of antioxidants that may have a synergistic effect. Because almost all relevant therapies are classified as medical foods or over-the-counter supplements, most physicians also attempt to balance the apparent clinical benefit of mitochondrial cocktails with the cost burden that these supplements pose for the family. PMID:19891905

  5. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  6. Mitochondrial integrity in a neonatal bovine model of right ventricular dysfunction.

    Science.gov (United States)

    Bruns, Danielle R; Brown, R Dale; Stenmark, Kurt R; Buttrick, Peter M; Walker, Lori A

    2015-01-15

    Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria.

  7. Computational imaging reveals mitochondrial morphology as a biomarker of cancer phenotype and drug response

    Science.gov (United States)

    Giedt, Randy J.; Fumene Feruglio, Paolo; Pathania, Divya; Yang, Katherine S.; Kilcoyne, Aoife; Vinegoni, Claudio; Mitchison, Timothy J.; Weissleder, Ralph

    2016-09-01

    Mitochondria, which are essential organelles in resting and replicating cells, can vary in number, mass and shape. Past research has primarily focused on short-term molecular mechanisms underlying fission/fusion. Less is known about longer-term mitochondrial behavior such as the overall makeup of cell populations’ morphological patterns and whether these patterns can be used as biomarkers of drug response in human cells. We developed an image-based analytical technique to phenotype mitochondrial morphology in different cancers, including cancer cell lines and patient-derived cancer cells. We demonstrate that (i) cancer cells of different origins, including patient-derived xenografts, express highly diverse mitochondrial phenotypes; (ii) a given phenotype is characteristic of a cell population and fairly constant over time; (iii) mitochondrial patterns correlate with cell metabolic measurements and (iv) therapeutic interventions can alter mitochondrial phenotypes in drug-sensitive cancers as measured in pre- versus post-treatment fine needle aspirates in mice. These observations shed light on the role of mitochondrial dynamics in the biology and drug response of cancer cells. On the basis of these findings, we propose that image-based mitochondrial phenotyping can provide biomarkers for assessing cancer phenotype and drug response.

  8. Computational imaging reveals mitochondrial morphology as a biomarker of cancer phenotype and drug response

    Science.gov (United States)

    Giedt, Randy J.; Fumene Feruglio, Paolo; Pathania, Divya; Yang, Katherine S.; Kilcoyne, Aoife; Vinegoni, Claudio; Mitchison, Timothy J.; Weissleder, Ralph

    2016-01-01

    Mitochondria, which are essential organelles in resting and replicating cells, can vary in number, mass and shape. Past research has primarily focused on short-term molecular mechanisms underlying fission/fusion. Less is known about longer-term mitochondrial behavior such as the overall makeup of cell populations’ morphological patterns and whether these patterns can be used as biomarkers of drug response in human cells. We developed an image-based analytical technique to phenotype mitochondrial morphology in different cancers, including cancer cell lines and patient-derived cancer cells. We demonstrate that (i) cancer cells of different origins, including patient-derived xenografts, express highly diverse mitochondrial phenotypes; (ii) a given phenotype is characteristic of a cell population and fairly constant over time; (iii) mitochondrial patterns correlate with cell metabolic measurements and (iv) therapeutic interventions can alter mitochondrial phenotypes in drug-sensitive cancers as measured in pre- versus post-treatment fine needle aspirates in mice. These observations shed light on the role of mitochondrial dynamics in the biology and drug response of cancer cells. On the basis of these findings, we propose that image-based mitochondrial phenotyping can provide biomarkers for assessing cancer phenotype and drug response. PMID:27609668

  9. Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kanae Iijima-Ando

    Full Text Available The amyloid-beta 42 (Abeta42 is thought to play a central role in the pathogenesis of Alzheimer's disease (AD. However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.

  10. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    Science.gov (United States)

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.

  11. Emerging role of Lon protease as a master regulator of mitochondrial functions.

    Science.gov (United States)

    Pinti, Marcello; Gibellini, Lara; Nasi, Milena; De Biasi, Sara; Bortolotti, Carlo Augusto; Iannone, Anna; Cossarizza, Andrea

    2016-08-01

    Lon protease is a nuclear-encoded, mitochondrial ATP-dependent protease highly conserved throughout the evolution, crucial for the maintenance of mitochondrial homeostasis. Lon acts as a chaperone of misfolded proteins, and is necessary for maintaining mitochondrial DNA. The impairment of these functions has a deep impact on mitochondrial functionality and morphology. An altered expression of Lon leads to a profound reprogramming of cell metabolism, with a switch from respiration to glycolysis, which is often observed in cancer cells. Mutations of Lon, which likely impair its chaperone properties, are at the basis of a genetic inherited disease named of the cerebral, ocular, dental, auricular, skeletal (CODAS) syndrome. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27033304

  12. Breast Cancer Metabolism and Mitochondrial Activity: The Possibility of Chemoprevention with Metformin

    Directory of Open Access Journals (Sweden)

    Massimiliano Cazzaniga

    2015-01-01

    Full Text Available Metabolic reprogramming refers to the ability of cancer cells to alter their metabolism in order to support the increased energy request due to continuous growth, rapid proliferation, and other characteristics typical of neoplastic cells. It has long been believed that the increase of metabolic request was independent of the mitochondrial action but recently we know that mitochondrial activity together with metabolism plays a pivotal role in the regulation of the energy needed for tumor cell growth and proliferation. For these reasons the mitochondria pathways could be a new target for therapeutic and chemopreventive intervention. Metformin in particular is actually considered a promising agent against mitochondrial activity thanks to its ability to inhibit the mitochondrial complex I.

  13. Breast Cancer Metabolism and Mitochondrial Activity: The Possibility of Chemoprevention with Metformin.

    Science.gov (United States)

    Cazzaniga, Massimiliano; Bonanni, Bernardo

    2015-01-01

    Metabolic reprogramming refers to the ability of cancer cells to alter their metabolism in order to support the increased energy request due to continuous growth, rapid proliferation, and other characteristics typical of neoplastic cells. It has long been believed that the increase of metabolic request was independent of the mitochondrial action but recently we know that mitochondrial activity together with metabolism plays a pivotal role in the regulation of the energy needed for tumor cell growth and proliferation. For these reasons the mitochondria pathways could be a new target for therapeutic and chemopreventive intervention. Metformin in particular is actually considered a promising agent against mitochondrial activity thanks to its ability to inhibit the mitochondrial complex I. PMID:26605341

  14. Chlorine distribution and its isotopic composition in “rusty rock” 66095. Implications for volatile element enrichments of “rusty rock” and lunar soils, origin of “rusty” alteration, and volatile element behavior on the Moon

    Science.gov (United States)

    Shearer, C. K.; Sharp, Z. D.; Burger, P. V.; McCubbin, F. M.; Provencio, P. P.; Brearley, A. J.; Steele, A.

    2014-08-01

    An interesting characteristic of the pyroclastic glass bead deposits, select impact produced lithologies such as the “rusty rock” 66095, and unique lunar soils from the Apollo 16 landing site, is their unusual enrichments in 204Pb, Cd, Bi, Br, I, Ge, Sb, Tl, Zn, and Cl which indicates that portions of these sample contain a substantial volatile component. Sample 66095, a fine-grained, subophitic to ophitic polymict melt breccia, also hosts a pervasive low-temperature, volatile-rich, oxyhydrated mineral assemblage. The volatile element enrichments in these assorted lunar lithologies have been attributed to a variety of extra-lunar and lunar processes, whereas the oxyhydration in 66095 has long been thought to represent either terrestrial alteration of lunar chlorides and Fe-Ni metal to βFeO(OH,Cl) or indigenous lunar processes. In 66095, Cl is accommodated in FeO(OH,Cl), phosphates, and chlorides and is heterogeneously distributed. The low-temperature alteration occurs as rims around Fe-Ni metal and sulfide grains, and as dispersed grains in the adjacent matrix. Micro-Raman and transmission electron microscope (TEM) imaging indicate that akaganéite (βFeO(OH,Cl)) is the dominant FeO(OH) polymorph and is intergrown with goethite (αFeO(OH)) and hematite (αFe2O3). TEM observations indicate a well-defined “nanometer-scale” stratigraphy” to the alteration. For example, kamacite (body centered cubic) → face-centered cubic (fcc) Fe-Ni alloy → lawrencite (FeCl2) → akaganéite. The lunar lawrencite (Fe,Ni)Cl2 in 66095 does not react directly to akaganéite on Earth. Rather, lawrencite exposed to terrestrial conditions reacts to form an amorphous Fe- and Cl-bearing phase, nano-crystalline goethite, and hematite. The morphology of these terrestrial alteration products is significantly different than that of the akaganéite occurring in 66095. The chlorine isotopic compositions of these volatile-rich samples are enriched in heavy Cl. For 66095, the δ37Cl

  15. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  16. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  17. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Directory of Open Access Journals (Sweden)

    Guozheng Liu

    Full Text Available BACKGROUND: Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L. is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt genome could be helpful for the evolution research of plant mt genomes. METHODOLOGY/PRINCIPAL FINDINGS: We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. CONCLUSION: The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  18. Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection?

    Directory of Open Access Journals (Sweden)

    Paulo J. Oliveira

    2012-01-01

    Full Text Available Menopause is a consequence of the normal aging process in women. This fact implies that the physiological and biochemical alterations resulting from menopause often blur with those from the aging process. It is thought that menopause in women presents a higher risk for cardiovascular disease although the precise mechanism is still under discussion. The postmenopause lipid profile is clearly altered, which can present a risk factor for cardiovascular disease. Due to the role of mitochondria in fatty acid oxidation, alterations of the lipid profile in the menopausal women will also influence mitochondrial fatty acid oxidation fluxes in several organs. In this paper, we propose that alterations of mitochondrial bioenergetics in the heart, consequence from normal aging and/or from the menopausal process, result in decreased fatty acid oxidation and accumulation of fatty acid intermediates in the cardiomyocyte cytosol, resulting in lipotoxicity and increasing the cardiovascular risk in the menopausal women.

  19. Mitochondrial DNA sequence variation in the Anatolian Peninsula (Turkey)

    Indian Academy of Sciences (India)

    Hatice Mergen; Reyhan Öner; Cihan Öner

    2004-04-01

    Throughout human history, the region known today as the Anatolian peninsula (Turkey) has served as a junction connecting the Middle East, Europe and Central Asia, and, thus, has been subject to major population movements. The present study is undertaken to obtain information about the distribution of the existing mitochondrial D-loop sequence variations in the Turkish population of Anatolia. A few studies have previously reported mtDNA sequences in Turks. We attempted to extend these results by analysing a cohort that is not only larger, but also more representative of the Turkish population living in Anatolia. In order to obtain a descriptive picture for the phylogenetic distribution of the mitochondrial genome within Turkey, we analysed mitochondrial D-loop region sequence variations in 75 individuals from different parts of Anatolia by direct sequencing. Analysis of the two hypervariable segments within the noncoding region of the mitochondrial genome revealed the existence of 81 nucleotide mutations at 79 sites. The neighbour-joining tree of Kimura’s distance matrix has revealed the presence of six main clusters, of which H and U are the most common. The data obtained are also compared with several European and Turkic Central Asian populations.

  20. Energy metabolism determines the sensitivity of human hepatocellular carcinoma cells to mitochondrial inhibitors and biguanide drugs.

    Science.gov (United States)

    Hsu, Chia-Chi; Wu, Ling-Chia; Hsia, Cheng-Yuan; Yin, Pen-Hui; Chi, Chin-Wen; Yeh, Tien-Shun; Lee, Hsin-Chen

    2015-09-01

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide particularly in Asia. Deregulation of cellular energetics was recently included as one of the cancer hallmarks. Compounds that target the mitochondria in cancer cells were proposed to have therapeutic potential. Biguanide drugs which inhibit mitochondrial complex I and repress mTOR signaling are clinically used to treat type 2 diabetes mellitus patients (T2DM) and were recently found to reduce the risk of HCC in T2DM patients. However, whether alteration of energy metabolism is involved in regulating the sensitivity of HCC to biguanide drugs is still unclear. In the present study, we treated four HCC cell lines with mitochondrial inhibitors (rotenone and oligomycin) and biguanide drugs (metformin and phenformin), and found that the HCC cells which had a higher mitochondrial respiration rate were more sensitive to these treatments; whereas the HCC cells which exhibited higher glycolysis were more resistant. When glucose was replaced by galactose in the medium, the altered energy metabolism from glycolysis to mitochondrial respiration in the HCC cells enhanced the cellular sensitivity to mitochondrial inhibitors and biguanides. The energy metabolism change enhanced AMP-activated protein kinase (AMPK) activation, mTOR repression and downregulation of cyclin D1 and Mcl-1 in response to the mitochondrial inhibitors and biguanides. In conclusion, our results suggest that increased mitochondrial oxidative metabolism upregulates the sensitivity of HCC to biguanide drugs. Enhancing the mitochondrial oxidative metabolism in combination with biguanide drugs may be a therapeutic strategy for HCC.

  1. Murine Mesenchymal Stem Cell Commitment to Differentiation Is Regulated by Mitochondrial Dynamics.

    Science.gov (United States)

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J

    2016-03-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105(+) CD90(+) CD73(+) CD29(+) CD34(-) mesodermal precursors which, after in vitro induction, undergo chondro, adipo, and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro, and adipocytes and measuring changes in mass, morphology, dynamics, and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity, and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1, and 2, and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells. PMID:26638184

  2. Overview of mitochondrial bioenergetics.

    Science.gov (United States)

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  3. Impact of dispersed fuel oil on cardiac mitochondrial function in polar cod Boreogadus saida.

    Science.gov (United States)

    Dussauze, Matthieu; Camus, Lionel; Le Floch, Stéphane; Pichavant-Rafini, Karine; Geraudie, Perrine; Coquillé, Nathalie; Amérand, Aline; Lemaire, Philippe; Theron, Michael

    2014-12-01

    In this study, impact of dispersed oil on cardiac mitochondrial function was assessed in a key species of Arctic marine ecosystem, the polar cod Boreogadus saida. Mature polar cod were exposed during 48 h to dispersed oil (mechanically and chemically) and dispersants alone. The increase observed in ethoxyresorufin-O-deethylase activity and polycyclic aromatic hydrocarbon metabolites in bile indicated no difference in contamination level between fish exposed to chemical or mechanical dispersion of oil. Oil induced alterations of O2 consumption of permeabilised cardiac fibres showing inhibitions of complexes I and IV of the respiratory chain. Oil did not induce any modification of mitochondrial proton leak. Dispersants did not induce alteration of mitochondrial activity and did not increase oil toxicity. These data suggest that oil exposure may limit the fitness of polar cod and consequently could lead to major disruption in the energy flow of polar ecosystem.

  4. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  5. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming.

    Science.gov (United States)

    Buck, Michael D; O'Sullivan, David; Klein Geltink, Ramon I; Curtis, Jonathan D; Chang, Chih-Hao; Sanin, David E; Qiu, Jing; Kretz, Oliver; Braas, Daniel; van der Windt, Gerritje J W; Chen, Qiongyu; Huang, Stanley Ching-Cheng; O'Neill, Christina M; Edelson, Brian T; Pearce, Edward J; Sesaki, Hiromi; Huber, Tobias B; Rambold, Angelika S; Pearce, Erika L

    2016-06-30

    Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming. PMID:27293185

  6. Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Hao, H.; Moraes, C.T. [Univ. of Miami, FL (United States); Bonilla, E.; Manfredi, G.; DiMauro, S. [Columbia Univ., NY (United States)

    1995-05-01

    We have identified a novel mtDNA mutation in a 29-year-old man with myopathy and diabetes mellitus. This T{r_arrow}C transition at mtDNA position 14709 alters an evolutionarily conserved nucleotide in the region specifying for the anticodon loop of the mitochondrial tRNA{sup Glu}. The nt-14709 mutation was heteroplasmic but present at very high levels in the patient`s muscle, white blood cells (WBCs), and hair follicles; lower proportions of mutated mtDNA were observed in WBCs and hair follicles of all examined maternal relatives. In the patient`s muscle, abnormal fibers showed mitochondrial proliferation, severe focal defects in cytochrome c oxidase activity, and absence of cross-reacting material for mitochondrially synthesized polypeptides. These fibers had higher levels of mutated mtDNA than did surrounding {open_quotes}normal{close_quotes} fibers. Although the percentage of mutated mtDNA in WBCs from family members were distributed around the percentage observed in the mothers, the pattern was different in hair follicles, where the mutated population tended to increase in subsequent generations. PCR/RFLP analysis of single hair showed that the intercellular variations in the percentage of mutated mtDNA differed among family members, with younger generations having a more homogeneous distribution of mutated mtDNA in different hair follicles. These results suggests that the intercellular distribution of the mutated and wild-type mtDNA populations may drift toward homogeneity in subsequent generations. 43 refs., 4 figs., 1 tab.

  7. Structural organization of the mitochondrial respiratory chain.

    Science.gov (United States)

    Genova, Maria Luisa; Bianchi, Cristina; Lenaz, Giorgio

    2003-03-01

    Two models exist of the mitochondrial respiratory chain: the model of a random organization of the individual respiratory enzyme complexes and that of a super-complex assembly formed by stable association between the individual complexes. Recently Schägger, using digitonin solubilization and Blue Native PAGE produced new evidence of preferential associations, in particular a Complex I monomer with a Complex III dimer, and suggested a model of the respiratory chain (the respirasome) based on direct electron channelling between complexes. Discrimination between the two models is amenable to kinetic testing using flux control analysis. Experimental evidence obtained in beef heart SMP, according to the extension of the Metabolic Control Theory for pathways with metabolic channelling, showed that enzyme associations involving Complex I and Complex III take place in the respiratory chain while Complex IV seems to be randomly distributed, with cytochrome c behaving as a mobile component. Flux control analysis at anyone of the respiratory complexes involved in aerobic succinate oxidation indicated that Complex II and III are not functionally associated in a stable supercomplex. A critical appraisal of the solid-state model of the mitochondrial respiratory chain requires its reconciliation with previous biophysical and kinetic evidence that CoQ behaves as a homogeneous diffusible pool between all reducing enzyme and all oxidizing enzymes: the hypothesis can be advanced that both models (CoQ pool and supercomplexes) are true, by postulating that supercomplexes physiologically exist in equilibrium with isolated complexes depending on metabolic conditions of the cell.

  8. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers

    DEFF Research Database (Denmark)

    Stewart, James B.; Alaei-Mahabadi, Babak; Radhakrishnan, Sabarinathan;

    2015-01-01

    -coupled errors as the major source of mutations. Interestingly, while allelic ratios in general were consistent in RNA compared to DNA, some mutations in tRNAs displayed strong allelic imbalances caused by accumulation of unprocessed tRNA precursors. The effect was explained by altered secondary structure...... mitochondrial tRNA biogenesis that are difficult to address in controlled experimental systems....

  9. Resorcylidene Aminoguanidine (RAG) Improves Cardiac Mitochondrial Bioenergetics Impaired by Hyperglycaemia in a Model of Experimental Diabetes

    OpenAIRE

    Zofia Jozwiak; Karolina Siewiera; Magdalena Labieniec-Watala

    2011-01-01

    Diabetes is associated with a mitochondrial dysfunction. Hyperglycaemia is also clearly recognized as the primary culprit in the pathogenesis of cardiac complications. In response to glycation and oxidative stress, cardiac mitochondria undergo cumulative alterations, often leading to heart deterioration. There is a continuous search for innovative treatment strategies for protecting the heart mitochondria from the destructive impact of diabetes. Aminoguanidine derivatives have been successful...

  10. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  11. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  12. Nanodelivery System for Mitochondrial Targeting

    Science.gov (United States)

    Yoong, Sia Lee; Pastorin, Giorgia

    2014-02-01

    Mitochondria are indispensable in cellular functions such as energy production and death execution. They are emerging as intriguing therapeutic target as their dysregulation was found to be monumental in diseases such as neurodegenerative disease, obesity, and cancer etc. Despite tremendous interest being focused on therapeutically intervening mitochondrial function, few mito-active drugs were successfully developed, particularly due to challenges in delivering active compound to this organelle. In this review, effort in utilizing nanotechnology for targeted mitochondrial delivery of compound is expounded based on the nature of the nanomaterial used. The advantage and potential offered are discussed alongside the limitation. Finally the review is concluded with perspectives of the application of nanocarrier in mitochondrial medicine, given the unresolved concern on potential complications.

  13. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    OpenAIRE

    Sutapa Mukherjee; Luna Samanta; Anita Roy; Shravani Bhanja; Chainy, Gagan B. N.

    2014-01-01

    Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP) and altered antioxidant defenses in ...

  14. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    OpenAIRE

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; SHI, Wei; Xie, Hongfu; Hu, Xingwang; Li, Ji

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect ...

  15. Interaction of TNF with angiotensin II contributes to mitochondrial oxidative stress and cardiac damage in rats.

    Directory of Open Access Journals (Sweden)

    Nithya Mariappan

    Full Text Available Recent evidence suggests that tumor necrosis factor alpha (TNF and angiotensin II (ANGII induce oxidative stress contribute to cardiovascular disease progression. Here, we examined whether an interaction between TNF and ANGII contributes to altered cardiac mitochondrial biogenesis and ATP production to cause cardiac damage in rats. Rats received intraperitoneal injections of TNF (30 µg/kg, TNF + losartan (LOS, 1 mg/kg, or vehicle for 5 days. Left ventricular (LV function was measured using echocardiography. Rats were sacrificed and LV tissues removed for gene expression, electron paramagnetic resonance and mitochondrial assays. TNF administration significantly increased expression of the NADPH oxidase subunit, gp91phox, and the angiotensin type 1 receptor (AT-1R and decreased eNOS in the LV of rats. Rats that received TNF only had increased production rates of superoxide, peroxynitrite and total reactive oxygen species (ROS in the cytosol and increased production rates of superoxide and hydrogen peroxide in mitochondria. Decreased activities of mitochondrial complexes I, II, and III and mitochondrial genes were observed in rats given TNF. In addition, TNF administration also resulted in a decrease in fractional shortening and an increase in Tei index, suggesting diastolic dysfunction. TNF administration with concomitant LOS treatment attenuated mitochondrial damage, restored cardiac function, and decreased expression of AT1-R and NADPH oxidase subunits. Mitochondrial biogenesis and function is severely impaired by TNF as evidenced by downregulation of mitochondrial genes and increased free radical production, and may contribute to cardiac damage. These defects are independent of the downregulation of mitochondrial gene expression, suggesting novel mechanisms for mitochondrial dysfunction in rats given TNF.

  16. [Cyclosporin A causes oxidative stress and mitochondrial dysfunction in renal tubular cells].

    Science.gov (United States)

    Pérez de Hornedo, J; de Arriba, G; Calvino, M; Benito, S; Parra, T

    2007-01-01

    Reactive oxygen species (ROS) have been implicated in cyclosporin A (CsA) nephrotoxicity. As mitochondria are one of the main sources of ROS in cells, we evaluated the role of CsA in mitochondrial structure and function in LLC-PK1 cells. We incubated cells with CsA 1 microM for 24 hours and studies were performed with flow citometry and confocal microscopy. We studied mitochondrial NAD(P)H content, superoxide anion (O2.-) production (MitoSOX Red), oxidation of cardiolipin of inner mitochondrial membrane (NAO) and mitochondrial membrane potential (DIOC2(3)). Also we analyzed the intracellular ROS synthesis (H2DCF-DA) and reduced glutation (GSH) of cells. Our results showed that CsA decreased NAD(P)H and membrane potential, and increased O2.- in mitochondria. CsA also provoked oxidation of cardiolipin. Furthermore, CsA increased intracellular ROS production and decreased GSH content. These results suggest that CsA has crucial effects in mitochondria. CsA modified mitochondrial physiology through the decrease of antioxidant mitochondrial compounds as NAD(P)H and the dissipation of mitochondrial membrane potential and increase of oxidants as O2.-. Also, CsA alters lipidic structure of inner mitochondrial membrane through the oxidation of cardiolipin. These effects trigger a chain of events that favour intracellular synthesis of ROS and depletion of GSH that can compromise cellular viability. Nephrotoxic cellular effects of CsA can be explained, at least in part, through its influence on mitochondrial functionalism.

  17. Unexplained gastrointestinal symptoms: Think mitochondrial disease

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  18. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic. We describe the clinical, histopatho...

  19. Platelet mitochondrial membrane potential in Parkinson's disease

    OpenAIRE

    Antony, P.M.; Boyd, O.; Trefois, C.; Ammerlaan, W; Ostaszewski, M.; Baumuratov, A.S.; Longhino, L.; Antunes, L; Koopman, W.J.H.; Balling, R; Diederich, N.J.

    2014-01-01

    OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD pati...

  20. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  1. Ethics of mitochondrial therapy for deafness.

    Science.gov (United States)

    Legge, Michael; Fitzgerald, Ruth P

    2014-11-07

    Mitochondrial therapy may provide the relief to many families with inherited mitochondrial diseases. However, it also has the potential for use in non-fatal disorders such as inherited mitochondrial deafness, providing an option for correction of the deafness using assisted reproductive technology. In this paper we discuss the potential for use in correcting mitochondrial deafness and consider some of the issues for the deaf community.

  2. Mitochondrial Cardiomyopathy: Pathophysiology, Diagnosis, and Management

    OpenAIRE

    Meyers, Deborah E.; Basha, Haseeb Ilias; Koenig, Mary Kay

    2013-01-01

    Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specifi...

  3. Fetal programming alters reactive oxygen species production in sheep cardiac mitochondria

    OpenAIRE

    Von Bergen, Nicholas H; Koppenhafer, Stacia L.; Douglas R Spitz; Volk, Kenneth A.; Patel, Sonali S.; Roghair, Robert D.; Lamb, Fred S.; Jeffrey L. Segar; Scholz, Thomas D.

    2009-01-01

    Exposure to an adverse intrauterine environment is recognized as an important risk factor for the development of cardiovascular disease later in life. Although oxidative stress has been proposed as a mechanism for the fetal programming phenotype, the role of mitochondrial O2•− (superoxide radical) production has not been explored. To determine whether mitochondrial ROS (reactive oxygen species) production is altered by in utero programming, pregnant ewes were given a 48-h dexamethasone (dexam...

  4. Mitochondrial myopathy and myoclonic epilepsy

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1990-03-01

    Full Text Available The authors describe a family (mother, son and two daughters with mitochondrial myopathy. The mother was asymptomatic. Two daughters had lactic acidosis and myoclonic epilepsy, mild dementia, ataxia, weakness and sensory neuropathy. The son suffered one acute hemiplegic episode due to an ischemic infarct in the right temporal region. All the patients studied had hypertension. EEG disclosed photomyoclonic response in the proband patient. Muscle biopsy disclosed ragged-red fibers and abnormal mitochondria by electron microscopy. Biochemical analysis showed a defect of cytochrome C oxidase in mitochondria isolated from skeletal muscle. Several clinical and genetic aspects of the mitochondrial encephalomyopathies are discussed.

  5. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: a medical hypothesis.

    Science.gov (United States)

    Traish, Abdulmaged M; Guay, Andre T; Zitzmann, Michael

    2014-12-01

    5α-reductases, a unique family of enzymes with a wide host of substrates and tissue distributions, play a key role in the metabolism of androgens, progestins, mineralocorticoids and glucocorticoids. These enzymes are the rate-limiting step in the synthesis of a host of neurosteroids, which are critical for central nervous system function. Androgens and glucocorticoids modulate mitochondrial function, carbohydrate, protein and lipid metabolism and energy balance. Thus, the inhibition of these regulatory enzymes results in an imbalance in steroid metabolism and clearance rates, which leads to altered physiological processes. In this report, we advance the hypothesis that inhibition of 5α-reductases by finasteride and dutasteride alters not only steroid metabolism but also interferes with the downstream actions and signaling of these hormones. We suggest that finasteride and dutasteride inhibit 5α-reductase activities and reduce the clearance of glucocorticoids and mineralocorticoids, potentiating insulin resistance, diabetes and vascular disease. PMID:25460297

  6. Mitochondrial mutations in subjects with psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C. Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.

  7. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

    OpenAIRE

    Iryna Bohovych; Fernandez, Mario R.; Rahn, Jennifer J.; Stackley, Krista D.; Bestman, Jennifer E.; Annadurai Anandhan; Rodrigo Franco; Claypool, Steven M.; Robert E. Lewis; Chan, Sherine S. L.; Oleh Khalimonchuk

    2015-01-01

    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the res...

  8. Mitochondrial DNA Variability in Populations of Alectoris rufa: A Single-Stranded Conformation Polymorphism (SSCP Approach.

    Directory of Open Access Journals (Sweden)

    Martínez-Fresno, M.

    2006-06-01

    Full Text Available A variable domain of the mitochondrial DNA of the red-legged partridge Alectoris rufa was analysed by single-stranded DNA polymorphism (SSCP, in animals of different populations. Ten mitochondrial types were detected unevenly distributed among samples. A preserved natural population in Northern Spain, Fuentes Carrionas, showed the highest degree of polymorphism. Farm bred animals seem to be less variable and show some genotypes not usually found in the natural sites, suggesting an alien origin of many breeders.

  9. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis.

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2012-02-01

    OBJECTIVE: To assess the levels and spectrum of mitochondrial DNA (mtDNA) point mutations in synovial tissue from patients with inflammatory arthritis in relation to in vivo hypoxia and oxidative stress levels. METHODS: Random Mutation Capture assay was used to quantitatively evaluate alterations of the synovial mitochondrial genome. In vivo tissue oxygen levels (tPO(2)) were measured at arthroscopy using a Licox probe. Synovial expression of lipid peroxidation (4-hydroxynonenal [4-HNE]) and mitochondrial cytochrome c oxidase subunit II (CytcO II) deficiency were assessed by immunohistochemistry. In vitro levels of mtDNA point mutations, reactive oxygen species (ROS), mitochondrial membrane potential, and markers of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine [8-oxodG]) and lipid peroxidation (4-HNE) were determined in human synoviocytes under normoxia and hypoxia (1%) in the presence or absence of superoxide dismutase (SOD) or N-acetylcysteine (NAC) or a hydroxylase inhibitor (dimethyloxalylglycine [DMOG]). Patients were categorized according to their in vivo tPO(2) level (<20 mm Hg or >20 mm Hg), and mtDNA point mutations, immunochemistry features, and stress markers were compared between groups. RESULTS: The median tPO(2) level in synovial tissue indicated significant hypoxia (25.47 mm Hg). Higher frequency of mtDNA mutations was associated with reduced in vivo oxygen tension (P = 0.05) and with higher synovial 4-HNE cytoplasmic expression (P = 0.04). Synovial expression of CytcO II correlated with in vivo tPO(2) levels (P = 0.03), and levels were lower in patients with tPO(2) <20 mm Hg (P < 0.05). In vitro levels of mtDNA mutations, ROS, mitochondrial membrane potential, 8-oxo-dG, and 4-HNE were higher in synoviocytes exposed to 1% hypoxia (P < 0.05); all of these increased levels were rescued by SOD and DMOG and, with the exception of ROS, by NAC. CONCLUSION: These findings demonstrate that hypoxia-induced mitochondrial dysfunction drives

  10. Comparing the mitochondrial genomes of Wolbachia-dependent and independent filarial nematode species

    Directory of Open Access Journals (Sweden)

    McNulty Samantha N

    2012-04-01

    Full Text Available Abstract Background Many species of filarial nematodes depend on Wolbachia endobacteria to carry out their life cycle. Other species are naturally Wolbachia-free. The biological mechanisms underpinning Wolbachia-dependence and independence in filarial nematodes are not known. Previous studies have indicated that Wolbachia have an impact on mitochondrial gene expression, which may suggest a role in energy metabolism. If Wolbachia can supplement host energy metabolism, reduced mitochondrial function in infected filarial species may account for Wolbachia-dependence. Wolbachia also have a strong influence on mitochondrial evolution due to vertical co-transmission. This could drive alterations in mitochondrial genome sequence in infected species. Comparisons between the mitochondrial genome sequences of Wolbachia-dependent and independent filarial worms may reveal differences indicative of altered mitochondrial function. Results The mitochondrial genomes of 5 species of filarial nematodes, Acanthocheilonema viteae, Chandlerella quiscali, Loa loa, Onchocerca flexuosa, and Wuchereria bancrofti, were sequenced, annotated and compared with available mitochondrial genome sequences from Brugia malayi, Dirofilaria immitis, Onchocerca volvulus and Setaria digitata. B. malayi, D. immitis, O. volvulus and W. bancrofti are Wolbachia-dependent while A. viteae, C. quiscali, L. loa, O. flexuosa and S. digitata are Wolbachia-free. The 9 mitochondrial genomes were similar in size and AT content and encoded the same 12 protein-coding genes, 22 tRNAs and 2 rRNAs. Synteny was perfectly preserved in all species except C. quiscali, which had a different order for 5 tRNA genes. Protein-coding genes were expressed at the RNA level in all examined species. In phylogenetic trees based on mitochondrial protein-coding sequences, species did not cluster according to Wolbachia dependence. Conclusions Thus far, no discernable differences were detected between the mitochondrial

  11. Ghrelin reduces hepatic mitochondrial fatty acid beta oxidation.

    Science.gov (United States)

    Rigault, C; Le Borgne, F; Georges, B; Demarquoy, J

    2007-04-01

    Ghrelin is a 28-amino-acid peptide secreted during starvation by gastric cells. Ghrelin physiologically induces food intake and seems to alter lipid and glucid metabolism in several tissues such as adipose tissue and liver. Liver has a key position in lipid metabolism as it allows the metabolic orientation of fatty acids between oxidation and esterification. We investigated the effects of peripheral ghrelin administration on 2 crucial parameters of fatty acid oxidation: the levocarnitine (L-carnitine)-dependent entry of the fatty acids in the mitochondria and the mitochondrial fatty acid oxidation. Ghrelin was either given to rats prior to the hepatocyte preparation and culture or used to treat hepatocytes prepared from control animals. Direct incubation of ghrelin to raw hepatocytes did not induce any change in the studied parameters. In hepatocytes prepared from 3 nmol ghrelin-treated rats, a 44% reduction of the mitochondrial fatty acid oxidation while no alteration of the L-carnitine-related parameters were observed. These results suggested (a) that ghrelin has no direct effect on liver, and (b) that when administrated to a whole organism, ghrelin may alter the lipid metabolism and the energy balance through a marked decrease in liver fatty acid oxidation. PMID:17556859

  12. Distribution of MRI signal alterations of the cartilage endplate in pre-operated patients with special focus on recurrent lumbar disc herniation; Verteilungsmuster von (Modic-)Signalveraenderungen an den vertebralen Endplatten voroperierter Patienten und ihr Bezug zu Rezidivvorfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.T.; Liphofer, J.; Koester, O. [Inst. fuer Diagnostische und Interventionelle Radiologie und Nuklearmedizin, St. Josef-Hospital, Bochum (Germany); Willburger, R.E. [Abt. fuer Rheumaorthopaedie, St. Elisabeth-Hospital, Bochum (Germany); Schmid, G. [Klinik fuer Diagnostische und Interventionelle Radiologie, Johanna-Etienne-Krankenhaus, Neuss (Germany)

    2006-01-01

    Purpose: To study the location of (Modic) MR signal alterations (SA) of the cartilage endplate (CEP) in pre- and non-operated segments L3-S1 with special focus on the presence of recurrent lumbar disc herniation (RLDH). Materials and Methods: In a retrospective study the MR images of vertebrae L3-S1 of 65 consecutive patients with a history of microdiscectomy were evaluated. Of the 190 segments studied, 67 were pre-operated. These were divided into a group with recurrent lumbar disc herniation (RLDH) (n=19) and a group without evidence of RLDH (n=48). Non-operated segments (n=123) were also considered as a separate group. In these three groups the prevalence of different Modic types was determined using the sag. T1- and T2-weighted images, and, in particular, the distribution of SA at the upper and lower CEP was examined by evaluating the sag. T2-weighted images. In order to achieve this, each CEP was divided into nine regions. Results: Pre-operated segments showed significantly more frequent (p<0.001) and more expansive (p<0.001) SA than non-operated segments. Non-operated segments showed SA less frequently in the central region of both upper and lower CEP (p=0.056 and p=0.015, respectively). In operated segments without RLDH, the upper CEP had significantly more SA on the operation side than in the mid-sagittal and contra-lateral regions (p=0.016, p=0.037) and significantly more on the operation side of the lower CEP than in the contra-lateral region (p=0.027). Operated segments with RLDH did not show an emphasis of SA on the operation side. In this group SA occurred significantly more often in the central and ventral mid-sagittal regions of the upper CEP than in the preoperated segments without RLDH. (orig.)

  13. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders.

    Science.gov (United States)

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Bhat, Aashiq Hussain; Dar, Khalid B; Anees, Suhail; Zargar, Mohammad Afzal; Masood, Akbar

    2016-02-01

    Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed. PMID:26087000

  14. Mitochondrial DNA sequence variation in Greeks.

    Science.gov (United States)

    Kouvatsi, A; Karaiskou, N; Apostolidis, A; Kirmizidis, G

    2001-12-01

    Mitochondrial DNA (mtDNA) control region sequences were determined in 54 unrelated Greeks, coming from different regions in Greece, for both segments HVR-I and HVR-II. Fifty-two different mtDNA haplotypes were revealed, one of which was shared by three individuals. A very low heterogeneity was found among Greek regions. No one cluster of lineages was specific to individuals coming from a certain region. The average pairwise difference distribution showed a value of 7.599. The data were compared with that for other European or neighbor populations (British, French, Germans, Tuscans, Bulgarians, and Turks). The genetic trees that were constructed revealed homogeneity between Europeans. Median networks revealed that most of the Greek mtDNA haplotypes are clustered to the five known haplogroups and that a number of haplotypes are shared among Greeks and other European and Near Eastern populations.

  15. Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region.

    Science.gov (United States)

    Pastukh, Viktor M; Gorodnya, Olena M; Gillespie, Mark N; Ruchko, Mykhaylo V

    2016-07-01

    Mitochondria of mammalian cells contain multiple copies of mitochondrial (mt) DNA. Although mtDNA copy number can fluctuate dramatically depending on physiological and pathophysiologic conditions, the mechanisms regulating mitochondrial genome replication remain obscure. Hypoxia, like many other physiologic stimuli that promote growth, cell proliferation and mitochondrial biogenesis, uses reactive oxygen species as signaling molecules. Emerging evidence suggests that hypoxia-induced transcription of nuclear genes requires controlled DNA damage and repair in specific sequences in the promoter regions. Whether similar mechanisms are operative in mitochondria is unknown. Here we test the hypothesis that controlled oxidative DNA damage and repair in the D-loop region of the mitochondrial genome are required for mitochondrial DNA replication and transcription in hypoxia. We found that hypoxia had little impact on expression of mitochondrial proteins in pulmonary artery endothelial cells, but elevated mtDNA content. The increase in mtDNA copy number was accompanied by oxidative modifications in the D-loop region of the mitochondrial genome. To investigate the role of this sequence-specific oxidation of mitochondrial genome in mtDNA replication, we overexpressed mitochondria-targeted 8-oxoguanine glycosylase Ogg1 in rat pulmonary artery endothelial cells, enhancing the mtDNA repair capacity of transfected cells. Overexpression of Ogg1 resulted in suppression of hypoxia-induced mtDNA oxidation in the D-loop region and attenuation of hypoxia-induced mtDNA replication. Ogg1 overexpression also reduced binding of mitochondrial transcription factor A (TFAM) to both regulatory and coding regions of the mitochondrial genome without altering total abundance of TFAM in either control or hypoxic cells. These observations suggest that oxidative DNA modifications in the D-loop region during hypoxia are important for increased TFAM binding and ensuing replication of the mitochondrial

  16. Uncoupling protein-4 (UCP4 increases ATP supply by interacting with mitochondrial Complex II in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Mitochondrial uncoupling protein-4 (UCP4 protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP(+, but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects