WorldWideScience

Sample records for alters midbrain transcriptional

  1. Obstructive sleep apnea is associated with altered midbrain chemical concentrations.

    Science.gov (United States)

    Macey, Paul M; Sarma, Manoj K; Prasad, Janani P; Ogren, Jennifer A; Aysola, Ravi; Harper, Ronald M; Thomas, M Albert

    2017-11-05

    Obstructive sleep apnea (OSA) is accompanied by altered structure and function in cortical, limbic, brainstem, and cerebellar regions. The midbrain is relatively unexamined, but contains many integrative nuclei which mediate physiological functions that are disrupted in OSA. We therefore assessed the chemistry of the midbrain in OSA in this exploratory study. We used a recently developed accelerated 2D magnetic resonance spectroscopy (2D-MRS) technique, compressed sensing-based 4D echo-planar J-resolved spectroscopic imaging (4D-EP-JRESI), to measure metabolites in the midbrain of 14 OSA (mean age±SD:54.6±10.6years; AHI:35.0±19.4; SAO 2 min:83±7%) and 26 healthy control (50.7±8.5years) subjects. High-resolution T1-weighted scans allowed voxel localization. MRS data were processed with custom MATLAB-based software, and metabolite ratios calculated with respect to the creatine peak using a prior knowledge fitting (ProFit) algorithm. The midbrain in OSA showed decreased N-acetylaspartate (NAA; OSA:1.24±0.43, Control:1.47±0.41; p=0.03; independent samples t-test), a marker of neuronal viability. Increased levels in OSA over control subjects appeared in glutamate (Glu; OSA:1.23±0.57, Control:0.98±0.33; p=0.03), ascorbate (Asc; OSA:0.56±0.28, Control:0.42±0.20; (50.7±8.5years; p=0.03), and myo-inositol (mI; OSA:0.96±0.48, Control:0.72±0.35; p=0.03). No differences between groups appeared in γ-aminobutyric acid (GABA) or taurine. The midbrain in OSA patients shows decreased NAA, indicating neuronal injury or dysfunction. Higher Glu levels may reflect excitotoxic processes and astrocyte activation, and higher mI is also consistent with glial activation. Higher Asc levels may result from oxidative stress induced by intermittent hypoxia in OSA. Additionally, Asc and Glu are involved with glutamatergic processes, which are likely upregulated in the midbrain nuclei of OSA patients. The altered metabolite levels help explain dysfunction and structural deficits in

  2. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    Science.gov (United States)

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  3. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas

    2006-01-01

    's disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1......Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson......, Pitx3, Lmx1b, Engrailed-1, and Engrailed-2. However, none of these factors appear sufficient alone to induce the mature midbrain DA neuron phenotype in ES cell cultures in vitro, suggesting a more complex regulatory network. Here we show that Nurr1 and Pitx3 cooperatively promote terminal maturation...

  4. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol.

    Science.gov (United States)

    Brady, Lillian J; Bartley, Aundrea F; Li, Qin; McMeekin, Laura J; Hablitz, John J; Cowell, Rita M; Dobrunz, Lynn E

    2016-12-01

    Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α -/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α -/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α +/+ mice, but not PGC-1α -/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α +/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α -/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α +/+ mice but reduced the power of gamma oscillations in slices from PGC-1α -/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α +/+ mice, but not in PGC-1α -/- mice, which already have impaired nest building. The effects of

  5. Sex-specific differences in the dynamics of cocaine- and amphetamine-regulated transcript and nesfatin-1 expressions in the midbrain of depressed suicide victims vs. controls.

    NARCIS (Netherlands)

    Bloem, B.R.; Xu, L.; Morava, E.; Faludi, G.; Palkovits, M.; Roubos, E.W.; Kozicz, L.T.

    2012-01-01

    An intriguing novel pathophysiological insight into mood disorders is the notion that one's metabolic status influences mood. In rodents, cocaine- and amphetamine-regulated transcript (CART) and nesfatin-1/NUCB2 have not only been implicated in metabolism, but in the pathobiology of anxiety and

  6. Focal midbrain tumors in children

    NARCIS (Netherlands)

    Vandertop, W. P.; Hoffman, H. J.; Drake, J. M.; Humphreys, R. P.; Rutka, J. T.; Amstrong, D. C.; Becker, L. E.

    1992-01-01

    The clinical and neuroradiological features of focal midbrain tumors in 12 children are described, and the results of their surgical management are presented. Patients with a focal midbrain tumor usually exhibit either symptoms and signs of raised intracranial pressure caused by an obstructive

  7. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  8. Altered minor-groove hydrogen bonds in DNA block transcription elongation by T7 RNA polymerase.

    Science.gov (United States)

    Tanasova, Marina; Goeldi, Silvan; Meyer, Fabian; Hanawalt, Philip C; Spivak, Graciela; Sturla, Shana J

    2015-05-26

    DNA transcription depends upon the highly efficient and selective function of RNA polymerases (RNAPs). Modifications in the template DNA can impact the progression of RNA synthesis, and a number of DNA adducts, as well as abasic sites, arrest or stall transcription. Nonetheless, data are needed to understand why certain modifications to the structure of DNA bases stall RNA polymerases while others are efficiently bypassed. In this study, we evaluate the impact that alterations in dNTP/rNTP base-pair geometry have on transcription. T7 RNA polymerase was used to study transcription over modified purines and pyrimidines with altered H-bonding capacities. The results suggest that introducing wobble base-pairs into the DNA:RNA heteroduplex interferes with transcriptional elongation and stalls RNA polymerase. However, transcriptional stalling is not observed if mismatched base-pairs do not H-bond. Together, these studies show that RNAP is able to discriminate mismatches resulting in wobble base-pairs, and suggest that, in cases of modifications with minor steric impact, DNA:RNA heteroduplex geometry could serve as a controlling factor for initiating transcription-coupled DNA repair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    International Nuclear Information System (INIS)

    Sahijdak, W.M.; Yang, Chin-Rang; Zuckerman, J.S.; Meyers, M.; Boothman, D.A.

    1994-01-01

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs

  10. MRI characteristics of midbrain tumours

    International Nuclear Information System (INIS)

    Sun, B.; Wang, C.C.; Wang, J.

    1999-01-01

    We diagnosed 60 cases of midbrain tumours by MRI between 1993 to 1997. There were 39 males and 21 females, aged 2-64 years, mean 25.6 years. We found 38 patients with true intramedullary midbrain tumours, 11 predominantly in the tectum, 20 in the tegmentum and 7 with a downward extension to the pons; there were 7 within the cerebral aqueduct. There were 22 patients with infiltrating midbrain tumours extending from adjacent structures, 11 cases each from the thalamus and pineal region. All patients received surgical treatment. Gross total resection was achieved in 42 cases, subtotal (> 75 %) resection in 18. Pathological diagnoses included 16 low-grade and 15 high-grade astrocytomas; 5 oligodendroastrocytomas; 2 ependymomas; 11 glioblastomas; and 11 pineal parenchymal or germ-cell tumours. Midbrain tumours are a heterogeneous group of neoplasms, with wide variation in clinical and MRI features, related to the site and type of tumour. MRI not only allows precise analysis of their growth pattern, but also can lead to a correct preoperative diagnosis in the majority of cases. (orig.) (orig.)

  11. Diet alters performance and transcription patterns in Oedaleus asiaticus (Orthoptera: Acrididae) grasshoppers.

    Science.gov (United States)

    Huang, Xunbing; Whitman, Douglas W; Ma, Jingchuan; McNeill, Mark Richard; Zhang, Zehua

    2017-01-01

    We reared Oedaleus asiaticus grasshoppers under four different single-plant diets to examine the relationships among diet, performance, stress, and transcription patterns. Grasshoppers fed only Artemisia frigida (Asteraceae) were stressed, as indicated by their lower growth, size, development, and survival, in comparison to grasshoppers fed on any of three grasses, Cleistogenes squarrosa, Leymus chinensis, or Stipa krylovii (all Poaceae). We then used transcriptome analysis to examine how gene expression levels in O. asiaticus were altered by feeding on these diets. Nymphs fed A. frigida had the largest variation in gene expression profiles with a total of 299 genes significantly up- or down-regulated compared to those feeding on the three grasses: down-regulated genes included those involved in cuticle biosynthesis, DNA replication, biosynthesis and metabolism of nutrition. The up-regulated genes included stress-resistant and detoxifying enzymes. GO and KEGG enrichment analysis also showed that feeding on A. frigida could down-regulate biosynthesis and metabolism related pathways, and up-regulate stress-resistant and detoxification terms and pathways. Our results show that diet significantly altered gene-expression, and that unfavorable, stressful diets induce more transcriptional changes than favorable diets. Altered gene-expression represents phenotypic plasticity, and many such changes appear to be evolved, adaptive responses. The ease and regularity by which individuals shift phenotypes via altered transcription suggests that populations consist not of similar, fixed phenotypes, but of a collection of ever-changing, divergent phenotypes.

  12. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    Science.gov (United States)

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  13. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    Science.gov (United States)

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  14. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription.

    Science.gov (United States)

    Singh, Amita; Compe, Emanuel; Le May, Nicolas; Egly, Jean-Marc

    2015-02-05

    Mutations in genes encoding the ERCC3 (XPB), ERCC2 (XPD), and GTF2H5 (p8 or TTD-A) subunits of the transcription and DNA-repair factor TFIIH lead to three autosomal-recessive disorders: xeroderma pigmentosum (XP), XP associated with Cockayne syndrome (XP/CS), and trichothiodystrophy (TTD). Although these diseases were originally associated with defects in DNA repair, transcription deficiencies might be also implicated. By using retinoic acid receptor beta isoform 2 (RARB2) as a model in several cells bearing mutations in genes encoding TFIIH subunits, we observed that (1) the recruitment of the TFIIH complex was altered at the activated RARB2 promoter, (2) TFIIH participated in the recruitment of nucleotide excision repair (NER) factors during transcription in a manner different from that observed during NER, and (3) the different TFIIH variants disturbed transcription by having distinct consequences on post-translational modifications of histones, DNA-break induction, DNA demethylation, and gene-loop formation. The transition from heterochromatin to euchromatin was disrupted depending on the variant, illustrating the fact that TFIIH, by contributing to NER factor recruitment, orchestrates chromatin remodeling. The subtle transcriptional differences found between various TFIIH variants thus participate in the phenotypic variability observed among XP, XP/CS, and TTD individuals. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Cocaine alters Homer1 natural antisense transcript in the nucleus accumbens.

    Science.gov (United States)

    Sartor, Gregory C; Powell, Samuel K; Velmeshev, Dmitry; Lin, David Y; Magistri, Marco; Wiedner, Hannah J; Malvezzi, Andrea M; Andrade, Nadja S; Faghihi, Mohammad A; Wahlestedt, Claes

    2017-12-01

    Natural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity. To test this hypothesis, we used an automated algorithm that mines the NCBI AceView transcriptomics database to identify NAT overlapping genes linked to addiction. We found that 22% of the genes examined contain NATs and that expression of Homer1 natural antisense transcript (Homer1-AS) was altered in the nucleus accumbens (NAc) of mice 2h and 10days following repeated cocaine administration. In in vitro studies, depletion of Homer1-AS lead to an increase in the corresponding sense gene expression, indicating a potential regulatory mechanisms of Homer1 expression by its corresponding antisense transcript. Future in vivo studies are needed to definitely determine a role for Homer1-AS in cocaine-induced behavioral and molecular adaptations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    Science.gov (United States)

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  17. Isolated trochlear nerve palsy with midbrain hemorrhage

    Directory of Open Access Journals (Sweden)

    Raghavendra S

    2010-01-01

    Full Text Available Midbrain hemorrhage causing isolated fourth nerve palsy is extremely rare. Idiopathic, traumatic and congenital abnormalities are the most common causes of fourth nerve palsy. We report acute isolated fourth nerve palsy in an 18-year-old lady due to a midbrain hemorrhage probably due to a midbrain cavernoma. The case highlights the need for neuroimaging in selected cases of isolated trochlear nerve palsy.

  18. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit.

    Science.gov (United States)

    Ho, Emily V; Klenotich, Stephanie J; McMurray, Matthew S; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.

  19. β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer A Talarico

    Full Text Available β-adrenergic receptor (βAR-mediated transactivation of epidermal growth factor receptor (EGFR has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib, including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.

  20. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  1. MicroRNA-326 acts as a molecular switch in the regulation of midbrain urocortin 1 expression

    Science.gov (United States)

    Aschrafi, Armaz; Verheijen, Jan M.; Gordebeke, Peter M.; Olde Loohuis, Nikkie F.; Menting, Kelly; Jager, Amanda; Palkovits, Miklos; Geenen, Bram; Kos, Aron; Martens, Gerard J.M.; Glennon, Jeffrey C.; Kaplan, Barry B.; Gaszner, Balázs; Kozicz, Tamas

    2016-01-01

    Background Altered levels of urocortin 1 (Ucn1) in the centrally projecting Edinger–Westphal nucleus (EWcp) of depressed suicide attempters or completers mediate the brain’s response to stress, while the mechanism regulating Ucn1 expression is unknown. We tested the hypothesis that microRNAs (miRNAs), which are vital fine-tuners of gene expression during the brain’s response to stress, have the capacity to modulate Ucn1 expression. Methods Computational analysis revealed that the Ucn1 3′ untranslated region contained a conserved binding site for miR-326. We examined miR-326 and Ucn1 levels in the EWcp of depressed suicide completers. In addition, we evaluated miR-326 and Ucn1 levels in the serum and the EWcp of a chronic variable mild stress (CVMS) rat model of behavioural despair and after recovery from CVMS, respectively. Gain and loss of miR-326 function experiments examined the regulation of Ucn1 by this miRNA in cultured midbrain neurons. Results We found reduced miR-326 levels concomitant with elevated Ucn1 levels in the EWcp of depressed suicide completers as well as in the EWcp of CVMS rats. In CVMS rats fully recovered from stress, both serum and EWcp miR-326 levels rebounded to nonstressed levels. While downregulation of miR-326 levels in primary midbrain neurons enhanced Ucn1 expression levels, miR-326 overexpression selectively reduced the levels of this neuropeptide. Limitations This study lacked experiments showing that in vivo alteration of miR-326 levels alleviate depression-like behaviours. We show only correlative data for miR-325 and cocaine- and amphetamine-regulated transcript levels in the EWcp. Conclusion We identified miR-326 dysregulation in depressed suicide completers and characterized this miRNA as an upstream regulator of the Ucn1 neuropeptide expression in midbrain neurons. PMID:27045550

  2. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  3. Reward and aversion in a heterogeneous midbrain dopamine system.

    Science.gov (United States)

    Lammel, Stephan; Lim, Byung Kook; Malenka, Robert C

    2014-01-01

    The ventral tegmental area (VTA) is a heterogeneous brain structure that serves a central role in motivation and reward processing. Abnormalities in the function of VTA dopamine (DA) neurons and the targets they influence are implicated in several prominent neuropsychiatric disorders including addiction and depression. Recent studies suggest that the midbrain DA system is composed of anatomically and functionally heterogeneous DA subpopulations with different axonal projections. These findings may explain a number of previously confusing observations that suggested a role for DA in processing both rewarding as well as aversive events. Here we will focus on recent advances in understanding the neural circuits mediating reward and aversion in the VTA and how stress as well as drugs of abuse, in particular cocaine, alter circuit function within a heterogeneous midbrain DA system. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Transcriptional analysis of bla NDM-1 and copy number alteration under carbapenem stress

    Directory of Open Access Journals (Sweden)

    Deepjyoti Paul

    2017-02-01

    Full Text Available Abstract Background New Delhi metallo beta-lactamase is known to compromise carbapenem therapy and leading to treatment failure. However, their response to carbapenem stress is not clearly known. Here, we have investigated the transcriptional response of bla NDM-1 and plasmid copy number alteration under carbapenem exposure. Methods Three bla NDM-1 harboring plasmids representing three incompatibility types (IncFIC, IncA/C and IncK were inoculated in LB broth with and without imipenem, meropenem and ertapenem. After each 1 h total RNA was isolated, immediately reverse transcribed into cDNA and quantitative real time PCR was used for transcriptional expression of bla NDM-1. Horizontal transferability and stability of the plasmids encoding bla NDM-1 were also determined. Changes in copy number of bla NDM-1 harboring plasmids under the exposure of different carbapenems were determined by real time PCR. Clonal relatedness among the isolates was determined by pulsed field gel electrophoresis. Results Under carbapenem stress over an interval of time there was a sharp variation in the transcriptional expression of bla NDM-1 although it did not follow a specific pattern. All bla NDM-1 carrying plasmids were transferable by conjugation. These plasmids were highly stable and complete loss was observed between 92nd to 96th serial passages when antibiotic pressure was withdrawn. High copy number of bla NDM-1 was found for IncF type plasmids compared to the other replicon types. Conclusion This study suggests that the single dose of carbapenem pressure does not significantly influence the expression of bla NDM-1 and also focus on the stability of this gene as well as the change in copy number with respect to the incompatible type of plasmid harboring resistance determinant.

  5. Transcription factors and stress response gene alterations in human keratinocytes following Solar Simulated Ultra Violet Radiation.

    Science.gov (United States)

    Marais, Thomas L Des; Kluz, Thomas; Xu, Dazhong; Zhang, Xiaoru; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2017-10-19

    Ultraviolet radiation (UVR) from sunlight is the major effector for skin aging and carcinogenesis. However, genes and pathways altered by solar-simulated UVR (ssUVR), a mixture of UVA and UVB, are not well characterized. Here we report global changes in gene expression as well as associated pathways and upstream transcription factors in human keratinocytes exposed to ssUVR. Human HaCaT keratinocytes were exposed to either a single dose or 5 repetitive doses of ssUVR. Comprehensive analyses of gene expression profiles as well as functional annotation were performed at 24 hours post irradiation. Our results revealed that ssUVR modulated genes with diverse cellular functions changed in a dose-dependent manner. Gene expression in cells exposed to a single dose of ssUVR differed significantly from those that underwent repetitive exposures. While single ssUVR caused a significant inhibition in genes involved in cell cycle progression, especially G2/M checkpoint and mitotic regulation, repetitive ssUVR led to extensive changes in genes related to cell signaling and metabolism. We have also identified a panel of ssUVR target genes that exhibited persistent changes in gene expression even at 1 week after irradiation. These results revealed a complex network of transcriptional regulators and pathways that orchestrate the cellular response to ssUVR.

  6. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Sollome, James; Martin, Elizabeth [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Sethupathy, Praveen [Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC (United States); Fry, Rebecca C., E-mail: rfry@unc.edu [Department of Environmental Science & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill (United States); Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC (United States)

    2016-12-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression.

  7. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    International Nuclear Information System (INIS)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression

  8. Tumoral Environment Triggers Transcript Anomalies in Established Tumors: Induction of Altered Gene Expression and of Aberrant, Truncated and B2 Repeat-Containing Gene Transcripts

    Directory of Open Access Journals (Sweden)

    Pieter Rottiers

    1999-12-01

    Full Text Available In addition to eugenetic changes, cancerous cells exhibit extensive modifications in the expression levels of a variety of genes. The phenotypic switch observed after inoculation of T lymphoma cells into syngenic mice illustrates the active participation of tumoral environment in the induction of an aberrant gene expression pattern. To further substantiate this contribution, we performed polymerase chain reaction (PCR-based subtraction suppression hybridization (SSH to identify genes that are differentially expressed in tumor-derived EL4/13.3 cells compared to the same cells isolated from cultures. Besides a number of unknown genes, the subtracted library contained several known genes that have been reported to be expressed at increased levels in tumors and/or to contribute to carcinogenesis. Apart from clones representing translated transcripts, the subtracted library also contained a high number of clones representing B2 repeat elements, viz. short interspersed repetitive elements that are transcribed by RNA polymerase III. Northern blotting confirmed the induction of B2 transcripts in tumor tissue and also revealed induction of chimeric, B2 repeat-containing mRNA. The appearance of chimeric transcripts was accompanied by aberrant, shorter-than-full-length transcripts, specifically from upregulated genes. Accordingly, in addition to altered gene expression, tumoral environmental triggers constitute a potent mechanism to create an epigenetic diversity in cancers by inducing extensive transcript anomalies.

  9. Epstein-Barr virus (EBV) LMP2A alters normal transcriptional regulation following B-cell receptor activation

    International Nuclear Information System (INIS)

    Portis, Toni; Longnecker, Richard

    2004-01-01

    The latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) is an important mediator of viral latency in infected B-lymphocytes. LMP2A inhibits B-cell receptor (BCR) signaling in vitro and allows for the survival of BCR-negative B cells in vivo. In this study, we compared gene transcription in BCR-activated B cells from non-transgenic and LMP2A Tg6 transgenic mice. We found that the transcriptional induction and down-regulation of many genes that normally occurs in B cells following BCR activation did not occur in B cells from LMP2A Tg6 transgenic mice. Furthermore, LMP2A induced the expression of various transcription factors and genes associated with DNA/RNA metabolism, which may allow for the altered transcriptional regulation observed in BCR-activated B cells from LMP2A Tg6 mice. These results suggest that LMP2A may inhibit the downstream effects of BCR signaling by directly or indirectly altering gene transcription to ensure EBV persistence in infected B cells

  10. Vorinostat in combination with bortezomib in patients with advanced malignancies directly alters transcription of target genes.

    Science.gov (United States)

    Kolesar, Jill M; Traynor, Anne M; Holen, Kyle D; Hoang, Tien; Seo, Songwon; Kim, Kyungmann; Alberti, Dona; Espinoza-Delgado, Igor; Wright, John J; Wilding, George; Bailey, Howard H; Schelman, William R

    2013-09-01

    Vorinostat is a small molecule inhibitor of class I and II histone deacetylase enzymes which alters the expression of target genes including the cell cycle gene p21, leading to cell cycle arrest and apoptosis. Patients enrolled in a phase I trial were treated with vorinostat alone on day 1 and vorinostat and bortezomib in combination on day 9. Paired biopsies were obtained in eleven subjects. Blood samples were obtained on days 1 and 9 of cycle 1 prior to dosing and 2 and 6 h post-dosing in all 60 subjects. Gene expression of p21, HSP70, AKT, Nur77, ERB1, and ERB2 was evaluated in peripheral blood mononuclear cells and tissue samples. Chromatin immunoprecipitation of p21, HSP70, and Nur77 was also performed in biopsy samples. In peripheral blood mononuclear cells, Nur77 was significantly and consistently decreased 2 h after vorinostat administration on both days 1 and 9, median ratio of gene expression relative to baseline of 0.69 with interquartile range 0.49-1.04 (p vorinostat and bortezomib. p21, a downstream target of Nur77, was significantly decreased on day 9, 2 and 6 h after administration of vorinostat and bortezomib, 0.67 (0.41-1.03) (p vorinostat in tissue biopsies in most patients. Vorinostat inhibits Nur77 expression, which in turn may decrease p21 and AKT expression in PBMCs. The influence of vorinostat on target gene expression in tumor tissue was variable; however, most patients demonstrated interaction of acetylated H3 with Nur77, HSP70, and p21 which provides evidence of interaction with the transcriptionally active acetylated H3.

  11. Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Chaput, A.L.; Novák, Petr; Cherrington, N.J.; Smith, C.L.

    2016-01-01

    Roč. 122, December 15 (2016), s. 62-71 ISSN 0006-2952 Institutional support: RVO:60077344 Keywords : Transcription factor * Liver * Gene expression * Bioinformatics Subject RIV: CE - Biochemistry Impact factor: 4.581, year: 2016

  12. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.

    Science.gov (United States)

    Hoftman, Gil D; Dienel, Samuel J; Bazmi, Holly H; Zhang, Yun; Chen, Kehui; Lewis, David A

    2018-04-15

    Visuospatial working memory (vsWM), which is impaired in schizophrenia, requires information transfer across multiple nodes in the cerebral cortex, including visual, posterior parietal, and dorsolateral prefrontal regions. Information is conveyed across these regions via the excitatory projections of glutamatergic pyramidal neurons located in layer 3, whose activity is modulated by local inhibitory gamma-aminobutyric acidergic (GABAergic) neurons. Key properties of these neurons differ across these cortical regions. Consequently, in schizophrenia, alterations in the expression of gene products regulating these properties could disrupt vsWM function in different ways, depending on the region(s) affected. Here, we quantified the expression of markers of glutamate and GABA neurotransmission selectively in layer 3 of four cortical regions in the vsWM network from 20 matched pairs of schizophrenia and unaffected comparison subjects. In comparison subjects, levels of glutamate transcripts tended to increase, whereas GABA transcript levels tended to decrease, from caudal to rostral, across cortical regions of the vsWM network. Composite measures across all transcripts revealed a significant effect of region, with the glutamate measure lowest in the primary visual cortex and highest in the dorsolateral prefrontal cortex, whereas the GABA measure showed the opposite pattern. In schizophrenia subjects, the expression levels of many of these transcripts were altered. However, this disease effect differed across regions, such that the caudal-to-rostral increase in the glutamate measure was blunted and the caudal-to-rostral decline in the GABA measure was enhanced in the illness. Differential alterations in layer 3 glutamate and GABA neurotransmission across cortical regions may contribute to vsWM deficits in schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Pili Zhang

    2017-04-01

    Full Text Available Objective: Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods: RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results: A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions: We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity. Author Video: Author Video Watch what authors say about their articles Keywords: DNA methylation, RNA-seq, Transcription, High fat diet, Liver, Phlda1

  14. Pathological Laughter as a Symptom of Midbrain Infarction

    Science.gov (United States)

    Dabby, Ron; Watemberg, Nathan; Lampl, Yair; Eilam, Anda; Rapaport, Abraham; Sadeh, Menachem

    2004-01-01

    Pathological laughter is an uncommon symptom usually caused by bilateral, diffuse cerebral lesions. It has rarely been reported in association with isolated cerebral lesions. Midbrain involvement causing pathological laughter is extremely unusual. We describe three patients who developed pathological laughter after midbrain and pontine-midbrain infarction. In two patients a small infarction in the left paramedian midbrain was detected, whereas the third one sustained a massive bilateral pontine infarction extending to the midbrain. Laughter heralded stroke by one day in one patient and occurred as a delayed phenomenon three months after stroke in another. Pathological laughter ceased within a few days in two patients and was still present at a two year follow-up in the patient with delayed-onset laughter. Pathological laughter can herald midbrain infarction or follow stroke either shortly after onset of symptoms or as a delayed phenomenon. Furthermore, small unilateral midbrain infarctions can cause this rare complication. PMID:15706050

  15. Midbrain serotonin transporter binding potential measured with [11C]DASB is affected by serotonin transporter genotype

    International Nuclear Information System (INIS)

    Reimold, M.; Bares, R.; Reischl, G.; Solbach, C.; Machulla, H.-J.; Smolka, M.N.; Mann, K.; Schumann, G.; Zimmer, A.; Wrase, J.; Hu, X.-Z.; Goldman, D.; Heinz, A.

    2007-01-01

    Homozygote carriers of two long (L) alleles of the serotonin transporter (5-HTT) regulatory region displayed in vitro a twofold increase in 5-HTT expression compared with carriers of one or two short (S) alleles. However, in vivo imaging studies yielded contradictory results. Recently, an A > G exchange leading to differential transcriptional activation of 5-HTT mRNA in lymphobalstoid cell lines was discovered in the 5-HTT regulatory region. In vitro and in vivo evidence suggests that [ 11 C]DASB, a new 5-HTT ligand offers some advantages over the ligands used in previous studies in measuring 5-HTT density independent of synaptic levels of serotonin. We assessed 5-HTT binding potential (BP 2) in the midbrain of 19 healthy subjects with positron emission tomography and [ 11 C]DASB. Accounting for the hypothesized functional similarity of L G and S in driving 5-HTT transcription, we assessed whether L A L A homozygotes display increased midbrain BP 2 compared with carriers of at least one S allele. BP 2 in the midbrain was significantly increased in L A L A homozygotes compared with carriers of at least one S allele. Interestingly, the genotype effect on the midbrain was significantly different from that on the thalamus and the amygdala where no group differences were detected. This in vivo study provides further evidence that subjects homozygous for the L A allele display increased expression of 5-HTT in the midbrain, the origin of central serotonergic projections. (author)

  16. KIT(D816V) Induces SRC-Mediated Tyrosine Phosphorylation of MITF and Altered Transcription Program in Melanoma

    DEFF Research Database (Denmark)

    Phung, Bengt; Kazi, Julhash U; Lundby, Alicia

    2017-01-01

    The oncogenic D816V mutation of the KIT receptor is well characterized in systemic mastocytosis and acute myeloid leukemia. Although KIT(D816V) has been found in melanoma, its function and involvement in this malignancy is not understood. Here we show that KIT(D816V) induces tyrosine phosphorylat......The oncogenic D816V mutation of the KIT receptor is well characterized in systemic mastocytosis and acute myeloid leukemia. Although KIT(D816V) has been found in melanoma, its function and involvement in this malignancy is not understood. Here we show that KIT(D816V) induces tyrosine.......Implications: This study demonstrates that an oncogenic tyrosine kinase mutant, KIT(D816V), can alter the transcriptional program of the transcription factor MITF in melanoma Mol Cancer Res; 15(9); 1265-74. ©2017 AACR....

  17. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Pan, Chang Gui; Peng, Feng-Jiao; Shi, Wen Jun; Hu, Li Xin; Wei, Xiao Dong; Ying, Guang Guo

    2018-01-01

    Triclosan (TCS) is an antibacterial and antifungal agent widely used in personal care products (PCPs). We investigated the effects of TCS (20 μg/L, 100 μg/L and 500 μg/L) on Chlamydomonas reinhardtii by measuring the algal growth, chlorophyll content, lipid peroxidation, and transcription of the

  18. Altered association of transcriptionally active DNA with the nuclear-matrix after heat shock

    NARCIS (Netherlands)

    Sakkers, RJ; Brunsting, JF; Filon, AR; Kampinga, HH; Konings, AWT; Mullenders, LHF

    Purpose: Exposure of human cells to heat leads to denaturation and aggregation of proteins. Within the nucleus, it has been suggested that protein aggregation is linked to the: selective inhibition by hyperthermia of nucleotide excision repair in transcriptionally active genes. Tn this study it was

  19. Targeted deficiency of the transcriptional activator Hnf1alpha alters subnuclear positioning of its genomic targets.

    Directory of Open Access Journals (Sweden)

    Reini F Luco

    2008-05-01

    Full Text Available DNA binding transcriptional activators play a central role in gene-selective regulation. In part, this is mediated by targeting local covalent modifications of histone tails. Transcriptional regulation has also been associated with the positioning of genes within the nucleus. We have now examined the role of a transcriptional activator in regulating the positioning of target genes. This was carried out with primary beta-cells and hepatocytes freshly isolated from mice lacking Hnf1alpha, an activator encoded by the most frequently mutated gene in human monogenic diabetes (MODY3. We show that in Hnf1a-/- cells inactive endogenous Hnf1alpha-target genes exhibit increased trimethylated histone H3-Lys27 and reduced methylated H3-Lys4. Inactive Hnf1alpha-targets in Hnf1a-/- cells are also preferentially located in peripheral subnuclear domains enriched in trimethylated H3-Lys27, whereas active targets in wild-type cells are positioned in more central domains enriched in methylated H3-Lys4 and RNA polymerase II. We demonstrate that this differential positioning involves the decondensation of target chromatin, and show that it is spatially restricted rather than a reflection of non-specific changes in the nuclear organization of Hnf1a-deficient cells. This study, therefore, provides genetic evidence that a single transcriptional activator can influence the subnuclear location of its endogenous genomic targets in primary cells, and links activator-dependent changes in local chromatin structure to the spatial organization of the genome. We have also revealed a defect in subnuclear gene positioning in a model of a human transcription factor disease.

  20. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment.

    Science.gov (United States)

    Mellon, S H; Wolkowitz, O M; Schonemann, M D; Epel, E S; Rosser, R; Burke, H B; Mahan, L; Reus, V I; Stamatiou, D; Liew, C-C; Cole, S W

    2016-05-24

    Major depressive disorder (MDD) is associated with a significantly elevated risk of developing serious medical illnesses such as cardiovascular disease, immune impairments, infection, dementia and premature death. Previous work has demonstrated immune dysregulation in subjects with MDD. Using genome-wide transcriptional profiling and promoter-based bioinformatic strategies, we assessed leukocyte transcription factor (TF) activity in leukocytes from 20 unmedicated MDD subjects versus 20 age-, sex- and ethnicity-matched healthy controls, before initiation of antidepressant therapy, and in 17 of the MDD subjects after 8 weeks of sertraline treatment. In leukocytes from unmedicated MDD subjects, bioinformatic analysis of transcription control pathway activity indicated an increased transcriptional activity of cAMP response element-binding/activating TF (CREB/ATF) and increased activity of TFs associated with cellular responses to oxidative stress (nuclear factor erythroid-derived 2-like 2, NFE2l2 or NRF2). Eight weeks of antidepressant therapy was associated with significant reductions in Hamilton Depression Rating Scale scores and reduced activity of NRF2, but not in CREB/ATF activity. Several other transcriptional regulation pathways, including the glucocorticoid receptor (GR), nuclear factor kappa-B cells (NF-κB), early growth response proteins 1-4 (EGR1-4) and interferon-responsive TFs, showed either no significant differences as a function of disease or treatment, or activities that were opposite to those previously hypothesized to be involved in the etiology of MDD or effective treatment. Our results suggest that CREB/ATF and NRF2 signaling may contribute to MDD by activating immune cell transcriptome dynamics that ultimately influence central nervous system (CNS) motivational and affective processes via circulating mediators.

  1. Leukocyte transcript alterations in West-African girls following a booster vaccination with diphtheria-tetanus-pertussis vaccine

    DEFF Research Database (Denmark)

    Orntoft, Nikolaj W; Thorsen, Kasper; Benn, Christine S

    2013-01-01

    identified a group of nine comparable West African girls, from a biobank of 356 children, who were due to receive DTP booster vaccine at age 18 months. As a pilot experiment we extracted RNA from blood samples before, and 6 weeks after, vaccination to analyze the coding transcriptome in leukocytes using......Background. Observational studies from low-income countries have shown that the vaccination against diphtheria, tetanus and pertussis (DTP) is associated with excess female mortality due to infectious diseases. Methods. To investigate possible changes in gene expression after DTP vaccination, we...... expression microarrays, and ended up with information from eight girls. The data was further analyzed using dedicated array pathway and network software. We aimed to study whether DTP vaccination introduced a systematic alteration in the immune system in girls. Results. We found very few transcripts to alter...

  2. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  3. Transcriptional alterations in the left ventricle of three hypertensive rat models.

    Science.gov (United States)

    Cerutti, Catherine; Kurdi, Mazen; Bricca, Giampiero; Hodroj, Wassim; Paultre, Christian; Randon, Jacques; Gustin, Marie-Paule

    2006-11-27

    Left ventricular hypertrophy (LVH) is commonly associated with hypertension and represents an independent cardiovascular risk factor. The aim of this study was to test the hypothesis that the cardiac overload related to hypertension is associated to a specific gene expression pattern independently of genetic background. Gene expression levels were obtained with microarrays for 15,866 transcripts from RNA of left ventricles from 12-wk-old rats of three hypertensive models [spontaneously hypertensive rat (SHR), Lyon hypertensive rat (LH), and heterozygous TGR(mRen2)27 rat] and their respective controls. More than 60% of the detected transcripts displayed significant changes between the three groups of normotensive rats, showing large interstrain variability. Expression data were analyzed with respect to hypertension, LVH, and chromosomal distribution. Only four genes had significantly modified expression in the three hypertensive models among which a single gene, coding for sialyltransferase 7A, was consistently overexpressed. Correlation analysis between expression data and left ventricular mass index (LVMI) over all rats identified a larger set of genes whose expression was continuously related with LVMI, including known genes associated with cardiac remodeling. Positioning the detected transcripts along the chromosomes pointed out high-density regions mostly located within blood pressure and cardiac mass quantitative trait loci. Although our study could not detect a unique reprogramming of cardiac cells involving specific genes at early stage of LVH, it allowed the identification of some genes associated with LVH regardless of genetic background. This study thus provides a set of potentially important genes contained within restricted chromosomal regions involved in cardiovascular diseases.

  4. Early transcriptional alteration of histone deacetylases in a murine model of doxorubicin-induced cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Izabela Piotrowska

    Full Text Available Doxorubicin is a potent chemotherapeutic agent that is widely-used to treat a variety of cancers but causes acute and chronic cardiac injury, severely limiting its use. Clinically, the acute side effects of doxorubicin are mostly manageable, whereas the delayed consequences can lead to life-threatening heart failure, even decades after cancer treatment. The cardiotoxicity of doxorubicin is subject to a critical cumulative dose and so dosage limitation is considered to be the best way to reduce these effects. Hence, a number of studies have defined a "safe dose" of the drug, both in animal models and clinical settings, with the aim of avoiding long-term cardiac effects. Here we show that a dose generally considered as safe in a mouse model can induce harmful changes in the myocardium, as early as 2 weeks after infusion. The adverse changes include the development of fibrotic lesions, disarray of cardiomyocytes and a major transcription dysregulation. Importantly, low-dose doxorubicin caused specific changes in the transcriptional profile of several histone deacetylases (HDACs which are epigenetic regulators of cardiac remodelling. This suggests that cardioprotective therapies, aimed at modulating HDACs during doxorubicin treatment, deserve further exploration.

  5. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    Science.gov (United States)

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  6. Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription

    Directory of Open Access Journals (Sweden)

    Newton Paul N

    2011-08-01

    Full Text Available Abstract Background Artemisinin resistance in Plasmodium falciparum malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates. Results In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC. In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype. Conclusions The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis

  7. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co...

  8. Midbrain morphology reflects extent of brain damage in Krabbe disease

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio; Narayanan, Srikala; Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Section of Neuroradiology, Pittsburgh, PA (United States); Poe, Michele D.; Escolar, Maria L. [University of Pittsburgh, Program for the Study of Neurodevelopment in Rare Disorders, Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2015-07-15

    To study the relationships between midbrain morphology, Loes score, gross motor function, and cognitive function in infantile Krabbe disease. Magnetic resonance imaging (MRI) scans were evaluated by two neuroradiologists blinded to clinical status and neurodevelopmental function of children with early or late infantile Krabbe disease. A simplified qualitative 3-point scoring system based on midbrain morphology on midsagittal MRI was used. A score of 0 represented normal convex morphology of the midbrain, a score of 1 represented flattening of the midbrain, and a score of 3 represented concave morphology of the midbrain (hummingbird sign). Spearman correlations were estimated between this simplified MRI scoring system and the Loes score, gross motor score, and cognitive score. Forty-two MRIs of 27 subjects were reviewed. Analysis of the 42 scans showed normal midbrain morphology in 3 (7.1 %) scans, midbrain flattening in 11 (26.2 %) scans, and concave midbrain morphology (hummingbird sign) in 28 (66.7 %) scans. Midbrain morphology scores were positively correlated with the Loes score (r = 0.81, p < 0.001) and negatively correlated with both gross motor and cognitive scores (r = -.84, p < 0.001; r = -0.87, p < 0.001, respectively). The inter-rater reliability for the midbrain morphology scale was κ =.95 (95 % CI: 0.86-1.0), and the inter-rater reliability for the Loes scale was κ =.58 (95 % CI: 0.42-0.73). Midbrain morphology scores of midsagittal MRI images correlates with cognition and gross motor function in children with Krabbe disease. This MRI scoring system represents a simple but reliable method to assess disease progression in patients with infantile Krabbe disease. (orig.)

  9. Midbrain morphology reflects extent of brain damage in Krabbe disease

    International Nuclear Information System (INIS)

    Zuccoli, Giulio; Narayanan, Srikala; Panigrahy, Ashok; Poe, Michele D.; Escolar, Maria L.

    2015-01-01

    To study the relationships between midbrain morphology, Loes score, gross motor function, and cognitive function in infantile Krabbe disease. Magnetic resonance imaging (MRI) scans were evaluated by two neuroradiologists blinded to clinical status and neurodevelopmental function of children with early or late infantile Krabbe disease. A simplified qualitative 3-point scoring system based on midbrain morphology on midsagittal MRI was used. A score of 0 represented normal convex morphology of the midbrain, a score of 1 represented flattening of the midbrain, and a score of 3 represented concave morphology of the midbrain (hummingbird sign). Spearman correlations were estimated between this simplified MRI scoring system and the Loes score, gross motor score, and cognitive score. Forty-two MRIs of 27 subjects were reviewed. Analysis of the 42 scans showed normal midbrain morphology in 3 (7.1 %) scans, midbrain flattening in 11 (26.2 %) scans, and concave midbrain morphology (hummingbird sign) in 28 (66.7 %) scans. Midbrain morphology scores were positively correlated with the Loes score (r = 0.81, p < 0.001) and negatively correlated with both gross motor and cognitive scores (r = -.84, p < 0.001; r = -0.87, p < 0.001, respectively). The inter-rater reliability for the midbrain morphology scale was κ =.95 (95 % CI: 0.86-1.0), and the inter-rater reliability for the Loes scale was κ =.58 (95 % CI: 0.42-0.73). Midbrain morphology scores of midsagittal MRI images correlates with cognition and gross motor function in children with Krabbe disease. This MRI scoring system represents a simple but reliable method to assess disease progression in patients with infantile Krabbe disease. (orig.)

  10. Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona

    2017-05-01

    Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.

  11. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas).

    Science.gov (United States)

    Noël, Marie; Loseto, Lisa L; Helbing, Caren C; Veldhoen, Nik; Dangerfield, Neil J; Ross, Peter S

    2014-01-01

    High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p sea ice extent (2008 and 2010). δ(13)C results suggested a shift in feeding ecology and/or change in condition of these ice edge-associated beluga whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies.

  12. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    Science.gov (United States)

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  13. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  14. The value of midbrain morphology in predicting prognosis in chronic disorders of consciousness: A preliminary ultrasound study.

    Science.gov (United States)

    Chillura, Antonino; Naro, Antonino; Micchia, Katia; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-09-15

    Transcranial sonography (TCS) of the brainstem is currently used to support the clinical diagnosis of movement disorders. The aim of the study was to assess the usefulness of midbrain TCS in assessing outcome in patients with Chronic Disorders of Consciousness (DOC). Eleven patients with Minimally Conscious State (MCS) and Unresponsive Wakefulness Syndrome (UWS) were included in the study. We measured the area and echogenicity of the midbrain by encoding and digitally analyzing the corresponding images from the orbitomeatal plane, the morphology of brain parenchyma from the thalamic and cella media plane, and the intracranial circulation. All the patients showed an increase of pulsatility index and numerous morphological alterations on all the scan planes. In particular, we found a loss of the characteristic butterfly-shape of the midbrain, which appeared hypoechoic in the UWS but not in the MCS patients. After six months, the patients were clinically assessed by using Glasgow Outcome Scale Extended (GOSE). We found that a higher increase in GOSE scoring at follow-up was correlated with larger area and higher echogenicity of the midbrain at baseline. The present study suggests that TCS data of the midbrain may support clinical assessment of patients with chronic DOC to estimate their outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. PAH- and PCB-induced Alterations of Protein Tyrosine Kinase and Cytokine Gene Transcription in Harbor Seal (Phoca Vitulina PBMC

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2005-01-01

    Full Text Available Mechanisms underlying in vitro immunomodulatory effects of polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs were investigated in harbor seal peripheral leukocytes, via real-time PCR. We examined the relative genetic expression of the protein tyrosine kinases (PTKs Fyn and Itk, which play a critical role in T cell activation, and IL-2, a cytokine of central importance in initiating adaptive immune responses. IL-1, the macrophage-derived pro-inflammatory cytokine of innate immunity, was also included as a measure of macrophage function. Harbor seal PBMC were exposed to the prototypic immunotoxic PAH benzo[a]pyrene (BaP, 3,3',4,4',5,5'-hexachlorobiphenyl (CB-169, a model immunotoxic PCB, or DMSO (vehicle control. Exposure of Con A-stimulated harbor seal PBMC to both BaP and CB-169 produced significantly altered expression in all four targets relative to vehicle controls. The PTKs Fyn and Itk were both up-regulated following exposure to BaP and CB-169. In contrast, transcripts for IL-2 and IL-1 were decreased relative to controls by both treatments. Our findings are consistent with those of previous researchers working with human and rodent systems and support a hypothesis of contaminant-altered lymphocyte function mediated (at least in part by disruption of T cell receptor (TCR signaling and cytokine production.

  16. Logic programming reveals alteration of key transcription factors in multiple myeloma.

    Science.gov (United States)

    Miannay, Bertrand; Minvielle, Stéphane; Roux, Olivier; Drouin, Pierre; Avet-Loiseau, Hervé; Guérin-Charbonnel, Catherine; Gouraud, Wilfried; Attal, Michel; Facon, Thierry; Munshi, Nikhil C; Moreau, Philippe; Campion, Loïc; Magrangeas, Florence; Guziolowski, Carito

    2017-08-23

    Innovative approaches combining regulatory networks (RN) and genomic data are needed to extract biological information for a better understanding of diseases, such as cancer, by improving the identification of entities and thereby leading to potential new therapeutic avenues. In this study, we confronted an automatically generated RN with gene expression profiles (GEP) from a cohort of multiple myeloma (MM) patients and normal individuals using global reasoning on the RN causality to identify key-nodes. We modeled each patient by his or her GEP, the RN and the possible automatically detected repairs needed to establish a coherent flow of the information that explains the logic of the GEP. These repairs could represent cancer mutations leading to GEP variability. With this reasoning, unmeasured protein states can be inferred, and we can simulate the impact of a protein perturbation on the RN behavior to identify therapeutic targets. We showed that JUN/FOS and FOXM1 activities are altered in almost all MM patients and identified two survival markers for MM patients. Our results suggest that JUN/FOS-activation has a strong impact on the RN in view of the whole GEP, whereas FOXM1-activation could be an interesting way to perturb an MM subgroup identified by our method.

  17. Alterations in Muscle Mass and Contractile Phenotype in Response to Unloading Models: Role of Transcriptional/Pretranslational Mechanisms

    Directory of Open Access Journals (Sweden)

    Kenneth M Baldwin

    2013-10-01

    Full Text Available Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a muscle unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s. Hence, this review will examine findings from three different animal models of unloading: 1 space flight (SF, i.e., microgravity; 2 hindlimb suspension (HS, a procedure that chronically eliminates weight bearing of the lower limbs; and 3 spinal cord isolation (SI, a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: 1 all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; 2 transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and 3 signaling pathways impacting these alterations appear to be similar in each of the models

  18. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress

    Directory of Open Access Journals (Sweden)

    Minal Jaggar

    2017-12-01

    Full Text Available Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC and hippocampus in 5-HT2A receptor knockout (5-HT2A−/− and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2, trophic factors (Bdnf, Igf1 and immediate early genes (IEGs (Arc, Fos, Fosb, Egr1-4 in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic. Keywords: 5-HT2A−/− mice, Prefrontal cortex, Hippocampus, Gene expression, Sexual dimorphism, Despair

  19. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    International Nuclear Information System (INIS)

    Brenes, J.C.; Broiz, A.C.; Bassi, G.S.; Schwarting, R.K.W.; Brandão, M.L.

    2012-01-01

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by Y -aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG

  20. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, J.C. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Broiz, A.C.; Bassi, G.S. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schwarting, R.K.W. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Brandão, M.L. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-09

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by {sub Y}-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  1. Alterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats.

    Science.gov (United States)

    Andrews, Jessica L; Newell, Kelly A; Matosin, Natalie; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2015-12-03

    Postnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and Myt1 were decreased (0.001≤p≤0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and Myt1 were increased in the PCP treated rats (0.014≤p≤0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that

  2. Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics

    Directory of Open Access Journals (Sweden)

    Isak Demirel

    2017-06-01

    Full Text Available It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL-producing UPEC (ESBL019 during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array. All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-α from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce TNF-α release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.

  3. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    Science.gov (United States)

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Individual differences in the motivation to communicate relate to levels of midbrain and striatal catecholamine markers in male European starlings

    OpenAIRE

    Heimovics, Sarah A; Salvante, Katrina G; Sockman, Keith W; Riters, Lauren V

    2011-01-01

    Individuals display dramatic differences in social communication even within similar social contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors. Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and GCt and their efferent striatal ...

  5. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice

    DEFF Research Database (Denmark)

    Parish, Clare L; Castelo-Branco, Gonçalo; Rawal, Nina

    2008-01-01

    have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs......Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation......) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain...

  6. Disconnect between alcohol-induced alterations in chromatin structure and gene transcription in a mouse embryonic stem cell model of exposure.

    Science.gov (United States)

    Veazey, Kylee J; Wang, Haiqing; Bedi, Yudhishtar S; Skiles, William M; Chang, Richard Cheng-An; Golding, Michael C

    2017-05-01

    Alterations to chromatin structure induced by environmental insults have become an attractive explanation for the persistence of exposure effects into subsequent life stages. However, a growing body of work examining the epigenetic impact that alcohol and other drugs of abuse exert consistently notes a disconnection between induced changes in chromatin structure and patterns of gene transcription. Thus, an important question is whether perturbations in the 'histone code' induced by prenatal exposures to alcohol implicitly subvert gene expression, or whether the hierarchy of cellular signaling networks driving development is such that they retain control over the transcriptional program. To address this question, we examined the impact of ethanol exposure in mouse embryonic stem cells cultured under 2i conditions, where the transcriptional program is rigidly enforced through the use of small molecule inhibitors. We find that ethanol-induced changes in post-translational histone modifications are dose-dependent, unique to the chromatin modification under investigation, and that the extent and direction of the change differ between the period of exposure and the recovery phase. Similar to in vivo models, we find post-translational modifications affecting histone 3 lysine 9 are the most profoundly impacted, with the signature of exposure persisting long after alcohol has been removed. These changes in chromatin structure associate with dose-dependent alterations in the levels of transcripts encoding Dnmt1, Uhrf1, Tet1, Tet2, Tet3, and Polycomb complex members Eed and Ezh2. However, in this model, ethanol-induced changes to the chromatin template do not consistently associate with changes in gene transcription, impede the process of differentiation, or affect the acquisition of monoallelic patterns of expression for the imprinted gene Igf2R. These findings question the inferred universal relevance of epigenetic changes induced by drugs of abuse and suggest that changes

  7. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    Science.gov (United States)

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Encoding of natural and artificial stimuli in the auditory midbrain

    Science.gov (United States)

    Lyzwa, Dominika

    How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.

  9. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  10. Major alterations in transcript profiles between C3-C4 and C4 photosynthesis of an amphibious species Eleocharis baldwinii.

    Science.gov (United States)

    Chen, Taiyu; Zhu, Xin-Guang; Lin, Yongjun

    2014-09-01

    Engineering C4 photosynthetic metabolism into C3 crops is regarded as a major strategy to increase crop productivity, and clarification of the evolutionary processes of C4 photosynthesis can help the better use of this strategy. Here, Eleocharis baldwinii, a species in which C4 photosynthesis can be induced from a C3-C4 state under either environmental or ABA treatments, was used to identify the major transcriptional modifications during the process from C3-C4 to C4. The transcriptomic comparison suggested that in addition to the major differences in C4 core pathway, the pathways of glycolysis, citrate acid metabolism and protein synthesis were dramatically modified during the inducement of C4 photosynthetic states. Transcripts of many transporters, including not only metabolite transporters but also ion transporters, were dramatically increased in C4 photosynthetic state. Many candidate regulatory genes with unidentified functions were differentially expressed in C3-C4 and C4 photosynthetic states. Finally, it was indicated that ABA, auxin signaling and DNA methylation play critical roles in the regulation of C4 photosynthesis. In summary, by studying the different photosynthetic states of the same species, this work provides the major transcriptional differences between C3-C4 and C4 photosynthesis, and many of the transcriptional differences are potentially related to C4 development and therefore are the potential targets for reverse genetics studies.

  11. File list: NoD.Neu.20.AllAg.Midbrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Midbrain mm9 No description Neural Midbrain ERX102458,ERX102459,ER...X102460,ERX102461,SRX002662 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Midbrain.bed ...

  12. File list: NoD.Neu.50.AllAg.Midbrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Midbrain mm9 No description Neural Midbrain ERX102458,ERX102459,ER...X102460,ERX102461,SRX002662 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Midbrain.bed ...

  13. File list: NoD.Neu.10.AllAg.Midbrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.10.AllAg.Midbrain mm9 No description Neural Midbrain SRX002662,ERX102458,ER...X102459,ERX102460,ERX102461 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.10.AllAg.Midbrain.bed ...

  14. File list: ALL.Neu.10.AllAg.Midbrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Midbrain mm9 All antigens Neural Midbrain SRX002662,ERX102458,ERX1...02459,SRX332682,SRX317037,ERX102460,ERX102461,SRX332681 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Midbrain.bed ...

  15. File list: ALL.Neu.05.AllAg.Midbrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Midbrain mm9 All antigens Neural Midbrain SRX002662,SRX332682,ERX1...02458,ERX102459,SRX317037,ERX102460,ERX102461,SRX332681 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Midbrain.bed ...

  16. File list: ALL.Neu.20.AllAg.Midbrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Midbrain mm9 All antigens Neural Midbrain SRX332682,ERX102458,ERX1...02459,ERX102460,ERX102461,SRX317037,SRX002662,SRX332681 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Midbrain.bed ...

  17. File list: ALL.Neu.50.AllAg.Midbrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Midbrain mm9 All antigens Neural Midbrain ERX102458,ERX102459,ERX1...02460,ERX102461,SRX317037,SRX002662,SRX332682,SRX332681 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Midbrain.bed ...

  18. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    Science.gov (United States)

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  19. Fos expression in the midbrain periaqueductal grey after trigeminovascular stimulation

    NARCIS (Netherlands)

    Hoskin, KL; Bulmer, DCE; Lasalandra, M; Jonkman, A; Goadsby, PJ

    There is an accumulating body of evidence suggesting that the periaqueductal grey (PAG) is involved in the pathophysiology of migraine. Positron emission tomography (PET) studies in humans have shown that the caudal ventrolateral midbrain, encompassing the ventrolateral PAG, has activations during

  20. Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions.

    Science.gov (United States)

    Lee, Hae-In; Donati, Andrew J; Hahn, Dittmar; Tisa, Louis S; Chang, Woo-Suk

    2013-12-01

    We investigated the effect of different nitrogen (N) sources on exopolysaccharide (EPS) production and composition by Frankia strain CcI3, a N2-fixing actinomycete that forms root nodules with Casuarina species. Frankia cells grown in the absence of NH4Cl (i.e., under N2-fixing conditions) produced 1.7-fold more EPS, with lower galactose (45.1 vs. 54.7 mol%) and higher mannose (17.3 vs. 9.7 mol%) contents than those grown in the presence of NH4Cl as a combined N-source. In the absence of the combined N-source, terminally linked and branched residue contents were nearly twice as high with 32.8 vs. 15.1 mol% and 15.1 vs. 8.7 mol%, respectively, than in its presence, while the content of linearly linked residues was lower with 52.1 mol% compared to 76.2 mol%. To find out clues for the altered EPS production at the transcriptional level, we performed whole-gene expression profiling using quantitative reverse transcription PCR and microarray technology. The transcription profiles of Frankia strain CcI3 grown in the absence of NH4Cl revealed up to 2 orders of magnitude higher transcription of nitrogen fixation-related genes compared to those of CcI3 cells grown in the presence of NH4Cl. Unexpectedly, microarray data did not provide evidence for transcriptional regulation as a mechanism for differences in EPS production. These findings indicate effects of nitrogen fixation on the production and composition of EPS in Frankia strain CcI3 and suggest posttranscriptional regulation of enhanced EPS production in the absence of the combined N-source.

  1. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  2. Elevated midbrain serotonin transporter availability in mixed mania: a case report

    Directory of Open Access Journals (Sweden)

    Kuikka Jyrki

    2004-09-01

    Full Text Available Abstract Background Results obtained from brain imaging studies indicate that serotonin transporter (SERT and dopamine transporter (DAT densities are altered in major depression. However, no such studies have been published on current mania or hypomania. Case presentation In this single photon emission computed tomography (SPECT study with [123I]nor-β-CIT we present a case with simultaneous symptoms of major depression and hypomania. She had an elevated serotonin transporter availability (SERT in the midbrain and elevated dopamine transporter availability (DAT in the striatum, which normalised in a one-year follow-up period during which she received eight months of psychodynamic psychotherapy. Conclusions To our knowledge, this is the first report on SERT and DAT associated with mania. In our case the availability of both SERT in the midbrain and DAT in the striatum were elevated at baseline and declined during psychotherapy, while the SERT and DAT of the depressed controls increased during psychotherapy. Symptoms of hypomania in the case were alleviated during psychotherapy. Clinical recovery was also reflected in the Hamilton Depression Rating Scale (HDRS scores.

  3. Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts

    Science.gov (United States)

    Luis F. Larrondo; Bernardo Gonzalez; Dan Cullen; Rafael Vicuna

    2004-01-01

    A cluster of multicopper oxidase genes (mco1, mco2, mco3, mco4) from the lignin-degrading basidiomycete Phanerochaete chrysosporium is described. The four genes share the same transcriptional orientation within a 25 kb region. mco1, mco2 and mco3 are tightly grouped, with intergenic regions of 2.3 and 0.8 kb, respectively, whereas mco4 is located 11 kb upstream of mco1...

  4. Several Hfq-dependent alterations in physiology of Yersinia enterocolitica O:3 are mediated by derepression of the transcriptional regulator RovM.

    Science.gov (United States)

    Leskinen, Katarzyna; Pajunen, Maria I; Varjosalo, Markku; Fernández-Carrasco, Helena; Bengoechea, José A; Skurnik, Mikael

    2017-03-01

    In bacteria, the RNA chaperone Hfq enables pairing of small regulatory RNAs with their target mRNAs and therefore is a key player of post-transcriptional regulation network. As a global regulator, Hfq is engaged in the adaptation to external environment, regulation of metabolism and bacterial virulence. In this study we used RNA-sequencing and quantitative proteomics (LC-MS/MS) to elucidate the role of this chaperone in the physiology and virulence of Yersinia enterocolitica serotype O:3. This global approach revealed the profound impact of Hfq on gene and protein expression. Furthermore, the role of Hfq in the cell morphology, metabolism, cell wall integrity, resistance to external stresses and pathogenicity was evaluated. Importantly, our results revealed that several alterations typical for the hfq-negative phenotype were due to derepression of the transcriptional factor RovM. The overexpression of RovM caused by the loss of Hfq chaperone resulted in extended growth defect, alterations in the lipid A structure, motility and biofilm formation defects, as well as changes in mannitol utilization. Furthermore, in Y. enterocolitica RovM only in the presence of Hfq affected the abundance of RpoS. Finally, the impact of hfq and rovM mutations on the virulence was assessed in the mouse infection model. © 2016 John Wiley & Sons Ltd.

  5. Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide

    Science.gov (United States)

    Barde, Swapnali; Rüegg, Joelle; Prud’homme, Josée; Ekström, Tomas J.; Palkovits, Miklos; Turecki, Gustavo; Bagdy, Gyorgy; Ihnatko, Robert; Theodorsson, Elvar; Juhasz, Gabriella; Diaz-Heijtz, Rochellys; Mechawar, Naguib; Hökfelt, Tomas G. M.

    2016-01-01

    Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL1–3, are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation. PMID:27940914

  6. Late onset arginase deficiency presenting with encephalopathy and midbrain hyperintensity

    Directory of Open Access Journals (Sweden)

    Boby Varkey Maramattom

    2016-01-01

    Full Text Available Urea cycle disorders (UCD are very rare metabolic disorders that present with encephalopathy and hyperammonemia. Of the UCDs, Arginase deficiency (ARD is the rarest and presents in childhood with a progressive spastic diplegia or seizures. Acute presentation in adulthood is extremely unusual. [1] We present the first case of adult onset ARD presenting with encephalopathy and diffusion weighted MRI findings that resembled a moustache in the midbrain.

  7. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery

    DEFF Research Database (Denmark)

    Hansen, Jakob S; Zhao, Xinjie; Irmler, Martin

    2015-01-01

    AIMS/HYPOTHESIS: The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite...... changes and the muscular transcriptional response using a complementary metabolomics/transcriptomics approach. METHODS: We analysed 139 plasma metabolites and hormones at nine time points, and whole genome expression in skeletal muscle at three time points, during a 60 min bicycle ergometer exercise...... and a 180 min recovery phase in type 2 diabetic patients and healthy controls matched for age, percentage body fat and maximal oxygen consumption (VO2). RESULTS: Pathway analysis of differentially regulated genes upon exercise revealed upregulation of regulators of GLUT4 (SLC2A4RG, FLOT1, EXOC7, RAB13...

  8. Parental exposure to natural mixtures of POPs reduced embryo production and altered gene transcription in zebrafish embryos.

    Science.gov (United States)

    Lyche, Jan L; Grześ, Irena M; Karlsson, Camilla; Nourizadeh-Lillabadi, Rasoul; Berg, Vidar; Kristoffersen, Anja B; Skåre, Janneche U; Alestrøm, Peter; Ropstad, Erik

    2013-01-15

    Determination of toxicity of complex mixtures has been proposed to be one of the most important challenges for modern toxicology. In this study we performed genome wide transcriptome profiling to assess potential toxicant induced changes in gene regulation in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POPs). The mixtures used were extracted from burbot (Lota lota) liver originating from two lakes (Lake Mjøsa and Lake Losna) belonging to the same freshwater system in Norway. The dominating groups of contaminants were polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane metabolites (DDTs). Because both mixtures used in the present study induced similar effects, it is likely that the same toxicants are involved. The Mjøsa mixture contains high levels of PBDEs while this group of pollutants is low in the Losna mixture. However, both mixtures contain substantial concentrations of PCB and DDT suggesting these contaminants as the predominant contributors to the toxicity observed. The observed effects included phenotypic traits, like embryo production and survival, and gene transcription changes corresponding with disease and biological functions such as cancer, reproductive system disease, cardiovascular disease, lipid and protein metabolism, small molecule biochemistry and cell cycle. The changes in gene transcription included genes regulated by HNF4A, insulin, LH, FSH and NF-κB which are known to be central regulators of endocrine signaling, metabolism, metabolic homeostasis, immune functions, cancer development and reproduction. The results suggest that relative low concentrations of the natural mixtures of POPs used in the present study might pose a threat to wild freshwater fish living in the lakes from which the POPs mixtures originated. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Wang, Zhihao; Liu, Jianming; Chen, Lin

    2018-01-01

    confirmed that the two mutations lead to alteration rather than elimination of function, and their introduction in the wild-type background resulted in a specific growth rate of 0.62h-1. The glycolytic and pentose phosphate pathway fluxes had both increased significantly, and a transcriptomic analyses......% improvement is the highest reported for C. glutamicum to date. By genome resequencing and inverse metabolic engineering, we were able to pinpoint two mutations contributing to most of the growth improvement, and these resided in the transcriptional regulators GntR1 (gntR1-E70K) and RamA (ramA-A52V). We...... was already fast. We also found that the mutations could improve the performance of resting cells, under oxygen-deprived conditions, where an increase in sugar consumption rate of around 30% could be achieved. In conclusion, we have demonstrated that it is feasible to reprogram C. glutamicum into growing...

  10. Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection

    International Nuclear Information System (INIS)

    Hussain, Showket; Bharti, Alok C; Salam, Irfana; Bhat, Mohammad Akbar; Mir, Mohammad Muzaffar; Hedau, Suresh; Siddiqi, Mushtaq A; Basir, Seemi Farhat; Das, Bhudev C

    2009-01-01

    Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection. Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively. A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues. Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis

  11. Dietary fat-dependent transcriptional architecture and copy number alterations associated with modifiers of mammary cancer metastasis

    DEFF Research Database (Denmark)

    Gordon, Ryan A; Merrill, Michele La; Hunter, Kent W

    2010-01-01

    Breast cancer is a complex disease resulting from a combination of genetic and environmental factors. Among environmental factors, body composition and intake of specific dietary components like total fat are associated with increased incidence of breast cancer and metastasis. We previously showed...... fat. To elucidate diet-dependent genetic modifiers of mammary cancer and metastasis risk, global gene expression profiles and copy number alterations from mammary cancers were measured and expression quantitative trait loci (eQTL) identified. Functional candidate genes that colocalized with previously...... detected metastasis modifiers were identified. Additional analyses, such as eQTL by dietary fat interaction analysis, causality and database evaluations, helped to further refine the candidate loci to produce an enriched list of genes potentially involved in the pathogenesis of metastatic mammary cancer...

  12. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae.

    Directory of Open Access Journals (Sweden)

    Óscar Herrero

    Full Text Available Bisphenol S (BPS is an industrial alternative to the endocrine disruptor bisphenol A (BPA, and can be found in many products labeled "BPA-free". Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1 crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3 that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13 which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control were EcR (3.8, ERR (2, E74 (2.4, cyp18a1 (2.5, hsp70 (1.7, hsp40 (2.5, cyp4g (6.4, GPx (1.8, and GST (2.1, while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.

  13. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae).

    Science.gov (United States)

    Herrero, Óscar; Aquilino, Mónica; Sánchez-Argüello, Paloma; Planelló, Rosario

    2018-01-01

    Bisphenol S (BPS) is an industrial alternative to the endocrine disruptor bisphenol A (BPA), and can be found in many products labeled "BPA-free". Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1) crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3) that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13) which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control) were EcR (3.8), ERR (2), E74 (2.4), cyp18a1 (2.5), hsp70 (1.7), hsp40 (2.5), cyp4g (6.4), GPx (1.8), and GST (2.1), while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.

  14. Neuromelanin imaging and midbrain volumetry in progressive supranuclear palsy and Parkinson's disease.

    Science.gov (United States)

    Taniguchi, Daisuke; Hatano, Taku; Kamagata, Koji; Okuzumi, Ayami; Oji, Yutaka; Mori, Akio; Hori, Masaaki; Aoki, Shigeki; Hattori, Nobutaka

    2018-05-14

    Background Nigral degeneration patterns differ between PSP and PD. However, the relationship between nigral degeneration and midbrain atrophy in PSP remains unclear. Objective We analyzed differences and relationships between nigral degeneration and midbrain atrophy in PSP and PD. Methods Neuromelanin-sensitive MRI and midbrain volumetry were performed in 11 PSP patients, 24 PD patients, and 10 controls to measure the neuromelanin-sensitive SNpc area and midbrain volume. Results The neuromelanin-sensitive SNpc area and midbrain volume were significantly smaller in PSP patients compared with PD patients and controls. Motor deficits were inversely correlated with neuromelanin-sensitive SNpc area in PD, but not PSP patients. There was no significant correlation between neuromelanin-sensitive SNpc area and midbrain volume in either disease group. Midbrain volumetry discriminated PSP from PD. Diagnostic accuracy was improved when neuromelanin-sensitive MRI analysis was added. Conclusions Neuromelanin-sensitive MRI and midbrain volumetry may reflect the clinical and pathological characteristics of PSP and PD. Combining neuromelanin-sensitive MRI and midbrain volumetry may be useful for differentiating PSP from PD. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  15. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia.

    Directory of Open Access Journals (Sweden)

    Niklaus Zemp

    2015-10-01

    Full Text Available Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.

  16. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia.

    Science.gov (United States)

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-10-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.

  17. Hierarchical prediction errors in midbrain and septum during social learning.

    Science.gov (United States)

    Diaconescu, Andreea O; Mathys, Christoph; Weber, Lilian A E; Kasper, Lars; Mauer, Jan; Stephan, Klaas E

    2017-04-01

    Social learning is fundamental to human interactions, yet its computational and physiological mechanisms are not well understood. One prominent open question concerns the role of neuromodulatory transmitters. We combined fMRI, computational modelling and genetics to address this question in two separate samples (N = 35, N = 47). Participants played a game requiring inference on an adviser's intentions whose motivation to help or mislead changed over time. Our analyses suggest that hierarchically structured belief updates about current advice validity and the adviser's trustworthiness, respectively, depend on different neuromodulatory systems. Low-level prediction errors (PEs) about advice accuracy not only activated regions known to support 'theory of mind', but also the dopaminergic midbrain. Furthermore, PE responses in ventral striatum were influenced by the Met/Val polymorphism of the Catechol-O-Methyltransferase (COMT) gene. By contrast, high-level PEs ('expected uncertainty') about the adviser's fidelity activated the cholinergic septum. These findings, replicated in both samples, have important implications: They suggest that social learning rests on hierarchically related PEs encoded by midbrain and septum activity, respectively, in the same manner as other forms of learning under volatility. Furthermore, these hierarchical PEs may be broadcast by dopaminergic and cholinergic projections to induce plasticity specifically in cortical areas known to represent beliefs about others. © The Author (2017). Published by Oxford University Press.

  18. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Moonil Son

    2016-08-01

    Full Text Available The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1 strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence of its fungal host. To characterize function(s of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s in FgV1 induced phenotype alteration such as delayed vegetative growth.

  19. Plasma metabolomics reveal alterations of sphingo- and glycerophospholipid levels in non-diabetic carriers of the transcription factor 7-like 2 polymorphism rs7903146.

    Science.gov (United States)

    Then, Cornelia; Wahl, Simone; Kirchhofer, Anna; Grallert, Harald; Krug, Susanne; Kastenmüller, Gabi; Römisch-Margl, Werner; Claussnitzer, Melina; Illig, Thomas; Heier, Margit; Meisinger, Christa; Adamski, Jerzy; Thorand, Barbara; Huth, Cornelia; Peters, Annette; Prehn, Cornelia; Heukamp, Ina; Laumen, Helmut; Lechner, Andreas; Hauner, Hans; Seissler, Jochen

    2013-01-01

    Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene have been shown to display a powerful association with type 2 diabetes. The aim of the present study was to evaluate metabolic alterations in carriers of a common TCF7L2 risk variant. Seventeen non-diabetic subjects carrying the T risk allele at the rs7903146 TCF7L2 locus and 24 subjects carrying no risk allele were submitted to intravenous glucose tolerance test and euglycemic-hyperinsulinemic clamp. Plasma samples were analysed for concentrations of 163 metabolites through targeted mass spectrometry. TCF7L2 risk allele carriers had a reduced first-phase insulin response and normal insulin sensitivity. Under fasting conditions, carriers of TCF7L2 rs7903146 exhibited a non-significant increase of plasma sphingomyelins (SMs), phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) species. A significant genotype effect was detected in response to challenge tests in 6 SMs (C16:0, C16:1, C18:0, C18:1, C24:0, C24:1), 5 hydroxy-SMs (C14:1, C16:1, C22:1, C22:2, C24:1), 4 lysoPCs (C14:0, C16:0, C16:1, C17:0), 3 diacyl-PCs (C28:1, C36:6, C40:4) and 4 long-chain acyl-alkyl-PCs (C40:2, C40:5, C44:5, C44:6). Plasma metabolomic profiling identified alterations of phospholipid metabolism in response to challenge tests in subjects with TCF7L2 rs7903146 genotype. This may reflect a genotype-mediated link to early metabolic abnormalities prior to the development of disturbed glucose tolerance.

  20. Activation of Midbrain Structures by Associative Novelty and the Formation of Explicit Memory in Humans

    Science.gov (United States)

    Schott, Bjorn H.; Sellner, Daniela B.; Lauer, Corinna-J.; Habib, Reza; Frey, Julietta U.; Guderian, Sebastian; Heinze, Hans-Jochen; Duzel, Emrah

    2004-01-01

    Recent evidence suggests a close functional relationship between memory formation in the hippocampus and dopaminergic neuromodulation originating in the ventral tegmental area and medial substantia nigra of the midbrain. Here we report midbrain activation in two functional MRI studies of visual memory in healthy young adults. In the first study,…

  1. Dose-dependent and gender-related radiation-induced transcription alterations of Gadd45a and Ier5 in human lymphocytes exposed to gamma ray emitted by 60Co

    International Nuclear Information System (INIS)

    Tavakoli, H.; Manoochehri, M.; Mosalla, S. M. M.; Ghafori, M.; Karimi, A. A.

    2013-01-01

    Growth arrest DNA damage-inducible 45a gene (Gadd45a) and immediate early response gene 5 (Ier5) have been emphasised as ideal radiation bio-markers in several reports. However, some aspects of radiation-induced transcriptional alterations of these genes are unknown. In this study, gender-dependency and dose-dependency as two factors that may affect radiation induced transcription of Gadd45a and Ier5 genes were investigated. Human lymphocyte cells from six healthy voluntary blood donors (three women and three men) were irradiated in vitro with doses of 0.5-4.0 Gy from a 60 Co source and RNA isolated 4 h later using the High Pure RNA Isolation Kit. Dose and gender dependency of radiation-induced transcriptional alterations of Gadd45a and Ier5 genes were studied by quantitative real-time polymerase chain reaction. The results showed that as a whole, Gadd45a and Ier5 gave responses to gamma rays, while the responses were independent of radiation doses. Therefore, regardless of radiation dose, Gadd45a and Ier5 can be considered potential radiation bio-markers. Besides, although radiation-induced transcriptional alterations of Gadd45a in female and male lymphocyte samples were insignificant at 0.5 Gy, at other doses, their quantities in female samples were at a significantly higher level than in male samples. Radiation induced transcription of Ier5 of females samples had a reduction in comparison with male samples at 1 and 2 Gy, but at doses of 0.5 and 4 Gy, females were significantly more susceptible to radiation-induced transcriptional alteration of Ier5. (authors)

  2. Alteration of runt-related transcription factor 3 gene expression and biologic behavior of esophageal carcinoma TE-1 cells after 5-azacytidine intervention.

    Science.gov (United States)

    Wang, Shuai; Liu, Hong; Akhtar, Javed; Chen, Hua-Xia; Wang, Zhou

    2013-01-01

    5-Azacytidine (5-azaC) was originally identified as an anticancer drug (NSC102876) which can cause hypomethylation of tumor suppressor genes. To assess its effects on runt-related transcription factor 3 (RUNX3), expression levels and the promoter methylation status of the RUNX3 gene were assessed. We also investigated alteration of biologic behavior of esophageal carcinoma TE-1 cells. MTT assays showed 5-azaC inhibited the proliferation of TE-1 cells in a time and dose-dependent way. Although other genes could be demethylated after 5-azaC intervention, we focused on RUNX3 gene in this study. The expression level of RUNX3 mRNA increased significantly in TE-1 cells after treatment with 5-azaC at hypotoxic levels. RT-PCR showed 5-azaC at 50 μM had the highest RUNX3-induction activity. Methylation-specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. Migration and invasion of TE-1 cells were inhibited by 5-azaC, along with growth of Eca109 xenografts in nude mice. In conclusion, we demonstrate that the RUNX3 gene can be reactivated by the demethylation reagent 5-azaC, which inhibits the proliferation, migration and invasion of esophageal carcinoma TE-1 cells.

  3. Electrophysiological and gene expression characterization of the ontogeny of nestin-expressing cells in the adult mouse midbrain

    Directory of Open Access Journals (Sweden)

    Anupama Dey

    2017-08-01

    Full Text Available The birth of new neurons, or neurogenesis, in the adult midbrain is important for progressing dopamine cell-replacement therapies for Parkinson's disease. Most studies suggest newborn cells remain undifferentiated or differentiate into glia within the adult midbrain. However, some studies suggest nestin + neural precursor cells (NPCs have a propensity to generate new neurons here. We sought to confirm this by administering tamoxifen to adult NesCreERT2/R26eYFP transgenic mice, which permanently labelled adult nestin-expressing cells and their progeny with enhanced yellow fluorescent protein (eYFP. eYFP+ midbrain cells were then characterized 1–32 weeks later in acutely prepared brain slices using whole-cell patch clamp electrophysiology combined with single-cell RT-qPCR. Most eYFP+ cells exhibited a mature neuronal phenotype with large amplitude fast action potentials (APs, spontaneous post-synaptic currents (sPSCs, and expression of ‘mature’ neuronal genes (NeuN, Gad1, Gad2 and/or VGLUT2. This was the case even at the earliest time-point following tamoxifen (i.e. 1 week. In comparison to neighboring eYFP− (control cells, eYFP+ cells discharged more APs per unit current injection, and had faster AP time-to-peak, hyperpolarized resting membrane potential, smaller membrane capacitance and shorter duration sPSCs. eYFP+ cells were also differentiated from eYFP− cells by increased expression of ‘immature’ pro-neuronal genes (Pax6, Ngn2 and/or Msx1. However, further analyses failed to reveal evidence of a place of birth, neuronal differentiation, maturation and integration indicative of classical neurogenesis. Thus our findings do not support the notion that nestin + NPCs in the adult SNc and midbrain generate new neurons via classical neurogenesis. Rather, they raise the possibility that mature neurons express nestin under unknown circumstances, and that this is associated with altered physiology and gene expression.

  4. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2016-04-01

    Full Text Available The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1 and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1 gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm, inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2] affected net photosynthesis (Pn and leaf substomatal [CO2] (Ci. Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs and transpiration (E, and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.

  5. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-07-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Development and function of the midbrain dopamine system: what we know and what we need to

    OpenAIRE

    Bissonette, G. B.; Roesch, M. R.

    2015-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson’s disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, in...

  7. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    Science.gov (United States)

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  8. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    Science.gov (United States)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  9. Wnt5a regulates midbrain dopaminergic axon growth and guidance.

    Directory of Open Access Journals (Sweden)

    Brette D Blakely

    2011-03-01

    Full Text Available During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM the cues that guide dopaminergic (DA axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway. Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.

  10. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera

    Directory of Open Access Journals (Sweden)

    Zhou Li

    2018-05-01

    Full Text Available Gamma-aminobutyric acid (GABA may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass (Agrostis stolonifera to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar “Penncross” plants were treated with 0.5 mM GABA or water (untreated control as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night, drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3, POD, APX, HSP90, DHN3, and MT1 during heat stress and the expression of CDPK26, MAPK1, ABF3, WRKY75, MYB13, HSP70, MT1, 14-3-3, and genes (SOD, CAT, POD, APX, MDHAR, DHAR, and GR encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  11. Alteration of Transcripts of Stress-Protective Genes and Transcriptional Factors by γ-Aminobutyric Acid (GABA) Associated with Improved Heat and Drought Tolerance in Creeping Bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Peng, Yan; Huang, Bingru

    2018-05-31

    Gamma-aminobutyric acid (GABA) may play a positive role in regulating plant tolerance to drought or heat stress. The objectives of this study were to investigate the physiological effects of GABA on tolerance of creeping bentgrass ( Agrostis stolonifera ) to heat and drought stress and to determine whether enhanced heat and drought tolerance due to GABA treatment was associated with the up-regulation of selected genes and transcriptional factors involved in stress protection. Creeping bentgrass (cultivar "Penncross") plants were treated with 0.5 mM GABA or water (untreated control) as a foliar spray and were subsequently exposed to heat stress (35/30 °C, day/night), drought stress by withholding irrigation, or non-stress conditions in controlled-environment growth chambers. Exogenous application of GABA significantly improved plant tolerance to heat and drought stress, as reflected by increased leaf water content, cell membrane stability, and chlorophyll content. The analysis of gene transcript level revealed that exogenous GABA up-regulated the expression of ABF3 , POD , APX , HSP90 , DHN3 , and MT1 during heat stress and the expression of CDPK26 , MAPK1 , ABF3 , WRKY75 , MYB13 , HSP70 , MT1 , 14-3-3 , and genes ( SOD , CAT , POD , APX , MDHAR , DHAR , and GR ) encoding antioxidant enzymes during drought stress. The up-regulation of the aforementioned stress-protective genes and transcriptional factors could contribute to improved heat and drought tolerance in creeping bentgrass.

  12. Time-dependent effects of repeated THC treatment on dopamine D2/3 receptor-mediated signalling in midbrain and striatum.

    Science.gov (United States)

    Tournier, Benjamin B; Tsartsalis, Stergios; Dimiziani, Andrea; Millet, Philippe; Ginovart, Nathalie

    2016-09-15

    This study examined the time-course of alterations in levels and functional sensitivities of dopamine D2/3 receptors (D2/3R) during the course and up to 6 weeks following cessation of chronic treatment with Delta(9)-Tetrahydrocannabinol (THC) in rats. THC treatment led to an increase in D2/3R levels in striatum, as assessed using [(3)H]-(+)-PHNO, that was readily observable after one week of treatment, remained stably elevated during the subsequent 2 weeks of treatment, but fully reversed within 2 weeks of THC discontinuation. THC-induced D2/3R alterations were more pronounced and longer lasting in the dopamine cell body regions of the midbrain, wherein [(3)H]-(+)-PHNO binding was still elevated at 2 weeks but back to control values at 6 weeks after THC cessation. Parallel analyses of the psychomotor effects of pre- and post-synaptic doses of quinpirole also showed a pattern of D2/3R functional supersensitivity indicative of more rapid subsidence in striatum than in midbrain following drug cessation. These results indicate that chronic THC is associated with a biochemical and functional sensitization of D2/3R signaling, that these responses show a region-specific temporal pattern and are fully reversible following drug discontinuation. These results suggest that an increased post-synaptic D2/3R function and a decreased DA presynaptic signaling, mediated by increased D2/3R autoinhibition, may predominate during distinct phases of withdrawal and may contribute both to the mechanisms leading to relapse and to cannabinoid withdrawal symptoms. The different rates of normalization of D2/3R function in striatum and midbrain may be critical information for the development of new pharmacotherapies for cannabis dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Movement disorders associated with focal midbrain lesion: correlation with clinical and I-123 IPT SPECT findings

    International Nuclear Information System (INIS)

    Kang, Ji Hoon; Im, Joo Hyuk; Kim, Jae Seung; Lee, Myoung Chong

    2001-01-01

    Midbrain lesion may produce a variety of movement disorders including tremor, dystonia, and parkinsonism. The anatomical and functional basis of the movement disorder associated with the midbrain lesion is still unclear. The purpose of this study was to correlate focal midbrain lesions with clinical and I-123 IPT SPECT findings. Five patients (aged 25 to 69 years, 3 men and 2 women) who presented with movement disorder associated with discrete focal midbrain lesion on the brain MRI were included. We reviewed the clinical characteristics of movement disorders and the brain MRI findings in all patients. I-123 IPT SPECT was performed in all patients and 9 normal controls to evaluate the integrity of the nigrostriatal dopaminergic system and specific binding ratios were also calculated. Patients consisted of 2 with parkinsonism, 1 with midbrain tremor, 1 with hemidystonia, and 1 with micrographia as the only manifestation. In all patients, movement disorders were confined to the limbs contralateral to the focal midbrain lesions. The causes of midbrain lesion were trauma (n=2), rupture of AVM (n=1), cerebral infarction (n=1), and encephalitis (n=1). The latency between the midbrain injury and the onset of movement disorder varied from 1.5 months to 2 years (mean 6.7 months). Specific binding ratios of ipsilateral striatum (1.6±1.4) were significantly lower than that of contralateral side (3.3±0.99) and normal control (3.5±0.5)(p<0.05). All of six patients had lesions involving substantia nigra on MRI and two of these with resting tremor had also lesions involving the red nucleus. Bradykinesia and rigidity were mild or absent in these two patients, despite severely decreased specific binding ratios (mean 0.55) of ipsilateral striatum. Movement disorders associated with focal midbrain lesion were partially related to the damage in the nigrostriatal dopaminergic system. However, the severity and nature of movement disorder were variable and not directly related to the

  14. Altered binding of human histone gene transcription factors during the shutdown of proliferation and onset of differentiation in HL-60 cells

    International Nuclear Information System (INIS)

    Stein, G.; Lian, J.; Stein, J.; Shalhoub, V.; Wright, K.; Pauli, U.; Van Wijnen, A.; Briggs, R.

    1989-01-01

    Two sites of protein-DNA interaction have been identified in vivo and in vitro in the proximal promoter regions of an H4 and an H3 human histone gene. In proliferating cells, these genes are transcribed throughout the cell cycle, and both the more distal site I and the proximal site II are occupied by promoter-binding factors. In this report the authors demonstrate that during the shutdown of proliferation and onset of differentiation of the human promyelocytic leukemia cell line HL-60 into cells that exhibit phenotypic properties of monocytes, histone gene expression is down-regulated at the level of transcription. In vivo occupancy of site I by promoter factors persists in the differentiated HL-60 cells, but protein-DNA interactions at site II are selectively lost. Furthermore, in vitro binding activity of the site II promoter factor HiNF-D is lost in differentiated cells, and nuclear extracts from differentiated cells do not support in vitro transcription of these histone genes. The results suggest that the interaction of HiNF-D with proximal promoter site II sequences plays a primary role in rendering cell growth-regulated histone genes transcribable in proliferating cells. It appears that while cell-cycle control of histone gene expression is mediated by both transcription and mRNA stability, with the shutdown of proliferation and onset of differentiation, histone gene expression is regulated at the transcriptional level

  15. Specificity and impact of adrenergic projections to the midbrain dopamine system

    Science.gov (United States)

    Mejias-Aponte, Carlos A.

    2016-01-01

    Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson’s disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. PMID:26820641

  16. Activation of midbrain structures by associative novelty and the formation of explicit memory in humans.

    Science.gov (United States)

    Schott, Björn H; Sellner, Daniela B; Lauer, Corinna-J; Habib, Reza; Frey, Julietta U; Guderian, Sebastian; Heinze, Hans-Jochen; Düzel, Emrah

    2004-01-01

    Recent evidence suggests a close functional relationship between memory formation in the hippocampus and dopaminergic neuromodulation originating in the ventral tegmental area and medial substantia nigra of the midbrain. Here we report midbrain activation in two functional MRI studies of visual memory in healthy young adults. In the first study, participants distinguished between familiar and novel configurations of pairs of items which had been studied together by either learning the location or the identity of the items. In the second study, participants studied words by either rating the words' pleasantness or counting syllables. The ventral tegmental area and medial substantia nigra showed increased activation by associative novelty (first study) and subsequent free recall performance (second study). In both studies, this activation accompanied hippocampal activation, but was unaffected by the study task. Thus midbrain regions seem to participate selectively in hippocampus-dependent processes of associative novelty and explicit memory formation, but appear to be unaffected by other task-relevant aspects.

  17. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    International Nuclear Information System (INIS)

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-01

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 μg/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 μg/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  18. Enhanced midbrain response at 6-month follow-up in cocaine addiction, association with reduced drug-related choice: Midbrain in drug choice

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Scott J.; Tomasi, Dardo; Woicik, Patricia A.; Maloney, Thomas; Alia-Klein, Nelly; Honorio, Jean; Telang, Frank; Wang, Gene-Jack; Wang, Ruiliang; Sinha, Rajita; Carise, Deni; Astone-Twerell, Janetta; Bolger, Joy; Volkow, Nora D.; Goldstein, Rita Z.

    2012-03-28

    Drug addiction is characterized by dysregulated dopamine neurotransmission. Although dopamine functioning appears to partially recover with abstinence, the specific regions that recover and potential impact on drug seeking remain to be determined. Here we used functional magnetic resonance imaging (fMRI) to study an ecologically valid sample of 15 treatment-seeking cocaine addicted individuals at baseline and 6-month follow-up. At both study sessions, we collected fMRI scans during performance of a drug Stroop task, clinical self-report measures of addiction severity and behavioral measures of cocaine seeking (simulated cocaine choice); actual drug use in between the two study sessions was also monitored. At 6-month follow-up (compared with baseline), we predicted functional enhancement of dopaminergically innervated brain regions, relevant to the behavioral responsiveness toward salient stimuli. Consistent with predictions, whole-brain analyses revealed responses in the midbrain (encompassing the ventral tegmental area/substantia nigra complex) and thalamus (encompassing the mediodorsal nucleus) that were higher (and more positively correlated) at follow-up than baseline. Increased midbrain activity from baseline to follow-up correlated with reduced simulated cocaine choice, indicating that heightened midbrain activations in this context may be marking lower approach motivation for cocaine. Normalization of midbrain function at follow-up was also suggested by exploratory comparisons with active cocaine users and healthy controls (who were assessed only at baseline). Enhanced self-control at follow-up was suggested by a trend for the commonly hypoactive dorsal anterior cingulate cortex to increase response during a drug-related context. Together, these results suggest that fMRI could be useful in sensitively tracking follow-up outcomes in drug addiction.

  19. An Lmx1b-miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool.

    Directory of Open Access Journals (Sweden)

    Angela Anderegg

    Full Text Available MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key

  20. Altered AKT1 and MAPK1 Gene Expression on Peripheral Blood Mononuclear Cells and Correlation with T-Helper-Transcription Factors in Systemic Lupus Erythematosus Patients

    Directory of Open Access Journals (Sweden)

    Sonia Garcia-Rodriguez

    2012-01-01

    Full Text Available Kinases have been implicated in the immunopathological mechanisms of Systemic Lupus Erythematosus (SLE. v-akt murine-thymoma viral-oncogene-homolog 1 (AKT1 and mitogen-activated-protein-kinase 1 (MAPK1 gene expressions in peripheral mononuclear cells from thirteen SLE patients with inactive or mild disease were evaluated using quantitative real-time reverse-transcription polymerase-chain-reaction and analyzed whether there was any correlation with T-helper (Th transcription factors (TF gene expression, cytokines, and S100A8/S100A9-(Calprotectin. Age- and gender-matched thirteen healthy controls were examined. AKT1 and MAPK1 expressions were upregulated in SLE patients and correlated with Th17-(Retinoic acid-related orphan receptor (ROR-C, T-regulatory-(Treg-(Transforming Growth Factor Beta (TGFB-2, and Th2-(interleukin (IL-5-related genes. MAPK1 expression correlated with Th1-(IL-12A, T-box TF-(T-bet, Th2-(GATA binding protein-(GATA-3, and IL-10 expressions. IL-10 expression was increased and correlated with plasma Tumor Necrosis Factor (TNF-α and Th0-(IL-2, Th1-(IL-12A, T-bet, GATA3, Treg-(Forkhead/winged-helix transcription factor- (FOXP-3, and IL-6 expressions. FOXP3 expression, FOXP3/RORC, and FOXP3/GATA3 expression ratios were increased. Plasma IL-1β, IL-12(p70, Interferon-(IFN-γ, and IL-6 cytokines were augmented. Plasma IL-1β, IL-6, IL-2, IFN-γ, TNF-α, IL-10, and IL-13 correlated with C-reactive protein, respectively. Increased Calprotectin correlated with neutrophils. Conclusion, SLE patients presented a systemic immunoinflammatory activity, augmented AKT1 and MAPK1 expressions, proinflammatory cytokines, and Calprotectin, together with increased expression of Treg-related genes, suggesting a regulatory feedback opposing the inflammatory activity.

  1. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    Science.gov (United States)

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  2. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J.M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C.M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A.H.

    Background:Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  3. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J. M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C. M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A. H.

    2017-01-01

    BACKGROUND: Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  4. FUSIMOTOR EFFECTS OF MIDBRAIN STIMULATION ON JAW MUSCLE-SPINDLES OF THE ANESTHETIZED CAT

    NARCIS (Netherlands)

    TAYLOR, A; JUCH, PJW

    The effects of electrical stimulation within the midbrain on fusimotor output to the jaw elevator muscles were studied in anaesthetized cats. Muscle spindle afferents recorded in the mesencephalic trigeminal nucleus were categorised as primary or secondary by their responses to succinylcholine

  5. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure

    Directory of Open Access Journals (Sweden)

    Suk Peng Tang

    2017-01-01

    Full Text Available Paraquat (PQ is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day, Tualang honey (1.0 g/kg/day, or ubiquinol (0.2 g/kg/day throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week or PQ (10 mg/kg/week once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ (p<0.05. The lungs of animals from group PQ showed significantly decreased activity of superoxide dismutase and glutathione-S-transferase. Treatment with Tualang honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung.

  6. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure.

    Science.gov (United States)

    Tang, Suk Peng; Kuttulebbai Nainamohamed Salam, Sirajudeen; Jaafar, Hasnan; Gan, Siew Hua; Muzaimi, Mustapha; Sulaiman, Siti Amrah

    2017-01-01

    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ ( p honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung.

  7. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure

    Science.gov (United States)

    Sulaiman, Siti Amrah

    2017-01-01

    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ (p honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung. PMID:28127418

  8. Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo

    NARCIS (Netherlands)

    Subramanian, Hari H.; Holstege, Gert

    Subramanian HH, Holstege G. Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo. J Neurophysiol 105: 2852-2862, 2011. First published March 30, 2011; doi:10.1152/jn.00168.2011.-Studies on brain stem respiratory neurons suggest that eupnea consists of

  9. Development and function of the midbrain dopamine system: what we know and what we need to.

    Science.gov (United States)

    Bissonette, G B; Roesch, M R

    2016-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson's disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, including drug addiction, autism and schizophrenia. Understanding dopamine neuron ontogeny and how dopamine connections and circuitry develops may provide us with key insights into potentially important avenues of research for other dopamine-related disorders. This review will provide a brief overview of the major molecular and genetic players throughout the development of midbrain dopamine neurons and what we know about the behavioral- and disease-related implications associated with perturbations to midbrain dopamine neuron development. We intend to combine the knowledge of two broad fields of neuroscience, both developmental and behavioral, with the intent on fostering greater discussion between branches of neuroscience in the service of addressing complex cognitive questions from a developmental perspective and identifying important gaps in our knowledge for future study. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. vox homeobox gene: a novel regulator of midbrain-hindbrain boundary development in medaka fish?

    Czech Academy of Sciences Publication Activity Database

    Fabian, Peter; Pantzartzi, Chrysoula; Kozmiková, Iryna; Kozmik, Zbyněk

    2016-01-01

    Roč. 226, č. 2 (2016), s. 99-107 ISSN 0949-944X R&D Projects: GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Midbrain-hindbrain boundary * vox * medaka * Heat shock element * fgf8 * Gene regulatory network Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.422, year: 2016

  11. Similarities between the Epstein-Barr Virus (EBV) Nuclear Protein EBNA1 and the Pioneer Transcription Factor FoxA: Is EBNA1 a “Bookmarking” Oncoprotein that Alters the Host Cell Epigenotype?

    Science.gov (United States)

    Niller, Hans Helmut; Minarovits, Janos

    2012-01-01

    EBNA1, a nuclear protein expressed in all EBV-associated neoplasms is indispensable for the maintenance of the viral episomes in latently infected cells. EBNA1 may induce genetic alterations by upregulating cellular recombinases, production of reactive oxygen species (ROS) and affecting p53 levels and function. All these changes may contribute to tumorigenesis. In this overview we focus, however, on the epigenetic alterations elicited by EBNA1 by drawing a parallel between EBNA1 and the FoxA family of pioneer transcription factors. Both EBNA1 and FoxA induce local DNA demethylation, nucleosome destabilization and bind to mitotic chromosomes. Local DNA demethylation and nucleosome rearrangement mark active promoters and enhancers. In addition, EBNA1 and FoxA, when associated with mitotic chromatin may “bookmark” active genes and ensure their reactivation in postmitotic cells (epigenetic memory). We speculate that DNA looping induced by EBNA1-EBNA1 interactions may reorganize the cellular genome. Such chromatin loops, sustained in mitotic chromatin similarly to the long-distance interactions mediated by the insulator protein CTCF, may also mediate the epigenetic inheritance of gene expression patterns. We suggest that EBNA1 has the potential to induce patho-epigenetic alterations contributing to tumorigenesis. PMID:25436603

  12. Altered IFN-γ-mediated immunity and transcriptional expression patterns in N-Ethyl-N-nitrosourea-induced STAT4 mutants confer susceptibility to acute typhoid-like disease.

    Science.gov (United States)

    Eva, Megan M; Yuki, Kyoko E; Dauphinee, Shauna M; Schwartzentruber, Jeremy A; Pyzik, Michal; Paquet, Marilène; Lathrop, Mark; Majewski, Jacek; Vidal, Silvia M; Malo, Danielle

    2014-01-01

    Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.

  13. [Effects of perinatal exposure to bisphenol A inducing dopaminergic neuronal cell to apoptosis happening in midbrain of male rat offspring].

    Science.gov (United States)

    Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong

    2006-07-01

    To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.

  14. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    Science.gov (United States)

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  15. Dickkopf 3 Promotes the Differentiation of a Rostrolateral Midbrain Dopaminergic Neuronal Subset In Vivo and from Pluripotent Stem Cells In Vitro in the Mouse.

    Science.gov (United States)

    Fukusumi, Yoshiyasu; Meier, Florian; Götz, Sebastian; Matheus, Friederike; Irmler, Martin; Beckervordersandforth, Ruth; Faus-Kessler, Theresa; Minina, Eleonora; Rauser, Benedict; Zhang, Jingzhong; Arenas, Ernest; Andersson, Elisabet; Niehrs, Christof; Beckers, Johannes; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-09-30

    Wingless-related MMTV integration site 1 (WNT1)/β-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/β-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/β-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a

  16. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  17. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  18. MCG101-induced cancer anorexia-cachexia features altered expression of hypothalamic Nucb2 and Cartpt and increased plasma levels of cocaine- and amphetamine-regulated transcript peptides.

    Science.gov (United States)

    Burgos, Jonathan R; Iresjö, Britt-Marie; Smedh, Ulrika

    2016-04-01

    The aim of the present study was to explore central and peripheral host responses to an anorexia-cachexia producing tumor. We focused on neuroendocrine anorexigenic signals in the hypothalamus, brainstem, pituitary and from the tumor per se. Expression of mRNA for corticotropin-releasing hormone (CRH), cocaine- and amphetamine-regulated transcript (CART), nesfatin-1, thyrotropin (TSH) and the TSH receptor were explored. In addition, we examined changes in plasma TSH, CART peptides (CARTp) and serum amyloid P component (SAP). C57BL/6 mice were implanted with MCG101 tumors or sham-treated. A sham-implanted, pair‑fed (PF) group was included to delineate between primary tumor and secondary effects from reduced feeding. Food intake and body weight were measured daily. mRNA levels from microdissected mouse brain samples were assayed using qPCR, and plasma levels were determined using ELISA. MCG101 tumors expectedly induced anorexia and loss of body weight. Tumor-bearing (TB) mice exhibited an increase in nesfatin-1 mRNA as well as a decrease in CART mRNA in the paraventricular area (PVN). The CART mRNA response was secondary to reduced caloric intake whereas nesfatin-1 mRNA appeared to be tumor-specifically induced. In the pituitary, CART and TSH mRNA were upregulated in the TB and PF animals compared to the freely fed controls. Plasma levels for CARTp were significantly elevated in TB but not PF mice whereas levels of TSH were unaffected. The plasma CARTp response was correlated to the degree of inflammation represented by SAP. The increase in nesfatin-1 mRNA in the PVN highlights nesfatin-1 as a plausible candidate for causing tumor-induced anorexia. CART mRNA expression in the PVN is likely an adaptation to reduced caloric intake secondary to a cancer anorexia-cachexia syndrome (CACS)‑inducing tumor. The MCG101 tumor did not express CART mRNA, thus the elevation of plasma CARTp is host derived and likely driven by inflammation.

  19. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  20. Midbrain adaptation may set the stage for the perception of musical beat

    Science.gov (United States)

    2017-01-01

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. PMID:29118141

  1. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans.

    Directory of Open Access Journals (Sweden)

    Tim D Aumann

    Full Text Available Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA synthesis in extant neurons ('DA neurotransmitter switching'. If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis and DA transporter (DAT immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5 versus winter (short-day photoperiod, n = 5. TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+ neurons was significantly (~6-fold higher whereas the density of TH immunonegative (TH- neurons was significantly (~2.5-fold lower in summer compared with winter. The density of total neurons (TH+ and TH- combined was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells, and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association.

  2. Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters

    Directory of Open Access Journals (Sweden)

    Ran eYe

    2016-01-01

    Full Text Available The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT modulates many key brain functions including those subserving sensation, emotion, reward and cognition. Efficient clearance of 5-HT after release is achieved by the antidepressant-sensitive 5-HT transporter (SERT, SLC6A4. To identify novel SERT regulators, we pursued a proteomic analysis of mouse midbrain SERT complexes, evaluating findings in the context of prior studies that established a SERT-linked transcriptome. Remarkably, both efforts converged on a relationship of SERT with the synaptic adhesion protein neuroligin 2 (NLGN2, a postsynaptic partner for presynaptic neurexins, and a protein well known to organize inhibitory GABAergic synapses. Western blots of midbrain reciprocal immunoprecipitations confirmed SERT/NLGN2 associations, and also extended to other NLGN2 associated proteins (e.g. -neurexin (NRXN, gephyrin. Midbrain SERT/NLGN2 interactions were found to be Ca2+-independent, supporting cis versus trans-synaptic interactions, and were absent in hippocampal preparations, consistent with interactions arising in somatodendritic compartments. Dual color in situ hybridization confirmed co-expression of Tph2 and Nlgn2 mRNA in the dorsal raphe, with immunocytochemical studies confirming SERT:NLGN2 co-localization in raphe cell bodies but not axons. Consistent with correlative mRNA expression studies, loss of NLGN2 expression in Nlgn2 null mice produced significant reductions in midbrain and hippocampal SERT expression and function. Additionally, dorsal raphe 5-HT neurons from Nlgn2 null mice exhibit reduced excitability, a loss of GABAA receptor-mediated IPSCs, and increased 5-HT1A autoreceptor sensitivity. Finally, Nlgn2 null mice display significant changes in behaviors known to be responsive to SERT and/or 5-HT receptor manipulations. We discuss our findings in relation to the possible coordination of intrinsic and extrinsic regulation afforded by somatodendritic SERT:NLGN2

  3. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain.

    Directory of Open Access Journals (Sweden)

    Hideaki Yamamoto

    Full Text Available Adherens junctions (AJs play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.

  4. Response characteristics of vibration-sensitive neurons in the midbrain of the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1989-01-01

    European grassfrogs (Rana temporaria) were stimulated with pulsed sinusoidal, vertical vibrations (10-300 Hz) and the responses of 46 single midbrain neurons were recorded in awake, immobilized animals. Most units (40) had simple V-shaped excitatory vibrational tuning curves. The distribution of ...... stimuli probably play a role in communication and detection of predators and the vibration-sensitive midbrain neurons may be involved in the central processing of such behaviorally significant stimuli.......European grassfrogs (Rana temporaria) were stimulated with pulsed sinusoidal, vertical vibrations (10-300 Hz) and the responses of 46 single midbrain neurons were recorded in awake, immobilized animals. Most units (40) had simple V-shaped excitatory vibrational tuning curves. The distribution...... of best frequencies (BF's) was bimodal with peaks at 10 and 100 Hz and the thresholds ranged from 0.02 to 1.28 cm/s2 at the BF. Twenty-three neurons showed phasic-tonic and 11 neurons phasic responses. The dynamic range of seismic intensity for most neurons was 20-30 dB. In contrast to the sharp phase...

  5. Isolated Medial Rectus Nuclear Palsy as a Rare Presentation of Midbrain Infarction.

    Science.gov (United States)

    Al-Sofiani, Mohammed; Lee Kwen, Peterkin

    2015-10-08

    Diplopia is a common subjective complaint that can be the first manifestation of a serious pathology. Here, we report a rare case of midbrain infarction involving the lateral subnucleus of the oculomotor nuclear complex presenting as diplopia, with no other stroke manifestations. An 83-year-old right-handed white man with past medical history of diabetes mellitus, hypertension, dyslipidemia, and coronary artery disease presented to the emergency department (ED) with diplopia and unsteadiness. Two days prior to admission, the patient woke up with constant horizontal diplopia and unsteadiness, which limited his daily activities and led to a fall at home. He denied any weakness, clumsiness, nausea, vomiting, photophobia, fever, or chills. Ocular exam showed a disconjugate gaze at rest, weakness of the left medial rectus muscle, impaired convergence test, and bilateral 3-mm reactive pupils. The diplopia resolved by closing either eye. The remaining extraocular muscles and other cranial nerves were normal. There was no nystagmus, ptosis, or visual field deficit. Sensation, muscle tone, and strength were normal in all extremities. Magnetic resonance imaging (MRI) of the brain revealed a tiny focus of restricted diffusion in the left posterior lateral midbrain. A thorough history and physical examination is essential to diagnose and manage diplopia. Isolated extraocular palsy is usually thought to be caused by orbital lesions or muscular diseases. Here, we report a case of midbrain infarction manifested as isolated medial rectus palsy.

  6. Parkinson's disease-like midbrain hyperechogenicity is frequent in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Fathinia, Panteha; Hermann, Andreas; Reuner, Ulrike; Kassubek, Jan; Storch, Alexander; Ludolph, Albert C

    2013-02-01

    Clinical and neuroimaging data suggest impairment of the nigrostriatal system in amyotrophic lateral sclerosis (ALS). We thus hypothesized whether Parkinson's disease (PD)-like midbrain sonography findings are also present in ALS. Eighty-six patients with the diagnosis of possible or definite ALS according to revised El Escorial criteria were examined by transcranial B-mode sonography compared to 76 age- and gender-matched controls and 33 PD patients. Hyperechogenic areas of the midbrain representing the substantia nigra were measured planimetrically using standard protocols. In subjects with sufficient temporal acoustic bone windows, mean midbrain hyperechogenic areas were significantly higher in ALS (0.251 ± 0.104 cm(2)) and PD patients (0.286 ± 0.078 cm(2)) compared to controls (0.091 ± 0.054 cm(2)) with no significant difference between ALS and PD patients (one-way ANOVA: F value = 94.3; P diagnosis and differential diagnosis of PD and ALS alike.

  7. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  8. A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations.

    Science.gov (United States)

    Córdova-Fletes, Carlos; Domínguez, Ma Guadalupe; Delint-Ramirez, Ilse; Martínez-Rodríguez, Herminia G; Rivas-Estilla, Ana María; Barros-Núñez, Patricio; Ortiz-López, Rocío; Neira, Vivian Alejandra

    2015-10-01

    We report a girl with intellectual disability (ID), neuropsychiatric alterations, and a de novo balanced t(10;19)(q22.3;q13.33) translocation. After chromosome sorting, fine mapping of breakpoints by array painting disclosed disruptions of the zinc finger, MIZ-type containing 1 (ZMIZ1) (on chr10) and proline-rich 12 (PRR12) (on chr19) genes. cDNA analyses revealed that the translocation resulted in gene fusions. The resulting hybrid transcripts predict mRNA decay or, if translated, formation of truncated proteins, both due to frameshifts that introduced premature stop codons. Though other molecular mechanisms may be operating, these results suggest that haploinsufficiency of one or both genes accounts for the patient's phenotype. ZMIZ1 is highly expressed in the brain, and its protein product appears to interact with neuron-specific chromatin remodeling complex (nBAF) and activator protein 1 (AP-1) complexes which play a role regulating the activity of genes essential for normal synapse and dendrite growth/behavior. Strikingly, the patient's phenotype overlaps with phenotypes caused by mutations in SMARCA4 (BRG1), an nBAF subunit presumably interacting with ZMIZ1 in brain cells as suggested by our results of coimmunoprecipitation in the mouse brain. PRR12 is also expressed in the brain, and its protein product possesses domains and residues thought to be related in formation of large protein complexes and chromatin remodeling. Our observation from E15 mouse brain cells that a Prr12 isoform was confined to nucleus suggests a role as a transcription nuclear cofactor likely involved in neuronal development. Moreover, a pilot transcriptome analysis from t(10;19) lymphoblastoid cell line suggests dysregulation of genes linked to neurodevelopment processes/neuronal communication (e.g., NRCAM) most likely induced by altered PRR12. This case represents the first constitutional balanced translocation disrupting and fusing both genes and provides clues for the potential

  9. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    . Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t......RNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal...

  10. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  11. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Galina T Shishkina

    Full Text Available Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg, and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg. Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  12. Vertical diplopia and oscillopsia due to midbrain keyhole aqueduct syndrome associated with severe cough

    Directory of Open Access Journals (Sweden)

    Angela Jinsook Oh

    2018-06-01

    Full Text Available Purpose: Midline structural defects in the neural axis can give rise to neuro-ophthalmic symptoms. We report a rare case of keyhole aqueduct syndrome presenting after two years of severe cough due to gastroesophageal reflux disease. Observations: A 58-year-old woman with a 2-year history of daily, severe cough presented to the neuro-ophthalmology clinic with progressive diplopia and oscillopsia. Examination revealed a 1–2 Hz down-beating nystagmus in primary gaze that worsened with left, right, and down gazes. Gaze evoked nystagmus and mild paresis were also seen with up gaze. There was an incomitant left hypertropia due to skew deviation that worsened with right and up gazes and improved with down gaze. She also had a right-sided ptosis and a 3 mm anisocoria not due to cranial nerve 3 paresis or Horner's syndrome. Brain magnetic resonance imaging showed a 1.5 mm × 11.7 mm × 6 mm midline cleft in the ventral midbrain communicating with the cerebral aqueduct, consistent with keyhole aqueduct syndrome. Her nystagmus and diplopia improved with oral acetazolamide treatment, at high doses of 2500–3000 mg per day. Conclusions and importance: We report the first case of midbrain keyhole aqueduct syndrome with ocular motor and other neuro-ophthalmic manifestations associated with severe cough. Although her cough was effectively treated and intracranial pressure measurement was normal, her ophthalmic symptoms continued to progress, which is common in previous cases reported. Treatment with acetazolamide led to significant improvement, supporting the use of acetazolamide in this rare condition. Keywords: Keyhole aqueduct syndrome, Midbrain cleft, Mesencephalic cleft, Syrinx, Syringobulbia, Down-beating nystagmus, Cerebrospinal fluid

  13. Functional Plasticity after Unilateral Vestibular Midbrain Infarction in Human Positron Emission Tomography

    Science.gov (United States)

    Becker-Bense, Sandra; Buchholz, Hans-Georg; Baier, Bernhard; Schreckenberger, Mathias; Bartenstein, Peter; Zwergal, Andreas; Brandt, Thomas; Dieterich, Marianne

    2016-01-01

    The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic

  14. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    Science.gov (United States)

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  15. Individual differences in the motivation to communicate relate to levels of midbrain and striatal catecholamine markers in male European starlings.

    Science.gov (United States)

    Heimovics, Sarah A; Salvante, Katrina G; Sockman, Keith W; Riters, Lauren V

    2011-11-01

    Individuals display dramatic differences in social communication even within similar social contexts. Across vertebrates dopaminergic projections from the ventral tegmental area (VTA) and midbrain central gray (GCt) strongly influence motivated, reward-directed behaviors. Norepinephrine is also rich in these areas and may alter dopamine neuronal activity. The present study was designed to provide insight into the roles of dopamine and norepinephrine in VTA and GCt and their efferent striatal target, song control region area X, in the regulation of individual differences in the motivation to sing. We used high pressure liquid chromatography with electrochemical detection to measure dopamine, norepinephrine and their metabolites in micropunched samples from VTA, GCt, and area X in male European starlings (Sturnus vulgaris). We categorized males as sexually motivated or non-sexually motivated based on individual differences in song produced in response to a female. Dopamine markers and norepinephrine in VTA and dopamine in area X correlated positively with sexually-motivated song. Norepinephrine in area X correlated negatively with non-sexually-motivated song. Dopamine in GCt correlated negatively with sexually-motivated song, and the metabolite DOPAC correlated positively with non-sexually-motivated song. Results highlight a role for evolutionarily conserved dopaminergic projections from VTA to striatum in the motivation to communicate and highlight novel patterns of catecholamine activity in area X, VTA, and GCt associated with individual differences in sexually-motivated and non-sexually-motivated communication. Correlations between dopamine and norepinephrine markers also suggest that norepinephrine may contribute to individual differences in communication by modifying dopamine neuronal activity in VTA and GCt. Copyright © 2011. Published by Elsevier Inc.

  16. Role of transforming growth factor-β in organogenesis: In vitro investigation using limb and midbrain cells

    International Nuclear Information System (INIS)

    Laflamme, D.; Faustman, E.

    1990-01-01

    Growth factors have been identified as important modulators of cellular growth and differentiation and alteration of these factors has been proposed as a mechanism for developmental toxicity. The aim of these studies is to understand the role of transforming growth factor-β(TGFβ-1) indifferentiation. For this purpose we have employed the differentiating micromass rat embryo midbrain (CNS) and limb bud (LB) primary culture systems. TFG-β-1 is added to the cultures 2 hours after plating on day 0 and differentiation and cytotoxicity is evaluated on day 5. Biochemical assays employed for differentiation are γ-[3H] aminobutyric acid uptake (CNS) and [35S] sulfate incorporation into sulfated proteoglycans (LB). Differentiation is also evaluated using image analysis of haematoxylin-stained neurons and alcian blue-stained chrondrocytes. The cultures are monitored for protein content and for cytotoxicity using the neural red uptake assay. Cultures exposed to 0.1, 0.5 and 1.0 μg/ml TGFβ-1 showed dose-dependent decreases in differentiation as measured by image analysis of stained foci and by γ-[3H] amino butyric acid uptake and [35S] sulphate incorporation but no changes were observed in total protein or cytotoxicity. Thus in these cultures, the exogenous addition of TGF-β-1 seems to selectively inhibit differentiation of both cell types. In other systems, the effects of TGFβ-1 have been shown to be multi-functional depending on concentration, location, growth conditions and timing. This preliminary study of these growth factor effects represents a further characterization of these widely used cell systems

  17. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure

    OpenAIRE

    Tang, Suk Peng; Kuttulebbai Nainamohamed Salam, Sirajudeen; Jaafar, Hasnan; Gan, Siew Hua; Muzaimi, Mustapha; Sulaiman, Siti Amrah

    2017-01-01

    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2?mL/kg/day), Tualang honey (1.0?g/kg/day), or ubiquinol (0.2?g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were i...

  18. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice.

    Science.gov (United States)

    Maurya, Shashank Kumar; Mishra, Rajnikant

    2017-07-01

    The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  20. Diversity of bilateral synaptic assemblies for binaural computation in midbrain single neurons.

    Science.gov (United States)

    He, Na; Kong, Lingzhi; Lin, Tao; Wang, Shaohui; Liu, Xiuping; Qi, Jiyao; Yan, Jun

    2017-11-01

    Binaural hearing confers many beneficial functions but our understanding of its underlying neural substrates is limited. This study examines the bilateral synaptic assemblies and binaural computation (or integration) in the central nucleus of the inferior colliculus (ICc) of the auditory midbrain, a key convergent center. Using in-vivo whole-cell patch-clamp, the excitatory and inhibitory postsynaptic potentials (EPSPs/IPSPs) of single ICc neurons to contralateral, ipsilateral and bilateral stimulation were recorded. According to the contralateral and ipsilateral EPSP/IPSP, 7 types of bilateral synaptic assemblies were identified. These include EPSP-EPSP (EE), E-IPSP (EI), E-no response (EO), II, IE, IO and complex-mode (CM) neurons. The CM neurons showed frequency- and/or amplitude-dependent EPSPs/IPSPs to contralateral or ipsilateral stimulation. Bilateral stimulation induced EPSPs/IPSPs that could be larger than (facilitation), similar to (ineffectiveness) or smaller than (suppression) those induced by contralateral stimulation. Our findings have allowed our group to characterize novel neural circuitry for binaural computation in the midbrain. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.

    Science.gov (United States)

    Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco

    2011-02-01

    Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.

  2. Apc1 is required for maintenance of local brain organizers and dorsal midbrain survival.

    Science.gov (United States)

    Paridaen, Judith T M L; Danesin, Catherine; Elas, Abu Tufayal; van de Water, Sandra; Houart, Corinne; Zivkovic, Danica

    2009-07-15

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of beta-catenin and subsequent hyperactivation of Wnt/beta-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/beta-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/beta-catenin signalling is required for maintenance of local organizers and tectal integrity.

  3. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    Directory of Open Access Journals (Sweden)

    Tristan Aumentado-Armstrong

    2015-10-01

    Full Text Available Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  4. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli.

    Science.gov (United States)

    Aumentado-Armstrong, Tristan; Metzen, Michael G; Sproule, Michael K J; Chacron, Maurice J

    2015-10-01

    Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.

  5. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

    Directory of Open Access Journals (Sweden)

    Ethiraj Ravindran

    2017-04-01

    Full Text Available Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

  6. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

    Science.gov (United States)

    Ravindran, Ethiraj; Hu, Hao; Yuzwa, Scott A; Hernandez-Miranda, Luis R; Kraemer, Nadine; Ninnemann, Olaf; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Birchmeier, Carmen; Miller, Freda D; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2017-04-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

  7. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation

    Science.gov (United States)

    Yuzwa, Scott A.; Hernandez-Miranda, Luis R.; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Miller, Freda D.; Hübner, Christoph; Kaindl, Angela M.

    2017-01-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder. PMID:28453519

  8. Arterial blood supply to the thalamus and midbrain on CT sections, 2

    International Nuclear Information System (INIS)

    Takeshita, Gen; Ottomo, Michinori; Satoh, Nobuko; Yokoyama, Yoshiaki.

    1984-01-01

    The selective injection of a dyestuff into thalamoperforating arteries from the posterior part of the circle of Willis, using five postmortem brains, was performed. After fixation, sections parallel to the orbito-meatal line were obtained. In cases which showed a standard development of the posterior communicating arteries, the usual patterns were as follows: the area supplied by perforators of the posterior communicating artery (anterior thalamoperforating artery) was visualized in the hypothalamus and the antero-lateral part of the thalamus; the area supplied by perforators of the proximal segment of the posterior cerebral artery (interpeduncular thalamoperforating artery) was visualized in the midbrain and the medial part of thalamus; the area supplied by perforators of the ambient segment of the posterior cerebral artery (thalamogeniculate artery) was visualized in the medial part of the geniculate body and the posterior part of the thalamus. According to the development of the posterior communicating artery, the area supplied by each perforator was quite variable. Three CT sections were obtained containing three different patterns of the posterior communicating artery: 1) well-developed; 2) moderately developed; and 3) poorly developed. The identification of the area supplied by thalamoperforating arteries on CT sections was quite useful in the CT diagnosis of cerebrovascular disorders which involved the thalamus and the midbrain. (author)

  9. Midbrain adaptation may set the stage for the perception of musical beat.

    Science.gov (United States)

    Rajendran, Vani G; Harper, Nicol S; Garcia-Lazaro, Jose A; Lesica, Nicholas A; Schnupp, Jan W H

    2017-11-15

    The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. © 2017 The Authors.

  10. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2014-01-01

    Full Text Available The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs. Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.

  11. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    Science.gov (United States)

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  12. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus.

    Science.gov (United States)

    Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico

    2014-07-01

    In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging.

  14. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    Science.gov (United States)

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  15. Evidence of functional duplicity of Nestin expression in the adult mouse midbrain

    Directory of Open Access Journals (Sweden)

    Parisa Farzanehfar

    2017-03-01

    Full Text Available Whether or not neurogenesis occurs in the adult substantia nigra pars compacta (SNc is an important question relevant for developing better treatments for the motor symptoms of Parkinson's disease (PD. Although controversial, it is generally believed that dividing cells here remain undifferentiated or differentiate into glia, not neurons. However, there is a suggestion that Nestin-expressing neural precursor cells (NPCs in the adult SNc have a propensity to differentiate into neurons, which we sought to confirm in the present study. Adult (>8-weeks old transgenic NesCreERT2/GtROSA or NesCreERT2/R26eYFP mice were used to permanently label Nestin-expressing cells and their progeny with β-galactosidase (β-gal or enhanced yellow fluorescent protein (eYFP, respectively. Most β-gal+ or eYFP+ cells were found in the ependymal lining of the midbrain aqueduct (Aq and in the midline ventral to Aq. Smaller but significant numbers were in the periaqueductal gray (PAG, the ventral tegmental area (VTA, and in SNc. Low-level basal proliferation was evidenced by a modest increase in number of β-gal+ or eYFP+ cells over time, fewer β-gal+ or eYFP+ cells when mice were administered the anti-mitotic agent Cytarabine, and incorporation of the proliferation marker bromodeoxyuridine (BrdU in a very small number of β-gal+ cells. No evidence of migration was found, including no immunoreactivity against the migration markers doublecortin (DCX or polysialic acid neural cell adhesion molecule (PSA-NCAM, and no dispersal of β-gal+ or eYFP+ cells through the midbrain parenchyma over time. However, β-gal+ or eYFP+ cells did increase in size and express higher levels of mature neuronal genes over time, indicating growth and neuronal differentiation. In mice whose SNc dopamine neurons had been depleted with 6-hydroxy-dopamine, a model of PD, there were ~2-fold more β-gal+ cells in SNc specifically, although the proportion that were also NeuN+ was not affected

  16. Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD canine adenovirus type 2 vectors (CAV-2 are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.

  17. Opioid receptors in midbrain dopaminergic regions of the rat. 1. Mu receptor autoradiography

    International Nuclear Information System (INIS)

    German, D.C.; Speciale, S.G.; Manaye, K.F.; Sadeq, M.

    1993-01-01

    Several lines of evidence indicate that an interaction exists between opioid peptides and midbrain dopaminergic neurons. The purpose of this study was to map and quantify the density of the mu opioid receptor subtype relative to the location of the dopaminergic (DA) neurons in the retrorubral field (nucleus A8), substantia nigra (nucleus A9), and ventral tegmental area and related nuclei (nucleus A10) in the rat. Sections through the rostral-caudal extent of the midbrain were stained with an antibody against tyrosine hydroxylase, as a DA cell marker, and comparable sections were processed for in vitro receptor autoradiography using the mu-selective ligand, 3 H-Tyr-D-Ala-N-MePhe-Gyl-ol enkephalin. In the nucleus A8 region, there were low levels of mu binding. In the rostral portion of nucleus A9, there was prominent mu binding both in the ventral pars compacta, which contains numerous DA neurons, and in regions that correspond to the location of the DA dendrites which project ventrally into the underlying substantia nigra pars reticulata. In the caudal portion of nucleus A9, mu binding was greatest in the substantia nigra pars reticulata, but also in the same region that contains DA neurons. In nucleus A10, mu receptor densities differed depending upon the nucleus A10 subdivision, and the rostral-caudal position in the nucleus. Low receptor densities were observed in rostral portions of the ventral tegmental area and interfascicular nucleus, and there was negligible binding in the parabrachial pigmented nucleus and paranigral nucleus at the level of the interpeduncular nucleus; all regions where there are high densities of DA somata. Mu binding was relatively high in the central linear nucleus, and in the dorsal and medial divisions of the medial terminal nucleus of the accessory optic system, which has been shown to contain DA dendrites. These data indicate that mu opioid receptors are located in certain regions occupied by all three midbrain DA nuclei, but in a

  18. Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation

    DEFF Research Database (Denmark)

    Christophersen, Nicolai S.; Gronborg, Mette; Petersen, Thomas Nordahl

    2007-01-01

    upregulation with increased positive staining of cell bodies in the SNc and fibers in the striatum. Analysis of the developmental regulation of Dlk1 in the murine ventral midbrain showed that the upregulation of Dlk1 mRNA correlated with the generation of tyrosine hydroxylase (TH)-positive neurons. Furthermore...

  19. [Role of the midbrain reticular formation in hormonal supply to the body in conditions of chronic emotional stress].

    Science.gov (United States)

    Amiragova, M G; Arakhangel'skaia, M I

    1983-08-01

    Chronic animal experiments were made to study the endocrine and electroencephalographic responses of the cortico-subcortical structures to stress before and after coagulation of the midbrain reticular formation. The operation entailed dramatic changes in both the bioelectrical responses and thyroid and adrenal responses, which were found to be differentiated.

  20. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson's Disease.

    Science.gov (United States)

    Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J A; Vlcek, Bianca; Bimpisidis, Zisis; Lagerström, Malin C; Konradsson-Geuken, Åsa; Wallén-Mackenzie, Åsa

    2016-10-20

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson's disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders.

  1. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo

    Czech Academy of Sciences Publication Activity Database

    Andersson, E.R.; Prakash, N.; Čajánek, L.; Minina, E.; Bryja, Vítězslav; Bryjová, Lenka; Yamaguchi, T.P.; Hall, A.C.; Wurst, W.; Arenas, E.

    2008-01-01

    Roč. 3, č. 10 (2008), s. 1-14 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Wnt 5a deficient mouse * ventral midbrain * planar cell polarity Subject RIV: BO - Biophysics

  2. The β-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    International Nuclear Information System (INIS)

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-01-01

    β-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of β-chemokines in midbrain development. Here we report that two β-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of β-chemokines in the developing brain and identify β-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that β-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  3. NK3 Receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and the guinea pig

    NARCIS (Netherlands)

    Werkman, T.R.; McCreary, A.C.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    This in vitro study investigates and compares the effects of NK3 receptor ligands on the firing rate of rat and guinea pig midbrain dopamine neurons. The findings are discussed in the light of choosing suitable animal models for investigating pharmacological properties of NK3 receptor antagonists,

  4. Spumiform basement membrane aberrations in the microvasculature of the midbrain periaqueductal gray region in hamster : Rostro-caudal pathogenesis?

    NARCIS (Netherlands)

    Gerrits, P.O.; Kortekaas, R.; de Weerd, Heleen; Luiten, P.G.M.; van der Want, J.J.L.; Veening, Jan

    2013-01-01

    Spumiform basement membrane degeneration (sbmd) is a specific kind of aberration present in the capillaries of the midbrain periaqueductal gray (PAG) region of the senescent hamster. These capillaries, separated by the ependymal cell layer, are bordering the Sylvian cerebral aqueduct. The aqueduct,

  5. Spumiform basement membrane aberrations in the microvasculature of the midbrain periaqueductal gray region in hamster: rostro-caudal pathogenesis?

    NARCIS (Netherlands)

    Gerrits, P.O.; Kortekaas, R.; Weerd, H. de; Luiten, P.G.M.; Want, J.J. van der; Veening, J.G.

    2013-01-01

    Spumiform basement membrane degeneration (sbmd) is a specific kind of aberration present in the capillaries of the midbrain periaqueductal gray (PAG) region of the senescent hamster. These capillaries, separated by the ependymal cell layer, are bordering the Sylvian cerebral aqueduct. The aqueduct,

  6. Lipoma of the midbrain: post-mortem finding in a patient with breast cancer

    Directory of Open Access Journals (Sweden)

    Verônica Maia Gouvea

    1989-09-01

    Full Text Available Intracranial lipomas are rare, usually do not have clinical expression and are located mare frequently in the corpus callosum. Other locations include the spinal cord, midbrain tectum, superior vermis, tuber cinereum, infundibulum and more rarely cerebellopontine angle, hypothalamus, superior medullary velum and insula. We report the case of a lipoma of the left inferior colliculus which was a post-mortem finding in a woman who died of breast cancer. Although there are reports of intracranial lipomas in patients with malignant tumors there is no explanation for the co-existence of the two tumors. The present tumor also includes a segment of a nerve which is not uncommon, but a less common finding was the presence of nests of Schwann cells within it, shown by immunohistochemistry.

  7. A Case of Midbrain and Thalamic Infarction Involving Artery of Percheron

    Directory of Open Access Journals (Sweden)

    Muhammad Almamun

    2015-03-01

    Full Text Available Blood supply to the thalamus and brainstem have frequent anatomic variations. One of these is where all the perforators to the above areas arise from a single branch of the posterior cerebral artery commonly known as the artery of Percheron. Infarction involving this artery leading to bilateral thalamic and midbrain lesions is not uncommon, but can cause diagnostic difficulties due to the varying clinical presentations possible and the wide differentials. Early brain imaging and diagnosis is important for initiating appropriate treatment. In this case report, we discuss a patient who presented with an artery of Percheron related stroke affecting the mid brain and paramedian thalamic areas. We also discuss the differentials of presentations with similar symptoms.

  8. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors.

    Directory of Open Access Journals (Sweden)

    Anne-Marike Schiffer

    Full Text Available Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.

  9. Arterial blood supply to midbrain, thalamus and internal capsule on CT, 3

    International Nuclear Information System (INIS)

    Takeshita, Gen; Ottomo, Michinori; Sasaki, Taisuke; Fukuda, Eiko.

    1984-01-01

    The selective injection of dye into the anterior choroidal artery (blue), the medial posterior choroidal artery (green), and the lateral posterior choroidal artery (red), using seven post-mortem brains, was performed. After fixation, sections parallel with the orbito-meatal line were obtained. The distribution of the anterior choroidal artery was visualized in the uncal region of the temporal lobe and the cerebral peduncle below the slice of the third ventricle. On the slice of the third ventricle, the lateral part of the geniculate region, the globus pallidus, and the posterior limb of the internal capsule were supplied by the anterior choroidal artery. The blood supply of the posterior limb of the internal capsule was also demonstrated on the slice of the anterior horn and on the body of the lateral ventricle. The distribution of the medial posterior choroidal artery was visualized in the tegmentum of the midbrain below the slice of the third ventricle, and on the slice of the anterior horn, the pineal body and the posterior part of the thalamus were also supplied. The distribution of the lateral posterior choroidal artery was visualized in the lateral part of the midbrain, around the red nucleus, below the slice of the third ventricle, and on the slice of the third ventricle, the upper part of the cerebral peduncle, the posterior part of the hypothalamus, and the medial part of the geniculate region were also supplied. Also, distribution to the medial and posterior parts of the thalamus was noted on the slice of the anterior horn. It was quite useful to identify the distribution of each choroidal artery on CT sections for the CT diagnosis of cerebrovascular disorders. (author)

  10. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  11. Vertical diplopia and oscillopsia due to midbrain keyhole aqueduct syndrome associated with severe cough.

    Science.gov (United States)

    Oh, Angela Jinsook; Lanzman, Bryan Alexander; Liao, Yaping Joyce

    2018-06-01

    Midline structural defects in the neural axis can give rise to neuro-ophthalmic symptoms. We report a rare case of keyhole aqueduct syndrome presenting after two years of severe cough due to gastroesophageal reflux disease. A 58-year-old woman with a 2-year history of daily, severe cough presented to the neuro-ophthalmology clinic with progressive diplopia and oscillopsia. Examination revealed a 1-2 Hz down-beating nystagmus in primary gaze that worsened with left, right, and down gazes. Gaze evoked nystagmus and mild paresis were also seen with up gaze. There was an incomitant left hypertropia due to skew deviation that worsened with right and up gazes and improved with down gaze. She also had a right-sided ptosis and a 3 mm anisocoria not due to cranial nerve 3 paresis or Horner's syndrome. Brain magnetic resonance imaging showed a 1.5 mm × 11.7 mm × 6 mm midline cleft in the ventral midbrain communicating with the cerebral aqueduct, consistent with keyhole aqueduct syndrome. Her nystagmus and diplopia improved with oral acetazolamide treatment, at high doses of 2500-3000 mg per day. We report the first case of midbrain keyhole aqueduct syndrome with ocular motor and other neuro-ophthalmic manifestations associated with severe cough. Although her cough was effectively treated and intracranial pressure measurement was normal, her ophthalmic symptoms continued to progress, which is common in previous cases reported. Treatment with acetazolamide led to significant improvement, supporting the use of acetazolamide in this rare condition.

  12. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors.

    Science.gov (United States)

    Schiffer, Anne-Marike; Ahlheim, Christiane; Wurm, Moritz F; Schubotz, Ricarda I

    2012-01-01

    Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.

  13. Contribution of Pro-Inflammatory Cytokine Signaling within Midbrain Periaqueductal Gray to Pain Sensitivity in Parkinson's disease via GABAergic Pathway

    Directory of Open Access Journals (Sweden)

    Xianbo Zhuang

    2016-07-01

    Full Text Available Background/Aims: Hypersensitive pain response is often observed in patients with Parkinson's disease (PD; however, the mechanisms responsible for hyperalgesia are not well understood. Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role for pro-inflammatory cytokines (PICs system of PAG in regulating exaggerated pain evoked by PD. Methods: We used a rat model of PD to perform the experimental protocols. PD was induced by microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle. Pain responses to mechanical and thermal stimulation were first examined in control rats and PD rats. Then, ELISA and Western Blot analysis were used to determine PIC levels and their receptors expression. Results: Protein expression of IL-1β, IL-6 and TNF-α receptors (namely, IL-1R, IL-6R and TNFR subtype TNFR1 in the plasma membrane PAG of PD rats was upregulated, whereas the total expression of PIC receptors was not significantly altered. The ratio of membrane protein and total protein (IL-1R, IL-6R and TNFR1 was 1.48±0.15, 1.59±0.18 and 1.67±0.16 in PAG of PD rats (P < 0.05 vs. their respective controls. This was accompanied with increases of PICs of PAG, and decreases of GABA (623±21 ng/mg in control rats and 418±18 ng/mg in PD rats; P < 0.05 vs. control rats and withdrawal thresholds to mechanical and thermal stimuli. Our data further showed that the concentrations of GABA and withdrawal thresholds were largely restored by blocking those PIC receptors in PAG of PD rats. Stimulation of GABA receptors in PAG of PD rats also blunted a decrease in withdrawal thresholds. Conclusions: Our data suggest that upregulation of the membrane PIC receptor in the PAG of PD rats is likely to impair the descending inhibitory pathways in regulating pain transmission

  14. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    International Nuclear Information System (INIS)

    Gonzales-Lima, F.

    1986-01-01

    The autoradiographic ( 14 C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. (author)

  15. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Lima, F

    1986-04-24

    The autoradiographic (/sup 14/C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. 12 refs.

  16. Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells

    Czech Academy of Sciences Publication Activity Database

    Andersson, E.R.; Salto, C.; Villaescusa, J.C.; Cajanek, L.; Yang, S.; Bryjová, Lenka; Nagy, I.I.; Vainio, S.J.; Ramírez, C.; Bryja, Vítězslav; Arenas, E.

    2013-01-01

    Roč. 110, č. 7 (2013), E602-E610 ISSN 0027-8424 Grant - others:GA ČR(CZ) GA204/09/0498; GA ČR(CZ) GAP301/11/0747 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : VENTRAL MIDBRAIN * PARKINSONS-DISEASE * BETA-CATENIN Subject RIV: BO - Biophysics Impact factor: 9.809, year: 2013

  17. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    Science.gov (United States)

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus.

    Directory of Open Access Journals (Sweden)

    Marcy A Kingsbury

    Full Text Available In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo, suggesting that much of the ICo is homologous to the dorsal PAG.

  19. Tiam1 Regulates the Wnt/Dvl/Rac1 Signaling Pathway and the Differentiation of Midbrain Dopaminergic Neurons

    Science.gov (United States)

    Čajánek, Lukáš; Ganji, Ranjani Sri; Henriques-Oliveira, Catarina; Theofilopoulos, Spyridon; Koník, Peter

    2013-01-01

    Understanding the mechanisms that drive the differentiation of dopaminergic (DA) neurons is crucial for successful development of novel therapies for Parkinson's disease, in which DA neurons progressively degenerate. However, the mechanisms underlying the differentiation-promoting effects of Wnt5a on DA precursors are poorly understood. Here, we present the molecular and functional characterization of a signaling pathway downstream of Wnt5a, the Wnt/Dvl/Rac1 pathway. First, we characterize the interaction between Rac1 and Dvl and identify the N-terminal part of Dvl3 as necessary for Rac1 binding. Next, we show that Tiam1, a Rac1 guanosine exchange factor (GEF), is expressed in the ventral midbrain, interacts with Dvl, facilitates Dvl-Rac1 interaction, and is required for Dvl- or Wnt5a-induced activation of Rac1. Moreover, we show that Wnt5a promotes whereas casein kinase 1 (CK1), a negative regulator of the Wnt/Dvl/Rac1 pathway, abolishes the interactions between Dvl and Tiam1. Finally, using ventral midbrain neurosphere cultures, we demonstrate that the generation of DA neurons in culture is impaired after Tiam1 knockdown, indicating that Tiam1 is required for midbrain DA differentiation. In summary, our data identify Tiam1 as a novel regulator of DA neuron development and as a Dvl-associated and Rac1-specific GEF acting in the Wnt/Dvl/Rac1 pathway. PMID:23109420

  20. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2017-01-01

    Full Text Available Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  1. Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring.

    Science.gov (United States)

    Nordeen, E J; Holtzman, D A; Nordeen, K W

    2009-08-01

    During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor's song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos, we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing: the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray, a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor again being more effective than a novel conspecific. As several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor's song could help to establish sensory representations that later guide motor sequence learning.

  2. Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe.

    Science.gov (United States)

    Murty, Vishnu P; Labar, Kevin S; Adcock, R Alison

    2012-06-27

    Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.

  3. Effects of organically bound tritium (OBT) on cultured midbrain cells from embryonic mice

    International Nuclear Information System (INIS)

    Wang Bing; Akihiro Shima; Takeshi Yamada; Keiko Watganabe

    1997-01-01

    Objective: Four kinds of organically bound tritium compounds (OBT s ) including 3 H-thymidine, 3 H-uridine, 3 H-arginine and 3 H-glutamic acid, were investigated on proliferation and differentiation of cultured mouse embryonic midbrain cells (MBCs). Methods: MBCs were isolated from day 11 embryos, cultured at a high concentration with the medium containing OBT. Results: Differentiation of MBC was more sensitive to radiation than proliferation. Dose-dependent decrease of DNA and protein contents were also observed. The RBE values, ranging from 4.6 to 8.7, of β rays from OBTs were obtained when compared with X-irradiation at their ID50s (inhibitory dose that reduced assessment value by 50% of the control) on inhibition of cell proliferation and differentiation, and on reduction of DNA and protein contents of the cultures. The mixed exposure to X-rays and one kind of OBTs or to any two kinds of OBTs resulted in more efficiently inhibitory effect on differentiation. Conclusions: MBC culture system was more sensitive to beta radiation from OBTs than to X-rays, which resulted in very high RBE values

  4. Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain.

    Science.gov (United States)

    Ono, Munenori; Bishop, Deborah C; Oliver, Douglas L

    2016-02-12

    Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound.

  5. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    Science.gov (United States)

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Ventral medullary neurones excited from the hypothalamic and mid-brain defence areas.

    Science.gov (United States)

    Hilton, S M; Smith, P R

    1984-07-01

    In cats anaesthetised with chloralose, the ventral medulla was explored in and around the strip previously identified as the location of the efferent pathway from the hypothalamic and mid-brain defence areas to the spinal cord, in a search for neurones excited by electrical stimulation of the defence areas. Such units were found mostly in the caudal part of this strip, at a depth of not more than 500 microns from the surface. Nearly all were located in the ventral part of nucleus paragigantocellularis lateralis (PGL) at the level of the rostral pole of the inferior olive. There was evidence of temporal and spatial facilitation, indicating a convergent excitatory input from the defence areas onto neurones in PGL. This is consistent with earlier evidence of a synaptic relay in the efferent pathway at this site. When the pathway is blocked at this site, arterial blood pressure falls profoundly, so activity in these neurones may be essential for the normal level of sympathetic nerve activity.

  7. Glucose modulates food-related salience coding of midbrain neurons in humans.

    Science.gov (United States)

    Ulrich, Martin; Endres, Felix; Kölle, Markus; Adolph, Oliver; Widenhorn-Müller, Katharina; Grön, Georg

    2016-12-01

    Although early rat studies demonstrated that administration of glucose diminishes dopaminergic midbrain activity, evidence in humans has been lacking so far. In the present functional magnetic resonance imaging study, glucose was intravenously infused in healthy human male participants while seeing images depicting low-caloric food (LC), high-caloric food (HC), and non-food (NF) during a food/NF discrimination task. Analysis of brain activation focused on the ventral tegmental area (VTA) as the origin of the mesolimbic system involved in salience coding. Under unmodulated fasting baseline conditions, VTA activation was greater during HC compared with LC food cues. Subsequent to infusion of glucose, this difference in VTA activation as a function of caloric load leveled off and even reversed. In a control group not receiving glucose, VTA activation during HC relative to LC cues remained stable throughout the course of the experiment. Similar treatment-specific patterns of brain activation were observed for the hypothalamus. The present findings show for the first time in humans that glucose infusion modulates salience coding mediated by the VTA. Hum Brain Mapp 37:4376-4384, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation.

    Science.gov (United States)

    Bruserud, Øystein; Reikvam, Håkon; Fredly, Hanne; Skavland, Jørn; Hagen, Karen-Marie; van Hoang, Tuyen Thy; Brenner, Annette K; Kadi, Amir; Astori, Audrey; Gjertsen, Bjørn Tore; Pendino, Frederic

    2015-02-20

    The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication.

  9. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  10. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    Science.gov (United States)

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  11. Short-Term Depression, Temporal Summation, and Onset Inhibition Shape Interval Tuning in Midbrain Neurons

    Science.gov (United States)

    Baker, Christa A.

    2014-01-01

    A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741

  12. Activation of midbrain and ventral striatal regions implicates salience processing during a modified beads task.

    Directory of Open Access Journals (Sweden)

    Christine Esslinger

    Full Text Available INTRODUCTION: Metacognition, i.e. critically reflecting on and monitoring one's own reasoning, has been linked behaviorally to the emergence of delusions and is a focus of cognitive therapy in patients with schizophrenia. However, little is known about the neural processing underlying metacognitive function. To address this issue, we studied brain activity during a modified beads task which has been used to measure a "Jumping to Conclusions" (JTC bias in schizophrenia patients. METHODS: We used functional magnetic resonance imaging to identify neural systems active in twenty-five healthy subjects when solving a modified version of the "beads task", which requires a probabilistic decision after a variable amount of data has been requested by the participants. We assessed brain activation over the duration of a trial and at the time point of decision making. RESULTS: Analysis of activation during the whole process of probabilistic reasoning showed an extended network including the prefronto-parietal executive functioning network as well as medial parieto-occipital regions. During the decision process alone, activity in midbrain and ventral striatum was detected, as well as in thalamus, medial occipital cortex and anterior insula. CONCLUSIONS: Our data show that probabilistic reasoning shares neural substrates with executive functions. In addition, our finding that brain regions commonly associated with salience processing are active during probabilistic reasoning identifies a candidate mechanism that could underlie the behavioral link between dopamine-dependent aberrant salience and JTC in schizophrenia. Further studies with delusional schizophrenia patients will have to be performed to substantiate this link.

  13. CALBINDIN CONTENT AND DIFFERENTIAL VULNERABILITY OF MIDBRAIN EFFERENT DOPAMINERGIC NEURONS IN MACAQUES

    Directory of Open Access Journals (Sweden)

    Iria G Dopeso-Reyes

    2014-12-01

    Full Text Available Calbindin (CB is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%, followed by neurons located in the SNcd (34.7%. As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%, whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%. Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus. As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not

  14. Non-Monotonic Relation Between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain

    Directory of Open Access Journals (Sweden)

    Lara Li Hesse

    2016-08-01

    Full Text Available The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to hidden hearing loss (HHL, i.e. functional deafferentation of auditory nerve fibres (ANFs through loss of synaptic ribbons in inner hair cells. Whilst it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e. a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL, to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus in both groups. Surprisingly the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups.Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might

  15. Upper midbrain profile sign and cingulate sulcus sign. MRI findings on sagittal images in idiopathic normal-pressure hydrocephalus, Alzheimer's disease, and progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Adachi, Michito; Ohshima, Fumi; Kawanami, Toru; Kato, Takeo

    2006-01-01

    On magnetic resonance imaging (MRI) sagittal sections, we sometimes encounter abnormal aspects of the superior profile of the midbrain and the cingulate sulcus in patients with dementia. In this preliminary study, we refer to these findings as the ''upper midbrain profile sign'' and the cingulate sulcus sign.'' We prospectively evaluated the usefulness of these signs for the diagnosis of idiopathic normal-pressure hydrocephalus (iNPH), Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). We evaluated the upper midbrain profile sign and the cingulate sulcus sign on MRI sagittal images obtained from 21 people with headaches but no neurological deficit (controls), 10 iNPH patients, 11 AD patients, and 5 PSP patients. The upper midbrain profile sign indicated a concave shape to the superior profile of the midbrain on mid-sagittal images, and the cingulate sulcus sign indicated a narrow, tight aspect of the posterior part of the cingulate sulcus on paramedian-sagittal images. These signs were never seen in any images from the controls. The upper midbrain profile sign was seen in 7 of 10 patients with iNPH, 5 of 11 with AD, and 3 of 5 with PSP. The cingulate sulcus sign was seen in all 10 patients with iNPH but was never seen in any patient with AD or PSP. The upper midbrain profile sign could support a diagnosis of PSP but cannot discriminate among iNPH, AD, and PSP. In contrast, the cingulate sulcus sign has a very high sensitivity for iNPH and should facilitate the distinction of iNPH from other dementias. In the clinical setting, it is momentous to evaluate these signs easily by one simple MRI sequence. (author)

  16. Levels of myosin heavy chain mRNA transcripts and content of protein isoforms in the slow soleus muscle of 7 month-old rats with altered thyroid status

    Czech Academy of Sciences Publication Activity Database

    Vadászová, Adriana; Hudecová, S.; Križanová, O.; Soukup, Tomáš

    2006-01-01

    Roč. 55, č. 2 (2006), s. 221-225 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GD305/03/H148; GA ČR(CZ) GA304/05/0327 Grant - others:VEGA(SK) 2/6078; SAV(SK) APVT-51-027404; NATO(XE) 979876; MYORES(XE) 511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : myosin heavy chain * thyroid hormones status * mRNA transcripts Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  17. Dorsal-to-Ventral Shift in Midbrain Dopaminergic Projections and Increased Thalamic/Raphe Serotonergic Function in Early Parkinson Disease.

    Science.gov (United States)

    Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri

    2015-07-01

    Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development.

    Science.gov (United States)

    Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael

    2017-01-01

    The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a . The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.

  19. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping.

    Science.gov (United States)

    Takikawa, Yoriko; Kawagoe, Reiko; Hikosaka, Okihide

    2004-10-01

    Dopamine (DA) neurons respond to sensory stimuli that predict reward. To understand how DA neurons acquire such ability, we trained monkeys on a one-direction-rewarded version of memory-guided saccade task (1DR) only when we recorded from single DA neurons. In 1DR, position-reward mapping was changed across blocks of trials. In the early stage of training of 1DR, DA neurons responded to reward delivery; in the later stages, they responded predominantly to the visual cue that predicted reward or no reward (reward predictor) differentially. We found that such a shift of activity from reward to reward predictor also occurred within a block of trials after position-reward mapping was altered. A main effect of long-term training was to accelerate the within-block reward-to-predictor shift of DA neuronal responses. The within-block shift appeared first in the intermediate stage, but was slow, and DA neurons often responded to the cue that indicated reward in the preceding block. In the advanced stage, the reward-to-predictor shift occurred quickly such that the DA neurons' responses to visual cues faithfully matched the current position-reward mapping. Changes in the DA neuronal responses co-varied with the reward-predictive differentiation of saccade latency both in short-term (within-block) and long-term adaptation. DA neurons' response to the fixation point also underwent long-term changes until it occurred predominantly in the first trial within a block. This might trigger a switch between the learned sets. These results suggest that midbrain DA neurons play an essential role in adapting oculomotor behavior to frequent switches in position-reward mapping.

  20. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein coding...... regions, the map of transcripts is very complex due to small transcripts from the flanking ends of the transcription unit, the use of multiple start and stop sites for the main transcript, production of multiple functional RNA molecules from the same primary transcript, and RNA molecules made...... by independent transcription from within the unit. In genomic regions separating those that encode proteins or highly abundant RNA molecules with known function, transcripts are generally of low abundance and short-lived. In most of these cases, it is unclear to what extent a function is related to transcription...

  1. Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4.

    Directory of Open Access Journals (Sweden)

    Harish Chander

    Full Text Available We previously reported that the degradation of prohibitin by the SCF(Skp2B ubiquitin ligase results in a defect in the activity of p53. We also reported that MMTV-Skp2B transgenic mice develop mammary gland tumors that are characterized by an increased proteolytic cleavage of the insulin-like growth factor binding protein 4 (IGFBP-4, an inhibitor of IGF signaling. However, whether a link exists between a defect in p53 activity and proteolysis of IGFBP-4 was not established.We analyzed the levels of pregnancy-associated plasma protein A (PAPP-A, the protease of IGFBP-4, in MMTV-Skp2B transgenic mice and found that PAPP-A levels are elevated. Further, we found a p53 binding site in intron 1 of the PAPP-A gene and that both wild type and mutant p53 bind to this site. However, binding of wild type p53 results in the transcriptional repression of PAPP-A, while binding of mutant p53 results in the transcriptional activation of PAPP-A. Since MMTV-Skp2B mice express wild type p53 and yet show elevated levels of PAPP-A, at first, these observations appeared contradictory. However, further analysis revealed that the defect in p53 activity in Skp2B overexpressing cells does not only abolish the activity of wild type of p53 but actually mimics that of mutant p53. Our results suggest that in absence of prohibitin, the half-life of p53 is increased and like mutant p53, the conformation of p53 is denatured.These observations revealed a novel function of prohibitin as a chaperone of p53. Further, they suggest that binding of denatured p53 in intron 1 causes an enhancer effect and increases the transcription of PAPP-A. Therefore, these findings indicate that the defect in p53 function and the increased proteolysis of IGFBP-4, we had observed, represent two components of the same pathway, which contributes to the oncogenic function of Skp2B.

  2. Host-Induced Silencing of Two Pharyngeal Gland Genes Conferred Transcriptional Alteration of Cell Wall-Modifying Enzymes of Meloidogyne incognita vis-à-vis Perturbed Nematode Infectivity in Eggplant.

    Science.gov (United States)

    Shivakumara, Tagginahalli N; Chaudhary, Sonam; Kamaraju, Divya; Dutta, Tushar K; Papolu, Pradeep K; Banakar, Prakash; Sreevathsa, Rohini; Singh, Bhupinder; Manjaiah, K M; Rao, Uma

    2017-01-01

    The complex parasitic strategy of Meloidogyne incognita appears to involve simultaneous expression of its pharyngeal gland-specific effector genes in order to colonize the host plants. Research reports related to effector crosstalk in phytonematodes for successful parasitism of the host tissue is yet underexplored. In view of this, we have used in planta effector screening approach to understand the possible interaction of pioneer genes ( msp-18 and msp-20 , putatively involved in late and early stage of M. incognita parasitism, respectively) with other unrelated effectors such as cell-wall modifying enzymes (CWMEs) in M. incognita . Host-induced gene silencing (HIGS) strategy was used to generate the transgenic eggplants expressing msp-18 and msp-20 , independently. Putative transformants were characterized via qRT-PCR and Southern hybridization assay. SiRNAs specific to msp-18 and msp - 20 were also detected in the transformants via Northern hybridization assay. Transgenic expression of the RNAi constructs of msp-18 and msp-20 genes resulted in 43.64-69.68% and 41.74-67.30% reduction in M. incognita multiplication encompassing 6 and 10 events, respectively. Additionally, transcriptional oscillation of CWMEs documented in the penetrating and developing nematodes suggested the possible interaction among CWMEs and pioneer genes. The rapid assimilation of plant-derived carbon by invading nematodes was also demonstrated using 14 C isotope probing approach. Our data suggests that HIGS of msp-18 and msp-20 , improves nematode resistance in eggplant by affecting the steady-state transcription level of CWME genes in invading nematodes, and safeguard the plant against nematode invasion at very early stage because nematodes may become the recipient of bioactive RNA species during the process of penetration into the plant root.

  3. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  4. Beyond the midbrain atrophy: wide spectrum of structural MRI finding in cases of pathologically proven progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Sakurai, Keita; Tokumaru, Aya M.; Shimoji, Keigo; Murayama, Shigeo; Kanemaru, Kazutomi; Morimoto, Satoru; Aiba, Ikuko; Nakagawa, Motoo; Ozawa, Yoshiyuki; Shimohira, Masashi; Shibamoto, Yuta; Matsukawa, Noriyuki; Hashizume, Yoshio

    2017-01-01

    Recently, it has been recognized that pathologically proven progressive supranuclear palsy (PSP) cases are classified into various clinical subtypes with non-uniform symptoms and imaging findings. This article reviews essential imaging findings, general information, and advanced magnetic resonance imaging (MRI) techniques for PSP and presents these MRI findings of pathologically proven typical and atypical PSP cases for educational purposes. With the review of literatures, notably including atypical pathologically proven PSP cases, MRI and clinical information of 15 pathologically proven typical and atypical PSP cases were retrospectively evaluated. In addition to typical symptoms, PSP patients can exhibit atypical symptoms including levodopa-responsive parkinsonism, pure akinesia, non-fluent aphasia, corticobasal syndrome, and predominant cerebellar ataxia. As well as clinical symptoms, the degree of midbrain atrophy, a well-known imaging hallmark, is not consistent in atypical PSP cases. This fact has important implications for the limitation of midbrain atrophy as a diagnostic imaging biomarker of PSP pathology. Additional evaluation of other imaging findings including various regional atrophies of the globus pallidus, frontal lobe, cerebral peduncle, and superior cerebellar peduncle is essential for the diagnosis of atypical PSP cases. It is necessary for radiologists to recognize the wide clinical and radiological spectra of typical and atypical PSP cases. (orig.)

  5. Beyond the midbrain atrophy: wide spectrum of structural MRI finding in cases of pathologically proven progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Keita; Tokumaru, Aya M.; Shimoji, Keigo [Tokyo Metropolitan Medical Center of Gerontology, Department of Diagnostic Radiology, Tokyo (Japan); Murayama, Shigeo; Kanemaru, Kazutomi; Morimoto, Satoru [Tokyo Metropolitan Geriatric Hospital, Department of Neurology, Tokyo (Japan); Aiba, Ikuko [National Hospital Organization Higashi Nagoya National Hospital, Department of Neurology, Nagoya (Japan); Nakagawa, Motoo; Ozawa, Yoshiyuki; Shimohira, Masashi; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, Nagoya (Japan); Matsukawa, Noriyuki [Nagoya City University Graduate School of Medical Sciences, Department of Neurology and Neuroscience, Nagoya (Japan); Hashizume, Yoshio [Fukushimura Hospital, Choju Medical Institute, Toyohashi (Japan)

    2017-05-15

    Recently, it has been recognized that pathologically proven progressive supranuclear palsy (PSP) cases are classified into various clinical subtypes with non-uniform symptoms and imaging findings. This article reviews essential imaging findings, general information, and advanced magnetic resonance imaging (MRI) techniques for PSP and presents these MRI findings of pathologically proven typical and atypical PSP cases for educational purposes. With the review of literatures, notably including atypical pathologically proven PSP cases, MRI and clinical information of 15 pathologically proven typical and atypical PSP cases were retrospectively evaluated. In addition to typical symptoms, PSP patients can exhibit atypical symptoms including levodopa-responsive parkinsonism, pure akinesia, non-fluent aphasia, corticobasal syndrome, and predominant cerebellar ataxia. As well as clinical symptoms, the degree of midbrain atrophy, a well-known imaging hallmark, is not consistent in atypical PSP cases. This fact has important implications for the limitation of midbrain atrophy as a diagnostic imaging biomarker of PSP pathology. Additional evaluation of other imaging findings including various regional atrophies of the globus pallidus, frontal lobe, cerebral peduncle, and superior cerebellar peduncle is essential for the diagnosis of atypical PSP cases. It is necessary for radiologists to recognize the wide clinical and radiological spectra of typical and atypical PSP cases. (orig.)

  6. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    Science.gov (United States)

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  7. Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations

    Directory of Open Access Journals (Sweden)

    Glenda E. Gillies

    2016-12-01

    Full Text Available Glucocorticoid hormones (GCs released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester, we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA and substantia nigra pars compacta (SNc (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites that impact on the adult brain. The effects of antenatal GC treatment (AGT were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked

  8. Transcription regulation by the Mediator complex.

    Science.gov (United States)

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  9. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    DEFF Research Database (Denmark)

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia

    2013-01-01

    that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator...... in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function......The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  10. Detecting Differential Transcription Factor Activity from ATAC-Seq Data

    Directory of Open Access Journals (Sweden)

    Ignacio J. Tripodi

    2018-05-01

    Full Text Available Transcription factors are managers of the cellular factory, and key components to many diseases. Many non-coding single nucleotide polymorphisms affect transcription factors, either by directly altering the protein or its functional activity at individual binding sites. Here we first briefly summarize high-throughput approaches to studying transcription factor activity. We then demonstrate, using published chromatin accessibility data (specifically ATAC-seq, that the genome-wide profile of TF recognition motifs relative to regions of open chromatin can determine the key transcription factor altered by a perturbation. Our method of determining which TFs are altered by a perturbation is simple, is quick to implement, and can be used when biological samples are limited. In the future, we envision that this method could be applied to determine which TFs show altered activity in response to a wide variety of drugs and diseases.

  11. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis.

    Science.gov (United States)

    Tarantini, Stefano; Giles, Cory B; Wren, Jonathan D; Ashpole, Nicole M; Valcarcel-Ares, M Noa; Wei, Jeanne Y; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the

  13. CARDIOVASCULAR EFFECTS AND CHANGES IN MIDBRAIN PERIAQUEDUCTAL GRAY NEURONAL-ACTIVITY INDUCED BY ELECTRICAL-STIMULATION OF THE HYPOTHALAMUS IN THE RAT

    NARCIS (Netherlands)

    VANDERPLAS, J; WIERSINGAPOST, JEC; MAES, FW; BOHUS, B

    1995-01-01

    The effects of low-intensity electrical stimulation of sites in the hypothalamus and zona incerta (ZI) on mean blood pressure (MBP), heart rate (HR), and neuronal activity in the midbrain periaqueductal gray (FAG) were investigated in rats. Longlasting depressor responses were elicited from 67 sites

  14. Wernekink Commissure Syndrome Secondary to Bilateral Caudal Paramedian Midbrain Infarction Presenting with a Unique “Heart or V” Appearance Sign: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Chenguang Zhou

    2017-08-01

    Full Text Available Wernekink commissure syndrome secondary to caudal paramedian midbrain infarction (CPMI is a rare midbrain syndrome involving the decussation of the superior cerebellar peduncle in the caudal paramedian midbrain tegmentum. The central characteristics are constant bilateral cerebellar dysfunction, variable eye movement disorders, and rare delayed palatal myoclonus. Following is a description of the case of a 60-year-old man who presented with dizziness, slurred speech, and difficulty walking. Neurological examination revealed bilateral cerebellar dysfunction and bilateral internuclear ophthalmoplegia (bilateral INO. Serial magnetic resonance imaging (MRI revealed a lesion in the caudal paramedian midbrain with a “heart-shaped” sign on fluid-attenuation inversion recovery images and a “V-shaped” appearance on diffusion-weighted imaging (DWI. An acute CPMI with a “heart or V” appearance sign was diagnosed. Upon follow-up evaluation 3 months later, a palatal tremor accompanied by involuntary head tremor was discovered. Hypertrophy and increased signal of the bilateral inferior olivary nucleus, compatible with hypertropic olivary degeneration (HOD were revealed during a subsequent MRI study.

  15. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson’s Disease

    Science.gov (United States)

    Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J. A.; Vlcek, Bianca; Bimpisidis, Zisis; Lagerström, Malin C.; Konradsson-Geuken, Åsa; Wallén-Mackenzie, Åsa

    2016-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson’s disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for development of human therapies. Here, several unique gene expression patterns were identified in the mouse midbrain of which NeuroD6 and Grp were expressed within different dopaminergic subpopulations of the VTA, and TrpV1 within a small heterogeneous population. Optogenetics-coupled in vivo amperometry revealed a previously unknown glutamatergic mesoaccumbal pathway characterized by TrpV1-Cre-expression. Human GRP was strongly detected in non-melanized dopaminergic neurons within the SNc of both control and PD brains, suggesting GRP as a marker for neuroprotected neurons in PD. This study thus unravels markers for distinct subpopulations of neurons within the mouse and human midbrain, defines unique anatomical subregions within the VTA and exposes an entirely new glutamatergic pathway. Finally, both TRPV1 and GRP are implied in midbrain physiology of importance to neurological and neuropsychiatric disorders. PMID:27762319

  16. Widely scattered CT lesions in the midbrain and the pons in a case of neuro-Behcet's syndrome

    International Nuclear Information System (INIS)

    Kuroiwa, Yoshiyuki; Tohgi, Hideo; Kanayama, Hiroumi; Fujimori, Masaki; Aoki, Hidehiko

    1985-01-01

    We report on a 30-year-old man with neuro-Behcet's disease. His main neurologic symptoms and signs included headache, alternating hemiparesis, dysarthria, and truncal ataxia. Lumbar puncture demonstrated an elevated pressure, pleocytosis, and an increased protein concentration. Intravenous betamethasone produced a rapid and sustained improvement, without recurrence for two years. Widely scattered foci of small, low-density lesions were disclosed in the midbrain and the pons on a cranial CT scan with 2.5 mm thin-cut slices to enable us to focus on the brainstem. Such CT lesions are consistent with the neuropathological features of this illness, which shows a tendency for brainstem lesions to predominate; these lesions probably represent necrotic areas secondary to vasculitis. Brainstem CT studies with thin-cut slices may be an important diagnostic aid in patients suspected of having neuro-Behcet's disease. (author)

  17. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons

    DEFF Research Database (Denmark)

    Decressac, M; Mattsson, Bente; Lundblad, M

    2012-01-01

    -synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine......Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far...... have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α...

  18. Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat

    Science.gov (United States)

    2018-01-01

    Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat’s inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal’s instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task. PMID:29633711

  19. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    Science.gov (United States)

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  20. The Effect of Citalopram on Midbrain CRF Receptors 1 and 2 in a Primate Model of Stress-Induced Amenorrhea

    Science.gov (United States)

    Senashova, Olga; Reddy, Arubala P.; Cameron, Judy L.; Bethea, Cynthia L.

    2012-01-01

    We have demonstrated marked differences in the neurobiology of the serotonin system between stress-sensitive (SS) and stress-resilient (SR) cynomolgus macaques characterized in a model of stress-induced amenorrhea, also called functional hypothalamic amenorrhea (FHA). Dysfunction of the serotonin system in SS monkeys suggested that administration of a selective serotonin reuptake inhibitor (SSRI) might correct FHA. This study examines the effect of escitalopram (CIT) administration to SS and SR monkeys on corticotrophin-releasing factor (CRF) receptor 1 (CRF-R1) and CRF receptor 2 (CRF-R2) gene expression in the serotonin cell body region of the midbrain dorsal raphe. CRF-R1 was not significantly different between groups. There was a significant effect of treatment and a significant interaction between treatment and stress sensitivity on the average CRF-R2-positive pixel area (P < .004 and P < .006, respectively) and on the average number of CRF-R2-positive cells (P < .023 and P < .025, respectively). CIT significantly increased CRF-R2-positive pixel area and cell number in the SS group (pixel area P < .001; cell number P < .01; Bonferoni) but not in the SR group. In summary, CIT administration tended to decrease CRF-R1, but the small animal number precluded significance. CIT administration significantly increased CRF-R2 only in SS animals. These data suggest that the administration of CIT reduces anxiogenic components and increases anxiolytic components of the CRF system in the midbrain serotonin network, which in turn leads to improved ovarian function. Moreover, these data raise the possibility that SSRIs may be effective in the treatment of stress-induced infertility. PMID:22412189

  1. Age-related hearing loss: Aquaporin 4 gene expression changes in the mouse cochlea and auditory midbrain

    Science.gov (United States)

    Christensen, Nathan; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D.

    2009-01-01

    Presbycusis – age-related hearing loss, is the number one communication disorder, and one of the top three chronic medical conditions of our aged population. Aquaporins, particularly aquaporin 4 (Aqp4), are membrane proteins with important roles in water and ion flux across cell membranes, including cells of the inner ear and pathways of the brain used for hearing. To more fully understand the biological bases of presbycusis, 39 CBA mice, a well-studied animal model of presbycusis, underwent non-invasive hearing testing as a function of sound frequency (auditory brainstem response – ABR thresholds, and distortion-product otoacoustic emission – DPOAE magnitudes), and were clustered into four groups based on age and hearing ability. Aqp4 gene expression, as determined by genechip microarray analysis and quantitative real-time PCR, was compared to the young adult control group in the three older groups: middle aged with good hearing, old age with mild presbycusis, and old age with severe presbycusis. Linear regression and ANOVA showed statistically significant changes in Aqp4 gene expression and ABR and DPOAE hearing status in the cochlea and auditory midbrain – inferior colliculus. Down-regulation in the cochlea was seen, and an initial down-, then up-regulation was discovered for the inferior colliculus Aqp4 expression. It is theorized that these changes in Aqp4 gene expression represent an age-related disruption of ion flux in the fluids of the cochlea that are responsible for ionic gradients underlying sound transduction in cochlear hair cells necessary for hearing. In regard to central auditory processing at the level of the auditory midbrain, aquaporin gene expression changes may affect neurotransmitter cycling involving supporting cells, thus impairing complex sound neural processing with age. PMID:19070604

  2. Orexinergic innervation of urocortin1 and cocaine and amphetamine regulated transcript neurons in the midbrain centrally projecting Edinger-Westphal nucleus.

    NARCIS (Netherlands)

    Emmerzaal, T.L.; Doelen, R.H.A. van der; Roubos, E.W.; Kozicz, L.T.

    2013-01-01

    Orexin is a neuropeptide that has been implicated in several processes, such as induction of appetite, arousal and alertness and sleep/wake regulation. Multiple lines of evidence also suggest that orexin is involved in the stress response. When orexin is administered intracerebroventricular it

  3. Transcriptional regulation by competing transcription factor modules.

    Directory of Open Access Journals (Sweden)

    Rutger Hermsen

    2006-12-01

    Full Text Available Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input-output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits.

  4. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  5. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian Numelin

    2016-01-01

    Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies....... Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity...... postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased...

  6. TAF(II)250: a transcription toolbox.

    Science.gov (United States)

    Wassarman, D A; Sauer, F

    2001-08-01

    Activation of RNA-polymerase-II-dependent transcription involves conversion of signals provided by gene-specific activator proteins into the synthesis of messenger RNA. This conversion requires dynamic structural changes in chromatin and assembly of general transcription factors (GTFs) and RNA polymerase II at core promoter sequence elements surrounding the transcription start site of genes. One hallmark of transcriptional activation is the interaction of DNA-bound activators with coactivators such as the TATA-box binding protein (TBP)-associated factors (TAF(II)s) within the GTF TFIID. TAF(II)250 possesses a variety of activities that are likely to contribute to the initial steps of RNA polymerase II transcription. TAF(II)250 is a scaffold for assembly of other TAF(II)s and TBP into TFIID, TAF(II)250 binds activators to recruit TFIID to particular promoters, TAF(II)250 regulates binding of TBP to DNA, TAF(II)250 binds core promoter initiator elements, TAF(II)250 binds acetylated lysine residues in core histones, and TAF(II)250 possesses protein kinase, ubiquitin-activating/conjugating and acetylase activities that modify histones and GTFs. We speculate that these activities achieve two goals--(1) they aid in positioning and stabilizing TFIID at particular promoters, and (2) they alter chromatin structure at the promoter to allow assembly of GTFs--and we propose a model for how TAF(II)250 converts activation signals into active transcription.

  7. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  8. Transcription as a Threat to Genome Integrity.

    Science.gov (United States)

    Gaillard, Hélène; Aguilera, Andrés

    2016-06-02

    Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.

  9. Maternal diabetes alters transcriptional programs in the developing embryo

    Czech Academy of Sciences Publication Activity Database

    Pavlínková, Gabriela; Salbaum, M.; Kappen, C.

    2009-01-01

    Roč. 10, č. 274 (2009), s. 1-12 ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Diabetic embryopathy * microarray * hypoxia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.759, year: 2009

  10. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson?s Disease

    OpenAIRE

    Viereckel, Thomas; Dumas, Sylvie; Smith-Anttila, Casey J. A.; Vlcek, Bianca; Bimpisidis, Zisis; Lagerstr?m, Malin C.; Konradsson-Geuken, ?sa; Wall?n-Mackenzie, ?sa

    2016-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the midbrain are associated with Parkinson's disease (PD), schizophrenia, mood disorders and addiction. Based on the recently unraveled heterogeneity within the VTA and SNc, where glutamate, GABA and co-releasing neurons have been found to co-exist with the classical dopamine neurons, there is a compelling need for identification of gene expression patterns that represent this heterogeneity and that are of value for ...

  11. Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons.

    Science.gov (United States)

    Sagal, Jonathan; Zhan, Xiping; Xu, Jinchong; Tilghman, Jessica; Karuppagounder, Senthilkumar S; Chen, Li; Dawson, Valina L; Dawson, Ted M; Laterra, John; Ying, Mingyao

    2014-08-01

    Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson's disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD. ©AlphaMed Press.

  12. Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate

    Directory of Open Access Journals (Sweden)

    Waldy San Sebastian

    2014-01-01

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC in AADC-deficient children. Unfortunately, patients presented only modest amelioration of motor symptoms, which authors acknowledged could be due to insufficient transduction of putamen. We hypothesize that, with the development of a highly accurate MRI-guided cannula placement technology, a more effective approach might be to target the affected mid-brain neurons directly. Transduction of AADC-deficient dopaminergic neurons in the substantia nigra and ventral tegmental area with locally infused AAV2-hAADC would be expected to lead to restoration of normal dopamine levels in affected children. The objective of this study was to assess the long-term safety and tolerability of bilateral AAV2-hAADC MRI-guided pressurized infusion into the mid-brain of nonhuman primates. Animals received either vehicle, low or high AAV2-hAADC vector dose and were euthanized 1, 3, or 9 months after surgery. Our data indicate that effective mid-brain transduction was achieved without untoward effects.

  13. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation

    Directory of Open Access Journals (Sweden)

    Sun Young Chung

    2016-10-01

    Full Text Available Parkinson's disease (PD is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC-derived midbrain dopamine (mDA neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets.

  14. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.

    Science.gov (United States)

    Chung, Sun Young; Kishinevsky, Sarah; Mazzulli, Joseph R; Graziotto, John; Mrejeru, Ana; Mosharov, Eugene V; Puspita, Lesly; Valiulahi, Parvin; Sulzer, David; Milner, Teresa A; Taldone, Tony; Krainc, Dimitri; Studer, Lorenz; Shim, Jae-Won

    2016-10-11

    Parkinson's disease (PD) is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC)-derived midbrain dopamine (mDA) neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus.

    Science.gov (United States)

    Aizawa, Hidenori; Bianco, Isaac H; Hamaoka, Takanori; Miyashita, Toshio; Uemura, Osamu; Concha, Miguel L; Russell, Claire; Wilson, Stephen W; Okamoto, Hitoshi

    2005-02-08

    The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .

  16. The Effect of Short Moderate Stress on the Midbrain CRF System in a Macaque Model of Functional Hypothalamic Amenorrhea

    Science.gov (United States)

    Bethea, Cynthia L; Phu, Kenny; Reddy, Arubala P; Cameron, Judy L

    2014-01-01

    Objective To study the effect of moderate stress on CRF components in the serotonergic midbrain region in a monkey model of FHA. Design After characterization of stress sensitivity, monkeys were moved to a novel room and given 20% less chow for 5 days prior to euthanasia. Setting University of Pittsburgh nonhuman primate facility. Animals Female cynomolgus macaques (Macaca fascicularis) characterized as highly stress resilient (HSR, n=5), medium stress resilient (MSR, N=4) or stress sensitive (SS, n=4). Intervention 5 days of diet in a novel room with unfamiliar conspecifics. Main Outcome Measures Density of CRF axons in the serotonergic dorsal raphe nucleus; the number of UCN1 cells; the density of UCN1 axons; the expression of CRF-R1 and CRF-R2 in the dorsal raphe nucleus. Results CRF innervation was higher in HSR than SS animals; UCN1 cell number was higher in HSR than SS animals and UCN1 axon bouton density was not different, all opposite of non-stressed animals. CRF-R1 was not different between the sensitivity groups, but CRF-R2 was higher in HSR than SS animals. The relative expression of CRF-R1 and R2 was similar to non-stressed animals. Conclusions HSR animals respond to stress with an increase in CRF delivery to serotonin neurons. With stress, UCN1 transport decreases in HSR animals. CRF receptor expression was similar with or without stress. These changes may contribute to resilience in HSR animals. PMID:23849846

  17. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience

    Science.gov (United States)

    Hanson, Jessica L.; Hurley, Laura M.

    2014-01-01

    In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity. PMID:24198252

  18. The dorsal tectal longitudinal column (TLCd): a second longitudinal column in the paramedian region of the midbrain tectum.

    Science.gov (United States)

    Aparicio, M-Auxiliadora; Saldaña, Enrique

    2014-03-01

    The tectal longitudinal column (TLC) is a longitudinally oriented, long and narrow nucleus that spans the paramedian region of the midbrain tectum of a large variety of mammals (Saldaña et al. in J Neurosci 27:13108-13116, 2007). Recent analysis of the organization of this region revealed another novel nucleus located immediately dorsal, and parallel, to the TLC. Because the name "tectal longitudinal column" also seems appropriate for this novel nucleus, we suggest the TLC described in 2007 be renamed the "ventral tectal longitudinal column (TLCv)", and the newly discovered nucleus termed the "dorsal tectal longitudinal column (TLCd)". This work represents the first characterization of the rat TLCd. A constellation of anatomical techniques was used to demonstrate that the TLCd differs from its surrounding structures (TLCv and superior colliculus) cytoarchitecturally, myeloarchitecturally, neurochemically and hodologically. The distinct expression of vesicular amino acid transporters suggests that TLCd neurons are GABAergic. The TLCd receives major projections from various areas of the cerebral cortex (secondary visual mediomedial area, and granular and dysgranular retrosplenial cortices) and from the medial pretectal nucleus. It densely innervates the ipsilateral lateral posterior and laterodorsal nuclei of the thalamus. Thus, the TLCd is connected with vision-related neural centers. The TLCd may be unique as it constitutes the only known nucleus made of GABAergic neurons dedicated to providing massive inhibition to higher order thalamic nuclei of a specific sensory modality.

  19. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron.

    Directory of Open Access Journals (Sweden)

    Joon Ha

    Full Text Available Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR activation evokes high-frequency firing, whereas other tonic excitatory stimuli (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR activation or applied depolarization block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether-a-go-go current (ERG, which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations

  20. Neural representation in the auditory midbrain of the envelope of vocalizations based on a peripheral ear model

    Directory of Open Access Journals (Sweden)

    Thilo eRode

    2013-10-01

    Full Text Available The auditory midbrain implant (AMI consists of a single shank array (20 sites for stimulation along the tonotopic axis of the central nucleus of the inferior colliculus (ICC and has been safely implanted in deaf patients who cannot benefit from a cochlear implant (CI. The AMI improves lip-reading abilities and environmental awareness in the implanted patients. However, the AMI cannot achieve the high levels of speech perception possible with the CI. It appears the AMI can transmit sufficient spectral cues but with limited temporal cues required for speech understanding. Currently, the AMI uses a CI-based strategy, which was originally designed to stimulate each frequency region along the cochlea with amplitude-modulated pulse trains matching the envelope of the bandpass-filtered sound components. However, it is unclear if this type of stimulation with only a single site within each frequency lamina of the ICC can elicit sufficient temporal cues for speech perception. At least speech understanding in quiet is still possible with envelope cues as low as 50 Hz. Therefore, we investigated how ICC neurons follow the bandpass-filtered envelope structure of natural stimuli in ketamine-anesthetized guinea pigs. We identified a subset of ICC neurons that could closely follow the envelope structure (up to ~100 Hz of a diverse set of species-specific calls, which was revealed by using a peripheral ear model to estimate the true bandpass-filtered envelopes observed by the brain. Although previous studies have suggested a complex neural transformation from the auditory nerve to the ICC, our data suggest that the brain maintains a robust temporal code in a subset of ICC neurons matching the envelope structure of natural stimuli. Clinically, these findings suggest that a CI-based strategy may still be effective for the AMI if the appropriate neurons are entrained to the envelope of the acoustic stimulus and can transmit sufficient temporal cues to higher

  1. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...

  3. Basal transcription machinery

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... The holoenzyme of prokaryotic RNA polymerase consists of the core enzyme, made of two , , ' and subunits, which lacks promoter selectivity and a sigma () subunit which enables the core enzyme to initiate transcription in a promoter dependent fashion. A stress sigma factor s, in prokaryotes ...

  4. Machine Dictation and Transcription.

    Science.gov (United States)

    Harvey, Evelyn; And Others

    This instructional package contains both an instructor's manual and a student's manual for a course in machine dictation and transcription. The instructor's manual contains an overview with tips on teaching the course, letters for dictation, and a key to the letters. The student's manual contains an overview of the course and of the skills needed…

  5. Transcriptional Regulation in Haematopoiesis:

    DEFF Research Database (Denmark)

    Lauridsen, Felicia K B

    with the capacity to both self-renew and differentiate. This thesis is built upon two studies, which investigate two different aspects of the haematopoietic system; heterogeneity within the HSC compartment (presented in manuscript I), and the interplay between transcription factors controlling granulocyte/ monocyte...

  6. Transcription factors for modification of lignin content in plants

    Science.gov (United States)

    Wang, Huanzhong; Chen, Fang; Dixon, Richard A.

    2015-06-02

    The invention provides methods for modifying lignin, cellulose, xylan, and hemicellulose content in plants, and for achieving ectopic lignification and, for instance, secondary cell wall synthesis in pith cells, by altered regulation of a WRKY transcription factor. Nucleic acid constructs for altered WRKY-TF expression are described. Transgenic plants are provided that comprise modified pith cell walls, and lignin, cellulose, and hemicellulose content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops.

  7. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders

    Directory of Open Access Journals (Sweden)

    David Vállez García

    2016-08-01

    Full Text Available There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD. However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1 to validate previous results showing alterations of regional cerebral blood flow (rCBF in cWAD, (2 to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3 to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.

  8. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    International Nuclear Information System (INIS)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-01-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of [ 3 H]Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in [14C]iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress [an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures], although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results

  9. Repeated swim stress alters brain benzodiazepine receptors measured in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M.

    1989-06-01

    The effects of repeated swim stress on brain benzodiazepine receptors were examined in the mouse using both an in vivo and in vitro binding method. Specific in vivo binding of (/sup 3/H)Ro15-1788 to benzodiazepine receptors was decreased in the hippocampus, cerebral cortex, hypothalamus, midbrain and striatum after repeated swim stress (7 consecutive days of daily swim stress) when compared to nonstressed mice. In vivo benzodiazepine receptor binding was unaltered after repeated swim stress in the cerebellum and pons medulla. The stress-induced reduction in in vivo benzodiazepine receptor binding did not appear to be due to altered cerebral blood flow or to an alteration in benzodiazepine metabolism or biodistribution because there was no difference in (14C)iodoantipyrine distribution or whole brain concentrations of clonazepam after repeated swim stress. Saturation binding experiments revealed a change in both apparent maximal binding capacity and affinity after repeated swim stress. Moreover, a reduction in clonazepam's anticonvulsant potency was also observed after repeated swim stress (an increase in the ED50 dose for protection against pentylenetetrazol-induced seizures), although there was no difference in pentylenetetrazol-induced seizure threshold between the two groups. In contrast to the results obtained in vivo, no change in benzodiazepine receptor binding kinetics was observed using the in vitro binding method. These data suggest that environmental stress can alter the binding parameters of the benzodiazepine receptor and that the in vivo and in vitro binding methods can yield substantially different results.

  10. Environmental and simulation facility conditions can modulate a behavioral-driven altered gravity response of Drosophila imagoes transcriptome

    Data.gov (United States)

    National Aeronautics and Space Administration — Genome-wide transcriptional profiling shows that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene...

  11. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    Science.gov (United States)

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  12. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Adam Shlien

    2016-08-01

    Full Text Available Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  13. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  14. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    The myriad of cells in the human body are all made from the same blueprint: the human genome. At the heart of this diversity lies the concept of gene regulation, the process in which it is decided which genes are used where and when. Genes do not function as on/off buttons, but more like a volume...... mostly near the start of the gene known as the promoter. This region contains patterns scattered in the DNA that the TFs can recognize and bind to. Such binding can prompt the assembly of the pre-initiation complex which ultimately leads to transcription of the gene. In order to achieve the regulation...... on what characterizes a hippocampus promoter. Pairing CAGE with TF binding site prediction we identi¿ed a likely key regulator of hippocampus. Finally, we developed a method for CAGE exploration. While the DeepCAGE library characterized a full 1.4 million transcription initiation events it did not capture...

  15. Transcriptional networks controlling adipocyte differentiation

    DEFF Research Database (Denmark)

    Siersbæk, R; Mandrup, Susanne

    2011-01-01

    " of the transcription factor networks operating at specific time points during adipogenesis. Using such global "snapshots," we have demonstrated that dramatic remodeling of the chromatin template occurs within the first few hours following adipogenic stimulation and that many of the early transcription factors bind...... in a cooperative fashion to transcription factor hotspots. Such hotspots are likely to represent key chromatin nodes, where many adipogenic signaling pathways converge to drive the adipogenic transcriptional reprogramming....

  16. Hypocretin-1 levels in the cerebrospinal fluid of patients with Percheron artery infarction with or without midbrain involvement: A case series.

    Science.gov (United States)

    Suzuki, Keisuke; Miyamoto, Tomoyuki; Miyamoto, Masayuki; Maeda, Hiroto; Nokura, Kazuya; Tohyama, Jun; Hirata, Koichi; Shimizu, Tetsuo; Kanbayashi, Takashi

    2016-07-01

    Bilateral paramedian thalamic infarctions (BPTIs) due to artery of Percheron occlusion are known to cause hypersomnia. However, the role of hypocretin-1, a wake-promoting peptide that is located at the lateral hypothalamus, in hypersomnia in these patients remains unclear. To clarify the role of hypocretin-1 in hypersomnia in patients with BPTIs, hypocretin-1 levels in the cerebrospinal fluid (CSF) were measured in 6 patients with BPTIs: 2 with rostral midbrain involvement (BPT+RMI) and 4 without midbrain involvement (BPT-MI). CSF hypocretin-1 levels were decreased in 2 patients with BPT+RMI and were within normal ranges in 4 patients with BPT-MI. Hypersomnia was noted in all the patients. In one BPT+RMI patient, hypersomnia was improved within 2 weeks and decreased CSF hypocretin-1 levels were reversed (acute phase (on day 9), 109.2 pg/mL; chronic phase (at 3 months), 323 pg/mL), whereas another BPT+RMI patient who displayed coma in the acute phase had decreased CSF orexin levels (107 pg/mL) at day 49 and exhibited severe disability. Hypocretin deficiency was not involved in hypersomnia observed in BPT-MI patients; however, CSF hypocretin-1 levels were reduced in BPT+RMI patients. Reduced CSF hypocretin-1 levels in the chronic phase may possibly predict a poor clinical outcome in patients with Percheron artery infarction.

  17. Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer.

    Science.gov (United States)

    Pera, Edgar M; Kim, James I; Martinez, Sarah L; Brechner, Mariel; Li, Su Yu; Wessely, Oliver; De Robertis, E M

    2002-08-01

    Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.

  18. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo.

    Science.gov (United States)

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R; Bamberger, Maximilian; Li, Kong M; Vissel, Bryce

    2017-01-01

    Parkinson's disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson's disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson's disease.

  19. Proteins mediating DNA loops effectively block transcription.

    Science.gov (United States)

    Vörös, Zsuzsanna; Yan, Yan; Kovari, Daniel T; Finzi, Laura; Dunlap, David

    2017-07-01

    Loops are ubiquitous topological elements formed when proteins simultaneously bind to two noncontiguous DNA sites. While a loop-mediating protein may regulate initiation at a promoter, the presence of the protein at the other site may be an obstacle for RNA polymerases (RNAP) transcribing a different gene. To test whether a DNA loop alters the extent to which a protein blocks transcription, the lac repressor (LacI) was used. The outcome of in vitro transcription along templates containing two LacI operators separated by 400 bp in the presence of LacI concentrations that produced both looped and unlooped molecules was visualized with scanning force microscopy (SFM). An analysis of transcription elongation complexes, moving for 60 s at an average of 10 nt/s on unlooped DNA templates, revealed that they more often surpassed LacI bound to the lower affinity O2 operator than to the highest affinity Os operator. However, this difference was abrogated in looped DNA molecules where LacI became a strong roadblock independently of the affinity of the operator. Recordings of transcription elongation complexes, using magnetic tweezers, confirmed that they halted for several minutes upon encountering a LacI bound to a single operator. The average pause lifetime is compatible with RNAP waiting for LacI dissociation, however, the LacI open conformation visualized in the SFM images also suggests that LacI could straddle RNAP to let it pass. Independently of the mechanism by which RNAP bypasses the LacI roadblock, the data indicate that an obstacle with looped topology more effectively interferes with transcription. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  20. NUR TRANSCRIPTION FACTORS IN STRESS AND ADDICTION

    Directory of Open Access Journals (Sweden)

    Danae eCampos-Melo

    2013-12-01

    Full Text Available The Nur transcription factors Nur77 (NGFI-B, NR4A1, Nurr1 (NR4A2 and Nor-1 (NR4A3 are a sub-family of orphan members of the nuclear receptor superfamily. These transcription factors are products of immediate early genes, whose expression is rapidly and transiently induced in the central nervous system by several types of stimuli. Nur factors are present throughout the hypothalamus-pituitary-adrenal axis where are prominently induced in response to stress. Drugs of abuse and stress also induce the expression of Nur factors in nuclei of the motivation/reward circuit of the brain, indicating their participation in the process of drug addiction and in non-hypothalamic responses to stress. Repeated use of addictive drugs and chronic stress induce long-lasting dysregulation of the brain motivation/reward circuit, due to reprogramming of gene expression and enduring alterations in neuronal function. Here, we review the data supporting that Nur transcription factors are key players in the molecular basis of the dysregulation of neuronal circuits involved in chronic stress and addiction.

  1. Transcript structure and domain display: a customizable transcript visualization tool.

    Science.gov (United States)

    Watanabe, Kenneth A; Ma, Kaiwang; Homayouni, Arielle; Rushton, Paul J; Shen, Qingxi J

    2016-07-01

    Transcript Structure and Domain Display (TSDD) is a publicly available, web-based program that provides publication quality images of transcript structures and domains. TSDD is capable of producing transcript structures from GFF/GFF3 and BED files. Alternatively, the GFF files of several model organisms have been pre-loaded so that users only needs to enter the locus IDs of the transcripts to be displayed. Visualization of transcripts provides many benefits to researchers, ranging from evolutionary analysis of DNA-binding domains to predictive function modeling. TSDD is freely available for non-commercial users at http://shenlab.sols.unlv.edu/shenlab/software/TSD/transcript_display.html : jeffery.shen@unlv.nevada.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. AAV-mediated gene transfer of the obesity-associated gene Etv5 in rat midbrain does not affect energy balance or motivated behavior.

    Directory of Open Access Journals (Sweden)

    Arjen J Boender

    Full Text Available Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5 in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior.

  4. Nucleocytoplasmic shuttling of transcription factors

    DEFF Research Database (Denmark)

    Cartwright, P; Helin, K

    2000-01-01

    To elicit the transcriptional response following intra- or extracellular stimuli, the signals need to be transmitted to their site of action within the nucleus. The nucleocytoplasmic shuttling of transcription factors is a mechanism mediating this process. The activation and inactivation...... of the transcriptional response is essential for cells to progress through the cell cycle in a normal manner. The involvement of cytoplasmic and nuclear accessory molecules, and the general nuclear membrane transport components, are essential for this process. Although nuclear import and export for different...... transcription factor families are regulated by similar mechanisms, there are several differences that allow for the specific activation of each transcription factor. This review discusses the general import and export pathways found to be common amongst many different transcription factors, and highlights...

  5. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  6. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables....... It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms...

  7. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    Science.gov (United States)

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  8. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.

    Science.gov (United States)

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.

  9. Wnt/B-Catenin Signaling is Required to Rescue Midbrain Dopaminergic Progenitors and Promote Neurorepair in Ageing Mouse Model of Parkinson’s Disease

    Science.gov (United States)

    L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca

    2014-01-01

    SUMMARY Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson’s disease (PD) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Cococulture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1+/TH−) and imperiled or rescuing DAT+ neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD. PMID:24648001

  10. A potential role for the midbrain in integrating fat-free mass determined energy needs: An H2 (15) O PET study.

    Science.gov (United States)

    Weise, Christopher M; Thiyyagura, Pradeep; Reiman, Eric M; Chen, Kewei; Krakoff, Jonathan

    2015-06-01

    Little is known on how sensing of energy needs is centrally represented, integrated, and translated into the behavioral aspects of energy homeostasis. Fat free mass (FFM) is the major determinant of energy expenditure. We investigated how interindividual variances in FFM relate to neuronal activity in humans. Healthy adults (n = 64, 21F/43M; age 31.3 ± 9.1y; percentage of body fat [PFAT] 25.6 ± 10.7%; BMI 30.4 ± 9) underwent a 36h fast and subsequent H(2) (15) O positron emission tomographic (PET) measurement of regional cerebral blood flow (rCBF). Multiple variable regression analysis revealed significant associations of FFM with rCBF within the midbrain [including parts of the periaqueductal gray (PAG), ventral tegmental area (VTA), thalamic and hypothalamic regions], the bilateral parahippocampal region, left anterior cingulate, left insular cortex, right cerebellum, and distinct regions within the temporal and occipital cortex. In contrast, no significant associations were found for fat mass (FM). We investigated the potential functional-anatomical link between FFM and central regulation of food intake by performing a conjunction analysis of FFM and the perceived hunger feelings. This showed a significant overlap within the midbrain PAG. Mediation analysis demonstrated a significant indirect effect of FFM on hunger with PAG rCBF as mediator. Most regions we found to be associated with FFM form part in ascending homeostatic pathways and cortical circuitries implicated in the regulation of basic bodily functions indicating a potential role of these central networks in the integration of FFM determined energy needs. © 2015 Wiley Periodicals, Inc.

  11. Dysfunctional transcripts are formed by alternative polyadenylation in OPMD

    OpenAIRE

    Raz, Vered; Dickson, George; ’t Hoen, Peter A.C.

    2017-01-01

    Post-transcription mRNA processing in the 3’-untranslated region (UTR) of transcripts alters mRNA landscape. Alternative polyadenylation (APA) utilization in the 3’-UTR often leads to shorter 3’-UTR affecting mRNA stability, a process that is regulated by PABPN1. In skeletal muscles PABPN1 levels reduce with age and a greater decrease in found in Oculopharyngeal muscular dystrophy (OPMD). OPMD is a late onset autosomal dominant myopathy caused by expansion mutation in PABPN1. In OPMD models a...

  12. Transcriptional switches in the control of macronutrient metabolism.

    Science.gov (United States)

    Wise, Alan

    2008-06-01

    This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.

  13. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish.

    Science.gov (United States)

    Allodi, Ilary; Hedlund, Eva

    2014-01-01

    Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.

  14. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders.

    Science.gov (United States)

    Vállez García, David; Doorduin, Janine; Willemsen, Antoon T M; Dierckx, Rudi A J O; Otte, Andreas

    2016-08-01

    There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H2(15)O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Transcription Factor Zbtb20 Controls Regional Specification of Mammalian Archicortex

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    2010-01-01

    Combinatorial expression of sets of transcription factors (TFs) along the mammalian cortex controls its subdivision into functional areas. Unlike neocortex, only few recent data suggest genetic mechanisms controlling the regionalization of the archicortex. TF Emx2 plays a crucial role in patterning...... later on becoming restricted exclusively to postmitotic neurons of hippocampus (Hi) proper, dentate gyrus (DG), and two transitory zones, subiculum (S) and retrosplenial cortex (Rsp). Analysis of Zbtb20-/- mice revealed altered cortical patterning at the border between neocortex and archicortex...

  17. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed

    2017-11-29

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  18. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation

    KAUST Repository

    Mahas, Ahmed; Neal Stewart, C.; Mahfouz, Magdy M.

    2017-01-01

    Genome editing has enabled broad advances and novel approaches in studies of gene function and structure; now, emerging methods aim to precisely engineer post-transcriptional processes. Developing precise, efficient molecular tools to alter the transcriptome holds great promise for biotechnology and synthetic biology applications. Different approaches have been employed for targeted degradation of RNA species in eukaryotes, but they lack programmability and versatility, thereby limiting their utility for diverse applications. The CRISPR/Cas9 system has been harnessed for genome editing in many eukaryotic species and, using a catalytically inactive Cas9 variant, the CRISPR/dCas9 system has been repurposed for transcriptional regulation. Recent studies have used other CRISPR/Cas systems for targeted RNA degradation and RNA-based manipulations. For example, Cas13a, a Type VI-A endonuclease, has been identified as an RNA-guided RNA ribonuclease and used for manipulation of RNA. Here, we discuss different modalities for targeted RNA interference with an emphasis on the potential applications of CRISPR/Cas systems as programmable transcriptional regulators for broad uses, including functional biology, biotechnology, and synthetic biology applications.

  19. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex

    Directory of Open Access Journals (Sweden)

    Antonio Federico

    2017-04-01

    Full Text Available The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.

  20. Global transcriptional responses of Bacillus subtilis to xenocoumacin 1.

    Science.gov (United States)

    Zhou, T; Zeng, H; Qiu, D; Yang, X; Wang, B; Chen, M; Guo, L; Wang, S

    2011-09-01

    To determine the global transcriptional response of Bacillus subtilis to an antimicrobial agent, xenocoumacin 1 (Xcn1). Subinhibitory concentration of Xcn1 applied to B. subtilis was measured according to Hutter's method for determining optimal concentrations. cDNA microarray technology was used to study the global transcriptional response of B. subtilis to Xcn1. Real-time RT-PCR was employed to verify alterations in the transcript levels of six genes. The subinhibitory concentration was determined to be 1 μg ml(-1). The microarray data demonstrated that Xcn1 treatment of B. subtilis led to more than a 2.0-fold up-regulation of 480 genes and more than a 2.0-fold down-regulation of 479 genes (q ≤ 0.05). The transcriptional responses of B. subtilis to Xcn1 were determined, and several processes were affected by Xcn1. Additionally, cluster analysis of gene expression profiles after treatment with Xcn1 or 37 previously studied antibiotics indicated that Xcn1 has similar mechanisms of action to protein synthesis inhibitors. These microarray data showed alterations of gene expression in B. subtilis after exposure to Xcn1. From the results, we identified various processes affected by Xcn1. This study provides a whole-genome perspective to elucidate the action of Xcn1 as a potential antimicrobial agent. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. Sperm mRNA transcripts are indicators of sub-chronic low dose testicular injury in the Fischer 344 rat.

    Directory of Open Access Journals (Sweden)

    Sara E Pacheco

    Full Text Available Current human reproductive risk assessment methods rely on semen and serum hormone analyses, which are not easily comparable to the histopathological endpoints and mating studies used in animal testing. Because of these limitations, there is a need to develop universal evaluations that reliably reflect male reproductive function. We hypothesized that toxicant-induced testicular injury can be detected in sperm using mRNA transcripts as indicators of insult. To test this, we exposed adult male Fischer 344 rats to low doses of model testicular toxicants and classically characterized the testicular injury while simultaneously evaluating sperm mRNA transcripts from the same animals. Overall, this study aimed to: 1 identify sperm transcripts altered after exposure to the model testicular toxicant, 2,5-hexanedione (HD using microarrays; 2 expand on the HD-induced transcript changes in a comprehensive time course experiment using qRT-PCR arrays; and 3 test these injury indicators after exposure to another model testicular toxicant, carbendazim (CBZ. Microarray analysis of HD-treated adult Fischer 344 rats identified 128 altered sperm mRNA transcripts when compared to control using linear models of microarray analysis (q<0.05. All transcript alterations disappeared after 3 months of post-exposure recovery. In the time course experiment, time-dependent alterations were observed for 12 candidate transcripts selected from the microarray data based upon fold change and biological relevance, and 8 of these transcripts remained significantly altered after the 3-month recovery period (p<0.05. In the last experiment, 8 candidate transcripts changed after exposure to CBZ (p<0.05. The two testicular toxicants produced distinct molecular signatures with only 4 overlapping transcripts between them, each occurring in opposite directions. Overall, these results suggest that sperm mRNA transcripts are indicators of low dose toxicant-induced testicular injury in the rat.

  2. RNA-guided transcriptional regulation

    Science.gov (United States)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  3. Transcriptional control of megakaryocyte development.

    Science.gov (United States)

    Goldfarb, A N

    2007-10-15

    Megakaryocytes are highly specialized cells that arise from a bipotent megakaryocytic-erythroid progenitor (MEP). This developmental leap requires coordinated activation of megakaryocyte-specific genes, radical changes in cell cycle properties, and active prevention of erythroid differentiation. These programs result from upregulation of megakaryocyte-selective transcription factors, downregulation of erythroid-selective transcription factors and ongoing mediation of common erythro-megakaryocytic transcription factors. Unlike most developmental programs, no single lineage-unique family of master regulators exerts executive control over the megakaryocytic plan. Rather, an assemblage of non-unique factors and signals converge to determine lineage and differentiation. In human megakaryopoiesis, hereditary disorders of platelet production have confirmed contributions from three distinct transcription factor families. Murine models have extended this repertoire to include multiple additional factors. At a mechanistic level, the means by which these non-unique factors collaborate in the establishment of a perfectly unique cell type remains a central question.

  4. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions taken...

  5. Perfluorooctanoic acid stimulated mitochondrial biogenesis and gene transcription in rats

    International Nuclear Information System (INIS)

    Walters, M.W.; Bjork, J.A.; Wallace, K.B.

    2009-01-01

    Perfluorooctanoic acid (PFOA), used in the production of non-stick surface compounds, exhibits a worldwide distribution in the serum of humans and wildlife. In rodents PFOA transactivates PPARα and PPARγ nuclear receptors and increases mitochondrial DNA (mtDNA) copy number, which may be critical to the altered metabolic state of affected animals. A key regulator of mitochondrial biogenesis and transcription of mitochondrial genes is the PPARγ coactivator-1α (Pgc-1α) protein. The purpose of this study was to determine if Pgc-1α is implicated in the stimulation of mitochondrial biogenesis that occurs following the treatment of rats with PFOA. Livers from adult male Sprague-Dawley rats that received a 30 mg/kg daily oral dose of PFOA for 28 days were used for all experiments. Analysis of mitochondrial replication and transcription was performed by real time PCR, and proteins were detected using western blotting. PFOA treatment caused a transcriptional activation of the mitochondrial biogenesis pathway leading to a doubling of mtDNA copy number. Further, transcription of OXPHOS genes encoded by mtDNA was 3-4 times greater than that of nuclear encoded genes, suggestive of a preferential induction of mtDNA transcription. Western blot analysis revealed an increase in Pgc-1α, unchanged Tfam and decreased Cox II and Cox IV subunit protein expression. We conclude that PFOA treatment in rats induces mitochondrial biogenesis at the transcriptional level with a preferential stimulation of mtDNA transcription and that this occurs by way of activation of the Pgc-1α pathway. Implication of the Pgc-1α pathway is consistent with PPARγ transactivation by PFOA and reveals new understanding and possibly new critical targets for assessing or averting the associated metabolic disease.

  6. GSTpi expression in MPTP-induced dopaminergic neurodegeneration of C57BL/6 mouse midbrain and striatum.

    Science.gov (United States)

    Castro-Caldas, Margarida; Neves Carvalho, Andreia; Peixeiro, Isabel; Rodrigues, Elsa; Lechner, Maria Celeste; Gama, Maria João

    2009-06-01

    MPTP-induced dopaminergic neurotoxicity involves major biochemical processes such as oxidative stress and impaired energy metabolism, leading to a significant reduction in the number of nigrostriatal dopaminergic neurons. Glutathione S-transferase pi (GSTpi) is a phase II detoxifying enzyme that provides protection of cells from injury by toxic chemicals and products of oxidative stress. In humans, polymorphisms of GSTP1 affect substrate selectivity and stability increasing the susceptibility to parkinsonism-inducing effects of environmental toxins. Given the ability of MPTP to increase the levels of reactive oxygen species and the link between altered redox potential and the expression and activity of GSTpi, we investigated the effect of MPTP on GSTpi cellular concentration in an in vivo model of Parkinson's disease. The present study demonstrates that GSTpi is actively expressed in both substantia nigra pars compacta and striatum of C57BL/6 mice brain, mostly in oligodendrocytes and astrocytes. After systemic administration of MPTP, GSTpi expression is significantly increased in glial cells in the vicinity of dopaminergic neurons cell bodies and fibers. The results suggest that GSTpi expression may be part of the mechanism underlying the ability of glial cells to elicit protection against the mechanisms involved in MPTP-induced neuronal death.

  7. A well-refined in vitro model derived from human embryonic stem cell for screening phytochemicals with midbrain dopaminergic differentiation-boosting potential for improving Parkinson's disease.

    Science.gov (United States)

    Hsieh, Wen-Ting; Chiang, Been-Huang

    2014-07-09

    Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.

  8. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    Science.gov (United States)

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  9. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray.

    Science.gov (United States)

    Sun, Shuzhen; Qi, Dong; Yang, Yingying; Ji, Ping; Kong, Jingjing; Wu, Qingting

    2016-03-02

    P2X3 receptor plays a role in nociception transmission of orofacial pain in temporomandibular disorder patients. A previous study found that P2X3 receptors in masseter muscle afferent neurons and the trigeminal ganglia were involved in masseter muscle pain induced by inflammation caused by chemical agents or eccentric muscle contraction. In this study, we attempted to investigate changes in P2X3 receptors in the trigeminal subnucleus caudalis (Vc) and midbrain periaqueductal gray (PAG) in relation to the hyperalgesia of masseter muscles induced by occlusal interference. Experimental occlusal interference by crown application was established in 30 rats and another 30 rats were treated as sham controls. On days 1, 3, 7, 14, and 28 after crown application, the mechanical pain threshold was examined by von-Frey filaments. The expression of the P2X3 receptor in Vc and PAG was investigated by immunohistochemistry and quantitative PCR. We found that mechanical pain threshold of bilateral masseter muscles decreased significantly after occlusal interference, which remained for the entire experimental period. The mRNA expression of the P2X3 receptor increased significantly and the number of P2X3R-positive neurons increased markedly in Vc and PAG accordingly. These results indicate that the upregulated expression of P2X3 receptors in Vc and PAG may contribute toward the development of orofacial pain induced by occlusal interference and P2X3 receptors in the PAG may play a key role in the supraspinal antiociception effect.

  10. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. Copyright © 2015 the authors 0270-6474/15/3514491-10$15.00/0.

  11. Morphine regulates Argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons.

    Science.gov (United States)

    García-Pérez, Daniel; López-Bellido, Roger; Hidalgo, Juana M; Rodríguez, Raquel E; Laorden, Maria Luisa; Núñez, Cristina; Milanés, Maria Victoria

    2015-01-01

    Epigenetic changes such as microRNAs (miRs)/Ago2-induced gene silencing represent complex molecular signature that regulate cellular plasticity. Recent studies showed involvement of miRs and Ago2 in drug addiction. In this study, we show that changes in gene expression induced by morphine and morphine withdrawal occur with concomitant epigenetic modifications in the mesolimbic dopaminergic (DA) pathway [ventral tegmental area (VTA)/nucleus accumbens (NAc) shell], which is critically involved in drug-induced dependence. We found that acute or chronic morphine administration as well as morphine withdrawal did not modify miR-133b messenger RNA (mRNA) expression in the VTA, whereas Ago2 protein levels were decreased and increased in morphine-dependent rats and after morphine withdrawal, respectively. These changes were paralleled with enhanced and decreased NAc tyrosine hydroxylase (TH) protein (an early DA marker) in morphine-dependent rats and after withdrawal, respectively. We also observed changes in TH mRNA expression in the VTA that could be related to Ago2-induced translational repression of TH mRNA during morphine withdrawal. However, the VTA number of TH-positive neurons suffered no alterations after the different treatment. Acute morphine administration produced a marked increase in TH activity and DA turnover in the NAc (shell). In contrast, precipitated morphine withdrawal decreased TH activation and did not change DA turnover. These findings provide new information into the possible correlation between Ago2/miRs complex regulation and DA neurons plasticity during opiate addiction. © 2013 Society for the Study of Addiction.

  12. Radiation protection philosophy alters

    International Nuclear Information System (INIS)

    Firmin, G.

    1977-01-01

    Two significant events that have taken place this year in the field of radiation protection are reported. New SI units have been proposed (and effectively adopted), and the ICRP has revised its recommendations. Changes of emphasis in the latest recommendations (ICRP Publication 26) imply an altered radiation protection philosophy, in particular the relation of dose limits to estimates of average risk, an altered view of the critical organ approach and a new attitude to genetic dose to the population. (author)

  13. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  14. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje

    2010-01-01

    Acute Myeloid Leukemia (AML) is commonly associated with alterations in transcription factors due to altered expression or gene mutations. These changes might induce leukemia- specific patterns of histone modifications. We used ChIP-Chip to analyze histone H3 Lysine 9 trimethylation (H3K9me3) pat...

  15. In silico detection of sequence variations modifying transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Malin C Andersen

    2008-01-01

    Full Text Available Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers. The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation.

  16. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    Science.gov (United States)

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  17. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  18. Transcriptional regulation of hepatic lipogenesis.

    Science.gov (United States)

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2015-11-01

    Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.

  19. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  20. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  1. Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons.

    Science.gov (United States)

    Avelar, Alicia J; Cao, Jianjing; Newman, Amy Hauck; Beckstead, Michael J

    2017-09-01

    Abuse of psychostimulants like cocaine that inhibit dopamine (DA) reuptake through the dopamine transporter (DAT) represents a major public health issue, however FDA-approved pharmacotherapies have yet to be developed. Recently a class of ligands termed "atypical DAT inhibitors" has gained attention due to their range of effectiveness in increasing extracellular DA levels without demonstrating significant abuse liability. These compounds not only hold promise as therapeutic agents to treat stimulant use disorders but also as experimental tools to improve our understanding of DAT function. Here we used patch clamp electrophysiology in mouse brain slices to explore the effects of two atypical DAT inhibitors (R-modafinil and JHW 007) on the physiology of single DA neurons in the substantia nigra and ventral tegmental area. Despite their commonalities of being DAT inhibitors that lack cocaine-like behavioral profiles, these compounds exhibited surprisingly divergent cellular effects. Similar to cocaine, R-modafinil slowed DA neuron firing in a D2 receptor-dependent manner and rapidly enhanced the amplitude and duration of D2 receptor-mediated currents in the midbrain. In contrast, JHW 007 exhibited little effect on firing, slow DAT blockade, and an unexpected inhibition of D2 receptor-mediated currents that may be due to direct D2 receptor antagonism. Furthermore, pretreatment with JHW 007 blunted the cellular effects of cocaine, suggesting that it may be valuable to investigate similar DAT inhibitors as potential therapeutic agents. Further exploration of these and other atypical DAT inhibitors may reveal important cellular effects of compounds that will have potential as pharmacotherapies for treating cocaine use disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The effect of short moderate stress on the midbrain corticotropin-releasing factor system in a macaque model of functional hypothalamic amenorrhea.

    Science.gov (United States)

    Bethea, Cynthia L; Phu, Kenny; Reddy, Arubala P; Cameron, Judy L

    2013-10-01

    To study the effect of moderate stress on corticotropin-releasing factor (CRF) components in the serotonergic midbrain region in a monkey model of functional hypothalamic amenorrhea. After characterization of stress sensitivity, monkeys were moved to a novel room and given 20% less chow for 5 days before euthanasia. Primate research center. Female cynomolgus macaques (Macaca fascicularis) characterized as highly stress resilient (HSR, n = 5), medium stress resilient (n = 4), or stress sensitive (SS, n = 4). Five days of diet in a novel room with unfamiliar conspecifics. Density of CRF axons in the serotonergic dorsal raphe nucleus; the number of urocortin 1 (UCN1) cells; the density of UCN1 axons; the expression of CRF receptor 1 (CRF-R1) and CRF-R2 in the dorsal raphe nucleus. The CRF innervation was higher in HSR than in SS animals; UCN1 cell number was higher in HSR than in SS animals and UCN1 axon bouton density was not different; all opposite of nonstressed animals. The CRF-R1 was not different between the sensitivity groups, but CRF-R2 was higher in HSR than in SS animals. The relative expression of CRF-R1 and CRF-R2 was similar to nonstressed animals. The HSR animals respond to stress with an increase in CRF delivery to serotonin neurons. With stress, UCN1 transport decreases in HSR animals. The CRF receptor expression was similar with or without stress. These changes may contribute to resilience in HSR animals. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat.

    Science.gov (United States)

    Bhatt, Suresh; Bhatt, Rekha; Zalcman, Steven S; Siegel, Allan

    2008-02-01

    Feline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems. The present study sought to determine whether a similar relationship exists with respect to interleukin 1-beta (IL-1 beta), whose receptor activation in the medial hypothalamus potentiates defensive rage. Thus, the present study identified the effects of administration of IL-1 beta into the PAG upon defensive rage elicited from the medial hypothalamus. Microinjections of IL-1 beta into the dorsal PAG significantly facilitated defensive rage behavior elicited from the medial hypothalamus in a dose and time dependent manner. In addition, the facilitative effects of IL-1 beta were blocked by pre-treatment with anti-IL-1 beta receptor antibody, while IL-1 beta administration into the PAG had no effect upon predatory attack elicited from the lateral hypothalamus. The findings further demonstrated that IL-1 beta's effects were mediated through 5-HT(2) receptors since pretreatment with a 5-HT(2C) receptors antagonist blocked the facilitating effects of IL-1 beta. An extensive pattern of labeling of IL-1 beta and 5-HT(2C) receptors in the dorsal PAG supported these findings. The present study demonstrates that IL-beta in the dorsal PAG, similar to the medial hypothalamus, potentiates defensive rage behavior and is mediated through a 5-HT(2C) receptor mechanism.

  4. Scaling proprioceptor gene transcription by retrograde NT3 signaling.

    Directory of Open Access Journals (Sweden)

    Jun Lee

    Full Text Available Cell-type specific intrinsic programs instruct neuronal subpopulations before target-derived factors influence later neuronal maturation. Retrograde neurotrophin signaling controls neuronal survival and maturation of dorsal root ganglion (DRG sensory neurons, but how these potent signaling pathways intersect with transcriptional programs established at earlier developmental stages remains poorly understood. Here we determine the consequences of genetic alternation of NT3 signaling on genome-wide transcription programs in proprioceptors, an important sensory neuron subpopulation involved in motor reflex behavior. We find that the expression of many proprioceptor-enriched genes is dramatically altered by genetic NT3 elimination, independent of survival-related activities. Combinatorial analysis of gene expression profiles with proprioceptors isolated from mice expressing surplus muscular NT3 identifies an anticorrelated gene set with transcriptional levels scaled in opposite directions. Voluntary running experiments in adult mice further demonstrate the maintenance of transcriptional adjustability of genes expressed by DRG neurons, pointing to life-long gene expression plasticity in sensory neurons.

  5. Music and Alterity Processes

    Directory of Open Access Journals (Sweden)

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  6. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  8. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in sorghum bicolor

    Science.gov (United States)

    The phenylpropanoid biosynthesis pathway that generates lignin subunits represents a significant target to alter the abundance and composition of lignin. The major regulators of phenylpropanoid metabolism are myb transcription factors, which have been shown to modulate secondary cell wall compositi...

  9. Silencing of IFN-stimulated gene transcription is regulated by histone H1 and its chaperone TAF-I.

    Science.gov (United States)

    Kadota, Shinichi; Nagata, Kyosuke

    2014-07-01

    Chromatin structure and its alteration play critical roles in the regulation of transcription. However, the transcriptional silencing mechanism with regard to the chromatin structure at an unstimulated state of the interferon (IFN)-stimulated gene (ISG) remains unclear. Here we investigated the role of template activating factor-I (TAF-I, also known as SET) in ISG transcription. Knockdown (KD) of TAF-I increased ISG transcript and simultaneously reduced the histone H1 level on the ISG promoters during the early stages of transcription after IFN stimulation from the unstimulated state. The transcription factor levels on the ISG promoters were increased in TAF-I KD cells only during the early stages of transcription. Furthermore, histone H1 KD also increased ISG transcript. TAF-I and histone H1 double KD did not show the additive effect in ISG transcription, suggesting that TAF-I and histone H1 may act on the same regulatory pathway to control ISG transcription. In addition, TAF-I KD and histone H1 KD affected the chromatin structure near the ISG promoters. On the basis of these findings, we propose that TAF-I and its target histone H1 are key regulators of the chromatin structure at the ISG promoter to maintain the silent state of ISG transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  11. Alternative staffing services. Contract transcription.

    Science.gov (United States)

    Tessier, C

    1992-03-01

    Contract medical transcription services can be of great assistance in meeting the demands for transcription, without jeopardizing patient, physician, or institutional confidentiality. You simply must require the contract service to provide at least the same degree of protection and preservation of confidentiality that you should require inhouse. To achieve this you must make these requirements explicit, comprehensive, comprehensible, believable, and enforceable. Discuss the requirements with prospective contractors. Review them at least annually with existing contractors and when contracts are due for renewal. Be sure to specify the consequence of breaching confidentiality, and if there are breaches, enforce the terms of the contract. Consult your institution's legal counsel both in developing the contract and in enforcing its provisions. Take into consideration your department's and institution's policies, AHIMA's statement on confidentiality, as well as local, state, and federal laws. Above all, never lose sight of the patient. Ultimately, it is not patient information that you are obligated to protect. It is the patient.

  12. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...... of the model in identifying new participants in cellular pathways as well as in deepening our understanding of cellular responses....

  13. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  14. Mutual interdependence of splicing and transcription elongation.

    Science.gov (United States)

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  15. Retraction: Borroto-Escuela et al., The existence of FGFR1-5-HT1A receptor heterocomplexes in midbrain 5-HT neurons of the rat: relevance for neuroplasticity.

    Science.gov (United States)

    2013-07-10

    The Journal of Neuroscience has received a report describing an investigation by the Karolinska Institutet, which found substantial data misrepresentation in the article "The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity" by Dasiel O. Borroto-Escuela, Wilber Romero-Fernandez, Mileidys Pérez-Alea, Manuel Narvaez, Alexander O. Tarakanov, Giuseppa Mudó , Luigi F. Agnati, Francisco Ciruela, Natale Belluardo, and Kjell Fuxe, which appeared on pages 6295-6303 of the May 2, 2012 issue. Because the results cannot be considered reliable, the editors of The Journal are retracting the paper.

  16. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or

  17. The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA

    KAUST Repository

    Mangiavacchi, Arianna; Sorci, Melissa; Masciarelli, Silvia; Larivera, Simone; Legnini, Ivano; Iosue, Ilaria; Bozzoni, Irene; Fazi, Francesco; Fatica, Alessandro

    2016-01-01

    Alterations in genetic programs required for terminal myeloid differentiation and aberrant proliferation characterize acute myeloid leukemia (AML) cells. Here, we identify the host transcript of miR-223, linc-223, as a novel functional long non

  18. Coarctation induces alterations in basement membranes in the cardiovascular system

    DEFF Research Database (Denmark)

    Lipke, D W; McCarthy, K J; Elton, T S

    1993-01-01

    ventricular hypertrophy was maximal within 5 days. In immunohistochemical studies, fibronectin and laminin were increased and the basement membrane chondroitin sulfate proteoglycan decreased in both the subendothelial space and smooth muscle cell basement membranes of the aorta above the clip compared...... membrane components in the heart and vasculature peaked before maximal cardiac hypertrophy (5 days). These studies indicate that alterations in basement membrane component deposition in the hypertrophied vasculature occur at both transcriptional and translational levels and suggest that the cell attachment...

  19. The effect of exercise frequency on neuropathic pain and pain-related cellular reactions in the spinal cord and midbrain in a rat sciatic nerve injury model

    Directory of Open Access Journals (Sweden)

    Sumizono M

    2018-02-01

    Full Text Available Megumi Sumizono,1,2 Harutoshi Sakakima,1 Shotaro Otsuka,1 Takuto Terashi,1 Kazuki Nakanishi,1,2 Koki Ueda,1,2 Seiya Takada,1,2 Kiyoshi Kikuchi3 1Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan; 2Kirishima Orthopedics, Kirishima, Japan; 3Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan Background: Exercise regimens are established methods that can relieve neuropathic pain. However, the relationship between frequency and intensity of exercise and multiple cellular responses of exercise-induced alleviation of neuropathic pain is still unclear. We examined the influence of exercise frequency on neuropathic pain and the intracellular responses in a sciatic nerve chronic constriction injury (CCI model. Materials and methods: Rats were assigned to four groups as follows: CCI and high-frequency exercise (HFE group, CCI and low-frequency exercise (LFE group, CCI and no exercise (No-Ex group, and naive animals (control group. Rats ran on a treadmill, at a speed of 20 m/min, for 30 min, for 5 (HFE or 3 (LFE days a week, for a total of 5 weeks. The 50% withdrawal threshold was evaluated for mechanical sensitivity. The activation of glial cells (microglia and astrocytes, expression of brain-derived neurotrophic factor (BDNF and μ-opioid receptor in the spinal dorsal horn and endogenous opioid in the midbrain were examined using immunohistochemistry. Opioid receptor antagonists (naloxone were administered using intraperitoneal injection. Results: The development of neuropathic pain was related to the activation of glial cells, increased BDNF expression, and downregulation of the μ-opioid receptor in the ipsilateral spinal dorsal horn. In the No-Ex group, neuropathic pain showed the highest level of mechanical hypersensitivity at 2 weeks, which improved slightly until 5 weeks after CCI. In both exercise groups, the alleviation of

  20. Immunization alters body odor.

    Science.gov (United States)

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.

  1. Directing traffic on DNA-How transcription factors relieve or induce transcriptional interference.

    Science.gov (United States)

    Hao, Nan; Palmer, Adam C; Dodd, Ian B; Shearwin, Keith E

    2017-03-15

    Transcriptional interference (TI) is increasingly recognized as a widespread mechanism of gene control, particularly given the pervasive nature of transcription, both sense and antisense, across all kingdoms of life. Here, we discuss how transcription factor binding kinetics strongly influence the ability of a transcription factor to relieve or induce TI.

  2. E2F1 and p53 Transcription Factors as Accessory Factors for Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-10-01

    Full Text Available Many of the biochemical details of nucleotide excision repair (NER have been established using purified proteins and DNA substrates. In cells however, DNA is tightly packaged around histones and other chromatin-associated proteins, which can be an obstacle to efficient repair. Several cooperating mechanisms enhance the efficiency of NER by altering chromatin structure. Interestingly, many of the players involved in modifying chromatin at sites of DNA damage were originally identified as regulators of transcription. These include ATP-dependent chromatin remodelers, histone modifying enzymes and several transcription factors. The p53 and E2F1 transcription factors are well known for their abilities to regulate gene expression in response to DNA damage. This review will highlight the underappreciated, transcription-independent functions of p53 and E2F1 in modifying chromatin structure in response to DNA damage to promote global NER.

  3. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... transcriptional networks by integrating exogenous and endogenous stimuli and regulating gene expression accordingly. Regulation of transcription factors and their activation is thus highly important to modulate the transcriptional programs and increase fitness of the plant in a given environment. Plant metabolism....... The biosynthetic machinery of GLS is governed by interplay of six MYB and three bHLH transcription factors. MYB28, MYB29 and MYB76 regulate methionine-derived GLS, and MYB51, MYB34 and MYB122 regulate tryptophan-derived GLS. The three bHLH transcription factors MYC2, MYC3 and MYC4 physically interact with all six...

  4. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    OpenAIRE

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription ...

  5. HAfTs are novel lncRNA transcripts from aflatoxin exposure.

    Directory of Open Access Journals (Sweden)

    B Alex Merrick

    Full Text Available The transcriptome can reveal insights into precancer biology. We recently conducted RNA-Seq analysis on liver RNA from male rats exposed to the carcinogen, aflatoxin B1 (AFB1, for 90 days prior to liver tumor onset. Among >1,000 differentially expressed transcripts, several novel, unannotated Cufflinks-assembled transcripts, or HAfTs (Hepatic Aflatoxin Transcripts were found. We hypothesized PCR-cloning and RACE (rapid amplification of cDNA ends could further HAfT identification. Sanger data was obtained for 6 transcripts by PCR and 16 transcripts by 5'- and 3'-RACE. BLAST alignments showed, with two exceptions, HAfT transcripts were lncRNAs, >200nt without apparent long open reading frames. Six rat HAfT transcripts were classified as 'novel' without RefSeq annotation. Sequence alignment and genomic synteny showed each rat lncRNA had a homologous locus in the mouse genome and over half had homologous loci in the human genome, including at least two loci (and possibly three others that were previously unannotated. While HAfT functions are not yet clear, coregulatory roles may be possible from their adjacent orientation to known coding genes with altered expression that include 8 HAfT-gene pairs. For example, a unique rat HAfT, homologous to Pvt1, was adjacent to known genes controlling cell proliferation. Additionally, PCR and RACE Sanger sequencing showed many alternative splice variants and refinements of exon sequences compared to Cufflinks assembled transcripts and gene prediction algorithms. Presence of multiple splice variants and short tandem repeats found in some HAfTs may be consequential for secondary structure, transcriptional regulation, and function. In summary, we report novel, differentially expressed lncRNAs after exposure to the genotoxicant, AFB1, prior to neoplastic lesions. Complete cloning and sequencing of such transcripts could pave the way for a new set of sensitive and early prediction markers for chemical

  6. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Murilo S. Alves

    2014-03-01

    Full Text Available Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP, amino-acid sequence WRKYGQK (WRKY, myelocytomatosis related proteins (MYC, myeloblastosis related proteins (MYB, APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP and no apical meristem (NAM, Arabidopsis transcription activation factor (ATAF, and cup-shaped cotyledon (CUC (NAC. We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses.

  7. V(D)J recombination on minichromosomes is not affected by transcription.

    Science.gov (United States)

    Hsieh, C L; McCloskey, R P; Lieber, M R

    1992-08-05

    It has been shown previously by others that transcription is temporally correlated with the onset of V(D)J recombination at the endogenous antigen receptor loci. We have been interested in determining whether this temporal correlation indicates a causal connection between these two processes. We have compared V(D)J recombination minichromosome substrates that have transcripts running through the recombination zone with substrates that do not in a transient transfection assay. In this system, the substrates acquire a minichromosome conformation within the first several hours after transfection. We find that the substrates recombine equally well over a 100-fold range in transcriptional variation. In additional studies, we have taken substrates that have low levels of transcription and inhibited transcription further by methylating the substrate DNA or by treating the cells with a general transcription inhibitor (alpha-amanitin). Although these treatments decrease the level of expression an additional 10-100-fold, there is still no observable effect on V(D)J recombination. Based on these results, we conclude that transcription is not necessary for the V(D)J reaction mechanism and does not alter substrate structure at the DNA level or at the simplest levels of chromatin structure in a way that affects the reaction.

  8. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    International Nuclear Information System (INIS)

    Taulan, M.; Lopez, E.; Guittard, C.; Rene, C.; Baux, D.; Altieri, J.P.; DesGeorges, M.; Claustres, M.; Romey, M.C.

    2007-01-01

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter

  9. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease.

    Directory of Open Access Journals (Sweden)

    Patricia D C Schaker

    Full Text Available Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression.

  10. Specification of jaw identity by the Hand2 transcription factor

    Science.gov (United States)

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  11. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease

    Science.gov (United States)

    Taniguti, Lucas M.; Peters, Leila P.; Creste, Silvana; Aitken, Karen S.; Van Sluys, Marie-Anne; Kitajima, João P.; Vieira, Maria L. C.; Monteiro-Vitorello, Claudia B.

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression. PMID:27583836

  12. Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages

    KAUST Repository

    Roy, Sugata

    2018-04-24

    Mycobacterium tuberculosis (Mtb) infection reveals complex and dynamic host-pathogen interactions, leading to host protection or pathogenesis. Using a unique transcriptome technology (CAGE), we investigated the promoter-based transcriptional landscape of IFNγ (M1) or IL-4/IL-13 (M2) stimulated macrophages during Mtb infection in a time-kinetic manner. Mtb infection widely and drastically altered macrophage-specific gene expression, which is far larger than that of M1 or M2 activations. Gene Ontology enrichment analysis for Mtb-induced differentially expressed genes revealed various terms, related to host-protection and inflammation, enriched in up-regulated genes. On the other hand, terms related to dis-regulation of cellular functions were enriched in down-regulated genes. Differential expression analysis revealed known as well as novel transcription factor genes in Mtb infection, many of them significantly down-regulated. IFNγ or IL-4/IL-13 pre-stimulation induce additional differentially expressed genes in Mtb-infected macrophages. Cluster analysis uncovered significant numbers, prolonging their expressional changes. Furthermore, Mtb infection augmented cytokine-mediated M1 and M2 pre-activations. In addition, we identified unique transcriptional features of Mtb-mediated differentially expressed lncRNAs. In summary we provide a comprehensive in depth gene expression/regulation profile in Mtb-infected macrophages, an important step forward for a better understanding of host-pathogen interaction dynamics in Mtb infection.

  13. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  14. Neuronal control of energy balance and modulation of muscle aging by the transcriptional coactivator PGC-1α

    OpenAIRE

    Gill, Jonathan François

    2016-01-01

    Cellular metabolic adaptations play a central role in the body's response to environmental changes and external stimuli and allow the maintenance of a proper energy balance. Transcriptional activators enable the integration of incoming signals and sensing of altered energy levels. Dysregulation of such metabolic pathways is a common mechanism of various tissue dysfunctions contributing to different diseases. A key player in cellular metabolism is the transcriptional coregulator Peroxisome pro...

  15. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Blood Transcriptional Signatures for Disease Progression in a Rat Model of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Michał Korostyński

    2017-01-01

    Full Text Available Biomarkers of osteoarthritis (OA that can accurately diagnose the disease at the earliest stage would significantly support efforts to develop treatments for prevention and early intervention. We have sought to determine the time course of alterations in peripheral blood gene expression profile associated with the development of OA. Blood samples were collected from a tail vein of individual rats with monosodium iodoacetate- (MIA- induced OA (2, 14, 21, and 28 days after the treatment. We used whole-genome microarrays to reveal OA-related transcriptional alterations of 72 transcripts. Three main groups of coexpressed genes revealed diverse time-dependent profiles of up- and downregulation. Functional links that connect expression of the gradually downregulated genes to the G13 signaling pathway were indicated. The mRNA abundance levels of the identified transcripts were further analyzed in publicly available gene expression dataset obtained from a GARP study cohort of OA patients. We revealed three-gene signature differentially expressed in both rat and human blood (TNK2, KCTD2, and WDR37. The alterations in expression of the selected transcripts in peripheral blood samples of the patients indicate heterogeneity of the OA profiles potentially related to disease progress and severity of clinical symptoms. Our study identifies several potential stage-specific biomarkers of OA progression.

  17. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    Science.gov (United States)

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site......, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites...... on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500...

  19. Transcription and recombination: when RNA meets DNA.

    Science.gov (United States)

    Aguilera, Andrés; Gaillard, Hélène

    2014-08-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Specificity and robustness in transcription control networks.

    Science.gov (United States)

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli.

  1. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants.

    Science.gov (United States)

    Shis, David L; Bennett, Matthew R

    2013-03-26

    The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host's native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits.

  2. Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor–mediated disease

    Science.gov (United States)

    Chua, Jason P.; Reddy, Satya L.; Yu, Zhigang; Giorgetti, Elisa; Montie, Heather L.; Mukherjee, Sarmistha; Higgins, Jake; McEachin, Richard C.; Robins, Diane M.; Merry, Diane E.; Iñiguez-Lluhí, Jorge A.; Lieberman, Andrew P.

    2015-01-01

    Expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR) causes neuromuscular degeneration in individuals with spinobulbar muscular atrophy (SBMA). PolyQ AR has diminished transcriptional function and exhibits ligand-dependent proteotoxicity, features that have both been implicated in SBMA; however, the extent to which altered AR transcriptional function contributes to pathogenesis remains controversial. Here, we sought to dissociate effects of diminished AR function from polyQ-mediated proteotoxicity by enhancing the transcriptional activity of polyQ AR. To accomplish this, we bypassed the inhibitory effect of AR SUMOylation (where SUMO indicates small ubiquitin-like modifier) by mutating conserved lysines in the polyQ AR that are sites of SUMOylation. We determined that replacement of these residues by arginine enhances polyQ AR activity as a hormone-dependent transcriptional regulator. In a murine model, disruption of polyQ AR SUMOylation rescued exercise endurance and type I muscle fiber atrophy; it also prolonged survival. These changes occurred without overt alterations in polyQ AR expression or aggregation, revealing the favorable trophic support exerted by the ligand-activated receptor. Our findings demonstrate beneficial effects of enhancing the transcriptional function of the ligand-activated polyQ AR and indicate that the SUMOylation pathway may be a potential target for therapeutic intervention in SBMA. PMID:25607844

  3. Altered neurocircuitry in the dopamine transporter knockout mouse brain.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    2010-07-01

    Full Text Available The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI. Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn(2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn(2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn(2+ transport into more posterior midbrain nuclei and contralateral

  4. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos

    International Nuclear Information System (INIS)

    Meyer, Armando; Seidler, Frederic J.; Aldridge, Justin E.; Slotkin, Theodore A.

    2005-01-01

    Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a β-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides

  5. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  6. Nucleolar proteins change in altered gravity

    Science.gov (United States)

    Sobol, M. A.; Kordyum, E. L.; Gonzalez-Camacho, F.; Medina, F. J.

    Discovery of gravisensitivity of cells no specified to gravity perception focused continuous attention on an elucidation of mechanisms involved in altered gravity effects at the different levels of cellular organization A nucleolus is the nuclear domain in which the major portion of ribosome biogenesis takes place This is a basic process for cell vitality beginning with the transcription of rDNA followed by processing newly synthesized pre-rRNA molecules A wide range of nucleolar proteins plays a highly significant role in all stages of biosynthesis of ribosomes Different steps of ribosome biogenesis should respond to various external factors affecting generally the cell metabolism Nevertheless a nucleolus remains not enough studied under the influence of altered environmental conditions For this reason we studied root apices from 2-day old Lepidium sativum seedlings germinated and grown under slow horizontal clinorotation and stationary conditions in darkness The extraction of cell nuclei followed by sequential fractionation of nuclear proteins according to their solubility in buffers of increasing ionic strength was carried out This procedure gave rise to 5 distinct fractions We analyzed nuclear subproteomes of the most soluble fraction called S2 It is actually a functionally significant fraction consisting of ribonucleoproteins actively engaged in pre-rRNA synthesis and processing 2D-electrophoresis of S2 fraction proteins was carried out The gels were silver stained and stained gels were scanned and analyzed

  7. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  8. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer.

    Science.gov (United States)

    Walter, Katherine R; Goodman, Merit L; Singhal, Hari; Hall, Jade A; Li, Tianbao; Holloran, Sean M; Trinca, Gloria M; Gibson, Katelin A; Jin, Victor X; Greene, Geoffrey L; Hagan, Christy R

    2017-10-01

    The progesterone receptor (PR) regulates transcriptional programs that drive proliferation, survival, and stem cell phenotypes. Although the role of native progesterone in the development of breast cancer remains controversial, PR clearly alters the transcriptome in breast tumors. This study identifies a class of genes, Interferon (IFN)-stimulated genes (ISGs), potently downregulated by ligand-activated PR which have not been previously shown to be regulated by PR. Progestin-dependent transcriptional repression of ISGs was observed in breast cancer cell line models and human breast tumors. Ligand-independent regulation of ISGs was also observed, as basal transcript levels were markedly higher in cells with PR knockdown. PR repressed ISG transcription in response to IFN treatment, the canonical mechanism through which these genes are activated. Liganded PR is robustly recruited to enhancer regions of ISGs, and ISG transcriptional repression is dependent upon PR's ability to bind DNA. In response to PR activation, key regulatory transcription factors that are required for IFN-activated ISG transcription, STAT2 and IRF9, exhibit impaired recruitment to ISG promoter regions, correlating with PR/ligand-dependent ISG transcriptional repression. IFN activation is a critical early step in nascent tumor recognition and destruction through immunosurveillance. As the large majority of breast tumors are PR positive at the time of diagnosis, PR-dependent downregulation of IFN signaling may be a mechanism through which early PR-positive breast tumors evade the immune system and develop into clinically relevant tumors. Implications: This study highlights a novel transcriptional mechanism through which PR drives breast cancer development and potentially evades the immune system. Mol Cancer Res; 15(10); 1331-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content.

    Science.gov (United States)

    Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles

    2014-04-23

    Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.

  10. Mechanical control of cyclic AMP signalling and gene transcription through integrins

    Science.gov (United States)

    Meyer, C. J.; Alenghat, F. J.; Rim, P.; Fong, J. H.; Fabry, B.; Ingber, D. E.

    2000-01-01

    This study was carried out to discriminate between two alternative hypotheses as to how cells sense mechanical forces and transduce them into changes in gene transcription. Do cells sense mechanical signals through generalized membrane distortion or through specific transmembrane receptors, such as integrins? Here we show that mechanical stresses applied to the cell surface alter the cyclic AMP signalling cascade and downstream gene transcription by modulating local release of signals generated by activated integrin receptors in a G-protein-dependent manner, whereas distortion of integrins in the absence of receptor occupancy has no effect.

  11. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Smet, De I.; Lau, S.; Ehrismann, J.S.; Axiotis, I.; Kolb, M.; Kientz, M.; Weijers, D.; Jürgens, G.

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF)

  12. Transcriptional switch from albumin to alpha-fetoprotein and changes in transcription of other genes during carbon tetrachloride induced liver regeneration

    International Nuclear Information System (INIS)

    Panduro, A.; Shalaby, F.; Weiner, F.R.; Biempica, L.; Zern, M.A.; Shafritz, D.A.

    1986-01-01

    During liver regeneration induced by CCl 4 administration to rats, changes in the relative transcription rates of albumin and alpha-fetoprotein genes have been measured in conjunction with other liver-specific and general cellular function genes. Within 24 h following CCl 4 administration, albumin gene transcription decreases by 85%, whereas alpha-fetoprotein transcription increases from undetectable levels to 50% of that observed for albumin. These changes precede maximal [ 3 H]thymidine incorporation into DNA which peaks at 48 h. Other genes related to liver-specific functions, such as ligandin, alpha 1-antitrypsin, and cytochrome P-450's, as well as general cellular genes pro alpha 1- and pro alpha 2-collagen, beta-actin, and alpha-tubulin, respond in kinetic patterns often distinct from each other and from albumin and alpha-fetoprotein. Changes in the steady-state levels of albumin and alpha-fetoprotein mRNA correlate with changes in transcription, but there is a lag in alpha-fetoprotein mRNA accumulation, which peaks at 72 h following CCl 4 administration. These studies indicate that reciprocal changes in albumin and alpha-fetoprotein gene transcription occur during CCl 4 -induced liver regeneration, leading to changes in the level of these specific mRNAs. These changes precede DNA synthesis and would appear to represent an alteration in differentiated function of hepatocytes in conjunction with the liver regenerative process

  13. Overlapping transcription structure of human cytomegalovirus

    Indian Academy of Sciences (India)

    Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three ...

  14. Overlapping transcription structure of human cytomegalovirus ...

    Indian Academy of Sciences (India)

    2013-01-21

    Jan 21, 2013 ... Transcription of human cytomegalovirus UL/b′ region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b′ genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR.

  15. Transcription of Byzantine Chant - Problems, Possibilities, Formats

    DEFF Research Database (Denmark)

    Troelsgård, Christian

    2007-01-01

    Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes.......Discusses the problems and possibilities for transsription of Byzantine chant on the basis of medieval musical manuscripts. A relatively 'neutral' style of transcription is suggested for musicological purposes....

  16. Regulation of transcription in hyperthermophilic archaea

    NARCIS (Netherlands)

    Brinkman, A.B.

    2002-01-01

    The aim of the research presented here was to insight in the mechanisms by which transcription in hyperthermophilic archaea is regulated. To accomplish this, we have aimed (I) to identify transcriptional regulatory proteins from hyperthermophilic archaea, (II) to characterize these

  17. 45 CFR 99.27 - Official transcript.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Official transcript. 99.27 Section 99.27 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROCEDURE FOR HEARINGS FOR THE CHILD CARE AND DEVELOPMENT FUND Hearing Procedures § 99.27 Official transcript. The Department will...

  18. RNA polymerase II collision interrupts convergent transcription

    DEFF Research Database (Denmark)

    Hobson, David J; Wei, Wu; Steinmetz, Lars M

    2012-01-01

    Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical...

  19. Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations

    Czech Academy of Sciences Publication Activity Database

    Koukalová, Blažena; Fojtová, Miloslava; Lim, Yoong Kar; Fulneček, Jaroslav; Leitch, Rowland Andrew; Kovařík, Aleš

    2005-01-01

    Roč. 139, - (2005), s. 275-286 ISSN 0032-0889 Institutional research plan: CEZ:AV0Z50040507 Keywords : pluripotent tobacco cells * epigenetic changes Subject RIV: BO - Biophysics Impact factor: 6.114, year: 2005

  20. Serotonin markers show altered transcription levels in an experimental pig model of mitral regurgitation

    DEFF Research Database (Denmark)

    Cremer, Signe Emilie; Zois, Nora Elisabeth; Moesgaard, S. G.

    2015-01-01

    surgically induced MR or sham-operation, resulting in three MR groups: control (CON, n = 12), mild MR (mMR, n = 10) and severe MR (sMR, n = 6). The gene expression levels of 5-HT1BR, 5-HT2AR, 5-HT2BR, SERT and TPH-1 were analysed using quantitative PCR (qPCR) in the mitral valve (MV), anterior papillary......-uptake transporter (SERT) in MMVD-affected valves, increased valvular 5-HT synthesis and decreased clearance have been suggested. It remains unknown how haemodynamic changes associated with mitral regurgitation (MR) affect 5-HT markers in the mitral valve, myocardium and circulation. Twenty-eight pigs underwent...... muscle (AP) and left ventricle (LV). MV 5-HT2BR was also analysed with immunohistochemistry (IHC) in relation to histological lesions and valvular myofibroblasts. All 5-HTR mRNAs were up-regulated in MV compared to AP and LV (P SERT and TPH-1 were up-regulated in AP and LV compared...

  1. Adaptation of Musca domestica L. field population to laboratory breeding causes transcriptional alterations

    DEFF Research Database (Denmark)

    Højland, Dorte H.; Vagn Jensen, Karl-Martin; Kristensen, Michael

    2014-01-01

    The housefly, Musca domestica, has developed resistance to most insecticides applied for its control. Expression of genes coding for detoxification enzymes play a role in the response of the housefly when encountered by a xenobiotic. The highest level of constitutive gene expression of nine P450 ...

  2. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Caterina Fede

    2014-08-01

    Full Text Available Silica (SiO2 nanoparticles (NPs have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30 having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes.

  3. Music alters visual perception.

    Directory of Open Access Journals (Sweden)

    Jacob Jolij

    Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  4. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  5. Altered Perspectives: Immersive Environments

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  6. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  7. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome

    NARCIS (Netherlands)

    Herranz, R.; Benguría, A.; Laván, D.A.; López-Vidriero, I.; Gasset, G.; Javier Medina, F.; van Loon, J.J.W.A.; Marco, R.

    2010-01-01

    Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the

  8. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons.

    Science.gov (United States)

    Guzowski, John F; Miyashita, Teiko; Chawla, Monica K; Sanderson, Jennifer; Maes, Levi I; Houston, Frank P; Lipa, Peter; McNaughton, Bruce L; Worley, Paul F; Barnes, Carol A

    2006-01-24

    The ability of neurons to alter their transcriptional programs in response to synaptic input is of fundamental importance to the neuroplastic mechanisms underlying learning and memory. Because of technical limitations of conventional gene detection methods, the current view of activity-dependent neural transcription derives from experiments in which neurons are assumed quiescent until a signaling stimulus is given. The present study was designed to move beyond this static model by examining how earlier episodes of neural activity influence transcription of the immediate-early gene Arc. Using a sensitive FISH method that detects primary transcript at genomic alleles, the proportion of hippocampal CA1 neurons that activate transcription of Arc RNA was constant at approximately 40% in response to both a single novel exploration session and daily sessions repeated over 9 days. This proportion is similar to the percentage of active neurons defined electrophysiologically. However, this close correspondence was disrupted in rats exposed briefly, but repeatedly, to the same environment within a single day. Arc transcription in CA1 neurons declined dramatically after as few as four 5-min sessions, despite stable electrophysiological activity during all sessions. Additional experiments indicate that the decrement in Arc transcription occurred at the cellular, rather than synaptic level, and was not simply linked to habituation to novelty. Thus, the neural genomic response is governed by recent, but not remote, cell firing history in the behaving animal. This state-dependence of neuronal transcriptional coupling provides a mechanism of metaplasticity and may regulate capacity for synaptic modification in neural networks.

  9. The future of genome-scale modeling of yeast through integration of a transcriptional regulatory network

    DEFF Research Database (Denmark)

    Liu, Guodong; Marras, Antonio; Nielsen, Jens

    2014-01-01

    regulatory information is necessary to improve the accuracy and predictive ability of metabolic models. Here we review the strategies for the reconstruction of a transcriptional regulatory network (TRN) for yeast and the integration of such a reconstruction into a flux balance analysis-based metabolic model......Metabolism is regulated at multiple levels in response to the changes of internal or external conditions. Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the concentrations of metabolic enzymes. Thus, integration of the transcriptional....... While many large-scale TRN reconstructions have been reported for yeast, these reconstructions still need to be improved regarding the functionality and dynamic property of the regulatory interactions. In addition, mathematical modeling approaches need to be further developed to efficiently integrate...

  10. Effects of Replication and Transcription on DNA Structure-Related Genetic Instability.

    Science.gov (United States)

    Wang, Guliang; Vasquez, Karen M

    2017-01-05

    Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.

  11. Colon cancer associated transcripts in human cancers.

    Science.gov (United States)

    Chen, Yincong; Xie, Haibiao; Gao, Qunjun; Zhan, Hengji; Xiao, Huizhong; Zou, Yifan; Zhang, Fuyou; Liu, Yuchen; Li, Jianfa

    2017-10-01

    Long non-coding RNAs serve as important regulators in complicated cellular activities, including cell differentiation, proliferation and death. Dysregulation of long non-coding RNAs occurs in the formation and progression of cancers. The family of colon cancer associated transcripts, long non-coding RNAs colon cancer associated transcript-1 and colon cancer associated transcript-2 are known as oncogenes involved in various cancers. Colon cancer associated transcript-1 is a novel lncRNA located in 8q24.2, and colon cancer associated transcript-2 maps to the 8q24.21 region encompassing rs6983267. Colon cancer associated transcripts have close associations with clinical characteristics, such as lymph node metastasis, high TNM stage and short overall survival. Knockdown of them can reverse the malignant phenotypes of cancer cells, including proliferation, migration, invasion and apoptosis. Moreover, they can increase the expression level of c-MYC and oncogenic microRNAs via activating a series of complex mechanisms. In brief, the family of colon cancer associated transcripts may serve as potential biomarkers or therapeutic targets for human cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Altered choroid plexus gene expression in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Cortney Ann Turner

    2014-04-01

    Full Text Available Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus, the region that produces cerebrospinal fluid (CSF, in individuals with major depressive disorder (MDD. Genes that are expressed in the choroid plexus (CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the choroid plexus at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p< 0.05 between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ pathway. Quantitative real-time PCR (qRT-PCR confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the choroid plexus in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

  13. Changes at transcriptional level during liver regeneration in the rat

    International Nuclear Information System (INIS)

    Subba Rao, M.N.; Netrawali, M.S.; Pradhan, D.S.; Sreenivasan, A.

    1976-01-01

    A great upheaval in RNA synthetic pattern is known to occur during the early periods after partial hepatectomy. Such changes are being studied in regenerating rat liver with a view to understanding regulatory mechanisms of eukaryotic transcription. Follwoing partial hepatectomy, RNA synthesis is rat liver showed graded increase during 4 to 18 hours. At these time intervals, a significant enhancement could be discerned both in template efficiency of chromatin and in RNA polymerase activity in this tissue. Further examination revealed that the activity of RNA polymerase II (extra-nucleolar enzyme) stimulated to a much greater extent as compared to that of RNA polymerase I (nucleolar enzyme). Partial hepatectomy also resulted in significant alterations in turnovers of chromosomal acidic proteins in liver. 32 P-orthophosphate injected intraperitoneally was used in these studies. (author)

  14. Role of WRKY Transcription Factors in Arabidopsis Development and Stress Responses

    OpenAIRE

    Li, Jing

    2014-01-01

    It has been well established that environmentally induced alterations in gene expression are mediated by transcription factors (TFs). One of the important plant-specific TF groups is the WRKY (TFs containing a highly conserved WRKY domain) family, which is involved in regulation of various physiological programs including biotic and abiotic defenses, senescence and trichome development. Two members of WRKY group III in Arabidopsis thaliana, WRKY54 and WRKY70, are demonstrated in this study to...

  15. Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis

    DEFF Research Database (Denmark)

    Sarusi Portuguez, Avital; Schwartz, Michal; Siersbaek, Rasmus

    2017-01-01

    The three dimensional folding of mammalian genomes is cell type specific and difficult to alter suggesting that it is an important component of gene regulation. However, given the multitude of chromatin-associating factors, the mechanisms driving the colocalization of active chromosomal domains...... by PPARγ and Lpin1, undergoes orchestrated reorganization during adipogenesis. Coupling the dynamics of genome architecture with multiple chromatin datasets indicated that among all the transcription factors (TFs) tested, RXR is central to genome reorganization at the beginning of adipogenesis...

  16. YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction

    DEFF Research Database (Denmark)

    Gabriele, Michele; Vulto-van Silfhout, Anneke T; Germain, Pierre-Luc

    2017-01-01

    that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin...... on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators....

  17. Transcriptional mapping of rabies virus in vivo

    International Nuclear Information System (INIS)

    Flamand, A.; Delagneau, J.F.

    1978-01-01

    Synthesis of the proteins of rabies virus was studied in hamster cell infected with uv-irradiated virus. The uv target size of genes L, N, M 1 , and M 2 was measured during primary transcription. Except for N, the target size of the remaining genes was considerably larger than that of their physical sizes. The data fit the hypothesis that four genes occupy a single transcriptional unit and that transcription of rabies virus proceeds in the order N, M 1 , M 2 , and L

  18. CHD chromatin remodelers and the transcription cycle

    Science.gov (United States)

    Murawska, Magdalena

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by “opening” or “closing” chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but also are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts. PMID:22223048

  19. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo

    2005-01-01

    level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has......NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein...

  20. Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells

    Science.gov (United States)

    Ribeiro-Varandas, Edna; Pereira, H. Sofia; Monteiro, Sara; Neves, Elsa; Brito, Luísa; Boavida Ferreira, Ricardo; Viegas, Wanda; Delgado, Margarida

    2014-01-01

    Bisphenol A (BPA) is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) transcriptional analysis of the Long Interspersed Element-1 (LINE-1) retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis. PMID:25207595

  1. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes.

    Science.gov (United States)

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-04-21

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Targeting HOX and PBX transcription factors in ovarian cancer

    International Nuclear Information System (INIS)

    Morgan, Richard; Plowright, Lynn; Harrington, Kevin J; Michael, Agnieszka; Pandha, Hardev S

    2010-01-01

    Ovarian cancer still has a relatively poor prognosis due to the frequent occurrence of drug resistance, making the identification of new therapeutic targets an important goal. We have studied the role of HOX genes in the survival and proliferation of ovarian cancer cells. These are a family of homeodomain-containing transcription factors that determine cell and tissue identity in the early embryo, and have an anti-apoptotic role in a number of malignancies including lung and renal cancer. We used QPCR to determine HOX gene expression in normal ovary and in the ovarian cancer cell lines SK-OV3 and OV-90. We used a short peptide, HXR9, to disrupt the formation of HOX/PBX dimers and alter transcriptional regulation by HOX proteins. In this study we show that the ovarian cancer derived line SK-OV3, but not OV-90, exhibits highly dysregulated expression of members of the HOX gene family. Disrupting the interaction between HOX proteins and their co-factor PBX induces apoptosis in SK-OV3 cells and retards tumour growth in vivo. HOX/PBX binding is a potential target in ovarian cancer

  3. Explicit verbal memory impairments associated with brain functional deficits and morphological alterations in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Yang, Jong-Chul; Jeong, Gwang-Woo

    2015-11-01

    Generalized anxiety disorder (GAD) is associated with brain function and morphological alterations. This study investigated explicit verbal memory impairment in patients with GAD in terms of brain functional deficits in combination with morphologic changes. Seventeen patients with GAD and 17 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and fMR imaging at 3 T during explicit verbal memory tasks with emotionally neutral and anxiety-inducing words. In response to the neutral words, the patients showed significantly lower activities in the regions of the hippocampus (Hip), middle cingulate gyrus (MCG), putamen (Pu) and head of the caudate nucleus (HCd) compared with healthy controls. In response to the anxiety-inducing words, the patients showed significantly higher activities in the ventrolateral prefrontal cortex and precentral gyrus. However, they showed lower activities in the Hip, MCG, Pu and HCd. In addition, patients with GAD showed a significant reduction in gray matter volumes, especially in the regions of the Hip, midbrain, thalamus, insula and superior temporal gyrus, compared with healthy controls. This study examined a small sample sizes in each of the groups, and there was no consideration of a medication effect on brain activity and volume changes. This study provides evidence for the association between brain functional deficits and morphometric alterations in an explicit verbal memory task for patients with GAD. This finding is helpful for understanding explicit verbal memory impairment in connection with GAD symptoms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Kai Heimel

    Full Text Available In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity. Here, we identify a set of 345 bE/bW responsive genes which show altered expression during these developmental changes; several of these genes are associated with cell cycle coordination, morphogenesis and pathogenicity. 90% of the genes that show altered expression upon bE/bW-activation require the zinc finger transcription factor Rbf1, one of the few factors directly regulated by the bE/bW heterodimer. Rbf1 is a novel master regulator in a multilayered network of transcription factors that facilitates the complex regulatory traits of sexual and pathogenic development.

  5. Hydrophobins in ectomycorrhizas: heterologous transcription of the Pisolithus HydPt-1 gene in yeast and Hebeloma cylindrosporum

    Directory of Open Access Journals (Sweden)

    D Tagu

    2009-12-01

    Full Text Available Hydrophobins are fungal cell wall proteins involved in aggregation of hyphae. Upon the development of the ectomycorrhizal symbiosis between tree roots and fungal hyphae, the transcripts of hydrophobin genes markedly accumulated. As the precise role of these proteins in symbiosis is not yet known, we develop heterologous expression system of the Pisolithus hydrophobin HYDPt-1. This gene has been introduced in Saccharomyces cerevisiae and in the ectomycorrhizal basidiomycete Hebeloma cylindrosporum. Introns were required for hydPt-1 transcript accumulation in the basidiomycete H. cylindrosporum. Heterologous transcript accumulation did not alter the phenotype of either species. The lack of altered phenotype resulted from the absence of HYDPt-1 polypeptide accumulation in transformed strains.

  6. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  7. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  8. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  9. In silico and wet lab approaches to study transcriptional regulation

    NARCIS (Netherlands)

    Hestand, Matthew Scott

    2010-01-01

    Gene expression is a complicated process with multiple types of regulation, including binding of proteins termed transcription factors. This thesis looks at transcription factors and transcription factor binding site discovery through computational predictions and wet lab work to better elucidate

  10. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  11. Battles and hijacks: Noncoding transcription in plants

    KAUST Repository

    Ariel, Federico; Romero-Barrios, Natali; Jé gu, Teddy; Benhamed, Moussa; Crespi, Martin

    2015-01-01

    splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates

  12. Salmonella Typhimurium transcription profiles in space flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Salmonella transcription profiles were obtained from samples flown on space shuttle mission STS-115 and compared to profiles from Salmonella grown under identical...

  13. Transcript for Understanding Medical Words: A Tutorial

    Science.gov (United States)

    ... medlineplus.gov/medicalwordstranscript.html Transcript for Understanding Medical Words: A Tutorial To use the sharing features on ... get to what those mean in a minute. Word Roots Word Roots. Let's begin with body parts. ...

  14. Reduced Neuronal Transcription of Escargot, the Drosophila Gene Encoding a Snail-Type Transcription Factor, Promotes Longevity

    Science.gov (United States)

    Symonenko, Alexander V.; Roshina, Natalia V.; Krementsova, Anna V.; Pasyukova, Elena G.

    2018-01-01

    In recent years, several genes involved in complex neuron specification networks have been shown to control life span. However, information on these genes is scattered, and studies to discover new neuronal genes and gene cascades contributing to life span control are needed, especially because of the recognized role of the nervous system in governing homeostasis, aging, and longevity. Previously, we demonstrated that several genes that encode RNA polymerase II transcription factors and that are involved in the development of the nervous system affect life span in Drosophila melanogaster. Among other genes, escargot (esg) was demonstrated to be causally associated with an increase in the life span of male flies. Here, we present new data on the role of esg in life span control. We show that esg affects the life spans of both mated and unmated males and females to varying degrees. By analyzing the survival and locomotion of the esg mutants, we demonstrate that esg is involved in the control of aging. We show that increased longevity is caused by decreased esg transcription. In particular, we demonstrate that esg knockdown in the nervous system increased life span, directly establishing the involvement of the neuronal esg function in life span control. Our data invite attention to the mechanisms regulating the esg transcription rate, which is changed by insertions of DNA fragments of different sizes downstream of the structural part of the gene, indicating the direction of further research. Our data agree with the previously made suggestion that alterations in gene expression during development might affect adult lifespan, due to epigenetic patterns inherited in cell lineages or predetermined during the development of the structural and functional properties of the nervous system. PMID:29760717

  15. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae

    2010-10-05

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  16. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae; Kim, Sungjin; Abbasi, Nazia; Bressan, Ray Anthony; Yun, Daejin; Yoo, Sangdong; Kwon, SukYun; Choi, Sangbong

    2010-01-01

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  17. A unified architecture of transcriptional regulatory elements

    DEFF Research Database (Denmark)

    Andersson, Robin; Sandelin, Albin Gustav; Danko, Charles G.

    2015-01-01

    Gene expression is precisely controlled in time and space through the integration of signals that act at gene promoters and gene-distal enhancers. Classically, promoters and enhancers are considered separate classes of regulatory elements, often distinguished by histone modifications. However...... and enhancers are considered a single class of functional element, with a unified architecture for transcription initiation. The context of interacting regulatory elements and the surrounding sequences determine local transcriptional output as well as the enhancer and promoter activities of individual elements....

  18. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  19. Alterations in HIV-1 LTR promoter activity during AIDS progression

    International Nuclear Information System (INIS)

    Hiebenthal-Millow, Kirsten; Greenough, Thomas C.; Bretttler, Doreen B.; Schindler, Michael; Wildum, Steffen; Sullivan, John L.; Kirchhoff, Frank

    2003-01-01

    HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression

  20. Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy

    Directory of Open Access Journals (Sweden)

    Mankgopo M. Kgatle

    2016-01-01

    Full Text Available Prostate cancer (PCa is the most prevalent urological cancer that affects aging men in South Africa, and mechanisms underlying prostate tumorigenesis remain elusive. Research advancements in the field of PCa and epigenetics have allowed for the identification of specific alterations that occur beyond genetics but are still critically important in the pathogenesis of tumorigenesis. Anomalous epigenetic changes associated with PCa include histone modifications, DNA methylation, and noncoding miRNA. These mechanisms regulate and silence hundreds of target genes including some which are key components of cellular signalling pathways that, when perturbed, promote tumorigenesis. Elucidation of mechanisms underlying epigenetic alterations and the manner in which these mechanisms interact in regulating gene transcription in PCa are an unmet necessity that may lead to novel chemotherapeutic approaches. This will, therefore, aid in developing combination therapies that will target multiple epigenetic pathways, which can be used in conjunction with the current conventional PCa treatment.

  1. Linking Core Promoter Classes to Circadian Transcription.

    Directory of Open Access Journals (Sweden)

    Pål O Westermark

    2016-08-01

    Full Text Available Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs, is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.

  2. A biophysical model for transcription factories

    International Nuclear Information System (INIS)

    Canals-Hamann, Ana Z; Neves, Ricardo Pires das; Reittie, Joyce E; Iñiguez, Carlos; Soneji, Shamit; Enver, Tariq; Buckle, Veronica J; Iborra, Francisco J

    2013-01-01

    Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac). Single fibre analysis showed that this modification spans the entire body of the gene. Furthermore, H4K16ac genes cluster in regions up to 500 Kb alternating active and inactive chromatin. The introduction of H4K16ac in chromatin induces stiffness in the chromatin fibre. The result of this change in flexibility is that chromatin could behave like a multi-block copolymer with repetitions of stiff-flexible (active-inactive chromatin) components. Copolymers with such structure self-organize through spontaneous phase separation into microdomains. Consistent with such model H4K16ac chromatin form foci that associates with nascent transcripts. We propose that transcription factories are the result of the spontaneous concentration of H4K16ac chromatin that are in proximity, mainly in cis

  3. Intrinsic terminators in Mycoplasma hyopneumoniae transcription.

    Science.gov (United States)

    Fritsch, Tiago Ebert; Siqueira, Franciele Maboni; Schrank, Irene Silveira

    2015-04-08

    Mycoplasma hyopneumoniae, an important pathogen of swine, exhibits a low guanine and cytosine (GC) content genome. M. hyopneumoniae genome is organised in long transcriptional units and promoter sequences have been mapped upstream of all transcription units. These analysis provided insights into the gene organisation and transcription initiation at the genome scale. However, the presence of transcriptional terminator sequences in the M. hyopneumoniae genome is poorly understood. In silico analyses demonstrated the presence of putative terminators in 82% of the 33 monocistronic units (mCs) and in 74% of the 116 polycistronic units (pCs) considering different classes of terminators. The functional activity of 23 intrinsic terminators was confirmed by RT-PCR and qPCR. Analysis of all terminators found by three software algorithms, combined with experimental results, allowed us to propose a pattern of RNA hairpin formation during the termination process and to predict the location of terminators in the M. hyopneumoniae genome sequence. The stem-loop structures of intrinsic terminators of mycoplasma diverge from the pattern of terminators found in other bacteria due the low content of guanine and cytosine. In M. hyopneumoniae, transcription can end after a transcriptional unit and before its terminator sequence and can also continue past the terminator sequence with RNA polymerases gradually releasing the RNA.

  4. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  5. Transcriptional and physiological response of fathead minnows (Pimephales promelas) exposed to urban waters entering into wildlife protected areas

    International Nuclear Information System (INIS)

    Rodriguez-Jorquera, Ignacio A.; Kroll, Kevin J.; Toor, Gurpal S.; Denslow, Nancy D.

    2015-01-01

    The mission of protected areas is to conserve biodiversity and improve human welfare. To assess the effect of urban waters entering into protected areas, we performed 48-h whole-effluent exposures with fathead minnows, analyzing changes in steady state levels of mRNAs in the livers of exposed fish. Raw wastewater, treated city wastewater, and treated wastewater from a university were collected for exposures. All exposed fish showed altered mRNA levels of DNA damage-repair genes. Fish exposed to raw and treated wastewaters showed down-regulation of transcripts for key intermediates of cholesterol biosynthesis and elevated plasma cholesterol. The type of wastewater treatment influenced the response of gene transcription. Because of the relevance of some of the altered cellular pathways, we suggest that these effluents may cause deleterious effects on fish inside protected areas that receive these waters. Inclusion of research and mitigation efforts for this type of threat in protected areas management is advised. - Highlights: • Wastewater entering wildlife preserves alters gene expression in exposed fish. • DNA repair mechanisms and cholesterol metabolism were altered in fish. • Effects on cholesterol genes were in agreement with fish hypercholesterolemia. - Urban wastewaters released into protected areas altered gene transcription of key genes such as DNA repair and cholesterol biosynthesis and produced hypercholesterolemia in fish

  6. New clues in the nucleus: Transcriptional reprogramming in effector-triggered immunity

    Directory of Open Access Journals (Sweden)

    SAIKAT eBHATTACHARJEE

    2013-09-01

    Full Text Available The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.

  7. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor.

    Science.gov (United States)

    Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka

    2017-08-25

    The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.

  8. Mood stabilizing drugs regulate transcription of immune, neuronal and metabolic pathway genes in Drosophila.

    Science.gov (United States)

    Herteleer, L; Zwarts, L; Hens, K; Forero, D; Del-Favero, J; Callaerts, P

    2016-05-01

    Lithium and valproate (VPA) are drugs used in the management of bipolar disorder. Even though they reportedly act on various pathways, the transcriptional targets relevant for disease mechanism and therapeutic effect remain unclear. Furthermore, multiple studies used lymphoblasts of bipolar patients as a cellular proxy, but it remains unclear whether peripheral cells provide a good readout for the effects of these drugs in the brain. We used Drosophila culture cells and adult flies to analyze the transcriptional effects of lithium and VPA and define mechanistic pathways. Transcriptional profiles were determined for Drosophila S2-cells and adult fly heads following lithium or VPA treatment. Gene ontology categories were identified using the DAVID functional annotation tool with a cut-off of p neuronal development, neuronal function, and metabolism. (i) Transcriptional effects of lithium and VPA in Drosophila S2 cells and heads show significant overlap. (ii) The overlap between transcriptional alterations in peripheral versus neuronal cells at the single gene level is negligible, but at the gene ontology and pathway level considerable overlap can be found. (iii) Lithium and VPA act on evolutionarily conserved pathways in Drosophila and mammalian models.

  9. Altered neural activity and emotions following right middle cerebral artery stroke.

    Science.gov (United States)

    Paradiso, Sergio; Anderson, Beth M; Boles Ponto, Laura L; Tranel, Daniel; Robinson, Robert G

    2011-01-01

    Stroke of the right MCA is common. Such strokes often have consequences for emotional experience, but these can be subtle. In such cases diagnosis is difficult because emotional awareness (limiting reporting of emotional changes) may be affected. The present study sought to clarify the mechanisms of altered emotion experience after right MCA stroke. It was predicted that after right MCA stroke the anterior cingulate cortex (ACC), a brain region concerned with emotional awareness, would show reduced neural activity. Brain activity during presentation of emotional stimuli was measured in 6 patients with stable stroke, and in 12 age- and sex-matched nonlesion comparisons using positron emission tomography and the [(15)O]H(2)O autoradiographic method. MCA stroke was associated with weaker pleasant experience and decreased activity ipsilaterally in the ACC. Other regions involved in emotional processing including thalamus, dorsal and medial prefrontal cortex showed reduced activity ipsilaterally. Dorsal and medial prefrontal cortex, association visual cortex and cerebellum showed reduced activity contralaterally. Experience from unpleasant stimuli was unaltered and was associated with decreased activity only in the left midbrain. Right MCA stroke may reduce experience of pleasant emotions by altering brain activity in limbic and paralimbic regions distant from the area of direct damage, in addition to changes due to direct tissue damage to insula and basal ganglia. The knowledge acquired in this study begins to explain the mechanisms underlying emotional changes following right MCA stroke. Recognizing these changes may improve diagnoses, management and rehabilitation of right MCA stroke victims. Copyright © 2011 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Alterations in polyadenylation and its implications for endocrine disease

    Directory of Open Access Journals (Sweden)

    Anders eRehfeld

    2013-05-01

    Full Text Available IntroductionPolyadenylation is the process in which the pre-mRNA is cleaved at the poly(A site and a poly(A tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A sites can undergo alternative polyadenylation, producing distinct mRNA isoforms with different 3’ untranslated regions (3’ UTRs and in some cases different coding regions. Two thirds of all human genes undergo alternative polyadenylation. The efficiency of the polyadenylation process regulates gene expression and alternative polyadenylation plays an important part in post-transcriptional regulation, as the 3’ UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for microRNAs and RNA-binding proteins.Implications of alterations in polyadenylation for endocrine diseaseAlterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome and many cancer diseases, including several types of endocrine tumor diseases.PerspectivesRecent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SummaryThis review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.

  11. Dynamic analysis of stochastic transcription cycles.

    Directory of Open Access Journals (Sweden)

    Claire V Harper

    2011-04-01

    Full Text Available In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h. We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase of chromatin remodeling which significantly

  12. Gesundheit und Pflege im Alter

    OpenAIRE

    Pfaff, Martin

    1989-01-01

    Gesundheit und Pflege im Alter : d. Gesundheitsreformgesetz (GRG) ; Möglichkeiten, Grenzen u. weitere Vorschläge / Martin Pfaff ; Klaus Deimer. - In: Expertengespräch "Pflege in der Familie". - Augsburg, 1989. - Getr. Zählung

  13. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    Science.gov (United States)

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  14. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites

    KAUST Repository

    Kulakovskiy, Ivan V.; Belostotsky, A. A.; Kasianov, Artem S.; Esipova, Natalia G.; Medvedeva, Yulia; Eliseeva, Irina A.; Makeev, Vsevolod J.

    2011-01-01

    Motivation: Modern experimental methods provide substantial information on protein-DNA recognition. Studying arrangements of transcription factor binding sites (TFBSs) of interacting transcription factors (TFs) advances understanding

  15. High resolution analysis of the human transcriptome: detection of extensive alternative splicing independent of transcriptional activity

    Directory of Open Access Journals (Sweden)

    Rouet Fabien

    2009-10-01

    Full Text Available Abstract Background Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity. Results The human Genome-Wide SpliceArray™ (GWSA, a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale. The human GWSA allows the detection of alternatively spliced events within the human genome through the use of exon body and exon junction probes to provide a direct measure of each transcript, through simple calculations derived from expression data. This report focuses on the performance and validation of the array when measured against standards recently published by the Microarray Quality Control (MAQC Project. The array was shown to be highly quantitative, and displayed greater than 85% correlation with the HG-U133 Plus 2.0 array at the gene level while providing more extensive coverage of each gene. Almost 60% of splice events among genes demonstrating differential expression of greater than 3 fold also contained extensive splicing alterations. Importantly, almost 10% of splice events within the gene set displaying constant overall expression values had evidence of transcript diversity. Two examples illustrate the types of events identified: LIM domain 7 showed no differential expression at the gene level, but demonstrated deregulation of an exon skip event, while erythrocyte membrane protein band 4.1 -like 3 was differentially expressed and also displayed deregulation of a skipped exon isoform. Conclusion Significant changes were detected independent of

  16. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Andrey Alexeyenko

    2010-05-01

    Full Text Available In order to generate hypotheses regarding the mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin causes toxicity, we analyzed global gene expression changes in developing zebrafish embryos exposed to this potent toxicant in the context of a dynamic gene network. For this purpose, we also computationally inferred a zebrafish (Danio rerio interactome based on orthologs and interaction data from other eukaryotes.Using novel computational tools to analyze this interactome, we distinguished between dioxin-dependent and dioxin-independent interactions between proteins, and tracked the temporal propagation of dioxin-dependent transcriptional changes from a few genes that were altered initially, to large groups of biologically coherent genes at later times. The most notable processes altered at later developmental stages were calcium and iron metabolism, embryonic morphogenesis including neuronal and retinal development, a variety of mitochondria-related functions, and generalized stress response (not including induction of antioxidant genes. Within the interactome, many of these responses were connected to cytochrome P4501A (cyp1a as well as other genes that were dioxin-regulated one day after exposure. This suggests that cyp1a may play a key role initiating the toxic dysregulation of those processes, rather than serving simply as a passive marker of dioxin exposure, as suggested by earlier research.Thus, a powerful microarray experiment coupled with a flexible interactome and multi-pronged interactome tools (which are now made publicly available for microarray analysis and related work suggest the hypothesis that dioxin, best known in fish as a potent cardioteratogen, has many other targets. Many of these types of toxicity have been observed in mammalian species and are potentially caused by alterations to cyp1a.

  17. Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines

    Directory of Open Access Journals (Sweden)

    Atossa Shaltouki

    2015-05-01

    Full Text Available In this study, we used patient-specific and isogenic PARK2-induced pluripotent stem cells (iPSCs to show that mutations in PARK2 alter neuronal proliferation. The percentage of TH+ neurons was decreased in Parkinson’s disease (PD patient-derived neurons carrying various mutations in PARK2 compared with an age-matched control subject. This reduction was accompanied by alterations in mitochondrial:cell volume fraction (mitochondrial volume fraction. The same phenotype was confirmed in isogenic PARK2 null lines. The mitochondrial phenotype was also seen in non-midbrain neurons differentiated from the PARK2 null line, as was the functional phenotype of reduced proliferation in culture. Whole genome expression profiling at various stages of differentiation confirmed the mitochondrial phenotype and identified pathways altered by PARK2 dysfunction that include PD-related genes. Our results are consistent with current model of PARK2 function where damaged mitochondria are targeted for degradation via a PARK2/PINK1-mediated mechanism.

  18. Manuscript Transcription by Crowdsourcing: Transcribe Bentham

    Directory of Open Access Journals (Sweden)

    Martin Moyle

    2011-02-01

    Full Text Available Transcribe Bentham is testing the feasibility of outsourcing the work of manuscript transcription to members of the public. UCL Library Services holds 60,000 folios of manuscripts of the philosopher and jurist Jeremy Bentham (1748–1832. Transcribe Bentham will digitise 12,500 Bentham folios, and, through a wiki-based interface, allow volunteer transcribers to take temporary ownership of manuscript images and to create TEI-encoded transcription text for final approval by UCL experts. Approved transcripts will be stored and preserved, with the manuscript images, in UCL’s public Digital Collections repository. The project makes innovative use of traditional library material. It will stimulate public engagement with UCL’s scholarly archive collections and the challenges of palaeography and manuscript transcription; it will raise the profile of the work and thought of Jeremy Bentham; and it will create new digital resources for future use by professional researchers. Towards the end of the project, the transcription tool will be made available to other projects and services. This paper is based on a presentation given by the lead author at LIBER’s 39th Annual General Conference in Aarhus, Denmark, 2010.

  19. Structural Basis of Mitochondrial Transcription Initiation.

    Science.gov (United States)

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts.

    Directory of Open Access Journals (Sweden)

    Maléne E Lindholm

    2016-09-01

    Full Text Available Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.

  1. The transcript release factor PTRF augments ribosomal gene transcription by facilitating reinitiation of RNA polymerase I

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Burek, C.; Sander, E. E.; Grummt, I.

    2001-01-01

    Roč. 29, č. 2 (2001), s. 423-429 ISSN 0305-1048 Institutional research plan: CEZ:AV0Z5052915 Keywords : rDNA transcription * PTRF * transcription reinitiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.373, year: 2001

  2. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    Science.gov (United States)

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  3. The Intertwined Roles of DNA Damage and Transcription

    OpenAIRE

    Di Palo, Giacomo

    2016-01-01

    DNA damage and transcription are two interconnected events. Transcription can induce damage and scheduled DNA damage can be required for transcription. Here, we analyzed genome-wide distribution of 8oxodG-marked oxidative DNA damage obtained by OxiDIP-Seq, and we found a correlation with transcription of protein coding genes.

  4. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  5. Battles and hijacks: Noncoding transcription in plants

    KAUST Repository

    Ariel, Federico

    2015-06-01

    Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription. © 2015 Elsevier Ltd.

  6. Phonemic Transcriptions in British and American Dictionaries

    Directory of Open Access Journals (Sweden)

    Rastislav Šuštaršič

    2005-06-01

    Full Text Available In view of recent criticisms concerning vowel symbols in some British English dictionaries (in particular by J. Windsor Lewis in JIPA (Windsor Lewis, 2003, with regard to the Oxford Dictionary of Pronunciation (Upton, 2001, this article extends the discussion on English phonemic transcriptions by including those that typically occur in standard American dictionaries, and by comparing the most common conventions of British and American dictionaries. In addition to symbols for both vowels and consonants, the paper also deals with the different representations of word accentuation and the issue of consistency regarding application of phonemic (systemic, broad, rather than phonetic (allophonic, narrow transcription. The different transcriptions are assessed from the points of view of their departures from the International Phonetic Alphabet, their overlapping with orthographic representation (spelling and their appropriateness in terms of reflecting actual pronunciation in standard British and/or American pronunciation.

  7. Crowdsourcing for quantifying transcripts: An exploratory study.

    Science.gov (United States)

    Azzam, Tarek; Harman, Elena

    2016-02-01

    This exploratory study attempts to demonstrate the potential utility of crowdsourcing as a supplemental technique for quantifying transcribed interviews. Crowdsourcing is the harnessing of the abilities of many people to complete a specific task or a set of tasks. In this study multiple samples of crowdsourced individuals were asked to rate and select supporting quotes from two different transcripts. The findings indicate that the different crowdsourced samples produced nearly identical ratings of the transcripts, and were able to consistently select the same supporting text from the transcripts. These findings suggest that crowdsourcing, with further development, can potentially be used as a mixed method tool to offer a supplemental perspective on transcribed interviews. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Transcription regulatory networks analysis using CAGE

    KAUST Repository

    Tegnér, Jesper N.

    2009-10-01

    Mapping out cellular networks in general and transcriptional networks in particular has proved to be a bottle-neck hampering our understanding of biological processes. Integrative approaches fusing computational and experimental technologies for decoding transcriptional networks at a high level of resolution is therefore of uttermost importance. Yet, this is challenging since the control of gene expression in eukaryotes is a complex multi-level process influenced by several epigenetic factors and the fine interplay between regulatory proteins and the promoter structure governing the combinatorial regulation of gene expression. In this chapter we review how the CAGE data can be integrated with other measurements such as expression, physical interactions and computational prediction of regulatory motifs, which together can provide a genome-wide picture of eukaryotic transcriptional regulatory networks at a new level of resolution. © 2010 by Pan Stanford Publishing Pte. Ltd. All rights reserved.

  9. Runx transcription factors in neuronal development

    Directory of Open Access Journals (Sweden)

    Shiga Takashi

    2008-08-01

    Full Text Available Abstract Runt-related (Runx transcription factors control diverse aspects of embryonic development and are responsible for the pathogenesis of many human diseases. In recent years, the functions of this transcription factor family in the nervous system have just begun to be understood. In dorsal root ganglion neurons, Runx1 and Runx3 play pivotal roles in the development of nociceptive and proprioceptive sensory neurons, respectively. Runx appears to control the transcriptional regulation of neurotrophin receptors, numerous ion channels and neuropeptides. As a consequence, Runx contributes to diverse aspects of the sensory system in higher vertebrates. In this review, we summarize recent progress in determining the role of Runx in neuronal development.

  10. Transcriptional inhibition by the retinoblastoma protein

    DEFF Research Database (Denmark)

    Fattaey, A; Helin, K; Harlow, E

    1993-01-01

    The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M. The underphosphory......The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M......-mediated transcription would be lost by mutation in the retinoblastoma gene in human tumours, by pRB's interaction with DNA tumour virus oncoproteins, or by phosphorylation during the cell cycle....

  11. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  12. Molecular imaging of transcriptional regulation during inflammation

    Directory of Open Access Journals (Sweden)

    Carlsen Harald

    2010-04-01

    Full Text Available Abstract Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.

  13. Mis-expression of grainyhead-like transcription factors in zebrafish leads to defects in enveloping layer (EVL) integrity, cellular morphogenesis and axial extension.

    Science.gov (United States)

    Miles, Lee B; Darido, Charbel; Kaslin, Jan; Heath, Joan K; Jane, Stephen M; Dworkin, Sebastian

    2017-12-14

    The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.

  14. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    Science.gov (United States)

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  15. On the pathologically altered pulmonary pattern

    International Nuclear Information System (INIS)

    Ginzburg, M.A.; Kinoshenko, Yu.T.

    1982-01-01

    The notions ''normal'' and ''pathologically altered pulmonary pattern'' are specified. A grouping of lung pattern alterations based on morphopathogenetic features is provided: blood and lymphatic vascular alterations, changes in the bronchi, lung stroma, and combined alterations. Radiologic appearance of the altered pulmonary pattern is classified in keeping with the basic principles of an X-ray shade examination. The terms, such as ''enriching'', ''strengthening'', ''deformation'', etc., used for describing the pathologically altered pulmonary pattern are defined

  16. Early transcriptional changes in cardiac mitochondria during chronic doxorubicin exposure and mitigation by dexrazoxane in mice

    Energy Technology Data Exchange (ETDEWEB)

    Vijay, Vikrant; Moland, Carrie L.; Han, Tao; Fuscoe, James C. [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Lee, Taewon [Department of Mathematics, Korea University, Sejong (Korea, Republic of); Herman, Eugene H. [Toxicology and Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, The National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850-9734 (United States); Jenkins, G. Ronald [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Lewis, Sherry M. [Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Cummings, Connie A. [UltraPath Imaging, 2228 Page Road, Durham, NC 27703 (United States); Gao, Yuan; Cao, Zhijun; Yu, Li-Rong [Biomarkers and Alternative Models Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Desai, Varsha G., E-mail: varsha.desai@fda.hhs.gov [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2016-03-15

    Identification of early biomarkers of cardiotoxicity could help initiate means to ameliorate the cardiotoxic actions of clinically useful drugs such as doxorubicin (DOX). Since DOX has been shown to target mitochondria, transcriptional levels of mitochondria-related genes were evaluated to identify early candidate biomarkers in hearts of male B6C3F{sub 1} mice given a weekly intravenous dose of 3 mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice was pretreated (intraperitoneally) with the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg) 30 min before each weekly dose of DOX or SAL. At necropsy a week after the last dose, increased plasma concentrations of cardiac troponin T (cTnT) were detected at 18 and 24 mg/kg cumulative DOX doses, whereas myocardial alterations were observed only at the 24 mg/kg dose. Of 1019 genes interrogated, 185, 109, 140, 184, and 451 genes were differentially expressed at 6, 9, 12, 18, and 24 mg/kg cumulative DOX doses, respectively, compared to concurrent SAL-treated controls. Of these, expression of 61 genes associated with energy metabolism and apoptosis was significantly altered before and after occurrence of myocardial injury, suggesting these as early genomics markers of cardiotoxicity. Much of these DOX-induced transcriptional changes were attenuated by pretreatment of mice with DXZ. Also, DXZ treatment significantly reduced plasma cTnT concentration and completely ameliorated cardiac alterations induced by 24 mg/kg cumulative DOX. This information on early transcriptional changes during DOX treatment may be useful in designing cardioprotective strategies targeting mitochondria. - Highlights: • Altered mitochondria-related gene expression before heart injury by doxorubicin • Dexrazoxane mitigated doxorubicin-induced early expression changes in mitochondria. • Dexrazoxane completely ameliorated doxorubicin-induced pathology in mouse heart.

  17. Harnessing transcription for bioproduction in cyanobacteria

    DEFF Research Database (Denmark)

    Stensjö, Karin; Vavitsas, Konstantinos; Tyystjärvi, Taina

    2018-01-01

    Sustainable production of biofuels and other valuable compounds is one of our future challenges. One tempting possibility is to use photosynthetic cyanobacteria as production factories. Currently, tools for genetic engineering of cyanobacteria are yet not good enough to exploit the full potential...... of cyanobacteria. A wide variety of expression systems will be required to adjust both the expression of heterologous enzyme(s) and metabolic routes to the best possible balance, allowing the optimal production of a particular substance. In bacteria, transcription, especially the initiation of transcription, has...

  18. Transcription and the aspect ratio of DNA

    DEFF Research Database (Denmark)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2013-01-01

    analysis of transcription. It is shown that under certain reasonable assumptions transcription is only possible if the aspect ratio is in the regime corresponding to further twisting. We find this constraint to be in agreement with long-established crystallographic studies of DNA.......Two separate regimes exist for the aspect ratio of DNA. A low aspect regime where DNA will twist further under strain and a high aspect regime where DNA will untwist under strain. The question of the overall geometry, i.e. the aspect ratio, of DNA is revisited from the perspective of a geometrical...

  19. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    Science.gov (United States)

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  20. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  1. Ionizing radiation activates vascular endothelial growth factor-A transcription in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyounji; Kim, Kwang Seok; Jeong, Jae Hoon; Lim, Young Bin [Radiation Cancer Biology Team, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-12-15

    Vascular endothelial growth factor (VEGF) is an essential paracrine factor for developmental and pathological angiogenesis. VEGF also exerts its effects in an autocrine manner in VEGF-producing cells. For instance, autocrine VEGF signaling occurs in tumor cells and contributes to key aspects of tumorigenesis, such as in the function of cancer stem cells and tumor initiation, which are independent of angiogenesis. In addition to tumors cells, non-transformed cells also express VEGF. For example, a VEGF dependent intracellular autocrine mechanism is crucial for the survival of hematopoietic stem cells and hematopoiesis. Stereotactic body radiation therapy (SBRT) is a novel treatment modality for early primary cancer and oligometastatic disease. SBRT delivers high-dose hypofractionated radiation, such as 20-60 Gy, to tumors in a single fraction or 2-5 fractions. As VEGF is a critical regulator of functional integrity and viability of vascular endothelial cells, we examined whether high-dose irradiation alters VEGF signaling by measuring the expression levels of VEGFA transcript. It is generally believed that endothelial cells do not produce VEGF in response to radiation. In present study, however, we provide the first demonstration of transcriptional regulation of VEGFA in human vascular endothelial cells by IR treatment. Irradiation with doses higher than 10 Gy in a single exposure triggers up-regulation of VEGFA transcription within 2 hours in HUVECs, whereas irradiation with 10 Gy does not alter VEGFA levels. Our data have shown that high-dose irradiation triggers immediate transactivation of VEGFA in human vascular endothelial cells.

  2. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    Directory of Open Access Journals (Sweden)

    Florence P. Varodayan

    2013-12-01

    Full Text Available Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces the Vamp2 gene, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1 to induce Vamp2 gene expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function.

  3. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    -excitability, the manipulation of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability.

  4. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    used to alter the transcriptional response to prevent the motor neurons from entering a state of hyper-excitability.

  5. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    Directory of Open Access Journals (Sweden)

    Bianchetti Laurent

    2012-11-01

    Full Text Available Abstract Background Single Base Substitutions (SBS that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. Methods We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE and Tag-seq (a combination of L-SAGE and deep sequencing, and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT, i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. Results In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP, catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST, i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC, healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. Conclusion If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic.

  6. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.

    Science.gov (United States)

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R; Jha, Rajiv Kumar; Cole, Stewart T; Nagaraja, Valakunja

    2017-05-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase.

  7. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    International Nuclear Information System (INIS)

    Bianchetti, Laurent; Kieffer, David; Féderkeil, Rémi; Poch, Olivier

    2012-01-01

    Single Base Substitutions (SBS) that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE) and Tag-seq (a combination of L-SAGE and deep sequencing), and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT), i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP), catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST), i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC), healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic

  8. Altered Brain Network in Amyotrophic Lateral Sclerosis: A Resting Graph Theory-Based Network Study at Voxel-Wise Level.

    Science.gov (United States)

    Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  9. Altered brain network in Amyotrophic Lateral Sclerosis: a resting graph theory-based network study at voxel-wise level

    Directory of Open Access Journals (Sweden)

    Chaoyang eZhou

    2016-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex- matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC, a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC’s z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  10. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  11. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    International Nuclear Information System (INIS)

    Hurst, Christopher H.; Waxman, David J.

    2004-01-01

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC 50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  12. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  13. RNA Polymerase II–The Transcription Machine

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. RNA Polymerase II – The Transcription Machine - Nobel Prize in Chemistry 2006. Jiyoti Verma Aruna Naorem Anand Kumar Manimala Sen Parag Sadhale. General Article Volume 12 Issue 3 March 2007 pp 47-53 ...

  14. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  15. Polyphenol Compound as a Transcription Factor Inhibitor.

    Science.gov (United States)

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  16. Cross-Family Transcription Factor Interactions

    NARCIS (Netherlands)

    Bemer, Marian; Dijk, van Aalt-Jan; Immink, Richard G.H.; Angenent, Gerco C.

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger

  17. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Science.gov (United States)

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  18. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  19. Epigenetic Alterations in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Johannes eGräff

    2015-12-01

    Full Text Available Alzheimer’s disease (AD is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  20. Epigenetic Alterations in Alzheimer's Disease.

    Science.gov (United States)

    Sanchez-Mut, Jose V; Gräff, Johannes

    2015-01-01

    Alzheimer's disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD.

  1. Systemic dystrophic alterations of skeleton

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kishkovskij, A.N.; Elashov, Yu.G.

    1984-01-01

    A roentgenologic picture of dystrophic alterations of bones following hard, acute and chronic infections diseases, distinct disorders of vitanium balance, diseases of endocrine system, disorder of metabolism and diet, long-term exogenous intoxications including medicinal is given. Distinct dystrophic disorders are characterized both by quantitative and qualitative deviations in physiological change of bones

  2. Digital media and altered states

    OpenAIRE

    Ressel, James

    2014-01-01

    This article is a reflection on whether technology has altered our perception of the spaces surrounding us and those we make, how we express ourselves and how we interact with our experiences. The reflection is based on a brief examination of the history of Northampton Chronicle & Echo as a print newspaper, its digital manifestation and human creative expression in the digital world.

  3. Modelling glass alteration in an altered argillaceous environment

    International Nuclear Information System (INIS)

    Bildstein, O.; Trotignon, L.; Pozo, C.; Jullien, M.

    2007-01-01

    The long term behaviour of materials such as glass, steel and clay has been investigated in the context of deep geological disposal of radioactive wastes. The interactions between vitrified wastes, canister corrosion products (CPs) and clay are studied using a modified version of the reaction-transport code Crunch, especially looking at pH changes and possible cementation at the interface with the clayey materials. These perturbations may indeed affect the lifetime of glass matrix in deep repositories, e.g., high pH enhances the rate of glass alteration. This work focuses on the argillite of Bure. The calculations were performed at 323 K with a glass alteration rate switching from a high initial rate to a residual rate according to the sorption capacity of CPs. The time at which this sorption capacity is saturated is crucial to the system in terms of wastes package lifetime. The results show that the glass alteration imposes a high pH value at the interface with CPs and clay: up to a value of 9.2, compared to 7.3 which is the initial pH value in the argillite. Experimental data show that the rate of glass alteration is much higher in such pH conditions. For a R7T7-type glass, the rate is about five times higher at pH 9 than at pH 7. This pH perturbation migrates through the clayey domain as a result of the migration of mobile elements such as boron and sodium, and despite the existence of strong pH buffers in the argillite. The cementation of porosity at the interface between glass and clay is predicted by the model due to the massive precipitation of iron corrosion products and glass alteration products. At this point of the evolution of the system, the pH starts to decrease and the alteration rate of the glass could be significantly reduced. This porosity clogging effect is difficult to confirm by experiments especially since existing data on short term experiments tend to show a pervasive precipitation of silica in the domain instead of a localized precipitation

  4. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb.

    Science.gov (United States)

    Wang, Wei; Yao, Xiao; Huang, Yan; Hu, Xiangming; Liu, Runzhong; Hou, Dongming; Chen, Ruichuan; Wang, Gang

    2013-01-01

    The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.

  6. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    Science.gov (United States)

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  7. Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chung-Man [Chonnam National University Hospital, Research Institute for Medical Imaging, Gwangju (Korea, Republic of); Jeong, Gwang-Woo [Chonnam National University Hospital, Research Institute for Medical Imaging, Gwangju (Korea, Republic of); Chonnam National University Medical School, Department of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2015-11-15

    Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD. The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8. Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients. The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD. (orig.)

  8. Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder

    International Nuclear Information System (INIS)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2015-01-01

    Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD. The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8. Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients. The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD. (orig.)

  9. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    NARCIS (Netherlands)

    Schaub, Franz X.; Dhankani, Varsha; Berger, Ashton C.; Trivedi, Mihir; Richardson, Anne B.; Shaw, Reid; Zhao, Wei; Zhang, Xiaoyang; Ventura, Andrea; Liu, Yuexin; Ayer, Donald E.; Hurlin, Peter J.; Cherniack, Andrew D.; Eisenman, Robert N.; Bernard, Brady; Grandori, Carla; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon,