WorldWideScience

Sample records for alters microglial development

  1. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex.

    Science.gov (United States)

    Wong, Elissa L; Lutz, Nina M; Hogan, Victoria A; Lamantia, Cassandra E; McMurray, Helene R; Myers, Jason R; Ashton, John M; Majewska, Ania K

    2018-01-01

    Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in

  2. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    Science.gov (United States)

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal.

    Science.gov (United States)

    Walter, T Jordan; Crews, Fulton T

    2017-04-20

    Recent studies have implicated microglia-the resident immune cells of the brain-in the pathophysiology of alcoholism. Indeed, post-mortem alcoholic brains show increased microglial markers and increased immune gene expression; however, the effects of ethanol on microglial functioning and how this impacts the brain remain unclear. In this present study, we investigate the effects of acute binge ethanol on microglia and how microglial depletion changes the brain neuroimmune response to acute binge ethanol withdrawal. C57BL/6J mice were treated intragastrically with acute binge ethanol for time course and dose-response studies. Cultured mouse BV2 microglia-like cells were treated with ethanol in vitro for time course studies. Mice were also administered the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia from the brain. These mice were subsequently treated with acute binge ethanol and sacrificed during withdrawal. Brain and BV2 mRNA were isolated and assessed using RT-PCR to examine expression of microglial and neuroimmune genes. Acute binge ethanol biphasically changed microglial (e.g., Iba1, CD68) gene expression, with initial decreases during intoxication and subsequent increases during withdrawal. Acute ethanol withdrawal dose dependently increased neuroimmune gene (e.g., TNFα, Ccl2, IL-1ra, IL-4) expression beginning at high doses. BV2 cells showed biphasic changes in pro-inflammatory (e.g., TNFα, Ccl2) gene expression following ethanol treatment in vitro. Administration of PLX5622 depleted microglia from the brains of mice. Although some neuroimmune genes were reduced by microglial depletion, many others were unchanged. Microglial depletion blunted pro-inflammatory (e.g., TNFα, Ccl2) gene expression and enhanced anti-inflammatory (e.g., IL-1ra, IL-4) gene expression during acute binge ethanol withdrawal. These studies find acute binge ethanol withdrawal increases microglial and neuroimmune gene expression. Ethanol exposure

  4. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica L. Bolton

    2017-05-01

    Full Text Available Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD. Diesel exhaust particles (DEP are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1. Moreover, there is a striking upregulation of toll-like receptor (TLR 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E18, which switched to decreased volume by post-natal day (P30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute

  5. Methamphetamine alters microglial immune function through P2X7R signaling

    OpenAIRE

    Fernandes, Nicole C.; Sriram, Uma; Gofman, Larisa; Cenna, Jonathan M.; Ramirez, Servio H.; Potula, Raghava

    2016-01-01

    Background Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (MET...

  6. Neonatal L-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters.

    Science.gov (United States)

    de Lima, Denise Sandrelly Cavalcanti; Francisco, Elian da Silva; Lima, Cássia Borges; Guedes, Rubem Carlos Araújo

    2017-02-01

    In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15 ; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.

  7. Methamphetamine alters microglial immune function through P2X7R signaling.

    Science.gov (United States)

    Fernandes, Nicole C; Sriram, Uma; Gofman, Larisa; Cenna, Jonathan M; Ramirez, Servio H; Potula, Raghava

    2016-04-26

    Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (METH) on microglial P2X7R. ESdMs were used to evaluate changes in METH-induced P2X7R gene expression via Taqman PCR and protein expression via western blot analysis. Migration and phagocytosis assays were used to evaluate functional changes in ESdMs in response to METH treatment. METH-induced proinflammatory cytokine production following siRNA silencing of P2X7R in ESdMs measured P2X7R-dependent functional changes. In vivo expression of P2X7R and tyrosine hydroxylase (TH) was visualized in an escalating METH dose mouse model via immunohistochemical analysis. Stimulation of ESdMs with METH for 48 h significantly increased P2X7R mRNA (*p P2X7R protein in cellular fractionations revealed increases in membrane P2X7R (*p P2X7R-dependent through the use of A 438079, a P2X7R-competitive antagonist, which reversed the METH effects (****p P2X7R antagonist reduced METH-induced phagocytosis (****p P2X7R decreased TNF-α (*p P2X7R and decreased TH expression in the striata of escalating dose METH animal model compared to controls. This study sheds new light on the functional role of P2X7R in the regulation of microglial effector functions during substance abuse. Our findings suggest that P2X7R plays an important role in METH-induced microglial activation responses. P2X7R antagonists may thus constitute a novel target of therapeutic utility in neuroinflammatory conditions by regulating pathologically activated glial cells in stimulant abuse.

  8. A novel microglial subset plays a key role in myelinogenesis in developing brain

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Holtman, Inge; Krueger, Martin

    2017-01-01

    -activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c+ microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration and differentiation. These cells are the major source of insulin......Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here we show that in contrast to healthy adult and inflammation...

  9. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation.

    Directory of Open Access Journals (Sweden)

    Robin Cloarec

    Full Text Available Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells.In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15 and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments.Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b- lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1.In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental

  10. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP.

    Science.gov (United States)

    Martín-Estebané, María; Navascués, Julio; Sierra-Martín, Ana; Martín-Guerrero, Sandra M; Cuadros, Miguel A; Carrasco, María-Carmen; Marín-Teva, José L

    2017-01-01

    Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the

  11. Human Neural Stem Cell Transplantation-Mediated Alteration of Microglial/Macrophage Phenotypes after Traumatic Brain Injury.

    Science.gov (United States)

    Gao, Junling; Grill, Raymond J; Dunn, Tiffany J; Bedi, Supinder; Labastida, Javier Allende; Hetz, Robert A; Xue, Hasen; Thonhoff, Jason R; DeWitt, Douglas S; Prough, Donald S; Cox, Charles S; Wu, Ping

    2016-10-01

    Neural stem cells (NSCs) promote recovery from brain trauma, but neuronal replacement is unlikely the sole underlying mechanism. We hypothesize that grafted NSCs enhance neural repair at least partially through modulating the host immune response after traumatic brain injury (TBI). C57BL/6 mice were intracerebrally injected with primed human NSCs (hNSCs) or vehicle 24 h after a severe controlled cortical impact injury. Six days after transplantation, brain tissues were collected for Western blot and immunohistochemical analyses. Observations included indicators of microglia/macrophage activation, M1 and M2 phenotypes, axonal injury detected by amyloid precursor protein (APP), lesion size, and the fate of grafted hNSCs. Animals receiving hNSC transplantation did not show significant decreases of brain lesion volumes compared to transplantation procedures with vehicle alone, but did show significantly reduced injury-dependent accumulation of APP. Furthermore, intracerebral transplantation of hNSCs reduced microglial activation as shown by a diminished intensity of Iba1 immunostaining and a transition of microglia/macrophages toward the M2 anti-inflammatory phenotype. The latter was represented by an increase in the brain M2/M1 ratio and increases of M2 microglial proteins. These phenotypic switches were accompanied by the increased expression of anti-inflammatory interleukin-4 receptor α and decreased proinflammatory interferon-γ receptor β. Finally, grafted hNSCs mainly differentiated into neurons and were phagocytized by either M1 or M2 microglia/macrophages. Thus, intracerebral transplantation of primed hNSCs efficiently leads host microglia/macrophages toward an anti-inflammatory phenotype that presumably contributes to stem cell-mediated neuroprotective effects after severe TBI in mice.

  12. Microglial Dysregulation in Psychiatric Disease

    Directory of Open Access Journals (Sweden)

    Luciana Romina Frick

    2013-01-01

    Full Text Available Microglia, the brain's resident immune cells, are phagocytes of the macrophage lineage that have a key role in responding to inflammation and immune challenge in the brain. More recently, they have been shown to have a number of important roles beyond immune surveillance and response, including synaptic pruning during development and the support of adult neurogenesis. Microglial abnormalities have been found in several neuropsychiatric conditions, though in most cases it remains unclear whether these are causative or are a reaction to some other underlying pathophysiology. Here we summarize postmortem, animal, neuroimaging, and other evidence for microglial pathology in major depression, schizophrenia, autism, obsessive-compulsive disorder, and Tourette syndrome. We identify gaps in the existing literature and important areas for future research. If microglial pathology proves to be an important causative factor in these or other neuropsychiatric diseases, modulators of microglial function may represent a novel therapeutic strategy.

  13. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Science.gov (United States)

    Guasti, Leonardo; Richardson, Denise; Jhaveri, Maulik; Eldeeb, Khalil; Barrett, David; Elphick, Maurice R; Alexander, Stephen PH; Kendall, David; Michael, Gregory J; Chapman, Victoria

    2009-01-01

    Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P endocannabinoids and related compounds in neuropathic pain states. PMID:19570201

  14. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  15. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex.

    Science.gov (United States)

    Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2017-07-01

    Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.

  16. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior.

    Science.gov (United States)

    Guha, Suman K; Tillu, Rucha; Sood, Ankit; Patgaonkar, Mandar; Nanavaty, Ishira N; Sengupta, Arjun; Sharma, Shobhona; Vaidya, Vidita A; Pathak, Sulabha

    2014-11-01

    Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial

  17. Microglial inhibitory mechanism of Coenzyme Q10 against Aβ (1-42 induced cognitive dysfunctions: possible behavioral, biochemical, cellular and histopathological alterations

    Directory of Open Access Journals (Sweden)

    Arti eSingh

    2015-11-01

    Full Text Available Rationale: Alzheimer’s disease (AD is a debilitating disease with complex pathophysiology. Amyloid beta (Aβ (1-42 is a reliable model of AD that recapitulates many aspects of human AD. Objective: The present study has been designed to investigate the neuroprotective potential of Coenzyme Q10 (CoQ10 and its modulation with minocycline (microglial inhibitor against Aβ (1-42 induced cognitive dysfunction in rats. Method: Intrahippocampal (i.h. Aβ (1-42 (1µg/µl; 4µl/site were administered followed by drug treatment with galantamine (2 mg/kg, CoQ10 (20 and 40 mg/kg, minocycline (50 and 100 mg/kg and their combinations for a period of 21 days. Various neurobehavioral parameters followed by biochemical, acetylcholinesterase (AChE level, proinflammatory markers (TNF-α, mitochondrial respiratory enzyme complexes (I-IV and histopathological examinations were assessed.Results: Aβ (1-42 administration significantly impaired cognitive performance in Morris water maze (MWM performance test, causes oxidative stress, raised AChE level, caused neuroinflammation, mitochondrial dysfunction and histopathological alterations as compared to sham treatment. Treatment with CoQ10 (20 and 40 mg/kg and minocycline (50 and 100 mg/kg alone for 21days significantly improved cognitive performance as evidenced by reduced transfer latency and increased time spent in target quadrant (TSTQ, reduced AChE activity, oxidative damage (reduced LPO, nitrite level and restored SOD, catalase and GHS levels, TNF-α level, restored mitochondrial respiratory enzyme complex (I, II, III, IV activities and histopathological alterations as compared to control (Aβ (1-42 treated animals group. Further, combination of minocycline (50 and 100 mg/kg with CoQ10 (20 and 40 mg/kg significantly modulate the protective effect of CoQ10 as compared to their effect alone. Conclusion: The present study suggests that the neuroprotective effect of CoQ10 could be due to its microglia inhibitory

  18. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  19. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases.

    Science.gov (United States)

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Turati, Juan; Caruso, Carla; Scimonelli, Teresa N; Lasaga, Mercedes

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  20. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lila Carniglia

    2017-01-01

    Full Text Available Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  1. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial

    Directory of Open Access Journals (Sweden)

    Michael Veldeman

    2017-09-01

    Full Text Available ObjectiveThe neuroprotective properties of the noble gas xenon have already been demonstrated using a variety of injury models. Here, we examine for the first time xenon’s possible effect in attenuating early brain injury (EBI and its influence on posthemorrhagic microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH.MethodsSprague-Dawley rats (n = 22 were randomly assigned to receive either Sham surgery (n = 9; divided into two groups or SAH induction via endovascular perforation (n = 13, divided into two groups. Of those randomized for SAH, 7 animals were postoperatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 vol% oxygen/50 vol% nitrogen (control. The animals were sacrificed 24 h after SAH. Of each animal, a cerebral coronal section (−3.60 mm from bregma was selected for assessment of histological damage 24 h after SAH. A 5-point neurohistopathological severity score was applied to assess neuronal cell damage in H&E and NeuN stained sections in a total of four predefined anatomical regions of interest. Microglial activation was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical regions of interest.ResultsA diffuse cellular damage was apparent in all regions of the ipsilateral hippocampus 24 h after SAH. Xenon-treated animals presented with a milder damage after SAH. This effect was found to be particularly pronounced in the medial regions of the hippocampus, CA3 (p = 0.040, and dentate gyrus (DG p = 0.040. However, for the CA1 and CA2 regions, there were no statistical differences in neuronal damage according to our histological scoring. A cell count of activated microglia was lower in the cortex of xenon-treated animals. This difference was especially apparent in the left piriform cortex (p = 0.017.ConclusionIn animals treated with 50 vol% xenon (for 1 h after SAH, a less pronounced neuronal damage was

  2. Regulatory Effects of Fisetin on Microglial Activation

    Directory of Open Access Journals (Sweden)

    Jing-Yuan Chuang

    2014-06-01

    Full Text Available Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  3. Microglial activation - tuning and pruning adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Christine T eEkdahl

    2012-03-01

    Full Text Available Adult born neurons are encountering numerous choices during their development from neural stem cells to mature functionally integrated neurons in the brain. Microglia are part of the microenvironment within the neurogenic niches and possibly involved during the entire decision process. Mounting evidence suggest that microglia act as local equalizers capable of amplifying as well as filtering homeostatic signals. Depending on their state of activation, they may induce or facilitate different fundamental decisions in neurogenesis, such as proliferation or quiescence, cell survival or death, migration or establishment, growth or retraction of dendrites and axons, synaptic assembly or pruning, or tuning of synaptic transmission. Microglia are activated as a first line of defence against infections and participate in transforming the innate immunity into an adaptive immune response by recruiting systemic immune cells. So far, most studies have reported an acute decrease in the survival of new neurons following this classically activated microglial reaction. However, the long-term effects are more complex. In several neurodegenerative diseases the microglial activation is also evident, including a heterogeneous population of microglial phenotypes and a plethora of immune mediators, where the initiating agent may be protein deposits or cell debris. The transformation from a pro- to an anti-inflammatory cytokine profile and the de-activation of microglia is not clearly defined, or even dysregulated, and the adaptive response is often sparse. The diverse role of microglial activation in neurodegenerative diseases is reflected by the numerous studies reporting both beneficial and detrimental effects on the different steps of neurogenesis. This review will highlight the most recent findings on how microglial activation modulates adult neurogenesis, and specifically discuss the role of microglia in synaptic integration, currently a fast expanding research

  4. Astrocyte galectin-9 potentiates microglial TNF secretion.

    Science.gov (United States)

    Steelman, Andrew J; Li, Jianrong

    2014-08-27

    Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory

  5. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    2010-11-01

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  6. Phenotypic clustering: a novel method for microglial morphology analysis.

    Science.gov (United States)

    Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

    2016-06-17

    Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

  7. ProMoIJ: A new tool for automatic three-dimensional analysis of microglial process motility.

    Science.gov (United States)

    Paris, Iñaki; Savage, Julie C; Escobar, Laura; Abiega, Oihane; Gagnon, Steven; Hui, Chin-Wai; Tremblay, Marie-Ève; Sierra, Amanda; Valero, Jorge

    2018-04-01

    Microglia, the immune cells of the central nervous system, continuously survey the brain to detect alterations and maintain tissue homeostasis. The motility of microglial processes is indicative of their surveying capacity in normal and pathological conditions. The gold standard technique to study motility involves the use of two-photon microscopy to obtain time-lapse images from brain slices or the cortex of living animals. This technique generates four dimensionally-coded images which are analyzed manually using time-consuming, non-standardized protocols. Microglial process motility analysis is frequently performed using Z-stack projections with the consequent loss of three-dimensional (3D) information. To overcome these limitations, we developed ProMoIJ, a pack of ImageJ macros that perform automatic motility analysis of cellular processes in 3D. The main core of ProMoIJ is formed by two macros that assist the selection of processes, automatically reconstruct their 3D skeleton, and analyze their motility (process and tip velocity). Our results show that ProMoIJ presents several key advantages compared with conventional manual analysis: (1) reduces the time required for analysis, (2) is less sensitive to experimenter bias, and (3) is more robust to varying numbers of processes analyzed. In addition, we used ProMoIJ to demonstrate that commonly performed 2D analysis underestimates microglial process motility, to reveal that only cells adjacent to a laser injured area extend their processes toward the lesion site, and to demonstrate that systemic inflammation reduces microglial process motility. ProMoIJ is a novel, open-source, freely-available tool which standardizes and accelerates the time-consuming labor of 3D analysis of microglial process motility. © 2017 Wiley Periodicals, Inc.

  8. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    Science.gov (United States)

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  9. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  10. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke.

    Science.gov (United States)

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L; Vexler, Zinaida S

    2016-03-09

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. Copyright © 2016 the authors 0270-6474/16/362881-13$15.00/0.

  11. Paternal Age Alters Social Development in Offspring.

    Science.gov (United States)

    Janecka, Magdalena; Haworth, Claire M A; Ronald, Angelica; Krapohl, Eva; Happé, Francesca; Mill, Jonathan; Schalkwyk, Leonard C; Fernandes, Cathy; Reichenberg, Abraham; Rijsdijk, Frühling

    2017-05-01

    Advanced paternal age (APA) at conception has been linked with autism and schizophrenia in offspring, neurodevelopmental disorders that affect social functioning. The current study explored the effects of paternal age on social development in the general population. We used multilevel growth modeling to investigate APA effects on socioemotional development from early childhood until adolescence, as measured by the Strengths and Difficulties Questionnaire (SDQ) in the Twins Early Development Study (TEDS) sample. We also investigated genetic and environmental underpinnings of the paternal age effects on development, using the Additive genetics, Common environment, unique Environment (ACE) and gene-environment (GxE) models. In the general population, both very young and advanced paternal ages were associated with altered trajectory of social development (intercept: p = .01; slope: p = .03). No other behavioral domain was affected by either young or advanced age at fatherhood, suggesting specificity of paternal age effects. Increased importance of genetic factors in social development was recorded in the offspring of older but not very young fathers, suggesting distinct underpinnings of the paternal age effects at these two extremes. Our findings highlight that the APA-related deficits that lead to autism and schizophrenia are likely continuously distributed in the population. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  13. Development of a Matrix Alteration Model (MAM)

    International Nuclear Information System (INIS)

    Martinez Esparza, A.; Cunado, M. A.; Gago, J. A.; Quinones, J.; Iglesias, E.; Cobos, J.; Gonzalez de la Huebra, A.; Cera, E.; Merino, J.; Bruno, J.; Pablos, J. de; Casas, I.; Clarens, F.; Gimenez, J.

    2005-01-01

    The present report is a summary of the main tasks carried out within the WP4 of the SFS project (5th Framework Programme of the European Commission) by ENRESA and collaborators, mainly focused on the development of the so-called Matrix Alteration Model (MAM), a model to study the long-term oxidant dissolution of the spent fuel matrix under repository conditions. A variety of issues have been addressed: development of the MAM conceptual model, integration of a new matrix alteration mechanism in the radiolytic model, calibration and testing of the model, calculations for base case in Performance Assessment exercises, sensitivity analysis and an assessment of applicability of the MAM. The conceptual model for the UO2 oxidant dissolution is based on the processes expected to occur in the long term under repository conditions. Briefly, when water will enter in contact with the fuel surface, the first process we may expect is the radiolysis of water. Water radiolysis will generate reductant and oxidants and we may expect local oxidising conditions. Because of these local conditions, the surface of the fuel will be oxidized. The oxidation of the matrix and the attachment of aqueous ligands able to form strong complexes with its major component will favour the dissolution of the matrix. The integration of the matrix alteration (oxidation and dissolution) mechanism in the radiolytic model by means of elemental reactions has been mainly elucidated from the mechanistic models developed for non-irradiated UO2 dissolution experiments. Moreover, flow-through dissolution experiments with unirradiated UO2 have been used to calibrate the oxidative dissolution mechanism of UO2. The model developed has been able to reproduce experimental dissolution rates for pH > 5 and [HCO3 -] < 10-2 M when the oxidant is O2 at partial pressures lower than 21%, and 3 < pH < 9 and [HCO3 -] = 210-3 M and when the oxidant is H2O2 at concentrations below 10-4 M. These ranges cover the geochemical

  14. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain.

    Science.gov (United States)

    Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Choi, Sheu-Ran; Kwon, Soon-Gu; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-06-01

    Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1β (IL-1β) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1β, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1β was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1β expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1β derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1β plays an important role in regulating the induction of inflammatory MIP.

  15. The microglial system in the eye and brain in response to stimuli in vivo.

    Science.gov (United States)

    Ellis-Behnke, Rutledge G; Jonas, Rahul A; Jonas, Jost B

    2013-01-01

    Microglial cells function as first responders to signal inflammation, react to injuries by creating a wall to block invaders, and clear debris from the site. To better understand the modulation of microglia in inflammation and injury of eye and brain, we developed a morphological and orienting classification system of each stage of microglia, calling it the 'Spider Effect'. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells. This relates to inflammation in the eye due to noxious stimuli, injury, or increase in pressure. Future studies may address the reported modulation of the microglial system in retina and optic nerve head in acute and chronic glaucoma.

  16. Prenatal Immune Challenge in Mice Leads to Partly Sex-Dependent Behavioral, Microglial, and Molecular Abnormalities Associated with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chin W. Hui

    2018-02-01

    Full Text Available Epidemiological studies revealed that environmental factors comprising prenatal infection are strongly linked to risk for later development of neuropsychiatric disorders such as schizophrenia. Considering strong sex differences in schizophrenia and its increased prevalence in males, we designed a methodological approach to investigate possible sex differences in pathophysiological mechanisms. Prenatal immune challenge was modeled by systemic administration of the viral mimic polyinosinic-polycytidylic acid (Poly I:C to C57BL/6 mice at embryonic day 9.5. The consequences on behavior, gene expression, and microglia—brain immune cells that are critical for normal development—were characterized in male vs. female offspring at adulthood. The cerebral cortex, hippocampus, and cerebellum, regions where structural and functional alterations were mainly described in schizophrenia patients, were selected for cellular and molecular analyses. Confocal and electron microscopy revealed most pronounced differences in microglial distribution, arborization, cellular stress, and synaptic interactions in the hippocampus of male vs. female offspring exposed to Poly I:C. Sex differences in microglia were also measured under both steady-state and Poly I:C conditions. These microglial alterations were accompanied by behavioral impairment, affecting for instance sensorimotor gating, in males. Consistent with these results, increased expression of genes related to inflammation was measured in cerebral cortex and hippocampus of males challenged with Poly I:C. Overall, these findings suggest that schizophrenia's higher incidence in males might be associated, among other mechanisms, with an increased microglial reactivity to prenatal immune challenges, hence determining disease outcomes into adulthood.

  17. Microglial Priming and Alzheimer's Disease: A Possible Role for (Early) Immune Challenges and Epigenetics?

    Science.gov (United States)

    Hoeijmakers, Lianne; Heinen, Yvonne; van Dam, Anne-Marie; Lucassen, Paul J; Korosi, Aniko

    2016-01-01

    Neuroinflammation is thought to contribute to Alzheimer's disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that "priming" of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD.

  18. Sex differences in microglial phagocytosis in the neonatal hippocampus.

    Science.gov (United States)

    Nelson, Lars H; Warden, Spencer; Lenz, Kathryn M

    2017-08-01

    Microglia regulate brain development through many processes, such as promoting neurogenesis, supporting cell survival, and phagocytizing progenitor, newly-born, and dying cells. Many of these same developmental processes show robust sex differences, yet very few studies have assessed sex differences in microglia function during development. Hormonally-induced sexual differentiation of the brain occurs during the perinatal period, thus we examined sex differences in microglial morphology, phagocytosis, and proliferation in the hippocampus during the early postnatal period. We found that the neonatal female hippocampus had significantly more microglia with phagocytic cups than the male hippocampus. We subsequently found that female microglia phagocytized more neural progenitor cells and healthy cells compared to males, but there were no sex differences in the number of newly-born or dying cells targeted by microglial phagocytosis. We found that the number of phagocytic microglia in females was reduced to male-typical levels by treatment with estradiol, the hormone responsible for masculinizing the rodent brain. Females also had higher expression of several phagocytic pathway genes in the hippocampus compared to males. In contrast to robust sex differences in phagocytic microglia, we found no sex differences in the number of microglia with amoeboid, transitioning, or ramified morphologies or differences in three-dimensional reconstructions of microglial morphology. While we did not find a baseline sex difference in microglial proliferation during or following the prenatal gonadal hormone surge in males, we found that estradiol treatment increased microglia proliferation in females. Overall, these data show that there are important sex differences in microglia function in the hippocampus during the early neonatal period. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages.

    Science.gov (United States)

    Lehmann, Michael L; Cooper, Hannah A; Maric, Dragan; Herkenham, Miles

    2016-08-31

    We are interested in the causal interactions between psychological stress and activity within different compartments of the immune system. Psychosocial stress has been reported to not only alter microglia morphology but also produce anxiety-like and depressive-like effects by triggering CNS infiltration of macrophages from the periphery. We sought to test these phenomena in a somewhat different but standardized model of chronic social defeat (SD) stress. We used a paradigm of dyadic home pairing of dominant and subordinate mice that has been validated to induce powerful anxiety-like and depressive-like effects manifested by behavior assessed in social tasks. We administered the SD stress for 3 days (acute SD) or 14 days (chronic SD) and looked for monocyte entry into the brain by three independent means, including CD45 activation states assessed by flow cytometry and tracking fluorescently tagged peripheral cells from Ccr2 (wt/rfp) and Ubc (gfp/gfp) reporter mice. We further characterized the effects of SD stress on microglia using quantitative morphometric analysis, ex vivo phagocytosis assays, flow cytometry, and immunochemistry. We saw no evidence of stress-induced macrophage entry after acute or chronic defeat stress. In comparison, brain infiltration of peripheral cells did occur after endotoxin administration. Furthermore, mutant mice lacking infiltrating macrophages due to CCR2 knockout developed the same degree of chronic SD-induced depressive behavior as wildtype mice. We therefore focused more closely on the intrinsic immune cells, the microglia. Using Cx3cr1 (wt/gpf) microglial reporter mice, we saw by quantitative methods that microglial morphology was not altered by stress at either time point. However, chronic SD mice had elevated numbers of CD68(hi) microglia examined by flow cytometry. CD68 is a marker for phagocytic activity. Indeed, these cells ex vivo showed elevated phagocytosis, confirming the increased activation status of chronic SD

  20. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    Science.gov (United States)

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  1. Altered anterior visual system development following early monocular enucleation

    Directory of Open Access Journals (Sweden)

    Krista R. Kelly

    2014-01-01

    Conclusions: The novel finding of an asymmetry in morphology of the anterior visual system following long-term survival from early monocular enucleation indicates altered postnatal visual development. Possible mechanisms behind this altered development include recruitment of deafferented cells by crossing nasal fibres and/or geniculate cell retention via feedback from primary visual cortex. These data highlight the importance of balanced binocular input during postnatal maturation for typical anterior visual system morphology.

  2. Microglial dysfunction as a key pathological change in adrenomyeloneuropathy.

    Science.gov (United States)

    Gong, Yi; Sasidharan, Nikhil; Laheji, Fiza; Frosch, Matthew; Musolino, Patricia; Tanzi, Rudy; Kim, Doo Yeon; Biffi, Alessandra; El Khoury, Joseph; Eichler, Florian

    2017-11-01

    Mutations in ABCD1 cause the neurodegenerative disease, adrenoleukodystrophy, which manifests as the spinal cord axonopathy adrenomyeloneuropathy (AMN) in nearly all males surviving into adulthood. Microglial dysfunction has long been implicated in pathogenesis of brain disease, but its role in the spinal cord is unclear. We assessed spinal cord microglia in humans and mice with AMN and investigated the role of ABCD1 in microglial activity toward neuronal phagocytosis in cell culture. Because mutations in ABCD1 lead to incorporation of very-long-chain fatty acids into phospholipids, we separately examined the effects of lysophosphatidylcholine (LPC) upon microglia. Within the spinal cord of humans and mice with AMN, upregulation of several phagocytosis-related markers, such as MFGE8 and TREM2, precedes complement activation and synapse loss. Unexpectedly, this occurs in the absence of overt inflammation. LPC C26:0 added to ABCD1-deficient microglia in culture further enhances MFGE8 expression, aggravates phagocytosis, and leads to neuronal injury. Furthermore, exposure to a MFGE8-blocking antibody reduces phagocytic activity. Spinal cord microglia lacking ABCD1 are primed for phagocytosis, affecting neurons within an altered metabolic milieu. Blocking phagocytosis or specific phagocytic receptors may alleviate synapse loss and axonal degeneration. Ann Neurol 2017;82:813-827. © 2017 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  3. Microglial TNF and IL-1 as early disease-modifiers in Alzheimer's-like disease in mice

    DEFF Research Database (Denmark)

    Ilkjær, Laura; Babcock, Alicia; Finsen, Bente

    2015-01-01

    In Alzheimer's disease (AD) signs of microglial activation is evident already in prodromal and early AD. This and other evidence suggest that neuroinflammation contributes to the progression of the early disease development in AD. Microglial cells have the capacity to produce cytokines such as TNF...... and IL-1, and to phagocytose and clear amyloid beta (As), however, the influence of TNF and IL-1, and inflammation in general, on these processes is still poorly understood. We have studied the development of As pathology, and basal and lipopolysaccharide (LPS) stimulated microglial cytokine production...... mice. Microglial expression of TNF and IL-1s can be significantly increased by i.p. injection of LPS, which we find reduces cortical As pathology at 12 months. Results will also be reported on the influence of IL-1 in modulating As pathology during early disease stages in APPswe/PS1DE9 mice. Together...

  4. Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus.

    Science.gov (United States)

    Takahashi, Mifumi; Komada, Munekazu; Miyazawa, Ken; Goto, Shigemi; Ikeda, Yayoi

    2018-03-01

    Bisphenol A (BPA) is a widely used compound in the food packaging industry. Prenatal exposure to BPA induces histological abnormalities in the neocortex and hypothalamus in association with abnormal behaviors. Yet, the molecular and cellular neurodevelopmental toxicological mechanisms of BPA are incompletely characterized on neuroinflammatory-related endopoints. To evaluate the neurodevelopmental effects of BPA exposure in mouse embryos, we examined microglial numbers as well as the expression of microglial-related factors in the E15.5 embryonic brain. BPA-exposed embryos exhibited significant increases in Iba1-immunoreactive microglial numbers in the dorsal telencephalon and the hypothalamus compared to control embryos. Further, the expression levels of microglial markers (Iba1, CD16, iNOS, and CD206), inflammatory factors (TNFα and IL4), signal transducing molecules (Cx3Cr1 and Cx3Cl1), and neurotrophic factor (IGF1) were altered in BPA-exposed embryos. These findings suggest that BPA exposure increases microglial numbers in the brain and alters the neuroinflammatory status at a transcriptional level. Together, these changes may represent a novel target for neurodevelopmental toxicity assessment after BPA exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Development of gypsum alteration on marble and limestone

    Science.gov (United States)

    McGee, E.S.

    1996-01-01

    Blackened alteration crusts of gypsum plus particulates that form on sheltered areas on marble and limestone buildings pose a challenge for rehabilitation and cleaning. Fresh marble and limestone samples exposed at monitored exposure sites present conditions of simple geometry and well-documented exposures but have short exposure histories (one to five years). The gypsum alteration crusts that develop on these samples provide insight into the early stages and rate of alteration crust formation. Alteration crusts from buildings give a longer, but less well known exposure history and present much more complex surfaces for gypsum accumulation. Integrated observations and measurements of alteration crusts from exposure samples and from buildings identify four factors that are important in the formation and development of alteration crusts on marble and limestone: (1) pollution levels, (2) exposure to rain or washing, (3) geometry of exposure of the stone surface, and (4) permeability of the stone. The combination of these factors contributes to both the distribution and the physical characteristics of the gypsum crusts which may affect cleaning decisions.

  6. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States

    Directory of Open Access Journals (Sweden)

    Laura Batti

    2016-06-01

    Full Text Available Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain.

  7. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke

    OpenAIRE

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L.; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L.; Vexler, Zinaida S.

    2016-01-01

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral arter...

  8. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  9. Altered Amygdala Development and Fear Processing in Prematurely Born Infants.

    Science.gov (United States)

    Cismaru, Anca Liliana; Gui, Laura; Vasung, Lana; Lejeune, Fleur; Barisnikov, Koviljka; Truttmann, Anita; Borradori Tolsa, Cristina; Hüppi, Petra S

    2016-01-01

    Prematurely born children have a high risk of developmental and behavioral disabilities. Cerebral abnormalities at term age have been clearly linked with later behavior alterations, but existing studies did not focus on the amygdala. Moreover, studies of early amygdala development after premature birth in humans are scarce. To compare amygdala volumes in very preterm infants at term equivalent age (TEA) and term born infants, and to relate premature infants' amygdala volumes with their performance on the Laboratory Temperament Assessment Battery (Lab-TAB) fear episode at 12 months. Eighty one infants born between 2008 and 2014 at the University Hospitals of Geneva and Lausanne, taking part in longitudinal and functional imaging studies, who had undergone a magnetic resonance imaging (MRI) scan at TEA enabling manual amygdala delineation. Amygdala volumes assessed by manual segmentation of MRI scans; volumes of cortical and subcortical gray matter, white matter and cerebrospinal fluid (CSF) automatically segmented in 66 infants; scores for the Lab-TAB fear episode for 42 premature infants at 12 months. Amygdala volumes were smaller in preterm infants at TEA than term infants (mean difference 138.03 mm(3), p motor activity in the fear episode. Our results indicate that premature birth is associated with a reduction in amygdala volumes and white matter volumes at TEA, suggesting that altered amygdala development might be linked to alterations in white matter connectivity reported in premature infants. Moreover, our data suggests that such alterations might affect infants' fear-processing capabilities.

  10. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  11. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury.

    Science.gov (United States)

    Suter, Marc R; Berta, Temugin; Gao, Yong-Jing; Decosterd, Isabelle; Ji, Ru-Rong

    2009-09-22

    After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX) to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1) positive fibers (mostly C- and Adelta-fibers) and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI), and observed spinal microglial changes 2 days later. SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+) were microglia (Iba1+). Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. (1) Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers) is not enough to prevent nerve injury-induced spinal microglial activation. (2) Peripheral input from large myelinated fibers is important for microglial activation. (3) Microglial activation is associated with mechanical allodynia.

  12. Distribution of microglial cells in the cerebral hemispheres of embryonic and neonatal chicks

    Directory of Open Access Journals (Sweden)

    Ignácio A.R.

    2005-01-01

    Full Text Available The distribution, morphology and morphometry of microglial cells in the chick cerebral hemispheres from embryonic day 4 (E4 to the first neonatal day (P1 were studied by histochemical labeling with a tomato (Lycopersicon esculentum lectin. The histochemical analysis revealed lectin-reactive cells in the nervous parenchyma on day E4. Between E4 (5.7 ± 1.35 mm length and E17 (8.25 ± 1.2 mm length, the lectin-reactive cells were identified as ameboid microglia and observed starting from the subventricular layer, distributed throughout the mantle layer and in the proximity of the blood vessels. After day E13, the lectin-reactive cells exhibited elongated forms with small branched processes, and were considered primitive ramified microglia. Later, between E18 (5.85 ± 1.5 mm cell body length and P1 (3.25 ± 0.6 mm cell body length, cells with more elongated branched processes were observed, constituting the ramified microglia. Our findings provide additional information on the migration and differentiation of microglial cells, whose ramified form is observed at the end of embryonic development. The present paper focused on the arrangement of microglial cells in developing cerebral hemispheres of embryonic and neonatal chicks, which are little studied in the literature. Details of morphology, morphometry and spatial distribution of microglial cells contributed to the understanding of bird and mammal central nervous system ontogeny. Furthermore, the identification and localization of microglial cells during the normal development could be used as a morphological guide for embryonic brain injury researches.

  13. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sudhakar R. Subramaniam

    2017-06-01

    Full Text Available Parkinson’s disease (PD is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.

  14. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  15. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-09-01

    Full Text Available Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism.

  16. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets

    NARCIS (Netherlands)

    Ji, Peng; Schachtschneider, Kyle M.; Schook, Lawrence B.; Walker, Frederick R.; Johnson, Rodney W.

    2016-01-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell

  17. Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain

    Directory of Open Access Journals (Sweden)

    Irune Diaz-Aparicio

    2016-01-01

    Full Text Available Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the parenchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct observation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic cells, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neurological disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.

  18. Altered protein mannosylation in developing cerebral cortex by streptomycin.

    Science.gov (United States)

    Alperin, M D; Calandria, J M; Carminatti, H; Idoyaga-Vargas, V P

    2000-11-09

    Our research objective was to characterize the biochemical effect of streptomycin during postnatal rat cerebral cortex development using a sensitive method that preserves the in situ topological relationship. We found a decrease in the mannosylation of asparagine-linked oligosaccharides without affecting polypeptide synthesis, DNA synthesis or glucose and mannose disappearance from the medium in mini-tissue units derived from P5. In addition, the rate of Dolp-GlcNAc2 Man9 Glc3 synthesis and the oligosaccharide protein transferase activity did not change in the presence of the aminoglycoside. These findings strongly suggested that the alteration of protein mannosylation occurred downstream of G3 transfer to nascent polypeptides. Further, the mini-tissue units may be useful for the assessment of neurological toxicity of antibacterial agents.

  19. CCL2/MCP-1 modulation of microglial activation and proliferation

    Directory of Open Access Journals (Sweden)

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  20. Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1.

    Science.gov (United States)

    Schecter, Rachel W; Maher, Erin E; Welsh, Christina A; Stevens, Beth; Erisir, Alev; Bear, Mark F

    2017-11-01

    Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. Copyright © 2017 the authors 0270-6474/17/3710541-13$15.00/0.

  1. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis.

    Science.gov (United States)

    Liao, Ke; Guo, Minglei; Niu, Fang; Yang, Lu; Callen, Shannon E; Buch, Shilpa

    2016-02-09

    ROS-ER stress-ATF4-TLR2 axis. Understanding the mechanism(s) involved in cocaine-mediated up-regulation of ROS-ER stress/TLR2 expression and microglial activation could have implications for the development of potential therapeutic targets aimed at resolving neuroinflammation in cocaine abusers.

  2. Roles of Microglial Phagocytosis and Inflammatory Mediators in the Pathophysiology of Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Agnes Nadjar

    2017-08-01

    Full Text Available Sleep serves crucial learning and memory functions in both nervous and immune systems. Microglia are brain immune cells that actively maintain health through their crucial physiological roles exerted across the lifespan, including phagocytosis of cellular debris and orchestration of neuroinflammation. The past decade has witnessed an explosive growth of microglial research. Considering the recent developments in the field of microglia and sleep, we examine their possible impact on various pathological conditions associated with a gain, disruption, or loss of sleep in this focused mini-review. While there are extensive studies of microglial implication in a variety of neuropsychiatric and neurodegenerative diseases, less is known regarding their roles in sleep disorders. It is timely to stimulate new research in this emergent and rapidly growing field of investigation.

  3. Headmasters: Microglial regulation of learning and memory in health and disease

    Directory of Open Access Journals (Sweden)

    Laetitia Weinhard

    2018-03-01

    Full Text Available Microglia are mononuclear phagocytes that reside throughout the lifetime of the animal in the central nervous system (CNS. Originating from the yolk sac, microglial progenitors infiltrate the developing brain anlage even before the formation of the neural network. Mature microglial cells persist by slow rates of self-renewal that vary across brain regions. Eminent studies in the recent decade have highlighted a role for steady state microglia in neurogenesis, synaptic pruning, and formation and maintenance of connectivity within the CNS, which are critical to learning and memory functions. Activity- and learning-dependent synaptic remodeling by microglia has been described in various contexts. Molecular pathways, including signaling through fractalkine CX3CL1 and its receptor CX3CR1, transforming growth factor-beta, classical complement system, colony-stimulating factor 1 receptor, adaptor protein DAP12, and brain-derived neurotropic factor, have been proposed to be important mediators of synaptic plasticity regulated by microglia. Reactive, dysfunctional, or aged microglia are thought to impact learning and memory, and are implicated in human neurodegenerative disorders in which dementia is a hallmark. These disorders include Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease. Focusing on microglia, here we discuss the potential detrimental effects and risks presented by microglia-specific genetic variants, the environmental factors that target microglia, and microglial aging that likely lead to progressive memory loss in neurodegenerative diseases. Finally, we consider some caveats of the animal model systems that to date have advanced our understanding of microglial regulation of learning and memory.

  4. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury.

    Science.gov (United States)

    Kumar, Alok; Stoica, Bogdan A; Loane, David J; Yang, Ming; Abulwerdi, Gelareh; Khan, Niaz; Kumar, Asit; Thom, Stephen R; Faden, Alan I

    2017-03-15

    Local and systemic inflammatory responses are initiated early after traumatic brain injury (TBI), and may play a key role in the secondary injury processes resulting in neuronal loss and neurological deficits. However, the mechanisms responsible for the rapid expansion of neuroinflammation and its long-term progression have yet to be elucidated. Here, we investigate the role of microparticles (MP), a member of the extracellular vesicle family, in the exchange of pro-inflammatory molecules between brain immune cells, as well as their transfer to the systemic circulation, as key pathways of inflammation propagation following brain trauma. Adult male C57BL/6 mice were subjected to controlled cortical impact TBI for 24 h, and enriched MP were isolated in the blood, while neuroinflammation was assessed in the TBI cortex. MP were characterized by flow cytometry, and MP content was assayed using gene and protein markers for pro-inflammatory mediators. Enriched MP co-cultured with BV2 or primary microglial cells were used for immune propagation assays. Enriched MP from BV2 microglia or CD11b-positive microglia from the TBI brain were stereotactically injected into the cortex of uninjured mice to evaluate MP-related seeding of neuroinflammation in vivo. As the neuroinflammatory response is developing in the brain after TBI, microglial-derived MP are released into the circulation. Circulating enriched MP from the TBI animals can activate microglia in vitro. Lipopolysaccharide stimulation increases MP release from microglia in vitro and enhances their content of pro-inflammatory mediators, interleukin-1β and microRNA-155. Enriched MP from activated microglia in vitro or CD11b-isolated microglia/macrophage from the TBI brain ex vivo are sufficient to initiate neuroinflammation following their injection into the cortex of naïve (uninjured) animals. These data provide further insights into the mechanisms underlying the development and dissemination of neuroinflammation after

  5. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy.

    Science.gov (United States)

    Cherry, Jonathan D; Tripodis, Yorghos; Alvarez, Victor E; Huber, Bertrand; Kiernan, Patrick T; Daneshvar, Daniel H; Mez, Jesse; Montenigro, Philip H; Solomon, Todd M; Alosco, Michael L; Stern, Robert A; McKee, Ann C; Stein, Thor D

    2016-10-28

    The chronic effects of repetitive head impacts (RHI) on the development of neuroinflammation and its relationship to chronic traumatic encephalopathy (CTE) are unknown. Here we set out to determine the relationship between RHI exposure, neuroinflammation, and the development of hyperphosphorylated tau (ptau) pathology and dementia risk in CTE. We studied a cohort of 66 deceased American football athletes from the Boston University-Veteran's Affairs-Concussion Legacy Foundation Brain Bank as well as 16 non-athlete controls. Subjects with a neurodegenerative disease other than CTE were excluded. Counts of total and activated microglia, astrocytes, and ptau pathology were performed in the dorsolateral frontal cortex (DLF). Binary logistic and simultaneous equation regression models were used to test associations between RHI exposure, microglia, ptau pathology, and dementia. Duration of RHI exposure and the development and severity of CTE were associated with reactive microglial morphology and increased numbers of CD68 immunoreactive microglia in the DLF. A simultaneous equation regression model demonstrated that RHI exposure had a significant direct effect on CD68 cell density (p CTE. Inflammatory molecules may be important diagnostic or predictive biomarkers as well as promising therapeutic targets in CTE.

  6. Quantitating the subtleties of microglial morphology with fractal analysis

    Science.gov (United States)

    Karperien, Audrey; Ahammer, Helmut; Jelinek, Herbert F.

    2013-01-01

    It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between “ramified resting” and “activated amoeboid” has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology. PMID:23386810

  7. Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells

    Directory of Open Access Journals (Sweden)

    Dentesano Guido

    2012-07-01

    Full Text Available Abstract Background In physiological conditions, it is postulated that neurons control microglial reactivity through a series of inhibitory mechanisms, involving either cell contact-dependent, soluble-factor-dependent or neurotransmitter-associated pathways. In the current study, we focus on CD200R1, a microglial receptor involved in one of these cell contact-dependent mechanisms. CD200R1 activation by its ligand, CD200 (mainly expressed by neurons in the central nervous system,is postulated to inhibit the pro-inflammatory phenotype of microglial cells, while alterations in CD200-CD200R1 signalling potentiate this phenotype. Little is known about the regulation of CD200R1 expression in microglia or possible alterations in the presence of pro-inflammatory stimuli. Methods Murine primary microglial cultures, mixed glial cultures from wild-type and CCAAT/enhancer binding protein β (C/EBPβ-deficient mice, and the BV2 murine cell line overexpressing C/EBPβ were used to study the involvement of C/EBPβ transcription factor in the regulation of CD200R1 expression in response to a proinflammatory stimulus (lipopolysaccharide (LPS. Binding of C/EBPβ to the CD200R1 promoter was determined by quantitative chromatin immunoprecipitation (qChIP. The involvement of histone deacetylase 1 in the control of CD200R1 expression by C/EBPβ was also determined by co-immunoprecipitation and qChIP. Results LPS treatment induced a decrease in CD200R1 mRNA and protein expression in microglial cells, an effect that was not observed in the absence of C/EBPβ. C/EBPβ overexpression in BV2 cells resulted in a decrease in basal CD200R1 mRNA and protein expression. In addition, C/EBPβ binding to the CD200R1 promoter was observed in LPS-treated but not in control glial cells, and also in control BV2 cells overexpressing C/EBPβ. Finally, we observed that histone deacetylase 1 co-immunoprecipitated with C/EBPβ and showed binding to a C/EBPβ consensus sequence of the CD

  8. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection.

    Science.gov (United States)

    Martini, Alessandra Cadete; Berta, Temugin; Forner, Stefânia; Chen, Gang; Bento, Allisson Freire; Ji, Ru-Rong; Rae, Giles Alexander

    2016-04-08

    Spinal cord injury (SCI) is a severe neurological disorder with many disabling consequences, including persistent neuropathic pain, which develops in about 40 % of SCI patients and is induced and sustained by excessive and uncontrolled spinal neuroinflammation. Here, we have evaluated the effects of lipoxin A4 (LXA4), a member of a unique class of endogenous lipid mediators with both anti-inflammatory and analgesic properties, on spinal neuroinflammation and chronic pain in an experimental model of SCI. Spinal hemisection at T10 was carried out in adult male CD1 mice and Wistar rats. To test if LXA4 can reduce neuroinflammation and neuropathic pain, each animal received two intrathecal injections of LXA4 (300 pmol) or vehicle at 4 and 24 h after SCI. Sensitivity to mechanical stimulation of the hind paws was evaluated using von Frey monofilaments, and neuroinflammation was tested by measuring the mRNA and/or protein expression levels of glial markers and cytokines in the spinal cord samples after SCI. Also, microglia cultures prepared from murine cortical tissue were used to assess the direct effects of LXA4 on microglial activation and release of pro-inflammatory TNF-α. LXA4 treatment caused significant reductions in the intensity of mechanical pain hypersensitivity and spinal expression levels of microglial markers and pro-inflammatory cytokines induced by SCI, when compared to rodents receiving control vehicle injections. Notably, the increased expressions of the microglial marker IBA-1 and of the pro-inflammatory cytokine TNF-α were the most affected by the LXA4 treatment. Furthermore, cortical microglial cultures expressed ALX/FPR2 receptors for LXA4 and displayed potentially anti-inflammatory responses upon challenge with LXA4. Collectively, our results suggest that LXA4 can effectively modulate microglial activation and TNF-α release through ALX/FPR2 receptors, ultimately reducing neuropathic pain in rodents after spinal cord hemisection. The dual anti

  9. Versatility of microglial bioenergetic machinery under starving conditions.

    Science.gov (United States)

    Nagy, Adam M; Fekete, Rebeka; Horvath, Gergo; Koncsos, Gabor; Kriston, Csilla; Sebestyen, Anna; Giricz, Zoltan; Kornyei, Zsuzsanna; Madarasz, Emilia; Tretter, Laszlo

    2018-03-01

    Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear. In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary - and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies. All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation. It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism. Copyright © 2017. Published by Elsevier B.V.

  10. Microglial recruitment, activation, and proliferation in response to primary demyelination

    DEFF Research Database (Denmark)

    Remington, Leah T; Babcock, Alicia A; Zehntner, Simone P

    2007-01-01

    microglial numbers. Microglia adopted an activated phenotype during demyelination, up-regulating major histocompatibility class I and B7.2/CD86. A subpopulation of CD45(dim-high) microglia that expressed reduced levels of CD11b emerged during demyelination. These microglia expressed CD11c and were potent...

  11. trans-Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2017-01-01

    Full Text Available Background. Microglial activation contributes to neuroinflammation and neuronal damage in neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases. It has been suggested that neurodegenerative disorders may be improved if neuroinflammation can be controlled. trans-cinnamaldehyde (TCA isolated from the stem bark of Cinnamomum cassia possesses potent anti-inflammatory capability; we thus tested whether TCA presents neuroprotective effects on improving neuronal survival by inhibiting neuroinflammatory responses in BV2 microglial cells. Results. To determine the molecular mechanism behind TCA-mediated neuroprotective effects, we assessed the effects of TCA on lipopolysaccharide- (LPS- induced proinflammatory responses in BV2 microglial cells. While LPS potently induced the production and expression upregulation of proinflammatory mediators, including NO, iNOS, COX-2, IL-1β, and TNF-α, TCA pretreatment significantly inhibited LPS-induced production of NO and expression of iNOS, COX-2, and IL-1β and recovered the morphological changes in BV2 cells. TCA markedly attenuated microglial activation and neuroinflammation by blocking nuclear factor kappa B (NF-κB signaling pathway. With the aid of microglia and neuron coculture system, we showed that TCA greatly reduced LPS-elicited neuronal death and exerted neuroprotective effects. Conclusions. Our results suggest that TCA, a natural product, has the potential of being used as a therapeutic agent against neuroinflammation for ameliorating neurodegenerative disorders.

  12. Microglial activation and neuroinflammation in Alzheimer's disease: a critical examination of recent history

    Directory of Open Access Journals (Sweden)

    Wolfgang J Streit

    2010-06-01

    Full Text Available The neurofibrillary degeneration that occurs in Alzheimer’s disease (AD is thought to be the result of a chronic and damaging neuroinflammatory response mediated by neurotoxic substances produced by activated microglial cells. This neuroinflammation hypothesis of AD pathogenesis has led to numerous clinical trials with anti-inflammatory drugs, none of which have shown clear benefits for slowing or preventing disease onset and progression. In this paper, I make the point that AD is not an inflammatory condition, and reconstruct the sequence of events during the 1980s and 1990s that I believe led to the development of this faulty theory.

  13. Delta 9-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18

    Directory of Open Access Journals (Sweden)

    Douglas eMcHugh

    2014-01-01

    Full Text Available Microglial cells are extremely plastic and undergo a variety of CNS-prompted shape changes relative to their location and current role. Signaling molecules from neurons also regulate microglial cytokine production. Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. N-arachidonoyl glycine (NAGly and Δ9-tetrahydrocannabinol (Δ9-THC signaling via GPR18 has been introduced as an important new target in microglial-neuronal communication. Our hypothesis is that endogenous NAGly-GPR18 signaling regulates phenotypic shape and cytokine production in microglia, and is mimicked by Δ9-THC in the BV-2 microglia model system. BV-2 microglia were exposed to NAGly and Δ9-THC or Vh for 12 hours, which resulted in significant differences in the cell morphologies expressed. Cannabidiol (CBD was effective at antagonizing the effects of both NAGly and Δ9-THC. Using ELISA-based microarrays, BV-2 microglia were exposed to NAGly and Δ9-THC or Vh for 3 hours and the presence of 40 cytokines in the culture media quantified. Production of Axl, CD40, IGF-I, OPN and Pro-MMP-9 were significantly altered by NAGly and Δ9-THC, and antagonized by CBD. These data add to an emerging profile that emphasizes NAGly as a component of an endogenous system present in the CNS that tightly integrates microglial proliferation, recruitment and adhesion with neuron-glia interactivity and tissue remodeling.

  14. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    Science.gov (United States)

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  15. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    Science.gov (United States)

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  16. Computational Identification of Potential Multi-drug Combinations for Reduction of Microglial Inflammation in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2015-06-01

    Full Text Available Like other neurodegenerative diseases, Alzheimer Disease (AD has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  17. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease.

    Science.gov (United States)

    Anastasio, Thomas J

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  18. Astrocytic Orosomucoid-2 Modulates Microglial Activation and Neuroinflammation.

    Science.gov (United States)

    Jo, Myungjin; Kim, Jong-Heon; Song, Gyun Jee; Seo, Minchul; Hwang, Eun Mi; Suk, Kyoungho

    2017-03-15

    Orosomucoid (ORM) is an acute-phase protein that belongs to the immunocalin subfamily, a group of small-molecule-binding proteins with immunomodulatory functions. Little is known about the role of ORM proteins in the CNS. The aim of the present study was to investigate the brain expression of ORM and its role in neuroinflammation. Expression of Orm2, but not Orm1 or Orm3, was highly induced in the mouse brain after systemic injection of lipopolysaccharide (LPS). Plasma levels of ORM2 were also significantly higher in patients with cognitive impairment than in normal subjects. RT-PCR, Western blot, and immunofluorescence analyses revealed that astrocytes are the major cellular sources of ORM2 in the inflamed mouse brain. Recombinant ORM2 protein treatment decreased microglial production of proinflammatory mediators and reduced microglia-mediated neurotoxicity in vitro LPS-induced microglial activation, proinflammatory cytokines in hippocampus, and neuroinflammation-associated cognitive deficits also decreased as a result of intracerebroventricular injection of recombinant ORM2 protein in vivo Moreover, lentiviral shRNA-mediated Orm2 knockdown enhanced LPS-induced proinflammatory cytokine gene expression and microglial activation in the hippocampus. Mechanistically, ORM2 inhibited C-C chemokine ligand 4 (CCL4)-induced microglial migration and activation by blocking the interaction of CCL4 with C-C chemokine receptor type 5. Together, the results from our cultured glial cells, mouse neuroinflammation model, and patient studies suggest that ORM2 is a novel mediator of astrocyte-microglial interaction. We also report that ORM2 exerts anti-inflammatory effects by modulating microglial activation and migration during brain inflammation. ORM2 can be exploited therapeutically for the treatment of neuroinflammatory diseases. SIGNIFICANCE STATEMENT Neural cell interactions are important for brain physiology and pathology. Particularly, the interaction between non

  19. Characteristic microglial features in patients with hereditary diffuse leukoencephalopathy with spheroids.

    Science.gov (United States)

    Tada, Mari; Konno, Takuya; Tada, Masayoshi; Tezuka, Toshiyuki; Miura, Takeshi; Mezaki, Naomi; Okazaki, Ken-Ichi; Arakawa, Musashi; Itoh, Kyoko; Yamamoto, Toru; Yokoo, Hideaki; Yoshikura, Nobuaki; Ishihara, Kenji; Horie, Masao; Takebayashi, Hirohide; Toyoshima, Yasuko; Naito, Makoto; Onodera, Osamu; Nishizawa, Masatoyo; Takahashi, Hitoshi; Ikeuchi, Takeshi; Kakita, Akiyoshi

    2016-10-01

    To clarify the histopathological alterations of microglia in the brains of patients with hereditary diffuse leukoencephalopathy with spheroids (HDLS) caused by mutations of the gene encoding the colony stimulating factor-1 receptor (CSF-1R). We examined 5 autopsied brains and 1 biopsy specimen from a total of 6 patients with CSF-1R mutations. Detailed immunohistochemical, biochemical, and ultrastructural features of microglia were examined, and quantitative analyses were performed. In layers 3 to 4 of the frontal cortex in HDLS brains, microglia showed relatively uniform and delicate morphology, with thin and winding processes accompanying knotlike structures, and significantly smaller areas of Iba1 immunoreactivity and lower numbers of Iba1-positive cells were evident in comparison with control brains. On the other hand, in layers 5 to 6 and the underlying white matter, microglia were distributed unevenly; that is, in some areas they had accumulated densely, whereas in others they were scattered. Immunoblot analyses of microglia-associated proteins, including CD11b and DAP12, revealed that HDLS brains had significantly lower amounts of these proteins than diseased controls, although Ki-67-positive proliferative microglia were not reduced. Ultrastructurally, the microglial cytoplasm and processes in HDLS showed vesiculation of the rough endoplasmic reticulum and disaggregated polyribosomes, indicating depression of protein synthesis. On the other hand, macrophages were immunonegative for GLUT-5 or P2ry12, indicating that they were derived from bone marrow. The pathogenesis of HDLS seems to be associated with microglial vulnerability and morphological alterations. Ann Neurol 2016;80:554-565. © 2016 American Neurological Association.

  20. Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes.

    Science.gov (United States)

    Ibrahim, Ahmed S; El-Remessy, Azza B; Matragoon, Suraporn; Zhang, Wenbo; Patel, Yogin; Khan, Sohail; Al-Gayyar, Mohammed M; El-Shishtawy, Mamdouh M; Liou, Gregory I

    2011-04-01

    During diabetes, retinal microglial cells are activated to release inflammatory cytokines that initiate neuronal loss and blood-retinal barrier breakdown seen in diabetic retinopathy (DR). The mechanism by which diabetes activates microglia to release those inflammatory mediators is unclear and was therefore elucidated. Microglia activation was characterized in streptozocin-injected rats and in isolated microglial cells using immunofluorescence, enzyme-linked immunosorbent assay, RT-PCR, and Western blot analyses. In 8-week diabetic retina, phospho-extracellular signal-related kinase (ERK) and P38 mitogen-activated protein kinases were localized in microglia, but not in Mueller cells or astrocytes. At the same time, Amadori-glycated albumin (AGA)-like epitopes were featured in the regions of microglia distribution, implicating a pathogenic effect on microglial activation. To test this, diabetic rats were treated intravitreally with A717, a specific AGA-neutralizing antibody, or murine IgG. Relative to nondiabetic rats, diabetic rats (IgG-treated) manifested 3.9- and 7.9-fold increases in Iba-1 and tumor necrosis factor (TNF)-α mRNAs, respectively. Treatment of diabetic rats with A717 significantly attenuated overexpression of these mRNAs. Intravitreal injection of AGA per se in normal rats resulted in increases of Iba-1 expression and TNF-α release. Guided by these results, a cultured retinal microglia model was developed to study microglial response after AGA treatment and the mechanistic basis behind this response. The results showed that formation of reactive oxygen species and subsequent activation of ERK and P38, but not Jun NH2-terminal kinase, are molecular events underpinning retinal microglial TNF-α release during AGA treatment. These results provide new insights in understanding the pathogenesis of early DR, showing that the accumulated AGA within the diabetic retina elicits the microglial activation and secretion of TNF-α. Thus, intervention trials

  1. Exciting fear in adolescence: Does pubertal development alter threat processing?

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Spielberg

    2014-04-01

    Full Text Available Adolescent development encompasses an ostensible paradox in threat processing. Risk taking increases dramatically after the onset of puberty, contributing to a 200% increase in mortality. Yet, pubertal maturation is associated with increased reactivity in threat-avoidance systems. In the first part of this paper we propose a heuristic model of adolescent affective development that may help to reconcile aspects of this paradox, which focuses on hypothesized pubertal increases in the capacity to experience (some fear-evoking experiences as an exciting thrill. In the second part of this paper, we test key features of this model by examining brain activation to threat cues in a longitudinal study that disentangled pubertal and age effects. Pubertal increases in testosterone predicted increased activation to threat cues, not only in regions associated with threat avoidance (i.e., amygdala, but also regions associated with reward pursuit (i.e., nucleus accumbens. These findings are consistent with our hypothesis that puberty is associated with a maturational shift toward more complex processing of threat cues—which may contribute to adolescent tendencies to explore and enjoy some types of risky experiences.

  2. Dynamic alterations of linker histone variants during development.

    Science.gov (United States)

    Godde, James S; Ura, Kiyoe

    2009-01-01

    The process of development can be viewed as a series of linker histone replacements which take place throughout spermatogenesis and oogenesis, as well as following fertilization or somatic nuclear transfer (SNT). Although few of the histone H1 variants in question have been shown to be essential for viability, the timing of their appearance as well as the affinity with which they are able to bind to chromatin seem to be important factors in their developmental role. A looser binding of linker histones to chromatin seems to correlate with the meiotic phases of gametogenesis and the establishment of a totipotent, as well as the maintenance of a pluripotent, state in early embryos, while tighter binding of linker histones to chromatin appears to be associated with the mitotic phases, as well as the increased levels of condensation that are required for the packaging of DNA into sperm. This latter process also involves the binding of certain basic non-histone proteins to DNA. While all proteins involved in chromatin compaction during development are highly basic in nature, in general they can be seen to change from lysine-rich variants to arginine-rich ones, and back again. The fact that linker histone transitions are conserved across diverse metazoan species speaks of their importance in packaging DNA in a variety of ways during this crucial period.

  3. SSRI antidepressants: altered psychomotor development following exposure in utero?

    Science.gov (United States)

    2013-02-01

    Selective serotonin reuptake inhibitor antidepressants (SSRIs) are sometimes prescribed to pregnant women. The potential consequences for the unborn child are gradually becoming clearer. In a case-control study of 298 children with autism and 1507 controls, 6.7% of mothers of autistic children had been prescribed an antidepressant during the year before delivery, compared to 3.3% of control mothers. The antidepressant was usually an SSRI. A dozen other small epidemiological studies of neurological development in children exposed to antidepressants in utero have provided mixed results. Two of these studies suggested a risk of psychomotor retardation. In practice, SSRI antidepressants should only be considered for pregnant women when non-drug measures fail and when symptoms are sufficiently serious to warrant drug therapy.

  4. Tissue landscape alters adjacent cell fates during Drosophila egg development.

    Science.gov (United States)

    Manning, Lathiena A; Weideman, Ann Marie; Peercy, Bradford E; Starz-Gaiano, Michelle

    2015-06-17

    Extracellular signalling molecules control many biological processes, but the influence of tissue architecture on the local concentrations of these factors is unclear. Here we examine this issue in the Drosophila egg chamber, where two anterior cells secrete Unpaired (Upd) to activate Signal transducer and activator of transcription (STAT) signalling in the epithelium. High STAT signalling promotes cell motility. Genetic analysis shows that all cells near the Upd source can respond. However, using upright imaging, we show surprising asymmetries in STAT activation patterns, suggesting that some cells experience different Upd levels than predicted by their location. We develop a three-dimensional mathematical model to characterize the spatio-temporal distribution of the activator. Simulations show that irregular tissue domains can produce asymmetric distributions of Upd, consistent with results in vivo. Mutant analysis substantiates this idea. We conclude that cellular landscape can heavily influence the effect of diffusible activators and should be more widely considered.

  5. A histochemical study of the microglial cells in the brain of Salamandra salamandra by lectin binding.

    Science.gov (United States)

    Franceschini, V; Ciani, F

    1992-01-01

    Seven biotinylated lectins were utilized as histochemical markers for the study of microglial cells in the brain of Salamandra salamandra. It has been demonstrated that SBA, BSA-I, BSA-I-B4 and RCA120 label the microglial cells and, on the basis of the binding selectivity of the single lectins for specific carbohydrates, it was found that alpha-galactosyl residues are present in high density on the microglial membrane of S. salamandra. The reaction was localized not only to the ramified microglial cells, but also to other round cells without extensions, interpreted as ameboid microglial cells. The results show that lectin binding is a reliable molecular probe for identifying microglial cells in urodels.

  6. Microglial Dysfunction in Brain Aging and Alzheimer’s Disease

    Science.gov (United States)

    Mosher, Kira Irving; Wyss-Coray, Tony

    2014-01-01

    Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer’s disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial “activation” and “neuroinflammation” are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms. PMID:24445162

  7. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Directory of Open Access Journals (Sweden)

    Luciana Frick

    2016-01-01

    Full Text Available There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD, Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS. The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain’s resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  8. Embryo development alteration in rats treated with lapachol

    Directory of Open Access Journals (Sweden)

    Juliana Maganha

    2006-11-01

    Full Text Available Lapachol, a naphthoquinone extracted from plants of the genus Tabebuia (family Bignoneaceae, showed multiple therapeutic activities. Pregnant Wistar rats were treated with Lapachol from the 1st to the 4th (pre-implantation period and from 5th to 7th (implantation period post insemination day (PID. Mothers were sacrificed on the 5th or on the15th PID. Number of corpora lutea, preimplantation embryo, blastocysts, live and dead fetuses and resorptions were counted. There were no signs of maternal toxicity. The number and the morphology of embryos, during oviduct development (pre-implantation period, did not seem to be affected by this drug, but during the implantation period, lapachol was toxic causing the death of embryos and intrauterine growth retardation.O Lapachol é uma naftoquinona, extraída de plantas do gênero Tabebuia (família Bignoneaceae, que apresenta múltiplas atividades terapêuticas. Estudos prévios sobre o efeito do lapachol no início do desenvolvimento embrionário de ratas são controversos. No presente trabalho ratas Wistar prenhes foram tratadas com lapachol do 1º ao 4º dias pós-inseminação (período de pré-implantação e do 5º ao 7º dias (período de implantação do blastocisto. As mães foram sacrificadas no 5º o e no 15º dia pós-inseminação. Contaram-se corpos lúteos, embriões em fase de pré-implantação, blastocistos, fetos vivos e mortos e reabsorções.Fetos e placentas foram pesados. Não ocorreram indícios de toxicidade materna.O número e a morfologia dos embriões durante o desenvolvimento tubário não foi afetado pela droga, mas durante o período de implantação o lapachol foi tóxico, causando morte de embriões e retardo de crescimento intra-uterino.

  9. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord

    Science.gov (United States)

    Morsch, Marco; Radford, Rowan; Lee, Albert; Don, Emily K.; Badrock, Andrew P.; Hall, Thomas E.; Cole, Nicholas J.; Chung, Roger

    2015-01-01

    Microglia are specialized phagocytes in the vertebrate central nervous system (CNS). As the resident immune cells of the CNS they play an important role in the removal of dying neurons during both development and in several neuronal pathologies. Microglia have been shown to prevent the diffusion of damaging degradation products of dying neurons by engulfment and ingestion. Here we describe a live imaging approach that uses UV laser ablation to selectively stress and kill spinal neurons and visualize the clearance of neuronal remnants by microglia in the zebrafish spinal cord. In vivo imaging confirmed the motile nature of microglia within the uninjured spinal cord. However, selective neuronal ablation triggered rapid activation of microglia, leading to phagocytic uptake of neuronal debris by microglia within 20–30 min. This process of microglial engulfment is highly dynamic, involving the extension of processes toward the lesion site and consequently the ingestion of the dying neuron. 3D rendering analysis of time-lapse recordings revealed the formation of phagosome-like structures in the activated microglia located at the site of neuronal ablation. This real-time representation of microglial phagocytosis in the living zebrafish spinal cord provides novel opportunities to study the mechanisms of microglia-mediated neuronal clearance. PMID:26379496

  10. Inhibitory effects of antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells.

    Science.gov (United States)

    Kim, Jiwon; Song, Jin-Ho

    2017-03-05

    Microglial NADPH oxidase is a major source of toxic reactive oxygen species produced during chronic neuroinflammation. Voltage-gated proton channel (H V 1) functions to maintain the intense activity of NADPH oxidase, and channel inhibition alleviates the pathology of neurodegenerative diseases such as ischemic stroke and multiple sclerosis associated with oxidative neuroinflammation. Antagonists of histamine H 1 receptors have beneficial effects against microglia-mediated oxidative stress and neurotoxicity. We examined the effects of the H 1 antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells recorded using the whole-cell patch clamp technique. Diphenhydramine and chlorpheniramine reduced the proton currents with almost the same potency, yielding IC 50 values of 42 and 43μM, respectively. Histamine did not affect proton currents, excluding the involvement of histamine receptors in their action. Neither drug shifted the voltage-dependence of activation or the reversal potential of the proton currents, even though diphenhydramine slowed the activation and deactivation kinetics. The inhibitory effects of the two antihistamines on proton currents could be utilized to develop therapeutic agents for neurodegenerative diseases and other diseases associated with H V 1 proton channel abnormalities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Alterations of the Temporomandibular Joint on Magnetic Resonance Imaging according to Growth and Development in Schoolchildren

    Directory of Open Access Journals (Sweden)

    Tatsurou Tanaka

    2012-01-01

    Full Text Available The paper explains the alterations of the temporomandibular joint (TMJ visualized by magnetic resonance imaging (MRI according to the growth and development of schoolchildren. Appearance and disappearance of a “double contour-like structure” (DCLS of the mandibular condyle on MRI according to the growth and development of schoolchildren were demonstrated. In addition, possible constituents of DCLS and the significance of detection of DCLS on MRI were also speculated. The relationship between red marrow and yellow marrow in the articular eminence of temporal bone, the disappearance of DCLS, and alterations of the mandibular condyle have been elucidated.

  12. Induction of Microglial Activation by Mediators Released from Mast Cells

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-04-01

    Full Text Available Background/Aims: Microglia are the resident immune cells in the brain and play a pivotal role in immune surveillance in the central nervous system (CNS. Brain mast cells are activated in CNS disorders and induce the release of several mediators. Thus, brain mast cells, rather than microglia, are the “first responders” due to injury. However, the functional aspects of mast cell-microglia interactions remain uninvestigated. Methods: Conditioned medium from activated HMC-1 cells induces microglial activation similar to co-culture of microglia with HMC-1 cells. Primary cultured microglia were examined by flow cytometry analysis and confocal microscopy. TNF- alpha and IL-6 were measured with commercial ELISA kits. Cell signalling was analysed by Western blotting. Results: In the present study, we found that the conditioned medium from activated HMC-1 cells stimulated microglial activation and the subsequent production of the pro-inflammatory factors TNF-α and IL-6. Co-culture of microglia and HMC-1 cells with corticotropin-releasing hormone (CRH for 24, 48 and 72 hours increased TNF-α and IL-6 production. Antagonists of histamine receptor 1 (H1R, H4R, proteinase-activated receptor 2 (PAR2 or Toll-like receptor 4 (TLR4 reduced HMC-1-induced pro-inflammatory factor production and MAPK and PI3K/AKT pathway activation. Conclusions: These results imply that activated mast cells trigger microglial activation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS inflammation-related diseases.

  13. C3-dependent mechanism of microglial priming relevant to multiple sclerosis

    NARCIS (Netherlands)

    Ramaglia, Valeria; Hughes, Timothy R.; Donev, Rossen M.; Ruseva, Marieta M.; Wu, Xiaobo; Huitinga, Inge; Baas, Frank; Neal, James W.; Morgan, B. Paul

    2012-01-01

    Microglial priming predisposes the brain to neurodegeneration and affects disease progression. The signal to switch from the quiescent to the primed state is unknown. We show that deleting the C3 convertase regulator complement receptor 1-related protein y (Crry) induces microglial priming. Mice

  14. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia...... periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  15. Automatic counting of microglial cell activation and its applications

    Directory of Open Access Journals (Sweden)

    Beatriz I Gallego

    2016-01-01

    Full Text Available Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

  16. Tff3 is Expressed in Neurons and Microglial Cells

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2014-11-01

    Full Text Available Background/Aims: The trefoil factor family (TFF peptide TFF3 is typically secreted by mucous epithelia, but is also expressed in the immune system and the brain. It was the aim of this study to determine the cerebral cell types which express Tff3. Methods: Primary cultures from rat embryonic or neonatal cerebral cortex and hippocampus, respectively, were studied by means of RT-PCR and immunofluorescence. Moreover, Tff3 expression was localized by immunocytochemistry in sections of adult rat cerebellum. Results: Tff3 transcripts were detectable in neural cultures of both the cortex and the hippocampus as well as in glial cell-enriched cultures. Tff3 peptide co-localized with Map2 indicating an expression in neurons in vitro. The neuronal expression was confirmed by immunofluorescence studies of adult rat cerebellum. Furthermore, Tff3 peptide showed also a clear co-localization with Iba-1 in vitro typical of activated microglial cells. Conclusion: The neuronal expression of Tff3 is in line with a function of a typical neuropeptide influencing, e.g., fear, memory, depression and motoric skills. The expression in activated microglial cells, which is demonstrated here for the first time, points towards a possible function for Tff3 in immune reactions in the CNS. This opens a plethora of additional possible functions for Tff3 including synaptic plasticity and cognition as well as during neuroinflammatory diseases and psychiatric disorders.

  17. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure.

    Science.gov (United States)

    Cutando, Laura; Busquets-Garcia, Arnau; Puighermanal, Emma; Gomis-González, Maria; Delgado-García, José María; Gruart, Agnès; Maldonado, Rafael; Ozaita, Andrés

    2013-07-01

    Chronic cannabis exposure can lead to cerebellar dysfunction in humans, but the neurobiological mechanisms involved remain incompletely understood. Here, we found that in mice, subchronic administration of the psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), activated cerebellar microglia and increased the expression of neuroinflammatory markers, including IL-1β. This neuroinflammatory phenotype correlated with deficits in cerebellar conditioned learning and fine motor coordination. The neuroinflammatory phenotype was readily detectable in the cerebellum of mice with global loss of the CB1 cannabinoid receptor (CB1R, Cb1(-/-) mice) and in mice lacking CB1R in the cerebellar parallel fibers, suggesting that CB1R downregulation in the cerebellar molecular layer plays a key role in THC-induced cerebellar deficits. Expression of CB2 cannabinoid receptor (CB2R) and Il1b mRNA was increased under neuroinflammatory conditions in activated CD11b-positive microglial cells. Furthermore, administration of the immunosuppressant minocycline or an inhibitor of IL-1β receptor signaling prevented the deficits in cerebellar function in Cb1(-/-) and THC-withdrawn mice. Our results suggest that cerebellar microglial activation plays a crucial role in the cerebellar deficits induced by repeated cannabis exposure.

  18. Alterations of the Temporomandibular Joint on Magnetic Resonance Imaging according to Growth and Development in Schoolchildren

    OpenAIRE

    Tanaka, Tatsurou; Konoo, Tetsuro; Habu, Manabu; Oda, Masafumi; Kito, Shinji; Kodama, Masaaki; Kokuryo, Shinya; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Nishida, Ikuko; Morikawa, Kazumasa; Saeki, Katsura; Maki, Kenshi; Tominaga, Kazuhiro; Masumi, Shin-ichi

    2012-01-01

    The paper explains the alterations of the temporomandibular joint (TMJ) visualized by magnetic resonance imaging (MRI) according to the growth and development of schoolchildren. Appearance and disappearance of a ?double contour-like structure? (DCLS) of the mandibular condyle on MRI according to the growth and development of schoolchildren were demonstrated. In addition, possible constituents of DCLS and the significance of detection of DCLS on MRI were also speculated. The relationship betwe...

  19. ALTER-GLOBALISM AND DEVELOPMENT IN MIGRATION CONDITIONS. THE CASE OF AN EAST EUROPEAN COUNTRY

    OpenAIRE

    Alina HALLER

    2017-01-01

    Globalisation is a process that brings advantages and disadvantages to all states, regardless of their stage of development. The relative deprivation, especially the financial one, of the developing countries is a reason of frustration, which motivates the emigration decision; hence our orientation to alter-globalism. In this paper, I intend to highlight by means of analysis, synthesis, deduction, induction, and statistic data, the causes and types of migration in Romania’s case, one of the m...

  20. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    Directory of Open Access Journals (Sweden)

    Nicholas G Spencer

    Full Text Available Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ substantially enhanced production of reactive oxygen species (ROS following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology.

  1. Patterns of Microglial Cell Activation in Alzheimer Disease and Frontotemporal Lobar Degeneration.

    Science.gov (United States)

    Taipa, Ricardo; Brochado, Paulo; Robinson, Andrew; Reis, Inês; Costa, Patrício; Mann, David M; Melo Pires, Manuel; Sousa, Nuno

    2017-01-01

    Microglia-driven neuroinflammation can play an important role in the pathophysiology of neurodegenerative disorders. In this study, we sought to characterize the distribution of microglial cell activation in 2 neurodegenerative dementias with distinct protein signatures, Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD) of the TDP subtype, and to determine if there was an anatomical correlation with the phenotypes most commonly associated with these conditions. The distribution and extent of microglial cell activation was assessed semiquantitatively in the hippocampal formation, cortical gray matter, and subcortical white matter of CD68-immunostained sections of the frontal, temporal, parietal, and occipital cortices from 15 pathologically confirmed cases of AD, 13 cases of FTLD, and 18 controls. Significantly higher levels of microglial cell activation occurred in the subiculum in AD and FTLD than in controls. Additionally, AD had higher microglial activation in the CA1 and FTLD in the hippocampal white matter than the controls. Microglial activation was greater in the dentate gyrus molecular layer in AD than in FTLD. In the cortical regions, the 2 pathological groups differed only in frontal white matter, with the FTLD group showing higher microglial scores. FTLD showed higher microglial activation in the white matter compared to the respective gray matter in the entorhinal, temporal, and frontal regions. Our work expands the knowledge of the distribution and magnitude of microglial activation in these disorders. Additionally, we found some microglial circuit-specific patterns that could help to explain some of the clinical overlap between AD and FTLD-TDP, namely in memory deficits. © 2017 S. Karger AG, Basel.

  2. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards

    Science.gov (United States)

    Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.

    2010-01-01

    The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the

  3. Helicobacter bilis Infection Alters Mucosal Bacteria and Modulates Colitis Development in Defined Microbiota Mice.

    Science.gov (United States)

    Atherly, Todd; Mosher, Curtis; Wang, Chong; Hostetter, Jesse; Proctor, Alexandra; Brand, Meghan W; Phillips, Gregory J; Wannemuehler, Michael; Jergens, Albert E

    2016-11-01

    Helicobacter bilis infection of C3H/HeN mice harboring the altered Schaedler flora (ASF) triggers progressive immune responsiveness and the development of colitis. We sought to investigate temporal alterations in community structure of a defined (ASF-colonized) microbiota in normal and inflamed murine intestines and to correlate microbiota changes to histopathologic lesions. The colonic mucosal microbiota of healthy mice and ASF mice colonized with H. bilis for 3, 6, or 12 weeks were investigated by fluorescence in situ hybridization targeting the 16S ribosomal RNA genes of total bacteria, group-specific organisms, and individual ASF bacterial species. Microbial profiling of ASF and H. bilis abundance was performed on cecal contents. Helicobacter bilis-colonized mice developed colitis associated with temporal changes in composition and spatial distribution of the mucosal microbiota. The number of total bacteria, ASF519, and helicobacter-positive bacteria were increased (P attachment, or by invasion, and this interaction is differentially expressed over time.

  4. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    Science.gov (United States)

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  5. Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson’s Disease?

    Directory of Open Access Journals (Sweden)

    Elzbieta Janda

    2018-04-01

    Full Text Available The role of phagocytosis in the neuroprotective function of microglia has been appreciated for a long time, but only more recently a dysregulation of this process has been recognized in Parkinson’s disease (PD. Indeed, microglia play several critical roles in central nervous system (CNS, such as clearance of dying neurons and pathogens as well as immunomodulation, and to fulfill these complex tasks they engage distinct phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be impaired by defects in molecular machinery regulating critical homeostatic mechanisms, including autophagy. Here, we briefly summarize current knowledge on molecular mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia in PD. Then we focus more in detail on the possible functional role of microglial phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported. Altered expression of target-recognizing receptors and lysosomal receptor CD68, as well as the emerging determinant role of α-synuclein (α-SYN in phagocytic function is discussed. We finally discuss the rationale to consider phagocytic processes as a therapeutic target to prevent or slow down dopaminergic degeneration.

  6. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial Activation by Suppressing Melatonin Secretion

    Science.gov (United States)

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-01-01

    Study Objectives: Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Design: Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Participants: Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Measurements: Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. Results: In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Conclusions: Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. Citation: Huang CT, Chiang RP, Chen CL, Tsai YJ. Sleep

  7. Excessive Sensory Stimulation during Development Alters Neural Plasticity and Vulnerability to Cocaine in Mice.

    Science.gov (United States)

    Ravinder, Shilpa; Donckels, Elizabeth A; Ramirez, Julian S B; Christakis, Dimitri A; Ramirez, Jan-Marino; Ferguson, Susan M

    2016-01-01

    Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today's complex technological environment.

  8. Oilseed cultivars developed from induced mutations and mutations altering fatty acid composition

    International Nuclear Information System (INIS)

    Bhatia, C.R.; Nichterlein, K.; Maluszynski, M.

    1999-01-01

    One hundred and sixty-three cultivars of annual oilseed crops, developed using induced mutations, have been officially approved and released for cultivation in 26 countries. The maximum number of cultivars have been released in soybean (58), followed by groundnut (44), sesame (16), linseed (15), rapeseed (14), Indian mustard (8), castorbean (4), white mustard (3) and sunflower (1). The majority (118 of 163) of the cultivars have been developed as direct mutants and 45 of 163 by using the induced mutants in a crossing programme. While in soybean 53 out of 58 cultivars were selected as direct mutants, in groundnut 22 from 44 were developed after hybridization. Eighty-three cultivars were developed directly by exposing seeds to gamma or X-rays. Attempts have been made to infer the successful dose range, defined as the range which led to the development, registration and release of the maximum number of mutant cultivars for gamma and X-rays. The successful dose ranges in Gy for the main oilseed crops are: soybean 100-200, groundnut 150-250, rapeseed 600-800, Indian mustard 700 and sesame 100-200. The main characteristics of the new cultivars, besides higher yield, are altered plant type, early flowering and maturity and oil content. Mutants altering fatty acid composition have been isolated in soybean, rapeseed, sunflower, linseed and minor oil crops. New cultivars having altered fatty acid composition have been released in rapeseed, sunflower and linseed. The latter, previously grown for non-edible oil, has been converted to a new edible oil crop. (author)

  9. Epigenetically Heritable Alteration of Fly Development in Response to Toxic Challenge

    Directory of Open Access Journals (Sweden)

    Shay Stern

    2012-05-01

    Full Text Available Developing organisms have evolved a wide range of mechanisms for coping with recurrent environmental challenges. How they cope with rare or unforeseen challenges is, however, unclear as are the implications to their unchallenged offspring. Here, we investigate these questions by confronting the development of the fly, D. melanogaster, with artificial tissue distributions of toxic stress that are not expected to occur during fly development. We show that under a wide range of toxic scenarios, this challenge can lead to modified development that may coincide with increased tolerance to an otherwise lethal condition. Part of this response was mediated by suppression of Polycomb group genes, which in turn leads to derepression of developmental regulators and their expression in new domains. Importantly, some of the developmental alterations were epigenetically inherited by subsequent generations of unchallenged offspring. These results show that the environment can induce alternative patterns of development that are stable across multiple generations.

  10. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  11. Deciphering resting microglial morphology and process motility from a synaptic prospect

    Directory of Open Access Journals (Sweden)

    Ines eHristovska

    2016-01-01

    Full Text Available Microglia, the resident immune cells of the central nervous system (CNS, were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

  12. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    Science.gov (United States)

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor (TNF)-α. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 (TGF-β2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+.

  13. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. ALTER-GLOBALISM AND DEVELOPMENT IN MIGRATION CONDITIONS. THE CASE OF AN EAST EUROPEAN COUNTRY

    Directory of Open Access Journals (Sweden)

    Alina HALLER

    2017-12-01

    Full Text Available Globalisation is a process that brings advantages and disadvantages to all states, regardless of their stage of development. The relative deprivation, especially the financial one, of the developing countries is a reason of frustration, which motivates the emigration decision; hence our orientation to alter-globalism. In this paper, I intend to highlight by means of analysis, synthesis, deduction, induction, and statistic data, the causes and types of migration in Romania’s case, one of the main European countries where the immigrants originate from. We will see how globalisation manifests itself in a twofold manner in the economy and the society of a developing country, just like migration. We will show why a poor country is avoided by immigrants and deserted, as a result of immigration, by its own population, while, just like the developed states, it is likely to face the same demographic, economic and social problems, considering that the process of demographic transition is already manifested.

  15. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  16. Lead intoxication in gestational and lactation periods alters the development of male reproductive organs.

    Science.gov (United States)

    Corpas, Isabel; Castillo, M; Marquina, Domingo; Benito, Maria J

    2002-10-01

    The effect of lead (Pb) intoxication during pregnancy and lactation on the male reproductive system was studied to evaluate the alterations caused by Pb in the development of pups. The investigations covered the effect of lead on the course of spermatogenesis and the development of the epididymis and reproductive glands. For this purpose, dams were intoxicated with 300 mg/L Pb during the gestational period and through lactation. Pups were sacrificed on Postnatal (PN) Days 12 and 21. Blood lead (PbB) and plasma iron concentrations were measured, and blood cells counted. Biochemical studies as well as histochemical analyses were performed on testes and accessory glands of the reproductive system. Lead intoxication resulted in a decrease in testis and seminal vesicle weights and an increase in DNA and RNA levels on PN Day 21. Total protein was significantly decreased by the toxicant, and alkaline and acid phosphatase levels of the gonads were reduced. Effects were also reflected in the reduction of the thickness of epithelium and of seminiferous tubule diameter (STD) as a consequence of the action of lead in the reduction in numbers of prospermatogonia and spermatocytes. Results indicate that the reproductive system targets of lead intoxication are not only the testes; lead intoxication results in the inhibition of testicular, epididymal, and seminal vesicle function, altering the biochemical composition of these organs, and consequently, affecting the normal development of germinal cells.

  17. In utero exposure to chloroquine alters sexual development in the male fetal rat

    International Nuclear Information System (INIS)

    Clewell, Rebecca A.; Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-01-01

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  18. Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration

    Science.gov (United States)

    Sievert, Nicholas A.; Paukert, Craig P.; Tsang, Yin-Phan; Infante, Dana M.

    2016-01-01

    Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse

  19. The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation.

    Science.gov (United States)

    Fan, Kai; Li, Daobo; Zhang, Yanli; Han, Chao; Liang, Junjie; Hou, Changyi; Xiao, Hongliang; Ikenaka, Kazuhiro; Ma, Jianmei

    2015-03-19

    Neuroinflammation is a hallmark that leads to selective neuronal loss and/or dysfunction in neurodegenerative disorders. Microglia-derived lysosomal cathepsins are increasingly recognized as important inflammatory mediators to trigger signaling pathways that aggravate neuroinflammation. However, cathepsin H (Cat H), a cysteine protease, has been far less studied in neuroinflammation, compared to cathepsins B, D, L, and S. The expression patterns and functional roles of Cat H in the brain in neuroinflammation remain unknown. C57BL/6J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze expression and localization of Cat H in the brain. Nitrite assay was used to examine microglial activation in vitro; ELISA was used to determine the release of Cat H and proinflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ). Cat H activity was analyzed by cellular Cat H assay kit. Flow cytometry and in situ cell death detection were used to investigate neuronal death. Data were evaluated for statistical significance with one-way ANOVA and t test. Cat H mRNA was only present in perivascular microglia and non-parenchymal sites under normal conditions. After LPS injection, Cat H mRNA expression in activated microglia in different brain regions was increased. Twenty-four hours after LPS injection, Cat H mRNA expression was maximal in SNr; 72 h later, it peaked in cerebral cortex and hippocampus then decreased and maintained at a low level. The expression of Cat H protein exhibited the similar alterations after LPS injection. In vitro, inflammatory stimulation (LPS, TNF-α, IL-1β, IL-6, and IFN-γ) increased the release and activity of Cat H in microglia. Conversely, addition of Cat H to microglia promoted the production and release of NO, IL-1β, and IFN-γ which could be prevented by neutralizing antibody. Further, addition of Cat H to Neuro2a cells induced

  20. Development, alteration and real time dynamics of conjunctiva-associated lymphoid tissue.

    Directory of Open Access Journals (Sweden)

    Sebastian Siebelmann

    Full Text Available PURPOSE: Conjunctiva-associated lymphoid tissue (CALT is thought to play a key role in initiating ocular surface related immune responses. This study was planned to get first profound insights into the function of CALT related to development, cellular dynamics and morphological alteration using a novel mouse model. METHODS: Expression and morphology of CALT were investigated using BALB/c mice kept under different housing conditions, after topical antigen-stimulation and following lymphadenectomy and splenectomy. Particles and bacteria were applied topically to study antigen-transport. Intravital visualization was performed using two-photon microscopy. RESULTS: Postnatal development and ultrastructure of CALT in the mouse is similar to humans. Topical antigen-challenge significantly alters CALT expression. Bacterial translocation is demonstrated via lymphoepithelium whereas cellular velocities within follicles were approximately 8 µm/min. CONCLUSIONS: CALT in the mouse is an immunological interface of the ocular surface, featuring dynamic processes such as morphological plasticity, particle/bacteria transport and cellular migration.

  1. Hurricane Sandy Exposure Alters the Development of Neural Reactivity to Negative Stimuli in Children.

    Science.gov (United States)

    Kessel, Ellen M; Nelson, Brady D; Kujawa, Autumn; Hajcak, Greg; Kotov, Roman; Bromet, Evelyn J; Carlson, Gabrielle A; Klein, Daniel N

    2018-03-01

    This study examined whether exposure to Hurricane Sandy-related stressors altered children's brain response to emotional information. An average of 8 months (M age  = 9.19) before and 9 months after (M age  = 10.95) Hurricane Sandy, 77 children experiencing high (n = 37) and low (n = 40) levels of hurricane-related stress exposure completed a task in which the late positive potential, a neural index of emotional reactivity, was measured in response to pleasant and unpleasant, compared to neutral, images. From pre- to post-Hurricane Sandy, children with high stress exposure failed to show the same decrease in emotional reactivity to unpleasant versus neutral stimuli as those with low stress exposure. Results provide compelling evidence that exposure to natural disaster-related stressors alters neural emotional reactivity to negatively valenced information. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  2. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster

    Science.gov (United States)

    Mishra, Monalisa; Sabat, Debabrat; Ekka, Basanti; Sahu, Swetapadma; P, Unnikannan; Dash, Priyabrat

    2017-08-01

    Zirconia nanoparticles (ZrO2 NPs) have been extensively used in teeth and bone implants and thus get a chance to interact with the physiological system. The current study investigated the oral administration of various concentrations of ZrO2 NPs synthesized by the hydrothermal method (0.25 to 5.0 mg L-1) on Drosophila physiology and behaviour. The size of the currently studied nanoparticle varies from 10 to 12 nm. ZrO2 NPs accumulated within the gut in a concentration-dependent manner and generate reactive oxygen species (ROS) only at 2.5 and 5.0 mg L-1 concentrations. ROS was detected by nitroblue tetrazolium (NBT) assay and 2',7'-dichlorofluorescein http://www.ncbi.nlm.nih.gov/pubmed/20370560 (H2DCF) staining. The ROS toxicity alters the larval gut structure as revealed by DAPI staining. The NP stress of larvae affects the Drosophila development by distressing pupa count and varying the phenotypic changes in sensory organs (eye, thorax bristle, wings). Besides phenotypic changes, flawed climbing behaviour against gravity was seen in ZrO2 NP-treated flies. All together, for the first time, we have reported that a ROS-mediated ZrO2 NP toxicity alters neuronal development and functioning using Drosophila as a model organism. [Figure not available: see fulltext.

  3. Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2009-01-01

    Full Text Available Microglia activated in response to brain injury release neurotoxic factors including nitric oxide (NO and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. Ketamine, an anesthetic induction agent, is generally reserved for use in patients with severe hypotension or respiratory depression. In this study, we found that ketamine (100 and 250 μM concentration-dependently inhibited lipopolysaccharide (LPS-induced NO and IL-1β release in primary cultured microglia. However, ketamine (100 and 250 μM did not significantly inhibit the LPS-induced TNF-α production in microglia, except at the higher concentration (500 μM. Further study of the molecular mechanisms revealed that ketamine markedly inhibited extracellular signal-regulated kinase (ERK1/2 phosphorylation but not c-Jun N-terminal kinase or p38 mitogen-activated protein kinase stimulated by LPS in microglia. These results suggest that microglial inactivation by ketamine is at least partially due to inhibition of ERK1/2 phosphorylation.

  4. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication.

    Science.gov (United States)

    Rapp, Ryan A; Haigler, Candace H; Flagel, Lex; Hovav, Ran H; Udall, Joshua A; Wendel, Jonathan F

    2010-11-15

    Understanding the evolutionary genetics of modern crop phenotypes has a dual relevance to evolutionary biology and crop improvement. Modern upland cotton (Gossypium hirsutum L.) was developed following thousands of years of artificial selection from a wild form, G. hirsutum var. yucatanense, which bears a shorter, sparser, layer of single-celled, ovular trichomes ('fibre'). In order to gain an insight into the nature of the developmental genetic transformations that accompanied domestication and crop improvement, we studied the transcriptomes of cotton fibres from wild and domesticated accessions over a developmental time course. Fibre cells were harvested between 2 and 25 days post-anthesis and encompassed the primary and secondary wall synthesis stages. Using amplified messenger RNA and a custom microarray platform designed to interrogate expression for 40,430 genes, we determined global patterns of expression during fibre development. The fibre transcriptome of domesticated cotton is far more dynamic than that of wild cotton, with over twice as many genes being differentially expressed during development (12,626 versus 5273). Remarkably, a total of 9465 genes were diagnosed as differentially expressed between wild and domesticated fibres when summed across five key developmental time points. Human selection during the initial domestication and subsequent crop improvement has resulted in a biased upregulation of components of the transcriptional network that are important for agronomically advanced fibre, especially in the early stages of development. About 15% of the differentially expressed genes in wild versus domesticated cotton fibre have no homology to the genes in databases. We show that artificial selection during crop domestication can radically alter the transcriptional developmental network of even a single-celled structure, affecting nearly a quarter of the genes in the genome. Gene expression during fibre development within accessions and expression

  5. Microglial involvement in neuroplastic changes following focal brain ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    2009-12-01

    Full Text Available The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in some specific events of neuronal plasticity, neurite outgrowth and synaptogenesis. Since microglia is a source of neurotrophic factors, the identification of the brain-derived neurophic factor (BDNF as possible molecular actor involved in these events was also attempted. As a means of down-regulating the microglial response induced by ischemia, 3-aminobenzamide (3-AB, 90 mg/kg, i.p. was used to inhibit the poly(ADP-ribose polymerase-1 (PARP-1. Indeed, PARP-1 contributes to the activation of the transcription factor NF-kB, which is essential to the upregulation of proinflammatory genes, in particular responsible for microglial activation/proliferation. Experiments were conducted in rats subjected to photothrombotic ischemia which leads to a strong and early microglial cells activation/proliferation followed by an infiltration of macrophages within the cortical lesion, events evaluated at serial time points up to 1 month post-ictus by immunostaining for OX-42 and ED-1. Our most striking finding was that the decrease in acute microglial activation induced by 3-AB was associated with a long term down-regulation of two neuronal plasticity proteins expression, synaptophysin (marker of synaptogenesis and GAP-43 (marker of neuritogenesis as well as to a significant decrease in tissue BDNF production. Thus, our data argue in favour of a supportive role for microglia in brain neuroplasticity stimulation possibly through BDNF production, suggesting that a targeted

  6. Maternal vitamin D depletion alters neurogenesis in the developing rat brain.

    Science.gov (United States)

    Cui, Xiaoying; McGrath, John J; Burne, Thomas H J; Mackay-Sim, Alan; Eyles, Darryl W

    2007-06-01

    Evidence is accumulating that normal levels of vitamin D are important for brain development. Vitamin D acts as an anti-proliferative agent in a wide variety of tissues and developmental vitamin D (DVD) deficiency has been shown to alter brain structure and function. The aim of this study was to investigate the effect of DVD deficiency on neuroprogenitor formation in the neonatal brain. We show that DVD deficiency increased the number of neurospheres formed in cultures from the neonatal subventricular zone. Exogenous vitamin D added to the culture medium reduced neurosphere number in control but not DVD cultures. We show the receptor for vitamin D is concentrated in the subventricular zone and is also present in cultured neurospheres prepared from this region. These results show that vitamin D can regulate cell proliferation in the developing brain. Further studies are warranted to examine the underlying mechanisms for these findings.

  7. Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model.

    Directory of Open Access Journals (Sweden)

    Alissa R Carver

    Full Text Available Using an animal model, we have previously shown that preeclampsia results in long-term adverse neuromotor outcomes in the offspring, and this phenotype was prevented by antenatal treatment with pravastatin. This study aims to localize the altered neuromotor programming in this animal model and to evaluate the role of pravastatin in its prevention.For the preeclampsia model, pregnant CD-1 mice were randomly allocated to injection of adenovirus carrying sFlt-1 or its control virus carrying mFc into the tail vein. Thereafter they received pravastatin (sFlt-1-pra "experimental group" or water (sFlt-1 "positive control" until weaning. The mFc group ("negative control" received water. Offspring at 6 months of age were sacrificed, and whole brains underwent magnetic resonance imaging (MRI. MRIs were performed using an 11.7 Tesla vertical bore MRI scanner. T2 weighted images were acquired to evaluate the volumes of 28 regions of interest, including areas involved in adaptation and motor, spatial and sensory function. Cytochemistry and cell quantification was performed using neuron-specific Nissl stain. One-way ANOVA with multiple comparison testing was used for statistical analysis.Compared with control offspring, male sFlt-1 offspring have decreased volumes in the fimbria, periaquaductal gray, stria medullaris, and ventricles and increased volumes in the lateral globus pallidus and neocortex; however, female sFlt-1 offspring showed increased volumes in the ventricles, stria medullaris, and fasciculus retroflexus and decreased volumes in the inferior colliculus, thalamus, and lateral globus pallidus. Neuronal quantification via Nissl staining exhibited decreased cell counts in sFlt-1 offspring neocortex, more pronounced in males. Prenatal pravastatin treatment prevented these changes.Preeclampsia alters brain development in sex-specific patterns, and prenatal pravastatin therapy prevents altered neuroanatomic programming in this animal model.

  8. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    International Nuclear Information System (INIS)

    Marlatt, Vicki L.; Veldhoen, Nik; Lo, Bonnie P.; Bakker, Dannika; Rehaume, Vicki; Vallée, Kurtis; Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C.; Elphick, James R.; Helbing, Caren C.

    2013-01-01

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26–28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T 4 ), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T 4 /TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T 4 treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T 4 . The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  9. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  10. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds.

    Science.gov (United States)

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-10-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds.

  11. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ellis Connie L

    2010-03-01

    Full Text Available Abstract Background Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN and neuropathic pain (NeP, our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. Results Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. Conclusions The prevention of microglial accumulation and activation in the dorsal spinal

  12. Aging leads to altered microglial function that reduces brain resiliency increasing vulnerability to neurodegenerative diseases.

    Science.gov (United States)

    Bickford, Paula C; Flowers, Antwoine; Grimmig, Bethany

    2017-08-01

    Aging is the primary risk factor for many neurodegenerative diseases. Thus, understanding the basic biological changes that take place with aging that lead to the brain being less resilient to disease progression of neurodegenerative diseases such as Parkinson's disease or Alzheimer's disease or insults to the brain such as stroke or traumatic brain injuries. Clearly this will not cure the disease per se, yet increasing the ability of the brain to respond to injury could improve long term outcomes. The focus of this review is examining changes in microglia with age and possible therapeutic interventions involving the use of polyphenol rich dietary supplements. Published by Elsevier Inc.

  13. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition.

    Directory of Open Access Journals (Sweden)

    Samantha K Chapman

    Full Text Available To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate.

  14. Chronic intermittent hyperoxia alters the development of the hypoxic ventilatory response in neonatal rats.

    Science.gov (United States)

    Logan, Sarah; Tobin, Kristina E; Fallon, Sarah C; Deng, Kevin S; McDonough, Amy B; Bavis, Ryan W

    2016-01-01

    Chronic exposure to sustained hyperoxia alters the development of the respiratory control system, but the respiratory effects of chronic intermittent hyperoxia have rarely been investigated. We exposed newborn rats to short, repeated bouts of 30% O2 or 60% O2 (5 bouts h(-1)) for 4-15 days and then assessed their hypoxic ventilatory response (HVR; 10 min at 12% O2) by plethysmography. The HVR tended to be enhanced by intermittent hyperoxia at P4 (early phase of the HVR), but it was significantly reduced at P14-15 (primarily late phase of the HVR) compared to age-matched controls; the HVR recovered when individuals were returned to room air and re-studied as adults. To investigate the role of carotid body function in this plasticity, single-unit carotid chemoafferent activity was recorded in vitro. Intermittent hyperoxia tended to decrease spontaneous action potential frequency under normoxic conditions but, contrary to expectations, hypoxic responses were only reduced at P4 (not at P14) and only in rats exposed to higher O2 levels (i.e., intermittent 60% O2). Rats exposed to intermittent hyperoxia had smaller carotid bodies, and this morphological change may contribute to the blunted HVR. In contrast to rats exposed to intermittent hyperoxia beginning at birth, two weeks of intermittent 60% O2 had no effect on the HVR or carotid body size of rats exposed beginning at P28; therefore, intermittent hyperoxia-induced respiratory plasticity appears to be unique to development. Although both intermittent and sustained hyperoxia alter carotid body development and the HVR of rats, the specific effects and time course of this plasticity differs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Critical disease windows shaped by stress exposure alter allocation trade-offs between development and immunity.

    Science.gov (United States)

    Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W

    2018-01-01

    Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions

  16. Microglial cell death induced by glycated bovine serum albumin: nitric oxide involvement.

    Science.gov (United States)

    Khazaei, Mohammad R; Habibi-Rezaei, Mehran; Karimzadeh, Fereshteh; Moosavi-Movahedi, Ali Akbar; Sarrafnejhad, Abdo Alfattah; Sabouni, Farzaneh; Bakhti, Mostafa

    2008-08-01

    Nonenzymatic glycation results in the formation of advanced glycation end products (AGEs) through a nonenzymatic multistep reaction of reducing sugars with proteins. AGEs have been suspected to be involved in the pathogenesis of several chronic clinical neurodegenerative complications including Alzheimer's disease, which is characterized with the activation of microglial cells in neuritic plaques. To find out the consequence of this activation on microglial cells, we treated the cultured microglial cells with different glycation levels of Bovine Serum Albumin (BSA) which were prepared in vitro. Extent of glycation of protein has been characterized during 16 weeks of incubation with glucose. Treatment of microglial cells with various levels of glycated albumin induced nitric oxide (NO) production and consequently cell death. We also tried to find out the mode of death in AGE-activated microglial cells. Altogether, our results suggest that AGE treatment causes microglia to undergo NO-mediated apoptotic and necrotic cell death in short term and long term, respectively. NO production is a consequence of iNOS expression in a JNK dependent RAGE signalling after activation of RAGE by AGE-BSA.

  17. Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Nan Gu

    2016-07-01

    Full Text Available Peripheral nerve injury causes neuropathic pain accompanied by remarkable microgliosis in the spinal cord dorsal horn. However, it is still debated whether infiltrated monocytes contribute to injury-induced expansion of the microglial population. Here, we found that spinal microgliosis predominantly results from local proliferation of resident microglia but not from infiltrating monocytes after spinal nerve transection (SNT by using two genetic mouse models (CCR2RFP/+:CX3CR1GFP/+ and CX3CR1creER/+:R26tdTomato/+ mice as well as specific staining of microglia and macrophages. Pharmacological inhibition of SNT-induced microglial proliferation correlated with attenuated neuropathic pain hypersensitivities. Microglial proliferation is partially controlled by purinergic and fractalkine signaling, as CX3CR1−/− and P2Y12−/− mice show reduced spinal microglial proliferation and neuropathic pain. These results suggest that local microglial proliferation is the sole source of spinal microgliosis, which represents a potential therapeutic target for neuropathic pain management.

  18. Storms do not alter long-term watershed development influences on coastal water quality.

    Science.gov (United States)

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?

    Directory of Open Access Journals (Sweden)

    Mawrin Christian

    2011-08-01

    Full Text Available Abstract Background Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6 and tumour necrosis factor α has been observed during acute episodes of major depression. These peripheral immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex where depression-associated alterations of glutamatergic neurotransmission have been described. Methods Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA glutamate receptor agonist quinolinic acid (QUIN in the subgenual anterior cingulate cortex (sACC, anterior midcingulate cortex (aMCC and pregenual anterior cingulate cortex (pACC of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7; bipolar disorder/BD, n = 5 was analyzed using immunohistochemistry and compared with its expression in 10 healthy control subjects. Results Depressed patients had a significantly increased density of QUIN-positive cells in the sACC (P = 0.003 and the aMCC (P = 0.015 compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ between the groups (P = 0.558. Post-hoc tests showed that significant findings were attributed to MDD and were absent in BD. Conclusions These results add a novel link to the immune hypothesis of depression by providing evidence for an upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.

  20. Neuropathic pain inhibitor, RAP-103, is a potent inhibitor of microglial CCL1/CCR8.

    Science.gov (United States)

    Noda, Mami; Tomonaga, Daichi; Kitazono, Kota; Yoshioka, Yusaku; Liu, Jiadai; Rousseau, Jean-Philippe; Kinkead, Richard; Ruff, Michael R; Pert, Candace B

    2017-12-14

    Chemokine signaling is important in neuropathic pain, with microglial cells expressing chemokine (C-C motif) receptor CCR2, CCR5 and CCR8, all playing key roles. In the previous report (Padi et al., 2012), oral administration of a short peptide, RAP-103, for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rodents. As for the mechanism of the inhibiting effect of RAP-103, it was speculated to be due to dual blockade of CCR2 and CCR5. We report here that RAP-103 exhibits stronger antagonism for CCR8 (half maximal inhibitory concentration [IC 50 ] 7.7 fM) compared to CCR5 (IC 50  < 100 pM) in chemotaxis using primary cultured mouse microglia. In addition, RAP-103 at a concentration of 0.1 pM completely inhibits membrane ruffling and phagocytosis induced by chemokine (C-C motif) ligand 1 (CCL1), an agonist for CCR8. It has been shown that CCL1/CCR8 signaling is important in tactile allodynia induced by nerve ligation. Therefore, CCR8, among other chemokine receptors such as CCR2/CCR5, could be the most potent target for RAP-103. Inhibitory effects of RAP-103 on plural chemokine receptors may play important roles for broad clinical use in neuropathic pain treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of methamphetamine on the microglial damage: role of potassium channel Kv1.3.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Methamphetamine (Meth abusing represents a major public health problem worldwide. Meth has long been known to induce neurotoxicity. However, the mechanism is still remained poorly understood. Growing evidences indicated that the voltage-gated potassium channels (Kv were participated in neuronal damage and microglia function. With the whole cell patch clamp, we found that Meth significantly increased the outward K⁺ currents, therefore, we explored whether Kv1.3, one of the major K⁺ channels expressed in microglia, was involved in Meth-induced microglia damage. Our study showed that Meth significantly increased the cell viability in a dose dependent manner, while the Kv blocker, tetraethylamine (TEA, 4-Aminopyridine (4-AP and Kv1.3 specific antagonist margatoxin (MgTx, prevented against the damage mediated by Meth. Interestingly, treatment of cells with Meth resulted in increasing expression of Kv1.3 rather than Kv1.5, at both mRNA and protein level, which is partially blocked by MgTx. Furthermore, Meth also stimulated a significant increased expression of IL-6 and TNF-α at protein level, which was significantly inhibited by MgTx. Taken together, these results demonstrated that Kv1.3 was involved in Meth-mediated microglial damage, providing the potential target for the development of therapeutic strategies for Meth abuse.

  2. Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kim Wilkinson

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS. Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1, CD36, and RAGE (receptor for advanced glycation end products. SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.

  3. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-01-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  4. Recent developments in altering the fatty acid composition of ruminant-derived foods.

    Science.gov (United States)

    Shingfield, K J; Bonnet, M; Scollan, N D

    2013-03-01

    There is increasing evidence to indicate that nutrition is an important factor involved in the onset and development of several chronic human diseases including cancer, cardiovascular disease (CVD), type II diabetes and obesity. Clinical studies implicate excessive consumption of medium-chain saturated fatty acids (SFA) and trans-fatty acids (TFA) as risk factors for CVD, and in the aetiology of other chronic conditions. Ruminant-derived foods are significant sources of medium-chain SFA and TFA in the human diet, but also provide high-quality protein, essential micronutrients and several bioactive lipids. Altering the fatty acid composition of ruminant-derived foods offers the opportunity to align the consumption of fatty acids in human populations with public health policies without the need for substantial changes in eating habits. Replacing conserved forages with fresh grass or dietary plant oil and oilseed supplements can be used to lower medium-chain and total SFA content and increase cis-9 18:1, total conjugated linoleic acid (CLA), n-3 and n-6 polyunsaturated fatty acids (PUFA) to a variable extent in ruminant milk. However, inclusion of fish oil or marine algae in the ruminant diet results in marginal enrichment of 20- or 22-carbon PUFA in milk. Studies in growing ruminants have confirmed that the same nutritional strategies improve the balance of n-6/n-3 PUFA, and increase CLA and long-chain n-3 PUFA in ruminant meat, but the potential to lower medium-chain and total SFA is limited. Attempts to alter meat and milk fatty acid composition through changes in the diet fed to ruminants are often accompanied by several-fold increases in TFA concentrations. In extreme cases, the distribution of trans 18:1 and 18:2 isomers in ruminant foods may resemble that of partially hydrogenated plant oils. Changes in milk fat or muscle lipid composition in response to diet are now known to be accompanied by tissue-specific alterations in the expression of one or more

  5. Low-power laser irradiation (LPLI) attenuates microglial cytotoxicity through the activation of Src pathway

    Science.gov (United States)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.

    2014-02-01

    It has been known for a long time that microglial activation plays an important role in the pathology of neurodegenerative diseases. Once activated, they have macrophage-like capabilities, which can be detrimental by producing proinflammatory and neurotoxic factors including cytokines, reactive oxygen species (ROS) and nitric oxide that directly or indirectly cause neurodegeneration. Therefore, the regulation of microglial-induced neuroinflammation is considered a useful strategy in searching for neuroprotective treatments. In this study, our results showed that low power laser irradiation (LPLI) (20 J/cm2) could suppress microglial-induced neuroinflammation in LPS-activated microglia. We found that LPLI-mediated neuroprotection was achieved by activating tyrosine kinases Src, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. Our research may provide a feasible therapeutic approach to control the progression of neurodegenerative diseases.

  6. Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype

    DEFF Research Database (Denmark)

    Khan, Asif Manzoor; Babcock, Alicia; Saeed, Hamid

    2015-01-01

    The susceptibility of the aging brain to neurodegenerative disease may in part be attributed to cellular aging of the microglial cells that survey it. We investigated the effect of cellular aging induced by telomere shortening on microglia by the use of mice lacking the telomerase RNA component...... distribution and normal expression of CD45 and CD68 and the aging marker, ferritin, but were morphologically distinct from microglia in both adult and old wild-type mice. TERC KO mice also showed increased cellular apoptosis and impaired spatial learning. Our results suggest that individual microglia...... are relatively resistant to telomerase deficiency during steady state conditions, despite an overall reduction in microglial numbers. Furthermore, telomerase deficiency and aging may provide disparate cues leading to distinct changes in microglial morphology and phenotype....

  7. Fear learning alterations after traumatic brain injury and their role in development of posttraumatic stress symptoms.

    Science.gov (United States)

    Glenn, Daniel E; Acheson, Dean T; Geyer, Mark A; Nievergelt, Caroline M; Baker, Dewleen G; Risbrough, Victoria B

    2017-08-01

    It is unknown how traumatic brain injury (TBI) increases risk for posttraumatic stress disorder (PTSD). One potential mechanism is via alteration of fear-learning processes that could affect responses to trauma memories and cues. We utilized a prospective, longitudinal design to determine if TBI is associated with altered fear learning and extinction, and if fear processing mediates effects of TBI on PTSD symptom change. Eight hundred fifty two active-duty Marines and Navy Corpsmen were assessed before and after deployment. Assessments included TBI history, PTSD symptoms, combat trauma and deployment stress, and a fear-potentiated startle task of fear acquisition and extinction. Startle response and self-reported expectancy and anxiety served as measures of fear conditioning, and PTSD symptoms were measured with the Clinician-Administered PTSD Scale. Individuals endorsing "multiple hit" exposure (both deployment TBI and a prior TBI) showed the strongest fear acquisition and highest fear expression compared to groups without multiple hits. Extinction did not differ across groups. Endorsing a deployment TBI was associated with higher anxiety to the fear cue compared to those without deployment TBI. The association of deployment TBI with increased postdeployment PTSD symptoms was mediated by postdeployment fear expression when recent prior-TBI exposure was included as a moderator. TBI associations with increased response to threat cues and PTSD symptoms remained when controlling for deployment trauma and postdeployment PTSD diagnosis. Deployment TBI, and multiple-hit TBI in particular, are associated with increases in conditioned fear learning and expression that may contribute to risk for developing PTSD symptoms. © 2017 Wiley Periodicals, Inc.

  8. GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease.

    Science.gov (United States)

    Kamphuis, Willem; Kooijman, Lieneke; Orre, Marie; Stassen, Oscar; Pekny, Milos; Hol, Elly M

    2015-06-01

    Reactive astrocytes with an increased expression of intermediate filament (IF) proteins Glial Fibrillary Acidic Protein (GFAP) and Vimentin (VIM) surround amyloid plaques in Alzheimer's disease (AD). The functional consequences of this upregulation are unclear. To identify molecular pathways coupled to IF regulation in reactive astrocytes, and to study the interaction with microglia, we examined WT and APPswe/PS1dE9 (AD) mice lacking either GFAP, or both VIM and GFAP, and determined the transcriptome of cortical astrocytes and microglia from 15- to 18-month-old mice. Genes involved in lysosomal degradation (including several cathepsins) and in inflammatory response (including Cxcl5, Tlr6, Tnf, Il1b) exhibited a higher AD-induced increase when GFAP, or VIM and GFAP, were absent. The expression of Aqp4 and Gja1 displayed the same pattern. The downregulation of neuronal support genes in astrocytes from AD mice was absent in GFAP/VIM null mice. In contrast, the absence of IFs did not affect the transcriptional alterations induced by AD in microglia, nor was the cortical plaque load altered. Visualizing astrocyte morphology in GFAP-eGFP mice showed no clear structural differences in GFAP/VIM null mice, but did show diminished interaction of astrocyte processes with plaques. Microglial proliferation increased similarly in all AD groups. In conclusion, absence of GFAP, or both GFAP and VIM, alters AD-induced changes in gene expression profile of astrocytes, showing a compensation of the decrease of neuronal support genes and a trend for a slightly higher inflammatory expression profile. However, this has no consequences for the development of plaque load, microglial proliferation, or microglial activation. © 2015 Wiley Periodicals, Inc.

  9. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain.

    Directory of Open Access Journals (Sweden)

    Manohar B Mutnal

    2011-01-01

    Full Text Available Congenital cytomegalovirus (CMV brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons.

  10. Neonatal exposure to a glyphosate based herbicide alters the development of the rat uterus.

    Science.gov (United States)

    Guerrero Schimpf, Marlise; Milesi, María M; Ingaramo, Paola I; Luque, Enrique H; Varayoud, Jorgelina

    2017-02-01

    Glyphosate-based herbicides (GBHs) are extensively used to control weeds on both cropland and non-cropland areas. No reports are available regarding the effects of GBHs exposure on uterine development. We evaluated if neonatal exposure to a GBH affects uterine morphology, proliferation and expression of proteins that regulate uterine organogenetic differentiation in rats. Female Wistar pups received saline solution (control, C) or a commercial formulation of glyphosate (GBH, 2mg/kg) by sc injection every 48h from postnatal day (PND) 1 to PND7. Rats were sacrificed on PND8 (neonatal period) and PND21 (prepubertal period) to evaluate acute and short-term effects, respectively. The uterine morphology was evaluated in hematoxylin and eosin stained sections. The epithelial and stromal immunophenotypes were established by assessing the expression of luminal epithelial protein (cytokeratin 8; CK8), basal epithelial proteins (p63 and pan cytokeratin CK1, 5, 10 and 14); and vimentin by immunohistochemistry (IHC). To investigate changes on proteins that regulate uterine organogenetic differentiation we evaluated the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), Hoxa10 and Wnt7a by IHC. The GBH-exposed uteri showed morphological changes, characterized by an increase in the incidence of luminal epithelial hyperplasia (LEH) and an increase in the stromal and myometrial thickness. The epithelial cells showed a positive immunostaining for CK8, while the stromal cells for vimentin. GBH treatment increased cell proliferation in the luminal and stromal compartment on PND8, without changes on PND21. GBH treatment also altered the expression of proteins involved in uterine organogenetic differentiation. PR and Hoxa10 were deregulated both immediately and two weeks after the exposure. ERα was induced in the stromal compartment on PND8, and was downregulated in the luminal epithelial cells of gyphosate-exposed animals on PND21. GBH treatment also increased

  11. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines

    Science.gov (United States)

    Brewer, Shannon K.; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-08-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  12. Advancing environmental flow science: Developing frameworks for altered landscapes and integrating efforts across disciplines.

    Science.gov (United States)

    Brewer, Shannon K.; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-01-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  13. Perinatal exposure to genistein alters reproductive development and aggressive behavior in male mice.

    Science.gov (United States)

    Wisniewski, Amy B; Cernetich, Amy; Gearhart, John P; Klein, Sabra L

    2005-02-15

    Exposure to endocrine disrupting chemicals adversely affects reproductive development and behavior in males. The goal of this study was to determine if exposure to genistein, an isoflavone found in soy, during early periods of sex differentiation alters reproductive development and behavior in male mice. Female C57BL/6 mice were fed a phytoestrogen-free diet supplemented with 0, 5 or 300 mg/kg of genistein throughout gestation and lactation. Anogenital distance (AGD) and body mass of male offspring was measured weekly from postnatal days 2-21, timing of preputial separation was assessed at puberty, and in adulthood, reproductive organ masses, sperm and testosterone production, and reproductive and aggressive behaviors were assessed. Exposure to genistein resulted in smaller AGD are reduced body mass, with the low-dose diet exerting a greater effect. Timing of preputial separation, adult reproductive behavior, sperm concentrations and testosterone production were not influenced by genistein treatment at either dose. Aggressive behaviors were decreased, whereas defensive behaviors were increased, in males that received the low-dose genistein diet. Exposure to genistein during critical periods of sex differentiation results in concurrent and persistent demasculinization in male mice. Phenotypic and behavioral abnormalities induced by genistein showed a non-monotonic response, where treatment with a low dose exerted a greater effect than treatment with a high dose of genistein. Given the popularity of soy infant formulas, the influence isoflavone exposure on reproductive and behavioral health in boys and men should be considered.

  14. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  15. Neonatal exposure to sucralose does not alter biochemical markers of neuronal development or adult behavior.

    Science.gov (United States)

    Viberg, Henrik; Fredriksson, Anders

    2011-01-01

    Sucralose, a high-intensity sweetener, has been approved as a general-purpose sweetener in all food since the late 1990s. Due to its good taste and physiochemical profile, its use has increased and sucralose is considered a way of managing health and an option to improve the quality of life in the diabetic population. Recently high concentrations of sucralose have been found in the environment. Other environmental pollutants have been shown to induce neurotoxic effects when administered during a period of rapid brain growth and development. This period of rapid brain growth and development is postnatal in mice and rats, spanning the first 3-4 wk of life, reaching its peak around postnatal day 10, whereas in humans, brain growth and development is perinatal. The proteins calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau play important roles during brain growth and development. In the present study, mice were orally exposed to 5-125 mg of sucralose per kilogram of body weight per day during postnatal days 8-12. Twenty-four hours after last exposure, brains were analyzed for calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau, and at the age of 2 mo the animals were tested for spontaneous behavior. The protein analysis showed no alterations in calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, or tau. Furthermore, there were no disturbances in adult behavior or habituation after neonatal sucralose exposure. The present study shows that repeated neonatal exposure to the artificial sweetener sucralose does not result in neurotoxicity, which supports that sucralose seems to be a safe alternative for people who want or need to reduce or substitute glucose in their diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Sensory experience alters specific branches of individual corticocortical axons during development

    NARCIS (Netherlands)

    Bruno, A.C; Hahn, T.T.; Wallace, D.J.; de Kock, C.P.J.; Sakmann, B.

    2009-01-01

    Sensory experience can, over the course of days to weeks, produce long-lasting changes in brain function. Recent studies suggest that functional plasticity is mediated by alterations of the strengths of existing synapses or dynamics of dendritic spines. Alterations of cortical axons could also

  17. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  18. Altered Global Gene Expression in First Trimester Placentas of Women Destined to Develop Preeclampsia

    Science.gov (United States)

    Founds, Sandra A.; Conley, Yvette P.; Lyons-Weiler, James F.; Jeyabalan, Arun; Hogge, W. Allen; Conrad, Kirk P.

    2009-01-01

    Background Preeclampsia is a pregnancy-specific disorder that remains a leading cause of maternal, fetal and neonatal morbidity and mortality, and is associated with risk for future cardiovascular disease. There are no reliable predictors, specific preventative measures or treatments other than delivery. A widely-held view is that the antecedents of preeclampsia lie with impaired placentation in early pregnancy. Accordingly, we hypothesized dysregulation of global gene expression in first trimester placentas of women who later manifested preeclampsia. Methods Surplus chorionic villus sampling (CVS) tissues were collected at 10–12 weeks gestation in 160 patients with singleton fetuses. Four patients developed preeclampsia, and their banked CVS specimens were matched to 8 control samples from patients with unaffected pregnancies. Affymetrix HG-U133 Plus 2.0 GeneChips were utilized for microarray analysis. Naïve Bayes prediction modeling and pathway analysis were conducted. qRT-PCR examined three of the dysregulated genes. Results Thirty-six differentially expressed genes were identified in the preeclampsia placentas. qRT-PCR verified the microarray analysis. Thirty-one genes were down-regulated. Many were related to inflammation/immunoregulation and cell motility. Decidual gene dysregulation was prominent. No evidence was found for alterations in hypoxia and oxidative stress regulated genes. Conclusions To our knowledge, this is the first study to show dysregulation of gene expression in the early placentas of women ~6 months before developing preeclampsia, thereby reinforcing a placental origin of the disorder. We hypothesize that placentation in preeclampsia is compromised in the first trimester by maternal and fetal immune dysregulation, abnormal decidualization, or both, thereby impairing trophoblast invasion. Several of the genes provide potential targets for the development of clinical biomarkers in maternal blood during the first trimester. Supplementary

  19. Asthma pregnancy alters postnatal development of chromaffin cells in the rat adrenal medulla.

    Directory of Open Access Journals (Sweden)

    Xiu-Ming Wu

    Full Text Available Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown.This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3 to postnatal day 60 (P60. Asthmatic pregnant rats (AP, nerve growth factor (NGF-treated pregnant rats (NP and NGF antibody-treated pregnant rats (ANP were sensitized and challenged with ovalbumin (OVA; NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP, offspring from AP (OAP, offspring from NP (ONP, and offspring from ANP (OANP. The expressions of phenylethanolamine N-methyltransferase (PNMT protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI, corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP.Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation.

  20. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Annaëlle Charrier

    2017-04-01

    Full Text Available In mammals, the circadian clocks network (central and peripheral oscillators controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder. However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders. First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  1. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    Science.gov (United States)

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  2. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition.

    Science.gov (United States)

    Ormerod, Kiel G; LePine, Olivia K; Abbineni, Prabhodh S; Bridgeman, Justin M; Coorssen, Jens R; Mercier, A Joffre; Tattersall, Glenn J

    2017-07-03

    Diet profoundly influences the behavior of animals across many phyla. Despite this, most laboratories using model organisms, such as Drosophila, use multiple, different, commercial or custom-made media for rearing their animals. In addition to measuring growth, fecundity and longevity, we used several behavioral and physiological assays to determine if and how altering food media influence wild-type (Canton S) Drosophila melanogaster, at larval, pupal, and adult stages. Comparing 2 commonly used commercial food media we observed several key developmental and morphological differences. Third-instar larvae and pupae developmental timing, body weight and size, and even lifespan significantly differed between the 2 diets, and some of these differences persisted into adulthood. Diet was also found to produce significantly different thermal preference, locomotory capacity for geotaxis, feeding rates, and lower muscle response to hormonal stimulation. There were no differences, however, in adult thermal preferences, in the number or viability of eggs laid, or in olfactory learning and memory between the diets. We characterized the composition of the 2 diets and found particularly significant differences in cholesterol and (phospho)lipids between them. Notably, diacylglycerol (DAG) concentrations vary substantially between the 2 diets, and may contribute to key phenotypic differences, including lifespan. Overall, the data confirm that 2 different diets can profoundly influence the behavior, physiology, morphology and development of wild-type Drosophila, with greater behavioral and physiologic differences occurring during the larval stages.

  3. Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure.

    Science.gov (United States)

    Jones, L; Fischer, I; Levitt, P

    1996-01-01

    reached a nadir of 50% in the cocaine-exposed animals, indicative of a change in the organization of the apical dendrites compared to the control animals. Dendritic profiles of anterior cingulate neurons, filled by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine percholate (Dil), confirmed that in the cocaine offspring, the dendrites coursed in an irregular, wavy manner from deep to superficial layers, suggestive of dendrites that were longer than normal, although cortical thickness was unchanged. The altered dendritic profiles also were seen in Golgi-impregnated neurons. The data indicate that prenatal exposure to cocaine can lead to specific alterations of neuronal growth that are long lasting. The lack of dendritic changes in visual cortex suggests that the drug does not modify development of cortical regions uniformly. This study also provides a new focus on the anterior cingulate cortex as a site in which aberrant structure-function relationships following prenatal cocaine exposure should be examined in both animal models and clinically.

  4. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  5. Hypothyroidism alters antioxidant defence system in rat brainstem during postnatal development and adulthood.

    Science.gov (United States)

    Jena, Srikanta; Bhanja, Shravani

    2014-08-01

    The present investigation was carried out to evaluate alterations in oxidative stress parameter [lipid peroxidation (LPx)] and antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] in rat brainstem in response to neonatal hypothyroidism during development (from birth to 7, 15 and 30 days old) and adulthood (90 days old). Hypothyroidism in rats was induced by feeding the lactating mothers (from the day of parturition till weaning, 25 days old) or directly to the pups with 0.05 % [6-n-propyl 2-thiouracil (PTU)] in drinking water. Increased level of LPx was observed in brainstem of 7 days old hypothyroid rats, accompanied by augmented activities of SOD and GPx. In 15 and 30 days old hypothyroid rat brainstem, a significant decline in LPx was observed. Significantly increased activities of CAT and GPx were observed in 15 and 30 days PTU-treated rats. Decreased level of LPx was observed in brainstem of rats treated with PTU from birth to 30 days followed by withdrawal up to 90 days of age (transient hypothyroidism) as compared to control and persistent treatment of PTU up to 90 days of age. Activities of CAT and GPx were decreased in persistent hypothyroid rats of 90 days old with respect to control and transient hypothyroid rats. On the other hand, SOD activity was decreased in both persistent and transient hypothyroid rats with respect to control rats. These results suggest that the PTU-induced neonatal hypothyroidism modulates the antioxidant defence system during postnatal development and adulthood in brainstem of rats.

  6. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Frédéric Gazeau

    Full Text Available Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas larvae during the first 3 days of development (until shelled D-veliger larvae. Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition. Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

  7. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas).

    Science.gov (United States)

    Gazeau, Frédéric; Gattuso, Jean-Pierre; Greaves, Mervyn; Elderfield, Henry; Peene, Jan; Heip, Carlo H R; Middelburg, Jack J

    2011-01-01

    Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

  8. Embryo cell allocation patterns are not altered by biopsy but can be linked with further development.

    Science.gov (United States)

    Sepulveda-Rincon, L P; Islam, N; Marsters, P; Campbell, B K; Beaujean, N; Maalouf, W E

    2017-12-01

    It has been suggested that first embryo cleavage can be related with the embryonic-abembryonic axis at blastocyst stage in mice. Thus, cells of the 2-cell embryo might be already biased to form the inner cell mass or trophectoderm. This study was conducted to observe the possible effects of embryo biopsy on cell allocation patterns during embryo preimplantation in two different mouse strains and the effects of these patterns on further development. First, one blastomere of the 2-cell embryo was injected with a lipophilic tracer and cell allocation patterns were observed at blastocyst stage. Blastocysts were classified into orthogonal, deviant or random pattern. For the first experiment, embryos were biopsied at 8-cell stage and total cell counts (TCC) were annotated. Furthermore, non-biopsied blastocysts were transferred into foster mothers. Then, pups and their organs were weighed two weeks after birth. Random pattern was significantly recurrent (≈60%), against orthogonal (patterns among groups. These patterns were not affected by biopsy procedure. However, TCC on deviant embryos were reduced after biopsy. Moreover, no differences were found between patterns for implantation rates, litter size, live offspring and organ weights (lungs, liver, pancreas and spleen). However, deviant pups presented heavier hearts and orthogonal pups presented lighter kidneys among the group. In conclusion, these results suggest that single blastomere removal does not disturb cell allocation patterns during pre-implantation. Nonetheless, the results suggest that embryos following different cell allocation patterns present different coping mechanisms against in vitro manipulations and further development might be altered. © 2017 Society for Reproduction and Fertility.

  9. Effects of chemokine (C–C motif) ligand 1 on microglial function

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Nozomi [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ifuku, Masataka [Laboratory of Integrative Physiology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Mori, Yuki [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Noda, Mami, E-mail: noda@phar.kyushu-u.ac.jp [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-07-05

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  10. Effects of chemokine (C–C motif) ligand 1 on microglial function

    International Nuclear Information System (INIS)

    Akimoto, Nozomi; Ifuku, Masataka; Mori, Yuki; Noda, Mami

    2013-01-01

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain

  11. Preconception paternal stress in rats alters dendritic morphology and connectivity in the brain of developing male and female offspring.

    Science.gov (United States)

    Harker, A; Raza, S; Williamson, K; Kolb, B; Gibb, R

    2015-09-10

    The goal of this research was to examine the effect of preconception paternal stress (PPS) on the subsequent neurodevelopment and behavior of male and female offspring. Prenatal (gestational) stress has been shown to alter brain morphology in the developing brain, and is presumed to be a factor in the development of some adult psychopathologies. Our hypothesis was that paternal stress in the preconception period could impact brain development in the offspring, leading to behavioral abnormalities later in life. The purpose of this study was to examine the effect of preconception paternal stress on developing male and female offspring brain morphology in five brain areas; medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), parietal cortex (Par1), hippocampus (CA1) and nucleus accumbens (NAc). Alterations in dendritic measures and spine density were observed in each brain area examined in paternal stress offspring. Our two main findings reveal; (1) PPS alters brain morphology and organization and these effects are different than the effects of stress observed at other ages; and, (2) the observed dendritic changes were sexually dimorphic. This study provides direct evidence that PPS modifies brain architecture in developing offspring, including dendritic length, cell complexity, and spine density. Alterations observed may contribute to the later development of psychopathologies and maladaptive behaviors in the offspring. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation.

    Science.gov (United States)

    Li, Li; Saiyin, Hexige; Xie, Jingmo; Ma, Lixiang; Xue, Lei; Wang, Wei; Liang, Weimin; Yu, Qiong

    2017-04-25

    Brain ischemia causes irreversible damage to functional neurons in cases of infarct. Promoting endogenous neurogenesis to replace necrotic neurons is a promising therapeutic strategy for ischemia patients. The neuroprotective role of sevoflurane preconditioning implies that it might also enhance endogenous neurogenesis and functional restoration in the infarct region. By using a transient middle cerebral artery occlusion (tMCAO) model, we discovered that endogenous neurogenesis was enhanced by sevoflurane preconditioning. This enhancement process is characterized by the promotion of neuroblast proliferation within the subventricular zone (SVZ), migration and differentiation into neurons, and the presence of astrocytes and oligodendrocytes at the site of infarct. The newborn neurons in the sevoflurane preconditioning group showed miniature excitatory postsynaptic currents (mEPSCs), increased synaptophysin and PSD95 staining density, indicating normal neuronal function. Furthermore, long-term behavioral improvement was observed in the sevoflurane preconditioning group consistent with endogenous neurogenesis. Further histological analyses showed that sevoflurane preconditioning accelerated microglial activation, including migration, phagocytosis and secretion of brain-derived neurotrophic factor (BDNF). Intraperitoneal injection of minocycline, a microglial inhibitor, suppressed microglial activation and reversed neurogenesis. Our data showed that sevoflurane preconditioning promoted microglial activities, created a favorable microenvironment for endogenous neurogenesis and accelerated functional reconstruction in the infarct region.

  13. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna

    2014-01-01

    with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced...... cognitive decline....

  14. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2015-01-01

    Full Text Available Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2 but also other targets (e.g., GPR18/GPR55. We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.

  15. C3-dependent mechanism of microglial priming relevant to multiple sclerosis.

    Science.gov (United States)

    Ramaglia, Valeria; Hughes, Timothy R; Donev, Rossen M; Ruseva, Marieta M; Wu, Xiaobo; Huitinga, Inge; Baas, Frank; Neal, James W; Morgan, B Paul

    2012-01-17

    Microglial priming predisposes the brain to neurodegeneration and affects disease progression. The signal to switch from the quiescent to the primed state is unknown. We show that deleting the C3 convertase regulator complement receptor 1-related protein y (Crry) induces microglial priming. Mice that were double-knockout for Crry and either C3 or factor B did not show priming, demonstrating dependence on alternative pathway activation. Colocalization of C3b/iC3b and CR3 implicated the CR3/iC3b interaction in priming. Systemic lipopolysaccharide challenge overactivated primed microglia with florid expression of proinflammatory molecules, which were blocked by complement inhibition. Relevance for neurodegenerative disease is exemplified by human multiple sclerosis (MS) and by experimental autoimmune encephalomyelitis (EAE), a model of MS. In human MS, microglial priming was evident in perilesional white matter, in close proximity to C3b/iC3b deposits. EAE was accelerated and exacerbated in Crry-deficient mice, and was dependent on C activation. In summary, C3-dependent microglial priming confers susceptibility to other challenges. Our observations are relevant to progression in MS and other neurological diseases exacerbated by acute insults.

  16. Genetic alterations in quadruple malignancies of a patient with multiple sclerosis: their role in malignancy development and response to therapy.

    Science.gov (United States)

    Milosevic, Zorica; Tanic, Nikola; Bankovic, Jasna; Stankovic, Tijana; Buta, Marko; Lavrnic, Dragana; Milovanovic, Zorka; Pupic, Gordana; Stojkovic, Sonja; Milinkovic, Vedrana; Ito, Yasuhiro; Dzodic, Radan

    2014-01-01

    Multiple cancers represent 2.42% of all human cancers and are mainly double or triple cancers. Many possible causes of multiple malignancies have been reported such as genetic alterations, exposure to anti-cancer chemotherapy, radiotherapy, immunosuppressive therapy and reduced immunologic response. We report a female patient with multiple sclerosis and quadruple cancers of different embryological origin. Patient was diagnosed with stage III (T3, N1a, MO) medullary thyroid carcinoma (MTC), multicentric micropapillary thyroid carcinoma, scapular and lumbar melanomas (Clark II, Breslow II), and lobular invasive breast carcinoma (T1a, NO, MO). All tumors present in our patient except micropapillary thyroid carcinomas were investigated for gene alterations known to have a key role in cancer promotion and progression. Tumor samples were screened for the p16 alterations (loss of heterozygosity and homozygous deletions), loss of heterozygosity of PTEN, p53 alterations (mutational status and loss of heterozygosity) and mutational status of RET, HRAS and KRAS. Each type of tumor investigated had specific pattern of analyzed genetic alterations. The most prominent genetic changes were mutual alterations in PTEN and p53 tumor suppressors present in breast cancer and two melanomas. These co-alterations could be crucial for promoting development of multiple malignancies. Moreover the insertion in 4(th) codon of HRAS gene was common for all tumor types investigated. It represents frameshift mutation introducing stop codon at position 5 which prevents synthesis of a full-length protein. Since the inactivated RAS enhances sensitivity to tamoxifen and radiotherapy this genetic alteration could be considered as a good prognostic factor for this patient.

  17. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion.

    Science.gov (United States)

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-09-01

    Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. © 2014 Associated Professional Sleep Societies, LLC.

  18. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission.

    Directory of Open Access Journals (Sweden)

    Aurora M Fontainhas

    Full Text Available PURPOSE: Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or "resting" conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates "resting" microglial morphology and behavior. METHODS: We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. RESULTS: Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels

  19. Altered Development of White Matter in Youth at High Familial Risk for Bipolar Disorder: A Diffusion Tensor Imaging Study

    Science.gov (United States)

    Versace, Amelia; Ladouceur, Cecile D.; Romero, Soledad; Birmaher, Boris; Axelson, David A.; Kupfer, David J.; Phillips, Mary L.

    2010-01-01

    Objective: To study white matter (WM) development in youth at high familial risk for bipolar disorder (BD). WM alterations are reported in youth and adults with BD. WM undergoes important maturational changes in adolescence. Age-related changes in WM microstructure using diffusion tensor imaging with tract-based spatial statistics in healthy…

  20. Fetal microglial in vitro phenotype depends on prior in vivo inflammation

    Directory of Open Access Journals (Sweden)

    Mingju eCao

    2015-08-01

    Full Text Available Objective. Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Methods. Lipopolysaccharide (LPS or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation.Results. In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1β response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1 and Fructose-1,6-bisphosphatase (FBP genes were uniquely differentially expressed in the second hit microglia. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia.Discussion. We identified a unique HMOX1down and FBPup phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways as a memory of prior inflammatory insult. These findings suggest new therapeutic targets for early postnatal intervention to prevent brain injury.

  1. Polychlorinated biphenyl-induced alterations of thyroid hormone homeostasis and brain development in the rat

    NARCIS (Netherlands)

    Morse, D.C.

    1995-01-01

    Introduction

    The work described in this thesis was undertaken to gain insight in the processes involved in the developmental neurotoxicity of polychlorinated biphenyls. It has been previously hypothesized that the alteration of thyroid hormone status by PCBs may

  2. Activated Ras alters lens and corneal development through induction of distinct downstream targets

    Directory of Open Access Journals (Sweden)

    Reneker Lixing

    2010-01-01

    Full Text Available Abstract Background Mammalian Ras genes regulate diverse cellular processes including proliferation and differentiation and are frequently mutated in human cancers. Tumor development in response to Ras activation varies between different tissues and the molecular basis for these variations are poorly understood. The murine lens and cornea have a common embryonic origin and arise from adjacent regions of the surface ectoderm. Activation of the fibroblast growth factor (FGF signaling pathway induces the corneal epithelial cells to proliferate and the lens epithelial cells to exit the cell cycle. The molecular mechanisms that regulate the differential responses of these two related tissues have not been defined. We have generated transgenic mice that express a constitutively active version of human H-Ras in their lenses and corneas. Results Ras transgenic lenses and corneal epithelial cells showed increased proliferation with concomitant increases in cyclin D1 and D2 expression. This initial increase in proliferation is sustained in the cornea but not in the lens epithelial cells. Coincidentally, cdk inhibitors p27Kip1 and p57Kip2 were upregulated in the Ras transgenic lenses but not in the corneas. Phospho-Erk1 and Erk2 levels were elevated in the lens but not in the cornea and Spry 1 and Spry 2, negative regulators of Ras-Raf-Erk signaling, were upregulated more in the corneal than in the lens epithelial cells. Both lens and corneal differentiation programs were sensitive to Ras activation. Ras transgenic embryos showed a distinctive alteration in the architecture of the lens pit. Ras activation, though sufficient for upregulation of Prox1, a transcription factor critical for cell cycle exit and initiation of fiber differentiation, is not sufficient for induction of terminal fiber differentiation. Expression of Keratin 12, a marker of corneal epithelial differentiation, was reduced in the Ras transgenic corneas. Conclusions Collectively, these

  3. Prenatal exposure to valproic acid alters the development of excitability in the postnatal rat hippocampus.

    Science.gov (United States)

    Fueta, Yukiko; Sekino, Yuko; Yoshida, Sachiko; Kanda, Yasunari; Ueno, Susumu

    2018-03-01

    Prenatal valproic acid (VPA) exposure is a well-known animal model of autism spectrum disorder (ASD) that produces alterations in embryonic and adult neurogenesis as well as adolescent/adulthood neurobehavioral phenotypes. However, the effects of prenatal VPA exposure on neural network excitability, especially during the synaptogenic period around eye opening, are not fully understood. In this study, we orally administered VPA (300 mg/kg) to pregnant Wistar rats on gestation day 15 and subsequently performed field potential recording in the CA1 area of hippocampal slices obtained from control (saline-exposed) and VPA-exposed rat pups between postnatal day (PND) 13 and PND18. In control slices, we observed an abrupt enhancement of stimulation-dependent responses including population spike (PS) amplitudes and field excitatory postsynaptic potential (fEPSP) slopes at PND16, which coincided with the average day of eye opening. In contrast, VPA-exposed pups exhibited delayed eye opening (PND17) and gradual rather than abrupt increases in PS amplitudes and fEPSP slopes over the duration of the synaptogenic period. We next investigated the involvement of ambient GABA (γ-aminobutyric acid) in PS generation using bicuculline methiodide (BMI), a GABA type A (GABA A ) receptor antagonist. In control slices, BMI enhanced PS amplitudes during PND14-15 (before eye opening) and had little effect thereafter during PND16-17; a subsequent regression model analysis of BMI ratios (the ratio of PS amplitudes in the presence and absence of BMI) indicated a possible developmental change between these periods. In contrast, almost identical regression models were obtained for BMI ratios during PND14-15 and PND16-17 in the VPA-exposed group, indicating the absence of a developmental change. Our results suggest that prenatal VPA exposure accelerates the development of hippocampal excitability before eye opening. Moreover, our experimental model can be used as a novel approach for the

  4. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Hanaa Malloul

    2017-09-01

    Full Text Available Occupational exposure and sniffing of volatile organic solvents continue to be a worldwide health problem, raising the risk for teratogenic sequelae of maternal inhalant abuse. Real life exposures usually involve simultaneous exposures to multiple solvents, and almost all the abused solvents contain a mixture of two or more different volatile compounds. However, several studies examined the teratogenicity due to industrial exposure to a single volatile solvent but investigating the teratogenic potential of complex chemical mixture such as thinner remains unexplored. This study was undertaken to evaluate developmental neurotoxicity of paint thinner using a mouse model. Mated female mice (N = 21 were, therefore, exposed to repeated and brief inhalation episodes of 0, 300 or 600 ppm of thinner during the entire period of pregnancy. Females weigh was recorded and their standard fertility and reproductive parameters were assessed. After birth postnatal day 1 (PND1, offspring (N = 88 length and body weight were measured in a daily basis. At PND5, the pups were assessed for their postnatal growth, physical maturation, reflex development, neuromotor abilities, sensory function, activity level, anxiety, depression, learning and memory functions. At adulthood, structural changes of the hippocampus were examined by estimating the total volume of the dentate gyrus. Except one case of thinner induced abortion at the higher dose, our results showed that the prenatal exposure to the solvent did not cause any maternal toxicity or decrease in the viability of the offspring. Therefore, a lower birth weight, decrease in the litter size and delayed reflexes ontogeny were registered in prenatally exposed offspring to both 300 ppm and 600 ppm of thinner. In addition, prenatally exposure to thinner resulted in increased anxiolytic- and depression-like behaviors. In contrast, impaired learning and memory functions and decreased hippocampal dentate gyrus volume were

  5. Altered bone development and an increase in FGF-23 expression in Enpp1(-/- mice.

    Directory of Open Access Journals (Sweden)

    Neil Charles Wallace Mackenzie

    Full Text Available Nucleotide pyrophosphatase phosphodiesterase 1 (NPP1 is required for the conversion of extracellular ATP into inorganic pyrophosphate (PP(i, a recognised inhibitor of hydroxyapatite (HA crystal formation. A detailed phenotypic assessment of a mouse model lacking NPP1 (Enpp1(-/- was completed to determine the role of NPP1 in skeletal and soft tissue mineralization in juvenile and adult mice. Histopathological assessment of Enpp1(-/- mice at 22 weeks of age revealed calcification in the aorta and kidney and ectopic cartilage formation in the joints and spine. Radiographic assessment of the hind-limb showed hyper-mineralization in the talocrural joint and hypo-mineralization in the femur and tibia. MicroCT analysis of the tibia and femur disclosed altered trabecular architecture and bone geometry at 6 and 22 weeks of age in Enpp1(-/- mice. Trabecular number, trabecular bone volume, structure model index, trabecular and cortical thickness were all significantly reduced in tibiae and femurs from Enpp1(-/- mice (P<0.05. Bone stiffness as determined by 3-point bending was significantly reduced in Enpp1(-/- tibiae and femurs from 22-week-old mice (P<0.05. Circulating phosphate and calcium levels were reduced (P<0.05 in the Enpp1(-/- null mice. Plasma levels of osteocalcin were significantly decreased at 6 weeks of age (P<0.05 in Enpp1(-/- mice, with no differences noted at 22 weeks of age. Plasma levels of CTx (Ratlaps™ and the phosphaturic hormone FGF-23 were significantly increased in the Enpp1(-/- mice at 22 weeks of age (P<0.05. Fgf-23 messenger RNA expression in cavarial osteoblasts was increased 12-fold in Enpp1(-/- mice compared to controls. These results indicate that Enpp1(-/- mice are characterized by severe disruption to the architecture and mineralization of long-bones, dysregulation of calcium/phosphate homeostasis and changes in Fgf-23 expression. We conclude that NPP1 is essential for normal bone development and control of physiological

  6. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan

    2017-07-24

    Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological

  7. Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure.

    Science.gov (United States)

    Zhang, Zhi; Jyoti, Amar; Balakrishnan, Bindu; Williams, Monica; Singh, Sarabdeep; Chugani, Diane C; Kannan, Sujatha

    2018-03-01

    Maternal infection is a risk factor for periventricular leukomalacia and cerebral palsy (CP) in neonates. We have previously demonstrated hypomyelination and motor deficits in newborn rabbits, as seen in patients with cerebral palsy, following maternal intrauterine endotoxin administration. This was associated with increased microglial activation, primarily involving the periventricular region (PVR). In this study we hypothesized that maternal intrauterine inflammation leads to a pro-inflammatory environment in the PVR that is associated with microglial activation in the first 2 postnatal weeks. Timed pregnant New Zealand white rabbits underwent laparotomy on gestational day 28 (G28). They were randomly divided to receive lipopolysaccharide (LPS; 20μg/kg in 1mL saline) (Endotoxin group) or saline (1mL) (control saline, CS group), administrated along the wall of the uterus. The PVR from the CS and Endotoxin kits were harvested at G29 (1day post-injury), postnatal day1 (PND1, 3day post-injury) and PND5 (7days post-injury) for real-time PCR, ELISA and immunohistochemistry. Kits from CS and Endotoxin groups underwent longitudinal MicroPET imaging, with [ 11 C]PK11195, a tracer for microglial activation. We found that intrauterine endotoxin exposure resulted in pro-inflammatory microglial activation in the PVR of rabbits in the first postnatal week. This was evidenced by increased TSPO (translocator protein) expression co-localized with microglia/macrophages in the PVR, and changes in the microglial morphology (ameboid soma and retracted processes). In addition, CD11b level significantly increased with a concomitant decline in the CD45 level in the PVR at G29 and PND1. There was a significant elevation of pro-inflammatory cytokines and iNOS, and decreased anti-inflammatory markers in the Endotoxin kits at G29, PND1 and PND5. Increased [ 11 C]PK11195 binding to the TSPO measured in vivo by PET imaging in the brain of Endotoxin kits was present up to PND14-17. Our

  8. Long-term soil alteration in historical charcoal hearths affects Tuber melanosporum mycorrhizal development and environmental conditions for fruiting.

    Science.gov (United States)

    Garcia-Barreda, Sergi; Molina-Grau, Sara; Forcadell, Ricardo; Sánchez, Sergio; Reyna, Santiago

    2017-08-01

    Abandoned charcoal hearths constitute a very particular habitat for spontaneous fruiting of Tuber melanosporum, leading some harvesters to hypothesise that the fungus could benefit from the alterations that these soils underwent. However, ecological mechanisms involved in this relation are not fully elucidated yet. As a first step to understand it, the influence of long-term soil alteration on the symbiotic stage of T. melanosporum and on selected soil properties considered key to fruiting was assessed by conducting a greenhouse bioassay and a field observational study. In the bioassay, percent root colonisation and relative abundance of T. melanosporum were significantly lower in hearth than in control soils. Hearth soils showed significantly lower resistance to penetration, larger temperature fluctuation, reduced plant cover and reduced herbaceous root abundance. The results do not support the hypothesis that soil from historical charcoal hearths currently enhances development of T. melanosporum mycorrhizas. However, whether this is due to increased infectivity of native ectomycorrhizal communities or to worse conditions for development of T. melanosporum mycorrhizas remains unresolved. Native ectomycorrhizal communities in hearths showed altered composition, although not a clear change in infectivity or richness. Direction of change in hearth soil properties is compared to alteration occurring in soils spontaneously producing T. melanosporum. The interest of these changes to improve T. melanosporum fruiting in plantations is discussed.

  9. Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation

    Science.gov (United States)

    Sebastián-Serrano, Álvaro; Engel, Tobias; de Diego-García, Laura; Olivos-Oré, Luis A.; Arribas-Blázquez, Marina; Martínez-Frailes, Carlos; Pérez-Díaz, Carmen; Millán, José Luis; Artalejo, Antonio R.; Miras-Portugal, María Teresa; Henshall, David C.; Díaz-Hernández, Miguel

    2016-01-01

    Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved. Here, to evaluate whether neurodevelopmental alterations are underlying the seizures associated to HPP, we performed morphological and functional characterization of postnatal homozygous TNAP null mice, a model of HPP. These analyses revealed that TNAP deficient mice present an increased proliferation of neural precursors, an altered neuronal morphology, and an augmented neuronal activity. We found that these alterations were associated with a partial downregulation of the purinergic P2X7 receptor (P2X7R). Even though deficient P2X7R mice present similar neurodevelopmental alterations, they do not develop neonatal seizures. Accordingly, we found that the additional blockage of P2X7R prevent convulsions and extend the lifespan of mice lacking TNAP. In agreement with these findings, we also found that exogenous administration of ATP or TNAP antagonists induced seizures in adult wild-type mice by activating P2X7R. Finally, our results also indicate that the anticonvulsive effects attributed to vit-B6 may be due to its capacity to block P2X7R. Altogether, these findings suggest that the purinergic signalling regulates the neurodevelopmental alteration and the neonatal seizures associated to HPP. PMID:27466191

  10. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells

    Directory of Open Access Journals (Sweden)

    Mingfeng He

    2016-02-01

    Full Text Available Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s. Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.

  11. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Directory of Open Access Journals (Sweden)

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  12. Insensitivity of Astrocytes to Interleukin-10 Signaling following Peripheral Immune Challenge Results in Prolonged Microglial Activation in the Aged Brain

    Science.gov (United States)

    Norden, Diana M.; Trojanowski, Paige J.; Walker, Frederick R.; Godbout, Jonathan P.

    2017-01-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial IL-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher GFAP, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 Receptor-1 (IL-10R1). Following in vivo LPS immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and TGFβ and resolve microglial activation. Additionally, adult astrocytes reduced microglial activation when co-cultured ex vivo, while aged astrocytes did not. Consistent with the aging studies, IL-10RKO astrocytes did not augment TGFβ after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  13. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Manocha, Gunjan D.; Floden, Angela M.; Rausch, Keiko; Kulas, Joshua A.; McGregor, Brett A.; Rojanathammanee, Lalida; Puig, Kelley R.; Puig, Kendra L.; Karki, Sanjib; Nichols, Michael R.; Darland, Diane C.; Porter, James E.

    2016-01-01

    Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer's disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimer's disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains. PMID:27511018

  14. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia.

    Science.gov (United States)

    Kiernan, Elizabeth A; Smith, Stephanie M C; Mitchell, Gordon S; Watters, Jyoti J

    2016-03-15

    Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH-induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia-reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro-inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH-induced release of damage-associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll-like receptors activate mitogen-activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH-induced neuropathology in patients with sleep disordered breathing. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats.

    Science.gov (United States)

    Kapoor, Komal; Bhandare, Amol M; Mohammed, Suja; Farnham, Melissa M J; Pilowsky, Paul M

    2016-07-01

    Microglia are ubiquitously distributed throughout the central nervous system (CNS) and play a critical role in the maintenance of neuronal homeostasis. Recent advances have shown that microglia, never resting cells of the CNS, continuously monitor and influence neuronal/synaptic activity levels, by communicating with neurons with the aid of their dynamic processes. The brainstem contains many catecholaminergic nuclei that are key to many aspects of brain function. This includes C1 neurons of the ventrolateral medulla that are thought to play a critical role in control of the circulation. Despite the role of catecholaminergic brainstem neurons in normal physiology, the presence of microglia that surrounds them is poorly understood. Here, we investigate the spatial distribution and morphology of microglia in catecholaminergic nuclei of the brainstem in 3 strains of rat: Sprague-Dawley (SD), Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Our data reveal that microglia are heterogeneously distributed within and across different strains of rats. Interestingly, intra-strain comparison of tyrosine hydroxylase-immunoreactive (TH-ir) neuronal and microglial number reveals that microglial number varies with the TH-ir neuronal number in the brainstem. Even though microglial spatial distribution varies across brainstem nuclei, microglial morphology (% area covered, number of end point processes and branch length) does not differ significantly. This work provides the first evidence that even though microglia, in their surveilling state, do not vary appreciably in their morphology across brainstem areas, they do have a heterogeneous pattern of distribution that may be influenced by their local environment. Copyright © 2016. Published by Elsevier B.V.

  16. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    Science.gov (United States)

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis. © 2016 Wiley Periodicals, Inc.

  17. Enhancement of LPS-Induced Microglial Inflammation Response via TLR4 Under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2015-03-01

    Full Text Available Background: Microglia activation mediated by toll-like receptor 4 (TLR4 plays an important role in neuroinflammation and postoperative cognitive dysfunction (POCD. Diabetes mellitus (DM has been recently suggested as an independent risk factor for POCD. In this study, we investigate the potential exacerbation of the inflammatory response in primary microglia due to high glucose conditions. Methods: Primary microglial cells were exposed to normal glucose (25 mmol/L and high glucose (35 mmol/L levels alone or with lipopolyscaccharide (LPS 0, 2, 5, 10 ng/mL. The pro-inflammatory response of the cells was assessed by measuring changes in cytokine levels and the evaluation of associated signaling pathways. Results: Neither high glucose nor low LPS (≤5ng/ml alone had an effect on TNF-a and IL-6 levels, but the combination of low LPS and high glucose stimulated the inflammatory response. Analyses of the associated signaling pathways demonstrated that high glucose enhanced the LPS-induced microglial activation via the TLR4/JAK2/STAT3 pathway. Conclusion: This study demonstrates that high glucose, one of the key abnormalities characteristic of DM, can augment LPS-induced microglial activation and inflammatory cytokine levels through the TLR4/JAK2/STAT3 pathway, offering new insight into the pathophysiological relationship between DM and POCD.

  18. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  19. Peripheral nerve injury induces a transitory microglial reaction in the rat infralimbic cortex.

    Science.gov (United States)

    Chu Sin Chung, Paul; Panigada, Tania; Cardis, Romain; Decosterd, Isabelle; Gosselin, Romain-Daniel

    2017-08-10

    Undeniable evidence shows that microglia in the spinal cord undergo marked reactions following peripheral injuries. However, only rare studies have investigated the possible short and long term microglial reaction in brain regions following peripheral nerve injury and its interspecies specificities. In the present study we examined microglia in subdivisions of the prefrontal cortex in mice and rats, 7days and 42days after spared nerve injury (SNI) of the sciatic nerve. We show that a bilateral increase of microglial density takes place in the infralimbic cortex in rats 7days post-injury (sham vs. SNI, n=5: ipsilateral 35.4% increase of the median, p=0.0317; contralateral 24.9% increase of the median, p=0.0079), without any detectable change in the other investigated regions, namely the anterior cingulate, prelimbic and agranular insular cortices. In mice, no observable difference could be found in any region at both time points, neither using Iba-1 immunostaining nor with CX3CR1-eGFP animals. Our results indicate that a transitory, species-specific and highly regionalized microglial reaction takes place in the prefrontal cortex following peripheral nerve injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain.

    Science.gov (United States)

    Varnum, Megan M; Ikezu, Tsuneya

    2012-08-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline of cognitive function. There is no therapy that can halt or reverse its progression. Contemporary research suggests that age-dependent neuroinflammatory changes may play a significant role in the decreased neurogenesis and cognitive impairments in AD. The innate immune response is characterized by pro-inflammatory (M1) activation of macrophages and subsequent production of specific cytokines, chemokines, and reactive intermediates, followed by resolution and alternative activation for anti-inflammatory signaling (M2a) and wound healing (M2c). We propose that microglial activation phenotypes are analogous to those of macrophages and that their activation plays a significant role in regulating neurogenesis in the brain. Microglia undergo a switch from an M2- to an M1-skewed activation phenotype during aging. This review will assess the neuroimmunological studies that led to characterization of the different microglial activation states in AD mouse models. It will also discuss the roles of microglial activation on neurogenesis in AD and propose anti-inflammatory molecules as exciting therapeutic targets for research. Molecules such as interleukin-4 and CD200 have proven to be important anti-inflammatory mediators in the regulation of neuroinflammation in the brain, which will be discussed in detail for their therapeutic potential.

  1. Imaging microglial activation and amyloid burden in amnestic mild cognitive impairment.

    Science.gov (United States)

    Knezevic, Dunja; Verhoeff, Nicolaas Paul Lg; Hafizi, Sina; Strafella, Antonio P; Graff-Guerrero, Ariel; Rajji, Tarek; Pollock, Bruce G; Houle, Sylvain; Rusjan, Pablo M; Mizrahi, Romina

    2017-01-01

    Amnestic mild cognitive impairment (aMCI) is defined as a transitional state between normal aging and Alzheimer's disease (AD). Given the replicated finding of increased microglial activation in AD, we sought to investigate whether microglial activation is also elevated in aMCI and whether it is related to amyloid beta (Aβ) burden in-vivo . Eleven aMCI participants and 14 healthy volunteers completed positron emission tomography (PET) scans with [ 18 F]-FEPPA and [ 11 C]-PIB. Given the known sensitivity in affinity of second-generation TSPO radioligands, participants were genotyped for the TSPO polymorphism and only high-affinity binders were included. Dynamic [ 18 F]-FEPPA PET images were analyzed using the 2-tissue compartment model with arterial plasma input function. Additionally, a supplementary method, the standardized uptake value ratio (SUVR), was explored. [ 11 C]-PIB PET images were analyzed using the Logan graphical method. aMCI participants had significantly higher [ 11 C]-PIB binding in the cortical regions. No significant differences in [ 18 F]-FEPPA binding were observed between aMCI participants and healthy volunteers. In the aMCI group, [ 18 F]-FEPPA and [ 11 C]-PIB bindings were correlated in the hippocampus. There were no correlations between our PET measures and cognition. Our findings demonstrate that while Aβ burden is evident in the aMCI stage, microglial activation may not be present.

  2. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  3. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism

    Directory of Open Access Journals (Sweden)

    Chomiak Taylor

    2010-08-01

    Full Text Available Abstract Background Autism is a behaviourally defined neurodevelopmental disorder with unknown etiology. Recent studies in autistic children consistently point to neuropathological and functional abnormalities in the temporal association cortex (TeA and its associated structures. It has been proposed that the trajectory of postnatal development in these regions may undergo accelerated maturational alterations that predominantly affect sensory recognition and social interaction. Indeed, the temporal association regions that are important for sensory recognition and social interaction are one of the last regions to mature suggesting a potential vulnerability to early maturation. However, direct evaluation of the emerging hypothesis that an altered time course of early postnatal development can lead to an ASD phenotype remains lacking. Results We used electrophysiological, histological, and behavioural techniques to investigate if the known neuronal maturational promoter valproate, similar to that in culture systems, can influence the normal developmental trajectory of TeA in vivo. Brain sections obtained from postnatal rat pups treated with VPA in vivo revealed that almost 40% of cortical cells in TeA prematurely exhibited adult-like intrinsic electrophysiological properties and that this was often associated with gross cortical hypertrophy and a reduced predisposition for social play behaviour. Conclusions The co-manifestation of these functional, structural and behavioural features suggests that alteration of the developmental time course in certain high-order cortical networks may play an important role in the neurophysiological basis of autism.

  4. Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi

    Directory of Open Access Journals (Sweden)

    Juan José Muñoz

    2018-04-01

    Full Text Available For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, ephrins on the structure, immunophenotype, and development of thymus and their main cell components, thymocytes (T and thymic epithelial cells (TECs, have been studied. In recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins B has been determined. Remarkably, thymic stroma in these animals exhibits important defects that appear early in ontogeny but little alterations in the proportions of distinct lymphoid cell populations. In the present manuscript, we summarize and extend these results discussing possible mechanisms governing phenotypical and functional thymocyte maturation in an absence of the critical T–TEC interactions, concluding that some signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be sufficient to enable a proper maturation of thymocytes, independently of morphological alterations affecting thymic epithelium.

  5. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    Science.gov (United States)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  6. Polybrominated diphenyl ethers affect the reproduction and development, and alter the sex ratio of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Han, X.B.; Yuen, Karen W.Y.; Wu, Rudolf S.S.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as flame retardants and now become ubiquitous in the global environment. Using zebrafish as a model, we tested the hypothesis that PBDEs may affect the reproduction and development of fish. Zebrafish were exposed to environmentally relevant concentrations of DE-71 (a congener of PBDE commonly found in the environment) throughout their whole life cycle, and the effects of DE-71 on gonadal development, gamete quality, fertilization success, hatching success, embryonic development and sex ratio were investigated. Despite gonadal development was enhanced, reductions in spawning, fertilization success, hatching success and larval survival rate were evident, while significant increases in malformation and percentage of male were also observed in the F1 generation. Our laboratory results suggest that PBDEs may pose a risk to reproductive success and alter the sex ratio of fish in environments highly contaminated with PBDEs. -- Highlights: •Zebrafish were exposed to PBDE from eggs to adults. •An increase in Gonadal-Somatic Index and enhanced gonadal development was enhanced. •Fertilization and hatching successes were reduced, while malformation was increased. •PBDE alters sex differentiation, leading to a male biased F1 population. •Environmental relevant concentrations of PBDE threaten natural fish populations. -- PBDE reduces fertilization and hatching successes, causes malformation and leads to a male biased F1 generation in fish

  7. Timing applications of growth regulators to alter spring cereal development at high latitudes

    Directory of Open Access Journals (Sweden)

    A. RAJALA

    2008-12-01

    Full Text Available Plant growth regulators (PGRs are commonly used in commercial farming to control lodging in cereals. PGRs have been shown to alter yield formation and plant stand structure, other than the straw length. To study their potential in Northern growing conditions PGRs and their application time impacts on plant stand structure and yield formation in tall and short statured cultivars of barley, oat, and wheat were studied in the field. Crop stands were sprayed with the gibberellin biosynthesis inhibitors CCC [chlormequat chloride CCC], Moddus [Trinexapac-ethyl TE], or with ethylene-releasing Cerone [ethephon ETH] at the recommended times or at an earlier growth stage. CCC applied at Zadoks growth scale (ZGS 13-14 increased and ETH applied at ZGS 39-40 reduced grain yield of oat by 370 kg ha-1 and 270 kg ha-1, respectively. In wheat, CCC applied at ZGS 31-32 reduced grain yield by 480 kg ha-1. This yield reduction was associated with lower grain yield production by the main head and particularly lower single grain weight. In barley cv. Kymppi, ETH and TE treatments promoted yield formation, whereas in cv. Saana they tended to reduce yield. Early applied PGRs reduced stem height at 14 days after treatment irrespective of species or stem stature, but at maturity no constant PGR effect was noted. Excluding the stem length, PGRs did not modify plant stand structure or yield formation markedly.

  8. Brief Exposure to Turbulence Permanently Alters Development of Sand Dollar Larvae

    Science.gov (United States)

    Ferner, M. C.; Hodin, J.; Ng, G.; Lowe, C. J.; Gaylord, B.

    2016-02-01

    Fluid motion underlies interactions between animals and their environment through effects on locomotion, food capture, respiration, information transfer, and other processes. Recent studies of marine invertebrates indicate that metamorphosis and settlement can be altered when swimming larvae experience a change in turbulence intensity, possibly increasing the likelihood that larvae will settle in appropriate habitat. For example, brief exposure to levels of turbulence characteristic of wave-swept coasts causes echinoderm larvae to quickly transition from a non-responsive "pre-competent" stage into a "competent" stage, thereby allowing the larvae to respond to local cues and settle. However, responding to one's entry into the nearshore environment isn't enough, as many such species live as adults in a narrower range of highly specific benthic habitat that is even more rarely encountered. Here we provide an account for this apparent mismatch between larval responses to broadly distributed cues and their need for more specialized settlement locations: turbulence exposure seems to cause larval sand dollars (Dendraster excentricus) to permanently shift from pre-competence to competence. This observation suggests a scenario where turbulence can activate a temporally extensive search image in larvae over a broad habitat range, a seemingly adaptive feature for larvae entering dynamic coastal environments.

  9. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Song Sheng

    2012-09-01

    Full Text Available Abstract Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2 low-level laser therapy (LLLT, a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS. For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2 could attenuate toll-like receptor (TLR-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308 phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT

  10. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease.

    Science.gov (United States)

    Norden, Diana M; Muccigrosso, Megan M; Godbout, Jonathan P

    2015-09-01

    Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity

    Science.gov (United States)

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K.; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-01-01

    ABSTRACT BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143+/− mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  12. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    Science.gov (United States)

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  13. Alterations in CD200-CD200R1 System during EAE Already Manifest at Presymptomatic Stages

    Directory of Open Access Journals (Sweden)

    Tony Valente

    2017-05-01

    Full Text Available In the brain of patients with multiple sclerosis, activated microglia/macrophages appear in active lesions and in normal appearing white matter. However, whether they play a beneficial or a detrimental role in the development of the pathology remains a controversial issue. The production of pro-inflammatory molecules by chronically activated microglial cells is suggested to contribute to the progression of neurodegenerative processes in neurological disease. In the healthy brain, neurons control glial activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Therefore, we studied whether alterations in the CD200-CD200R1 system might underlie the neuroinflammation in an experimental autoimmune encephalomyelitis (EAE model of multiple sclerosis. We determined the time course of CD200 and CD200R1 expression in the brain and spinal cord of an EAE mouse model from presymptomatic to late symptomatic stages. We also assessed the correlation with associated glial activation, inflammatory response and EAE severity. Alterations in CD200 and CD200R1 expression were mainly observed in spinal cord regions in the EAE model, mostly a decrease in CD200 and an increase in CD200R1 expression. A decrease in the expression of the mRNA encoding a full CD200 protein was detected before the onset of clinical signs, and remained thereafter. A decrease in CD200 protein expression was observed from the onset of clinical signs. By contrast, CD200R1 expression increased at EAE onset, when a glial reaction associated with the production of pro- and anti-inflammatory markers occurred, and continued to be elevated during the pathology. Moreover, the magnitude of the alterations correlated with severity of the EAE mainly in spinal cord. These results suggest that neuronal-microglial communication through CD200-CD200R1 interaction is compromised in EAE. The early decreases in CD200 expression in EAE suggest that this downregulation might also

  14. Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats

    Science.gov (United States)

    Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...

  15. Animal models of maternal nutrition and altered offspring bone structure – Bone development across the lifecourse

    OpenAIRE

    SA Lanham; C Bertram; C Cooper; ROC Oreffo

    2011-01-01

    It is widely accepted that the likelihood of offspring developing heart disease, stroke, or diabetes in later life, is influenced by the their in utero environment and maternal nutrition. There is increasing epidemiological evidence that osteoporosis in the offspring may also be influenced by the mother’s nutrition during pregnancy. This review provides evidence from a range of animal models that supports the epidemiological data; suggesting that lifelong bone development and growth in offspr...

  16. Will Treatment of Helicobacter Pylori Infection in Childhood Alter the Risk of Developing Gastric Cancer?

    Directory of Open Access Journals (Sweden)

    Billy Bourke

    2005-01-01

    Full Text Available Helicobacter pylori has been classified as a group 1 carcinogen for gastric cancer. It is estimated that there is between a two- and sixfold increase in the risk of developing gastric cancer among infected patients. Among different populations, the risk of H pylori-infected individuals developing gastric cancer varies greatly. However, on a worldwide scale, gastric cancer is the second most common cause of cancer-related death. Therefore, H pylori eradication could help prevent up to three to four million gastric cancer deaths per year. H pylori is usually acquired in childhood. Because infected children have not harboured the organism for long enough to have developed precancerous lesions, childhood is theoretically an attractive time for H pylori eradication and, thus, could help prevent gastric cancer later in life. However, as H pylori prevalence and the incidence of gastric cancer are falling rapidly in developed nations, widespread population screening programs aimed at the eradication of H pylori in these countries would be enormously expensive. Therefore, except in groups with a high risk for development of gastric cancer (eg, Japanese or those with a strong positive family history of gastric cancer, a population-based test-and-treat policy is not justified.

  17. The PPARα Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    International Nuclear Information System (INIS)

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-01-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) α agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARα knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of 137 Cs γ-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARα-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARα ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  18. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.

  19. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  20. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Sandra M. Cardona

    2015-10-01

    Full Text Available Fractalkine (CX3CL1 or FKN is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a decreased neuronal cell counts in the retinal ganglion cell layer, (b increased microglial cell numbers, and (c decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.

  1. A dibenzoylmethane derivative inhibits lipopolysaccharide-induced NO production in mouse microglial cell line BV-2.

    Science.gov (United States)

    Takano, Katsura; Ishida, Natsumi; Kawabe, Kenji; Moriyama, Mitsuaki; Hibino, Satoshi; Choshi, Tominari; Hori, Osamu; Nakamura, Yoichi

    2017-04-05

    Microglial activation has been suggested to play important roles in various neurodegenerative diseases by phagocytosis and producing various factors such as nitric oxide (NO), proinflammatory cytokines. Excessive production of NO, as a consequence of increased inducible nitric oxide synthase (iNOS) in microglia, contributes to the neurodegeneration. During a search for compounds that regulate endoplasmic reticulum (ER) stress, a dibenzoylmethane derivative, 2,2'-dimethoxydibenzoylmethane (DBM 14-26) was identified as a novel neuroprotective agent (Takano et al., Am. J. Physiol. Cell Physiol. 293, C1884-1894, 2007). We previously reported in cultured astrocytes that DBM 14-26 protected hydrogen peroxide-induced cell death and inhibited lipopolysaccharide (LPS)-induced NO production (Takano et al., J. Neurosci. Res. 89, 955-965, 2011). In the present study, we assessed the effects of DBM 14-26 on microglia using the mouse cell line BV-2 and found that DBM 14-26 inhibited LPS-induced iNOS expression and NO production also in microglia. DBM 14-26 also suppressed LPS-induced IL-1β expression. Conditioned medium of BV-2 cells stimulated by LPS significantly decreased cell viability of neuron (human neuroblastoma SH-SY5Y cells) compared with the absence of LPS. Conditioned medium of BV-2 cells stimulated by LPS in the presence of DBM 14-26 did not significantly decreased cell viability of neuron. These results indicate that microglial activation by LPS causes neuronal cell death and DBM 14-26 protect neuron through the inhibition of microglial activation. Functional regulation of microglia by DBM 14-26 could be a therapeutic candidate for the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    Science.gov (United States)

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. CULTURAL EXPLORATION AS ALTER/NATIVE1 ROUTE TO NATIONAL DEVELOPMENT: INSIGHTS FROM YORUBA VERBAL ARTS

    Directory of Open Access Journals (Sweden)

    OLUWOLE COKER

    2009-01-01

    Full Text Available This paper interrogates Yoruba verbal arts and situates culture as a catalyst for development. It is suggested that the intricate resources of oral art, exemplified by Yoruba textual references, are viable ingredients for socio-cultural empowerment. To fully comprehend the dynamics of a society in constant change due to external and internal realities, one must reconsider culture in order to reposition the society. The multidimensional and multidisciplinary significance of Yoruba verbal art demonstrate that culture has a vital role to play in any meaningful socio-political advancement in the Nigerian body polity. The ideas conveyed in proverbial expressions, representing key cultural realities of the Yoruba people, offer insights and ideas for development and social good. The paper submits that a deeper exploration of the intricate resources of verbal art is a viable route to development.

  4. Cigarette smokers develop altered erythrocyte membrane composition: an investigation unmasking the role of membrane bound integral protein GLUT 1.

    Science.gov (United States)

    Sikdar, Jyotirmoy; Seal, Paromita; Roy, Amartya; Haldar, Rajen

    2017-04-01

    Erythrocytes in cigarette smokers are prone to oxidative damage. Here, we sought to elucidate the facts behind modifications and possible defense system developed in erythrocyte of cigarette smokers. We observed significant increase in stomatocytes and spherocytes, and osmotic fragility of erythrocyte, along with reduced level of protein thiol and increased fluorescence anisotropy in isolated membrane. Denaturing gel electrophoresis indicated alterations in band 3, band 4.2 and band 4.5. Among those, Glut 1 (i.e. band 4.5), which transports glucose (insulin independent) and dehydroascorbate (DHA), was selectively chosen for its long history in reducing reactive oxygen species (ROS). The increased Glut 1 level in smokers was confirmed by immunoblotting and immunocytochemistry. Furthermore, smokers showed significantly higher glucose uptake in whole blood. The intracellular (Ic) ROS (as indicated by 2',7'-dichlorofluorescin) was significantly higher in smokers as evidenced by flow cytometric assay. Glucose and DHA alone or together significantly reduced IcROS at higher rate in smokers. However, in presence of Glut 1 specific blocker, phloretin, neither glucose nor DHA could reduce IcROS in both non-smokers and smokers. This confirms that Glut 1 by transporting glucose or DHA attenuates IcROS. Therefore, we conclude that erythrocytes, although altered morphologically, also develop a defense system by upregulating Glut 1 to combat with enhanced Ic oxidative insult in cigarette smokers.

  5. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA

    Directory of Open Access Journals (Sweden)

    Malathi Narayan

    2016-06-01

    Full Text Available Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA on a mouse microglial (N9 cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003032.

  6. Storms do not alter long-term watershed development influences on coastal water quality

    Science.gov (United States)

    A twelve year (2000 − 2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substanti...

  7. Punctate White Matter Lesions Associated With Altered Brain Development And Adverse Motor Outcome In Preterm Infants

    NARCIS (Netherlands)

    Tusor, Nora; Benders, Manon J; Counsell, Serena J.; Nongena, Phumza; Ederies, Moegamad A; Falconer, Shona; Chew, Andrew T M; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Gangadharan, Sunay; Chatzi, Vasiliki; Kersbergen, Karina J; Kennea, Nigel; Azzopardi, Denis V; Edwards, A David

    2017-01-01

    Preterm infants who develop neurodevelopmental impairment do not always have recognized abnormalities on cerebral ultrasound, a modality routinely used to assess prognosis. In a high proportion of infants, MRI detects punctate white matter lesions that are not seen on ultrasonography. To determine

  8. Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier

    DEFF Research Database (Denmark)

    Lou, Nanhong; Takano, Takahiro; Pei, Yong

    2016-01-01

    Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G......-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed...

  9. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  10. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  11. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation

    Directory of Open Access Journals (Sweden)

    Kaushik Deepak

    2012-03-01

    Full Text Available Abstract Background Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4, a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. Methods For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. Results Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti

  12. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Fenger, Christina

    2009-01-01

    Acute multiple sclerosis lesions are characterized by accumulation of T cells and macrophages, destruction of myelin and oligodendrocytes, and axonal damage. There is, however, limited information on neuroimmune interactions distal to sites of axonal damage in the T cell-infiltrated central nervous...... system. We investigated T-cell infiltration, myelin clearance, microglial activation, and phagocytic activity distal to sites of axonal transection through analysis of the perforant pathway deafferented dentate gyrus in SJL mice that had received T cells specific for myelin basic protein (TMBP...

  13. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    Directory of Open Access Journals (Sweden)

    Kallol Dutta

    Full Text Available BACKGROUND: Benzo[a]pyrene (B[a]P belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our

  14. Microglial phagocytosis/apoptosis uncoupling in epilepsy: mechanisms and detrimental consequences

    OpenAIRE

    Abiega Etxabe, Oihane

    2017-01-01

    174 p. La microglía es la célula inmune y el fagocito profesional del cerebro. La microglía es la encargada de fagocitar las células que mueren en el cerebro por apoptosis, o muerte programada. La fagocitosis de estas células es un proceso clave para mantener la salud del tejido nervioso. En condiciones fisiológicas, la fagocitosis microglial es un proceso muy rápido y eficaz. No obstante, el proceso fagocítico, sus mecanismos de regulación y sus consecuencias para el tejido siguen siendo ...

  15. Residential development alters behavior, movement, and energetics in an apex predator, the puma.

    Science.gov (United States)

    Wang, Yiwei; Smith, Justine A; Wilmers, Christopher C

    2017-01-01

    Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and proximity to housing influenced the activity patterns of both male and female pumas in the Santa Cruz Mountains. We used spatial GPS location data in combination with Overall Dynamic Body Acceleration measurements recorded by onboard accelerometers to quantify how development density affected the average distances traveled and energy expended by pumas. Pumas responded to development differently depending on the time of day; at night, they were generally more active and moved further when they were in developed areas, but these relationships were not consistent during the day. Higher nighttime activity in developed areas increased daily caloric expenditure by 10.1% for females and 11.6% for males, resulting in increases of 3.4 and 4.0 deer prey required annually by females and males respectively. Our results support that pumas have higher energetic costs and resource requirements in human-dominated habitats due to human-induced behavioral change. Increased energetic costs for pumas are likely to have ramifications on prey species and exacerbate human-wildlife conflict, especially as exurban growth continues. Future conservation work should consider the consequences of behavioral shifts on animal energetics, individual fitness, and population viability.

  16. Residential development alters behavior, movement, and energetics in an apex predator, the puma.

    Directory of Open Access Journals (Sweden)

    Yiwei Wang

    Full Text Available Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and proximity to housing influenced the activity patterns of both male and female pumas in the Santa Cruz Mountains. We used spatial GPS location data in combination with Overall Dynamic Body Acceleration measurements recorded by onboard accelerometers to quantify how development density affected the average distances traveled and energy expended by pumas. Pumas responded to development differently depending on the time of day; at night, they were generally more active and moved further when they were in developed areas, but these relationships were not consistent during the day. Higher nighttime activity in developed areas increased daily caloric expenditure by 10.1% for females and 11.6% for males, resulting in increases of 3.4 and 4.0 deer prey required annually by females and males respectively. Our results support that pumas have higher energetic costs and resource requirements in human-dominated habitats due to human-induced behavioral change. Increased energetic costs for pumas are likely to have ramifications on prey species and exacerbate human-wildlife conflict, especially as exurban growth continues. Future conservation work should consider the consequences of behavioral shifts on animal energetics, individual fitness, and population viability.

  17. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice.

    Science.gov (United States)

    Giocanti-Auregan, Audrey; Vacca, Ophélie; Bénard, Romain; Cao, Sijia; Siqueiros, Lourdes; Montañez, Cecilia; Paques, Michel; Sahel, José-Alain; Sennlaub, Florian; Guillonneau, Xavier; Rendon, Alvaro; Tadayoni, Ramin

    2016-05-01

    Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti-GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild-type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71-null mice, a reduction in GFAP-immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real-time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post-natal vascular development. Regarding morphology in Dp71-null and WT mice, a significant decrease in overall astrocyte process number in Dp71-null retinas at P6 to adult age was found. Using fluorescence-conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71-null mice was found. An evidence that the Dystrophin Dp71, a membrane-associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided. © 2015 Wiley Periodicals, Inc.

  18. Quantification of microglial proliferation and apoptosis by flow cytometry

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Wirenfeldt, Martin; Finsen, Bente

    2013-01-01

    Microglia are innate immune cells that survey the central nervous system (CNS) and respond almost immediately to any disturbance in CNS homeostasis. They are derived from primitive yolk sac myeloid progenitors and in the mouse colonize the CNS during fetal development. As a population, microglia...

  19. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development

    DEFF Research Database (Denmark)

    Villacis, Rolando A. R.; Basso, Tatiane R; Canto, Luisa M

    2017-01-01

    Multiple primary tumors (MPT) have been described in carriers of inherited cancer predisposition genes. However, the genetic etiology of a large proportion of MPT cases remains unclear. We reviewed 267 patients with hereditary cancer predisposition syndromes (HCPS) that underwent genetic counseling...... and selected 22 patients with MPT to perform genomic analysis (CytoScan HD Array, Affymetrix) aiming to identify new alterations related to a high risk of developing MPT. Twenty patients had a positive family history of cancer and 11 met phenotypic criteria for HCPS. Genetic testing for each of the genes...... and proliferation. Overall, we identified 14 cases with rare CNVs and/or cnLOH that may contribute to the risk of MPT development. KEY MESSAGE: CNVs may explain the risk of hereditary cancer syndromes in MPT patients. CNVs affecting genes related to cancer are candidates to be involved in MPT risk. EPCAM/MSH2...

  20. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  1. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  2. Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats

    DEFF Research Database (Denmark)

    Mandrup, Karen; Hass, Ulla; Christiansen, Sofie

    2012-01-01

    Increased attention is being paid to human mammary gland development because of concerns for environmental influences on puberty onset and breast cancer development. Studies in rodents have showed a variety of changes in the mammary glands after perinatal exposure to endocrine disrupting chemicals......, Wistar rats were exposed to 0, 5, 15 or 50 μg/kg of ethinyl oestradiol per day during gestation and lactation. A wide range of morphological parameters were evaluated in whole mounts of mammary glands from male and female offspring PD21–22. This study showed that in both male and female pre...... density. The sensitive endpoints in male rats were TEB numbers, both in the whole gland and in the zone C, the overall‐ and the highest density. The overall density was sensitive in both male and female rats and was considered a good representative of both branching and budding of the gland. The number...

  3. HLA gene expression is altered in whole blood and placenta from women who later developed preeclampsia.

    Science.gov (United States)

    Small, Heather Y; Akehurst, Christine; Sharafetdinova, Liliya; McBride, Martin W; McClure, John D; Robinson, Scott W; Carty, David M; Freeman, Dilys J; Delles, Christian

    2017-03-01

    Preeclampsia is a multisystem disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify dysregulated genes in maternal whole blood samples which may be associated with the development of preeclampsia. Whole blood samples were obtained at 28 wk of gestation from 5 women who later developed preeclampsia (cases) and 10 matched women with normotensive pregnancies (controls). Placenta samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. We studied gene expression profiles using Illumina microarray in blood and validated changes in gene expression in whole blood and placenta tissue by qPCR. We found a transcriptional profile differentiating cases from controls; 336 genes were significantly dysregulated in blood from women who developed preeclampsia. Functional annotation of microarray results indicated that most of the genes found to be dysregulated were involved in inflammatory pathways. While general trends were preserved, only HLA-A was validated in whole blood samples from cases using qPCR (2.30- ± 0.9-fold change) whereas in placental tissue HLA-DRB1 expression was found to be significantly increased in samples from women with preeclampsia (5.88- ± 2.24-fold change). We have identified that HLA-A is upregulated in the circulation of women who went on to develop preeclampsia. In placenta of women with preeclampsia we identified that HLA-DRB1 is upregulated. Our data provide further evidence for involvement of the HLA gene family in the pathogenesis of preeclampsia. Copyright © 2017 the American Physiological Society.

  4. Endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development

    DEFF Research Database (Denmark)

    Velasco-Santamaria, Y. M.; Handy, R. D.; Sloman, K. A.

    2011-01-01

    Adult zebrafish (Danio rerio) were exposed to 0 (control), 0.16 or 0.48 mu g/L of the insecticide, endosulfan, for 28 days. Haematology, whole body ions, thiobarbituric acid reactive substances (TBARS), Na(+)K(+)-ATPase, organ histology and reproduction were assessed in adults. The resulting....... rerio, and effects on the development of their offspring. (C) 2011 Elsevier Inc. All rights reserved....

  5. Residential development alters behavior, movement, and energetics in an apex predator, the puma

    OpenAIRE

    Wang, Yiwei; Smith, Justine A.; Wilmers, Christopher C.

    2017-01-01

    Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and pro...

  6. Altered renal function and the development of angiotensin II-dependent hypertension

    OpenAIRE

    Ashek, Ali

    2011-01-01

    Inappropriate modulation of the renin angiotensin system (RAS) can lead to derangements of blood pressure homeostasis in humans. Cyp1a1-mRen2.F transgenic rats were used to define the renal mechanisms underlying the development of angiotensin II-dependent hypertension. These transgenic rats were previously generated by introducing the mouse Ren2 gene into the rat genome under the control of a Cyp1a1 inducible promoter. The aim of the current investigation was to establish th...

  7. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    Science.gov (United States)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  8. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.

    Directory of Open Access Journals (Sweden)

    Eddy Risseeuw

    Full Text Available Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.

  9. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.

    Science.gov (United States)

    Risseeuw, Eddy; Venglat, Prakash; Xiang, Daoquan; Komendant, Kristina; Daskalchuk, Tim; Babic, Vivijan; Crosby, William; Datla, Raju

    2013-01-01

    Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY) functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO) is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP) MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.

  10. Antenatal exposure to antidepressants is associated with altered brain development in very preterm-born neonates.

    Science.gov (United States)

    Podrebarac, Samantha K; Duerden, Emma G; Chau, Vann; Grunau, Ruth E; Synnes, Anne; Oberlander, Tim F; Miller, Steven P

    2017-02-07

    Antenatal exposure to selective serotonin reuptake inhibitors (SSRIs) is associated with an enhanced risk of preterm birth. Very preterm-born neonates (brain development. To examine whether antenatal-SSRI exposure was associated with adverse neonatal brain microstructural and metabolic development using diffusion tensor and magnetic resonance spectroscopic imaging. Of 177 neonates enrolled, 14 (8%) were antenatally exposed to SSRIs. Neonates were scanned twice (median week 32; interquartile range [IQR]: 30.4-33.6) and again at term-equivalent age (40.1, IQR: 38.6-42.1). Using a region-of-interest approach, N-acetylaspartate to choline ratios (NAA/Cho), lactate to choline ratios, white and gray matter fractional anisotropy (FA), mean, axial, radial diffusivity (MD, AD, RD) values were extracted from white and gray matter subcortical regions. Neurodevelopment was assessed at 18 months, corrected age. SSRI-exposed neonates exhibited increased FA and decreased MD, AD and RD values in the superior white matter (pbrain development requires further attention. Future research is directed at determining the mechanism of this relationship and the contribution of maternal mood. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  12. HPA Axis Function Alters Development of Working Memory in Boys with FXS

    Science.gov (United States)

    Scherr, Jessica F.; Hahn, Laura J.; Hooper, Stephen R.; Hatton, Deborah; Roberts, Jane E.

    2016-01-01

    The present study examines verbal working memory over time in boys with fragile X syndrome (FXS) compared to nonverbal mental-age (NVMA) matched, typically developing (TD) boys. Concomitantly, the relationship between cortisol—a physiological marker for stress—and verbal working memory performance over time is examined to understand the role of physiological mechanisms in cognitive development in FXS. Participants were assessed between one and three times over a 2-year time frame using two verbal working memory tests that differ in complexity: memory for words and auditory working memory with salivary cortisol collected at the beginning and end of each assessment. Multilevel modeling results indicate specific deficits over time on the memory for words task in boys with FXS compared to TD controls that is exacerbated by elevated baseline cortisol. Similar increasing rates of growth over time were observed for boys with FXS and TD controls on the more complex auditory working memory task, but only boys with FXS displayed an association of increased baseline cortisol and lower performance. This study highlights the benefit of investigations of how dynamic biological and cognitive factors interact and influence cognitive development over time. PMID:26760450

  13. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    Science.gov (United States)

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  14. IKKβ Activation in the Fetal Lung Mesenchyme Alters Lung Vascular Development but Not Airway Morphogenesis.

    Science.gov (United States)

    McCoy, Alyssa M; Herington, Jennifer L; Stouch, Ashley N; Mukherjee, Anamika B; Lakhdari, Omar; Blackwell, Timothy S; Prince, Lawrence S

    2017-12-01

    In the immature lung, inflammation and injury disrupt the epithelial-mesenchymal interactions required for normal development. Innate immune signaling and NF-κB activation disrupt the normal expression of multiple mesenchymal genes that play a key role in airway branching and alveolar formation. To test the role of the NF-κB pathway specifically in lung mesenchyme, we utilized the mesenchymal Twist2-Cre to drive expression of a constitutively active inhibitor of NF-κB kinase subunit β (IKKβca) mutant in developing mice. Embryonic Twist2-IKKβca mice were generated in expected numbers and appeared grossly normal. Airway branching also appeared normal in Twist2-IKKβca embryos, with airway morphometry, elastin staining, and saccular branching similar to those in control littermates. While Twist2-IKKβca lungs did not contain increased levels of Il1b, we did measure an increased expression of the chemokine-encoding gene Ccl2. Twist2-IKKβca lungs had increased staining for the vascular marker platelet endothelial cell adhesion molecule 1. In addition, type I alveolar epithelial differentiation appeared to be diminished in Twist2-IKKβca lungs. The normal airway branching and lack of Il1b expression may have been due to the inability of the Twist2-IKKβca transgene to induce inflammasome activity. While Twist2-IKKβca lungs had an increased number of macrophages, inflammasome expression remained restricted to macrophages without evidence of spontaneous inflammasome activity. These results emphasize the importance of cellular niche in considering how inflammatory signaling influences fetal lung development. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development.

    Science.gov (United States)

    Macaulay, Laura J; Chernick, Melissa; Chen, Albert; Hinton, David E; Bailey, Jordan M; Kullman, Seth W; Levin, Edward D; Stapleton, Heather M

    2017-01-01

    Polybrominated diphenyl ethers (PBDEs) and their metabolites (e.g., hydroxylated BDEs [OH-BDEs]) are contaminants frequently detected together in human tissues and are structurally similar to thyroid hormones. Thyroid hormones partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window that may be vulnerable to chemicals disrupting thyroid signaling. In the present study, zebrafish were exposed to 6-OH-BDE-47 (30 nM; 15 μg/L) alone, or to a low-dose (30 μg/L) or high-dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5-6 μg/L), and 2,4,6-tribromophenol (5-100 μg/L) during juvenile development (9-23 d postfertilization) and evaluated for developmental endpoints mediated by thyroid hormone signaling. Fish were sampled at 3 time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high-dose mixture resulted in >85% mortality within 1 wk of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low-dose mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47-treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and thyroid hormones. Overall, these results indicate that exposures to PBDE/OH-BDE mixtures adversely impact zebrafish maturation during metamorphosis. Environ Toxicol Chem 2017;36:36-48. © 2016 SETAC. © 2016 SETAC.

  16. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan, E-mail: lijuanpharm@gmail.com; Chen, Hongzhuan, E-mail: yaoli@shsmu.edu.cn

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  17. Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway

    Directory of Open Access Journals (Sweden)

    Braz Maria H

    2008-10-01

    Full Text Available Abstract Background Microglia are macrophage-like cells that constantly sense the microenvironment within the central nervous system (CNS. In the event of neuronal stress or injury, microglial cells rapidly react and change their phenotype. This response may lead to a deleterious type of microglial activation, which is often associated with neuroinflammation and neurotoxicity in several neuropathological conditions. We investigated the molecular mechanisms underlying triggering of microglial activation by necrotic neuronal damage. Methods Primary cultures of microglia were used to study the effect of necrotic neurons on microglial inflammatory responses and toxicity towards cerebellar granule neurons (CGN. The mouse hippocampal cell line, HT22, was used in this study as the main source of necrotic neurons to stimulate microglia. To identify the signal transduction pathways activated in microglia, primary microglial cultures were obtained from mice deficient in Toll-like receptor (TLR -2, -4, or in the TLR adapter protein MyD88. Results Necrotic neurons, but not other necrotic cell types, induced microglial activation which was characterized by up-regulation of: i MHC class II; ii co-stimulatory molecules, i.e. CD40 and CD24; iii β2 integrin CD11b; iii pro-inflammatory cytokines, i.e. interleukin 6 (IL-6, IL-12p40 and tumor-necrosis factor (TNF; iv pro-inflammatory enzymes such as nitric oxide synthase (iNOS, type II NOS, indoleamine 2,3-dioxygenase (IDO and cyclooxygenase-2 (COX-2 and increased microglial motility. Moreover, microglia-conditioned medium (MCM obtained from cultures of activated microglia showed increased neurotoxicity mediated through the N-methyl-D-aspartate receptor (NMDAR. The activation of microglia by necrotic neurons was shown to be dependent on the TLR-associated adapter molecule myeloid differentiation primary response gene (MyD88. Furthermore, MyD88 mediated enhanced neurotoxicity by activated microglia through up

  18. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  19. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    Directory of Open Access Journals (Sweden)

    Eugen Dhimolea

    Full Text Available Exposure to environmental estrogens (xenoestrogens may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments, with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50. BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene

  20. Safety concerning the partial alteration of the fuel reprocessing facility in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    A report of the Committee on Examination of Nuclear Fuel Safety was presented to the Atomic Energy Commission of Japan, which is concerned with the safety in the partial alteration of the fuel reprocessing facility in the Power Reactor and Nuclear Fuel Development Corporation. Its safety was confirmed. The alteration is as follows. In order to raise the storage capacity of low-level radioactive solid wastes, the second storage is installed. The building for low-level solid waste storage is a ferro-concrete structure, total floor space is 1,260 m 2 , two-storied with one basement floor. The basement floor is for storage, the first floor for receiving, storage, etc., and the second floor for storage and machinery room. The capacity of the second storage is for about 9,500 200 l drums (equivalent to about four years waste discharge). The contents of the safety examination are safety of facilities such as aseismatic property and radiation protection, and effects on the surrounding environment. (Mori, K

  1. Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training

    Directory of Open Access Journals (Sweden)

    W. Guy Hornsby

    2017-10-01

    Full Text Available The purpose of this monitoring study was to investigate how alterations in training affect changes in force-related characteristics and weightlifting performance. Subjects: Seven competitive weightlifters participated in the study. Methods: The weightlifters performed a block style periodized plan across 20 weeks. Force plate data from the isometric mid-thigh pull and static jumps with 0 kg, 11 kg, and 20 kg were collected near the end of each training block (weeks 1, 6, 10, 13, 17, and 20. Weightlifting performance was measured at weeks 0, 7, 11, and 20. Results: Very strong correlations were noted between weightlifting performances and isometric rate of force development (RFD, isometric peak force (PF, peak power (PP, and jump height (JH. Men responded in a more predictable manner than the women. During periods of higher training volume, RFD was depressed to a greater extent than PF. JH at 20 kg responded in a manner reflecting the expected fatigue response more so than JH at 0 kg and 11 kg. Conclusions: PF appears to have been more resistant to volume alterations than RFD and JH at 20 kg. RFD and JH at 20 kg appear to be superior monitoring metrics due to their “sensitivity.”

  2. Postnatal development of rat pups is altered by prenatal methamphetamine exposure.

    Science.gov (United States)

    Slamberová, Romana; Pometlová, Marie; Charousová, Petra

    2006-01-01

    There are studies showing that drug abuse during pregnancy may have impairing effect on progeny of drug-abusing mothers. Methamphetamine (MA) is one of the most common illicit drugs throughout the world. The purpose of the present study was to assess the effect of prenatal MA exposure on postnatal development of rat pups before the time of separation from their mothers. Female rats were injected with MA (5 mg/kg daily) for the duration of their pregnancy. Pups were then tested throughout the lactation period. They were weighed daily and the ano-genital distance was measured on postnatal day (PD) 1. Development of postural motor reaction was tested by righting reflex on surface between PD 1 and 12, and righting reflex in mid-air after PD 12 until successfully accomplished. On PD 15 homing test was examined as a test of pup acute learning. On PD 23 sensory-motor coordination was examined using the rotarod and bar-holding tests. Additionally, the markers of physical maturation, such as eye opening, testes descent in males and vaginal opening in females were also recorded. The birth weight in prenatally MA-exposed pups was lower than in controls or saline-exposed pups regardless of sex. There were no changes induced by prenatal MA exposure in weight gain or in sexual maturation. In righting reflexes, we demonstrated that pups exposed prenatally to MA were slower in righting reflex on surface and that they accomplished the test of righting reflex in mid-air later than controls or saline-exposed pups. The performance of homing test was not affected by prenatal drug exposure. The sensory-motor coordination was impaired in prenatally MA-exposed pups when testing in the rotarod test. Also, the number of falls in the bar-holding test was higher in MA-exposed pups than in controls. There were no sex differences in any measures. Thus, the present study demonstrated that prenatal MA exposure impairs development of postural motor movements of rat pups during the first 3 weeks

  3. Altered somatosensory barrel cortex refinement in the developing brain of Mecp2-null mice.

    Science.gov (United States)

    Moroto, M; Nishimura, A; Morimoto, M; Isoda, K; Morita, T; Yoshida, M; Morioka, S; Tozawa, T; Hasegawa, T; Chiyonobu, T; Yoshimoto, K; Hosoi, H

    2013-11-06

    Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MeCP2) gene. In previous studies, monoaminergic dysfunctions have been detected in patients with RTT and in a murine model of RTT, the Mecp2-null mouse. Therefore, the pathogenesis of RTT is thought to involve impairments in the monoaminergic systems. However, there have been limited data showing that the impairment of monoamines leads to early symptoms during development. We used histochemistry to study the somatosensory barrel cortex in the B6.129P2(C)-Mecp2(tm1.1Bird) mouse model of RTT. The barrel cortex is widely used to investigate neuronal development and its regulation by various neurotransmitters including 5-HT. 5-HT levels were measured by high performance liquid chromatography with electrochemical detection (HPLC/EC), and serotonin transporter (SERT) and 5-HT1B receptor mRNAs were measured in the somatosensory cortex, thalamus and striatum on postnatal days (P) 10, P20 and P40. Mecp2-null mice (Mecp2-/y) had significantly smaller barrel fields than age-matched wild-type controls (Mecp2+/y) on P10 and P40, but the topographic map was accurately formed. Levels of 5-HT, and SERT and 5-HT1B receptor mRNA expression in the somatosensory cortex did not differ significantly between the Mecp2-null and wild-type mice on P10. However, thalamic 5-HT was reduced in Mecp2-null mice. Our data indicate that a lack of MeCP2 may disturb the refinement of the barrel cortex in the early postnatal period. Our findings suggest that a decrease in thalamic 5-HT might be involved in this phenomenon. © 2013 Elsevier B.V. All rights reserved.

  4. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  5. Red blotch disease alters grape berry development and metabolism by interfering with the transcriptional and hormonal regulation of ripening

    Science.gov (United States)

    Blanco-Ulate, Barbara; Hopfer, Helene; Figueroa-Balderas, Rosa; Ye, Zirou; Rivero, Rosa M.; Albacete, Alfonso; Pérez-Alfocea, Francisco; Koyama, Renata; Anderson, Michael M.; Smith, Rhonda J.; Ebeler, Susan E.

    2017-01-01

    Abstract Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds. PMID:28338755

  6. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development.

    Science.gov (United States)

    Unda, Faride; Kim, Hoon; Hefer, Charles; Ralph, John; Mansfield, Shawn D

    2017-07-01

    Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. Hybrid poplar (Populus alba × grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sections of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. In addition, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. The results suggest that the overexpression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development

    Directory of Open Access Journals (Sweden)

    Guy eGolan

    2013-08-01

    Full Text Available Phloem sap contains a large repertoire of macromolecules in addition to sugars, amino acids, growth substances and ions. The transcription profile of melon phloem sap contains over 1,000 mRNA molecules, most of them associated with signal transduction, transcriptional control, and stress and defense responses. Heterografting experiments have established the long-distance trafficking of numerous mRNA molecules. Interestingly, several trafficking transcripts are involved in the auxin response, including two molecules coding for auxin/indole acetic acid (Aux/IAA. To further explore the biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette containing the coding sequence of this gene under a phloem-specific promoter was introduced into tomato plants. The number of lateral roots was significantly higher in transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A similar effect on root development was obtained after transient expression of CmF-308 in source leaves of N. benthamiana plants. An auxin-response assay showed that CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to the altered root development, phloem-specific expression of CmF-308 resulted in shorter plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling reduced apical dominance. In contrast to the root response, cotyledons of the transgenic plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes in leaves and an increase in the relative expression of a cytokinin-response regulator, TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.

  8. Alfalfa Intervention Alters Rumen Microbial Community Development in Hu Lambs During Early Life

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2018-03-01

    Full Text Available The pre-weaning period is crucial for rumen developmental plasticity, which can have a long-term impact on animal performance. Understanding the rumen microbiota during early life is important to elucidate its potential role in rumen development. In this study, the rumen microbiota of 10-day-old Hu lambs fed either milk replacer (B-10, milk replacer and starter (STA or milk replacer and starter supplemented with alfalfa (S-ALF in the pre- (d17, 24, and 38 and post-weaning periods (d45 and 66 were assessed to characterize rumen microbial colonization during early life and its response to fiber intervention. In the rumens of B-10 lambs, 498 operational taxonomic units belonging to 33 predominant genera were observed, and the top six predicted functions included “Membrane transport,” “carbohydrate metabolism,” “amino acid metabolism,” “replication and repair,” “translation,” and “energy metabolism.” Prevotella, Succinivibrio, Bifidobacterium, and Butyrivibrio abundances were increased at d38 for both STA and S-ALF groups compared to the B-10 group, whereas fibrolytic bacteria of the taxa Lachnospiraceae and Treponema were only increased in the S-ALF group at d38. A number of saccharolytic bacteria (Bacteroidaceae, organic acid-producing bacteria (Coprococcus and Actinomyces, proteolytic and amino acid fermenters (Fusobacterium and fibrolytic bacteria (unclassified Ruminococcaceae were significantly decreased in the STA lambs but not in the S-ALF lambs at d38. After weaning and exposed to alfalfa, the rumen microbial composition in the STA group started to appear similar to that of the S-ALF lambs. The relative abundance of unclassified Clostridiales was higher in S-ALF lambs than STA lambs after weaning. Spearman’s correlation analysis showed positive relationships between unclassified Lachnospiraceae, unclassified Clostridiales, Treponema, unclassified Bacteroidales, Coprococcus and crude protein intake, neutral detergent

  9. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development.

    Directory of Open Access Journals (Sweden)

    Harriet E Feilotter

    Full Text Available The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.

  10. Malaria in pregnancy alters l-arginine bioavailability and placental vascular development.

    Science.gov (United States)

    McDonald, Chloe R; Cahill, Lindsay S; Gamble, Joel R; Elphinstone, Robyn; Gazdzinski, Lisa M; Zhong, Kathleen J Y; Philson, Adrienne C; Madanitsa, Mwayiwawo; Kalilani-Phiri, Linda; Mwapasa, Victor; Ter Kuile, Feiko O; Sled, John G; Conroy, Andrea L; Kain, Kevin C

    2018-03-07

    Reducing adverse birth outcomes due to malaria in pregnancy (MIP) is a global health priority. However, there are few safe and effective interventions. l-Arginine is an essential amino acid in pregnancy and an immediate precursor in the biosynthesis of nitric oxide (NO), but there are limited data on the impact of MIP on NO biogenesis. We hypothesized that hypoarginemia contributes to the pathophysiology of MIP and that l-arginine supplementation would improve birth outcomes. In a prospective study of pregnant Malawian women, we show that MIP was associated with lower concentrations of l-arginine and higher concentrations of endogenous inhibitors of NO biosynthesis, asymmetric and symmetric dimethylarginine, which were associated with adverse birth outcomes. In a model of experimental MIP, l-arginine supplementation in dams improved birth outcomes (decreased stillbirth and increased birth weight) compared with controls. The mechanism of action was via normalized angiogenic pathways and enhanced placental vascular development, as visualized by placental microcomputerized tomography imaging. These data define a role for dysregulation of NO biosynthetic pathways in the pathogenesis of MIP and support the evaluation of interventions to enhance l-arginine bioavailability as strategies to improve birth outcomes. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Alteration of mice cerebral cortex development after prenatal exposure to cypermethrin and deltamethrin.

    Science.gov (United States)

    Guo, Junnan; Xu, Jinzhong; Zhang, Junshi; An, Lei

    2018-05-01

    Pyrethroids, a group of insecticides with high efficiency, low toxicity and wide spectrum, are used for pest control in agriculture. Here, we administered two representative pyrethroids (cypermethrin and deltamethrin) and an equal volume of vehicle (corn oil) to the pregnant ICR mice. This study investigated the effects of cypermethrin and deltamethrin on cerebral cortex development in mice as well as possible mechanisms in proliferation and differentiation. The results showed that histopathologic change did not occurred in the cerebral cortex using Hematoxylin and Eosin staining, however, the observation of fetuses exposed to cypermethrin and deltamethrin revealed reduction of neuronal proliferation, maturation and differentiation. Moreover, cypermethrin/deltamethrin-induced apoptosis of nerve cell was significantly higher in treated groups than that in control group by using flow cytometry, Western blot and TUNEL. It was worth mentioning that the newborns exposed to cypermethrin and deltamethrin did not showed abnormal neuronal distribution. These findings suggested that prenatal cypermethrin and deltamethrin exposure impaired corticogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice.

    Science.gov (United States)

    Lee, Hye-Jung; Jo, Yeong-Min; Lee, Jong-Yeol; Lim, Sun-Hyung; Kim, Young-Mi

    2015-06-30

    The major seed storage proteins (SSPs) in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi), which was generated with RNA interference (RNAi)-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  13. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    International Nuclear Information System (INIS)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao; Yu, Xiyan; Wang, Xiufeng

    2010-01-01

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  14. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  15. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

    Science.gov (United States)

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  16. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2015-03-01

    Full Text Available Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE, a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS, cyclooxygenase (COX-2 and the production of nitric oxide (NO. Administration of CAPE resulted in increased expressions of hemeoxygenase (HO-1and erythropoietin (EPO in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.

  17. Hypothermia Reduces Toll-Like Receptor 3-Activated Microglial Interferon-β and Nitric Oxide Production

    Directory of Open Access Journals (Sweden)

    Tomohiro Matsui

    2013-01-01

    Full Text Available Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS. Microglia express toll-like receptors (TLRs that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN-β and nitric oxide (NO, which are known to be associated with neuronal cell death. When rat or mouse microglia were cultured under conditions of hypothermia (33°C and normothermia (37°C with a TLR3 agonist, polyinosinic-polycytidylic acid, the production of IFN-β and NO in TLR3-activated microglia at 48 h was decreased by hypothermia compared with that by normothermia. In addition, exposure to recombinant IFN-β and sodium nitroprusside, an NO donor, caused death of rat neuronal pheochromocytoma PC12 cells in a concentration-dependent manner after 24 h. Taken together, these results suggest that the attenuation of microglial production of IFN-β and NO by therapeutic hypothermia leads to the inhibition of neuronal cell death.

  18. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  19. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Marta Machado-Pereira

    2017-01-01

    Full Text Available Inflammatory mechanisms triggered by microglial cells are involved in the pathophysiology of several brain disorders, hindering repair. Herein, we propose the use of retinoic acid-loaded polymeric nanoparticles (RA-NP as a means to modulate microglia response towards an anti-inflammatory and neuroprotective phenotype (M2. RA-NP were first confirmed to be internalized by N9 microglial cells; nanoparticles did not affect cell survival at concentrations below 100 μg/mL. Then, immunocytochemical studies were performed to assess the expression of pro- and anti-inflammatory mediators. Our results show that RA-NP inhibited LPS-induced release of nitric oxide and the expression of inducible nitric oxide synthase and promoted arginase-1 and interleukin-4 production. Additionally, RA-NP induced a ramified microglia morphology (indicative of M2 state, promoting tissue viability, particularly neuronal survival, and restored the expression of postsynaptic protein-95 in organotypic hippocampal slice cultures exposed to an inflammatory challenge. RA-NP also proved to be more efficient than the free equivalent RA concentration. Altogether, our data indicate that RA-NP may be envisioned as a promising therapeutic agent for brain inflammatory diseases.

  1. Does microglial dysfunction play a role in autism and Rett syndrome?

    Science.gov (United States)

    Maezawa, Izumi; Calafiore, Marco; Wulff, Heike; Jin, Lee-Way

    2011-02-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.

  2. Does microglial dysfunction play a role in autism and Rett syndrome?

    Science.gov (United States)

    MAEZAWA, IZUMI; CALAFIORE, MARCO; WULFF, HEIKE; JIN, LEE-WAY

    2016-01-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies. PMID:22717189

  3. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2015-09-01

    Full Text Available Alginate from marine brown algae has been widely applied in biotechnology. In this work, the effects of alginate-derived oligosaccharide (AdO on lipopolysaccharide (LPS/β-amyloid (Aβ-induced neuroinflammation and microglial phagocytosis of Aβ were studied. We found that pretreatment of BV2 microglia with AdO prior to LPS/Aβ stimulation led to a significant inhibition of production of nitric oxide (NO and prostaglandin E2 (PGE2, expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 and secretion of proinflammatory cytokines. We further demonstrated that AdO remarkably attenuated the LPS-activated overexpression of toll-like receptor 4 (TLR4 and nuclear factor (NF-κB in BV2 cells. In addition to the impressive inhibitory effect on neuroinflammation, we also found that AdO promoted the phagocytosis of Aβ through its interaction with TLR4 in microglia. Our results suggested that AdO exerted the inhibitory effect on neuroinflammation and the promotion effect on microglial phagocytosis, indicating its potential as a nutraceutical or therapeutic agent for neurodegenerative diseases, particularly Alzheimer’s disease (AD.

  4. Expression of Tau40 induces activation of cultured rat microglial cells.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.

  5. THE IMPORTANCE OF EPIGENETIC ALTERATIONS IN THE DEVELOPMENT OF EPSTEIN-BARR VIRUS-RELATED LYMPHOMAS

    Directory of Open Access Journals (Sweden)

    Maria Takacs

    2009-11-01

    demethylation, we suggest that binding of EBNA1 to its cellular target sites may elicit local demethylation and contribute thereby to the activation of silent cellular promoters. EBNA2 interacts with histone acetyltransferases, and EBNALP (EBNA5 coactivates transcription by displacing histone deacetylase 4 from EBNA2-bound promoter sites. EBNA3C (EBNA6 seems to be associated both with histone acetylases and deacetylases, although in separate complexes. LMP1, a transmembrane protein involved in malignant transformation, can affect both alternative systems of epigenetic memory, DNA methylation and the Polycomb-trithorax group of protein complexes. In epithelial cells LMP1 can up-regulate DNA methyltransferases and, in Hodgkin lymphoma cells, induce the Polycomb group protein Bmi-1. In addition, LMP1 can also modulate cellular gene expression programs by affecting, via the NF-κB pathway, levels of cellular microRNAs miR-146a and miR-155. These interactions may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms; autoimmune phenomena; immunodeficiency. Thus, Epstein-Barr virus, similarly to other viruses and certain bacteria, may induce pathological changes by epigenetic reprogramming of host cells. Elucidation of the epigenetic consequences of EBV-host interactions (within the framework of the emerging new field of patho-epigenetics may have important implications for therapy and disease prevention, because epigenetic processes are reversible and continuous silencing of EBV genes contributing to patho-epigenetic changes may prevent disease development.

  6. Alterations in the Immune Cell Composition in Premalignant Breast Tissue that Precede Breast Cancer Development.

    Science.gov (United States)

    Degnim, Amy C; Hoskin, Tanya L; Arshad, Muhammad; Frost, Marlene H; Winham, Stacey J; Brahmbhatt, Rushin A; Pena, Alvaro; Carter, Jodi M; Stallings-Mann, Melody L; Murphy, Linda M; Miller, Erin E; Denison, Lori A; Vachon, Celine M; Knutson, Keith L; Radisky, Derek C; Visscher, Daniel W

    2017-07-15

    Purpose: Little is known about the role of the immune system in the earliest stages of breast carcinogenesis. We studied quantitative differences in immune cell types between breast tissues from normal donors and those from women with benign breast disease (BBD). Experimental Design: A breast tissue matched case-control study was created from donors to the Susan G. Komen for the Cure Tissue Bank (KTB) and from women diagnosed with BBD at Mayo Clinic (Rochester, MN) who either subsequently developed cancer (BBD cases) or remained cancer-free (BBD controls). Serial tissue sections underwent immunostaining and digital quantification of cell number per mm 2 for CD4 + T cells, CD8 + T cells, CD20 + B cells, and CD68 + macrophages and quantification of positive pixel measure for CD11c (dendritic cells). Results: In 94 age-matched triplets, BBD lobules showed greater densities of CD8 + T cells, CD11c + dendritic cells, CD20 + B cells, and CD68 + macrophages compared with KTB normals. Relative to BBD controls, BBD cases had lower CD20 + cell density ( P = 0.04). Nearly 42% of BBD cases had no CD20 + B cells in evaluated lobules compared with 28% of BBD controls ( P = 0.02). The absence of CD20 + cells versus the presence in all lobules showed an adjusted OR of 5.7 (95% confidence interval, 1.4-23.1) for subsequent breast cancer risk. Conclusions: Elevated infiltration of both innate and adaptive immune effectors in BBD tissues suggests an immunogenic microenvironment. The reduced B-cell infiltration in women with later breast cancer suggests a role for B cells in preventing disease progression and as a possible biomarker for breast cancer risk. Clin Cancer Res; 23(14); 3945-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Urbanization, Agricultural Intensification, and Habitat Alteration in Vietnam: Modeling Transitional Development and Emerging Infectious Diseases

    Science.gov (United States)

    Fox, J.; Saksena, S.; Spencer, J.; Finucane, M.; Sultana, N.

    2012-12-01

    Our overarching hypothesis is that new risks, in this case the H5N1 strain of avian influenza, emerge during transitions between stages of development. Moreover, these risks are not coincidental but occur precisely because of the in-between nature of the coupled human-natural system at the point when things are neither traditional nor modern but resemble the state of chaos, release and reorganization. We are testing this hypothesis in Vietnam using demographic, social, economic, and environmental data collected in national censuses and analyzed at commune and district levels to identify communes and districts that are traditional, modern, and transitional (peri-urban). Using data from the 2006 agricultural census that capture both the changing nature of the built environment (types of sanitation systems) and the loss of and diversification of agriculture systems (percent of households whose major source of income is from agriculture, and percent of land under agriculture, forests, and aquaculture), and a normalized difference vegetation index from 2006 Landsat images we created a national scale urbanicity map for Vietnam. Field work in the summer of 2011 showed this map to be an accurate (approximately 85%) approximation of traditional (rural), transitional (periurban), and modern (urban) communes. Preliminary results suggest that over 7% of the country's land area and roughly 15% of its population resides in periurban neighborhoods, and that these areas do have a statistically significant greater incidence of AVI as measured in chicken deaths than traditional and modern communes (Table 1). Transitional neighborhoods such as these force planners to ask two questions. To what extent does the dichotomy of urban/rural makes sense in the context of Vietnam, when large areas and parts of the population are caught between the two? Second, how can planners and policy makers effectively provide for basic public goods and services in these contexts?Classification of places

  8. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.

    Science.gov (United States)

    Barclay, M; Constable, R; James, N R; Thorne, P R; Montgomery, J M

    2016-06-14

    Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Endometrial vascular development in heavy menstrual bleeding: altered spatio-temporal expression of endothelial cell markers and extracellular matrix components.

    Science.gov (United States)

    Biswas Shivhare, Sourima; Bulmer, Judith N; Innes, Barbara A; Hapangama, Dharani K; Lash, Gendie E

    2018-01-04

    a dynamic expression pattern according to the menstrual cycle phase, in both endometrial and myometrial vessels. EC protein marker expression was altered in women with HMB compared with controls, especially in the secretory phase in the endometrial luminal region and stratum functionalis. For example, in the LSP expression of UEA-1 and CD31 in the luminal region decreased in HMB (mean quickscore: 1 and 5, respectively) compared with controls (3.2 and 7.4, respectively) (both P = 0.008), while expression of F8RA and CD34 increased in HMB (1.4 and 8, respectively) compared with controls (0 and 5.8, respectively) (both P = 0.008). There was also a distinct pattern of expression of the vascular structural ECM protein components osteopontin, laminin, fibronectin and collagen IV in the superficial myometrium, stratum functionalis and stratum basalis during the menstrual cycle, which was altered in HMB. In particular, compared with controls, osteopontin expression in HMB was higher in stratum functionalis in the LSP (7.2 and 11.2, respectively P = 0.008), while collagen IV expression was reduced in stratum basalis in the MSP (4.6 and 2.8, respectively P = 0.002) and in stratum functionalis in the ESP (7 and 3.2, respectively P = 0.008). The protein expression of vascular EC markers and ECM components was assessed using a semi-quantitative approach in both straight and spiral arterioles. In our hospital, HMB is determined by subjective criteria and levels of blood loss were not assessed. Variation in the protein expression pattern between the four EC markers highlights the importance of choice of EC marker for investigation of endometrial vessels. Differences in expression of the different EC markers may reflect developmental stage dependent expression of EC markers in endometrial vessels, and their altered expression in HMB may reflect dysregulated vascular development. This hypothesis is supported by altered expression of ECM proteins within endometrial vessel walls, as

  10. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning.

    Science.gov (United States)

    Tang, G Q; Lüscher, M; Sturm, A

    1999-02-01

    To unravel the functions of cell wall and vacuolar invertases in carrot, we used an antisense technique to generate transgenic carrot plants with reduced enzyme activity. Phenotypic alterations appeared at very early stages of development; indeed, the morphology of cotyledon-stage embryos was markedly changed. At the stage at which control plantlets had two to three leaves and one primary root, shoots of transgenic plantlets did not separate into individual leaves but consisted of stunted, interconnected green structures. When transgenic plantlets were grown on media containing a mixture of sucrose, glucose, and fructose rather than sucrose alone, the malformation was alleviated, and plantlets looked normal. Plantlets from hexose-containing media produced mature plants when transferred to soil. Plants expressing antisense mRNA for cell wall invertase had a bushy appearance due to the development of extra leaves, which accumulated elevated levels of sucrose and starch. Simultaneously, tap root development was markedly reduced, and the resulting smaller organs contained lower levels of carbohydrates. Compared with control plants, the dry weight leaf-to-root ratio of cell wall invertase antisense plants was shifted from 1:3 to 17:1. Plants expressing antisense mRNA for vacuolar invertase also had more leaves than did control plants, but tap roots developed normally, although they were smaller, and the leaf-to-root ratio was 1.5:1. Again, the carbohydrate content of leaves was elevated, and that of roots was reduced. Our data suggest that acid invertases play an important role in early plant development, most likely via control of sugar composition and metabolic fluxes. Later in plant development, both isoenzymes seem to have important functions in sucrose partitioning.

  11. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment.

    Science.gov (United States)

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-04-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1(+) microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU(+)/DCX(+) cells. Minocycline reduced Iba1(+) cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory.

  12. Microglial AGE-albumin is critical for neuronal death in Parkinson's disease: a possible implication for theranostics.

    Science.gov (United States)

    Bayarsaikhan, Enkhjargal; Bayarsaikhan, Delger; Lee, Jaesuk; Son, Myeongjoo; Oh, Seyeon; Moon, Jeongsik; Park, Hye-Jeong; Roshini, Arivazhagan; Kim, Seung U; Song, Byoung-Joon; Jo, Seung-Mook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD.

  13. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis : a correlative study

    NARCIS (Netherlands)

    Versijpt, J; Debruyne, JC; Van Laere, KJ; De Vos, F; Keppens, J; Strijckmans, K; Achten, E; Slegers, G; Dierckx, RA; Korf, J; De Reuck, JL

    2005-01-01

    Objective: The objectives of the present study were to assess brain atrophy in multiple sclerosis (MS) patients during different disease stages and to investigate by PET and [C-11]PK11195, a marker of microglial activation, the relationship between inflammation, atrophy and clinically relevant

  14. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  15. Numerical and experimental study on the ability of dynamic roughness to alter the development of a leading edge vortex

    Science.gov (United States)

    Griffin, Christopher D.

    Dynamic stall is an unsteady aerodynamic phenomenon garnering much research interest because it occurs in a variety of applications. For example, dynamic stall is known to occur on helicopter rotor blades, wind turbines, high maneuvering military aircraft, and flapping wings. Dynamic stall occurs when an aerodynamic lifting device, such as an airfoil, wing, or turbomachine blade, undergoes a rapid pitching motion. It also occurs on lifting devices that are impulsively started at high angles of attack. Dynamic stall can "delay" aerodynamic stall to angles of attack that are significantly beyond the static stall angle of attack. During dynamic stall a large leading edge vortex (LEV) is formed, which creates greater fluid acceleration over the wing or airfoil, thus sustaining lift. As this vortex is shed downstream stall eventually occurs and there is an abrupt increase in drag and a large shift in pitching moment. Research has been performed to better understand the mechanisms occurring during dynamic stall in an effort to find ways to best take advantage of the increased lift associated with dynamic stall, but avoid the downfalls that occur once stall is initiated. Few attempts have been made to alter the LEV, and these attempts have used methods associated with laminar boundary layer separation control. Although these methods have shown promise, they suffer from the drawback that they exhaust more energy than is gained by flow control, while also only being effective at certain flight regimes. The research described herein documents the first study on the ability of dynamic roughness to alter the LEV encountered on a rapidly pitching airfoil. Both numerical and experimental studies were performed, including two-dimensional and three-dimensional computational fluid dynamics (CFD) simulations as well as stereo and planar particle image velocimetry (PIV) experiments. Evidence for the ability of small scale dynamic roughness to alter the development of the LEV was

  16. Engineered single nucleotide polymorphisms in the mosquito MEK docking site alter Plasmodium berghei development in Anopheles gambiae

    Science.gov (United States)

    2014-01-01

    Background Susceptibility to Plasmodium infection in Anopheles gambiae has been proposed to result from naturally occurring polymorphisms that alter the strength of endogenous innate defenses. Despite the fact that some of these mutations are known to introduce non-synonymous substitutions in coding sequences, these mutations have largely been used to rationalize knockdown of associated target proteins to query the effects on parasite development in the mosquito host. Here, we assay the effects of engineered mutations on an immune signaling protein target that is known to control parasite sporogonic development. By this proof-of-principle work, we have established that naturally occurring mutations can be queried for their effects on mosquito protein function and on parasite development and that this important signaling pathway can be genetically manipulated to enhance mosquito resistance. Methods We introduced SNPs into the A. gambiae MAPK kinase MEK to alter key residues in the N-terminal docking site (D-site), thus interfering with its ability to interact with the downstream kinase target ERK. ERK phosphorylation levels in vitro and in vivo were evaluated to confirm the effects of MEK D-site mutations. In addition, overexpression of various MEK D-site alleles was used to assess P. berghei infection in A. gambiae. Results The MEK D-site contains conserved lysine residues predicted to mediate protein-protein interaction with ERK. As anticipated, each of the D-site mutations (K3M, K6M) suppressed ERK phosphorylation and this inhibition was significant when both mutations were present. Tissue-targeted overexpression of alleles encoding MEK D-site polymorphisms resulted in reduced ERK phosphorylation in the midgut of A. gambiae. Furthermore, as expected, inhibition of MEK-ERK signaling due to D-site mutations resulted in reduction in P. berghei development relative to infection in the presence of overexpressed catalytically active MEK. Conclusion MEK-ERK signaling in

  17. Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by seaweed extracts in Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Yu, Ke-Xin; Wong, Ching-Lee; Ahmad, Rohani; Jantan, Ibrahim

    2015-12-01

    To investigate the larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by the extracts derived from seaweeds Bryopsis pennata (B. pennata), Sargassum binderi (S. binderi) and Padina australis in Aedes aegypti (Ae. aegypti) larvae and to characterize the phytochemical components of the three seaweeds. Larvicidal activity of the seaweeds towards the larvae of Ae. aegypti was determined according to WHO. The inhibition effect of seaweeds was assessed by determining the mortality, adult emergence rate, larval and pupa duration of the treated larvae. Histopathological effect on midgut epithelium of larvae and morphological aberration induced by the methanol extracts were examined. Phytochemical analysis was done to determine the presence of alkaloids, saponins, steroids and terpenoids in the seaweeds. Chloroform partition of B. pennata extract exhibited the strongest larvicidal activity (LC50 = 82.55 μg/mL), followed by methanol extract of B. pennata (LC50 = 160.07 μg/mL) and chloroform partition of S. binderi extract (LC50 = 192.43 μg/mL). The methanol extract of S. binderi exhibited the strongest effect on prolongation of larval period (1.5-fold longer as compared to control) and resulted in strongest inhibition effect in adult emergence (98.67%). The histopathological study showed that larvae treated with seaweed extracts had cytopathological alteration of the midgut epithelium. The morphological observation revealed that the anal papillae and terminal spiracles of larvae were the common sites of aberrations. The study provided information on various effects of seaweed extracts on Ae. aegypti. Further investigation on identifying the active compounds and their mechanisms of action is recommended. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  18. LY293558 prevents soman-induced pathophysiological alterations in the basolateral amygdala and the development of anxiety.

    Science.gov (United States)

    Prager, Eric M; Figueiredo, Taiza H; Long, Robert P; Aroniadou-Anderjaska, Vassiliki; Apland, James P; Braga, Maria F M

    2015-02-01

    Exposure to nerve agents can cause brain damage due to prolonged seizure activity, producing long-term behavioral deficits. We have previously shown that LY293558, a GluK1/AMPA receptor antagonist, is a very effective anticonvulsant and neuroprotectant against nerve agent exposure. In the present study, we examined whether the protection against nerve agent-induced seizures and neuropathology conferred by LY293558 translates into protection against pathophysiological alterations in the basolateral amygdala (BLA) and the development of anxiety, which is the most prevalent behavioral deficit resulting from exposure. LY293558 (15 mg/kg) was administered to rats, along with atropine and HI-6, at 20 min after exposure to soman (1.2 × LD50). At 24 h, 7 days, and 30 days after exposure, soman-exposed rats who did not receive LY293558 had reduced but prolonged evoked field potentials in the BLA, as well as increased paired-pulse ratio, suggesting neuronal damage and impaired synaptic inhibition; rats who received LY293558 did not differ from controls in these parameters. Long-term potentiation of synaptic transmission was impaired at 7 days after exposure in the soman-exposed rats who did not receive anticonvulsant treatment, but not in the LY293558-treated rats. Anxiety-like behavior assessed by the open field and acoustic startle response tests was increased in the soman-exposed rats at 30 and 90 days after exposure, while rats treated with LY293558 did not differ from controls. Along with our previous findings, the present data demonstrate the remarkable efficacy of LY293558 in counteracting nerve agent-induced seizures, neuropathology, pathophysiological alterations in the BLA, and anxiety-related behavioral deficits. Published by Elsevier Ltd.

  19. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure.

    Science.gov (United States)

    Dulka, Eden A; Moenter, Suzanne M

    2017-11-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  20. Constitutive expression of the Poplar FD-like basic leucine zipper transcription factor alters growth and bud development.

    Science.gov (United States)

    Parmentier-Line, Cécile M; Coleman, Gary D

    2016-01-01

    In poplar, the CO/FT regulatory module mediates seasonal growth cessation. Although FT interacts with the basic leucine zipper transcription factor FD, surprisingly little is known about the possible role of FD in bud development and growth cessation in trees. In this study, we examined the expression and localization of the poplar FD homolog, PtFD1, during short-day (SD)-induced bud development, and the consequences of overexpressing PtFD1 on bud development and shoot growth. PtFD1 was primarily expressed in apical and axillary buds and exhibited a transient increase in expression during the initial stages of SD-induced bud development. This transient increase declined with continued SD treatment. When PtFD1 was overexpressed in poplar, SD-induced growth cessation and bud formation were abolished. PTFD1 overexpression also resulted in precocious flowering of juvenile plants in long-day (LD) photoperiods. Because the phenotypes associated with overexpression of PtFD1 are similar to those observe when poplar FT1 is overexpressed (Science, 312, 2006, 1040), the expression and diurnal patterns of expression of both poplar FT1 and FT2 were characterized in PtFD1 overexpression poplars and found to be altered. DNA microarray analysis revealed few differences in gene expression between PtFD1 overexpressing poplars in LD conditions while extensive levels of differential gene expression occur in SD-treated plants. These results enforce the connection between the regulation of flowering and the regulation of growth cessation and bud development in poplar. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    Science.gov (United States)

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  3. Alteration in peripheral blood concentration of certain pro-inflammatory cytokines in cows developing retention of fetal membranes.

    Science.gov (United States)

    Boro, Prasanta; Kumaresan, A; Pathak, Rupal; Patbandha, T K; Kumari, Susavi; Yadav, Asha; Manimaran, A; Baithalu, R K; Attupuram, Nitin M; Mohanty, T K

    2015-06-01

    Retention of fetal membranes (RFM) adversely affects the production and reproduction potential of the affected cows leading to huge economic loss. Physiological separation of fetal membranes is reported to be an inflammatory process. The present study compared the concentrations of certain pro inflammatory cytokines [Interleukin 1β (IL-1), Interleukin 6 (IL-6), Interleukin 8 (IL-8) and Tumor necrosis factor α (TNF-α) between the cows that developed RFM (n=10) and the cows that expelled fetal membranes normally (n=10) to find out if they could serve as a predictive tool for RFM. Blood samples were collected from the cows from 30 days before expected parturition through day -21, day -14, day -7, day -5, day -3, day -1, on the day of parturition (day 0), day 1 postpartum and the pro-inflammatory cytokines were estimated in blood plasma by ELISA method. The IL-1β concentration was significantly lower (Pmembranes normally from 3 days before calving till the day of calving. The plasma concentrations of IL-6 and IL-8 were also lower (Pmembranes normally. It may be inferred that the concentrations of IL-1, IL-6, IL-8 and TNF-α around parturition were altered in cows developing RFM compared to those expelled fetal membranes normally. Copyright © 2015. Published by Elsevier B.V.

  4. Inhibition of microglial activation by elderberry extracts and its phenolic components

    Science.gov (United States)

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  5. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  6. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  7. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats.

    Science.gov (United States)

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-12-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation.

  8. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy.

    Science.gov (United States)

    Talbot, Sébastien; Chahmi, Emna; Dias, Jenny Pena; Couture, Réjean

    2010-06-29

    The pro-nociceptive kinin B1 receptor (B1R) is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ)-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p.), and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p.) were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR) of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I)-HPP-desArg10-Hoe 140) were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK) and antagonists (SSR240612 and R-715) were measured on neuropathic pain manifestations. STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1beta, TNF-alpha, TRPV1) and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  9. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    Science.gov (United States)

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Morphine exposure and maternal deprivation during the early postnatal period alter neuromotor development and nerve growth factor levels.

    Science.gov (United States)

    de Oliveira, Carla; Scarabelot, Vanessa L; Vercelino, Rafael; Silveira, Natalia P; Adachi, Lauren N S; Regner, Gabriela G; Silva, Lisiane S; de Macedo, Isabel Cristina; de Souza, Andressa; Caumo, Wolnei; Torres, Iraci L S

    2017-12-01

    The objective of this study was to verify whether repeated morphine administration and maternal deprivation in early life alter neurobehavioral development and central nerve growth factor (NGF) levels. A total of 58 male Wistar rat pups were used in our study. From postnatal day 1 (P1), litters were daily deprived of their mother for 3h; this was continued for the first 10days of life. Animals were divided into 5 groups: total control (C), did not receive any intervention; saline (S), received saline solution; morphine (M), received morphine; deprived-saline group (DS), were subjected to maternal deprivation and received saline solution; and deprived-morphine (DM), were subjected to maternal deprivation and received morphine. From P8, newborns received subcutaneous (s.c.) injections of morphine or saline (5μg) once daily for 7days. Righting reflex, negative geotaxis and gait were chosen as postural parameters to evaluate neuromotor reflexes. In the righting reflex test, a delay in the development of animals was evidenced in the M group. Performance of negative geotaxis was slower in the M and DM groups. In the gait test, all groups showed a daily improvement in performance in terms of locomotion frequency. An increased frequency of rearing was observed in the M, DS, and DM groups from P16 to P20. The DM group presented an increase in NGF levels in the brainstem. An increase in cerebral cortex NGF levels in the M, DS, and DM groups was observed as well. Our results suggest that changes in environmental conditions and the disruption of mother-infant interactions during the neonatal period can produce changes in the neurobiology, physiology, and emotional behavior of rats. This finding has important implications for the maternal-neonate interaction needed for normal brain development in newborns. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Rationale, development, and design of the Altering Intake, Managing Symptoms (AIMS) dietary intervention for bowel dysfunction in rectal cancer survivors.

    Science.gov (United States)

    Sun, Virginia; Crane, Tracy E; Slack, Samantha D; Yung, Angela; Wright, Sarah; Sentovich, Stephen; Melstrom, Kurt; Fakih, Marwan; Krouse, Robert S; Thomson, Cynthia A

    2018-03-19

    Bowel dysfunction is a common, persistent long-term effect of treatment for rectal cancer survivors. Survivors often use dietary modifications to maintain bowel control. There are few evidence-based interventions to guide survivors on appropriate diet modifications for bowel symptom management. The purpose of this paper is to describe the development and design of the Altering Intake, Managing Symptoms (AIMS) intervention to support bowel dysfunction management in rectal cancer survivors. The AIMS intervention is a ten-session, telephone-based diet behavior change intervention delivered by trained health coaches. It uses dietary recall, participant-completed food and symptom diaries, and health coaching guided by motivational interviewing to promote bowel symptom management and improved diet quality. Based on the Chronic Care Self-Management Model (CCM), the AIMS Intervention is designed to improve self-efficacy and self-management of bowel symptoms by coaching survivors to appropriately modify their diets through goal setting, self-monitoring, and problem-solving. The intervention targets survivors with stage I-III rectosigmoid colon/rectum cancer who are 6 months post-treatment, 21 years and older, and English-speaking. The design and development process described in this paper provides an overview and underscores the potential of the AIMS intervention to positively impact the quality of long-term survivorship for rectal cancer survivors. An ongoing pilot study will inform the design and development of future multi-site Phase II and III randomized trials. Copyright © 2018. Published by Elsevier Inc.

  12. Alteration in molecular markers of oocyte development and intersex condition in mullets impacted by wastewater treatment plant effluents.

    Science.gov (United States)

    Valencia, Ainara; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Cancio, Ibon; Ortiz-Zarragoitia, Maren

    2017-05-01

    Wastewater Treatment Plant (WWTP) discharges are an important source of endocrine disrupting chemicals (EDCs) into the aquatic environment. Fish populations inhabiting downstream of WWTP effluents show alterations in gonad and gamete development such as intersex condition, together with xenoestrogenic effects such as vitellogenin up-regulation. However, the molecular mechanisms participating in the development of intersex condition in fish are not elucidated. The aim of this study was to assess the impact of two WWTPs effluents (Gernika and Bilbao-Galindo situated in the South East Bay of Biscay) with different contaminant loads, in thicklip grey mullet (Chelon labrosus) populations inhabiting downstream, examining the presence and severity of intersex condition, during two seasons. Molecular markers of xenoestrogenicity and oocyte differentiation and development (vtgAa, cyp19a1a, cyp19a1b, cyp11b, foxl2, dmrt1 and gtf3a) were also studied. Intersex mullets were identified downstream of both WWTPs and vtgAa was upregulated in intersex and non intersex males. Sex dependent differential transcription levels of target genes were detected in mullets from Galindo. However, no such pattern was observed in mullets from Gernika, suggesting an attenuating effect over studied genes caused by a higher presence of EDCs in this site, as indicated by the elevated prevalence of intersex mullets in this population. In conclusion, no direct association between xenoestrogenic responses and intersex condition was established. Mullets from Gernika showed signs of severe EDC exposure compared to those from Galindo, as demonstrated by the higher prevalence of intersex males and the reduction in transcription profile differences between sexes of gametogenic gene markers. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Directory of Open Access Journals (Sweden)

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  14. Minocycline, a microglial inhibitor, blocks spinal CCL2-induced heat hyperalgesia and augmentation of glutamatergic transmission in substantia gelatinosa neurons.

    Science.gov (United States)

    Huang, Chung-Yu; Chen, Ying-Ling; Li, Allen H; Lu, Juu-Chin; Wang, Hung-Li

    2014-01-10

    Several lines of evidence suggest that CCL2 could initiate the hyperalgesia of neuropathic pain by causing central sensitization of spinal dorsal horn neurons and facilitating nociceptive transmission in the spinal dorsal horn. The cellular and molecular mechanisms by which CCL2 enhances spinal pain transmission and causes hyperalgesia remain unknown. The substantia gelatinosa (lamina II) of the spinal dorsal horn plays a critical role in nociceptive transmission. An activated spinal microglia, which is believed to release pro-inflammatory cytokines including TNF-α, plays an important role in the development of neuropathic pain, and CCL2 is a key mediator for spinal microglia activation. In the present study, we tested the hypothesis that spinal CCL2 causes the central sensitization of substantia gelatinosa neurons and enhances spinal nociceptive transmission by activating the spinal microglia and augmenting glutamatergic transmission in lamina II neurons. CCL2 was intrathecally administered to 2-month-old male rats. An intrathecal injection of CCL2 induced heat hyperalgesia, which was assessed using the hot plate test. Whole-cell voltage-clamp recordings substantia gelatinosa neurons in spinal cord slices were performed to record glutamatergic excitatory postsynaptic currents (EPSCs) and GABAergic inhibitory postsynaptic currents (IPSCs). The hot plate test showed that 1 day after the intrathecal injection of CCL2 (1 μg), the latency of hind-paw withdrawal caused by a heat stimulus was significantly reduced in rats. One day after the intrathecal administration of CCL2, the amplitude of the evoked glutamatergic EPSCs and the frequency of spontaneous glutamatergic miniature EPSCs (mEPSCs) were significantly increased in outer lamina II neurons. Intrathecal co-injection of minocycline, a specific inhibitor of microglial activation, and CCL2 blocked the CCL2-induced reduction in the latency of hind-paw withdrawal and thermal hyperalgesia. Following intrathecal co

  15. Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification.

    Science.gov (United States)

    Lardenois, Aurélie; Becker, Emmanuelle; Walther, Thomas; Law, Michael J; Xie, Bingning; Demougin, Philippe; Strich, Randy; Primig, Michael

    2015-10-01

    Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes.

  16. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    International Nuclear Information System (INIS)

    Crestani, Carlos C.; Lopes da Silva, Andréia; Scopinho, América A.; Ruginsk, Silvia G.; Uchoa, Ernane T.; Correa, Fernando M.A.; Elias, Lucila L.K.; Antunes-Rodrigues, José; Resstel, Leonardo B.M.

    2014-01-01

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α 1 -adrenoceptor protein in the mesenteric bed was enhanced at the first week, whereas β 2 -adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT 1A receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity contribute to

  17. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    Energy Technology Data Exchange (ETDEWEB)

    Crestani, Carlos C. [Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista—UNESP (Brazil); Lopes da Silva, Andréia [Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Scopinho, América A. [Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Ruginsk, Silvia G.; Uchoa, Ernane T. [Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Correa, Fernando M.A. [Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Elias, Lucila L.K.; Antunes-Rodrigues, José [Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Resstel, Leonardo B.M., E-mail: leoresstel@yahoo.com.br [Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil)

    2014-10-15

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α{sub 1}-adrenoceptor protein in the mesenteric bed was enhanced at the first week, whereas β{sub 2}-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT{sub 1A} receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity

  18. ALTERED DEVELOPMENT AND REPRODUCTION IN MOSQUITOFISH EXPOSED TO PULP AND PAPER MILL EFFLUENT IN THE FENHOLLOW RIVER, FLORIDA USA

    Science.gov (United States)

    Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progesto...

  19. Glycyrrhiza uralensis flavonoids inhibit brain microglial cell TNF-α secretion, p-IκB expression, and increase brain-derived neurotropic factor (BDNF secretion

    Directory of Open Access Journals (Sweden)

    Sangita P. Patil

    2014-07-01

    Conclusion: ASHMI and its effective flavonoid, isoliquiritigenin, inhibited TNF-α production by LPS stimulated microglial cells and elevated BDNF levels, which may prove to have anti-CNS inflammatory and anti-anxiety effects.

  20. Dual RNA sequencing reveals the expression of unique transcriptomic signatures in lipopolysaccharide-induced BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Amitabh Das

    Full Text Available Microglial cells become rapidly activated through interactions with pathogens, and the persistent activation of these cells is associated with various neurodegenerative diseases. Previous studies have investigated the transcriptomic signatures in microglia or macrophages using microarray technologies. However, this method has numerous restrictions, such as spatial biases, uneven probe properties, low sensitivity, and dependency on the probes spotted. To overcome this limitation and identify novel transcribed genes in response to LPS, we used RNA Sequencing (RNA-Seq to determine the novel transcriptomic signatures in BV-2 microglial cells. Sequencing assessment and quality evaluation showed that approximately 263 and 319 genes (≥ 1.5 log2-fold, such as cytokines and chemokines, were strongly induced after 2 and 4 h, respectively, and the induction of several genes with unknown immunological functions was also observed. Importantly, we observed that previously unidentified transcription factors (TFs (irf1, irf7, and irf9, histone demethylases (kdm4a and DNA methyltransferases (dnmt3l were significantly and selectively expressed in BV-2 microglial cells. The gene expression levels, transcription start sites (TSS, isoforms, and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with LPS. In addition, gene ontology, molecular networks and pathway analyses identified the top significantly regulated functional classification, canonical pathways and network functions at each activation status. Moreover, we further analyzed differentially expressed genes to identify transcription factor (TF motifs (-950 to +50 bp of the 5' upstream promoters and epigenetic mechanisms. Furthermore, we confirmed that the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in LPS treated primary microglial cells. This

  1. SNP microarray analyses reveal copy number alterations and progressive genome reorganization during tumor development in SVT/t driven mice breast cancer.

    Science.gov (United States)

    Standfuss, Christoph; Pospisil, Heike; Klein, Andreas

    2012-08-31

    Tumor development is known to be a stepwise process involving dynamic changes that affect cellular integrity and cellular behavior. This complex interaction between genomic organization and gene, as well as protein expression is not yet fully understood. Tumor characterization by gene expression analyses is not sufficient, since expression levels are only available as a snapshot of the cell status. So far, research has mainly focused on gene expression profiling or alterations in oncogenes, even though DNA microarray platforms would allow for high-throughput analyses of copy number alterations (CNAs). We analyzed DNA from mouse mammary gland epithelial cells using the Affymetrix Mouse Diversity Genotyping array (MOUSEDIVm520650) and calculated the CNAs. Segmental copy number alterations were computed based on the probeset CNAs using the circular binary segmentation algorithm. Motif search was performed in breakpoint regions (inter-segment regions) with the MEME suite to identify common motif sequences. Here we present a four stage mouse model addressing copy number alterations in tumorigenesis. No considerable changes in CNA were identified for non-transgenic mice, but a stepwise increase in CNA was found during tumor development. The segmental copy number alteration revealed informative chromosomal fragmentation patterns. In inter-segment regions (hypothetical breakpoint sides) unique motifs were found. Our analyses suggest genome reorganization as a stepwise process that involves amplifications and deletions of chromosomal regions. We conclude from distinctive fragmentation patterns that conserved as well as individual breakpoints exist which promote tumorigenesis.

  2. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies.

    Science.gov (United States)

    Andrews, Jessica L; Goodfellow, Frederic J; Matosin, Natalie; Snelling, Mollie K; Newell, Kelly A; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2017-07-01

    Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.

    Science.gov (United States)

    Carlsson, Jenny; Lagercrantz, Ulf; Sundström, Jens; Teixeira, Rita; Wellmer, Frank; Meyerowitz, Elliot M; Glimelius, Kristina

    2007-02-01

    To gain new insights into the mechanism underlying cytoplasmic male sterility (CMS), we compared the nuclear gene expression profiles of flowers of a Brassica napus CMS line with that of the fertile B. napus maintainer line using Arabidopsis thaliana flower-specific cDNA microarrays. The CMS line used has a B. napus nuclear genome, but has a rearranged mitochondrial (mt) genome consisting of both B. napus and A. thaliana DNA. Gene expression profiling revealed that a large number of genes differed in expression between the two lines. For example, nuclear genes coding for proteins that are involved in protein import into organelles, genes expressed in stamens and pollen, as well as genes implicated in either cell-wall remodeling or architecture, were repressed in the CMS line compared with B. napus. These results show that the mt genome of the CMS line strongly influences nuclear gene expression, and thus reveal the importance of retrograde signalling between the mitochondria and the nucleus. Furthermore, flowers of the CMS line are characterized by a replacement of stamens with carpelloid organs, and thus partially resemble the APETALA3 (AP3) and PISTILLATA (PI) mutants. In accordance with this phenotype, AP3 expression was downregulated in the stamens, shortly before these organs developed carpelloid characteristics, even though it was initiated correctly. Repression of PI succeeded that of AP3 and might be a consequence of a loss of AP3 activity. These results suggest that AP3 expression in stamens depends on proper mt function and a correct nuclear-mt interaction, and that mt alterations cause the male sterility phenotype of the CMS line.

  4. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory.

    Science.gov (United States)

    Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L

    2016-05-04

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.

  5. Donepezil improves learning and memory deficits in APP/PS1 mice by inhibition of microglial activation.

    Science.gov (United States)

    Guo, H B; Cheng, Y F; Wu, J G; Wang, C M; Wang, H T; Zhang, C; Qiu, Z K; Xu, J P

    2015-04-02

    Donepezil, a cholinesterase inhibitor, is a representative symptomatic therapy for Alzheimer's disease (AD). Recent studies have reported the anti-inflammatory effects of donepezil. However, limited studies that investigate its anti-inflammatory effect in AD have been reported. Considering the role of proinflammatory molecules and microglial activation in the pathogenesis of AD, the current study aimed to elucidate the effects of donepezil on microglial activation induced by amyloid deposition in transgenic mice. Our results showed that chronic treatment with donepezil significantly improved the cognitive function in the novel object recognition test and Morris water maze test in amyloid precursor protein (APP)/presenilin-1 (PS1) transgenic mice. We further demonstrated that these cognitive enhancements were related to the anti-inflammatory effect of donepezil. We found that donepezil could inhibit the expression of CD68, a specific marker of microglial activation, and reduce the release of proinflammatory cytokines including tumor necrosis factor-α and interleukin-1β. Immunohistochemistry and Congo red co-staining revealed that congophilic amyloid and activated microglia around plaques were also reduced by donepezil treatment. Enzyme-linked immunosorbent assay (ELISA) analysis showed that donepezil decreased insoluble Aβ40/Aβ42 and soluble Aβ40 levels. Moreover, donepezil reversed the impaired expression of insulin-degrading enzyme in the hippocampus of APP/PS1 mice. Our findings indicated that donepezil improves cognitive deficits in APP/PS1 mice by a mechanism that may be associated with its inhibition of microglial activation and release of proinflammatory cytokines. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Methane Suppresses Microglial Activation Related to Oxidative, Inflammatory, and Apoptotic Injury during Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    WeiHeng Wang

    2017-01-01

    Full Text Available Objective. We investigated the hypothesis that methane-rich saline (MS can be used to repair spinal cord injury (SCI in a rat model through suppressing microglial activation related to oxidative, inflammatory, and apoptotic injury. Methods. MS was injected intraperitoneally in rats after SCI. Hematoxylin-eosin (HE staining, oxidative stress, inflammatory parameters, and cell apoptosis were detected 72 h after SCI to determine the optimal dose. Then, we investigated the protective mechanisms and the long-term effects of MS on SCI. HE and microglial activation were observed. Neurological function was evaluated by the Basso, Beattie, and Bresnahan (BBB scale. Results. MS can significantly decrease infarct area and inhibit oxidative stress, inflammation, and cell apoptosis 72 h following SCI. The MS protective effect at a dose of 20 ml/kg was better. Moreover, MS can significantly suppress microglial activation related to oxidative and inflammatory injury after SCI and improve hind limb neurological function. Conclusion. MS could repair SCI and reduce the release of oxidative stress, inflammatory cytokines, and cell apoptosis produced by activated microglia. MS provides a novel and promising strategy for the treatment of SCI.

  7. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo.

    Science.gov (United States)

    Kim, Hyo Geun; Moon, Minho; Choi, Jin Gyu; Park, Gunhyuk; Kim, Ae-Jung; Hur, Jinyoung; Lee, Kyung-Tae; Oh, Myung Sook

    2014-01-01

    Recent studies on Alzheimer's disease (AD) have focused on soluble oligomeric forms of amyloid-beta (Aβ oligomer, AβO) that are directly associated with AD-related pathologies, such as cognitive decline, neurodegeneration, and neuroinflammation. Donepezil is a well-known anti-dementia agent that increases acetylcholine levels through inhibition of acetylcholinesterase. However, a growing body of experimental and clinical studies indicates that donepezil may also provide neuroprotective and disease-modifying effects in AD. Additionally, donepezil has recently been demonstrated to have anti-inflammatory effects against lipopolysaccharides and tau pathology. However, it remains unknown whether donepezil has anti-inflammatory effects against AβO in cultured microglial cells and the brain in animals. Further, the effects of donepezil against AβO-mediated neuronal death, astrogliosis, and memory impairment have also not yet been investigated. Thus, in the present study, we examined the anti-inflammatory effect of donepezil against AβO and its neuroinflammatory mechanisms. Donepezil significantly attenuated the release of inflammatory mediators (prostaglandin E2, interleukin-1 beta, tumor necrosis factor-α, and nitric oxide) from microglia. Donepezil also decreased AβO-induced up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 protein and phosphorylation of p38 mitogen-activated protein kinase as well as translocation of nuclear factor-kappa B. We next showed that donepezil suppresses activated microglia-mediated toxicity in primary hippocampal cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In intrahippocampal AβO-injected mice, donepezil significantly inhibited microgliosis and astrogliosis. Furthermore, behavioral tests revealed that donepezil (2 mg/kg/day, 5 days, p.o.) significantly ameliorated AβO-induced memory impairment. These results suggest that donepezil directly inhibits microglial activation

  8. Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice.

    Directory of Open Access Journals (Sweden)

    Arnau Hervera

    Full Text Available Carbon monoxide (CO synthesized by heme oxygenase 1 (HO-1 exerts antinociceptive effects during inflammation but its role during neuropathic pain remains unknown. Our objective is to investigate the exact contribution of CO derived from HO-1 in the modulation of neuropathic pain and the mechanisms implicated.We evaluated the antiallodynic and antihyperalgesic effects of CO following sciatic nerve injury in wild type (WT or inducible nitric oxide synthase knockout (NOS2-KO mice using two carbon monoxide-releasing molecules (CORM-2 and CORM-3 and an HO-1 inducer (cobalt protoporphyrin IX, CoPP daily administered from days 10 to 20 after injury. The effects of CORM-2 and CoPP on the expression of HO-1, heme oxygenase 2 (HO-2, neuronal nitric oxide synthase (NOS1 and NOS2 as well as a microglial marker (CD11b/c were also assessed at day 20 after surgery in WT and NOS2-KO mice. In WT mice, the main neuropathic pain symptoms induced by nerve injury were significantly reduced in a time-dependent manner by treatment with CO-RMs or CoPP. Both CORM-2 and CoPP treatments increased HO-1 expression in WT mice, but only CoPP stimulated HO-1 in NOS2-KO animals. The increased expression of HO-2 induced by nerve injury in WT, but not in NOS2-KO mice, remains unaltered by CORM-2 or CoPP treatments. In contrast, the over-expression of CD11b/c, NOS1 and NOS2 induced by nerve injury in WT, but not in NOS2-KO mice, were significantly decreased by both CORM-2 and CoPP treatments. These data indicate that CO alleviates neuropathic pain through the reduction of spinal microglial activation and NOS1/NOS2 over-expression.This study reports that an interaction between the CO and nitric oxide (NO systems is taking place following sciatic nerve injury and reveals that increasing the exogenous (CO-RMs or endogenous (CoPP production of CO may represent a novel strategy for the treatment of neuropathic pain.

  9. Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex.

    Science.gov (United States)

    Bellesi, Michele; de Vivo, Luisa; Chini, Mattia; Gilli, Francesca; Tononi, Giulio; Cirelli, Chiara

    2017-05-24

    We previously found that Mertk and its ligand Gas6 , astrocytic genes involved in phagocytosis, are upregulated after acute sleep deprivation. These results suggested that astrocytes may engage in phagocytic activity during extended wake, but direct evidence was lacking. Studies in humans and rodents also found that sleep loss increases peripheral markers of inflammation, but whether these changes are associated with neuroinflammation and/or activation of microglia, the brain's resident innate immune cells, was unknown. Here we used serial block-face scanning electron microscopy to obtain 3D volume measurements of synapses and surrounding astrocytic processes in mouse frontal cortex after 6-8 h of sleep, spontaneous wake, or sleep deprivation (SD) and after chronic (∼5 d) sleep restriction (CSR). Astrocytic phagocytosis, mainly of presynaptic components of large synapses, increased after both acute and chronic sleep loss relative to sleep and wake. MERTK expression and lipid peroxidation in synaptoneurosomes also increased to a similar extent after short and long sleep loss, suggesting that astrocytic phagocytosis may represent the brain's response to the increase in synaptic activity associated with prolonged wake, clearing worn components of heavily used synapses. Using confocal microscopy, we then found that CSR but not SD mice show morphological signs of microglial activation and enhanced microglial phagocytosis of synaptic elements, without obvious signs of neuroinflammation in the CSF. Because low-level sustained microglia activation can lead to abnormal responses to a secondary insult, these results suggest that chronic sleep loss, through microglia priming, may predispose the brain to further damage. SIGNIFICANCE STATEMENT We find that astrocytic phagocytosis of synaptic elements, mostly of presynaptic origin and in large synapses, is upregulated already after a few hours of sleep deprivation and shows a further significant increase after prolonged and

  10. Early alterations of Hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development.

    Science.gov (United States)

    Moreau, Nathan; Mauborgne, Annie; Bourgoin, Sylvie; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette B; Villanueva, Luis; Pohl, Michel; Boucher, Yves

    2016-04-01

    Changes in the nerve's microenvironment and local inflammation resulting from peripheral nerve injury participate in nerve sensitization and neuropathic pain development. Taking part in these early changes, disruption of the blood-nerve barrier (BNB) allows for infiltration of immunocytes and promotes the neuroinflammation. However, molecular mechanisms engaged in vascular endothelial cells (VEC) dysfunction and BNB alterations remain unclear. In vivo, BNB permeability was assessed following chronic constriction injury (CCI) of the rat sciatic nerve (ScN) and differential expression of markers of VEC functional state, inflammation, and intracellular signaling was followed from 3 hours to 2 months postinjury. Several mechanisms potentially involved in functional alterations of VEC were evaluated in vitro using human VEC (hCMEC/D3), then confronted to in vivo physiopathological conditions. CCI of the ScN led to a rapid disruption of endoneurial vascular barrier that was correlated to a decreased production of endothelial tight-junction proteins and an early and sustained alteration of Hedgehog (Hh) signaling pathway. In vitro, activation of Toll-like receptor 4 in VEC downregulated the components of Hh pathway and altered the endothelial functional state. Inhibition of Hh signaling in the ScN of naive rats mimicked the biochemical and functional alterations observed after CCI and was, on its own, sufficient to evoke local neuroinflammation and sustained mechanical allodynia. Alteration of the Hh signaling pathway in VEC associated with peripheral nerve injury, is involved in BNB disruption and local inflammation, and could thus participate in the early changes leading to the peripheral nerve sensitization and, ultimately, neuropathic pain development.

  11. Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles.

    Science.gov (United States)

    Oliveira, L H; Nascimento, A B; Monteiro, P L J; Guardieiro, M M; Wiltbank, M C; Sartori, R

    2016-11-01

    The objective of this study was to test the hypothesis that high-producing dairy cows become increasingly resistant to insulin throughout lactation and that, consequently, oocyte quality is compromised. We used Holstein cows at 50 (51.5±3.7; n=30), 100 (102.3±9.4; n=30), and 150 (154.5±18.9; n=30) days in milk (DIM). We measured circulating insulin and glucose and performed a glucose tolerance test (GTT) after 5h of fasting. To evaluate oocyte quality, we performed ovum pickup on the day before the GTT (581 oocytes). We performed statistical analyses using the MIXED procedure of SAS. The model included the fixed effects of DIM, period, time, parity, and an interaction between DIM and time. We observed no difference in the GTT between groups for any variable related to circulating glucose (for example, glucose peak=203.3±7.2, 208.8±6.3, and 194.3±5.9mg/dL). However, various measures of circulating insulin were different in cows at 150 DIM compared with 50 or 100 DIM: higher basal insulin (8.8±0.9, 8.8±0.8, and 11.9±0.8 µIU/mL), peak insulin (61.9±6.2 , 69.1±5.7, and 89.0±6.1 µIU/mL), delta maximum insulin (51.1±5.5 , 59.4±5.0, and 73.5±5.4 µIU/mL), and area under the curve 5-60 (1,874.8±171.0 , 2,189.5±157.8, and 2,610.5±174.0 µIU/mL × min). Nevertheless, we observed no difference among groups in the number of viable oocytes (3.2±0.7, 3.9±0.7, and 3.6±0.7 per cow per ovum pickup) or percentage of viable oocytes (49.3, 52.2, and 51.8%). Increased circulating insulin before and throughout the GTT in cows at 150 DIM indicates that cows develop increasing insulin resistance with increasing DIM; however, increased insulin resistance was not associated with a detectable alteration in the quality of oocytes aspirated from small and medium-sized follicles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Characterization of Macrophage/Microglial Activation and Effect of Photobiomodulation in the Spared Nerve Injury Model of Neuropathic Pain.

    Science.gov (United States)

    Kobiela Ketz, Ann; Byrnes, Kimberly R; Grunberg, Neil E; Kasper, Christine E; Osborne, Lisa; Pryor, Brian; Tosini, Nicholas L; Wu, Xingjia; Anders, Juanita J

    2017-05-01

    Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Photobiomodulation effectively reduced

  13. Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Izumi Maezawa

    2012-01-01

    Full Text Available There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD; however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4, which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

  14. Carvedilol abrogates hypoxia-induced oxidative stress and neuroinflammation in microglial BV2 cells.

    Science.gov (United States)

    Gao, Xiujuan; Wu, Bin; Fu, Zhijian; Zhang, Zongwang; Xu, Guangjun

    2017-11-05

    Microglia initially undergo rapid activation in response to injury and stressful stimuli, such as hypoxia. Oxidative stress and the inflammatory response play critical roles in hypoxic-ischemic brain injury. Carvedilol is a β-blocker used to treat high blood pressure and heart failure. In this study, we investigated whether carvedilol had a protective effect against hypoxia-induced oxidative stress and inflammation in microglial BV2 cells. Our results indicate that hypoxic exposure significantly reduced mean cell viability of BV2 microglia, which was significantly restored by carvedilol (10 and 50μM). In addition, carvedilol treatment significantly inhibited the hypoxia-induced increase in reactive oxygen species (ROS) and 4-hydroxy-2-nonenal (4-HNE). Administration of carvedilol significantly inhibited expression of IL-1β, TNF-α, and IL-6 at both the mRNA and protein levels. Mechanistically, we found that hypoxia significantly increased phosphorylation of IKK, IκBα, and NF-κB p65. However, treatment with carvedilol inhibited phosphorylation of these molecules. Notably, hypoxia resulted in a significant nuclear translocation of NF-κB p65, which was inhibited by administration of carvedilol. Luciferase reporter assay results demonstrate that treatment with carvedilol inhibited the hypoxia-induced increase in NF-κB binding activity. These data suggest that carvedilol may be of potential use as a novel therapy against hypoxia or ischemia. Copyright © 2017. Published by Elsevier B.V.

  15. Enhanced detection and study of murine norovirus-1 using a more efficient microglial cell line

    Directory of Open Access Journals (Sweden)

    Lu Yuanan

    2009-11-01

    Full Text Available Abstract Background Human Noroviruses are the predominant cause of non-bacterial gastroenteritis worldwide. To facilitate prevention and control, a norovirus isolated from mice can provide a model to understand human noroviruses. To establish optimal viral infectivity conditions for murine noroviruses, several cell lines of hematopoietic lineage, including murine BV-2, RAW 264.7, and TIB, as well as human CHME-5, were tested comparatively for their sensitivity to murine norovirus-1. Results Except for CHME-5, all three murine-derived cell lines were susceptible to MNV infection. Viral infection of these cells was confirmed by RT-PCR. Using both viral plaque and replication assays, BV-2 and RAW 264.7 cells were determined to have comparable sensitivities to MNV-1 infection. Comparisons of cell growth characteristics, general laboratory handling and potential in-field applications suggest the use of BV-2 to be more advantageous. Conclusion Results obtained from these studies demonstrate that an immortalized microglial cell line can support MNV-1 replication and provides a more efficient method to detect and study murine noroviruses, facilitating future investigations using MNV-1 as a model to study, detect, and control Human Norovirus.

  16. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    Science.gov (United States)

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  17. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Directory of Open Access Journals (Sweden)

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  18. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  19. A deficit in zinc availability can cause alterations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain.

    Science.gov (United States)

    Mackenzie, Gerardo G; Salvador, Gabriela A; Romero, Carolina; Keen, Carl L; Oteiza, Patricia I

    2011-07-15

    Zinc (Zn) deficiency during early development can result in multiple brain abnormalities and altered neuronal functions. In rats, a gestational deficit of Zn can affect the fetal brain cytoskeleton and signaling cascades involved in cellular processes that are central to brain development. In this paper, we tested the hypothesis that oxidative stress is involved in Zn deficiency-induced altered tubulin dynamics and the associated dysregulation of transcription factor NF-κB. For this purpose, we used two cell culture models (rat cortical neurons, human IMR-32 neuroblastoma cells) and an animal model of Zn deficiency. A low rate of in vitro tubulin polymerization, an increase in tubulin oligomers, and a higher protein cysteine oxidation were observed in the Zn-deficient neuronal cells and in gestation day 19 fetal brains obtained from dams fed marginal-Zn diets throughout pregnancy. These alterations could be prevented by treating the Zn-deficient cells with the reducing agent tris(2-carboxyethyl)phosphine or by the presence of N-acetylcysteine (NAC) and α-lipoic acid (LA). Consistent with the above, Zn deficiency-induced tubulin-mediated alterations in transcription factor NF-κB nuclear translocation were prevented by treating IMR-32 cells with LA and NAC. Binding of the NF-κB protein p50, dynein, and karyopherin α (components of the NF-κB transport complex) to β-tubulin as well as the expression of NF-κB-dependent genes (Bcl-2, cyclin D1, and c-myc) was also restored by the addition of LA and NAC to Zn-deficient cells. In conclusion, a deficit in Zn viability could affect early brain development through: (1) an induction of oxidative stress, (2) tubulin oxidation, (3) altered tubulin dynamics, and (4) deregulation of signals (e.g., NF-κB) involved in critical developmental events. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Orlando, Edward F.

    2016-01-01

    Endogenous progestogens are important regulators of vertebrate reproduction. Synthetic progestins are components of human contraceptive and hormone replacement pharmaceuticals. Both progestogens and progestins enter the environment through a number of sources, and have been shown to cause profound effects on reproductive health in various aquatic vertebrates. Progestins are designed to bind human progesterone receptors, but they also have been shown to strongly activate androgen receptors in fish. Levonorgestrel (LNG) activates fish androgen receptors and induces development of male secondary sex characteristics in females of other species. Although behavior has been postulated to be a sensitive early indicator of exposure to certain environmental contaminants, no such research on the reproductive behavior of gestagen-exposed fish has been conducted to date. The goal of our study was to examine the exposure effects of a human contraceptive progestin, LNG, on the reproductive development and behavior of the viviparous eastern mosquitofish (Gambusia holbrooki). Internal fertilization is a requisite characteristic of viviparous species, and is enabled by an androgen driven elongation of the anal fin into the male gonopodium (i.e., phallus). In this study, we exposed adult mosquitofish to ethanol (EtOH control), 10 ng/L, and 100 ng/L LNG for 8 d using a static replacement exposure design. After 8 d, a subset of males and females from each treatment were examined for differences in the 4:6 anal fin ratio. In addition, paired social interaction trials were performed using individual control males and control females or females treated 10 ng/L or 100 ng/L LNG. Female mosquitofish exposed to LNG were masculinized as evidenced by the elongation of the anal fin rays, a feature normal to males and abnormal to females. LNG caused significant increases in the 4:6 anal fin ratios of female mosquitofish in both the 10 ng/L and 100 ng/L treatments, although these

  1. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  2. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Directory of Open Access Journals (Sweden)

    Yao Linli

    2013-02-01

    Full Text Available Abstract Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4 has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β and inducible nitric oxide synthase (iNOS was assessed. Reactive oxygen species (ROS, nitric oxide (NO and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and

  3. Microradiographic investigations on experimentally provoked structural alterations in hard tooth tissues after sealing with plastic material in places where caries is apt to develop

    International Nuclear Information System (INIS)

    Falten, E.

    1981-01-01

    The aim of the present investigation was, after sealing three areas in extracted human teeth: fissures, dental necksand approximate areas and subsequent exposure to experimentally produced cariogenous noxae, to establish possible alterations in the area of transition between sealed and unsealed dental enamal. This would provide a further decision-taking aid with regard to the question whether also the remaining parts where caries is apt to develop should be sealed. (orig./MG) [de

  4. Sharp and blunt force trauma concealment by thermal alteration in homicides: an in-vitro experiment for methodology and protocol development in forensic anthropological analysis of burnt bones

    OpenAIRE

    Macoveciuc, I; Marquez-Grant, N; Horsfall, I; Zioupos, P

    2017-01-01

    Burning of human remains is one method used by perpetrators to conceal fatal trauma and expert opinions regarding the degree of skeletal evidence concealment are often disparate. This experiment aimed to reduce this incongruence in forensic anthropological interpretation of burned human remains and implicitly contribute to the development of research methodologies sufficiently robust to withstand forensic scrutiny in the courtroom. We have tested the influence of thermal alteration on pre-exi...

  5. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  6. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    Science.gov (United States)

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  7. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    Energy Technology Data Exchange (ETDEWEB)

    Vigano, Luigi, E-mail: vigano@irsa.cnr.i [Water Research Institute, National Council of Research, Brugherio, Milan (Italy); Benfenati, Emilio [Mario Negri Institute, Laboratory of Environmental Chemistry and Toxicology, Milan (Italy); Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta [Department of Environmental, Experimental and Applied Biology, University of Genoa, Genoa (Italy)

    2010-12-15

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17{beta}-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  8. Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus).

    Science.gov (United States)

    Harris, Breanna N; de Jong, Trynke R; Yang, Vanessa; Saltzman, Wendy

    2013-11-01

    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions. © 2013.

  9. Chronic Psychological Distress as an Inducer of Microglial Activation and Leukocyte Recruitment into the Area Postrema.

    Science.gov (United States)

    Vargas-Caraveo, Alejandra; Pérez-Ishiwara, David Guillermo; Martínez-Martínez, Alejandro

    2015-01-01

    Chronic psychological distress can cause neuroinflammation, but the involvement of leukocytes in this inflammatory response remains unclear. The area postrema (AP) is considered a neural-immune interface because it lacks a blood-brain barrier and a site for leukocyte recruitment in neuroinflammatory conditions induced by immunological insults, but its role in chronic psychological distress has not been explored. To determine leukocyte recruitment to the AP after chronic psychological distress. Rats were exposed to cat odor for 5 consecutive days to induce distress, and, on the 6th day, their brains were dissected to perform immunohistofluorescence studies of the AP. Immune cells were identified and quantified with CD45 and CD11b markers. The distribution of neurons and immune cells was determined using TrkA and CD45 markers, respectively. Distress induced a significant increase in CD45(+) and CD11b(+) cells in the AP. Three immunophenotypes were determined in the control and distress groups: CD45(+)/CD11b(-), CD45(+)/CD11b(+) and CD45(-)/CD11b(+). CD expression, morphology and fluorescence intensity enabled the identification of different immune cell types: starting from longitudinal ramified microglia (mainly in the control group) to amoeboid microglia, monocytes and lymphocytes (mostly in the distressed group). TrkA and CD45 expression in the AP revealed the proximity between soma neurons and leukocytes. Interestingly, some CD45(+) cells expressed TrkA, with increased expression in the distressed group. The identification of microglial activation, leukocyte recruitment and the close proximity between neurons and leukocytes in the AP after chronic psychological distress exposure suggests the AP as a site for distress-induced immune responses and engraftment of leukocytes infiltrating the CNS. © 2015 S. Karger AG, Basel.

  10. TGFβ produced by IL-10 re-directed Astrocytes Attenuates Microglial Activation

    Science.gov (United States)

    Norden, Diana M.; Fenn, Ashley M.; Dugan, Allison; Godbout, Jonathan P.

    2014-01-01

    While there clearly is an intimate relationship between astrocytes and microglia, few studies have examined these potentially dynamic interactions. In this study, cytokine-mediated communication between microglia and astrocytes under inflammatory conditions was investigated. We have previously shown that activated microglia produce Interleukin (IL)-10, a regulatory cytokine that plays an important role in resolving neuroinflammation. Nonetheless, the mechanism by which IL-10 attenuates pro-inflammatory cytokine expression in the brain is unclear. Here we show that IL-10 re-directed astrocytes regulate the activation of microglia in a Transforming growth factor (TGF)-β dependent manner. In support of this concept, astrocytes in the brain maintained higher IL-10 receptor (IL-10R1) expression and primary astrocytes in culture were markedly more sensitive to the anti-inflammatory effects of IL-10 compared to microglia. Moreover, studies using primary cultures and an astrocyte-microglia co-culture system revealed that astrocytes mediated the anti-inflammatory effects of IL-10 on microglia through the production of TGFβ. For instance, only when astrocytes were present did IL-10 stimulation reduce the expression of IL-1β and increase expression of anti-inflammatory mediators fractalkine receptor (CX3CR1) and interleukin 4 receptor-α (IL-4Rα) in microglia. Importantly, these IL-10-astrocyte dependent effects on microglia were blocked by a TGFβ inhibitor. Furthermore, inhibition of TGFβ signaling in the brain resulted in prolonged sickness behavior and amplified pro-inflammatory cytokine expression in mice challenged with lipopolysaccharide (LPS). Taken together, IL-10 stimulated the production of TGFβ by astrocytes, which in turn, attenuated microglial activation. Overall, these findings provide novel insight into the mechanisms by which astrocytes modulate microglia under inflammatory conditions. PMID:24616125

  11. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    Directory of Open Access Journals (Sweden)

    Lalita Subedi

    2017-02-01

    Full Text Available Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max as primary isoflavones, possess anti‐inflammatory activity, but the effect of its active metabolite Equol (7‐hydroxy‐3‐(4′‐hydroxyphenyl‐chroman has not been well established. In this study, we investigated the anti‐neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS cells, including microglia (BV‐2, astrocytes (C6, and neurons (N2a, were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase (COX‐2, Mitogen activated protein kinase (MAPK signaling proteins, and apoptosis‐related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS‐induced TLR4 activation, MAPK activation, NF‐kB‐mediated transcription of inflammatory mediators, production of nitric oxide (NO, release of prostaglandin E2 (PGE‐2, secretion of tumor necrosis factor‐α (TNF‐α and interleukin 6 (IL‐6, in Lipopolysaccharide (LPS‐activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS‐activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti‐neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration.

  12. Excretory and Secretory Proteins of Naegleria fowleri Induce Inflammatory Responses in BV-2 Microglial Cells.

    Science.gov (United States)

    Lee, Jinyoung; Kang, Jung-Mi; Kim, Tae Im; Kim, Jong-Hyun; Sohn, Hae-Jin; Na, Byoung-Kuk; Shin, Ho-Joon

    2017-03-01

    Naegleria fowleri, a free-living amoeba that is found in diverse environmental habitats, can cause a type of fulminating hemorrhagic meningoencephalitis, primary amoebic meningoencephalitis (PAM), in humans. The pathogenesis of PAM is not fully understood, but it is likely to be primarily caused by disruption of the host's nervous system via a direct phagocytic mechanism by the amoeba. Naegleria fowleri trophozoites are known to secrete diverse proteins that may indirectly contribute to the pathogenic function of the amoeba, but this factor is not clearly understood. In this study, we analyzed the inflammatory responses in BV-2 microglial cells induced by excretory and secretory proteins of N. fowleri (NfESP). Treatment of BV-2 cells with NfESP induced the expression of various cytokines and chemokines, including the proinflammatory cytokines IL-1α and TNF-α. NfESP-induced IL-1α and TNF-α expression in BV-2 cells were regulated by p38, JNK, and ERK MAPKs. NfESP-induced IL-1α and TNF-α production in BV-2 cells were effectively downregulated by inhibition of NF-kB and AP-1. These results collectively suggest that NfESP stimulates BV-2 cells to release IL-1α and TNF-α via NF-kB- and AP-1-dependent MAPK signaling pathways. The released cytokines may contribute to inflammatory responses in microglia and other cell types in the brain during N. fowleri infection. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  13. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Directory of Open Access Journals (Sweden)

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  14. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Science.gov (United States)

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  15. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    Science.gov (United States)

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body

  17. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [18F]FEPPA.

    Science.gov (United States)

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P; Suridjan, Ivonne; Wilson, Alan A; Meyer, Jeffrey H; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M; Mizrahi, Romina

    2017-02-01

    Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [ 18 F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [ 18 F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (V T ) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [ 18 F]FEPPA V T , in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [ 18 F]FEPPA V T and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. The lack of significant differences in [ 18 F]FEPPA V T between groups suggests that microglial activation is not present in first-episode psychosis.

  18. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  19. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    Directory of Open Access Journals (Sweden)

    McCullagh Paul

    2010-06-01

    Full Text Available Abstract Background Genome wide association studies (GWAS have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. Methods We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. Results We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10-7, and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39 and malignant tissues (n = 21 was also evident (P = 0.002. We also identified that whilst HNF1B(C and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression, HNF1B(B and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10-7 and 4 × 10-4 respectively, indicating major shifts in isoform usage. Conclusions Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.

  20. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  1. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber.

    Science.gov (United States)

    Chen, Yinglong; Wang, Haimiao; Hu, Wei; Wang, Shanshan; Wang, Youhua; Snider, John L; Zhou, Zhiguo

    2017-03-01

    Soil waterlogging events and high temperature conditions occur frequently in the Yangtze River Valley, yet the effects of these co-occurring stresses on fiber elongation have received little attention. In the current study, the combined effect of elevated temperature (ET) and soil waterlogging (SW) more negatively affected final fiber length (reduced by 5.4%-11.3%) than either stress alone by altering the composition of osmotically active solutes (sucrose, malate, and K + ), where SW had the most pronounced effect. High temperature accelerated early fiber development, but limited the duration of elongation, thereby limiting final fiber length. Treatment of ET alone altered fiber sucrose content mainly through decreased source strength and the expression of the sucrose transporter gene GhSUT-1, making sucrose availability the primary determinant of final fiber length under ET. Waterlogging stress alone decreased source strength, down-regulated GhSUT-1 expression and enhanced SuSy catalytic activity for sucrose reduction. Waterlogging treatment alone also limited fiber malate production by down-regulating GhPEPC-1 & -2. However, combined elevated temperature and waterlogging limited primary cell wall synthesis by affecting GhCESAs genes and showed a negative impact on all three major osmotic solutes through the regulation of GhSUT-1, GhPEPC-1 & -2 and GhKT-1 expression and altered SuSy activity, which functioned together to produce a shorter fiber length. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Maternal obesity induced by a high fat diet causes altered cellular development in fetal brains suggestive of a predisposition of offspring to neurological disorders in later life.

    Science.gov (United States)

    Stachowiak, Ewa K; Srinivasan, Malathi; Stachowiak, Michal K; Patel, Mulchand S

    2013-12-01

    Fetal development in an obese maternal intrauterine environment has been shown to predispose the offspring for a number of metabolic disorders in later life. The observation that a large percentage of women of child-bearing age in the US are overweight/obese during pregnancy is therefore a source of concern. A high fat (HF) diet-induced obesity in female rats has been used as a model for maternal obesity. The objective of this study was to determine cellular development in brains of term fetuses of obese rats fed a HF diet from the time of weaning. Fetal brains were dissected out on gestational day 21 and processed for immunohistochemical analysis in the hypothalamic as well as extra-hypothalamic regions. The major observation of this study is that fetal development in the obese HF female rat induced several alterations in the HF fetal brain. Marked increases were observed in orexigenic signaling and a significant decrease was observed for anorexigenic signaling in the vicinity of the 3rd ventricle in HF brains. Additionally, our results indicated diminished migration and maturation of stem-like cells in the 3rd ventricular region as well as in the brain cortex. The results from the present study indicate developmental alterations in the hypothalamic and extra-hypothalamic regions in the HF fetal brain suggestive of a predisposition for the development of obesity and possibly neurodevelopmental abnormalities in the offspring.

  3. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  4. Role of Microglial M1/M2 Polarization in Relapse and Remission of Psychiatric Disorders and Diseases

    Directory of Open Access Journals (Sweden)

    Yutaka Nakagawa

    2014-11-01

    Full Text Available Psychiatric disorders such as schizophrenia and major depressive disorder were thought to be caused by neurotransmitter abnormalities. Patients with these disorders often experience relapse and remission; however the underlying molecular mechanisms of relapse and remission still remain unclear. Recent advanced immunological analyses have revealed that M1/M2 polarization of macrophages plays an important role in controlling the balance between promotion and suppression in inflammation. Microglial cells share certain characteristics with macrophages and contribute to immune-surveillance in the central nervous system (CNS. In this review, we summarize immunoregulatory functions of microglia and discuss a possible role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. M1 polarized microglia can produce pro-inflammatory cytokines, reactive oxygen species, and nitric oxide, suggesting that these molecules contribute to dysfunction of neural network in the CNS. Alternatively, M2 polarized microglia express cytokines and receptors that are implicated in inhibiting inflammation and restoring homeostasis. Based on these aspects, we propose a possibility that M1 and M2 microglia are related to relapse and remission, respectively in psychiatric disorders and diseases. Consequently, a target molecule skewing M2 polarization of microglia may provide beneficial therapies for these disorders and diseases in the CNS.

  5. Idazoxan attenuates spinal cord injury by enhanced astrocytic activation and reduced microglial activation in rat experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Wang, Xin-Shi; Chen, Yan-Yan; Shang, Xiao-Feng; Zhu, Zhen-Guo; Chen, Guo-Qian; Han, Zhao; Shao, Bei; Yang, Hui-Min; Xu, Hui-Qin; Chen, Jiang-Fan; Zheng, Rong-Yuan

    2009-02-09

    Idazoxan, an imidazoline 2 receptor (I(2)R) ligand, has been shown to protect against brain injury in several animal models of neurological disorders. In the present study we investigated the effect of idazoxan on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. EAE was induced by immunizing Wistar rats with guinea pig spinal cord homogenates emulsified in CFA, followed by daily treatment of idazoxan (0, 0.5 mg/kg, 1.5 mg/kg, 4.5 mg/kg, i.p, bid) for 10 days. The results showed that the treatment of idazoxan (1.5 mg/kg and 4.5 mg/kg) significantly decreased the incidence and alleviated inflammatory cell infiltration and demyelination in spinal cords and cerebral cortex. Furthermore, the protective effect of idazoxan on EAE was associated with the enhanced astrocytic activation and attenuated microglial activation and with the subsequent down-regulated expression of proinflammatory cytokines IL-12p40 and IFN-gamma and up-regulated expression of anti-inflammatory cytokines IL-10 and TGF-beta(1). Thus, the daily treatment of the I(2)R ligand idazoxan for 10 days attenuates EAE pathology by differential modulation of astrocytic and microglial activations, raising a possibility that the I(2)R ligand may be a novel strategy for treating EAE.

  6. Prenatal glucocorticoid exposure in the sheep alters renal development in utero: implications for adult renal function and blood pressure control.

    Science.gov (United States)

    Moritz, Karen M; De Matteo, Robert; Dodic, Miodrag; Jefferies, Andrew J; Arena, Debbie; Wintour, E Marelyn; Probyn, Megan E; Bertram, John F; Singh, Reetu R; Zanini, Simone; Evans, Roger G

    2011-08-01

    Treatment of the pregnant ewe with glucocorticoids early in pregnancy results in offspring with hypertension. This study examined whether glucocorticoids can reduce nephron formation or alter gene expression for sodium channels in the late gestation fetus. Sodium channel expression was also examined in 2-mo-old lambs, while arterial pressure and renal function was examined in adult female offspring before and during 6 wk of increased dietary salt intake. Pregnant ewes were treated with saline (SAL), dexamethasone (DEX; 0.48 mg/h) or cortisol (CORT; 5 mg/h) over days 26-28 of gestation (term = 150 days). At 140 days of gestation, glomerular number in CORT and DEX animals was 40 and 25% less, respectively, compared with SAL controls. Real-time PCR showed greater gene expression for the epithelial sodium channel (α-, β-, γ-subunits) and Na(+)-K(+)-ATPase (α-, β-, γ-subunits) in both the DEX and CORT group fetal kidneys compared with the SAL group with some of these changes persisting in 2-mo-old female offspring. In adulthood, sheep treated with dexamethasone or cortisol in utero had elevated arterial pressure and an apparent increase in single nephron glomerular filtration rate, but global renal hemodynamics and excretory function were normal and arterial pressure was not salt sensitive. Our findings show that the nephron-deficit in sheep exposed to glucocorticoids in utero is acquired before birth, so it is a potential cause, rather than a consequence, of their elevated arterial pressure in adulthood. Upregulation of sodium channels in these animals could provide a mechanistic link to sustained increases in arterial pressure in cortisol- and dexamethasone-exposed sheep, since it would be expected to promote salt and water retention during the postnatal period.

  7. Influence of ovarian hormones on development of ingestive responding to alterations in fatty acid oxidation in female rats

    Science.gov (United States)

    Swithers, Susan E.; McCurley, Melissa; Hamilton, Erica; Doerflinger, Alicia

    2008-01-01

    Adult male rats have been demonstrated to increase food intake in response to administration of drugs that interfere with oxidation of fatty acids (e.g. methyl palmoxirate and mercaptoacetate [MA]), effects that are larger in animals maintained on a high-fat diet. In contrast, while administration of MA has been reported to stimulate food intake in pre-pubertal female rats, food intake is not stimulated by MA in adult female rats. Instead, administration of MA to adult females results in changes in reproductive behavior and physiology. The present experiments were designed to examine the effects of administration of MA on food intake in adult female rats. The results demonstrated that, as previously reported, food intake was stimulated by MA in adult male rats on low-fat and high-fat diets, but food intake in was not stimulated by MA in gonadally-intact adult female rats on either low-fat or high-fat diet. Further, MA did not stimulate food intake in female rats ovariectomized as adults. However, when females were ovariectomized prior to the onset of puberty (postnatal day 25 – 28), food intake was stimulated by administration of MA in adulthood. Finally, cyclic injections of 17-β-estradiol benzoate given to females ovariectomized prior to the onset of puberty abolished the stimulatory effects of MA on food intake in adult females. Taken together, the data suggest that exposure to estrogens during the time of puberty in female rats can persistently alter adult ingestive responding to signals related to changes in energy utilization. PMID:18586247

  8. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Directory of Open Access Journals (Sweden)

    Kelly A Foley

    Full Text Available Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD. The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS, a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA, a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg on gestation days G12-16, LPS (50 µg/kg on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg or vehicle twice a day, every second day from postnatal days (P 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42 in the elevated plus maze (EPM and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  9. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Science.gov (United States)

    Foley, Kelly A; Ossenkopp, Klaus-Peter; Kavaliers, Martin; Macfabe, Derrick F

    2014-01-01

    Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12-16, LPS (50 µg/kg) on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  10. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  11. Mechanism of Earthquake Simulation as a Prenatal Stressor Retarding Rat Offspring Development and Chinese Medicine Correcting the Retardation: Hormones and Gene-Expression Alteration

    Directory of Open Access Journals (Sweden)

    X. G. Zhang

    2012-01-01

    Full Text Available We aimed to investigate the mechanism of shaking as a prenatal stressor impacting the development of the offspring and Chinese medicines correcting the alterations. Pregnant rats were randomized into earthquake simulation group (ESG, herbal group (HG which received herbal supplements in feed after shaking, and control group (CG. Findings revealed body weight and open field test (OFT score of ESG offspring were statistically inferior to the CG and HG offspring. The corticosterone levels of ESG were higher than those of CG but not than HG. The dopamine level of ESG was slightly lower than that of the CG and of HG was higher than that of ESG. The 5-HT of ESG was higher than CG and HG. The growth hormone level of the ESG was significantly lower than ESG but not than CG. Gene expression profile showed 81 genes upregulated and 39 genes downregulated in ESG versus CG, and 60 genes upregulated and 28 genes downregulated in ESG versus HG. Eighty-four genes were found differentially expressed in ESG versus CG comparison and were normalized in ESG versus HG. We conclude that maternal shaking negatively affected physical and nervous system development, with specific alterations in neurohormones and gene expression. Chinese herbal medicine reduced these negative outcomes.

  12. Mechanism of earthquake simulation as a prenatal stressor retarding rat offspring development and chinese medicine correcting the retardation: hormones and gene-expression alteration.

    Science.gov (United States)

    Zhang, X G; Zhang, H; Tan, R; Peng, J C; Liang, X L; Liu, Q; Wang, M Q; Yu, X P

    2012-01-01

    We aimed to investigate the mechanism of shaking as a prenatal stressor impacting the development of the offspring and Chinese medicines correcting the alterations. Pregnant rats were randomized into earthquake simulation group (ESG), herbal group (HG) which received herbal supplements in feed after shaking, and control group (CG). Findings revealed body weight and open field test (OFT) score of ESG offspring were statistically inferior to the CG and HG offspring. The corticosterone levels of ESG were higher than those of CG but not than HG. The dopamine level of ESG was slightly lower than that of the CG and of HG was higher than that of ESG. The 5-HT of ESG was higher than CG and HG. The growth hormone level of the ESG was significantly lower than ESG but not than CG. Gene expression profile showed 81 genes upregulated and 39 genes downregulated in ESG versus CG, and 60 genes upregulated and 28 genes downregulated in ESG versus HG. Eighty-four genes were found differentially expressed in ESG versus CG comparison and were normalized in ESG versus HG. We conclude that maternal shaking negatively affected physical and nervous system development, with specific alterations in neurohormones and gene expression. Chinese herbal medicine reduced these negative outcomes.

  13. Model applied to wistar rats for analysis of atrial alteration radioinduced: role of the TGFBeta1 cytokine on the lesions development

    International Nuclear Information System (INIS)

    Silva, Viviane Fernandes da; Andrade, Cherley Borba V. de; Nascimento, Ana Lucia Rosa do; Silva, Claudia Marcello da; Ribeiro, Andreia Fortes; Mandarim-de-Lacerda, Carlos Alberto; Carvalho, Jorge Jose de; Almeida, Carlos Eduardo de

    2009-01-01

    This paper develops a radiobiological model on Wistar rats for evaluation of atrium radioinduced alterations. Male Wistar rats were anaesthetised, immobilized and irradiated with 500, 1000 and 1500 cGy irradiated doses in the cardiac volume, pre-define through tomography. The animals were sacrificed after 15 days irradiation. The atriums were collected, fixed in formaldehyde and soaked into paraffin. A part of samples were dyed with hematoxyline-eosin (HE) and another submitted to immunohistochemistry for visualization of the cytokine TGFbeta1 expression. The observation of samples with HE indicated lesions om blood vessels and discrete inflamed infiltrated on some samples. The immunohistochemistry shown an intense expression of the TGFbeta1 cytokine, mainly on the only intine of the blood vessels. The data indicate that the atria develop alterations compatible to inflammatory answer as reaction to the damage caused by the tissue irradiation, and this answer is responsible by the production of TGFbeta1 cytokine, considered a cytokine pro-fibrotic on various models of cardiac disease. The lesions at atrium level can reflect on the correct functioning of the system generator of cardiac impulse, and can induce arrythmias and to prejudice the production of natriuretic peptides, molecules involved on the cardiac homeostasis

  14. The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts

    Science.gov (United States)

    ZM, Sara Zafaranchi; Khoshaman, Kazem; Masoudi, Raheleh; Hemmateenejad, Bahram; Yousefi, Reza

    2017-01-01

    The imbalance of the calcium homeostasis in the lenticular tissues of diabetic patients is an important risk factor for development of cataract diseases. In the current study, the impact of elevated levels of calcium ions were investigated on structure and aggregation propensity of glycated lens crystallins using gel electrophoresis and spectroscopic assessments. The glycated proteins indicated significant resistance against calcium-induced structural insults and aggregation. While, glycated crystallins revealed an increased conformational stability; a slight instability was observed for these proteins upon interaction with calcium ions. Also, in the presence of calcium, the proteolytic pattern of native crystallins was altered and that of glycated protein counterparts remained almost unchanged. According to results of this study it is suggested that the structural alteration of lens crystallins upon glycation may significantly reduce their calcium buffering capacity in eye lenses. Therefore, under chronic hyperglycemia accumulation of this cataractogenic metal ion in the lenticular tissues may subsequently culminate in activation of different pathogenic pathways, leading to development of lens opacity and cataract diseases.

  15. Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Rom Poulsen, Frantz

    1999-01-01

    Transection of the entorhino-dentate perforant path is a well known model for lesion-induced axonal sprouting and glial reactions in the rat. In this study, we have characterized the microglial reaction in the dentate molecular layer of the SJL/J and C57Bl/6 mouse. The morphological transformatio...

  16. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Lehrmann, E; Christensen, Thomas; Zimmer, J

    1997-01-01

    major histocompatibility complex (MHC) class II antigen expression. We interpret the present results as delineating two differentially progressing penumbral zones, which are likely to reflect differences in the underlying degenerative processes. Differences in the microglial/macrophage activation...... pattern attract special attention, as these cells may constitute specific targets for therapeutic intervention....

  17. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development.

    Science.gov (United States)

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-04

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis.

  18. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development

    Science.gov (United States)

    Wang, Hongxia; Yang, Jun; Zhang, Min; Fan, Weijuan; Firon, Nurit; Pattanaik, Sitakanta; Yuan, Ling; Zhang, Peng

    2016-01-01

    There is no direct evidence of the effect of lignin metabolism on early storage root development in sweet potato. In this study, we found that heterologous expression of the maize leaf color (Lc) gene in sweet potato increased anthocyanin pigment accumulation in the whole plant and resulted in reduced size with an increased length/width ratio, low yield and less starch content in the early storage roots. RT-PCR analysis revealed dramatic up-regulation of the genes involved in the lignin biosynthesis pathway in developing storage roots, leading to greater lignin content in the Lc transgenic lines, compared to the wild type. This was also evidenced by the enhanced lignification of vascular cells in the early storage roots. Furthermore, increased expression of the β-amylase gene in leaves and storage roots also accelerated starch degradation and increased the sugar use efficiency, providing more energy and carbohydrate sources for lignin biosynthesis in the Lc transgenic sweet potato. Lesser starch accumulation was observed in the developing storage roots at the initiation stage in the Lc plants. Our study provides experimental evidence of the basic carbohydrate metabolism underlying the development of storage roots, which is the transformation of lignin biosynthesis to starch biosynthesis. PMID:26727353

  19. Altered Protein Expression in the Ileum of Mice Associated with the Development of Chronic Infections with Echinostoma caproni (Trematoda)

    Science.gov (United States)

    Cortés, Alba; Sotillo, Javier; Muñoz-Antoli, Carla; Fried, Bernard; Esteban, J. Guillermo; Toledo, Rafael

    2015-01-01

    Background Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode that has been extensively used as experimental model to investigate the factors determining the expulsion of intestinal helminths or, in contrast, the development of chronic infections. Herein, we analyze the changes in protein expression induced by E. caproni infection in ICR mice, a host of high compatibility in which the parasites develop chronic infections. Methodology/Principal Findings To determine the changes in protein expression, a two-dimensional DIGE approach using protein extracts from the intestine of naïve and infected mice was employed; and spots showing significant differential expression were analyzed by mass spectrometry. A total of 37 spots were identified differentially expressed in infected mice (10 were found to be over-expressed and 27 down-regulated). These proteins were related to the restoration of the intestinal epithelium and the control of homeostatic dysregulation, concomitantly with mitochondrial and cytoskeletal proteins among others. Conclusion/Significance Our results suggests that changes in these processes in the ileal epithelium of ICR mice may facilitate the establishment of the parasite and the development of chronic infections. These results may serve to explain the factors determining the development of chronicity in intestinal helminth infection. PMID:26390031

  20. The effects of different endocrine disruptors defining compound-specific alterations of gene expression profiles in the developing testis

    NARCIS (Netherlands)

    López-Casas, Pedro P.; Mizrak, Sefika C.; López-Fernández, Luis A.; Paz, María; de Rooij, Dirk G.; del Mazo, Jesús

    2012-01-01

    Environmental contaminants considered endocrine disruptors have been shown to affect testis development and function but the mechanisms of action are not clear. We now have analyzed the effects on the transcriptome in testes of mice exposed to mono-(2-ethylhexyl)-phthalate (9.2; 46.3 or 92.7

  1. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  2. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.

    Science.gov (United States)

    Bauman, M D; Iosif, A-M; Ashwood, P; Braunschweig, D; Lee, A; Schumann, C M; Van de Water, J; Amaral, D G

    2013-07-09

    Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes.

  3. Mu-opioid receptor and delta-opioid receptor differentially regulate microglial inflammatory response to control proopiomelanocortin neuronal apoptosis in the hypothalamus: effects of neonatal alcohol.

    Science.gov (United States)

    Shrivastava, Pallavi; Cabrera, Miguel A; Chastain, Lucy G; Boyadjieva, Nadka I; Jabbar, Shaima; Franklin, Tina; Sarkar, Dipak K

    2017-04-14

    Opioid receptors are known to control neurotransmission of various peptidergic neurons, but their potential role in regulation of microglia and neuronal cell communications is unknown. We investigated the role of mu-opioid receptors (MOR) and delta-opioid receptors (DOR) on microglia in the regulation of apoptosis in proopiomelanocortin (POMC) neurons induced by neonatal ethanol in the hypothalamus. Neonatal rat pups were fed a milk formula containing ethanol or control diets between postnatal days 2-6. Some of the alcohol-fed rats additionally received pretreatment of a microglia activation blocker minocycline. Two hours after the last feeding, some of the pups were sacrificed and processed for histochemical detection of microglial cell functions or confocal microscopy for detection of cellular physical interaction or used for gene and protein expression analysis. The rest of the pups were dissected for microglia separation by differential gradient centrifugation and characterization by measuring production of various activation markers and cytokines. In addition, primary cultures of microglial cells were prepared using hypothalamic tissues of neonatal rats and used for determination of cytokine production/secretion and apoptotic activity of neurons. In the hypothalamus, neonatal alcohol feeding elevated cytokine receptor levels, increased the number of microglial cells with amoeboid-type circularity, enhanced POMC and microglial cell physical interaction, and decreased POMC cell numbers. Minocycline reversed these cellular effects of alcohol. Alcohol feeding also increased levels of microglia MOR protein and pro-inflammatory signaling molecules in the hypothalamus, and MOR receptor antagonist naltrexone prevented these effects of alcohol. In primary cultures of hypothalamic microglia, both MOR agonist [D-Ala 2, N-MePhe 4, Gly-ol]-enkephalin (DAMGO) and ethanol increased microglial cellular levels and secretion of pro-inflammatory cell signaling proteins. However

  4. Music and Alterity Processes

    Directory of Open Access Journals (Sweden)

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  5. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  6. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  7. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1987-01-01

    The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays. It was f......The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays....... It was found that the cytoplasmic density of smooth endoplasmic reticulum was decreased, while the cytoplasmic density of rough endoplasmic reticulum, Golgi apparatus, vesicles and coated vesicles was greatly enhanced after exposure of the cells to THIP (150 microM) for only 1 hr. In cerebellar granule cells...

  8. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  9. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures

    Directory of Open Access Journals (Sweden)

    Joanna Mika

    2017-04-01

    Full Text Available Botulinum neurotoxin type A (BoNT/A and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity.

  10. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells.

    Science.gov (United States)

    Kumar, Ashutosh; Chen, Shih-Heng; Kadiiska, Maria B; Hong, Jau-Shyong; Zielonka, Jacek; Kalyanaraman, Balaraman; Mason, Ronald P

    2014-08-01

    Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells. Copyright © 2014

  11. A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level.

    Science.gov (United States)

    Wang, Jing; Yan, Da-Wei; Yuan, Ting-Ting; Gao, Xiang; Lu, Ying-Tang

    2013-05-01

    Auxin regulates a variety of physiological processes via its downstream factors included Aux/IAAs. In this study, one of these Aux/IAAs, IAA8 is shown to play its role in Arabidopsis development with transgenic plants expressing GFP-mIAA8 under the control of IAA8 promoter, in which IAA8 protein was mutated by changing Pro170 to Leu170 in its conserved domain II. These transgenic dwarfed plants had more lateral branches, short primary inflorescence stems, decreased shoot apical dominance, curled leaves and abnormal flower organs (short petal and stamen, and bent stigmas). Further experiments revealed that IAA8::GFP-mIAA8 plants functioned as gain-of-function mutation to increase GFP-mIAA8 amount probably by stabilizing IAA8 protein against proteasome-mediated protein degradation with IAA8::GFP-IAA8 plants as control. The searching for its downstream factors indicated its interaction with both ARF6 and ARF8, suggesting that IAA8 may involve in flower organ development. This was further evidenced by analyzing the expression of jasmonic acid (JA) biosynthetic genes and JA levels because ARF6 and ARF8 are required for normal JA production. These results indicated that in IAA8::GFP-mIAA8 plants, JA biosynthetic genes including DAD1 (AT2G44810), AOS (AT5G42650) and ORP3 (AT2G06050) were dramatically down-regulated and JA level in the flowers was reduced to 70 % of that in wild-type. Furthermore, exogenous JA application can partially rescue short petal and stamen observed IAA8::GFP-mIAA8 plants. Thus, IAA8 plays its role in floral organ development by changes in JA levels probably via its interaction with ARF6/8 proteins.

  12. Temporal development of GABA agonist induced alterations in ultrastructure and GABA receptor expression in cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Belhage, B; Schousboe, A

    1987-01-01

    The temporal development of the effect of THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) on the ultrastructure composition and GABA receptor expression in cerebellar granule cells was investigated by quantitative electron microscopy (morphometric analysis) and GABA binding assays...... exposed to THIP (150 microM) for 3 hr low affinity GABA receptors were induced. These findings show that the effect of THIP on the ultrastructure composition and GABA receptor expression in cultured cerebellar granule cells may be interrelated and moreover it is likely that the turn-over of GABA receptors...

  13. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.

    Science.gov (United States)

    Hatada, Mika; Loew, Noya; Inose-Takahashi, Yuka; Okuda-Shimazaki, Junko; Tsugawa, Wakako; Mulchandani, Ashok; Sode, Koji

    2018-02-09

    Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Maternal diabetes induces congenital heart defects in mice by altering the expression of genes involved in cardiovascular development.

    Science.gov (United States)

    Kumar, Srinivasan Dinesh; Dheen, S Thameem; Tay, Samuel Sam Wah

    2007-10-30

    Congenital heart defects are frequently observed in infants of diabetic mothers, but the molecular basis of the defects remains obscure. Thus, the present study was performed to gain some insights into the molecular pathogenesis of maternal diabetes-induced congenital heart defects in mice. We analyzed the morphological changes, the expression pattern of some genes, the proliferation index and apoptosis in developing heart of embryos at E13.5 from streptozotocin-induced diabetic mice. Morphological analysis has shown the persistent truncus arteriosus combined with a ventricular septal defect in embryos of diabetic mice. Several other defects including defective endocardial cushion (EC) and aberrant myofibrillogenesis have also been found. Cardiac neural crest defects in experimental embryos were analyzed and validated by the protein expression of NCAM and PGP 9.5. In addition, the protein expression of Bmp4, Msx1 and Pax3 involved in the development of cardiac neural crest was found to be reduced in the defective hearts. The mRNA expression of Bmp4, Msx1 and Pax3 was significantly down-regulated (p hearts of experimental embryos. Further, the proliferation index was significantly decreased (p cells were significantly increased (p heart defects.

  15. In-utero exposure to nicotine alters the development of the rabbit cardiac conduction system and provides a potential mechanism for sudden infant death syndrome.

    Science.gov (United States)

    Ton, Anh Tuan; Biet, Michael; Delabre, Jean-Francois; Morin, Nathalie; Dumaine, Robert

    2017-12-01

    In-utero exposure to tobacco smoke remains the highest risk factor for sudden infant death syndrome (SIDS). To alleviate the risks, nicotine replacement therapies are often prescribed to women who wish to quit smoking during their pregnancy. Cardiac arrhythmias is considered the final outcome leading to sudden death. Our goal in this study was to determine if exposing rabbit fetus to nicotine altered the cardiac conduction system of newborn kittens in a manner susceptible to cause SIDS. Using neuronal markers and a series of immunohistological and electrophysiological techniques we found that nicotine delayed the development of the cardiac pacemaker center (sinoatrial node) and decreased its innervation. At the molecular level, nicotine favored the expression of cardiac sodium channels with biophysical properties that will tend to slow heart rate and diminish electrical conduction. Our results show that alterations of the cardiac sodium current may contribute to the bradycardia, conduction disturbances and other cardiac arrhythmias often associated to SIDS and raise awareness on the use of replacement therapy during pregnancy.

  16. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    Science.gov (United States)

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression

  17. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    International Nuclear Information System (INIS)

    Sekizawa, Shin-ichi; Joad, Jesse P.; Pinkerton, Kent E.; Bonham, Ann C.

    2010-01-01

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  18. Persistent Requirement and Alteration of the Key Targets of PRDM1 During Primordial Germ Cell Development in Mice.

    Science.gov (United States)

    Yamashiro, Chika; Hirota, Takayuki; Kurimoto, Kazuki; Nakamura, Tomonori; Yabuta, Yukihiro; Nagaoka, So I; Ohta, Hiroshi; Yamamoto, Takuya; Saitou, Mitinori

    2016-01-01

    Primordial germ cells (PGCs) are the foundation of totipotency and vital for reproduction and heredity. PGCs in mice arise from the epiblast around Embryonic Day (E) 7.0, migrate through the hindgut endoderm, and colonize and proliferate in the embryonic gonads until around E13.5 prior to their differentiation either into prospermatogonia or oogonia. PRDM1, a transcriptional repressor, plays an essential role in PGC specification that includes robustly repressing a somatic mesodermal program. Using an inducible conditional knockout system, we show here that PRDM1 is critically required throughout PGC development. When Prdm1 was deleted in migrating PGCs at E9.5 or E10.5, or in male gonadal PGCs at E11.5, PGCs were eliminated by apoptosis from around E10.5, E11.5, or E13.5, respectively. When Prdm1 was deleted in female gonadal PGCs at E11.5, PGCs progressed into the first meiotic prophase in an apparently normal fashion, but the oogonia exhibited an aberrant pachytene phenotype, undergoing abrupt apoptosis from around E16.5. The escape of a fraction of PGCs (∼10%) from the Prdm1 deletion was sufficient to recover fairly normal germ cell pools, both in male and female adults. The key targets of PRDM1 in migrating and/or gonadal PGCs, including genes for development, apoptosis, and prospermatogonial differentiation, showed only a modest overlap with those upon PGC specification, and were enriched with histone H3 lysine 27 trimethylation (H3K27me3). Our findings provide critical insight into the mechanism for maintaining the transcriptional integrity of PGCs. © 2016 by the Society for the Study of Reproduction, Inc.

  19. Genetic alteration of UDP-rhamnose metabolism in Botrytis cinerea leads to the accumulation of UDP-KDG that adversely affects development and pathogenicity.

    Science.gov (United States)

    Ma, Liang; Salas, Omar; Bowler, Kyle; Oren-Young, Liat; Bar-Peled, Maor; Sharon, Amir

    2017-02-01

    Botrytis cinerea is a model plant-pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)-glucose, the major fungal wall nucleotide sugar precursor, to UDP-rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose-containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP-rhamnose pathway intermediate UDP-4-keto-6-deoxy-glucose (UDP-KDG) in hyphae of the Δbcer strain. UDP-KDG could not be detected in hyphae of the wild-type strain, indicating fast conversion to UDP-rhamnose by the BcEr enzyme. The correlation between high UDP-KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP-KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP-KDG may lead to the development of new antifungal drugs. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  20. Altered regional homogeneity in the development of minimal hepatic encephalopathy: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ling Ni

    Full Text Available BACKGROUND: Little is known about how spontaneous brain activity progresses from non-hepatic encephalopathy (non-HE to minimal HE (MHE. The purpose of this study was to evaluate the evolution pattern of spontaneous brain activities in cirrhotic patients using resting-state fMRI with a regional homogeneity (ReHo method. METHODOLOGY/PRINCIPAL FINDINGS: Resting-state fMRI data were acquired in 47 cirrhotic patients (minimal HE [MHE], n = 20, and non-HE, n = 27 and 25 age-and sex-matched healthy controls. The Kendall's coefficient of concordance (KCC was used to measure the regional homogeneity. The regional homogeneity maps were compared with ANOVA tests among MHE, non-HE, and healthy control groups and t-tests between each pair in a voxel-wise way. Correlation analyses were performed to explore the relationships between regional ReHo values and Child-Pugh scores, number connection test type A (NCT-A, digit symbol test (DST scores, venous blood ammonia levels. Compared with healthy controls, both MHE and non-HE patients showed decreased ReHo in the bilateral frontal, parietal and temporal lobes and increased ReHo in the bilateral caudate. Compared with the non-HE, MHE patients showed decreased ReHo in the bilateral precuneus, cuneus and supplementary motor area (SMA. The NCT-A of cirrhotic patients negatively correlated with ReHo values in the precuneus, cuneus and lingual gyrus. DST scores positively correlated with ReHo values in the cuneus, precuneus and lingual gyrus, and negatively correlated with ReHo values in the bilateral caudate (P<0.05, AlphaSim corrected. CONCLUSIONS/SIGNIFICANCE: Diffused abnormal homogeneity of baseline brain activity was nonspecific for MHE, and only the progressively decreased ReHo in the SMA and the cuneus, especially for the latter, might be associated with the development of MHE. The ReHo analysis may be potentially valuable for detecting the development from non-HE to MHE.

  1. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris.

    Science.gov (United States)

    Zhu, Yu Cheng; Luttrell, Randall

    2015-01-01

    Chemical spray on cotton is almost an exclusive method for controlling tarnished plant bug (TPB), Lygus lineolaris. Frequent use of imidacloprid is a concern for neonicotinoid resistance in this key pest. Information of how and why TPB becomes less susceptible to imidacloprid is essential for effective monitoring and managing resistance. Microarray analysis of 6688 genes in imidacloprid-selected TPB (Im1500FF) revealed 955 upregulated and 1277 downregulated (≥twofold) genes in Im1500FF, with 369 and 485 of them annotated. Five P450 and nine esterase genes were significantly upregulated, and only one esterase gene and no P450 genes were downregulated. Other upregulated genes include helicases, phosphodiesterases, ATPases and kinases. Pathway analyses identified 65 upregulated cDNAs that encode 51 different enzymes involved in 62 different pathways, including P450 and esterase genes for drug and xenobiotic metabolisms. Sixty-four downregulated cDNAs code only 17 enzymes that are associated with only 23 pathways mostly related to food digestion. This study demonstrated a significant change in gene expression related to metabolic processes in imidacloprid-selected TPB, resulting in overexpression of P450 and esterase genes for potential excess detoxification and cross/multiple resistance development. The identification of these and other enzyme genes establishes a foundation to explore the complicity of potential imidacloprid resistance in TPB. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line

    Directory of Open Access Journals (Sweden)

    Milena Milošević

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS generation. All tested ALS IgGs (compared to control IgG induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2–0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with

  3. Immunoglobulins G from Sera of Amyotrophic Lateral Sclerosis Patients Induce Oxidative Stress and Upregulation of Antioxidative System in BV-2 Microglial Cell Line.

    Science.gov (United States)

    Milošević, Milena; Milićević, Katarina; Božić, Iva; Lavrnja, Irena; Stevanović, Ivana; Bijelić, Dunja; Dubaić, Marija; Živković, Irena; Stević, Zorica; Giniatullin, Rashid; Andjus, Pavle

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG) induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS) generation. All tested ALS IgGs (compared to control IgG) induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation) followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione) after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2-0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with carboxy-H2DCFDA

  4. Altered States

    International Development Research Centre (IDRC) Digital Library (Canada)

    (To raise a government's revenues, for example, or to propose a government expenditure, is first to judge the tolerance of the global bond market and the mood swings of currency traders.) Meanwhile, the transcending, supranational issues of peace, development, and the preservation of the planet defy resolution by states ...

  5. Has Alberta oil sands development altered delivery of polycyclic aromatic compounds to the Peace-Athabasca Delta?

    Directory of Open Access Journals (Sweden)

    Roland I Hall

    Full Text Available The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels.Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport.Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and

  6. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype.

    Science.gov (United States)

    Marshall, S Alex; McClain, Justin A; Kelso, Matthew L; Hopkins, Deann M; Pauly, James R; Nixon, Kimberly

    2013-06-01

    Excessive alcohol intake, a defining characteristic of an alcohol use disorder (AUD), results in neurodegeneration in the hippocampus and entorhinal cortex that has been linked to a variety of cognitive deficits. Neuroinflammation is thought to be a factor in alcohol-induced neurodegeneration, and microglia activation is a key but not sole component of an inflammatory response. These experiments investigate the effects of ethanol exposure in a well-accepted model of an AUD on both microglial activation and blood brain barrier disruption (BBB) in order to understand their relationship to classical definitions of inflammation and alcohol-induced neurodegeneration. Following a four-day binge ethanol paradigm, rat hippocampal and entorhinal cortex tissue was examined using three distinct approaches to determine microglia phenotype and BBB disruption: immunohistochemistry, autoradiography, and ELISA. After ethanol exposure, there was an increase in [(3)H]-PK-11195 binding and OX-42 immunoreactivity indicative of microglial activation; however, microglia were not fully activated since both OX-6 and ED-1 immunoreactive microglia were absent. This data was supported by functional evidence as there was no increase in the proinflammatory cytokines IL-6 or TNF-α, but a 26% increase in the anti-inflammatory cytokine, IL-10, and a 38% increase in the growth factor, TGF-β, seven days after exposure. Furthermore, there was no evidence of a disruption of the BBB. These data suggest that the four-day binge model of an AUD, which produces neurodegeneration in corticolimbic regions, does not elicit classical neuroinflammation but instead produces partially activated microglia. Partial activation of microglia following binge ethanol exposure suggest that microglia in this model have beneficial or homeostatic roles rather than directly contributing to neurodegeneration and are a consequence of alcohol-induced-damage instead of the source of damage. Copyright © 2013 Elsevier Inc. All

  7. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)

    2011-02-15

    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  8. Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment.

    Science.gov (United States)

    Alboni, Silvia; Poggini, Silvia; Garofalo, Stefano; Milior, Giampaolo; El Hajj, Hassan; Lecours, Cynthia; Girard, Isabelle; Gagnon, Steven; Boisjoly-Villeneuve, Samuel; Brunello, Nicoletta; Wolfer, David P; Limatola, Cristina; Tremblay, Marie-Ève; Maggi, Laura; Branchi, Igor

    2016-11-01

    It has been hypothesized that selective serotonin reuptake inhibitors (SSRIs), the most common treatment for major depression, affect mood through changes in immune function. However, the effects of SSRIs on inflammatory response are contradictory since these act either as anti- or pro-inflammatory drugs. Previous experimental and clinical studies showed that the quality of the living environment moderates the outcome of antidepressant treatment. Therefore, we hypothesized that the interplay between SSRIs and the environment may, at least partially, explain the apparent incongruence regarding the effects of SSRI treatment on the inflammatory response. In order to investigate such interplay, we exposed C57BL/6 mice to chronic stress to induce a depression-like phenotype and, subsequently, to fluoxetine treatment or vehicle (21days) while being exposed to either an enriched or a stressful condition. At the end of treatment, we measured the expression levels of several anti- and pro-inflammatory cytokines and inflammatory mediators in the whole hippocampus and in isolated microglia. We also determined microglial density, distribution, and morphology to investigate their surveillance state. Results show that the effects of fluoxetine treatment on inflammation and microglial function, as compared to vehicle, were dependent on the quality of the living environment. In particular, fluoxetine administered in the enriched condition increased the expression of pro-inflammatory markers compared to vehicle, while treatment in a stressful condition produced anti-inflammatory effects. These findings provide new insights regarding the effects of SSRIs on inflammation, which may be crucial to devise pharmacological strategies aimed at enhancing antidepressant efficacy by means of controlling environmental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy.

    Science.gov (United States)

    Grayson, B E; Fitzgerald, M F; Hakala-Finch, A P; Ferris, V M; Begg, D P; Tong, J; Woods, S C; Seeley, R J; Davidson, T L; Benoit, S C

    2014-03-01

    Much recent evidence suggest that obesity and related comorbidities contribute to cognitive decline, including the development of non age-related dementia and Alzheimer's disease. Obesity is a serious threat to public health, and few treatments offer proven long-term weight loss. In fact, bariatric surgery remains the most effective long-term therapy to reduce weight and alleviate other aspects of the metabolic syndrome (MetS). Unlike the demonstrated benefits of caloric restriction to prevent weight gain, few if any studies have compared various means of weight loss on central nervous system function and hippocampal-dependent cognitive processes. Our studies comprise the first direct comparisons of caloric restriction to two bariatric surgeries (Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG)) on cognitive function. Weight loss following caloric restriction, RYGB and VSG was associated with generalized improvements in metabolic health and hippocampal-dependent learning, as measured in the radial arm maze and spontaneous alternation tests. However, VSG-treated rats exhibited deficits on spatial learning tasks in the Morris water maze. In addition, whereas VSG animals had elevated hippocampal inflammation, comparable to that of obese controls, RYGB and calorie-restricted (pair-fed, PF) controls exhibited an amelioration of inflammation, as measured by the microglial protein ionized calcium binding adaptor molecule 1 (IBA1). We also assessed whether GHR (ghrelin) replacement would attenuate hippocampal inflammation in VSG, as post-surgical GHR levels are significantly reduced in VSG relative to RYGB and PF rats. However, GHR treatment did not attenuate the hippocampal inflammation. Although VSG was comparably effective at reducing body weight and improving glucose regulation as RYGB, VSG did not appear to confer an equal benefit on cognitive function and markers of inflammation.

  10. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    Science.gov (United States)

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  11. Maternal obesity during the preconception and early life periods alters pancreatic development in early and adult life in male mouse offspring.

    Directory of Open Access Journals (Sweden)

    Isabele Bringhenti

    Full Text Available Maternal obesity induced by a high fat (HF diet may program susceptibility in offspring, altering pancreatic development and causing later development of chronic degenerative diseases, such as obesity and diabetes. Female mice were fed standard chow (SC or an HF diet for 8 weeks prior to mating and during the gestational and lactational periods. The male offspring were assessed at birth, at 10 days, and at 3 months of age. The body mass (BM gain was 50% greater before pregnancy and 80% greater during pregnancy in HF dams than SC dams. Dams fed an HF diet showed higher oral glucose tolerance test (OGTT, blood pressure, serum corticosterone, and insulin levels than dams fed SC. At 10 days of age and at 3 mo old the HF offspring showed greater BM and higher blood glucose levels than the SC offspring. The mean diameter of the islets had increased by 37% in the SC offspring and by 155% in the HF offspring at 10 days of age. The islet mass ratio (IM/PM was 88% greater in the HF offspring at 10 days of age, and 107% greater at 3 mo of age, compared to the values obtained at birth. The HF offspring had a beta cell mass (BCM/PM ratio 54% lower than SC offspring at birth. However, HF offspring displayed a 146% increase in the BCM/PM ratio at 10 days of age, and 112% increase at 3 months of age than values at birth. A 3 mo of age, the HF offspring showed a greater OGTT and higher levels of than SC offspring. In conclusion, a maternal HF diet consumed during the preconceptional period and throughout the gestational and lactational periods in mice results in dramatic alterations in the pancreata of the offspring.

  12. Structural alteration of industry of region as pre-condition of steady development of national economy (on the example of the Dnepropetrovsk area

    Directory of Open Access Journals (Sweden)

    V. E. Vlasiuk

    2014-02-01

    Full Text Available An economic analysis is conducted in the production sphere of the Dnepropetrovsk area in a period development and in the process of transformation production to the sector of the national economic system. In particular, an analysis of the actual state of socio ­economic development of the Dnipropetrovsk region in the late XX century and its current state in order to find trends change attributes of manifestation and impact on living standards . The analysis of individual industries Dnipropetrovsk region. It is shown that the basis of the regional industry ­ metallurgy. Comparative analysis of the sectoral structure of industrial production Dnipropetrovsk Oblast major types of products that characterize its economy in 1997 and 2012. This analysis revealed the changes in the structural transformation of the regional industry . The basic indicators of socio­ economic development of the Dnipropetrovsk region. In particular , it was found that the dynamics of socio ­economic development of the region by major figures exceeded the average values in Ukraine , and the main results of 2011 was a steady growth in key sectors of the Dnipropetrovsk region. Were clarified problems of the region’s economy and its future prospects . The factors of forming of regional economic policy and principles of structural alteration of industry are considered.

  13. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI.

    Science.gov (United States)

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-04-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  15. Method to support Total Maximum Daily Load development using hydrologic alteration as a surrogate to address aquatic life impairment in New Jersey streams

    Science.gov (United States)

    Kennen, Jonathan G.; Riskin, Melissa L.; Reilly, Pamela A.; Colarullo, Susan J.

    2013-01-01

    More than 300 ambient monitoring sites in New Jersey have been identified by the New Jersey Department of Environmental Protection (NJDEP) in its integrated water-quality monitoring and assessment report (that is, the 305(b) Report on general water quality and 303(d) List of waters that do not support their designated uses) as being impaired with respect to aquatic life; however, no unambiguous stressors (for example, nutrients or bacteria) have been identified. Because of the indeterminate nature of the broad range of possible impairments, surrogate measures that more holistically encapsulate the full suite of potential environmental stressors need to be developed. Streamflow alteration resulting from anthropogenic changes in the landscape is one such surrogate. For example, increases in impervious surface cover (ISC) commonly cause increases in surface runoff, which can result in “flashy” hydrology and other changes in the stream corridor that are associated with streamflow alteration. The NJDEP has indicated that methodologies to support a hydrologically based Total Maximum Daily Load (hydro-TMDL) need to be developed in order to identify hydrologic targets that represent a minimal percent deviation from a baseline condition (“minimally altered”) as a surrogate measure to meet criteria in support of designated uses. The primary objective of this study was to develop an applicable hydro-TMDL approach to address aquatic-life impairments associated with hydrologic alteration for New Jersey streams. The U.S. Geological Survey, in cooperation with the NJDEP, identified 51 non- to moderately impaired gaged streamflow sites in the Raritan River Basin for evaluation. Quantile regression (QR) analysis was used to compare flow and precipitation records and identify baseline hydrographs at 37 of these sites. At sites without an appropriately long period of record (POR) or where a baseline hydrograph could not be identified with QR, a rainfall-runoff model was used

  16. Dietary exposure to polybrominated diphenyl ether 47 (BDE-47) inhibits development and alters thyroid hormone-related gene expression in the brain of Xenopus laevis tadpoles.

    Science.gov (United States)

    Yost, Alexandra T; Thornton, Leah M; Venables, Barney J; Sellin Jeffries, Marlo K

    2016-12-01

    Few studies have investigated the thyroid-disrupting effects of polybrominated diphenyl ethers (PBDEs) across multiple levels of biological organization in anurans, despite their suitability for the screening of thyroid disruptors. Therefore, the present study evaluated the effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on development, thyroid histology and thyroid hormone-related gene expression in Xenopus laevis exposed to 0 (control), 50 (low), 500 (medium) or 5000μg BDE-47/g food (high) for 21days. Only the high dose of BDE-47 hindered growth and development; however, thyroid hormone-associated gene expression was downregulated in the brains of tadpoles regardless of dose. These results show that BDE-47 disrupts thyroid hormone signaling at the molecular and whole-organism levels and suggest that gene expression in the brain is a more sensitive endpoint than metamorphosis. Furthermore, the altered gene expression patterns among BDE-47-exposed tadpoles provide insight into the mechanisms of PBDE-induced thyroid disruption and highlight the potential for PBDEs to act as neurodevelopmental toxicants. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Constitutive Expression of Rice MicroRNA528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass1[OPEN

    Science.gov (United States)

    Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Yuan, Ning; Hu, Qian; Luo, Hong

    2015-01-01

    MicroRNA528 (miR528) is a conserved monocot-specific small RNA that has the potential of mediating multiple stress responses. So far, however, experimental functional studies of miR528 are lacking. Here, we report that overexpression of a rice (Oryza sativa) miR528 (Osa-miR528) in transgenic creeping bentgrass (Agrostis stolonifera) alters plant development and improves plant salt stress and nitrogen (N) deficiency tolerance. Morphologically, miR528-overexpressing transgenic plants display shortened internodes, increased tiller number, and upright growth. Improved salt stress resistance is associated with increased water retention, cell membrane integrity, chlorophyll content, capacity for maintaining potassium homeostasis, CATALASE activity, and reduced ASCORBIC ACID OXIDASE (AAO) activity; while enhanced tolerance to N deficiency is associated with increased biomass, total N accumulation and chlorophyll synthesis, nitrite reductase activity, and reduced AAO activity. In addition, AsAAO and COPPER ION BINDING PROTEIN1 are identified as two putative targets of miR528 in creeping bentgrass. Both of them respond to salinity and N starvation and are significantly down-regulated in miR528-overexpressing transgenics. Our data establish a key role that miR528 plays in modulating plant growth and development and in the plant response to salinity and N deficiency and indicate the potential of manipulating miR528 in improving plant abiotic stress resistance. PMID:26224802

  18. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    Directory of Open Access Journals (Sweden)

    Stéphanie eMiceli

    2013-06-01

    Full Text Available Homeostatic regulation of serotonin (5-HT concentration is critical for normal topographical organization and development of thalamocortical (TC afferent circuits. Down-regulation of the serotonin transporter (SERT and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1. Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT-/- rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i the thalamocortical projections of the ventroposteromedial thalamic nucleus towards S1, (ii the general barrel-field pattern and (iii the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 (spiny stellate and pyramidal cells. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections towards the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT-/- rats. In layer IV, both excitatory spiny stellate and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV spiny stellate cells gave rise to a prominent projection towards the infragranular layer Vb. Our findings point to a structural and functional reorganization, of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel

  19. Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1

    Directory of Open Access Journals (Sweden)

    Milner Richard

    2010-12-01

    Full Text Available Abstract Background Studies of cerebral ischemia and other neuroinflammatory states have demonstrated a strong association between new vessel formation and microglial recruitment and activation, raising the possibility that microglia may be involved in promoting angiogenesis. As endothelial cell proliferation is a fundamental early step in angiogenesis, the aim of this study was to test this hypothesis by examining the influence of microglial secreted factors on brain endothelial cell (BEC proliferation using BrdU incorporation. Methods Primary cultures of mouse BEC, microglia and astrocytes were used in this study. Proliferation of BEC was examined by BrdU incorporation. ELISA was used to quantify TNF and TGF-β1 levels within cell culture supernatants. Results Microglia regulated BEC proliferation in a biphasic manner; microglia conditioned medium (MG-CM from resting microglia inhibited, while that from activated microglia promoted BEC proliferation. A screen of microglial cytokines revealed that BEC proliferation was inhibited by TGF-β1, but promoted by TNF. ELISA showed that TNF and TGF-β1 were both present in MG-CM, and that while TGF-β1 dominated in resting MG-CM, TNF levels were massively increased in activated MG-CM, shifting the balance in favor of TNF. Antibody-blocking studies revealed that the influence of MG-CM to inhibit or promote BEC proliferation was largely attributable to the cytokines TGF-β1 and TNF, respectively. Conclusion This data suggests that microglial activation state might be an important determinant of cerebral angiogenesis; inhibiting BEC proliferation and neovascularization in the normal central nervous system (CNS, but stimulating the growth of new capillaries under neuroinflammatory conditions.

  20. Synergistic Effects of Psychosocial Stress and Mild Peripheral Infection on Inducing Microglial Activation in the Hippocampal Dentate Gyrus and Long-Lasting Deficits in Hippocampus-Related Memory.

    Science.gov (United States)

    Tzeng, Wen-Yu; Su, Chien-Chou; Sun, Li-Han; Cherng, Chianfang G.; Yu, Lung

    2018-04-30

    Lipopolysaccharide (LPS) treatment and stress may cause immune activation in the brain, an event which has been thought to play a role in mediating stress-induced cognitive dysfunction. However, the enduring impact of psychosocial stress on brain immune activation or cognitive deficits has not been well investigated. Likewise, it remains unexplored whether there exist synergistic effects of psychosocial stress and a weak systemic LPS treatment on brain immune activation and/or cognitive function. In this work, a 10-day social defeat regimen was used to model psychosocial stress and the number and density of ionized calcium-binding adaptor molecule 1 (Iba1)-stained microglia was used to reveal brain immune activation in male Balb/C mice. The social defeat regimen did not cause observable microglial activation in dentate gyrus (DG) 24 h after the conclusion of the regimen. Microglial activation peaked in DG 24 h following a single 1 mg/kg intra-peritoneal LPS injection. At this time point, DG microglial activation was not evident providing 0.125 mg/kg or lower of LPS was used, this dose of LPS was, thus, regarded as the “sub-threshold” in this study. Twenty-four h after the conclusion of the defeat regimen, mice received a social interaction test to determine their defeat stress susceptibility and a “sub-threshold” LPS injection. DG microglial activation was observed in the defeat-stress susceptible, but not in the resilient, mice. Furthermore, the stress-susceptible mice showed impairment in object location and Y maze tasks 24 and 72 h after the “sub-threshold” LPS injection. These results suggest that psychosocial stress, when combined with a negligible peripheral infection, may induce long-lasting hippocampus-related memory deficits exclusively in subjects susceptible to psychosocial stresses.

  1. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors.

    Science.gov (United States)

    Yang, Yan-Wei; Wang, Yun-Lu; Lu, Jia-Kai; Tian, Lei; Jin, Mu; Cheng, Wei-Ping

    2018-03-01

    The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning-after reperfusion, inhalation of 50% xenon for 1 hour, 50% N 2 /50%O 2 for 2 hours; (2) delayed xenon post-conditioning-after reperfusion, inhalation of 50% N 2 /50%O 2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing

  2. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response.

    Science.gov (United States)

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun; Oh, Won Keun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata , and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (A β ) 42 -induced microglial activation related to Nrf2 and nuclear factor κ B (NF- κ B)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular A β 42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1 β , prostaglandin (PG)E 2 , and nitric oxide (NO) because of artificial phagocytic A β 42 . It decreased pNF- κ B accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits A β 42 -overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  3. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ji Yeon Seo

    2017-01-01

    Full Text Available Therapeutic approach of Alzheimer’s disease (AD has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1/nuclear factor (erythroid-derived 2-like 2 (Nrf2-mediated heme oxygenase (HO-1-inducing effects and the inhibitory activity of amyloid beta (Aβ42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL-6, IL-1β, prostaglandin (PGE2, and nitric oxide (NO because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS and cyclooxygenase II (COX-II in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  4. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS-Induced Parkinson’s Disease Models

    Directory of Open Access Journals (Sweden)

    Bingxu Huang

    2017-09-01

    Full Text Available The neuroprotective effects of Licochalcone A (Lico.A, a flavonoid isolated from the herb licorice, in Parkinson’s disease (PD have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2 and nuclear factor κB (NF-κB p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [3H] dopamine (DA uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  5. Human amnion mesenchymal cells negative co-stimulatory molecules PD-L1 expression and its capacity of modulating microglial activation of CNS.

    Science.gov (United States)

    Wu, Weijiang; Lan, Qing; Lu, Hua; Xu, Jie; Zhu, Aihua; Fang, Wenfeng; Ge, Feng; Hui, Guozhen

    2014-05-01

    The objective of this study is to investigate the negative immunomodulatory capacity of human amniotic mesenchymal cells (AMSCs) and their possible intrinsic mechanism, by which we can confirm that they modulate microglial activation of central nervous system from multiple perspectives at the molecular level. The identification of the immune phenotype of AMSCs and microglial cells was executed by immunohistochemical methods and flow cytometry. Meanwhile, the influence and mechanism of amniotic mesenchymal cells in vitro on proliferation, cell cycle, and cytokine release of activated microglia (MI) would be detected by ELISA, β-liquid scintillation counting method, and flow cytometry. Human amnion mesenchymal cells highly expressed negative co-stimulatory molecules PD-L1, while its ligand PD1 was expressed with high level by activated MI. When adding the PD-L1mAb to the mixed culture system composed of AMSCs and activated MI, the proliferation inhibitory effect and the cycle-blocking effect produced by the former on the latter would be partially reversed; at the same time, the impact of the latter cytokine secretion would be adjusted. As a conclusion, AMSCs play inhibitory effects on microglial activation, proliferation, and immune effects partially through the PD-L1-PD1 signaling pathways.

  6. Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics.

    Science.gov (United States)

    El-Sharkawy, I; Sherif, S; El Kayal, W; Jones, B; Li, Z; Sullivan, A J; Jayasankar, Subramanian

    2016-02-29

    TIR1-like proteins are F-box auxin receptors. Auxin binding to the F-box receptor proteins promotes the formation of SCF(TIR1) ubiquitin ligase complex that targets the auxin repressors, Aux/IAAs, for degradation via the ubiquitin/26S proteasome pathway. The release of auxin response factors (ARFs) from their Aux/IAA partners allows ARFs to mediate auxin-responsive changes in downstream gene transcription. In an attempt to understand the potential role of auxin during fruit development, a plum auxin receptor, PslTIR1, has previously been characterized at the cellular, biochemical and molecular levels, but the biological significance of this protein is still lacking. In the present study, tomato (Solanum lycopersicum) was used as a model to investigate the phenotypic and molecular changes associated with the overexpression of PslTIR1. The findings of the present study highlighted the critical role of PslTIR1 as positive regulator of auxin-signalling in coordinating the development of leaves and fruits. This was manifested by the entire leaf morphology of transgenic tomato plants compared to the wild-type compound leaf patterning. Moreover, transgenic plants produced parthenocarpic fruits, a characteristic property of auxin hypersensitivity. The autocatalytic ethylene production associated with the ripening of climacteric fruits was not significantly altered in transgenic tomato fruits. Nevertheless, the fruit shelf-life characteristics were affected by transgene presence, mainly through enhancing fruit softening rate. The short shelf-life of transgenic tomatoes was associated with dramatic upregulation of several genes encoding proteins involved in cell-wall degradation, which determine fruit softening and subsequent fruit shelf-life. The present study sheds light into the involvement of PslTIR1 in regulating leaf morphology, fruit development and fruit softening-associated ripening, but not autocatalytic ethylene production. The results demonstrate that auxin

  7. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides.

    Science.gov (United States)

    Torres-Platas, Susana G; Cruceanu, Cristiana; Chen, Gary Gang; Turecki, Gustavo; Mechawar, Naguib

    2014-11-01

    Despite increasing evidence supporting the neuroinflammatory theory of depression, little is known about cerebral macrophages in individuals suffering from major depression. In the present study, we investigated the morphology and distribution of cells immunostained for the macrophage-specific marker ionized calcium binding adaptor molecule 1 (IBA1) in the dorsal anterior cingulate cortex (dACC) white matter of middle-aged depressed suicides and matched non-psychiatric controls. This region is known for its implication in mood disorders, and its white matter compartment was previously found to display hypertrophic astrocytes in depressed suicides. Distributions of IBA1-immunoreactive (IBA-IR) microglial phenotypes were assessed using stereology and cell morphometry, and blood vessels were characterized as being intimately associated with either a high or a low density of IBA1-IR amoeboid-like cells. Total densities of IBA1-IR microglia did not differ between depressed suicides and controls. However, a finer analysis examining relative proportions of microglial phenotypes revealed that the ratio of primed over ramified ("resting") microglia was significantly increased in depressed suicides. Strikingly, the proportion of blood vessels surrounded by a high density of macrophages was more than twice higher in depressed suicides than in controls, and this difference was strongly significant. Consistent with these observations, gene expression of IBA1 and MCP-1, a chemokine involved in the recruitment of circulating monocytes, was significantly upregulated in depressed suicides. Furthermore, mRNA for CD45, a marker enriched in perivascular macrophages, was also significantly increased in samples from depressed suicides. An increase compared to controls was also observed in the proportion of blood vessels surrounded by a high density of CD45-IR cells, but this difference did not reach significance. These histological and molecular data suggest the recruitment of monocytes

  8. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Young; Kim, Ji-Hee [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Kim, YoungHee, E-mail: yheekim@pusan.ac.kr [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB)