WorldWideScience

Sample records for alters microglial development

  1. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation.

    Science.gov (United States)

    Zhang, Fan; Nance, Elizabeth; Alnasser, Yossef; Kannan, Rangaramanujam; Kannan, Sujatha

    2016-03-22

    Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the "impaired" microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex

  2. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica L. Bolton

    2017-05-01

    Full Text Available Microglia are the resident immune cells of the brain, important for normal neural development in addition to host defense in response to inflammatory stimuli. Air pollution is one of the most pervasive and harmful environmental toxicants in the modern world, and several large scale epidemiological studies have recently linked prenatal air pollution exposure with an increased risk of neurodevelopmental disorders such as autism spectrum disorder (ASD. Diesel exhaust particles (DEP are a primary toxic component of air pollution, and markedly activate microglia in vitro and in vivo in adult rodents. We have demonstrated that prenatal exposure to DEP in mice, i.e., to the pregnant dams throughout gestation, results in a persistent vulnerability to behavioral deficits in adult offspring, especially in males, which is intriguing given the greater incidence of ASD in males to females (∼4:1. Moreover, there is a striking upregulation of toll-like receptor (TLR 4 gene expression within the brains of the same mice, and this expression is primarily in microglia. Here we explored the impact of gestational exposure to DEP or vehicle on microglial morphology in the developing brains of male and female mice. DEP exposure increased inflammatory cytokine protein and altered the morphology of microglia, consistent with activation or a delay in maturation, only within the embryonic brains of male mice; and these effects were dependent on TLR4. DEP exposure also increased cortical volume at embryonic day (E18, which switched to decreased volume by post-natal day (P30 in males, suggesting an impact on the developing neural stem cell niche. Consistent with this hypothesis, we found increased microglial-neuronal interactions in male offspring that received DEP compared to all other groups. Taken together, these data suggest a mechanism by which prenatal exposure to environmental toxins may affect microglial development and long-term function, and thereby contribute

  3. Neonatal L-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters.

    Science.gov (United States)

    de Lima, Denise Sandrelly Cavalcanti; Francisco, Elian da Silva; Lima, Cássia Borges; Guedes, Rubem Carlos Araújo

    2017-02-01

    In mammals, L-glutamine (Gln) can alter the glutamate-Gln cycle and consequently brain excitability. Here, we investigated in developing rats the effect of treatment with different doses of Gln on anxiety-like behavior, cortical spreading depression (CSD), and microglial activation expressed as Iba1-immunoreactivity. Wistar rats were suckled in litters with 9 and 15 pups (groups L 9 and L 15 ; respectively, normal size- and large size litters). From postnatal days (P) 7-27, the animals received Gln per gavage (250, 500 or 750 mg/kg/day), or vehicle (water), or no treatment (naive). At P28 and P30, we tested the animals, respectively, in the elevated plus maze and open field. At P30-35, we measured CSD parameters (velocity of propagation, amplitude, and duration). Fixative-perfused brains were processed for microglial immunolabeling with anti-IBA-1 antibodies to analyze cortical microglia. Rats treated with Gln presented an anxiolytic behavior and accelerated CSD propagation when compared to the water- and naive control groups. Furthermore, CSD velocity was higher (p litter sizes, and for microglial activation in the L 15 groups. Besides confirming previous electrophysiological findings (CSD acceleration after Gln), our data demonstrate for the first time a behavioral and microglial activation that is associated with early Gln treatment in developing animals, and that is possibly operated via changes in brain excitability.

  4. Microglial pathology

    OpenAIRE

    Streit, Wolfgang J; Xue, Qing-Shan; Tischer, Jasmin; Bechmann, Ingo

    2014-01-01

    This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer’s disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial ...

  5. A novel microglial subset plays a key role in myelinogenesis in developing brain

    DEFF Research Database (Denmark)

    Wlodarczyk, Agnieszka; Holtman, Inge; Krueger, Martin

    2017-01-01

    Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here we show that in contrast to healthy adult and inflammation......-activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c+ microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration and differentiation. These cells are the major source of insulin...

  6. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  7. Microglial pathology.

    Science.gov (United States)

    Streit, Wolfgang J; Xue, Qing-Shan; Tischer, Jasmin; Bechmann, Ingo

    2014-09-26

    This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer's disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial pathology and its significance during aging and in the pathogenesis of Alzheimer dementia (AD). The identification of dystrophic (senescent) microglia has created an ostensible conflict with prior work claiming a role for activated microglia and neuroinflammation during normal aging and in AD, and this has raised a basic question: does the brain's immune system become hyperactive (inflamed) or does it become weakened (senescent) in elderly and demented people, and what is the impact on neuronal function and cognition? Here we strive to reconcile these seemingly contradictory notions by arguing that both low-grade neuroinflammation and microglial senescence are the result of aging-associated free radical injury. Both processes are damaging for microglia as they synergistically exhaust this essential cell population to the point where the brain's immune system is effete and unable to support neuronal function.

  8. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation.

    Directory of Open Access Journals (Sweden)

    Robin Cloarec

    Full Text Available Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells.In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15 and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments.Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b- lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1.In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which role, whether favorable or detrimental

  10. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  11. Age-specific function of α5β1 integrin in microglial migration during early colonization of the developing mouse cortex.

    Science.gov (United States)

    Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2017-07-01

    Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.

  12. Microglial inhibitory mechanism of Coenzyme Q10 against Aβ (1-42 induced cognitive dysfunctions: possible behavioral, biochemical, cellular and histopathological alterations

    Directory of Open Access Journals (Sweden)

    Arti eSingh

    2015-11-01

    Full Text Available Rationale: Alzheimer’s disease (AD is a debilitating disease with complex pathophysiology. Amyloid beta (Aβ (1-42 is a reliable model of AD that recapitulates many aspects of human AD. Objective: The present study has been designed to investigate the neuroprotective potential of Coenzyme Q10 (CoQ10 and its modulation with minocycline (microglial inhibitor against Aβ (1-42 induced cognitive dysfunction in rats. Method: Intrahippocampal (i.h. Aβ (1-42 (1µg/µl; 4µl/site were administered followed by drug treatment with galantamine (2 mg/kg, CoQ10 (20 and 40 mg/kg, minocycline (50 and 100 mg/kg and their combinations for a period of 21 days. Various neurobehavioral parameters followed by biochemical, acetylcholinesterase (AChE level, proinflammatory markers (TNF-α, mitochondrial respiratory enzyme complexes (I-IV and histopathological examinations were assessed.Results: Aβ (1-42 administration significantly impaired cognitive performance in Morris water maze (MWM performance test, causes oxidative stress, raised AChE level, caused neuroinflammation, mitochondrial dysfunction and histopathological alterations as compared to sham treatment. Treatment with CoQ10 (20 and 40 mg/kg and minocycline (50 and 100 mg/kg alone for 21days significantly improved cognitive performance as evidenced by reduced transfer latency and increased time spent in target quadrant (TSTQ, reduced AChE activity, oxidative damage (reduced LPO, nitrite level and restored SOD, catalase and GHS levels, TNF-α level, restored mitochondrial respiratory enzyme complex (I, II, III, IV activities and histopathological alterations as compared to control (Aβ (1-42 treated animals group. Further, combination of minocycline (50 and 100 mg/kg with CoQ10 (20 and 40 mg/kg significantly modulate the protective effect of CoQ10 as compared to their effect alone. Conclusion: The present study suggests that the neuroprotective effect of CoQ10 could be due to its microglia inhibitory

  13. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  14. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial

    Directory of Open Access Journals (Sweden)

    Michael Veldeman

    2017-09-01

    Full Text Available ObjectiveThe neuroprotective properties of the noble gas xenon have already been demonstrated using a variety of injury models. Here, we examine for the first time xenon’s possible effect in attenuating early brain injury (EBI and its influence on posthemorrhagic microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH.MethodsSprague-Dawley rats (n = 22 were randomly assigned to receive either Sham surgery (n = 9; divided into two groups or SAH induction via endovascular perforation (n = 13, divided into two groups. Of those randomized for SAH, 7 animals were postoperatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 vol% oxygen/50 vol% nitrogen (control. The animals were sacrificed 24 h after SAH. Of each animal, a cerebral coronal section (−3.60 mm from bregma was selected for assessment of histological damage 24 h after SAH. A 5-point neurohistopathological severity score was applied to assess neuronal cell damage in H&E and NeuN stained sections in a total of four predefined anatomical regions of interest. Microglial activation was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical regions of interest.ResultsA diffuse cellular damage was apparent in all regions of the ipsilateral hippocampus 24 h after SAH. Xenon-treated animals presented with a milder damage after SAH. This effect was found to be particularly pronounced in the medial regions of the hippocampus, CA3 (p = 0.040, and dentate gyrus (DG p = 0.040. However, for the CA1 and CA2 regions, there were no statistical differences in neuronal damage according to our histological scoring. A cell count of activated microglia was lower in the cortex of xenon-treated animals. This difference was especially apparent in the left piriform cortex (p = 0.017.ConclusionIn animals treated with 50 vol% xenon (for 1 h after SAH, a less pronounced neuronal damage was

  15. stimulated BV2 Microglial

    African Journals Online (AJOL)

    2012-03-26

    Mar 26, 2012 ... 2), in LPS-stimulated BV2 microglial cells. The level of NO production was analyzed using Griess reaction. The release of PGE2 was determined using sandwich enzyme-linked immunosorbent assay. The DNA-binding activity of nuclear factor-κB (NF-κB) was measured by electrophoretic mobility shift assay ...

  16. Regulatory effects of fisetin on microglial activation.

    Science.gov (United States)

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-06-26

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  17. Regulatory Effects of Fisetin on Microglial Activation

    Directory of Open Access Journals (Sweden)

    Jing-Yuan Chuang

    2014-06-01

    Full Text Available Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  18. Astrocyte galectin-9 potentiates microglial TNF secretion.

    Science.gov (United States)

    Steelman, Andrew J; Li, Jianrong

    2014-08-27

    Aberrant neuroinflammation is suspected to contribute to the pathogenesis of myriad neurological diseases. As such, determining the pathways that promote or inhibit glial activation is of interest. Activation of the surface glycoprotein T-cell immunoglobulin and mucin-domain containing protein 3 (Tim-3) by the lectin galectin-9 has been implicated in promoting innate immune cell activation by potentiating or synergizing toll-like receptor (TLR) signaling. In the present study we examined the role of the Tim-3/galectin-9 pathway in glial activation in vitro. Primary monocultures of microglia or astrocytes, co-cultures containing microglia and astrocytes, and mixed glial cultures consisting of microglia, astrocytes and oligodendrocytes were stimulated with poly(I:C) or LPS, and galectin-9 up-regulation was determined. The effect of endogenous galectin-9 production on microglial activation was examined using cultures from wild-type and Lgals9 null mice. The ability for recombinant galectin-9 to promote microglia activation was also assessed. Tim-3 expression on microglia and BV2 cells was examined by qPCR and flow cytometry and its necessity in transducing the galectin-9 signal was determined using a Tim-3 specific neutralizing antibody or recombinant soluble Tim-3. Astrocytes potentiated TNF production from microglia following TLR stimulation. Poly(I:C) stimulation increased galectin-9 expression in microglia and microglial-derived factors promoted galectin-9 up-regulation in astrocytes. Astrocyte-derived galectin-9 in turn enhanced microglial TNF production. Similarly, recombinant galectin-9 enhanced poly(I:C)-induced microglial TNF and IL-6 production. Inhibition of Tim-3 did not alter TNF production in mixed glial cultures stimulated with poly(I:C). Galectin-9 functions as an astrocyte-microglia communication signal and promotes cytokine production from microglia in a Tim-3 independent manner. Activation of CNS galectin-9 likely modulates neuroinflammatory

  19. TAM receptors regulate multiple features of microglial physiology.

    Science.gov (United States)

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease.

  20. Phenotypic clustering: a novel method for microglial morphology analysis.

    Science.gov (United States)

    Verdonk, Franck; Roux, Pascal; Flamant, Patricia; Fiette, Laurence; Bozza, Fernando A; Simard, Sébastien; Lemaire, Marc; Plaud, Benoit; Shorte, Spencer L; Sharshar, Tarek; Chrétien, Fabrice; Danckaert, Anne

    2016-06-17

    Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression. However, due to their complex "dendritic-like" aspect that constitutes the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are not easy to realize and complicate correlation with molecular or clinical parameters. Using the knock-in mouse model CX3CR1(GFP/+), we developed a 3D automated confocal tissue imaging system coupled with morphological modelling of many thousands of microglial cells revealing precise and quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary, secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate different sub-populations. Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after challenge. Our results counteract the classical view of a homogenous regional resting

  1. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  2. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke.

    Science.gov (United States)

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L; Vexler, Zinaida S

    2016-03-09

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. Copyright © 2016 the authors 0270-6474/16/362881-13$15.00/0.

  3. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Elissa L. Wong

    2017-06-01

    Full Text Available Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD. Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%–5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain. While it is clear that sensory and cognitive deficits are driven by inappropriate development and remodeling of the neural circuits that mediate these processes, alcohol’s actions acutely and long-term on the brain milieu are diverse and complex. Microglia, the brain’s immune cells, have been thought to be a target for alcohol during development because of their exquisite ability to rapidly detect and respond to perturbations affecting the brain. Additionally, our view of these immune cells is rapidly changing, and recent studies have revealed a myriad of microglial physiological functions critical for normal brain development and long-term function. A clear and complete understanding of how microglial roles on this end of the spectrum may be altered in FASD is currently lacking. Such information could provide important insights toward novel therapeutic targets for FASD treatment. Here we review the literature that links microglia to neural circuit remodeling and provide a discussion of the current understanding of how developmental alcohol exposure affects microglial behavior in the context of developing brain circuits.

  4. Anti-inflammatory Effects of Curcumin in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Yangyang Yu

    2018-04-01

    Full Text Available Lipoteichoic acid (LTA induces neuroinflammatory molecules, contributing to the pathogenesis of neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Although previous data supports an immune-modulating effect of curcumin, the underlying signaling pathways are largely unidentified. Here, we investigated curcumin’s anti-neuroinflammatory properties in LTA-stimulated BV-2 microglial cells. Inflammatory cytokine tumor necrosis factor-α [TNF-α, prostaglandin E2 (PGE2, and Nitric Oxide (NO] secretion in LTA-induced microglial cells were inhibited by curcumin. Curcumin also inhibited LTA-induced inducible NO synthases (iNOS and cyclooxygenase-2 (COX-2 expression. Subsequently, our mechanistic studies revealed that curcumin inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK including ERK, p38, Akt and translocation of NF-κB. Furthermore, curcumin induced hemeoxygenase (HO-1HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf-2 expression in microglial cells. Inhibition of HO-1 reversed the inhibition effect of HO-1 on inflammatory mediators release in LTA-stimulated microglial cells. Taken together, our results suggest that curcumin could be a potential therapeutic agent for the treatment of neurodegenerative disorders via suppressing neuroinflammatory responses.

  5. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  6. Paternal Age Alters Social Development in Offspring.

    Science.gov (United States)

    Janecka, Magdalena; Haworth, Claire M A; Ronald, Angelica; Krapohl, Eva; Happé, Francesca; Mill, Jonathan; Schalkwyk, Leonard C; Fernandes, Cathy; Reichenberg, Abraham; Rijsdijk, Frühling

    2017-05-01

    Advanced paternal age (APA) at conception has been linked with autism and schizophrenia in offspring, neurodevelopmental disorders that affect social functioning. The current study explored the effects of paternal age on social development in the general population. We used multilevel growth modeling to investigate APA effects on socioemotional development from early childhood until adolescence, as measured by the Strengths and Difficulties Questionnaire (SDQ) in the Twins Early Development Study (TEDS) sample. We also investigated genetic and environmental underpinnings of the paternal age effects on development, using the Additive genetics, Common environment, unique Environment (ACE) and gene-environment (GxE) models. In the general population, both very young and advanced paternal ages were associated with altered trajectory of social development (intercept: p = .01; slope: p = .03). No other behavioral domain was affected by either young or advanced age at fatherhood, suggesting specificity of paternal age effects. Increased importance of genetic factors in social development was recorded in the offspring of older but not very young fathers, suggesting distinct underpinnings of the paternal age effects at these two extremes. Our findings highlight that the APA-related deficits that lead to autism and schizophrenia are likely continuously distributed in the population. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Effects of 3,3',5-triiodothyronine on microglial functions.

    Science.gov (United States)

    Mori, Yuki; Tomonaga, Daichi; Kalashnikova, Anastasia; Furuya, Fumihiko; Akimoto, Nozomi; Ifuku, Masataka; Okuno, Yuko; Beppu, Kaoru; Fujita, Kyota; Katafuchi, Toshihiko; Shimura, Hiroki; Churilov, Leonid P; Noda, Mami

    2015-05-01

    L-tri-iodothyronine (3, 3', 5-triiodothyronine; T3) is an active form of the thyroid hormone (TH) essential for the development and function of the CNS. Though nongenomic effect of TH, its plasma membrane-bound receptor, and its signaling has been identified, precise function in each cell type of the CNS remained to be investigated. Clearance of cell debris and apoptotic cells by microglia phagocytosis is a critical step for the restoration of damaged neuron-glia networks. Here we report nongenomic effects of T3 on microglial functions. Exposure to T3 increased migration, membrane ruffling and phagocytosis of primary cultured mouse microglia. Injection of T3 together with stab wound attracted more microglia to the lesion site in vivo. Blocking TH transporters and receptors (TRs) or TRα-knock-out (KO) suppressed T3-induced microglial migration and morphological change. The T3-induced microglial migration or membrane ruffling was attenuated by inhibiting Gi /o -protein as well as NO synthase, and subsequent signaling such as phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). Inhibitors for Na(+) /K(+) -ATPase, reverse mode of Na(+) /Ca(2+) exchanger (NCX), and small-conductance Ca(2+) -dependent K(+) (SK) channel also attenuated microglial migration or phagocytosis. Interestingly, T3-induced microglial migration, but not phagocytosis, was dependent on GABAA and GABAB receptors, though GABA itself did not affect migratory aptitude. Our results demonstrate that T3 modulates multiple functional responses of microglia via multiple complex mechanisms, which may contribute to physiological and/or pathophysiological functions of the CNS. © 2015 Wiley Periodicals, Inc.

  8. Pathological histone acetylation in Parkinson's disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition.

    Science.gov (United States)

    Harrison, Ian F; Smith, Andrew D; Dexter, David T

    2018-02-14

    Parkinson's disease (PD) is associated with degeneration of nigrostriatal neurons due to intracytoplasmic inclusions composed predominantly of a synaptic protein called α-synuclein. Accumulations of α-synuclein are thought to 'mask' acetylation sites on histone proteins, inhibiting the action of histone acetyltransferase (HAT) enzymes in their equilibrium with histone deacetylases (HDACs), thus deregulating the dynamic control of gene transcription. It is therefore hypothesised that the misbalance in the actions of HATs/HDACs in neurodegeneration can be rectified with the use of HDAC inhibitors, limiting the deregulation of transcription and aiding neuronal homeostasis and neuroprotection in disorders such as PD. Here we quantify histone acetylation in the Substantia Nigra pars compacta (SNpc) in the brains of control, early and late stage PD cases to determine if histone acetylation is a function of disease progression. PD development is associated with Braak-dependent increases in histone acetylation. Concurrently, we show that as expected disease progression is associated with reduced markers of dopaminergic neurons and increased markers of activated microglia. We go on to demonstrate that in vitro, degenerating dopaminergic neurons exhibit histone hypoacetylation whereas activated microglia exhibit histone hyperacetylation. This suggests that the disease-dependent increase in histone acetylation observed in human PD cases is likely a combination of the contributions of both degenerating dopaminergic neurons and infiltrating activated microglia. The HDAC SIRT 2 has become increasingly implicated as a novel target for mediation of neuroprotection in PD: the neuronal and microglial specific effects of its inhibition however remain unclear. We demonstrate that SIRT 2 expression in the SNpc of PD brains remains relatively unchanged from controls and that SIRT 2 inhibition, via AGK2 treatment of neuronal and microglial cultures, results in neuroprotection of

  9. Prenatal Immune Challenge in Mice Leads to Partly Sex-Dependent Behavioral, Microglial, and Molecular Abnormalities Associated with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chin W. Hui

    2018-02-01

    Full Text Available Epidemiological studies revealed that environmental factors comprising prenatal infection are strongly linked to risk for later development of neuropsychiatric disorders such as schizophrenia. Considering strong sex differences in schizophrenia and its increased prevalence in males, we designed a methodological approach to investigate possible sex differences in pathophysiological mechanisms. Prenatal immune challenge was modeled by systemic administration of the viral mimic polyinosinic-polycytidylic acid (Poly I:C to C57BL/6 mice at embryonic day 9.5. The consequences on behavior, gene expression, and microglia—brain immune cells that are critical for normal development—were characterized in male vs. female offspring at adulthood. The cerebral cortex, hippocampus, and cerebellum, regions where structural and functional alterations were mainly described in schizophrenia patients, were selected for cellular and molecular analyses. Confocal and electron microscopy revealed most pronounced differences in microglial distribution, arborization, cellular stress, and synaptic interactions in the hippocampus of male vs. female offspring exposed to Poly I:C. Sex differences in microglia were also measured under both steady-state and Poly I:C conditions. These microglial alterations were accompanied by behavioral impairment, affecting for instance sensorimotor gating, in males. Consistent with these results, increased expression of genes related to inflammation was measured in cerebral cortex and hippocampus of males challenged with Poly I:C. Overall, these findings suggest that schizophrenia's higher incidence in males might be associated, among other mechanisms, with an increased microglial reactivity to prenatal immune challenges, hence determining disease outcomes into adulthood.

  10. Regulatory Effects of Fisetin on Microglial Activation

    OpenAIRE

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-01-01

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS...

  11. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    Science.gov (United States)

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  12. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining : cell body to cell size ratio

    NARCIS (Netherlands)

    Hovens, Iris; Nyakas, Csaba; Schoemaker, Regina

    2014-01-01

    Aim: The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1 (IBA-1) stained brain sections. Methods: The novel method was compared to currently used

  13. Cerebellar malformations alter regional cerebral development.

    Science.gov (United States)

    Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2011-12-01

    The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  14. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Shin, Hyewon; Song, Jin-Ho

    2014-09-05

    Microglial dysfunction and neuroinflammation are thought to contribute to the pathogenesis of schizophrenia. Some antipsychotic drugs have anti-inflammatory activity and can reduce the secretion of pro-inflammatory cytokines and reactive oxygen species from activated microglial cells. Voltage-gated proton channels on the microglial cells participate in the generation of reactive oxygen species and neuronal toxicity by supporting NADPH oxidase activity. In the present study, we examined the effects of two typical antipsychotics, chlorpromazine and haloperidol, on proton currents in microglial BV2 cells using the whole-cell patch clamp method. Chlorpromazine and haloperidol potently inhibited proton currents with IC50 values of 2.2 μM and 8.4 μM, respectively. Chlorpromazine and haloperidol are weak bases that can increase the intracellular pH, whereby they reduce the proton gradient and affect channel gating. Although the drugs caused a marginal positive shift of the activation voltage, they did not change the reversal potential. This suggested that proton current inhibition was not due to an alteration of the intracellular pH. Chlorpromazine and haloperidol are strong blockers of dopamine receptors. While dopamine itself did not affect proton currents, it also did not alter proton current inhibition by the two antipsychotics, indicating dopamine receptors are not likely to mediate the proton current inhibition. Given that proton channels are important for the production of reactive oxygen species and possibly pro-inflammatory cytokines, the anti-inflammatory and antipsychotic activities of chlorpromazine and haloperidol may be partly derived from their ability to inhibit microglial proton currents. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States

    Directory of Open Access Journals (Sweden)

    Laura Batti

    2016-06-01

    Full Text Available Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain.

  16. Microglial Lectins in Health and Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Jian Jing Siew

    2018-05-01

    Full Text Available Microglia are the innate sentinels of the central nervous system (CNS and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both β-galactoside-containing glycans and non- β-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune

  17. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    Science.gov (United States)

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    disease. The findings reported here strongly argue against the hypothesis that neuroinflammatory changes contribute to AD dementia. Instead, they offer an alternative hypothesis of AD pathogenesis that takes into consideration: (1) the notion that microglia are neuron-supporting cells and neuroprotective; (2) the fact that development of non-familial, sporadic AD is inextricably linked to aging. They support the idea that progressive, aging-related microglial degeneration and loss of microglial neuroprotection rather than induction of microglial activation contributes to the onset of sporadic Alzheimer's disease. The results have far-reaching implications in terms of reevaluating current treatment approaches towards AD.

  18. Development of gypsum alteration on marble and limestone

    Science.gov (United States)

    McGee, E.S.

    1996-01-01

    Blackened alteration crusts of gypsum plus particulates that form on sheltered areas on marble and limestone buildings pose a challenge for rehabilitation and cleaning. Fresh marble and limestone samples exposed at monitored exposure sites present conditions of simple geometry and well-documented exposures but have short exposure histories (one to five years). The gypsum alteration crusts that develop on these samples provide insight into the early stages and rate of alteration crust formation. Alteration crusts from buildings give a longer, but less well known exposure history and present much more complex surfaces for gypsum accumulation. Integrated observations and measurements of alteration crusts from exposure samples and from buildings identify four factors that are important in the formation and development of alteration crusts on marble and limestone: (1) pollution levels, (2) exposure to rain or washing, (3) geometry of exposure of the stone surface, and (4) permeability of the stone. The combination of these factors contributes to both the distribution and the physical characteristics of the gypsum crusts which may affect cleaning decisions.

  19. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Koch, Marcus W; Zabad, Rana; Giuliani, Fabrizio; Hader, Walter; Lewkonia, Ray; Metz, Luanne; Wee Yong, V

    2015-11-15

    Microglial activation is thought to be a key pathophysiological mechanism underlying disease activity in all forms of MS. Hydroxychloroquine (HCQ) is an antimalarial drug with immunomodulatory properties that is widely used in the treatment of rheumatological diseases. In this series of experiments, we explore the effect of HCQ on human microglial activation in vitro and on the development of experimental autoimmune encephalitis (EAE) in vivo. We activated human microglia with lipopolysaccharide (LPS), and measured concentrations of several pro- and anti-inflammatory cytokines in untreated and HCQ pretreated cultures. We investigated the effect of HCQ pretreatment at two doses on the development of EAE and spinal cord histology. HCQ pretreatment reduced the production of pro-inflammatory (TNF-alpha, IL-6, and IL-12) and anti-inflammatory (IL-10 and IL-1 receptor antagonist) cytokines in LPS-stimulated human microglia. HCQ pretreatment delayed the onset of EAE, and reduced the number of Iba-1 positive microglia/macrophages and signs of demyelination in the spinal cords of HCQ treated animals. HCQ treatment reduces the activation of human microglia in vitro, delays the onset of EAE, and decreases the representation of activated macrophages/microglia and demyelination in the spinal cord of treated mice. HCQ is a plausible candidate for further clinical studies in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Curcumin is a potent modulator of microglial gene expression and migration

    Directory of Open Access Journals (Sweden)

    Aslanidis Alexander

    2011-09-01

    Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders.

  1. Curcumin is a potent modulator of microglial gene expression and migration

    Science.gov (United States)

    2011-01-01

    of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders. PMID:21958395

  2. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    Science.gov (United States)

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke

    OpenAIRE

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L.; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L.; Vexler, Zinaida S.

    2016-01-01

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral arter...

  4. Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress

    Directory of Open Access Journals (Sweden)

    Joanna Ślusarczyk

    2016-01-01

    Full Text Available The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1 and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain.

  5. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  6. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    Science.gov (United States)

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  7. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  8. Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse

    DEFF Research Database (Denmark)

    Dissing-Olesen, L; Ladeby, R; Nielsen, Helle Hvilsted

    2007-01-01

    Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial prolifer...

  9. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sudhakar R. Subramaniam

    2017-06-01

    Full Text Available Parkinson’s disease (PD is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.

  10. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  11. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-09-01

    Full Text Available Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism.

  12. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Jose L. Labandeira-Garcia

    2017-05-01

    Full Text Available Microglia can transform into proinflammatory/classically activated (M1 or anti-inflammatory/alternatively activated (M2 phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory to M2 (immunoregulatory phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II, via its type 1 receptor (AT1, is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization

  13. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets

    NARCIS (Netherlands)

    Ji, Peng; Schachtschneider, Kyle M.; Schook, Lawrence B.; Walker, Frederick R.; Johnson, Rodney W.

    2016-01-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell

  14. Experimental autoimmune prostatitis induces microglial activation in the spinal cord.

    Science.gov (United States)

    Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2015-01-01

    The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.

  15. Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain

    Directory of Open Access Journals (Sweden)

    Irune Diaz-Aparicio

    2016-01-01

    Full Text Available Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the parenchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct observation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic cells, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neurological disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.

  16. CCL2/MCP-1 modulation of microglial activation and proliferation

    Directory of Open Access Journals (Sweden)

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  17. Microglial TNF and IL-1 as early disease-modifiers in Alzheimer's-like disease in mice

    DEFF Research Database (Denmark)

    Ilkjær, Laura; Babcock, Alicia; Finsen, Bente

    2015-01-01

    In Alzheimer's disease (AD) signs of microglial activation is evident already in prodromal and early AD. This and other evidence suggest that neuroinflammation contributes to the progression of the early disease development in AD. Microglial cells have the capacity to produce cytokines such as TNF...... in the APPswe/PS1DE9 mouse model of AD. In these mice, cortical As plaque load shows a sigmoidal trajectory with age, as it does in AD. At 12 months of age, when As pathology is welldeveloped, TNF and IL-1s are produced in significantly higher proportions of microglia in the APPswe/PS1DE9 mice, than in wildtype...

  18. Altered Amygdala Development and Fear Processing in Prematurely Born Infants

    Science.gov (United States)

    Cismaru, Anca Liliana; Gui, Laura; Vasung, Lana; Lejeune, Fleur; Barisnikov, Koviljka; Truttmann, Anita; Borradori Tolsa, Cristina; Hüppi, Petra S.

    2016-01-01

    Context: Prematurely born children have a high risk of developmental and behavioral disabilities. Cerebral abnormalities at term age have been clearly linked with later behavior alterations, but existing studies did not focus on the amygdala. Moreover, studies of early amygdala development after premature birth in humans are scarce. Objective: To compare amygdala volumes in very preterm infants at term equivalent age (TEA) and term born infants, and to relate premature infants’ amygdala volumes with their performance on the Laboratory Temperament Assessment Battery (Lab-TAB) fear episode at 12 months. Participants: Eighty one infants born between 2008 and 2014 at the University Hospitals of Geneva and Lausanne, taking part in longitudinal and functional imaging studies, who had undergone a magnetic resonance imaging (MRI) scan at TEA enabling manual amygdala delineation. Outcomes: Amygdala volumes assessed by manual segmentation of MRI scans; volumes of cortical and subcortical gray matter, white matter and cerebrospinal fluid (CSF) automatically segmented in 66 infants; scores for the Lab-TAB fear episode for 42 premature infants at 12 months. Results: Amygdala volumes were smaller in preterm infants at TEA than term infants (mean difference 138.03 mm3, p amygdala volumes were larger than left amygdala volumes (mean difference 36.88 mm3, p Amygdala volumes showed significant correlation with the intensity of the escape response to a fearsome toy (rs = 0.38, p = 0.013), and were larger in infants showing an escape response compared to the infants showing no escape response (mean difference 120.97 mm3, p = 0.005). Amygdala volumes were not significantly correlated with the intensity of facial fear, distress vocalizations, bodily fear and positive motor activity in the fear episode. Conclusion: Our results indicate that premature birth is associated with a reduction in amygdala volumes and white matter volumes at TEA, suggesting that altered amygdala development

  19. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment

    NARCIS (Netherlands)

    Mattei, D.; Ivanov, A.; Ferrai, C.; Jordan, P.; Guneykaya, D.; Buonfiglioli, A.; Schaafsma, W.; Przanowski, P.; Deuther-Conrad, W.; Brust, P.; Hesse, S.; Patt, M.; Sabri, O.; Ross, T. L.; Eggen, B. J. L.; Boddeke, E. W. G. M.; Kaminska, B.; Beule, D.; Pombo, A.; Kettenmann, H.; Wolf, S. A.

    2017-01-01

    Maternal immune activation (MIA) during pregnancy has been linked to an increased risk of developing psychiatric pathologies in later life. This link may be bridged by a defective microglial phenotype in the offspring induced by MIA, as microglia have key roles in the development and maintenance of

  20. Microglial Over-Activation by Social Defeat Stress Contributes to Anxiety- and Depressive-Like Behaviors

    Directory of Open Access Journals (Sweden)

    Dirson J. Stein

    2017-10-01

    Full Text Available Hyper activation of the neuroimmune system is strongly related to the development of neuropsychiatric disorders. Psychosocial stress has been postulated to play an important role in triggering anxiety and major depression. In preclinical models, there is mounting evidence that social defeat stress activates microglial cells in the central nervous system. This type of stress could be one of the major factors in the development of these psychopathologies. Here, we reviewed the most recent literature on social defeat and the associated immunological reactions. We focused our attention on microglial cells and kept the effect of social defeat over microglia separate from the effect of this stressor on other immune cells and the influence of peripheral immune components in priming central immune reactions. Furthermore, we considered how social defeat stress affects microglial cells and the consequent development of anxiety- and depressive-like states in preclinical studies. We highlighted evidence for the negative impact of the over-activation of the neuroimmune system, especially by the overproduction of pro-inflammatory mediators and cytotoxins. Overproduction of these molecules may cause cellular damage and loss or decreased function of neuronal activity by excessively pruning synaptic connections that ultimately contribute to the development of anxiety- and depressive-like states.

  1. Prenatal methadone exposure is associated with altered neonatal brain development

    Directory of Open Access Journals (Sweden)

    Victoria J. Monnelly

    Full Text Available Methadone is used for medication-assisted treatment of heroin addiction during pregnancy. The neurodevelopmental outcome of children with prenatal methadone exposure can be sub-optimal. We tested the hypothesis that brain development is altered among newborn infants whose mothers were prescribed methadone.20 methadone-exposed neonates born after 37weeks' postmenstrual age (PMA and 20 non-exposed controls underwent diffusion MRI at mean PMA of 39+2 and 41+1weeks, respectively. An age-optimized Tract-based Spatial Statistics (TBSS pipeline was used to perform voxel-wise statistical comparison of fractional anisotropy (FA data between exposed and non-exposed neonates.Methadone-exposed neonates had decreased FA within the centrum semiovale, inferior longitudinal fasciculi (ILF and the internal and external capsules after adjustment for GA at MRI (p<0.05, TFCE corrected. Median FA across the white matter skeleton was 12% lower among methadone-exposed infants. Mean head circumference (HC z-scores were lower in the methadone-exposed group (−0.52 (0.99 vs 1.15 (0.84, p<0.001; after adjustment for HC z-scores, differences in FA remained in the anterior and posterior limbs of the internal capsule and the ILF. Polydrug use among cases was common.Prenatal methadone exposure is associated with microstructural alteration in major white matter tracts, which is present at birth and is independent of head growth. Although the findings cannot be attributed to methadone per se, the data indicate that further research to determine optimal management of opioid use disorder during pregnancy is required. Future studies should evaluate childhood outcomes including infant brain development and long-term neurocognitive function. Keywords: Prenatal, Methadone, Brain, Neonate, MRI, Opioid

  2. Headmasters: Microglial regulation of learning and memory in health and disease

    Directory of Open Access Journals (Sweden)

    Laetitia Weinhard

    2018-03-01

    Full Text Available Microglia are mononuclear phagocytes that reside throughout the lifetime of the animal in the central nervous system (CNS. Originating from the yolk sac, microglial progenitors infiltrate the developing brain anlage even before the formation of the neural network. Mature microglial cells persist by slow rates of self-renewal that vary across brain regions. Eminent studies in the recent decade have highlighted a role for steady state microglia in neurogenesis, synaptic pruning, and formation and maintenance of connectivity within the CNS, which are critical to learning and memory functions. Activity- and learning-dependent synaptic remodeling by microglia has been described in various contexts. Molecular pathways, including signaling through fractalkine CX3CL1 and its receptor CX3CR1, transforming growth factor-beta, classical complement system, colony-stimulating factor 1 receptor, adaptor protein DAP12, and brain-derived neurotropic factor, have been proposed to be important mediators of synaptic plasticity regulated by microglia. Reactive, dysfunctional, or aged microglia are thought to impact learning and memory, and are implicated in human neurodegenerative disorders in which dementia is a hallmark. These disorders include Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease. Focusing on microglia, here we discuss the potential detrimental effects and risks presented by microglia-specific genetic variants, the environmental factors that target microglia, and microglial aging that likely lead to progressive memory loss in neurodegenerative diseases. Finally, we consider some caveats of the animal model systems that to date have advanced our understanding of microglial regulation of learning and memory.

  3. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  4. Intrauterine Growth Restriction Alters Mouse Intestinal Architecture during Development.

    Science.gov (United States)

    Fung, Camille M; White, Jessica R; Brown, Ashley S; Gong, Huiyu; Weitkamp, Jörn-Hendrik; Frey, Mark R; McElroy, Steven J

    2016-01-01

    Infants with intrauterine growth restriction (IUGR) are at increased risk for neonatal and lifelong morbidities affecting multiple organ systems including the intestinal tract. The underlying mechanisms for the risk to the intestine remain poorly understood. In this study, we tested the hypothesis that IUGR affects the development of goblet and Paneth cell lineages, thus compromising the innate immunity and barrier functions of the epithelium. Using a mouse model of maternal thromboxane A2-analog infusion to elicit maternal hypertension and resultant IUGR, we tested whether IUGR alters ileal maturation and specifically disrupts mucus-producing goblet and antimicrobial-secreting Paneth cell development. We measured body weights, ileal weights and ileal lengths from birth to postnatal day (P) 56. We also determined the abundance of goblet and Paneth cells and their mRNA products, localization of cellular tight junctions, cell proliferation, and apoptosis to interrogate cellular homeostasis. Comparison of the murine findings with human IUGR ileum allowed us to verify observed changes in the mouse were relevant to clinical IUGR. At P14 IUGR mice had decreased ileal lengths, fewer goblet and Paneth cells, reductions in Paneth cell specific mRNAs, and decreased cell proliferation. These findings positively correlated with severity of IUGR. Furthermore, the decrease in murine Paneth cells was also seen in human IUGR ileum. IUGR disrupts the normal trajectory of ileal development, particularly affecting the composition and secretory products of the epithelial surface of the intestine. We speculate that this abnormal intestinal development may constitute an inherent "first hit", rendering IUGR intestine susceptible to further injury, infection, or inflammation.

  5. Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells

    Directory of Open Access Journals (Sweden)

    Dentesano Guido

    2012-07-01

    Full Text Available Abstract Background In physiological conditions, it is postulated that neurons control microglial reactivity through a series of inhibitory mechanisms, involving either cell contact-dependent, soluble-factor-dependent or neurotransmitter-associated pathways. In the current study, we focus on CD200R1, a microglial receptor involved in one of these cell contact-dependent mechanisms. CD200R1 activation by its ligand, CD200 (mainly expressed by neurons in the central nervous system,is postulated to inhibit the pro-inflammatory phenotype of microglial cells, while alterations in CD200-CD200R1 signalling potentiate this phenotype. Little is known about the regulation of CD200R1 expression in microglia or possible alterations in the presence of pro-inflammatory stimuli. Methods Murine primary microglial cultures, mixed glial cultures from wild-type and CCAAT/enhancer binding protein β (C/EBPβ-deficient mice, and the BV2 murine cell line overexpressing C/EBPβ were used to study the involvement of C/EBPβ transcription factor in the regulation of CD200R1 expression in response to a proinflammatory stimulus (lipopolysaccharide (LPS. Binding of C/EBPβ to the CD200R1 promoter was determined by quantitative chromatin immunoprecipitation (qChIP. The involvement of histone deacetylase 1 in the control of CD200R1 expression by C/EBPβ was also determined by co-immunoprecipitation and qChIP. Results LPS treatment induced a decrease in CD200R1 mRNA and protein expression in microglial cells, an effect that was not observed in the absence of C/EBPβ. C/EBPβ overexpression in BV2 cells resulted in a decrease in basal CD200R1 mRNA and protein expression. In addition, C/EBPβ binding to the CD200R1 promoter was observed in LPS-treated but not in control glial cells, and also in control BV2 cells overexpressing C/EBPβ. Finally, we observed that histone deacetylase 1 co-immunoprecipitated with C/EBPβ and showed binding to a C/EBPβ consensus sequence of the CD

  6. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    Directory of Open Access Journals (Sweden)

    Rosa M López-Pedrajas

    2015-07-01

    Full Text Available Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB, considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p. for 18 days. Reduced and oxidized forms of glutathione (GSH and GSSG, glutathione peroxidase (GPx activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68 and GFAP expression were determined.Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations.Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  7. Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection.

    Science.gov (United States)

    Martini, Alessandra Cadete; Berta, Temugin; Forner, Stefânia; Chen, Gang; Bento, Allisson Freire; Ji, Ru-Rong; Rae, Giles Alexander

    2016-04-08

    Spinal cord injury (SCI) is a severe neurological disorder with many disabling consequences, including persistent neuropathic pain, which develops in about 40 % of SCI patients and is induced and sustained by excessive and uncontrolled spinal neuroinflammation. Here, we have evaluated the effects of lipoxin A4 (LXA4), a member of a unique class of endogenous lipid mediators with both anti-inflammatory and analgesic properties, on spinal neuroinflammation and chronic pain in an experimental model of SCI. Spinal hemisection at T10 was carried out in adult male CD1 mice and Wistar rats. To test if LXA4 can reduce neuroinflammation and neuropathic pain, each animal received two intrathecal injections of LXA4 (300 pmol) or vehicle at 4 and 24 h after SCI. Sensitivity to mechanical stimulation of the hind paws was evaluated using von Frey monofilaments, and neuroinflammation was tested by measuring the mRNA and/or protein expression levels of glial markers and cytokines in the spinal cord samples after SCI. Also, microglia cultures prepared from murine cortical tissue were used to assess the direct effects of LXA4 on microglial activation and release of pro-inflammatory TNF-α. LXA4 treatment caused significant reductions in the intensity of mechanical pain hypersensitivity and spinal expression levels of microglial markers and pro-inflammatory cytokines induced by SCI, when compared to rodents receiving control vehicle injections. Notably, the increased expressions of the microglial marker IBA-1 and of the pro-inflammatory cytokine TNF-α were the most affected by the LXA4 treatment. Furthermore, cortical microglial cultures expressed ALX/FPR2 receptors for LXA4 and displayed potentially anti-inflammatory responses upon challenge with LXA4. Collectively, our results suggest that LXA4 can effectively modulate microglial activation and TNF-α release through ALX/FPR2 receptors, ultimately reducing neuropathic pain in rodents after spinal cord hemisection. The dual anti

  8. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain.

    Science.gov (United States)

    Shibuta, Kazuo; Suzuki, Ikuko; Shinoda, Masamichi; Tsuboi, Yoshiyuki; Honda, Kuniya; Shimizu, Noriyoshi; Sessle, Barry J; Iwata, Koichi

    2012-04-27

    The aim of this study was to evaluate spatial organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1), and to clarify the involvement in mechanisms underlying orofacial secondary hyperalgesia following infraorbital nerve injury. We found that the head-withdrawal threshold to non-noxious mechanical stimulation of the maxillary whisker pad skin was significantly reduced in chronic constriction injury of the infraorbital nerve (ION-CCI) rats from day 1 to day 14 after ION-CCI. On day 3 after ION-CCI, mechanical allodynia was obvious in the orofacial skin areas innervated by the 1st and 3rd branches of the trigeminal nerve as well as the 2nd branch area. Hyperactive microglial cells in Vc and C1 were observed on days 3 and 7 after ION-CCI. On day 3 after ION-CCI, a large number of phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells were observed in Vc and C1. Many hyperactive microglial cells were also distributed over a wide area of Vc and C1 innervated by the trigeminal nerve. The intraperitoneal administration of minocycline significantly reduced the activation of microglial cells and the number of pERK-IR cells in Vc and C1, and also significantly attenuated the development of mechanical allodynia. Furthermore, enhanced background activity and mechanical evoked responses of Vc wide dynamic range neurons in ION-CCI rats were significantly reversed following minocycline administration. These findings suggest that activation of microglial cells over a wide area of Vc and C1 is involved in the enhancement of Vc and C1 neuronal excitability in the early period after ION-CCI, resulting in the neuropathic pain in orofacial areas innervated by the injured as well as uninjured nerves. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function.

    Science.gov (United States)

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L

    2013-06-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2 O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2 O2 production in microglia. However, pre-treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2 O2 production in response to DEP. MAC1(-/-) mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2 O2 production and loss of DA neuron function. © 2013 International Society for Neurochemistry.

  10. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    Science.gov (United States)

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  11. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  12. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    Science.gov (United States)

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  13. Microglial activation and neuroinflammation in Alzheimer's disease: a critical examination of recent history

    Directory of Open Access Journals (Sweden)

    Wolfgang J Streit

    2010-06-01

    Full Text Available The neurofibrillary degeneration that occurs in Alzheimer’s disease (AD is thought to be the result of a chronic and damaging neuroinflammatory response mediated by neurotoxic substances produced by activated microglial cells. This neuroinflammation hypothesis of AD pathogenesis has led to numerous clinical trials with anti-inflammatory drugs, none of which have shown clear benefits for slowing or preventing disease onset and progression. In this paper, I make the point that AD is not an inflammatory condition, and reconstruct the sequence of events during the 1980s and 1990s that I believe led to the development of this faulty theory.

  14. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain.

    Science.gov (United States)

    Strahan, J Alex; Walker, William H; Montgomery, Taylor R; Forger, Nancy G

    2017-06-01

    Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017. © 2016 Wiley Periodicals, Inc.

  15. A single dose of trichloroethylene given during development does not substantially alter markers of neuroinflammation in brains of adult mice.

    Science.gov (United States)

    Meadows, Jacqueline R; Parker, Chevonne; Gilbert, Kathleen M; Blossom, Sarah J; DeWitt, Jamie C

    2017-12-01

    Trichloroethylene (TCE) is a widespread environmental contaminant associated with developmental immunotoxicity and neurotoxicity. Previous studies have shown that MRL +/+ mice exposed to TCE from gestation through early-life demonstrate robust increases in inflammatory markers in peripheral CD4 + T-cells, as well as glutathione depletion and increased oxidative stress in cerebellum-associated with alterations in behavior. Since increased oxidative stress is associated with neuroinflammation, we hypothesized that neuroinflammatory markers could be altered relative to unexposed mice. MRL +/+ mice were given 0.5 mg/ml of TCE in vehicle or vehicle (water with 1% Alkamuls EL-620) from conception through early adulthood via drinking water to dams and then directly to post-weaning offspring. Animals were euthanized at 49 days of age and levels of pro- and anti-inflammatory cytokines, density of T-cell staining, and micro-glial morphology were evaluated in brains to begin to ascertain a neuroinflammatory profile. Levels of IL-6 were decreased in female animals and while not statistically significant, and levels of IL-10 were higher in brains of exposed male and female animals. Supportive of this observation, although not statistically significant, the number of ameboid microglia was higher in exposed relative to unexposed animals. This overall profile suggests the emergence of an anti-inflammatory/neuroprotective phenotype in exposed animals, possibly as a compensatory response to neuroinflammation that is known to be induced by developmental exposure to TCE.

  16. Computational Identification of Potential Multi-drug Combinations for Reduction of Microglial Inflammation in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2015-06-01

    Full Text Available Like other neurodegenerative diseases, Alzheimer Disease (AD has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  17. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease.

    Science.gov (United States)

    Anastasio, Thomas J

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action.

  18. Characteristic microglial features in patients with hereditary diffuse leukoencephalopathy with spheroids.

    Science.gov (United States)

    Tada, Mari; Konno, Takuya; Tada, Masayoshi; Tezuka, Toshiyuki; Miura, Takeshi; Mezaki, Naomi; Okazaki, Ken-Ichi; Arakawa, Musashi; Itoh, Kyoko; Yamamoto, Toru; Yokoo, Hideaki; Yoshikura, Nobuaki; Ishihara, Kenji; Horie, Masao; Takebayashi, Hirohide; Toyoshima, Yasuko; Naito, Makoto; Onodera, Osamu; Nishizawa, Masatoyo; Takahashi, Hitoshi; Ikeuchi, Takeshi; Kakita, Akiyoshi

    2016-10-01

    To clarify the histopathological alterations of microglia in the brains of patients with hereditary diffuse leukoencephalopathy with spheroids (HDLS) caused by mutations of the gene encoding the colony stimulating factor-1 receptor (CSF-1R). We examined 5 autopsied brains and 1 biopsy specimen from a total of 6 patients with CSF-1R mutations. Detailed immunohistochemical, biochemical, and ultrastructural features of microglia were examined, and quantitative analyses were performed. In layers 3 to 4 of the frontal cortex in HDLS brains, microglia showed relatively uniform and delicate morphology, with thin and winding processes accompanying knotlike structures, and significantly smaller areas of Iba1 immunoreactivity and lower numbers of Iba1-positive cells were evident in comparison with control brains. On the other hand, in layers 5 to 6 and the underlying white matter, microglia were distributed unevenly; that is, in some areas they had accumulated densely, whereas in others they were scattered. Immunoblot analyses of microglia-associated proteins, including CD11b and DAP12, revealed that HDLS brains had significantly lower amounts of these proteins than diseased controls, although Ki-67-positive proliferative microglia were not reduced. Ultrastructurally, the microglial cytoplasm and processes in HDLS showed vesiculation of the rough endoplasmic reticulum and disaggregated polyribosomes, indicating depression of protein synthesis. On the other hand, macrophages were immunonegative for GLUT-5 or P2ry12, indicating that they were derived from bone marrow. The pathogenesis of HDLS seems to be associated with microglial vulnerability and morphological alterations. Ann Neurol 2016;80:554-565. © 2016 American Neurological Association.

  19. Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death

    OpenAIRE

    Zhang, Wei; Zecca, Luigi; Wilson, Belinda; Ren, RW; Wang, Yong-jun; Wang, Xiao-min; Hong, Jau-Shyong

    2013-01-01

    Substantial evidence indicates that neuroinflammation caused by over-activation of microglial in the substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson’s disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in the death of dopaminergic neurons. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of the substantia nigra, on microg...

  20. Fingolimod modulates microglial activation to augment markers of remyelination

    Directory of Open Access Journals (Sweden)

    Baker David

    2011-07-01

    Full Text Available Abstract Introduction Microglial activation in multiple sclerosis has been postulated to contribute to long-term neurodegeneration during disease. Fingolimod has been shown to impact on the relapsing remitting phase of disease by modulating autoreactive T-cell egress from lymph organs. In addition, it is brain penetrant and has been shown to exert multiple effects on nervous system cells. Methods In this study, the impact of fingolimod and other sphingosine-1-phosphate receptor active molecules following lysophosphotidyl choline-induced demyelination was examined in the rat telencephalon reaggregate, spheroid cell culture system. The lack of immune system components allowed elucidation of the direct effects of fingolimod on CNS cell types in an organotypic situation. Results Following demyelination, fingolimod significantly augmented expression of myelin basic protein in the remyelination phase. This increase was not associated with changes in neurofilament levels, indicating de novo myelin protein expression not associated with axonal branching. Myelin wrapping was confirmed morphologically using confocal and electron microscopy. Increased remyelination was associated with down-regulation of microglial ferritin, tumor necrosis factor alpha and interleukin 1 during demyelination when fingolimod was present. In addition, nitric oxide metabolites and apoptotic effectors caspase 3 and caspase 7 were reduced during demyelination in the presence of fingolimod. The sphingosine-1-phosphate receptor 1 and 5 agonist BAF312 also increased myelin basic protein levels, whereas the sphingosine-1-phosphate receptor 1 agonist AUY954 failed to replicate this effect on remyelination. Conclusions The results presented indicate that modulation of S1P receptors can ameliorate pathological effectors associated with microglial activation leading to a subsequent increase in protein and morphological markers of remyelination. In addition, sphingosine-1-phosphate

  1. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Directory of Open Access Journals (Sweden)

    Luciana Frick

    2016-01-01

    Full Text Available There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD, Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS. The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain’s resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  2. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Science.gov (United States)

    2016-01-01

    There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD), Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS). The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain's resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues. PMID:28053994

  3. Cannabinoid effects on β amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro.

    Science.gov (United States)

    Janefjord, Emelie; Mååg, Jesper L V; Harvey, Benjamin S; Smid, Scott D

    2014-01-01

    Cannabinoid (CB) ligands have demonstrated neuroprotective properties. In this study we compared the effects of a diverse set of CB ligands against β amyloid-mediated neuronal toxicity and activated microglial-conditioned media-based neurotoxicity in vitro, and compared this with a capacity to directly alter β amyloid (Aβ) fibril or aggregate formation. Neuroblastoma (SH-SY5Y) cells were exposed to Aβ1-42 directly or microglial (BV-2 cells) conditioned media activated with lipopolysaccharide (LPS) in the presence of the CB1 receptor-selective agonist ACEA, CB2 receptor-selective agonist JWH-015, phytocannabinoids Δ(9)-THC and cannabidiol (CBD), the endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide or putative GPR18/GPR55 ligands O-1602 and abnormal-cannabidiol (Abn-CBD). TNF-α and nitrite production was measured in BV-2 cells to compare activation via LPS or albumin with Aβ1-42. Aβ1-42 evoked a concentration-dependent loss of cell viability in SH-SY5Y cells but negligible TNF-α and nitrite production in BV-2 cells compared to albumin or LPS. Both albumin and LPS-activated BV-2 conditioned media significantly reduced neuronal cell viability but were directly innocuous to SH-SY5Y cells. Of those CB ligands tested, only 2-AG and CBD were directly protective against Aβ-evoked SH-SY5Y cell viability, whereas JWH-015, THC, CBD, Abn-CBD and O-1602 all protected SH-SY5Y cells from BV-2 conditioned media activated via LPS. While CB ligands variably altered the morphology of Aβ fibrils and aggregates, there was no clear correlation between effects on Aβ morphology and neuroprotective actions. These findings indicate a neuroprotective action of CB ligands via actions at microglial and neuronal cells.

  4. Exciting fear in adolescence: Does pubertal development alter threat processing?

    OpenAIRE

    Spielberg, JM; Olino, TM; Forbes, EE; Dahl, RE

    2014-01-01

    Adolescent development encompasses an ostensible paradox in threat processing. Risk taking increases dramatically after the onset of puberty, contributing to a 200% increase in mortality. Yet, pubertal maturation is associated with increased reactivity in threat-avoidance systems. In the first part of this paper we propose a heuristic model of adolescent affective development that may help to reconcile aspects of this paradox, which focuses on hypothesized pubertal increases in the capacity t...

  5. Sleep variability in adolescence is associated with altered brain development.

    Science.gov (United States)

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Alteration of rice growth and development via antisense expression ...

    African Journals Online (AJOL)

    user

    OsGA20ox2 in regulating plant growth and development, we used reverse genomic approach to ... pathways. Similarly, Carmen et al. (2007) suggested that. Carrizo citrange plants have produced antisense ... universal SP6 and T7 primers to conform their reality (Sangon, ..... Optimising the tissue culture conditions for.

  7. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2018-04-01

    Full Text Available Summary: Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation. : Using a chronic in vivo imaging approach, Eyo et al. show that the physical positions of brain microglia change daily and that these changes increase following certain experimental manipulations. The mechanism underlying these changes involves cell translocation controlled by microglial-specific P2Y12 receptors. Keywords: microglia, P2Y12, seizures, epilepsy, whisker trimming, microglial landscape, two photon chronic imaging

  8. Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures.

    Science.gov (United States)

    Bohlen, Christopher J; Bennett, F Chris; Tucker, Andrew F; Collins, Hannah Y; Mulinyawe, Sara B; Barres, Ben A

    2017-05-17

    Microglia, the resident macrophages of the CNS, engage in various CNS-specific functions that are critical for development and health. To better study microglia and the properties that distinguish them from other tissue macrophage populations, we have optimized serum-free culture conditions to permit robust survival of highly ramified adult microglia under defined-medium conditions. We find that astrocyte-derived factors prevent microglial death ex vivo and that this activity results from three primary components, CSF-1/IL-34, TGF-β2, and cholesterol. Using microglial cultures that have never been exposed to serum, we demonstrate a dramatic and lasting change in phagocytic capacity after serum exposure. Finally, we find that mature microglia rapidly lose signature gene expression after isolation, and that this loss can be reversed by engrafting cells back into an intact CNS environment. These data indicate that the specialized gene expression profile of mature microglia requires continuous instructive signaling from the intact CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. ALTERATIONS IN THE DEVELOPING TESTIS TRANSCRIPTOME FOLLOWING EMBRYONIC VINCLOZOLIN EXPOSURE

    OpenAIRE

    Clement, Tracy M.; Savenkova, Marina I.; Settles, Matthew; Anway, Matthew D.; Skinner, Michael K.

    2010-01-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic day 13, 14 and 16. A total of 576 di...

  10. Altered growth pattern, not altered growth per se, is the hallmark of early lesions preceding cancer development.

    Science.gov (United States)

    Doratiotto, S; Marongiu, F; Faedda, S; Pani, P; Laconi, E

    2009-01-01

    Many human solid cancers arise from focal proliferative lesions that long precede the overt clinical appearance of the disease. The available evidence supports the notion that cancer precursor lesions are clonal in origin, and this notion forms the basis for most of the current theories on the pathogenesis of neoplastic disease. In contrast, far less attention has been devoted to the analysis of the phenotypic property that serves to define these focal lesions, i.e. their altered growth pattern. In fact, the latter is often considered a mere morphological by-product of clonal growth, with no specific relevance in the process. In the following study, evidence will be presented to support the concept that focal growth pattern is an inherent property of altered cells, independent of clonal growth; furthermore, it will be discussed how such a property, far from being merely descriptive, might indeed play a fundamental role in the sequence of events leading to the development of cancer. Within this paradigm, the earliest steps of neoplasia should be considered and analysed as defects in the mechanisms of tissue pattern formation.

  11. Exciting fear in adolescence: Does pubertal development alter threat processing?

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Spielberg

    2014-04-01

    Full Text Available Adolescent development encompasses an ostensible paradox in threat processing. Risk taking increases dramatically after the onset of puberty, contributing to a 200% increase in mortality. Yet, pubertal maturation is associated with increased reactivity in threat-avoidance systems. In the first part of this paper we propose a heuristic model of adolescent affective development that may help to reconcile aspects of this paradox, which focuses on hypothesized pubertal increases in the capacity to experience (some fear-evoking experiences as an exciting thrill. In the second part of this paper, we test key features of this model by examining brain activation to threat cues in a longitudinal study that disentangled pubertal and age effects. Pubertal increases in testosterone predicted increased activation to threat cues, not only in regions associated with threat avoidance (i.e., amygdala, but also regions associated with reward pursuit (i.e., nucleus accumbens. These findings are consistent with our hypothesis that puberty is associated with a maturational shift toward more complex processing of threat cues—which may contribute to adolescent tendencies to explore and enjoy some types of risky experiences.

  12. Altered Pulmonary Lymphatic Development in Infants with Chronic Lung Disease

    Science.gov (United States)

    McNellis, Emily M.; Mabry, Sherry M.; Taboada, Eugenio; Ekekezie, Ikechukwu I.

    2014-01-01

    Pulmonary lymphatic development in chronic lung disease (CLD) has not been investigated, and anatomy of lymphatics in human infant lungs is not well defined. Hypothesis. Pulmonary lymphatic hypoplasia is present in CLD. Method. Autopsy lung tissues of eighteen subjects gestational ages 22 to 40 weeks with and without history of respiratory morbidity were stained with monoclonal antipodoplanin and reviewed under light microscopy. Percentage of parenchyma podoplanin stained at the acinar level was determined using computerized image analysis; 9 CLD and 4 control subjects gestational ages 27 to 36 weeks were suitable for the analysis. Results. Distinct, lymphatic-specific staining with respect to other vascular structures was appreciated in all gestations. Infants with and without respiratory morbidity had comparable lymphatic distribution which extended to the alveolar ductal level. Podoplanin staining per parenchyma was increased and statistically significant in the CLD group versus controls at the alveolar ductal level (0.06% ± 0.02% versus 0.04% ± 0.01%, 95% CI −0.04% to −0.002%, P CLD. It is suggested that the findings, by expanding current knowledge of CLD pathology, may offer insight into the development of more effective therapies to tackle CLD. PMID:24527433

  13. Exciting fear in adolescence: does pubertal development alter threat processing?

    Science.gov (United States)

    Spielberg, Jeffrey M; Olino, Thomas M; Forbes, Erika E; Dahl, Ronald E

    2014-04-01

    Adolescent development encompasses an ostensible paradox in threat processing. Risk taking increases dramatically after the onset of puberty, contributing to a 200% increase in mortality. Yet, pubertal maturation is associated with increased reactivity in threat-avoidance systems. In the first part of this paper we propose a heuristic model of adolescent affective development that may help to reconcile aspects of this paradox, which focuses on hypothesized pubertal increases in the capacity to experience (some) fear-evoking experiences as an exciting thrill. In the second part of this paper, we test key features of this model by examining brain activation to threat cues in a longitudinal study that disentangled pubertal and age effects. Pubertal increases in testosterone predicted increased activation to threat cues, not only in regions associated with threat avoidance (i.e., amygdala), but also regions associated with reward pursuit (i.e., nucleus accumbens). These findings are consistent with our hypothesis that puberty is associated with a maturational shift toward more complex processing of threat cues--which may contribute to adolescent tendencies to explore and enjoy some types of risky experiences. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. SSRI antidepressants: altered psychomotor development following exposure in utero?

    Science.gov (United States)

    2013-02-01

    Selective serotonin reuptake inhibitor antidepressants (SSRIs) are sometimes prescribed to pregnant women. The potential consequences for the unborn child are gradually becoming clearer. In a case-control study of 298 children with autism and 1507 controls, 6.7% of mothers of autistic children had been prescribed an antidepressant during the year before delivery, compared to 3.3% of control mothers. The antidepressant was usually an SSRI. A dozen other small epidemiological studies of neurological development in children exposed to antidepressants in utero have provided mixed results. Two of these studies suggested a risk of psychomotor retardation. In practice, SSRI antidepressants should only be considered for pregnant women when non-drug measures fail and when symptoms are sufficiently serious to warrant drug therapy.

  15. Music training alters the course of adolescent auditory development

    Science.gov (United States)

    Tierney, Adam T.; Krizman, Jennifer; Kraus, Nina

    2015-01-01

    Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes. PMID:26195739

  16. C3-dependent mechanism of microglial priming relevant to multiple sclerosis

    NARCIS (Netherlands)

    Ramaglia, Valeria; Hughes, Timothy R.; Donev, Rossen M.; Ruseva, Marieta M.; Wu, Xiaobo; Huitinga, Inge; Baas, Frank; Neal, James W.; Morgan, B. Paul

    2012-01-01

    Microglial priming predisposes the brain to neurodegeneration and affects disease progression. The signal to switch from the quiescent to the primed state is unknown. We show that deleting the C3 convertase regulator complement receptor 1-related protein y (Crry) induces microglial priming. Mice

  17. Increased microglial catalase activity in multiple sclerosis grey matter.

    Science.gov (United States)

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Induction of Microglial Activation by Mediators Released from Mast Cells

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-04-01

    Full Text Available Background/Aims: Microglia are the resident immune cells in the brain and play a pivotal role in immune surveillance in the central nervous system (CNS. Brain mast cells are activated in CNS disorders and induce the release of several mediators. Thus, brain mast cells, rather than microglia, are the “first responders” due to injury. However, the functional aspects of mast cell-microglia interactions remain uninvestigated. Methods: Conditioned medium from activated HMC-1 cells induces microglial activation similar to co-culture of microglia with HMC-1 cells. Primary cultured microglia were examined by flow cytometry analysis and confocal microscopy. TNF- alpha and IL-6 were measured with commercial ELISA kits. Cell signalling was analysed by Western blotting. Results: In the present study, we found that the conditioned medium from activated HMC-1 cells stimulated microglial activation and the subsequent production of the pro-inflammatory factors TNF-α and IL-6. Co-culture of microglia and HMC-1 cells with corticotropin-releasing hormone (CRH for 24, 48 and 72 hours increased TNF-α and IL-6 production. Antagonists of histamine receptor 1 (H1R, H4R, proteinase-activated receptor 2 (PAR2 or Toll-like receptor 4 (TLR4 reduced HMC-1-induced pro-inflammatory factor production and MAPK and PI3K/AKT pathway activation. Conclusions: These results imply that activated mast cells trigger microglial activation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS inflammation-related diseases.

  19. Automatic counting of microglial cell activation and its applications

    Directory of Open Access Journals (Sweden)

    Beatriz I Gallego

    2016-01-01

    Full Text Available Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientific efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neurodegenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images - from several animals - covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from specialized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

  20. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    Science.gov (United States)

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  1. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations?

    Science.gov (United States)

    Busse, Stefan; Busse, Mandy; Schiltz, Kolja; Bielau, Hendrik; Gos, Tomasz; Brisch, Ralf; Mawrin, Christian; Schmitt, Andrea; Jordan, Wolfgang; Müller, Ulf J; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2012-11-01

    Certain cytokines have been identified in the peripheral blood as trait markers of schizophrenia, while others are considered relapse-related state markers. Furthermore, data from peripheral blood, cerebrospinal fluid (CSF) and nuclear imaging studies suggest that (1) blood-brain barrier (BBB) dysfunction (e.g., immigration of lymphocytes into brain tissue and intrathecal antibody production) correlates with the development of negative symptoms, while (2) the brain's mononuclear phagocyte system (microglial cells) is activated during acute psychosis. Based on these neuroinflammatory hypotheses, we have quantified the numerical density of immunostained CD3+ T-lymphocytes, CD20+ B-lymphocytes, and HLA-DR+ microglial cells in the posterior hippocampus of 17 schizophrenia patients and 11 matched controls. Disease course-related immune alterations were considered by a separate analysis of residual (prevailing negative symptoms, n=7) and paranoid (prominent positive symptoms, n=10) schizophrenia cases. Higher densities of CD3+ and CD20+ lymphocytes were observed in residual versus paranoid schizophrenia (CD 3: left: P=0.047, right: P=0.038; CD20: left: P=0.020, right: P=0.010) and controls (CD3: left: P=0.057, right: P=0.069; CD20: left: P=0.008, right: P=0.006). In contrast, HLA-DR+ microglia were increased in paranoid schizophrenia versus residual schizophrenia (left: P=0.030, right: P=0.012). A similar trend emerged when this group was compared to controls (left: P=0.090, right: P=0.090). BBB impairment and infiltration of T cells and B cells may contribute to the pathophysiology of residual schizophrenia, while microglial activation seems to play a role in paranoid schizophrenia. The identification of diverse immune endophenotypes may facilitate the development of distinct anti-inflammatory schizophrenia therapies to normalize BBB function, (auto)antibody production or microglial activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.

    Science.gov (United States)

    Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo

    2017-09-01

    The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for

  3. Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation.

    Science.gov (United States)

    Cruz, Catarina; Meireles, Manuela; Silva, Susana M

    2017-05-01

    Neuroinflammation has been implicated in the pathogenesis of several disorders. Activation of microglia leads to the release of pro-inflammatory mediators and microglial-mediated neuroinflammation has been proposed as one of the alcohol-induced neuropathological mechanisms. The present study aimed to examine the effect of chronic ethanol exposure and long-term withdrawal on microglial activation and neuroinflammation in the hippocampal formation. Male rats were submitted to 6 months of ethanol treatment followed by a 2-month withdrawal period. Stereological methods were applied to estimate the total number of microglia and activated microglia detected by CD11b immunohistochemistry in the hippocampal formation. The expression levels of the pro-inflammatory cytokines TNF-α, COX-2 and IL-15 were measured by qRT-PCR. Alcohol consumption was associated with an increase in the total number of activated microglia but morphological assessment indicated that microglia did not exhibit a full activation phenotype. These data were supported by functional evidence since chronic alcohol consumption produced no changes in the expression of TNF-α or COX-2. The levels of IL-15 a cytokine whose expression is increased upon activation of both astrocytes and microglia, was induced by chronic alcohol treatment. Importantly, the partial activation of microglia induced by ethanol was not reversed by long-term withdrawal. This study suggests that chronic alcohol exposure induces a microglial phenotype consistent with partial activation without significant increase in classical cytokine markers of neuroinflammation in the hippocampal formation. Furthermore, long-term cessation of alcohol intake is not sufficient to alter the microglial partial activation phenotype induced by ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of potentiometric equipment for the identification of altered dry-cured hams: A preliminary study.

    Science.gov (United States)

    Girón, Joel; Gil-Sánchez, Luís; García-Breijo, Eduardo; Pagán, M Jesús; Barat, José M; Grau, Raúl

    2015-08-01

    Microbiological contamination in dry-cured ham can occur in the early stages of the process, a large number of microorganisms involved in spoilage can produce alterations in the product. These include non-common odours, which are detected at the end of the process by a procedure called "cala", consisting of a sharp instrument punctured in every ham; this is smelled by an expert taster, who classifies hams as good and altered hams. An electronic device would be suitable for this process given the large amount of hams. The present research aims to develop objective equipment based on the potentiometry technique that identifies altered hams. A probe was developed, containing silver, nickel and copper electrodes, and was employed to classify altered and unaltered hams prior to classification by a tester. The results shown lower Ag and higher Cu potential values for altered hams. The differences in potentiometric response reveal a classification model, although further studies are required to obtain a reliable classification model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS

    Science.gov (United States)

    GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS. D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*1,2, M.P. Hardy3, and G.R. Klinefelter1,2. 1University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; 2USEPA,...

  6. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    Science.gov (United States)

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.

  7. ALTER-GLOBALISM AND DEVELOPMENT IN MIGRATION CONDITIONS. THE CASE OF AN EAST EUROPEAN COUNTRY

    OpenAIRE

    Alina HALLER

    2017-01-01

    Globalisation is a process that brings advantages and disadvantages to all states, regardless of their stage of development. The relative deprivation, especially the financial one, of the developing countries is a reason of frustration, which motivates the emigration decision; hence our orientation to alter-globalism. In this paper, I intend to highlight by means of analysis, synthesis, deduction, induction, and statistic data, the causes and types of migration in Romania’s case, one of the m...

  8. Microglial cell dysregulation in Brain Aging and Neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-07-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD. We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the

  9. Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson’s Disease?

    Directory of Open Access Journals (Sweden)

    Elzbieta Janda

    2018-04-01

    Full Text Available The role of phagocytosis in the neuroprotective function of microglia has been appreciated for a long time, but only more recently a dysregulation of this process has been recognized in Parkinson’s disease (PD. Indeed, microglia play several critical roles in central nervous system (CNS, such as clearance of dying neurons and pathogens as well as immunomodulation, and to fulfill these complex tasks they engage distinct phenotypes. Regulation of phenotypic plasticity and phagocytosis in microglia can be impaired by defects in molecular machinery regulating critical homeostatic mechanisms, including autophagy. Here, we briefly summarize current knowledge on molecular mechanisms of microglia phagocytosis, and the neuro-pathological role of microglia in PD. Then we focus more in detail on the possible functional role of microglial phagocytosis in the pathogenesis and progression of PD. Evidence in support of either a beneficial or deleterious role of phagocytosis in dopaminergic degeneration is reported. Altered expression of target-recognizing receptors and lysosomal receptor CD68, as well as the emerging determinant role of α-synuclein (α-SYN in phagocytic function is discussed. We finally discuss the rationale to consider phagocytic processes as a therapeutic target to prevent or slow down dopaminergic degeneration.

  10. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Maternal Diabetes Alters Expression of MicroRNAs that Regulate Genes Critical for Neural Tube Development

    Directory of Open Access Journals (Sweden)

    Seshadri Ramya

    2017-07-01

    Full Text Available Maternal diabetes is known to cause neural tube defects (NTDs in embryos and neuropsychological deficits in infants. Several metabolic pathways and a plethora of genes have been identified to be deregulated in developing brain of embryos by maternal diabetes, although the exact mechanism remains unknown. Recently, miRNAs have been shown to regulate genes involved in brain development and maturation. Therefore, we hypothesized that maternal diabetes alters the expression of miRNAs that regulate genes involved in biological pathways critical for neural tube development and closure during embryogenesis. To address this, high throughput miRNA expression profiling in neural stem cells (NSCs isolated from the forebrain of embryos from normal or streptozotocin-induced diabetic pregnancy was carried out. It is known that maternal diabetes results in fetal hypoglycemia/hyperglycemia or hypoxia. Hence, NSCs from embryos of control pregnant mice were exposed to low or high glucose or hypoxia in vitro. miRNA pathway analysis revealed distinct deregulation of several biological pathways, including axon guidance pathway, which are critical for brain development in NSCs exposed to different treatments. Among the differentially expressed miRNAs, the miRNA-30 family members which are predicted to target genes involved in brain development was upregulated in NSCs from embryos of diabetic pregnancy when compared to control. miRNA-30b was found to be upregulated while its target gene Sirtuin 1 (Sirt1, as revealed by luciferase assay, was down regulated in NSCs from embryos of diabetic pregnancy. Further, overexpression of miRNA-30b in NSCs, resulted in decreased expression of Sirt1 protein, and altered the neuron/glia ratio. On the other hand, siRNA mediated knockdown of Sirt1 in NSCs promoted astrogenesis, indicating that miRNA-30b alters lineage specification via Sirt1. Overall, these results suggest that maternal diabetes alters the genes involved in neural tube

  12. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards

    Science.gov (United States)

    Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.

    2010-01-01

    The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the

  13. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  14. Metabolic alterations in patients who develop traumatic brain injury (TBI)-induced hypopituitarism.

    Science.gov (United States)

    Prodam, F; Gasco, V; Caputo, M; Zavattaro, M; Pagano, L; Marzullo, P; Belcastro, S; Busti, A; Perino, C; Grottoli, S; Ghigo, E; Aimaretti, G

    2013-08-01

    Hypopituitarism is associated with metabolic alterations but in TBI-induced hypopituitarism data are scanty. The aim of our study was to evaluate the prevalence of naïve hypertension, dyslipidemia, and altered glucose metabolism in TBI-induced hypopituitarism patients. Cross-sectional retrospective study in a tertiary care endocrinology center. 54 adult patients encountering a moderate or severe TBI were evaluated in the chronic phase (at least 12 months after injury) after-trauma. Presence of hypopituitarism, BMI, hypertension, fasting blood glucose and insulin levels, oral glucose tolerance test (if available) and a lipid profile were evaluated. The 27.8% of patients showed various degrees of hypopituitarism. In particular, 9.3% had total, 7.4% multiple and 11.1% isolated hypopituitarism. GHD was present in 22.2% of patients. BMI was similar between the two groups. Hypopituitaric patients presented a higher prevalence of dyslipidemia (phypopituitaric patients. In particular, triglycerides (phypopituitaric TBI patients. We showed that long-lasting TBI patients who develop hypopituitarism frequently present metabolic alterations, in particular altered glucose levels, insulin resistance and hypertriglyceridemia. In view of the risk of premature cardiovascular death in hypopituitaric patients, major attention has to been paid in those who encountered a TBI, because they suffer from the same comorbidities and may present other deterioration factors due to complex pharmacological treatments and restriction in participation in life activities and healthy lifestyle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Helicobacter bilis Infection Alters Mucosal Bacteria and Modulates Colitis Development in Defined Microbiota Mice.

    Science.gov (United States)

    Atherly, Todd; Mosher, Curtis; Wang, Chong; Hostetter, Jesse; Proctor, Alexandra; Brand, Meghan W; Phillips, Gregory J; Wannemuehler, Michael; Jergens, Albert E

    2016-11-01

    Helicobacter bilis infection of C3H/HeN mice harboring the altered Schaedler flora (ASF) triggers progressive immune responsiveness and the development of colitis. We sought to investigate temporal alterations in community structure of a defined (ASF-colonized) microbiota in normal and inflamed murine intestines and to correlate microbiota changes to histopathologic lesions. The colonic mucosal microbiota of healthy mice and ASF mice colonized with H. bilis for 3, 6, or 12 weeks were investigated by fluorescence in situ hybridization targeting the 16S ribosomal RNA genes of total bacteria, group-specific organisms, and individual ASF bacterial species. Microbial profiling of ASF and H. bilis abundance was performed on cecal contents. Helicobacter bilis-colonized mice developed colitis associated with temporal changes in composition and spatial distribution of the mucosal microbiota. The number of total bacteria, ASF519, and helicobacter-positive bacteria were increased (P attachment, or by invasion, and this interaction is differentially expressed over time.

  16. Arachidonic acid containing phosphatidylcholine increases due to microglial activation in ipsilateral spinal dorsal horn following spared sciatic nerve injury.

    Directory of Open Access Journals (Sweden)

    Tomohiro Banno

    Full Text Available Peripheral nerve injury induces substantial molecular changes in the somatosensory system that leads to maladaptive plasticity and cause neuropathic pain. Understanding the molecular pathways responsible for the development of neuropathic pain is essential to the development of novel rationally designed therapeutics. Although lipids make up to half of the dry weight of the spinal cord, their relation with the development of neuropathic pain is poorly understood. We aimed to elucidate the regulation of spinal lipids in response to neuropathic peripheral nerve injury in mice by utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry, which allows visualization of lipid distribution within the cord. We found that arachidonic acid (AA containing [PC(diacyl-16:0/20:4+K]+ was increased temporarily at superficial ipsilateral dorsal horn seven days after spared nerve injury (SNI. The spatiotemporal changes in lipid concentration resembled microglia activation as defined by ionized calcium binding adaptor molecule 1 (Iba1 immunohistochemistry. Suppression of microglial function through minocycline administration resulted in attenuation of hypersensitivity and reduces [PC(diacyl-16:0/20:4+K]+ elevation in the spinal dorsal horn. These data suggested that AA containing [PC(diacyl-16:0/20:4+K]+ is related to hypersensitivity evoked by SNI and implicate microglial cell activation in this lipid production.

  17. Nanomolar Bifenthrin Alters Synchronous Ca2+ Oscillations and Cortical Neuron Development Independent of Sodium Channel Activity

    OpenAIRE

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M.; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N.

    2014-01-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca 2+ oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca2+ indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the fr...

  18. Periconceptional growth hormone treatment alters fetal growth and development in lambs.

    Science.gov (United States)

    Koch, J M; Wilmoth, T A; Wilson, M E

    2010-05-01

    Research in the area of fetal programming has focused on intrauterine growth restriction. Few studies have attempted to examine programming mechanisms that ultimately lead to lambs with a greater potential for postnatal growth. We previously demonstrated that treatment of ewes with GH at the time of breeding led to an increase in birth weight. Therefore, the objective of this study was to determine the effects of a single injection of sustained-release GH given during the periconceptional period on fetal growth and development and to determine if the GH axis would be altered in these offspring. Estrus was synchronized using 2 injections of PGF(2alpha); at the time of the second injection, ewes assigned to treatment were also given an injection of sustained-release GH. A maternal jugular vein sample was taken weekly to analyze IGF-I as a proxy for GH to estimate the duration of the treatment effect. In ewes treated with GH, IGF-I increased (P brain weights were obtained, as well as left and right ventricular wall thicknesses. On postnatal d 100, a subset of ewe lambs were weighed and challenged with an intravenous injection of GHRH. Lambs from treated ewes had increased (P left ventricular wall was thinner (P development. Lambs born to ewes treated with GH were larger at birth and had altered organ development, which may indicate that early maternal GH treatment may lead to permanent changes in the developing fetus. The ewe lambs maintained their growth performance to at least 100 d of postnatal life and appeared to have an altered GH axis, as demonstrated by the altered response to GHRH.

  19. Deciphering resting microglial morphology and process motility from a synaptic prospect

    Directory of Open Access Journals (Sweden)

    Ines eHristovska

    2016-01-01

    Full Text Available Microglia, the resident immune cells of the central nervous system (CNS, were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

  20. Excessive Sensory Stimulation during Development Alters Neural Plasticity and Vulnerability to Cocaine in Mice.

    Science.gov (United States)

    Ravinder, Shilpa; Donckels, Elizabeth A; Ramirez, Julian S B; Christakis, Dimitri A; Ramirez, Jan-Marino; Ferguson, Susan M

    2016-01-01

    Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today's complex technological environment.

  1. Oilseed cultivars developed from induced mutations and mutations altering fatty acid composition

    International Nuclear Information System (INIS)

    Bhatia, C.R.; Nichterlein, K.; Maluszynski, M.

    1999-01-01

    One hundred and sixty-three cultivars of annual oilseed crops, developed using induced mutations, have been officially approved and released for cultivation in 26 countries. The maximum number of cultivars have been released in soybean (58), followed by groundnut (44), sesame (16), linseed (15), rapeseed (14), Indian mustard (8), castorbean (4), white mustard (3) and sunflower (1). The majority (118 of 163) of the cultivars have been developed as direct mutants and 45 of 163 by using the induced mutants in a crossing programme. While in soybean 53 out of 58 cultivars were selected as direct mutants, in groundnut 22 from 44 were developed after hybridization. Eighty-three cultivars were developed directly by exposing seeds to gamma or X-rays. Attempts have been made to infer the successful dose range, defined as the range which led to the development, registration and release of the maximum number of mutant cultivars for gamma and X-rays. The successful dose ranges in Gy for the main oilseed crops are: soybean 100-200, groundnut 150-250, rapeseed 600-800, Indian mustard 700 and sesame 100-200. The main characteristics of the new cultivars, besides higher yield, are altered plant type, early flowering and maturity and oil content. Mutants altering fatty acid composition have been isolated in soybean, rapeseed, sunflower, linseed and minor oil crops. New cultivars having altered fatty acid composition have been released in rapeseed, sunflower and linseed. The latter, previously grown for non-edible oil, has been converted to a new edible oil crop. (author)

  2. Progranulin regulates neurogenesis in the developing vertebrate retina.

    Science.gov (United States)

    Walsh, Caroline E; Hitchcock, Peter F

    2017-09-01

    We evaluated the expression and function of the microglia-specific growth factor, Progranulin-a (Pgrn-a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn-a is expressed throughout the forebrain, but by 48 hpf pgrn-a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn-a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed-retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn-a knockdown. Depleting Pgrn-a results in a significant lengthening of the cell cycle. These data suggest that Pgrn-a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn-a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114-1129, 2017. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.

  3. Cellular demise and inflammatory microglial activation during beta-amyloid toxicity are governed by Wnt1 and canonical signaling pathways.

    Science.gov (United States)

    Chong, Zhao Zhong; Li, Faqi; Maiese, Kenneth

    2007-06-01

    Initially described as a modulator of embryogenesis for a number of organ systems, Wnt1 has recently been linked to the development of several neurodegenerative disorders, none being of greater significance than Alzheimer's disease. We therefore examined the ability of Wnt1 to oversee vital pathways responsible for cell survival during beta-amyloid (Abeta1-42) exposure. Here we show that Wnt1 is critical for protection in the SH-SY5Y neuronal cell line against genomic DNA degradation, membrane phosphatidylserine (PS) exposure, and microglial activation, since these neuroprotective attributes of Wnt1 are lost during gene silencing of Wnt1 protein expression. Intimately tied to Wnt1 protection is the presence and activation of Akt1. Pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression can abrogate the protective capacity of Wnt1. Closely aligned with Wnt1 and Akt1 are the integrated canonical pathways of synthase kinase-3beta (GSK-3beta) and beta-catenin. Through Akt1 dependent pathways, Wnt1 phosphorylates GSK-3beta and maintains beta-catenin integrity to insure its translocation from the cytoplasm to the nucleus to block apoptosis. Our work outlines a highly novel role for Wnt1 and its integration with Akt1, GSK-3beta, and beta-catenin to foster neuronal cell survival and repress inflammatory microglial activation that can identify new avenues of therapy against neurodegenerative disorders.

  4. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Pharmaceuticals and personal care products alter the holobiome and development of a medically important mosquito

    International Nuclear Information System (INIS)

    Pennington, Marcus J.; Rivas, Nicholas G.; Prager, Sean M.; Walton, William E.; Trumble, John T.

    2015-01-01

    The increasing demand for fresh water has forced many countries to use reclaimed wastewater for agricultural purposes. This water contains pharmaceuticals and personal care products (PPCPs) that remain biologically active following passage through wastewater treatment plants. Run-off from farms and contaminated water from treatment facilities exposes aquatic ecosystems to PPCPs. This study examined the effects of PPCPs on a lower trophic organism. Culex quinquefasciatus larvae were reared in water contaminated with environmentally relevant concentrations of common PPCPs. Acetaminophen alone and a mixture of contaminants were found to increase developmental time of larvae. Susceptibility to Bti increased in larvae exposed to antibiotics, acetaminophen, or a mixture of PPCPs. Antibiotics, hormones, and the mixture altered the mosquito bacterial microbiome. Overall, the results indicate that at environmentally relevant concentrations, PPCPs in reclaimed water can have biologically important effects on an ecologically and medically important lower trophic level insect. - Highlights: • Effects of Pharmaceuticals and Personal Care Products on mosquitoes were examined. • Three PPCP treatments increase susceptibility to a common larvicide (Bti). • Acetaminophen and the mixture of PPCPs caused an increase in developmental time. • The holobiome of mosquitoes treated with PPCPs were sequenced. • Three PPCP regimes changed the holobiome of the mosquitoes. - Pharmaceuticals and personal care products, common to reclaimed wastewater, alter the development of mosquitoes. They also alter the whole-body bacterial microbiome

  6. Microglial involvement in neuroplastic changes following focal brain ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    2009-12-01

    Full Text Available The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in some specific events of neuronal plasticity, neurite outgrowth and synaptogenesis. Since microglia is a source of neurotrophic factors, the identification of the brain-derived neurophic factor (BDNF as possible molecular actor involved in these events was also attempted. As a means of down-regulating the microglial response induced by ischemia, 3-aminobenzamide (3-AB, 90 mg/kg, i.p. was used to inhibit the poly(ADP-ribose polymerase-1 (PARP-1. Indeed, PARP-1 contributes to the activation of the transcription factor NF-kB, which is essential to the upregulation of proinflammatory genes, in particular responsible for microglial activation/proliferation. Experiments were conducted in rats subjected to photothrombotic ischemia which leads to a strong and early microglial cells activation/proliferation followed by an infiltration of macrophages within the cortical lesion, events evaluated at serial time points up to 1 month post-ictus by immunostaining for OX-42 and ED-1. Our most striking finding was that the decrease in acute microglial activation induced by 3-AB was associated with a long term down-regulation of two neuronal plasticity proteins expression, synaptophysin (marker of synaptogenesis and GAP-43 (marker of neuritogenesis as well as to a significant decrease in tissue BDNF production. Thus, our data argue in favour of a supportive role for microglia in brain neuroplasticity stimulation possibly through BDNF production, suggesting that a targeted

  7. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes

    Science.gov (United States)

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2014-01-01

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat’s hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000

  8. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    Science.gov (United States)

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  9. Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang

    2009-01-01

    Full Text Available Microglia activated in response to brain injury release neurotoxic factors including nitric oxide (NO and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β. Ketamine, an anesthetic induction agent, is generally reserved for use in patients with severe hypotension or respiratory depression. In this study, we found that ketamine (100 and 250 μM concentration-dependently inhibited lipopolysaccharide (LPS-induced NO and IL-1β release in primary cultured microglia. However, ketamine (100 and 250 μM did not significantly inhibit the LPS-induced TNF-α production in microglia, except at the higher concentration (500 μM. Further study of the molecular mechanisms revealed that ketamine markedly inhibited extracellular signal-regulated kinase (ERK1/2 phosphorylation but not c-Jun N-terminal kinase or p38 mitogen-activated protein kinase stimulated by LPS in microglia. These results suggest that microglial inactivation by ketamine is at least partially due to inhibition of ERK1/2 phosphorylation.

  10. Influence of extracellular zinc on M1 microglial activation.

    Science.gov (United States)

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-02-27

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30-60 μM ZnCl 2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia-reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.

  11. ALTER-GLOBALISM AND DEVELOPMENT IN MIGRATION CONDITIONS. THE CASE OF AN EAST EUROPEAN COUNTRY

    Directory of Open Access Journals (Sweden)

    Alina HALLER

    2017-12-01

    Full Text Available Globalisation is a process that brings advantages and disadvantages to all states, regardless of their stage of development. The relative deprivation, especially the financial one, of the developing countries is a reason of frustration, which motivates the emigration decision; hence our orientation to alter-globalism. In this paper, I intend to highlight by means of analysis, synthesis, deduction, induction, and statistic data, the causes and types of migration in Romania’s case, one of the main European countries where the immigrants originate from. We will see how globalisation manifests itself in a twofold manner in the economy and the society of a developing country, just like migration. We will show why a poor country is avoided by immigrants and deserted, as a result of immigration, by its own population, while, just like the developed states, it is likely to face the same demographic, economic and social problems, considering that the process of demographic transition is already manifested.

  12. Inhibition of the kynurenine pathway protects against reactive microglial-associated reductions in the complexity of primary cortical neurons.

    Science.gov (United States)

    O'Farrell, Katherine; Fagan, Eimear; Connor, Thomas J; Harkin, Andrew

    2017-09-05

    Brain glia possess the rate limiting enzyme indoleamine 2, 3-dioxygenase (IDO) which catalyses the conversion of tryptophan to kynurenine. Microglia also express kynurenine monooxygenase (KMO) and kynureninase (KYNU) which lead to the production of the free radical producing metabolites, 3-hydroxykynurenine and 3-hydroxyanthranillic acid respectively and subsequently production of the NMDA receptor agonist quinolinic acid. The aim of this study was to examine the effect of IFNγ-stimulated kynurenine pathway (KP) induction in microglia on neurite outgrowth and complexity, and to determine whether alterations could be abrogated using pharmacological inhibitors of the KP. BV-2 microglia were treated with IFNγ (5ng/ml) for 24h and conditioned media (CM) was placed on primary cortical neurons 3 days in vitro (DIV) for 48h. Neurons were fixed and neurite outgrowth and complexity was assessed using fluorescent immunocytochemistry followed by Sholl analysis. Results show increased mRNA expression of IDO, KMO and KYNU, and increased concentrations of tryptophan, kynurenine, and 3-hydroxykynurenine in the CM of IFNγ-stimulated BV-2 microglia. The IFNγ-stimulated BV-2 microglial CM reduced neurite outgrowth and complexity with reductions in various parameters of neurite outgrowth prevented when BV-2 microglia were pre-treated with either the IDO inhibitor, 1-methyltryptophan (1-MT) (L) (0.5mM; 30min), the KMO inhibitor, Ro 61-8048 (1μM; 30min), the synthetic glucocorticoid, dexamethasone (1μM; 2h) -which suppresses IFNγ-induced IDO - and the N-methyl-D-aspartate (NMDA) receptor antagonist, MK801 (0.1μM; 30min). Overall this study indicates that inhibition of the KP in microglia may be targeted to protect against reactive microglial-associated neuronal atrophy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    International Nuclear Information System (INIS)

    Herring, M.J.; Putney, L.F.; St George, J.A.; Avdalovic, M.V.; Schelegle, E.S.; Miller, L.A.; Hyde, D.M.

    2015-01-01

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O 3 ) or HDMA/ozone (HDMA + O 3 ) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O 3 alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  14. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring.

    Science.gov (United States)

    Mychasiuk, R; Harker, A; Ilnytskyy, S; Gibb, R

    2013-06-25

    Although there has been an abundance of research focused on offspring outcomes associated with maternal experiences, there has been limited examination of the relationship between paternal experiences and offspring brain development. As spermatogenesis is a continuous process, experiences that have the ability to alter epigenetic regulation in fathers may actually change developmental trajectories of offspring. The purpose of this study was to examine the effects of paternal stress prior to conception on behaviour and the epigenome of both male and female developing rat offspring. Male Long-Evans rats were stressed for 27 consecutive days and then mated with control female rats. Early behaviour was tested in offspring using the negative geotaxis task and the open field. At P21 offspring were sacrificed and global DNA methylation levels in the hippocampus and frontal cortex were analysed. Paternal stress prior to conception altered behaviour of all offspring on the negative geotaxis task, delaying acquisition of the task. In addition, male offspring demonstrated a reduction in stress reactivity in the open field paradigm spending more time than expected in the centre of the open field. Paternal stress also altered DNA methylation patterns in offspring at P21, global methylation was reduced in the frontal cortex of female offspring, but increased in the hippocampus of both male and female offspring. The results from this study clearly demonstrate that paternal stress during spermatogenesis can influence offspring behaviour and DNA methylation patterns, and these affects occur in a sex-dependent manner. Development takes place in the centre of a complex interaction between maternal, paternal, and environmental influences, which combine to produce the various phenotypes and individual differences that we perceive. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  16. DNA methylation program in developing hippocampus and its alteration by alcohol.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Chen

    Full Text Available During hippocampal development, the Cornus Ammonis (CA and the dentate gyrus (DG undergo waves of neurogenesis and neuronal migration and maturation independently. This stage is widely known to be vulnerable to environmental stresses, but its underlying mechanism is unclear. Alcohol exposure has been shown to alter the expression of genes that regulate the fate, survival, migration and differentiation of pyramidal and granule cells. Undermining this process might compromise hippocampal development underlying the learning and memory deficits known in Fetal Alcohol Spectrum Disorders (FASD. We have previously demonstrated that DNA methylation was programmed along with neural tube development. Here, we demonstrated that DNA methylation program (DMP proceeded along with hippocampal neuronal differentiation and maturation, and how this DMP was affected by fetal alcohol exposure. C57BL/6 mice were treated with 4% v/v ethanol through a liquid diet along with pair-fed and chow-fed controls from gestation day (E 7 to E16. We found that a characteristic DMP, including 5-methylcytidine (5mC, 5-hydroxylmethylcytidine (5hmC and their binding proteins, led the hippocampal neuronal differentiation and maturation spatiotemporally as indicated by their phenotypic marks in the CA and DG pre- and post-natally. Alcohol hindered the acquisition and progression of methylation marks, and altered the chromatin translocation of these marks in the nucleus, which was correlated with developmental retardation.

  17. In utero exposure to chloroquine alters sexual development in the male fetal rat

    International Nuclear Information System (INIS)

    Clewell, Rebecca A.; Pluta, Linda; Thomas, Russell S.; Andersen, Melvin E.

    2009-01-01

    Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenance doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.

  18. Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration

    Science.gov (United States)

    Sievert, Nicholas A.; Paukert, Craig P.; Tsang, Yin-Phan; Infante, Dana M.

    2016-01-01

    Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse

  19. Aging leads to altered microglial function that reduces brain resiliency increasing vulnerability to neurodegenerative diseases.

    Science.gov (United States)

    Bickford, Paula C; Flowers, Antwoine; Grimmig, Bethany

    2017-08-01

    Aging is the primary risk factor for many neurodegenerative diseases. Thus, understanding the basic biological changes that take place with aging that lead to the brain being less resilient to disease progression of neurodegenerative diseases such as Parkinson's disease or Alzheimer's disease or insults to the brain such as stroke or traumatic brain injuries. Clearly this will not cure the disease per se, yet increasing the ability of the brain to respond to injury could improve long term outcomes. The focus of this review is examining changes in microglia with age and possible therapeutic interventions involving the use of polyphenol rich dietary supplements. Published by Elsevier Inc.

  20. Electroconvulsive seizures (ECS) do not prevent LPS-induced behavioral alterations and microglial activation

    NARCIS (Netherlands)

    van Buel, E. M.; Bosker, F. J.; van Drunen, J.; Strijker, J.; Douwenga, W.; Klein, H. C.; Eisel, U. L. M.

    2015-01-01

    Background: Long-term neuroimmune activation is a common finding in major depressive disorder (MDD). Literature suggests a dual effect of electroconvulsive therapy (ECT), a highly effective treatment strategy for MDD, on neuroimmune parameters: while ECT acutely increases inflammatory parameters,

  1. Brain Connectivity Alterations Are Associated with the Development of Dementia in Parkinson's Disease.

    Science.gov (United States)

    Bertrand, Josie-Anne; McIntosh, Anthony R; Postuma, Ronald B; Kovacevic, Natasha; Latreille, Véronique; Panisset, Michel; Chouinard, Sylvain; Gagnon, Jean-François

    2016-04-01

    Dementia affects a high proportion of Parkinson's disease (PD) patients and poses a burden on caregivers and healthcare services. Electroencephalography (EEG) is a common nonevasive and nonexpensive technique that can easily be used in clinical settings to identify brain functional abnormalities. Only few studies had identified EEG abnormalities that can predict PD patients at higher risk for dementia. Brain connectivity EEG measures, such as multiscale entropy (MSE) and phase-locking value (PLV) analyses, may be more informative and sensitive to brain alterations leading to dementia than previously used methods. This study followed 62 dementia-free PD patients for a mean of 3.4 years to identify cerebral alterations that are associated with dementia. Baseline resting state EEG of patients who developed dementia (N = 18) was compared to those of patients who remained dementia-free (N = 44) and of 37 healthy subjects. MSE and PLV analyses were performed. Partial least squares statistical analysis revealed group differences associated with the development of dementia. Patients who developed dementia showed higher signal complexity and lower PLVs in low frequencies (mainly in delta frequency) than patients who remained dementia-free and controls. Conversely, both patient groups showed lower signal variability and higher PLVs in high frequencies (mainly in gamma frequency) compared to controls, with the strongest effect in patients who developed dementia. These findings suggest that specific disruptions of brain communication can be measured before PD patients develop dementia, providing a new potential marker to identify patients at highest risk of developing dementia and who are the best candidates for neuroprotective trials.

  2. Immortalized sheep microglial cells are permissive to a diverse range of ruminant viruses.

    Science.gov (United States)

    Stanton, James B; Swanson, Beryl; Orozco, Edith; Muñoz-Gutiérrez, Juan F; Evermann, James F; Ridpath, Julia F

    2017-12-01

    Ruminants, including sheep and goats (small ruminants), are key agricultural animals in many parts of the world. Infectious diseases, including many viral diseases, are significant problems to efficient production of ruminants. Unfortunately, reagents tailored to viruses of ruminants, and especially small ruminants, are lacking compared to other animals more typically used for biomedical research. The purpose of this study was to determine the permissibility of a stably immortalized, sheep microglial cell line to viruses that are reported to infect ruminants: bovine viral diarrhea virus (BVDV), bovine herpesvirus 1 (BoHV-1), small ruminant lentiviruses (SRLV), and bovine respiratory syncytial virus (BRSV). Sublines A and H of previously isolated, immortalized, and characterized (CD14-positive) ovine microglial cells were used. Bovine turbinate cells and goat synovial membrane cells were used for comparison. Cytopathic changes were used to confirm infection of individual wells, which were then counted and used to calculate the 50% tissue culture infectious dose. Uninoculated cells served as negative controls and confirmed that the cells were not previously infected with these viruses using polymerase chain reaction (PCR). Inoculation of the two microglial cell sublines with laboratory and field isolates of BVDV, BoHV-1, and BRSV resulted in viral infection in a manner similar to bovine turbinate cells. Immortalized microglia cells are also permissive to SRLV, similar to goat synovial membrane cells. These immortalized sheep microglial cells provide a new tool for the study of ruminant viruses in ruminant microglial cell line.

  3. Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Nan Gu

    2016-07-01

    Full Text Available Peripheral nerve injury causes neuropathic pain accompanied by remarkable microgliosis in the spinal cord dorsal horn. However, it is still debated whether infiltrated monocytes contribute to injury-induced expansion of the microglial population. Here, we found that spinal microgliosis predominantly results from local proliferation of resident microglia but not from infiltrating monocytes after spinal nerve transection (SNT by using two genetic mouse models (CCR2RFP/+:CX3CR1GFP/+ and CX3CR1creER/+:R26tdTomato/+ mice as well as specific staining of microglia and macrophages. Pharmacological inhibition of SNT-induced microglial proliferation correlated with attenuated neuropathic pain hypersensitivities. Microglial proliferation is partially controlled by purinergic and fractalkine signaling, as CX3CR1−/− and P2Y12−/− mice show reduced spinal microglial proliferation and neuropathic pain. These results suggest that local microglial proliferation is the sole source of spinal microgliosis, which represents a potential therapeutic target for neuropathic pain management.

  4. [Facial nerve injuries cause changes in central nervous system microglial cells].

    Science.gov (United States)

    Cerón, Jeimmy; Troncoso, Julieta

    2016-12-01

    Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.

  5. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster

    Science.gov (United States)

    Mishra, Monalisa; Sabat, Debabrat; Ekka, Basanti; Sahu, Swetapadma; P, Unnikannan; Dash, Priyabrat

    2017-08-01

    Zirconia nanoparticles (ZrO2 NPs) have been extensively used in teeth and bone implants and thus get a chance to interact with the physiological system. The current study investigated the oral administration of various concentrations of ZrO2 NPs synthesized by the hydrothermal method (0.25 to 5.0 mg L-1) on Drosophila physiology and behaviour. The size of the currently studied nanoparticle varies from 10 to 12 nm. ZrO2 NPs accumulated within the gut in a concentration-dependent manner and generate reactive oxygen species (ROS) only at 2.5 and 5.0 mg L-1 concentrations. ROS was detected by nitroblue tetrazolium (NBT) assay and 2',7'-dichlorofluorescein http://www.ncbi.nlm.nih.gov/pubmed/20370560 (H2DCF) staining. The ROS toxicity alters the larval gut structure as revealed by DAPI staining. The NP stress of larvae affects the Drosophila development by distressing pupa count and varying the phenotypic changes in sensory organs (eye, thorax bristle, wings). Besides phenotypic changes, flawed climbing behaviour against gravity was seen in ZrO2 NP-treated flies. All together, for the first time, we have reported that a ROS-mediated ZrO2 NP toxicity alters neuronal development and functioning using Drosophila as a model organism. [Figure not available: see fulltext.

  6. Hurricane Sandy Exposure Alters the Development of Neural Reactivity to Negative Stimuli in Children.

    Science.gov (United States)

    Kessel, Ellen M; Nelson, Brady D; Kujawa, Autumn; Hajcak, Greg; Kotov, Roman; Bromet, Evelyn J; Carlson, Gabrielle A; Klein, Daniel N

    2018-03-01

    This study examined whether exposure to Hurricane Sandy-related stressors altered children's brain response to emotional information. An average of 8 months (M age  = 9.19) before and 9 months after (M age  = 10.95) Hurricane Sandy, 77 children experiencing high (n = 37) and low (n = 40) levels of hurricane-related stress exposure completed a task in which the late positive potential, a neural index of emotional reactivity, was measured in response to pleasant and unpleasant, compared to neutral, images. From pre- to post-Hurricane Sandy, children with high stress exposure failed to show the same decrease in emotional reactivity to unpleasant versus neutral stimuli as those with low stress exposure. Results provide compelling evidence that exposure to natural disaster-related stressors alters neural emotional reactivity to negatively valenced information. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  7. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication.

    Science.gov (United States)

    Rapp, Ryan A; Haigler, Candace H; Flagel, Lex; Hovav, Ran H; Udall, Joshua A; Wendel, Jonathan F

    2010-11-15

    Understanding the evolutionary genetics of modern crop phenotypes has a dual relevance to evolutionary biology and crop improvement. Modern upland cotton (Gossypium hirsutum L.) was developed following thousands of years of artificial selection from a wild form, G. hirsutum var. yucatanense, which bears a shorter, sparser, layer of single-celled, ovular trichomes ('fibre'). In order to gain an insight into the nature of the developmental genetic transformations that accompanied domestication and crop improvement, we studied the transcriptomes of cotton fibres from wild and domesticated accessions over a developmental time course. Fibre cells were harvested between 2 and 25 days post-anthesis and encompassed the primary and secondary wall synthesis stages. Using amplified messenger RNA and a custom microarray platform designed to interrogate expression for 40,430 genes, we determined global patterns of expression during fibre development. The fibre transcriptome of domesticated cotton is far more dynamic than that of wild cotton, with over twice as many genes being differentially expressed during development (12,626 versus 5273). Remarkably, a total of 9465 genes were diagnosed as differentially expressed between wild and domesticated fibres when summed across five key developmental time points. Human selection during the initial domestication and subsequent crop improvement has resulted in a biased upregulation of components of the transcriptional network that are important for agronomically advanced fibre, especially in the early stages of development. About 15% of the differentially expressed genes in wild versus domesticated cotton fibre have no homology to the genes in databases. We show that artificial selection during crop domestication can radically alter the transcriptional developmental network of even a single-celled structure, affecting nearly a quarter of the genes in the genome. Gene expression during fibre development within accessions and expression

  8. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission?

    Directory of Open Access Journals (Sweden)

    Mawrin Christian

    2011-08-01

    Full Text Available Abstract Background Immune dysfunction, including monocytosis and increased blood levels of interleukin-1, interleukin-6 and tumour necrosis factor α has been observed during acute episodes of major depression. These peripheral immune processes may be accompanied by microglial activation in subregions of the anterior cingulate cortex where depression-associated alterations of glutamatergic neurotransmission have been described. Methods Microglial immunoreactivity of the N-methyl-D-aspartate (NMDA glutamate receptor agonist quinolinic acid (QUIN in the subgenual anterior cingulate cortex (sACC, anterior midcingulate cortex (aMCC and pregenual anterior cingulate cortex (pACC of 12 acutely depressed suicidal patients (major depressive disorder/MDD, n = 7; bipolar disorder/BD, n = 5 was analyzed using immunohistochemistry and compared with its expression in 10 healthy control subjects. Results Depressed patients had a significantly increased density of QUIN-positive cells in the sACC (P = 0.003 and the aMCC (P = 0.015 compared to controls. In contrast, counts of QUIN-positive cells in the pACC did not differ between the groups (P = 0.558. Post-hoc tests showed that significant findings were attributed to MDD and were absent in BD. Conclusions These results add a novel link to the immune hypothesis of depression by providing evidence for an upregulation of microglial QUIN in brain regions known to be responsive to infusion of NMDA antagonists such as ketamine. Further work in this area could lead to a greater understanding of the pathophysiology of depressive disorders and pave the way for novel NMDA receptor therapies or immune-modulating strategies.

  9. Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model.

    Directory of Open Access Journals (Sweden)

    Alissa R Carver

    Full Text Available Using an animal model, we have previously shown that preeclampsia results in long-term adverse neuromotor outcomes in the offspring, and this phenotype was prevented by antenatal treatment with pravastatin. This study aims to localize the altered neuromotor programming in this animal model and to evaluate the role of pravastatin in its prevention.For the preeclampsia model, pregnant CD-1 mice were randomly allocated to injection of adenovirus carrying sFlt-1 or its control virus carrying mFc into the tail vein. Thereafter they received pravastatin (sFlt-1-pra "experimental group" or water (sFlt-1 "positive control" until weaning. The mFc group ("negative control" received water. Offspring at 6 months of age were sacrificed, and whole brains underwent magnetic resonance imaging (MRI. MRIs were performed using an 11.7 Tesla vertical bore MRI scanner. T2 weighted images were acquired to evaluate the volumes of 28 regions of interest, including areas involved in adaptation and motor, spatial and sensory function. Cytochemistry and cell quantification was performed using neuron-specific Nissl stain. One-way ANOVA with multiple comparison testing was used for statistical analysis.Compared with control offspring, male sFlt-1 offspring have decreased volumes in the fimbria, periaquaductal gray, stria medullaris, and ventricles and increased volumes in the lateral globus pallidus and neocortex; however, female sFlt-1 offspring showed increased volumes in the ventricles, stria medullaris, and fasciculus retroflexus and decreased volumes in the inferior colliculus, thalamus, and lateral globus pallidus. Neuronal quantification via Nissl staining exhibited decreased cell counts in sFlt-1 offspring neocortex, more pronounced in males. Prenatal pravastatin treatment prevented these changes.Preeclampsia alters brain development in sex-specific patterns, and prenatal pravastatin therapy prevents altered neuroanatomic programming in this animal model.

  10. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    International Nuclear Information System (INIS)

    Marlatt, Vicki L.; Veldhoen, Nik; Lo, Bonnie P.; Bakker, Dannika; Rehaume, Vicki; Vallée, Kurtis; Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C.; Elphick, James R.; Helbing, Caren C.

    2013-01-01

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26–28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T 4 ), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T 4 /TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T 4 treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T 4 . The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  11. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  12. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases.

    Science.gov (United States)

    González, Hugo; Elgueta, Daniela; Montoya, Andro; Pacheco, Rodrigo

    2014-09-15

    Neuroinflammation constitutes a fundamental process involved in the progression of several neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. Microglial cells play a central role in neuroinflammation, promoting neuroprotective or neurotoxic microenvironments, thus controlling neuronal fate. Acquisition of different microglial functions is regulated by intercellular interactions with neurons, astrocytes, the blood-brain barrier, and T-cells infiltrating the central nervous system. In this study, an overview of the regulation of microglial function mediated by different intercellular communications is summarised and discussed. Afterward, we focus in T-cell-mediated regulation of neuroinflammation involved in neurodegenerative disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kim Wilkinson

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS. Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1, CD36, and RAGE (receptor for advanced glycation end products. SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.

  14. Phytoestrogens alter the reproductive organ development in the mink (Mustela vison)

    International Nuclear Information System (INIS)

    Ryoekkynen, Ari; Nieminen, Petteri; Mustonen, Anne-Mari; Pyykoenen, Teija; Asikainen, Juha; Haenninen, Sari; Mononen, Jaakko; Kukkonen, Jussi V.K.

    2005-01-01

    The aim of the present study was to examine the reproductive effects of two perorally applied phytoestrogens, genistein (8 mg/kg/day) and β-sitosterol (50 mg/kg/day), on the mink (Mustela vison) at human dietary exposure levels. Parental generations were exposed over 9 months to these phytoestrogens and their offspring were exposed via gestation and lactation. Parents and their offspring were sampled 21 days after the birth of the kits. Sex hormone levels, sperm quality, organ weights, and development of the kits were examined. The exposed females were heavier than the control females at the 1st postnatal day (PND). The control kits were heavier than the exposed kits from the 1st to the 21st PND. Phytoestrogens did not affect the organ weights of the adult minks, but the relative testicular weight of the exposed kits was higher than in the control kits. The relative prostate weight was higher and the relative uterine weight lower in the β-sitosterol-exposed kits than in the control kits. Moreover, the plasma dihydrotestosterone levels were lower in the genistein-exposed male kits compared to the control male kits. This study could not explain the mechanisms behind these alterations. The results indicate that perinatal phytoestrogen exposures cause alterations in the weight of the reproductive organs of the mink kits

  15. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity.

    Science.gov (United States)

    Lopes, Kryslaine O; Sparks, D Larry; Streit, Wolfgang J

    2008-08-01

    Degeneration of microglial cells may be important for understanding the pathogenesis of aging-related neurodegeneration and neurodegenerative diseases. In this study, we analyzed the morphological characteristics of microglial cells in the nondemented and Alzheimer's disease (AD) human brain using ferritin immunohistochemistry. The central hypothesis was that expression of the iron storage protein ferritin increases the susceptibility of microglia to degeneration, particularly in the aged brain since senescent microglia might become less efficient in maintaining iron homeostasis and free iron can promote oxidative damage. In a primary set of 24 subjects (age range 34-97 years) examined, microglial cells immunoreactive for ferritin were found to constitute a subpopulation of the larger microglial pool labeled with an antibody for HLA-DR antigens. The majority of these ferritin-positive microglia exhibited aberrant morphological (dystrophic) changes in the aged and particularly in the AD brain. No spatial correlation was found between ferritin-positive dystrophic microglia and senile plaques in AD tissues. Analysis of a secondary set of human postmortem brain tissues with a wide range of postmortem intervals (PMI, average 10.94 +/- 5.69 h) showed that the occurrence of microglial dystrophy was independent of PMI and consequently not a product of tissue autolysis. Collectively, these results suggest that microglial involvement in iron storage and metabolism contributes to their degeneration, possibly through increased exposure of the cells to oxidative stress. We conclude that ferritin immunohistochemistry may be a useful method for detecting degenerating microglia in the human brain. (c) 2008 Wiley-Liss, Inc.

  16. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    Science.gov (United States)

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P control group compared to other three groups (P neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  17. Critical disease windows shaped by stress exposure alter allocation trade-offs between development and immunity.

    Science.gov (United States)

    Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W

    2018-01-01

    Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions

  18. Development of Electronic Identification Measures in the Public Sector of Lithuania: Analysis of Alteration Possibilities

    Directory of Open Access Journals (Sweden)

    Rimantas Petrauskas

    2014-03-01

    Full Text Available Purpose – to analyze, assess and identify alteration possibilities of effective implementation of e-Identification technology solutions focusing on organization capabilities in the public sector of Lithuania.Design/methodology/approach – different methods were used in the research. Content analysis method was used for the issues related to application of e-Identification solutions, technology management and organizational capabilities. During the pilot research, information on specificities of organization capabilities to implement e-Identification solution in the public sector was gathered, analyzed and interlinked with content analysis via comparative and deductive methods.Findings – the research shows that the gap in the area of development of e-Identification solutions in the public sector in Lithuania is affected by the lack of organizational capabilities that need to be developed internally. The challenge is to foster organizational capabilities in the environment, influenced by rapidly emerging new technology solutions (use of smartphones and applications and limited legal regulation. Lifecycle of any technology solutions becomes shorter and jeopardizes its use and functionality in time; therefore, public sector institutions could benefit from holistic e-Identification solution diffusion strategy that incorporates aspects of organizational capabilities.Research limitations/implications – the research findings are limited by the nature of the pilot research (peer review, level of experience in their organizations and environment as well as the geographic scope of the research.Practical implications – the article portrays public sector environment of implementation of e-Identification solutions and particularities of organizational capabilities to manage its development.Originality/value – originality of the article is in the research and assessment of country specific future proof needs to alter and improve the existing

  19. Chronic intermittent hyperoxia alters the development of the hypoxic ventilatory response in neonatal rats.

    Science.gov (United States)

    Logan, Sarah; Tobin, Kristina E; Fallon, Sarah C; Deng, Kevin S; McDonough, Amy B; Bavis, Ryan W

    2016-01-01

    Chronic exposure to sustained hyperoxia alters the development of the respiratory control system, but the respiratory effects of chronic intermittent hyperoxia have rarely been investigated. We exposed newborn rats to short, repeated bouts of 30% O2 or 60% O2 (5 bouts h(-1)) for 4-15 days and then assessed their hypoxic ventilatory response (HVR; 10 min at 12% O2) by plethysmography. The HVR tended to be enhanced by intermittent hyperoxia at P4 (early phase of the HVR), but it was significantly reduced at P14-15 (primarily late phase of the HVR) compared to age-matched controls; the HVR recovered when individuals were returned to room air and re-studied as adults. To investigate the role of carotid body function in this plasticity, single-unit carotid chemoafferent activity was recorded in vitro. Intermittent hyperoxia tended to decrease spontaneous action potential frequency under normoxic conditions but, contrary to expectations, hypoxic responses were only reduced at P4 (not at P14) and only in rats exposed to higher O2 levels (i.e., intermittent 60% O2). Rats exposed to intermittent hyperoxia had smaller carotid bodies, and this morphological change may contribute to the blunted HVR. In contrast to rats exposed to intermittent hyperoxia beginning at birth, two weeks of intermittent 60% O2 had no effect on the HVR or carotid body size of rats exposed beginning at P28; therefore, intermittent hyperoxia-induced respiratory plasticity appears to be unique to development. Although both intermittent and sustained hyperoxia alter carotid body development and the HVR of rats, the specific effects and time course of this plasticity differs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Storms do not alter long-term watershed development influences on coastal water quality.

    Science.gov (United States)

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development.

    Science.gov (United States)

    Schmitz, Aaron J; Begcy, Kevin; Sarath, Gautam; Walia, Harkamal

    2015-12-01

    OFP (Ovate Family Protein) is a transcription factor family found only in plants. In dicots, OFPs control fruit shape and secondary cell wall biosynthesis. OFPs are also thought to function through interactions with KNOX and BELL transcription factors. Here, we have functionally characterized OsOFP2, a member of the OFP subgroup associated with regulating fruit shape. OsOFP2 was found to localize to the nucleus and to the cytosol. A putative nuclear export signal was identified within the OVATE domain and was required for the localization of OsOFP2 to distinct cytosolic spots. Rice plants overexpressing OsOFP2 were reduced in height and exhibited altered leaf morphology, seed shape, and positioning of vascular bundles in stems. Transcriptome analysis indicated disruptions of genes associated with vasculature development, lignin biosynthesis, and hormone homeostasis. Reduced expression of the gibberellin biosynthesis gene GA 20-oxidase 7 coincided with lower gibberellin content in OsOFP2 overexpression lines. Also, we found that OsOFP2 was expressed in plant vasculature and determined that putative vascular development KNOX and BELL proteins interact with OsOFP2. KNOX and BELL genes are known to suppress gibberellin biosynthesis through GA20ox gene regulation and can restrict lignin biosynthesis. We propose that OsOFP2 could modulate KNOX-BELL function to control diverse aspects of development including vasculature development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity.

    Science.gov (United States)

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N

    2014-04-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2

  3. Recent developments in altering the fatty acid composition of ruminant-derived foods.

    Science.gov (United States)

    Shingfield, K J; Bonnet, M; Scollan, N D

    2013-03-01

    There is increasing evidence to indicate that nutrition is an important factor involved in the onset and development of several chronic human diseases including cancer, cardiovascular disease (CVD), type II diabetes and obesity. Clinical studies implicate excessive consumption of medium-chain saturated fatty acids (SFA) and trans-fatty acids (TFA) as risk factors for CVD, and in the aetiology of other chronic conditions. Ruminant-derived foods are significant sources of medium-chain SFA and TFA in the human diet, but also provide high-quality protein, essential micronutrients and several bioactive lipids. Altering the fatty acid composition of ruminant-derived foods offers the opportunity to align the consumption of fatty acids in human populations with public health policies without the need for substantial changes in eating habits. Replacing conserved forages with fresh grass or dietary plant oil and oilseed supplements can be used to lower medium-chain and total SFA content and increase cis-9 18:1, total conjugated linoleic acid (CLA), n-3 and n-6 polyunsaturated fatty acids (PUFA) to a variable extent in ruminant milk. However, inclusion of fish oil or marine algae in the ruminant diet results in marginal enrichment of 20- or 22-carbon PUFA in milk. Studies in growing ruminants have confirmed that the same nutritional strategies improve the balance of n-6/n-3 PUFA, and increase CLA and long-chain n-3 PUFA in ruminant meat, but the potential to lower medium-chain and total SFA is limited. Attempts to alter meat and milk fatty acid composition through changes in the diet fed to ruminants are often accompanied by several-fold increases in TFA concentrations. In extreme cases, the distribution of trans 18:1 and 18:2 isomers in ruminant foods may resemble that of partially hydrogenated plant oils. Changes in milk fat or muscle lipid composition in response to diet are now known to be accompanied by tissue-specific alterations in the expression of one or more

  4. Alterations in the Anandamide Metabolism in the Development of Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2014-01-01

    Full Text Available Endocannabinoids (EC, particularly anandamide (AEA, released constitutively in pain pathways might be accountable for the inhibitory effect on nociceptors. Pathogenesis of neuropathic pain may reflect complex remodeling of the dorsal root ganglia (DRGs and spinal cord EC system. Multiple pathways involved both in the biosynthesis and degradation of AEA have been suggested. We investigated the local synthesis and degradation features of AEA in DRGs and spinal cord during the development and maintenance of pain in a model of chronic constriction injury (CCI. All AEA synthesis and degradation enzymes are present on the mRNA level in DRGs and lumbar spinal cord of intact as well as CCI-treated animals. Deregulation of EC system components was consistent with development of pain phenotype at days 3, 7, and 14 after CCI. The expression levels of enzymes involved in AEA degradation was significantly upregulated ipsilateral in DRGs and spinal cord at different time points. Expression of enzymes of the alternative, sPLA2-dependent and PLC-dependent, AEA synthesis pathways was elevated in both of the analyzed structures at all time points. Our data have shown an alteration of alternative AEA synthesis and degradation pathways, which might contribute to the variation of AEA levels and neuropathic pain development.

  5. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-01-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  6. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gazdzinski, Lisa M.; Cormier, Kyle [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Lu, Fred G. [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Lerch, Jason P. [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Nieman, Brian J., E-mail: bjnieman@phenogenomics.ca [Mouse Imaging Centre, Hospital for Sick Children, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  7. Fear learning alterations after traumatic brain injury and their role in development of posttraumatic stress symptoms.

    Science.gov (United States)

    Glenn, Daniel E; Acheson, Dean T; Geyer, Mark A; Nievergelt, Caroline M; Baker, Dewleen G; Risbrough, Victoria B

    2017-08-01

    It is unknown how traumatic brain injury (TBI) increases risk for posttraumatic stress disorder (PTSD). One potential mechanism is via alteration of fear-learning processes that could affect responses to trauma memories and cues. We utilized a prospective, longitudinal design to determine if TBI is associated with altered fear learning and extinction, and if fear processing mediates effects of TBI on PTSD symptom change. Eight hundred fifty two active-duty Marines and Navy Corpsmen were assessed before and after deployment. Assessments included TBI history, PTSD symptoms, combat trauma and deployment stress, and a fear-potentiated startle task of fear acquisition and extinction. Startle response and self-reported expectancy and anxiety served as measures of fear conditioning, and PTSD symptoms were measured with the Clinician-Administered PTSD Scale. Individuals endorsing "multiple hit" exposure (both deployment TBI and a prior TBI) showed the strongest fear acquisition and highest fear expression compared to groups without multiple hits. Extinction did not differ across groups. Endorsing a deployment TBI was associated with higher anxiety to the fear cue compared to those without deployment TBI. The association of deployment TBI with increased postdeployment PTSD symptoms was mediated by postdeployment fear expression when recent prior-TBI exposure was included as a moderator. TBI associations with increased response to threat cues and PTSD symptoms remained when controlling for deployment trauma and postdeployment PTSD diagnosis. Deployment TBI, and multiple-hit TBI in particular, are associated with increases in conditioned fear learning and expression that may contribute to risk for developing PTSD symptoms. © 2017 Wiley Periodicals, Inc.

  8. Murine cytomegalovirus infection of neural stem cells alters neurogenesis in the developing brain.

    Directory of Open Access Journals (Sweden)

    Manohar B Mutnal

    2011-01-01

    Full Text Available Congenital cytomegalovirus (CMV brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons.

  9. Neonatal exposure to a glyphosate based herbicide alters the development of the rat uterus

    International Nuclear Information System (INIS)

    Guerrero Schimpf, Marlise; Milesi, María M.; Ingaramo, Paola I.; Luque, Enrique H.; Varayoud, Jorgelina

    2017-01-01

    Highlights: • Neonatal exposure to GBH lead to endometrial hyperplasia and increase proliferation. • GBH disrupts proteins involved in uterine organogenetic differentiation. • GBH exposure induced persistent increase of PR and Hoxa10 proteins. - Abstract: Glyphosate-based herbicides (GBHs) are extensively used to control weeds on both cropland and non-cropland areas. No reports are available regarding the effects of GBHs exposure on uterine development. We evaluated if neonatal exposure to a GBH affects uterine morphology, proliferation and expression of proteins that regulate uterine organogenetic differentiation in rats. Female Wistar pups received saline solution (control, C) or a commercial formulation of glyphosate (GBH, 2 mg/kg) by sc injection every 48 h from postnatal day (PND) 1 to PND7. Rats were sacrificed on PND8 (neonatal period) and PND21 (prepubertal period) to evaluate acute and short-term effects, respectively. The uterine morphology was evaluated in hematoxylin and eosin stained sections. The epithelial and stromal immunophenotypes were established by assessing the expression of luminal epithelial protein (cytokeratin 8; CK8), basal epithelial proteins (p63 and pan cytokeratin CK1, 5, 10 and 14); and vimentin by immunohistochemistry (IHC). To investigate changes on proteins that regulate uterine organogenetic differentiation we evaluated the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), Hoxa10 and Wnt7a by IHC. The GBH-exposed uteri showed morphological changes, characterized by an increase in the incidence of luminal epithelial hyperplasia (LEH) and an increase in the stromal and myometrial thickness. The epithelial cells showed a positive immunostaining for CK8, while the stromal cells for vimentin. GBH treatment increased cell proliferation in the luminal and stromal compartment on PND8, without changes on PND21. GBH treatment also altered the expression of proteins involved in uterine organogenetic

  10. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    Science.gov (United States)

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  11. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna

    2014-01-01

    Microglia integrate within the neural tissue with a distinct ramified morphology through which they scan the surrounding neuronal network. Here, we used a digital tool for the quantitative morphometric characterization of fine cortical microglial structures in mice, and the changes they undergo w...

  12. Effects of chemokine (C–C motif) ligand 1 on microglial function

    International Nuclear Information System (INIS)

    Akimoto, Nozomi; Ifuku, Masataka; Mori, Yuki; Noda, Mami

    2013-01-01

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain

  13. Effects of chemokine (C–C motif) ligand 1 on microglial function

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Nozomi [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ifuku, Masataka [Laboratory of Integrative Physiology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Mori, Yuki [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Noda, Mami, E-mail: noda@phar.kyushu-u.ac.jp [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-07-05

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  14. Metabolic development of the porcine placenta in response to alterations in maternal or fetal homeostasis

    International Nuclear Information System (INIS)

    Namsey, T.G.; kasser, T.R.; Hausman, G.J.; Martin, R.J.

    1986-01-01

    Porcine placenta has been utilized as a model for elucidating contributions of both fetal and maternal tissues to metabolic activity of the placenta in response to a variety of stresses. Alloxan diabetes, food restriction and genetic obesity all produced alterations in placental metablolism with differences in responses of fetal and maternal placentas. Further analysis of nutrient untilization by the placenta produced dramatic differences in the partitioning of substrates by fetal and maternal tissues during placental development. Metabolic activity of maternal tissue contributed to overall placental metabolic activity to a greater degree than fetal tissue. However, experiments with in utero fetal decapitation indicated that some of differences between fetal and maternal placental metabolic activity may be due to the influence of fetal regulatory mechanisms. Maternal endometrium plays a critical role in metabolic response of uteroplacenta and thus availability of nutrients to the fetus and fetal placenta. Differences in metabolic development of fetal and maternal tissues suggested that regulation of placental metabolism may originate from fetal as well as maternal sources

  15. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  16. Sharing life-altering information: development of pediatric hospital guidelines and team training.

    Science.gov (United States)

    Wolfe, Adam D; Frierdich, Sharon A; Wish, Joel; Kilgore-Carlin, Joyce; Plotkin, Julie A; Hoover-Regan, Margo

    2014-09-01

    Abstract Background: Despite parent and physician reports of inadequate skill development, there are few guidelines for training the pediatric care team in sharing life-altering information (SLAI), i.e., "breaking bad news." The necessary skills for SLAI differ between pediatric and adult medical environments. We set out to establish evidence-based guidelines and multidisciplinary team training for SLAI in pediatrics, and to demonstrate an improvement in immediate self-efficacy of training participants. A multidisciplinary task force, which included parent participation and feedback, and which received input from parents of patients in multiple pediatric subspecialties, crafted children's hospitalwide guidelines for SLAI. A one-hour training module on the guidelines was presented to several multidisciplinary pediatric team audiences; 159 voluntary pre- and post-presentation self-efficacy surveys were collected. Responses were analyzed by paired t-test (within groups) and ANOVA (between groups). All evaluated groups of care team members reported significant improvements in self-efficacy among four learning objectives after the training. Medical trainees, newer physicians, and nonphysician (e.g., midlevel providers including nurses) team members reported the greatest improvements, regardless of whether they had received previous training in SLAI. We propose pediatric-focused SLAI guidelines based on a modified SPIKES protocol. Focus on patient- and family-centered, culturally sensitive pediatric practices should be the basis for development of training that can be periodically reinforced. Future comprehensive training will incorporate experiential learning. SLAI requires a skill set that benefits from lifelong learning.

  17. Transmission Electron Microscope Observations of Phyllosilicate Development During Experimental Aqueous Alteration of Allende

    Science.gov (United States)

    Jones, C. L.; Brearley, A. J.

    2000-01-01

    Samples of Allende have been altered hydrothermally under oxidizing conditions at 200 C. TEM studies show that within 30 days evidence of replacement of matrix olivines by fine-grained serpentine is present and by 90 days complete alteration of many grains has occurred.

  18. Overactivation of Hedgehog Signaling Alters Development of the Ovarian Vasculature in Mice1

    Science.gov (United States)

    Ren, Yi; Cowan, Robert G.; Migone, Fernando F.; Quirk, Susan M.

    2012-01-01

    ABSTRACT The hedgehog (HH) signaling pathway is critical for ovarian function in Drosophila, but its role in the mammalian ovary has not been defined. Previously, expression of a dominant active allele of the HH signal transducer protein smoothened (SMO) in Amhr2cre/+SmoM2 mice caused anovulation in association with a lack of smooth muscle in the theca of developing follicles. The current study examined events during the first 2 wk of life in Amhr2cre/+SmoM2 mice to gain insight into the cause of anovulation. Expression of transcriptional targets of HH signaling, Gli1, Ptch1, and Hhip, which are used as measures of pathway activity, were elevated during the first several days of life in Amhr2cre/+SmoM2 mice compared to controls but were similar to controls in older mice. Microarray analysis showed that genes with increased expression in 2-day-old mutants compared to controls were enriched for the processes of vascular and tube development and steroidogenesis. The density of platelet endothelial cell adhesion molecule (PECAM)-labeled endothelial tubes was increased in the cortex of newborn ovaries of mutant mice. Costaining of preovulatory follicles for PECAM and smooth muscle actin showed that muscle-type vascular support cells are deficient in theca of mutant mice. Expression of genes for steroidogenic enzymes that are normally expressed in the fetal adrenal gland were elevated in newborn ovaries of mutant mice. In summary, overactivation of HH signaling during early life alters gene expression and vascular development and this is associated with the lifelong development of anovulatory follicles in which the thecal vasculature fails to mature appropriately. PMID:22402963

  19. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  20. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion.

    Science.gov (United States)

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-09-01

    Sleep deprivation is common in patients with neuropathic pain, but the effect of sleep deprivation on pathological pain remains uncertain. This study investigated whether sleep deprivation aggravates neuropathic symptoms and enhances microglial activation in the cuneate nucleus (CN) in a median nerve chronic constriction injury (CCI) model. Also, we assessed if melatonin supplements during the sleep deprived period attenuates these effects. Rats were subjected to sleep deprivation for 3 days by the disc-on-water method either before or after CCI. In the melatonin treatment group, CCI rats received melatonin supplements at doses of 37.5, 75, 150, or 300 mg/kg during sleep deprivation. Melatonin was administered at 23:00 once a day. Male Sprague-Dawley rats, weighing 180-250 g (n = 190), were used. Seven days after CCI, behavioral testing was conducted, and immunohistochemistry, immunoblotting, and enzyme-linked immunosorbent assay were used for qualitative and quantitative analyses of microglial activation and measurements of proinflammatory cytokines. In rats who underwent post-CCI sleep deprivation, microglia were more profoundly activated and neuropathic pain was worse than those receiving pre-CCI sleep deprivation. During the sleep deprived period, serum melatonin levels were low over the 24-h period. Administration of melatonin to CCI rats with sleep deprivation significantly attenuated activation of microglia and development of neuropathic pain, and markedly decreased concentrations of proinflammatory cytokines. Sleep deprivation makes rats more vulnerable to nerve injury-induced neuropathic pain, probably because of associated lower melatonin levels. Melatonin supplements to restore a circadian variation in melatonin concentrations during the sleep deprived period could alleviate nerve injury-induced behavioral hypersensitivity. © 2014 Associated Professional Sleep Societies, LLC.

  1. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA).

    Science.gov (United States)

    Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K

    2016-06-01

    Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032.

  2. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    Science.gov (United States)

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia. Copyright © 2015 the American Physiological Society.

  3. Compost and biochar alter mycorrhization, tomato root exudation and development of Fusarium oxysporum f. sp. lycopersici

    Directory of Open Access Journals (Sweden)

    Adnan eAkhter

    2015-07-01

    Full Text Available Soil amendments like compost and biochar are known to affect soil properties, plant growth as well as soil borne plant pathogens. Complex interactions based on microbial activity and abiotic characteristics are supposed to be responsible for suppressive properties of certain substrates, however, the specific mechanisms of action are still widely unknown. In the present study, the main focus was on the development of the soil borne pathogen, Fusarium oxysporum f.sp. lycopersici (Fol in tomato (Solanum lycopersicum L. and changes in root exudates of tomato plants grown in different soil substrate compositions, such as compost (Comp alone at application rate of 20 % (v/v, and in combination with wood biochar (WB; made from beech wood chips or green waste biochar (GWB, made from garden waste residues at application rate of 3 % (v/v, and/or with additional arbuscular mycorrhizal fungi (AMF. The association of GWB and AMF had a positive effect on tomato plants growth unlike to the plants grown in WB containing soil substrate. The AMF root colonization was not enhanced by the addition of WB or GWB in the soil substrate, though bio-protective effect of mycorrhization was evident in both biochar amended treatments against Fol. Compost and biochars altered root exudates differently, which is evident from variable response of in vitro growth and development of Fol. The microconidia germination was highest under in root exudates from plants grown in the soil containing compost and GWB, whereas root exudates of plants from substrate containing WB suppressed the mycelial growth and development of Fol. In conclusion, the plant growth response and disease suppression in biochar containing substrates with additional AMF was affected by the feedstock type. Moreover, application of compost and biochars in the soil influence the quality and composition of root exudates with respect to their effects on soil-dwelling fungi.

  4. Altered Markers of Brain Development in Crohn's Disease with Extraintestinal Manifestations - A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Anne K Thomann

    Full Text Available Alterations of brain morphology in Crohn's disease have been reported, but data is scarce and heterogenous and the possible impact of disease predisposition on brain development is unknown. Assuming a systemic course of the disease, brain involvement seems more probable in presence of extraintestinal manifestations, but this question has not yet been addressed. The present study examined the relationship between Crohn's disease and brain structure and focused on the connection with extraintestinal manifestations and markers of brain development.In a pilot study, brains of 15 patients with Crohn's disease (of which 9 had a history of extraintestinal manifestations, i.e. arthritis, erythema nodosum and primary sclerosing cholangitis were compared to matched healthy controls using high resolution magnetic resonance imaging. Patients and controls were tested for depression, fatigue and global cognitive function. Cortical thickness, surface area and folding were determined via cortical surface modeling.The overall group comparison (i.e. all patients vs. controls yielded no significant results. In the patient subgroup with extraintestinal manifestations, changes in cortical area and folding, but not thickness, were identified: Patients showed elevated cortical surface area in the left middle frontal lobe (p<0.05 and hypergyrification in the left lingual gyrus (p<0.001 compared to healthy controls. Hypogyrification of the right insular cortex (p<0.05 and hypergyrification of the right anterior cingulate cortex (p<0.001 were detected in the subgroup comparison of patients with against without extraintestinal manifestations. P-values are corrected for multiple comparisons.Our findings lend further support to the hypothesis that Crohn's disease is associated with aberrant brain structure and preliminary support for the hypothesis that these changes are associated with a systemic course of the disease as indicated by extraintestinal manifestations. Changes

  5. Asthma pregnancy alters postnatal development of chromaffin cells in the rat adrenal medulla.

    Directory of Open Access Journals (Sweden)

    Xiu-Ming Wu

    Full Text Available Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown.This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3 to postnatal day 60 (P60. Asthmatic pregnant rats (AP, nerve growth factor (NGF-treated pregnant rats (NP and NGF antibody-treated pregnant rats (ANP were sensitized and challenged with ovalbumin (OVA; NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP, offspring from AP (OAP, offspring from NP (ONP, and offspring from ANP (OANP. The expressions of phenylethanolamine N-methyltransferase (PNMT protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI, corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP.Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation.

  6. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    Science.gov (United States)

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  7. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Annaëlle Charrier

    2017-04-01

    Full Text Available In mammals, the circadian clocks network (central and peripheral oscillators controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder. However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders. First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  8. Study on the system development for evaluating long-term alteration of hydraulic field in Near Field. 3

    International Nuclear Information System (INIS)

    Okutu, Kazuo; Morikawa, Seiji; Taguchi, Katsunori

    2004-02-01

    For the high performance evaluation of reliability of TRU waste repository, the system development for evaluating long-term alteration in consideration of the changes action of barrier materials of hydraulic field in Near Fields is required. In this research, the system development for evaluating the long-term alteration of hydraulic field in near field was examined. The 'Evidential Support logic' for ensuring the long-term stability of the repository was developed and evaluated. Furthermore, the developed chemical/mechanical alteration action analysis system was verified and improved. The system was coupled for the long-term alteration evaluation analysis. The research results of this year are shown below. 1) A logic tree was constructed for the purpose of supporting the high performance evaluation of reliability of a TRU waste repository. The thesis that the long term safety of the TRU waste repository is preserved was ramified into subsidiary theses until all the final theses were supported by objective evidence. The probability of the subsidiary thesis supporting the upper thesis was established by interviewing specialists. The reliability of the thesis was evaluated by applying present knowledge. Furthermore, the sensitivity of the reliability of the highest thesis to increasing reliability of evidence was investigated. Appropriate targets for experiment and analysis were presented based on the sensitivity of evidence. 2) The object of the hydraulic - chemical analysis was determined from the above-mentioned logic tree. The analysis system was improved to perform the 2D analysis. A user interface was developed to simplify the setting of analysis conditions. The system was demonstrated by comparing the results with the experimental results. Furthermore, the system was applied to the near field problem to fix the condition that the safety of the TRU waste repository is preserved. 3) Both the model of bentonite material and the model of cement material were

  9. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas).

    Science.gov (United States)

    Gazeau, Frédéric; Gattuso, Jean-Pierre; Greaves, Mervyn; Elderfield, Henry; Peene, Jan; Heip, Carlo H R; Middelburg, Jack J

    2011-01-01

    Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

  10. Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum.

    Science.gov (United States)

    McDougall, Annie R A; Wiradjaja, Vanny; Azhan, Aminath; Li, Anqi; Hale, Nadia; Wlodek, Mary E; Hooper, Stuart B; Wallace, Megan J; Tolcos, Mary

    2017-01-01

    Intrauterine growth restriction (IUGR) is a major cause of antenatal brain injury. We aimed to characterize cerebellar deficits following IUGR and to investigate the potential underlying cellular and molecular mechanisms. At embryonic day 18, pregnant rats underwent either sham surgery (controls; n = 23) or bilateral uterine vessel ligation to restrict blood flow to fetuses (IUGR; n = 20). Offspring were collected at postnatal day 2 (P2), P7, and P35. Body weights were reduced at P2, P7, and P35 in IUGR offspring (p < 0.05) compared with controls. At P7, the width of the external granule layer (EGL) was 30% greater in IUGR than control rats (p < 0.05); there was no difference in the width of the proliferative zone or in the density of Ki67-positive cells in the EGL. Bergmann glia were disorganized at P7 and P35 in IUGR pups, and by P35, there was a 10% decrease in Bergmann glial fiber density (p < 0.05) compared with controls. At P7, trophoblast antigen-2 (Trop2) mRNA and protein levels in the cerebellum were decreased by 88 and 40%, respectively, and astrotactin 1 mRNA levels were increased by 20% in the IUGR rats (p < 0.05) compared with controls; there was no difference in ASTN1 protein. The expressions of other factors known to regulate cerebellar development (astrotactin 2, brain-derived neurotrophic factor, erb-b2 receptor tyrosine kinase 4, neuregulin 1, sonic hedgehog and somatostatin) were not different between IUGR and control rats at P7 or P35. These data suggest that damage to the migratory scaffold (Bergmann glial fibers) and alterations in the genes that influence migration (Trop2 and Astn1) may underlie the deficits in postnatal cerebellar development following IUGR. © 2017 S. Karger AG, Basel.

  11. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Frédéric Gazeau

    Full Text Available Ocean acidification, due to anthropogenic CO₂ absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas larvae during the first 3 days of development (until shelled D-veliger larvae. Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition. Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.

  12. Fetal microglial in vitro phenotype depends on prior in vivo inflammation

    Directory of Open Access Journals (Sweden)

    Mingju eCao

    2015-08-01

    Full Text Available Objective. Neuroinflammation in utero may result in life-long neurological disabilities. The molecular mechanisms whereby microglia contribute to this response remain incompletely understood. Methods. Lipopolysaccharide (LPS or saline were administered intravenously to non-anesthetized chronically instrumented near-term fetal sheep to model fetal inflammation in vivo. Microglia were then isolated from in vivo LPS and saline (naïve exposed animals. To mimic the second hit of neuroinflammation, these microglia were then re-exposed to LPS in vitro. Cytokine responses were measured in vivo and subsequently in vitro in the primary microglia cultures derived from these animals. We sequenced the whole transcriptome of naïve and second hit microglia and profiled their genetic expression to define molecular pathways disrupted during neuroinflammation.Results. In vivo LPS exposure resulted in IL-6 increase in fetal plasma 3 h post LPS exposure. Even though not histologically apparent, microglia acquired a pro-inflammatory phenotype in vivo that was sustained and amplified in vitro upon second hit LPS exposure as measured by IL-1β response in vitro and RNAseq analyses. While NFKB and Jak-Stat inflammatory pathways were up regulated in naïve microglia, heme oxygenase 1 (HMOX1 and Fructose-1,6-bisphosphatase (FBP genes were uniquely differentially expressed in the second hit microglia. Microglial calreticulin/LRP genes implicated in microglia-neuronal communication relevant for the neuronal development were up regulated in second hit microglia.Discussion. We identified a unique HMOX1down and FBPup phenotype of microglia exposed to the double-hit suggesting interplay of inflammatory and metabolic pathways as a memory of prior inflammatory insult. These findings suggest new therapeutic targets for early postnatal intervention to prevent brain injury.

  13. Activation of Microglial Cells: the Bridge between the Immune System and Pain in Central Nervous System

    Directory of Open Access Journals (Sweden)

    Ali Dabbagh

    2016-08-01

    Full Text Available Background: Pain is one of the main protests of inflammatory diseases, hence, understanding the mechanisms which involved in the induction and persistence of pain is essential. Microglia is a contributing factor in the onset and maintenance of inflammation. Increased microglial   activation increases the level of central pro-inflammatory cytokines and the development of central sensitization following inflammation. The aim of this study was evaluate the relation of spinal microglia activity with pain related behaviors during Complete Freund’s adjuvant (CFA-induced inflammation.Materials and Methods: Inflammation caused by subcutaneous injection of Complete Freund’s adjuvant (CFA in a single dose to the animals right hind paw. The edema and hyperalgesia caused by inflammation, respectively are measured by Plethysmometer and Radiant Heat, on days 0,7,14 and 21. Spinal Iba-1 protein expression was detected by Western blotting. Minocycline hydrochloride (Sigma, U.S.A was administered i.p. at a dose of 40mg/kg daily.Results: Our study findings indicated that CFA injection to right hindpaw of rats increased paw volume and hyperalgesia significantly during different stages of study, while Minocycline treatment significantly reduced paw volume and hyperalgesia. CFA injection into the right hindpaw of the rat increases the expression of molecules Ionized calcium binding adaptor molecule -1 (Iba-1 on different days of study, while Minocycline administration reduced spinal Iba-1 expression significantly compared to the CFA group.Conclusion: The results of this study indicated the significant roles of microglia activation in deterioration of pain related behaviors during different stages of CFA-induced inflammation. The steady injection of Minocycline (as a microglia inhibitor could reduce the inflammatory symptoms.

  14. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury.

    Science.gov (United States)

    Chen, Xiangrong; Wu, Shukai; Chen, Chunnuan; Xie, Baoyuan; Fang, Zhongning; Hu, Weipeng; Chen, Junyan; Fu, Huangde; He, Hefan

    2017-07-24

    Microglial activation and the subsequent inflammatory response in the central nervous system play important roles in secondary damage after traumatic brain injury (TBI). High-mobility group box 1 (HMGB1) protein, an important mediator in late inflammatory responses, interacts with transmembrane receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) to activate downstream signaling pathways, such as the nuclear factor (NF)-κB signaling pathway, leading to a cascade amplification of inflammatory responses, which are related to neuronal damage after TBI. Omega-3 polyunsaturated fatty acid (ω-3 PUFA) is a commonly used clinical immunonutrient, which has antioxidative and anti-inflammatory effects. However, the effects of ω-3 PUFA on HMGB1 expression and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway are not clear. The Feeney DM TBI model was adopted to induce brain injury in rats. Modified neurological severity scores, brain water content, and Nissl staining were employed to determine the neuroprotective effects of ω-3 PUFA supplementation. Assessment of microglial activation in lesioned sites and protein markers for proinflammatory, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and HMGB1 were used to evaluate neuroinflammatory responses and anti-inflammation effects of ω-3 PUFA supplementation. Immunofluorescent staining and western blot analysis were used to detect HMGB1 nuclear translocation, secretion, and HMGB1-mediated activation of the TLR4/NF-κB signaling pathway to evaluate the effects of ω-3 PUFA supplementation and gain further insight into the mechanisms underlying the development of the neuroinflammatory response after TBI. It was found that ω-3 PUFA supplementation inhibited TBI-induced microglial activation and expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), reduced brain edema, decreased neuronal apoptosis, and improved neurological

  15. Identification of early indicators of altered metabolism in normal development using a rodent model system

    Directory of Open Access Journals (Sweden)

    Ashok Daniel Prabakaran

    2018-03-01

    Full Text Available Although the existence of a close relationship between the early maternal developmental environment, fetal size at birth and the risk of developing disease in adulthood has been suggested, most studies, however, employed experimentally induced intrauterine growth restriction as a model to link this with later adult disease. Because embryonic size variation also occurs under normal growth and differentiation, elucidating the molecular mechanisms underlying these changes and their relevance to later adult disease risk becomes important. The birth weight of rat pups vary according to the uterine horn positions. Using birth weight as a marker, we compared two groups of rat pups – lower birth weight (LBW, 5th to 25th percentile and average birth weight (ABW, 50th to 75th percentile – using morphological, biochemical and molecular biology, and genetic techniques. Our results show that insulin metabolism, Pi3k/Akt and Pparγ signaling and the genes regulating growth and metabolism are significantly different in these groups. Methylation at the promoter of the InsII (Ins2 gene and DNA methyltransferase 1 in LBW pups are both increased. Additionally, the Dnmt1 repressor complex, which includes Hdac1, Rb (Rb1 and E2f1, was also upregulated in LBW pups. We conclude that the Dnmt1 repressor complex, which regulates the restriction point of the cell cycle, retards the rate at which cells traverse the G1 or G0 phase of the cell cycle in LBW pups, thereby slowing down growth. This regulatory mechanism mediated by Dnmt1 might contribute to the production of small-size pups and altered physiology and pathology in adult life.

  16. Caffeine administration alters the behaviour and development of Galleria mellonella larvae.

    Science.gov (United States)

    Maguire, Ronan; Kunc, Martin; Hyrsl, Pavel; Kavanagh, Kevin

    2017-11-01

    The effect of feeding caffeine on the behaviour and neural proteome of Galleria mellonella larvae was assessed. Caffeine was administered to larvae by force feeding and the metabolites theobromine and theophylline were subsequently detected by RP-HPLC analysis. Administration of caffeine to larvae resulted in reduced movement and a reduction in the formation of pupae. The production of the muscle relaxant theophylline may contribute to the reduction in larval movement. Analysis of the changes in proteome of the brain and surrounding tissues of caffeine fed larvae revealed an increase in the abundance of immune related proteins such as immune-related Hdd1 (6.28 fold increase) and hemolin (1.68 fold increase), ATPase associated proteins such as H+ transporting ATP synthase O subunit isoform 1 (1.87 fold increase) and H+ transporting ATP synthase delta subunit (1.53 fold increase) and proteins indicative of brain trauma such as troponin T transcript variant B, partial (1.55 fold increase). Proteins involved in development and protein degradation such as SUMO-activating enzyme subunit 1 (3.08 fold decrease) and chitin deacetylase, partial (3.67 fold decrease) were decreased in abundance. The results presented here indicate that caffeine is metabolised in a similar way in G. mellonella larvae to that in mammals and results in a variety of behavioural and developmental alterations. Utilisation of insects for studying the effects of caffeine and other neuroactive compounds may offer new insights into their mode of action and reduce the need to use mammals for this type of analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-?B Activation in BV-2 Microglial Cells

    OpenAIRE

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-?),...

  18. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Directory of Open Access Journals (Sweden)

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  19. Altered Development of White Matter in Youth at High Familial Risk for Bipolar Disorder: A Diffusion Tensor Imaging Study

    Science.gov (United States)

    Versace, Amelia; Ladouceur, Cecile D.; Romero, Soledad; Birmaher, Boris; Axelson, David A.; Kupfer, David J.; Phillips, Mary L.

    2010-01-01

    Objective: To study white matter (WM) development in youth at high familial risk for bipolar disorder (BD). WM alterations are reported in youth and adults with BD. WM undergoes important maturational changes in adolescence. Age-related changes in WM microstructure using diffusion tensor imaging with tract-based spatial statistics in healthy…

  20. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism.

    Science.gov (United States)

    Yuan, Dan; Ma, Bin; Yang, Jing-yu; Xie, Yuan-yuan; Wang, Li; Zhang, Li-jia; Kano, Yoshihiro; Wu, Chun-fu

    2009-12-01

    Excessive production of nitric oxide (NO) and proinflammatory cytokines from activated microglia contributes to human neurodegenerative disorders. Our previous study demonstrated the potent inhibition of lipopolysaccharide (LPS)-induced NO production in rat primary microglial cells by rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of isomeric alkaloids of Uncaria rhynchophylla (Miq.) Jacks. that has been used in China for centuries as a "cognitive enhancer" as well as to treat strokes. We further investigated whether RIN and IRN effectively suppress release of proinflammatory cytokines in LPS-activated microglial cells and the underling molecular mechanism for the inhibition of microglial activation. RIN and IRN concentration-dependently attenuated LPS-induced production of proinflammatory cytokines such as TNF-alpha and IL-1beta as well as NO in mouse N9 microglial cells, with IRN showing more potent inhibition of microglial activation. The western blotting analysis indicated that the potential molecular mechanism for RIN or IRN-mediated attenuation was implicated in suppressions of iNOS protein level, phosphorylation of ERK and p38 MAPKs, and degradation of IkappaBalpha. In addition, the differential regulation of the three signaling pathways by two isomers was shown. Our results suggest that RIN and IRN may be effective therapeutic candidates for use in the treatment of neurodegenerative diseases accompanied by microglial activation.

  1. Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype

    DEFF Research Database (Denmark)

    Khan, Asif Manzoor; Babcock, Alicia; Saeed, Hamid

    2015-01-01

    The susceptibility of the aging brain to neurodegenerative disease may in part be attributed to cellular aging of the microglial cells that survey it. We investigated the effect of cellular aging induced by telomere shortening on microglia by the use of mice lacking the telomerase RNA component...... (TERC) and design-based stereology. TERC knockout (KO) mice had a significantly reduced number of CD11b(+) microglia in the dentate gyrus. Because of an even greater reduction in dentate gyrus volume, microglial density was, however, increased. Microglia in TERC KO mice maintained a homogenous...... distribution and normal expression of CD45 and CD68 and the aging marker, ferritin, but were morphologically distinct from microglia in both adult and old wild-type mice. TERC KO mice also showed increased cellular apoptosis and impaired spatial learning. Our results suggest that individual microglia...

  2. Polychlorinated biphenyl-induced alterations of thyroid hormone homeostasis and brain development in the rat

    NARCIS (Netherlands)

    Morse, D.C.

    1995-01-01

    Introduction

    The work described in this thesis was undertaken to gain insight in the processes involved in the developmental neurotoxicity of polychlorinated biphenyls. It has been previously hypothesized that the alteration of thyroid hormone status by PCBs may

  3. Endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development

    DEFF Research Database (Denmark)

    Velasco-Santamaria, Y. M.; Handy, R. D.; Sloman, K. A.

    2011-01-01

    to controls. Both concentrations of endosulfan caused a 4.0 fold increase in Na(+)K(+)-ATPase activity compared to controls (ANOVA, p ANOVA, p ... alterations in the progeny of fish exposed to endosulfan were observed. Heart beat frequency was significantly lower in larvae from exposed adults to 0.16 mu g/L compared to the control (ANOVA, p

  4. Levo-Tetrahydropalmatine Attenuates Bone Cancer Pain by Inhibiting Microglial Cells Activation

    Directory of Open Access Journals (Sweden)

    Mao-yin Zhang

    2015-01-01

    Full Text Available Objective. The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI. Methods. Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg were administrated intragastrically at early phase of postoperation (before pain appearance and later phase of postoperation (after pain appearance, respectively. The concentrations of TNF-α, IL-1β, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment. Results. TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-α and IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1β increase. Conclusion. This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase.

  5. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  6. Long-term soil alteration in historical charcoal hearths affects Tuber melanosporum mycorrhizal development and environmental conditions for fruiting.

    Science.gov (United States)

    Garcia-Barreda, Sergi; Molina-Grau, Sara; Forcadell, Ricardo; Sánchez, Sergio; Reyna, Santiago

    2017-08-01

    Abandoned charcoal hearths constitute a very particular habitat for spontaneous fruiting of Tuber melanosporum, leading some harvesters to hypothesise that the fungus could benefit from the alterations that these soils underwent. However, ecological mechanisms involved in this relation are not fully elucidated yet. As a first step to understand it, the influence of long-term soil alteration on the symbiotic stage of T. melanosporum and on selected soil properties considered key to fruiting was assessed by conducting a greenhouse bioassay and a field observational study. In the bioassay, percent root colonisation and relative abundance of T. melanosporum were significantly lower in hearth than in control soils. Hearth soils showed significantly lower resistance to penetration, larger temperature fluctuation, reduced plant cover and reduced herbaceous root abundance. The results do not support the hypothesis that soil from historical charcoal hearths currently enhances development of T. melanosporum mycorrhizas. However, whether this is due to increased infectivity of native ectomycorrhizal communities or to worse conditions for development of T. melanosporum mycorrhizas remains unresolved. Native ectomycorrhizal communities in hearths showed altered composition, although not a clear change in infectivity or richness. Direction of change in hearth soil properties is compared to alteration occurring in soils spontaneously producing T. melanosporum. The interest of these changes to improve T. melanosporum fruiting in plantations is discussed.

  7. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  8. Developmental care does not alter sleep and development of premature infants.

    Science.gov (United States)

    Ariagno, R L; Thoman, E B; Boeddiker, M A; Kugener, B; Constantinou, J C; Mirmiran, M; Baldwin, R B

    1997-12-01

    The Neonatal Individualized Developmental Care Program (NIDCAP) for very low birth weight (VLBW) preterm infants has been suggested by Als et al to improve several medical outcome variables such as time on ventilator, time to nipple feed, the duration of hospital stay, better behavioral performance on Assessment of Preterm Infants' Behavior (APIB), and improved neurodevelopmental outcomes. We have tested the hypothesis of whether the infants who had received NIDCAP would show advanced sleep-wake pattern, behavioral, and neurodevelopmental outcome. Thirty-five VLBW infants were randomly assigned to receive NIDCAP or routine infant care. The goals for NIDCAP intervention were to enhance comfort and stability and to reduce stress and agitation for the preterm infants by: a) altering the environment by decreasing excess light and noise in the neonatal intensive care unit (NICU) and by using covers over the incubators and cribs; b) use of positioning aids such as boundary supports, nests, and buntings to promote a balance of flexion and extension postures; c) modification of direct hands-on caregiving to maximize preparation of infants for, tolerance of, and facilitation of recovery from interventions; d) promotion of self-regulatory behaviors such as holding on, grasping, and sucking; e) attention to the readiness for and the ability to take oral feedings; and f) involving parents in the care of their infants as much as possible. The infants' sleep was recorded at 36 weeks postconceptional age (PCA) and at 3 months corrected age (CA) using the Motility Monitoring System (MMS), an automated, nonintrusive procedure for determining sleep state from movement and respiration patterns. Behavioral and developmental outcome was assessed by the Neurobehavioral Assessment of the Preterm Infant (NAPI) at 36 weeks PCA, the APIB at 42 weeks PCA, and by the Bayley Scales of Infant Development (BSID) at 4, 12, and 24 months CA. Sleep developmental measures at 3 months CA showed a

  9. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    Science.gov (United States)

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  10. Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis.

    Science.gov (United States)

    Arrant, Andrew E; Onyilo, Vincent C; Unger, Daniel E; Roberson, Erik D

    2018-02-28

    Loss-of-function mutations in progranulin, a lysosomal glycoprotein, cause neurodegenerative disease. Progranulin haploinsufficiency causes frontotemporal dementia (FTD) and complete progranulin deficiency causes CLN11 neuronal ceroid lipofuscinosis (NCL). Progranulin replacement is a rational therapeutic strategy for these disorders, but there are critical unresolved mechanistic questions about a progranulin gene therapy approach, including its potential to reverse existing pathology. Here, we address these issues using an AAV vector (AAV- Grn ) to deliver progranulin in Grn -/- mice (both male and female), which model aspects of NCL and FTD pathology, developing lysosomal dysfunction, lipofuscinosis, and microgliosis. We first tested whether AAV- Grn could improve preexisting pathology. Even with treatment after onset of pathology, AAV- Grn reduced lipofuscinosis in several brain regions of Grn -/- mice. AAV- Grn also reduced microgliosis in brain regions distant from the injection site. AAV-expressed progranulin was only detected in neurons, not in microglia, indicating that the microglial activation in progranulin deficiency can be improved by targeting neurons and thus may be driven at least in part by neuronal dysfunction. Even areas with sparse transduction and almost undetectable progranulin showed improvement, indicating that low-level replacement may be sufficiently effective. The beneficial effects of AAV- Grn did not require progranulin binding to sortilin. Finally, we tested whether AAV- Grn improved lysosomal function. AAV-derived progranulin was delivered to the lysosome, ameliorated the accumulation of LAMP-1 in Grn -/- mice, and corrected abnormal cathepsin D activity. These data shed light on progranulin biology and support progranulin-boosting therapies for NCL and FTD due to GRN mutations. SIGNIFICANCE STATEMENT Heterozygous loss-of-function progranulin ( GRN ) mutations cause frontotemporal dementia (FTD) and homozygous mutations cause neuronal

  11. Anti-inflammatory effects of sodium alginate/gelatine porous scaffolds merged with fucoidan in murine microglial BV2 cells.

    Science.gov (United States)

    Nguyen, Van-Tinh; Ko, Seok-Chun; Oh, Gun-Woo; Heo, Seong-Yeong; Jeon, You-Jin; Park, Won Sun; Choi, Il-Whan; Choi, Sung-Wook; Jung, Won-Kyo

    2016-12-01

    Microglia are the immune cells of the central nervous system (CNS). Overexpression of inflammatory mediators by microglia can induce several neurological diseases. Thus, the underlying basic requirement for neural tissue engineering is to develop materials that exhibit little or no neuro-inflammatory effects. In this study, we have developed a method to create porous scaffolds by adding fucoidan (Fu) into porous sodium alginate (Sa)/gelatine (G) (SaGFu). For mechanical characterization, in vitro degradation, stress/strain, swelling, and pore size were measured. Furthermore, the biocompatibility was evaluated by assessing the adhesion and proliferation of BV2 microglial cells on the SaGFu porous scaffolds using scanning electron microscopy (SEM) and lactate dehydrogenase (LDH) assay, respectively. Moreover, we studied the neuro-inflammatory effects of SaGFu on BV2 microglial cells. The effect of gelatine and fucoidan content on the various properties of the scaffold was investigated and the results showed that mechanical properties increased porosity and swelling ratio with an increase in the gelatine and fucoidan, while the in vitro biodegradability decreased. The average SaGFu diameter attained by fabrication of SaGFu ranged from 60 to 120μm with high porosity (74.44%-88.30%). Cell culture using gelatine 2.0% (SaG2Fu) and 4.0% (SaG4Fu), showed good cell proliferation; more than 60-80% that with Sa alone. Following stimulation with 0.5μg/mL LPS, microglia cultured in porous SaGFu decreased their expression of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS). SaG2Fu and SaG4Fu also inhibited the activation and translocation of p65 NF-κB protein levels, resulting in reduction of NO, ROS, and PGE2 production. These results provide insights into the diverse biological effects and opens new avenues for the applications of SaGFu in neuroscience. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The role of spurious correlation in the development of a komatiite alteration model

    Science.gov (United States)

    Butler, John C.

    1986-11-01

    Procedures for detecting alterations in komatiites are described. The research of Pearson (1897) on spurious correlation and of Chayes (1949, 1971) on ratio correlation is reviewed. The equations for the ratio correlation procedure are provided. The ratio correlation procedure is applied to the komatiites from Gorgona Island and the Barberton suite. Plots of the molecular proportion ratios of (FeO + MgO)/TiO2 versus SiO2/TiO2, and correlation coefficients for the komatiites are presented and analyzed.

  13. Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis.

    Science.gov (United States)

    Sucksdorff, Marcus; Rissanen, Eero; Tuisku, Jouni; Nuutinen, Salla; Paavilainen, Teemu; Rokka, Johanna; Rinne, Juha; Airas, Laura

    2017-10-01

    Traditionally, multiple sclerosis (MS) has been considered a white matter disease with focal inflammatory lesions. It is, however, becoming clear that significant pathology, such as microglial activation, also takes place outside the plaque areas, that is, in areas of normal-appearing white matter (NAWM) and gray matter (GM). Microglial activation can be detected in vivo using 18-kDa translocator protein (TSPO)-binding radioligands and PET. It is unknown whether fingolimod affects microglial activation in MS. The aim of this study was to investigate whether serial PET can be used to evaluate the effect of fingolimod treatment on microglial activation. Methods: Ten relapsing-remitting MS patients were studied using the TSPO radioligand 11 C-( R )-PK11195. Imaging was performed at baseline and after 8 and 24 wk of fingolimod treatment. Eight healthy individuals were imaged for comparison. Microglial activation was evaluated as distribution volume ratio of 11 C-( R )-PK11195. Results: The patients had MS for an average of 7.9 ± 4.3 y (mean ± SD), their total relapses averaged 4 ± 2.4, and their Expanded Disability Status Scale was 2.7 ± 0.5. The patients were switched to fingolimod because of safety reasons or therapy escalation. The mean washout period before the initiation of fingolimod was 2.3 ± 1.1 mo. The patients were clinically stable on fingolimod. At baseline, microglial activation was significantly higher in the combined NAWM and GM areas of MS patients than in healthy controls ( P = 0.021). 11 C-( R )-PK11195 binding was reduced (-12.31%) within the combined T2 lesion area after 6 mo of fingolimod treatment ( P = 0.040) but not in the areas of NAWM or GM. Conclusion: Fingolimod treatment reduced microglial/macrophage activation at the site of focal inflammatory lesions, presumably by preventing leukocyte trafficking from the periphery. It did not affect the widespread, diffuse microglial activation in the NAWM and GM. The study opens new vistas for

  14. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity

    Science.gov (United States)

    Zhang, Yuan; Shen, Kai; Bai, Ying; Lv, Xuan; Huang, Rongrong; Zhang, Wei; Chao, Jie; Nguyen, Lan K.; Hua, Jun; Gan, Guangming; Hu, Gang; Yao, Honghong

    2016-01-01

    ABSTRACT BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143+/− mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse. PMID:27464000

  15. Altering the trajectory of early postnatal cortical development can lead to structural and behavioural features of autism

    Directory of Open Access Journals (Sweden)

    Chomiak Taylor

    2010-08-01

    Full Text Available Abstract Background Autism is a behaviourally defined neurodevelopmental disorder with unknown etiology. Recent studies in autistic children consistently point to neuropathological and functional abnormalities in the temporal association cortex (TeA and its associated structures. It has been proposed that the trajectory of postnatal development in these regions may undergo accelerated maturational alterations that predominantly affect sensory recognition and social interaction. Indeed, the temporal association regions that are important for sensory recognition and social interaction are one of the last regions to mature suggesting a potential vulnerability to early maturation. However, direct evaluation of the emerging hypothesis that an altered time course of early postnatal development can lead to an ASD phenotype remains lacking. Results We used electrophysiological, histological, and behavioural techniques to investigate if the known neuronal maturational promoter valproate, similar to that in culture systems, can influence the normal developmental trajectory of TeA in vivo. Brain sections obtained from postnatal rat pups treated with VPA in vivo revealed that almost 40% of cortical cells in TeA prematurely exhibited adult-like intrinsic electrophysiological properties and that this was often associated with gross cortical hypertrophy and a reduced predisposition for social play behaviour. Conclusions The co-manifestation of these functional, structural and behavioural features suggests that alteration of the developmental time course in certain high-order cortical networks may play an important role in the neurophysiological basis of autism.

  16. Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi

    Directory of Open Access Journals (Sweden)

    Juan José Muñoz

    2018-04-01

    Full Text Available For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, ephrins on the structure, immunophenotype, and development of thymus and their main cell components, thymocytes (T and thymic epithelial cells (TECs, have been studied. In recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins B has been determined. Remarkably, thymic stroma in these animals exhibits important defects that appear early in ontogeny but little alterations in the proportions of distinct lymphoid cell populations. In the present manuscript, we summarize and extend these results discussing possible mechanisms governing phenotypical and functional thymocyte maturation in an absence of the critical T–TEC interactions, concluding that some signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be sufficient to enable a proper maturation of thymocytes, independently of morphological alterations affecting thymic epithelium.

  17. Study on the system development for evaluating long-term alteration of hydraulic field in Near Field 2

    International Nuclear Information System (INIS)

    Okutu, Kazuo; Morikawa, Seiji; Takamura, Hisashi

    2003-02-01

    For the high performance evaluation of reliability of TRU waste repository, the system development for evaluating long-term alteration in consideration of the changes action of barrier materials of hydraulic field in Near Field is required. In this research, the system development for evaluating long-term alteration of hydraulic field in Near Field was examined. The model evaluating each phenomena and the prototype system for chemical/mechanical analysis system were developed, and the method of coupling chemical with dynamic analysis was examined. To improve accuracy and propriety of this analysis system in the future, necessary development elements were arranged. The research result of this year is shown below. 1) Knowledge concerning the chemical phenomena in the near field evolution was rearranged. Experimental approaches and analysis methods were applied to the phenomena of which the knowledge can be obtained. Approaches to focus the model were applied to the phenomena for which knowledge is essentially difficult to obtain. The analysis model was improved using knowledge from natural analog and computational analyses. An analysis system was developed and the propriety of the model was demonstrated. 2) The model of bentonite material was developed by focusing attention on nonlinear swelling behavior. And the model of cement material was developed by focusing attention on deformation behavior influenced by leaching of calcium element which cause reducing of rigidity and strength. With regard to the bentonite model, to testify its propriety, the trial analysis result compared with the consolidation properties test data. Furthermore, the dynamic alteration action analysis system consisted of bentonite and cement model was developed, and trial analysis was performed. In this trial analysis, parameters of cation exchange ratio of Na-bentonite for Ca ion and leaching ratio of Ca from cement material were considered. On the one hand, as concerns rock, to include the

  18. Role of Neurotrophins in Mediating the Effect of Altered Gravity on the Developing Rat Cerebellum.

    Science.gov (United States)

    Sajdel-Sulkowska, Elizabeth

    We previously reported that perinatal exposure to hypergravity resulted in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. However, the increase in oxidative stress markers was not uniformly observed in males and females. In the present study we explored the possibility that exposure to hypergravity may result in altered level of neurotrophins, which have been recognized as mediators of both neurodegenerative and neuroprotective mechanisms in the central nervous system. An elevation of neurotrophin-3 (NT-3) has been observed in animal models of hypoxia. To test this hypothesis we compared cerebellar levels of NT-3 between stationary control (SC) and rat neonates exposed perinatally to 1.65 G on a 24-ft centrifuge. The levels of NT-3 were determined by specific ELISA. Preliminary data suggests a 123

  19. Alterations in CD200-CD200R1 System during EAE Already Manifest at Presymptomatic Stages

    Directory of Open Access Journals (Sweden)

    Tony Valente

    2017-05-01

    Full Text Available In the brain of patients with multiple sclerosis, activated microglia/macrophages appear in active lesions and in normal appearing white matter. However, whether they play a beneficial or a detrimental role in the development of the pathology remains a controversial issue. The production of pro-inflammatory molecules by chronically activated microglial cells is suggested to contribute to the progression of neurodegenerative processes in neurological disease. In the healthy brain, neurons control glial activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Therefore, we studied whether alterations in the CD200-CD200R1 system might underlie the neuroinflammation in an experimental autoimmune encephalomyelitis (EAE model of multiple sclerosis. We determined the time course of CD200 and CD200R1 expression in the brain and spinal cord of an EAE mouse model from presymptomatic to late symptomatic stages. We also assessed the correlation with associated glial activation, inflammatory response and EAE severity. Alterations in CD200 and CD200R1 expression were mainly observed in spinal cord regions in the EAE model, mostly a decrease in CD200 and an increase in CD200R1 expression. A decrease in the expression of the mRNA encoding a full CD200 protein was detected before the onset of clinical signs, and remained thereafter. A decrease in CD200 protein expression was observed from the onset of clinical signs. By contrast, CD200R1 expression increased at EAE onset, when a glial reaction associated with the production of pro- and anti-inflammatory markers occurred, and continued to be elevated during the pathology. Moreover, the magnitude of the alterations correlated with severity of the EAE mainly in spinal cord. These results suggest that neuronal-microglial communication through CD200-CD200R1 interaction is compromised in EAE. The early decreases in CD200 expression in EAE suggest that this downregulation might also

  20. Polybrominated diphenyl ethers affect the reproduction and development, and alter the sex ratio of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Han, X.B.; Yuen, Karen W.Y.; Wu, Rudolf S.S.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as flame retardants and now become ubiquitous in the global environment. Using zebrafish as a model, we tested the hypothesis that PBDEs may affect the reproduction and development of fish. Zebrafish were exposed to environmentally relevant concentrations of DE-71 (a congener of PBDE commonly found in the environment) throughout their whole life cycle, and the effects of DE-71 on gonadal development, gamete quality, fertilization success, hatching success, embryonic development and sex ratio were investigated. Despite gonadal development was enhanced, reductions in spawning, fertilization success, hatching success and larval survival rate were evident, while significant increases in malformation and percentage of male were also observed in the F1 generation. Our laboratory results suggest that PBDEs may pose a risk to reproductive success and alter the sex ratio of fish in environments highly contaminated with PBDEs. -- Highlights: •Zebrafish were exposed to PBDE from eggs to adults. •An increase in Gonadal-Somatic Index and enhanced gonadal development was enhanced. •Fertilization and hatching successes were reduced, while malformation was increased. •PBDE alters sex differentiation, leading to a male biased F1 population. •Environmental relevant concentrations of PBDE threaten natural fish populations. -- PBDE reduces fertilization and hatching successes, causes malformation and leads to a male biased F1 generation in fish

  1. Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man.

    Science.gov (United States)

    Morris, Rhiannon S; Simon Jones, P; Alawneh, Josef A; Hong, Young T; Fryer, Tim D; Aigbirhio, Franklin I; Warburton, Elizabeth A; Baron, Jean-Claude

    2018-05-09

    Modern ischaemic stroke management involves intravenous thrombolysis followed by mechanical thrombectomy, which allows markedly higher rates of recanalization and penumbral salvage than thrombolysis alone. However, <50% of treated patients eventually enjoy independent life. It is therefore important to identify complementary therapeutic targets. In rodent models, the salvaged penumbra is consistently affected by selective neuronal loss, which may hinder recovery by interfering with plastic processes, as well as by microglial activation, which may exacerbate neuronal death. However, whether the salvaged penumbra in man is similarly affected is still unclear. Here we determined whether these two processes affect the non-infarcted penumbra in man and, if so, whether they are inter-related. We prospectively recruited patients with (i) acute middle-cerebral artery stroke; (ii) penumbra present on CT perfusion obtained <4.5 h of stroke onset; and (iii) early neurological recovery as a marker of penumbral salvage. PET with 11C-flumazenil and 11C-PK11195, as well as MRI to map the final infarct, were obtained at predefined follow-up times. The presence of selective neuronal loss and microglial activation was determined voxel-wise within the MRI normal-appearing ipsilateral non-infarcted zone and surviving penumbra masks, and their inter-relationship was assessed both across and within patients. Dilated infarct contours were consistently excluded to control for partial volume effects. Across the 16 recruited patients, there was reduced 11C-flumazenil and increased 11C-PK11195 binding in the whole ipsilateral non-infarcted zone (P = 0.04 and 0.02, respectively). Within the non-infarcted penumbra, 11C-flumazenil was also reduced (P = 0.001), but without clear increase in 11C-PK11195 (P = 0.18). There was no significant correlation between 11C-flumazenil and 11C-PK11195 in either compartment. This mechanistic study provides direct evidence for the presence of both neuronal

  2. Study on the system development for evaluating long-term alteration of hydraulic field in near field

    International Nuclear Information System (INIS)

    Okutu, Kazuo; Morikawa, Seiji; Takamura, Hisashi

    2002-02-01

    For the high performance evaluation of reliability of TRU waste repository, the system development for evaluating long-term alteration in consideration of the changes action of barrier materials of hydraulic field in Near Field is required. In this research, system development for evaluating long-term alteration of hydraulic field in Near Field was examined. Examination of the basic specification of chemical/dynamic alteration action analysis system used as the composition element of this system and a whole system were performed. The research result of this year is shown below. 1) The system by which the chemical changes happened by Near Field as influence of the exudation liquid from cement material are evaluated was examined. In this year, document investigation about the various processes about chemical alteration and extraction of a choice, presentation of the uncertainty about a model or data, preliminary modeling, a simple analysis tool creation and sensitivity analysis, extraction of the process which should be taken into consideration in a system valuation modeling and a phenomenon analysis model, and a corresponding mathematics model, optimization of the software composition for development of a system valuation modeling, the exercise by the preliminary system analysis model, the experiment plan for the corroboration of a model were shown. 2) In consideration of change of the physical characteristic accompanying chemical alteration of bentonite material and cement material, the system by which dynamic changes action of repository is evaluated was examined. In this year, arrangement of the dynamics action of repository for long-term were shown. Extraction of a phenomenon made applicable to evaluation was shown. And the dynamic models were investigated and the prototype of the dynamics model that can take into consideration the characteristic of bentonite material was shown. And the basic composition of a dynamic changes action analysis system was shown. 3

  3. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.

    Science.gov (United States)

    Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L

    2011-06-30

    Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.

  5. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  6. The PPARα Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    International Nuclear Information System (INIS)

    Ramanan, Sriram; Kooshki, Mitra; Zhao Weiling; Hsu, F.-C.; Riddle, David R.; Robbins, Mike E.

    2009-01-01

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) α agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARα knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of 137 Cs γ-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARα-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARα ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  7. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    Science.gov (United States)

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  8. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Sandra M. Cardona

    2015-10-01

    Full Text Available Fractalkine (CX3CL1 or FKN is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a decreased neuronal cell counts in the retinal ganglion cell layer, (b increased microglial cell numbers, and (c decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.

  9. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA

    Directory of Open Access Journals (Sweden)

    Malathi Narayan

    2016-06-01

    Full Text Available Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA on a mouse microglial (N9 cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003032.

  10. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    Directory of Open Access Journals (Sweden)

    Kallol Dutta

    Full Text Available BACKGROUND: Benzo[a]pyrene (B[a]P belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our

  11. P2X7 receptor mediates activation of microglial cells in prostate of chemically irritated rats

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2013-04-01

    Full Text Available Purpose Evidence shows that adenosine triphosphate (ATP is involved in the transmission of multiple chronic pain via P2X7 receptor. This study was to investigate the P2X7 and microglial cells in the chronic prostatitis pain. Materials and Methods Rats were divided into control group and chronic prostatitis group (n = 24 per group. A chronic prostatitis animal model was established by injecting complete Freund's adjuvant (CFA to the prostate of rats, and the thermal withdrawal latency (TWL was detected on days 0, 4, 12 and 24 (n = 6 at each time point in each group. Animals were sacrificed and the pathological examination of the prostate, detection of mRNA expression of P2X7 and ionized calcium binding adaptor molecule 1 (IBA-1 and measurement of content of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β in the dorsal horn of L5-S2 spinal cord were performed on days 0, 4, 12 and 24. In addition, the content of TNF-α and IL-1β in the dorsal horn of L5-S2 spinal cord was measured after intrathecal injection of inhibitors of microglial cells and/or P2X7 for 5 days. Results The chronic prostatitis was confirmed by pathological examination. The expression of P2X7 and IBA-1 and the content of TNF-α and IL-1β in rats with chronic prostatitis were significantly higher than those in the control group. On day 4, the expressions of pro-inflammatory cytokines became to increase, reaching a maximal level on day 12 and started to reduce on day 24, but remained higher than that in the control group. Following suppression of microglial cells and P2X7 receptor, the secretion of TNF-α and IL-1β was markedly reduced. Conclusion In chronic prostatitis pain, the microglial cells and P2X7 receptor are activated resulting in the increased expression of TNF-α and IL-1β in the L5-S2 spinal cord, which might attribute to the maintenance and intensification of pain in chronic prostatitis.

  12. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  13. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  14. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  15. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  16. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  17. Quantification of microglial proliferation and apoptosis by flow cytometry

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Wirenfeldt, Martin; Finsen, Bente

    2013-01-01

    Microglia are innate immune cells that survey the central nervous system (CNS) and respond almost immediately to any disturbance in CNS homeostasis. They are derived from primitive yolk sac myeloid progenitors and in the mouse colonize the CNS during fetal development. As a population, microglia ...

  18. In Utero Exposure to Arsenic Alters Lung Development and Genes Related to Immune and Mucociliary Function in Mice

    OpenAIRE

    Ramsey, Kathryn A.; Bosco, Anthony; McKenna, Katherine L.; Carter, Kim W.; Elliot, John G.; Berry, Luke J.; Sly, Peter D.; Larcombe, Alexander N.; Zosky, Graeme R.

    2012-01-01

    Background: Exposure to arsenic via drinking water is a global environmental health problem. In utero exposure to arsenic via drinking water increases the risk of lower respiratory tract infections during infancy and mortality from bronchiectasis in early adulthood. Objectives: We aimed to investigate how arsenic exposure in early life alters lung development and pathways involved in innate immunity. Methods: Pregnant BALB/c, C57BL/6, and C3H/HeARC mice were exposed to 0 (control) or 100 ?g/L...

  19. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse

    Directory of Open Access Journals (Sweden)

    Umezawa Masakazu

    2009-07-01

    Full Text Available Abstract Background Nanotechnology is developing rapidly throughout the world and the production of novel man-made nanoparticles is increasing, it is therefore of concern that nanomaterials have the potential to affect human health. The purpose of this study was to investigate the effects of maternal exposure to nano-sized anatase titanium dioxide (TiO2 on gene expression in the brain during the developmental period using cDNA microarray analysis combined with Gene Ontology (GO and Medical Subject Headings (MeSH terms information. Results Analysis of gene expression using GO terms indicated that expression levels of genes associated with apoptosis were altered in the brain of newborn pups, and those associated with brain development were altered in early age. The genes associated with response to oxidative stress were changed in the brains of 2 and 3 weeks old mice. Changes of the expression of genes associated with neurotransmitters and psychiatric diseases were found using MeSH terms. Conclusion Maternal exposure of mice to TiO2 nanoparticles may affect the expression of genes related to the development and function of the central nervous system.

  20. Microglial immunophenotype in dementia with Alzheimer’s pathology

    OpenAIRE

    Minett, Thais; Classey, John; Matthews, Fiona E.; Fahrenhold, Marie; Taga, Mariko; Brayne, Carol; Ince, Paul G.; Nicoll, James; Boche, Delphine

    2016-01-01

    Background Genetic risk factors for Alzheimer?s disease imply that inflammation plays a causal role in development of the disease. Experimental studies suggest that microglia, as the brain macrophages, have diverse functions, with their main role in health being to survey the brain parenchyma through highly motile processes. Methods Using the Medical Research Council Cognitive Function and Ageing Studies resources, we have immunophenotyped microglia to investigate their role in dementia with ...

  1. Animal models of maternal nutrition and altered offspring bone structure – Bone development across the lifecourse

    Directory of Open Access Journals (Sweden)

    SA Lanham

    2011-11-01

    Full Text Available It is widely accepted that the likelihood of offspring developing heart disease, stroke, or diabetes in later life, is influenced by the their in utero environment and maternal nutrition. There is increasing epidemiological evidence that osteoporosis in the offspring may also be influenced by the mother’s nutrition during pregnancy. This review provides evidence from a range of animal models that supports the epidemiological data; suggesting that lifelong bone development and growth in offspring is determined during gestation.

  2. Alginate-Derived Oligosaccharide Inhibits Neuroinflammation and Promotes Microglial Phagocytosis of β-Amyloid

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2015-09-01

    Full Text Available Alginate from marine brown algae has been widely applied in biotechnology. In this work, the effects of alginate-derived oligosaccharide (AdO on lipopolysaccharide (LPS/β-amyloid (Aβ-induced neuroinflammation and microglial phagocytosis of Aβ were studied. We found that pretreatment of BV2 microglia with AdO prior to LPS/Aβ stimulation led to a significant inhibition of production of nitric oxide (NO and prostaglandin E2 (PGE2, expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 and secretion of proinflammatory cytokines. We further demonstrated that AdO remarkably attenuated the LPS-activated overexpression of toll-like receptor 4 (TLR4 and nuclear factor (NF-κB in BV2 cells. In addition to the impressive inhibitory effect on neuroinflammation, we also found that AdO promoted the phagocytosis of Aβ through its interaction with TLR4 in microglia. Our results suggested that AdO exerted the inhibitory effect on neuroinflammation and the promotion effect on microglial phagocytosis, indicating its potential as a nutraceutical or therapeutic agent for neurodegenerative diseases, particularly Alzheimer’s disease (AD.

  3. Does microglial dysfunction play a role in autism and Rett syndrome?

    Science.gov (United States)

    Maezawa, Izumi; Calafiore, Marco; Wulff, Heike; Jin, Lee-Way

    2011-02-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.

  4. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2015-03-01

    Full Text Available Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE, a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS, cyclooxygenase (COX-2 and the production of nitric oxide (NO. Administration of CAPE resulted in increased expressions of hemeoxygenase (HO-1and erythropoietin (EPO in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.

  5. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R.; Lesinski, Andrea N.; Asselin, Caroline N.; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T.; Tanzi, Rudolph E.

    2013-01-01

    SUMMARY The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer’s disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APPSwe/PS1ΔE9/CD33−/− mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. PMID:23623698

  6. Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta.

    Science.gov (United States)

    Griciuc, Ana; Serrano-Pozo, Alberto; Parrado, Antonio R; Lesinski, Andrea N; Asselin, Caroline N; Mullin, Kristina; Hooli, Basavaraj; Choi, Se Hoon; Hyman, Bradley T; Tanzi, Rudolph E

    2013-05-22

    The transmembrane protein CD33 is a sialic acid-binding immunoglobulin-like lectin that regulates innate immunity but has no known functions in the brain. We have previously shown that the CD33 gene is a risk factor for Alzheimer's disease (AD). Here, we observed increased expression of CD33 in microglial cells in AD brain. The minor allele of the CD33 SNP rs3865444, which confers protection against AD, was associated with reductions in both CD33 expression and insoluble amyloid beta 42 (Aβ42) levels in AD brain. Furthermore, the numbers of CD33-immunoreactive microglia were positively correlated with insoluble Aβ42 levels and plaque burden in AD brain. CD33 inhibited uptake and clearance of Aβ42 in microglial cell cultures. Finally, brain levels of insoluble Aβ42 as well as amyloid plaque burden were markedly reduced in APP(Swe)/PS1(ΔE9)/CD33(-/-) mice. Therefore, CD33 inactivation mitigates Aβ pathology and CD33 inhibition could represent a novel therapy for AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  8. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Marta Machado-Pereira

    2017-01-01

    Full Text Available Inflammatory mechanisms triggered by microglial cells are involved in the pathophysiology of several brain disorders, hindering repair. Herein, we propose the use of retinoic acid-loaded polymeric nanoparticles (RA-NP as a means to modulate microglia response towards an anti-inflammatory and neuroprotective phenotype (M2. RA-NP were first confirmed to be internalized by N9 microglial cells; nanoparticles did not affect cell survival at concentrations below 100 μg/mL. Then, immunocytochemical studies were performed to assess the expression of pro- and anti-inflammatory mediators. Our results show that RA-NP inhibited LPS-induced release of nitric oxide and the expression of inducible nitric oxide synthase and promoted arginase-1 and interleukin-4 production. Additionally, RA-NP induced a ramified microglia morphology (indicative of M2 state, promoting tissue viability, particularly neuronal survival, and restored the expression of postsynaptic protein-95 in organotypic hippocampal slice cultures exposed to an inflammatory challenge. RA-NP also proved to be more efficient than the free equivalent RA concentration. Altogether, our data indicate that RA-NP may be envisioned as a promising therapeutic agent for brain inflammatory diseases.

  10. Will Treatment of Helicobacter Pylori Infection in Childhood Alter the Risk of Developing Gastric Cancer?

    Directory of Open Access Journals (Sweden)

    Billy Bourke

    2005-01-01

    Full Text Available Helicobacter pylori has been classified as a group 1 carcinogen for gastric cancer. It is estimated that there is between a two- and sixfold increase in the risk of developing gastric cancer among infected patients. Among different populations, the risk of H pylori-infected individuals developing gastric cancer varies greatly. However, on a worldwide scale, gastric cancer is the second most common cause of cancer-related death. Therefore, H pylori eradication could help prevent up to three to four million gastric cancer deaths per year. H pylori is usually acquired in childhood. Because infected children have not harboured the organism for long enough to have developed precancerous lesions, childhood is theoretically an attractive time for H pylori eradication and, thus, could help prevent gastric cancer later in life. However, as H pylori prevalence and the incidence of gastric cancer are falling rapidly in developed nations, widespread population screening programs aimed at the eradication of H pylori in these countries would be enormously expensive. Therefore, except in groups with a high risk for development of gastric cancer (eg, Japanese or those with a strong positive family history of gastric cancer, a population-based test-and-treat policy is not justified.

  11. CULTURAL EXPLORATION AS ALTER/NATIVE1 ROUTE TO NATIONAL DEVELOPMENT: INSIGHTS FROM YORUBA VERBAL ARTS

    Directory of Open Access Journals (Sweden)

    OLUWOLE COKER

    2009-01-01

    Full Text Available This paper interrogates Yoruba verbal arts and situates culture as a catalyst for development. It is suggested that the intricate resources of oral art, exemplified by Yoruba textual references, are viable ingredients for socio-cultural empowerment. To fully comprehend the dynamics of a society in constant change due to external and internal realities, one must reconsider culture in order to reposition the society. The multidimensional and multidisciplinary significance of Yoruba verbal art demonstrate that culture has a vital role to play in any meaningful socio-political advancement in the Nigerian body polity. The ideas conveyed in proverbial expressions, representing key cultural realities of the Yoruba people, offer insights and ideas for development and social good. The paper submits that a deeper exploration of the intricate resources of verbal art is a viable route to development.

  12. Low dose trichloroethylene alters cytochrome P450 - 2C subfamily expression in the developing chick heart

    Science.gov (United States)

    Makwana, Om; Ahles, Lauren; Lencinas, Alejandro; Selmin, Ornella I.; Runyan, Raymond B.

    2013-01-01

    Trichloroethylene (TCE) is an organic solvent and common environmental contaminant. TCE exposure is associated with heart defects in humans and animal models. Primary metabolism of TCE in adult rodent models is by specific hepatic cytochrome P450 enzymes (Lash et al., 2000). As association of TCE exposure with cardiac defects is in exposed embryos prior to normal liver development, we investigated metabolism of TCE in the early embryo. Developing chick embryos were dosed in ovo with environmentally relevant doses of TCE (8 ppb and 800 ppb) and RNA was extracted from cardiac and extra-cardiac tissue (whole embryo without heart). Real time PCR showed upregulation of CYP2H1 transcripts in response to TCE exposure in the heart. No detectable cytochrome expression was found in extra-cardiac tissue. As seen previously, the dose response was non-monotonic and 8ppb elicited stronger upregulation than 800 ppb. Immunostaining for CYP2C subfamily expression confirmed protein expression and showed localization in both myocardium and endothelium. TCE exposure increased protein expression in both tissues. These data demonstrate that the earliest embryonic expression of phase I detoxification enzymes is in the developing heart. Expression of these CYPs is likely to be relevant to the susceptibility of the developing heart to environmental teratogens. PMID:22855351

  13. Storms do not alter long-term watershed development influences on coastal water quality

    Science.gov (United States)

    A twelve year (2000 − 2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially i...

  14. Defects in rhizobial cyclic glucan and lipopolysaccharide synthesis alter legume gene expression during nodule development

    DEFF Research Database (Denmark)

    D'Antuono, Alejandra L; Ott, Thomas; Krusell, Lene

    2008-01-01

    cDNA array technology was used to compare transcriptome profiles of Lotus japonicus roots inoculated with a Mesorhizobium loti wild-type and two mutant strains affected in cyclic beta(1-2) glucan synthesis (cgs) and in lipopolysaccharide synthesis (lpsbeta2). Expression of genes associated...... with the development of a fully functional nodule was significantly affected in plants inoculated with the cgs mutant. Array results also revealed that induction of marker genes for nodule development was delayed when plants were inoculated with the lpsbeta2 mutant. Quantitative real-time reverse......-transcriptase polymerase chain reaction was used to quantify gene expression of a subset of genes involved in plant defense response, redox metabolism, or genes that encode for nodulins. The majority of the genes analyzed in this study were more highly expressed in roots inoculated with the wild type compared with those...

  15. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    Science.gov (United States)

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  16. HPA Axis Function Alters Development of Working Memory in Boys with FXS

    Science.gov (United States)

    Scherr, Jessica F.; Hahn, Laura J.; Hooper, Stephen R.; Hatton, Deborah; Roberts, Jane E.

    2016-01-01

    The present study examines verbal working memory over time in boys with fragile X syndrome (FXS) compared to nonverbal mental-age (NVMA) matched, typically developing (TD) boys. Concomitantly, the relationship between cortisol—a physiological marker for stress—and verbal working memory performance over time is examined to understand the role of physiological mechanisms in cognitive development in FXS. Participants were assessed between one and three times over a 2-year time frame using two verbal working memory tests that differ in complexity: memory for words and auditory working memory with salivary cortisol collected at the beginning and end of each assessment. Multilevel modeling results indicate specific deficits over time on the memory for words task in boys with FXS compared to TD controls that is exacerbated by elevated baseline cortisol. Similar increasing rates of growth over time were observed for boys with FXS and TD controls on the more complex auditory working memory task, but only boys with FXS displayed an association of increased baseline cortisol and lower performance. This study highlights the benefit of investigations of how dynamic biological and cognitive factors interact and influence cognitive development over time. PMID:26760450

  17. Horses experimentally infected with Sarcocystis neurona develop altered immune responses in vitro.

    Science.gov (United States)

    Witonsky, Sharon G; Ellison, Siobhan; Yang, Jibing; Gogal, Robert M; Lawler, Heather; Suzuki, Yasuhiro; Sriranganathan, Namalwar; Andrews, Frank; Ward, Daniel; Lindsay, David S

    2008-10-01

    Equine protozoal myeloencephalitis (EPM) due to Sarcocystis neurona infection is 1 of the most common neurologic diseases in horses in the United States. The mechanisms by which most horses resist disease, as well as the possible mechanisms by which the immune system may be suppressed in horses that develop EPM, are not known. Therefore, the objectives of this study were to determine whether horses experimentally infected with S. neurona developed suppressed immune responses. Thirteen horses that were negative for S. neurona antibodies in serum and cerebrospinal fluid (CSF) were randomly assigned to control (n = 5) or infected (n = 8) treatment groups. Neurologic exams and cerebrospinal fluid analyses were performed prior to, and following, S. neurona infection. Prior to, and at multiple time points following infection, immune parameters were determined. All 8 S. neurona-infected horses developed clinical signs consistent with EPM, and had S. neurona antibodies in the serum and CSF. Both infected and control horses had increased percentages (P < 0.05) of B cells at 28 days postinfection. Infected horses had significantly decreased (P < 0.05) proliferation responses as measured by thymidine incorporation to nonspecific mitogens phorbol myristate acetate (PMA) and ionomycin (I) as soon as 2 days postinfection.

  18. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  19. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.

    Directory of Open Access Journals (Sweden)

    Eddy Risseeuw

    Full Text Available Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.

  20. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.

    Science.gov (United States)

    Risseeuw, Eddy; Venglat, Prakash; Xiang, Daoquan; Komendant, Kristina; Daskalchuk, Tim; Babic, Vivijan; Crosby, William; Datla, Raju

    2013-01-01

    Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY) functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO) is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP) MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.

  1. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia.

    Science.gov (United States)

    Sandeep, M S; Nandini, C D

    2017-08-01

    In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.

  2. Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development.

    Science.gov (United States)

    Sears, Catherine R; Zhou, Huaxin; Justice, Matthew J; Fisher, Amanda J; Saliba, Jacob; Lamb, Isaac; Wicker, Jessica; Schweitzer, Kelly S; Petrache, Irina

    2018-03-01

    Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.

  3. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.

    Science.gov (United States)

    Kirschman, Lucas J; McCue, Marshall D; Boyles, Justin G; Warne, Robin W

    2017-09-15

    Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13 C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13 C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13 C-labelled protein stores. These results

  4. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development.

    Science.gov (United States)

    Macaulay, Laura J; Chernick, Melissa; Chen, Albert; Hinton, David E; Bailey, Jordan M; Kullman, Seth W; Levin, Edward D; Stapleton, Heather M

    2017-01-01

    Polybrominated diphenyl ethers (PBDEs) and their metabolites (e.g., hydroxylated BDEs [OH-BDEs]) are contaminants frequently detected together in human tissues and are structurally similar to thyroid hormones. Thyroid hormones partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window that may be vulnerable to chemicals disrupting thyroid signaling. In the present study, zebrafish were exposed to 6-OH-BDE-47 (30 nM; 15 μg/L) alone, or to a low-dose (30 μg/L) or high-dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5-6 μg/L), and 2,4,6-tribromophenol (5-100 μg/L) during juvenile development (9-23 d postfertilization) and evaluated for developmental endpoints mediated by thyroid hormone signaling. Fish were sampled at 3 time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high-dose mixture resulted in >85% mortality within 1 wk of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low-dose mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47-treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and thyroid hormones. Overall, these results indicate that exposures to PBDE/OH-BDE mixtures adversely impact zebrafish maturation during metamorphosis. Environ Toxicol Chem 2017;36:36-48. © 2016 SETAC. © 2016 SETAC.

  5. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    Directory of Open Access Journals (Sweden)

    Eugen Dhimolea

    Full Text Available Exposure to environmental estrogens (xenoestrogens may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments, with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50. BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene

  6. Cromolyn Reduces Levels of the Alzheimer's Disease-Associated Amyloid β-Protein by Promoting Microglial Phagocytosis.

    Science.gov (United States)

    Zhang, Can; Griciuc, Ana; Hudry, Eloise; Wan, Yu; Quinti, Luisa; Ward, Joseph; Forte, Angela M; Shen, Xunuo; Ran, ChongZhao; Elmaleh, David R; Tanzi, Rudolph E

    2018-01-18

    Amyloid-beta protein (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). Aβ deposition triggers both pro-neuroinflammatory microglial activation and neurofibrillary tangle formation. Cromolyn sodium is an asthma therapeutic agent previously shown to reduce Aβ levels in transgenic AD mouse brains after one-week of treatment. Here, we further explored these effects as well as the mechanism of action of cromolyn, alone, and in combination with ibuprofen in APP Swedish -expressing Tg2576 mice. Mice were treated for 3 months starting at 5 months of age, when the earliest stages of β-amyloid deposition begin. Cromolyn, alone, or in combination with ibuprofen, almost completely abolished longer insoluble Aβ species, i.e. Aβ40 and Aβ42, but increased insoluble Aβ38 levels. In addition to its anti-aggregation effects on Aβ, cromolyn, alone, or plus ibuprofen, but not ibuprofen alone, increased microglial recruitment to, and phagocytosis of β-amyloid deposits in AD mice. Cromolyn also promoted Aβ42 uptake in microglial cell-based assays. Collectively, our data reveal robust effects of cromolyn, alone, or in combination with ibuprofen, in reducing aggregation-prone Aβ levels and inducing a neuroprotective microglial activation state favoring Aβ phagocytosis versus a pro-neuroinflammatory state. These findings support the use of cromolyn, alone, or with ibuprofen, as a potential AD therapeutic.

  7. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  8. Microglial AGE-albumin is critical for neuronal death in Parkinson's disease: a possible implication for theranostics.

    Science.gov (United States)

    Bayarsaikhan, Enkhjargal; Bayarsaikhan, Delger; Lee, Jaesuk; Son, Myeongjoo; Oh, Seyeon; Moon, Jeongsik; Park, Hye-Jeong; Roshini, Arivazhagan; Kim, Seung U; Song, Byoung-Joon; Jo, Seung-Mook; Byun, Kyunghee; Lee, Bonghee

    2015-01-01

    Advanced glycation end products (AGEs) are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD), by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA) neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE-albumin could be used as a diagnostic and therapeutic biomarker with high sensitivity for neurodegenerative disorders, including PD.

  9. Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment12

    Science.gov (United States)

    Redan, Benjamin W; Buhman, Kimberly K; Novotny, Janet A; Ferruzzi, Mario G

    2016-01-01

    Interest in the application of phenolic compounds from the diet or supplements for the prevention of chronic diseases has grown substantially, but the efficacy of such approaches in humans is largely dependent on the bioavailability and metabolism of these compounds. Although food and dietary factors have been the focus of intense investigation, the impact of disease states such as obesity or diabetes on their absorption, metabolism, and eventual efficacy is important to consider. These factors must be understood in order to develop effective strategies that leverage bioactive phenolic compounds for the prevention of chronic disease. The goal of this review is to discuss the inducible metabolic systems that may be influenced by disease states and how these effects impact the bioavailability and metabolism of dietary phenolic compounds. Because current studies generally report that obesity and/or diabetes alter the absorption and excretion of these compounds, this review includes a description of the absorption, conjugation, and excretion pathways for phenolic compounds and how they are potentially altered in disease states. A possible mechanism that will be discussed related to the modulation of phenolic bioavailability and metabolism may be linked to increased inflammatory status from increased amounts of adipose tissue or elevated plasma glucose concentrations. Although more studies are needed, the translation of benefits derived from dietary phenolic compounds to individuals with obesity or diabetes may require the consideration of dosing strategies or be accompanied by adjunct therapies to improve the bioavailability of these compounds. PMID:28140326

  10. Perinatal methadone exposure produces physical dependence and altered behavioral development in the rat.

    Science.gov (United States)

    Kunko, P M; Smith, J A; Wallace, M J; Maher, J R; Saady, J J; Robinson, S E

    1996-06-01

    Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that the following prenatal/postnatal exposure groups were obtained: water/water, methadone/water, water/methadone and methadone/methadone. Methadone slightly reduced litter size, particularly the number of male offspring, and reduced litter birth weight. The induction or maintenance of physical dependence in the postnatal methadone exposure groups was confirmed by an experiment in which PD19 pups were challenged with naloxone (1 mg/kg, s.c.). Methadone concentrations were assayed in pup brain on postnatal days 4, 10 and 22. Postnatal exposure to methadone via maternal milk produced measurable levels of methadone which decreased with age. Neuromuscular and physical development were assessed. Exposure to methadone accelerated acquisition of the righting reflex, but tended to delay the acquisition of the negative geotaxic response. Postnatal exposure to methadone was associated with decreased somatic growth as measured through postnatal day 21. The older pups (postnatal day 21) exposed to methadone exhibited variations in activity levels: pups exposed to methadone both prenatally and postnatally exhibited the least amount of spontaneous locomotor activity and pups exposed only postnatally exhibited the most activity. Therefore, it is possible to induce and/or maintain physical dependence via lactation in rat pups fostered to methadone-treated dams. Perinatal exposure to methadone by this route produces several subtle disruptions of pup development in the absence of gross maternal or fetal toxicity.

  11. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  12. Postnatal development of rat pups is altered by prenatal methamphetamine exposure.

    Science.gov (United States)

    Slamberová, Romana; Pometlová, Marie; Charousová, Petra

    2006-01-01

    There are studies showing that drug abuse during pregnancy may have impairing effect on progeny of drug-abusing mothers. Methamphetamine (MA) is one of the most common illicit drugs throughout the world. The purpose of the present study was to assess the effect of prenatal MA exposure on postnatal development of rat pups before the time of separation from their mothers. Female rats were injected with MA (5 mg/kg daily) for the duration of their pregnancy. Pups were then tested throughout the lactation period. They were weighed daily and the ano-genital distance was measured on postnatal day (PD) 1. Development of postural motor reaction was tested by righting reflex on surface between PD 1 and 12, and righting reflex in mid-air after PD 12 until successfully accomplished. On PD 15 homing test was examined as a test of pup acute learning. On PD 23 sensory-motor coordination was examined using the rotarod and bar-holding tests. Additionally, the markers of physical maturation, such as eye opening, testes descent in males and vaginal opening in females were also recorded. The birth weight in prenatally MA-exposed pups was lower than in controls or saline-exposed pups regardless of sex. There were no changes induced by prenatal MA exposure in weight gain or in sexual maturation. In righting reflexes, we demonstrated that pups exposed prenatally to MA were slower in righting reflex on surface and that they accomplished the test of righting reflex in mid-air later than controls or saline-exposed pups. The performance of homing test was not affected by prenatal drug exposure. The sensory-motor coordination was impaired in prenatally MA-exposed pups when testing in the rotarod test. Also, the number of falls in the bar-holding test was higher in MA-exposed pups than in controls. There were no sex differences in any measures. Thus, the present study demonstrated that prenatal MA exposure impairs development of postural motor movements of rat pups during the first 3 weeks

  13. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  14. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA.

    Science.gov (United States)

    Ruiz-Roso, María Belén; Olivares-Álvaro, Elena; Quintela, José Carlos; Ballesteros, Sandra; Espinosa-Parrilla, Juan F; Ruiz-Roso, Baltasar; Lahera, Vicente; de Las Heras, Natalia; Martín-Fernández, Beatriz

    2018-05-30

    Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H 2 O 2 ) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O 2 - ) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H 2 O 2 -induced cell viability reduction in BV-2 activated cells and O 2 - production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.

  15. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    International Nuclear Information System (INIS)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao; Yu, Xiyan; Wang, Xiufeng

    2010-01-01

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  16. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  17. Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice.

    Science.gov (United States)

    Iso, Hiroyuki; Simoda, Shigero; Matsuyama, Tomohiro

    2007-04-16

    Four groups of male C57BL/6 mice were reared differing combinations of the two environments from 3 to 11 weeks after birth. At 12 and 13 weeks they were assessed by measures of behaviour and learning: open-field activity, auditory startle reflex and prepulse inhibition, water maze learning, and passive avoidance. Another four groups of mice reared under these varying conditions were examined for generation of neurons in hippocampus and cerebral cortex using bromodeoxyuridine (BrdU) at 12 weeks. Enriched (EE) and impoverished (PP) groups were housed in their respective environment for 8 weeks, enriched-impoverished (EP) and impoverished-enriched (PE) mice respectively were reared for 6 weeks in the first-mentioned environment and then for 2 weeks in the second. PP and EP mice showed hyperactivity, greater startle amplitude and significantly slower learning in a water maze than EE or PE animals, and also showed a memory deficit in a probe test, avoidance performance did not differ. Neural generation was greater in the EE and PE than PP and EP groups, especially in the hippocampus. These results suggest that environmental change critically affects behavioural and anatomic brain development, even if brief. In these mice, the effect of unfavourable early experience could be reversed by a later short of favourable experience.

  18. MicroRNA-29b mediates altered innate immune development in acute leukemia

    Science.gov (United States)

    Mundy-Bosse, Bethany L.; Scoville, Steven D.; Chen, Li; McConnell, Kathleen; Mao, Hsiaoyin C.; Ahmed, Elshafa H.; Zorko, Nicholas; Harvey, Sophia; Cole, Jordan; Zhang, Xiaoli; Costinean, Stefan; Croce, Carlo M.; Larkin, Karilyn; Byrd, John C.; Vasu, Sumithira; Blum, William; Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A.

    2016-01-01

    Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell–depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer. PMID:27775550

  19. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    Science.gov (United States)

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  20. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Yu, Xiyan, E-mail: yuxiyan@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China); Wang, Xiufeng, E-mail: xfwang@sdau.edu.cn [College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai' an, Shandong 271018 (China)

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  1. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    Science.gov (United States)

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Joanna Mika

    Full Text Available The analgesic effect of delta-opioid receptor (DOR ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p. over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t. administered morphine (10-20 µg, DAMGO (1-2 µg and U50,488H (25-50 µg were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg, deltorphin II (1.5-15 µg and SNC80 (10-20 µg administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR and kappa-opioid receptors (KOR, further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  3. Annexin-1 Mediates Microglial Activation and Migration via the CK2 Pathway during Oxygen–Glucose Deprivation/Reperfusion

    Directory of Open Access Journals (Sweden)

    Shuangxi Liu

    2016-10-01

    Full Text Available Annexin-1 (ANXA1 has shown neuroprotective effects and microglia play significant roles during central nervous system injury, yet the underlying mechanisms remain unclear. This study sought to determine whether ANXA1 regulates microglial response to oxygen–glucose deprivation/reperfusion (OGD/R treatment and to clarify the downstream molecular mechanism. In rat hippocampal slices, OGD/R treatment enhanced the ANXA1 expression in neuron, the formyl peptide receptor (FPRs expression in microglia, and the microglial activation in the CA1 region (cornu ammonis 1. These effects were reversed by the FPRs antagonist Boc1. The cell membrane currents amplitude of BV-2 microglia (the microglial like cell-line was increased when treated with Ac2-26, the N-terminal peptide of ANXA1. Ac2-26 treatment enhanced BV-2 microglial migration whereas Boc1 treatment inhibited the migration. In BV-2 microglia, both the expression of the CK2 target phosphorylated α-E-catenin and the binding of casein kinase II (CK2 with α-E-catenin were elevated by Ac2-26, these effects were counteracted by the CK2 inhibitor TBB and small interfering (si RNA directed against transcripts of CK2 and FPRs. Moreover, both TBB and siRNA-mediated inhibition of CK2 blocked Ac2-26-mediated BV-2 microglia migration. Our findings indicate that ANXA1 promotes microglial activation and migration during OGD/R via FPRs, and CK2 target α-E-catenin phosphorylation is involved in this process.

  4. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain.

    Science.gov (United States)

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-11-01

    Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz's media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells.

  5. Both high and low maternal salt intake in pregnancy alter kidney development in the offspring.

    Science.gov (United States)

    Koleganova, Nadezda; Piecha, Grzegorz; Ritz, Eberhard; Becker, Luis Eduardo; Müller, Annett; Weckbach, Monika; Nyengaard, Jens Randel; Schirmacher, Peter; Gross-Weissmann, Marie-Luise

    2011-08-01

    In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.

  6. Radiation-induced quantitative alterations in prenatal thymic development in the beagle dog

    International Nuclear Information System (INIS)

    Miller, G.K.; Benjamin, S.A.

    1985-01-01

    Quantitative morphology of the canine fetal thymus was studied to evaluate the age-dependent radiosensitivity of the developing immune system. Pregnant beagle dams received abdominal 60 Co gamma exposures (200 R) or were sham irradiated at one of three ages in gestation, 30, 40, or 45 days. The mean calculated dose to each fetus was 1.5 Gray. One-half of the fetuses in each litter were harvested by hysterotomy at 5 days and one-half at 10 days post-irradiation (PI). The volumes of the thymic lobules and lobular cortices were significantly reduced at 5 and 10 days PI when compared with age-matched controls. Thymic cortical volumes in irradiated fetuses were reduced between 13 and 29% from control volumes by 5 days PI and 8 and 13% by 10 day PI. Thymic medullary volumes in irradiated fetuses were reduced 18 to 23% by 5 days PI and 27 to 54% by 10 days PI. The reductions in medullary volumes in fetuses irradiated at 35, 40, and 45 days of gestation and evaluated at 10 days PI were 54, 38, and 27%, respectively. Although injury to both thymic cortices and medullas was greater following exposures earlier in gestation, damage to medullas was relatively more severe than in cortices following exposure at any one age. The degree of reduction of medullary volume reflects thymic epithelial injury and is surprising since thymic epithelium is considered to be radioresistant in the adult. Such injury may have serious consequences postnatally as normal differentiation of T cell subpopulations is dependent upon the integrity of the thymic microenvironment. Damage to the thymic microenvironment could result in defects in immunologic regulation and in immune deficiencies

  7. Alterations in the Immune Cell Composition in Premalignant Breast Tissue that Precede Breast Cancer Development.

    Science.gov (United States)

    Degnim, Amy C; Hoskin, Tanya L; Arshad, Muhammad; Frost, Marlene H; Winham, Stacey J; Brahmbhatt, Rushin A; Pena, Alvaro; Carter, Jodi M; Stallings-Mann, Melody L; Murphy, Linda M; Miller, Erin E; Denison, Lori A; Vachon, Celine M; Knutson, Keith L; Radisky, Derek C; Visscher, Daniel W

    2017-07-15

    Purpose: Little is known about the role of the immune system in the earliest stages of breast carcinogenesis. We studied quantitative differences in immune cell types between breast tissues from normal donors and those from women with benign breast disease (BBD). Experimental Design: A breast tissue matched case-control study was created from donors to the Susan G. Komen for the Cure Tissue Bank (KTB) and from women diagnosed with BBD at Mayo Clinic (Rochester, MN) who either subsequently developed cancer (BBD cases) or remained cancer-free (BBD controls). Serial tissue sections underwent immunostaining and digital quantification of cell number per mm 2 for CD4 + T cells, CD8 + T cells, CD20 + B cells, and CD68 + macrophages and quantification of positive pixel measure for CD11c (dendritic cells). Results: In 94 age-matched triplets, BBD lobules showed greater densities of CD8 + T cells, CD11c + dendritic cells, CD20 + B cells, and CD68 + macrophages compared with KTB normals. Relative to BBD controls, BBD cases had lower CD20 + cell density ( P = 0.04). Nearly 42% of BBD cases had no CD20 + B cells in evaluated lobules compared with 28% of BBD controls ( P = 0.02). The absence of CD20 + cells versus the presence in all lobules showed an adjusted OR of 5.7 (95% confidence interval, 1.4-23.1) for subsequent breast cancer risk. Conclusions: Elevated infiltration of both innate and adaptive immune effectors in BBD tissues suggests an immunogenic microenvironment. The reduced B-cell infiltration in women with later breast cancer suggests a role for B cells in preventing disease progression and as a possible biomarker for breast cancer risk. Clin Cancer Res; 23(14); 3945-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Microglial reactivity correlates to the density and the myelination of the anterogradely degenerating axons and terminals following perforant path denervation of the mouse fascia dentata

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Rom Poulsen, Frantz

    1999-01-01

    Transection of the entorhino-dentate perforant path is a well known model for lesion-induced axonal sprouting and glial reactions in the rat. In this study, we have characterized the microglial reaction in the dentate molecular layer of the SJL/J and C57Bl/6 mouse. The morphological transformatio...... in the individual cases. The finding of a potentiated or accelerated microglial activation in the medial as compared to the lateral perforant path zone suggests different kinetics of microglial activation in areas with degenerating myelinated and unmyelinated fibers....

  9. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Lehrmann, E; Christensen, Thomas; Zimmer, J

    1997-01-01

    Transient middle cerebral artery occlusion in rats leads to infarction of the lateral part of the striatum and adjacent neocortex, with selective neuronal necrosis in the bordering penumbral zones. Administration of glutamate, cytokine, and leukocyte antagonists have rescued mainly neocortical....../macrophages in the adjacent penumbra. Within the neocortex, a later onset of degeneration along the insular-parietal axis was marked by neuronal expression of heat shock protein and a progressive microglial activation with induction of the full repertoire of microglial activation markers, including a widespread microglial...

  10. Urbanization, Agricultural Intensification, and Habitat Alteration in Vietnam: Modeling Transitional Development and Emerging Infectious Diseases

    Science.gov (United States)

    Fox, J.; Saksena, S.; Spencer, J.; Finucane, M.; Sultana, N.

    2012-12-01

    Our overarching hypothesis is that new risks, in this case the H5N1 strain of avian influenza, emerge during transitions between stages of development. Moreover, these risks are not coincidental but occur precisely because of the in-between nature of the coupled human-natural system at the point when things are neither traditional nor modern but resemble the state of chaos, release and reorganization. We are testing this hypothesis in Vietnam using demographic, social, economic, and environmental data collected in national censuses and analyzed at commune and district levels to identify communes and districts that are traditional, modern, and transitional (peri-urban). Using data from the 2006 agricultural census that capture both the changing nature of the built environment (types of sanitation systems) and the loss of and diversification of agriculture systems (percent of households whose major source of income is from agriculture, and percent of land under agriculture, forests, and aquaculture), and a normalized difference vegetation index from 2006 Landsat images we created a national scale urbanicity map for Vietnam. Field work in the summer of 2011 showed this map to be an accurate (approximately 85%) approximation of traditional (rural), transitional (periurban), and modern (urban) communes. Preliminary results suggest that over 7% of the country's land area and roughly 15% of its population resides in periurban neighborhoods, and that these areas do have a statistically significant greater incidence of AVI as measured in chicken deaths than traditional and modern communes (Table 1). Transitional neighborhoods such as these force planners to ask two questions. To what extent does the dichotomy of urban/rural makes sense in the context of Vietnam, when large areas and parts of the population are caught between the two? Second, how can planners and policy makers effectively provide for basic public goods and services in these contexts?Classification of places

  11. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    Science.gov (United States)

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. © 2016

  12. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.

    Science.gov (United States)

    Barclay, M; Constable, R; James, N R; Thorne, P R; Montgomery, J M

    2016-06-14

    Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Functional neurological symptom disorder (conversion disorder): A role for microglial-based plasticity mechanisms?

    Science.gov (United States)

    Stephenson, Chris P; Baguley, Ian J

    2018-02-01

    Functional Neurological Symptom Disorder (FND) is a relatively common neurological condition, accounting for approximately 3-6% of neurologist referrals. FND is considered a transient disorder of neuronal function, sometimes linked to physical trauma and psychological stress. Despite this, chronic disability is common, for example, around 40% of adults with motor FND have permanent disability. Building on current theoretical models, this paper proposes that microglial dysfunction could perpetuate functional changes within acute motor FND, thus providing a pathophysiological mechanism underlying the chronic stage of the motor FND phenotypes seen clinically. Core to our argument is microglia's dual role in modulating neuroimmunity and their control of synaptic plasticity, which places them at a pathophysiological nexus wherein coincident physical trauma and psychological stress could cause long-term change in neuronal networks without producing macroscopic structural abnormality. This model proposes a range of hypotheses that are testable with current technologies. Copyright © 2017. Published by Elsevier Ltd.

  14. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  15. HSP60 mediates the neuroprotective effects of curcumin by suppressing microglial activation.

    Science.gov (United States)

    Ding, Feijia; Li, Fan; Li, Yunhong; Hou, Xiaolin; Ma, Yi; Zhang, Nan; Ma, Jiao; Zhang, Rui; Lang, Bing; Wang, Hongyan; Wang, Yin

    2016-08-01

    Curcumin has anti-inflammatory and antioxidant properties and has been widely used to treat or prevent neurodegenerative diseases. However, the mechanisms underlying the neuroprotective effects of curcumin are not well known. In the present study, the effect of curcumin on lipopolysaccharide (LPS)-stimulated BV2 mouse microglia cells was investigated using enzyme-linked immunosorbent assays of the culture medium and western blotting of cell lysates. The results showed that curcumin significantly inhibited the LPS-induced expression and release of heat shock protein 60 (HSP60) in the BV2 cells. The level of heat shock factor (HSF)-1 was upregulated in LPS-activated BV2 microglia, indicating that the increased expression of HSP60 was driven by HSF-1 activation. However, the increased HSF-1 level was downregulated by curcumin. Extracellular HSP60 is a ligand of Toll-like receptor 4 (TLR-4), and the level of the latter was increased in the LPS-activated BV2 microglia and inhibited by curcumin. The activation of TLR-4 is known to be associated with the activation of myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB, with the subsequent production of proinflammatory and neurotoxic factors. In the present study, curcumin demonstrated marked suppression of the LPS-induced expression of MyD88, NF-κB, caspase-3, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the microglia. These results indicate that curcumin may exert its neuroprotective and anti-inflammatory effects by inhibiting microglial activation through the HSP60/TLR-4/MyD88/NF-κB signaling wpathway. Therefore, curcumin may be useful for the treatment of neurodegenerative diseases that are associated with microglial activation.

  16. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  17. Numerical and experimental study on the ability of dynamic roughness to alter the development of a leading edge vortex

    Science.gov (United States)

    Griffin, Christopher D.

    Dynamic stall is an unsteady aerodynamic phenomenon garnering much research interest because it occurs in a variety of applications. For example, dynamic stall is known to occur on helicopter rotor blades, wind turbines, high maneuvering military aircraft, and flapping wings. Dynamic stall occurs when an aerodynamic lifting device, such as an airfoil, wing, or turbomachine blade, undergoes a rapid pitching motion. It also occurs on lifting devices that are impulsively started at high angles of attack. Dynamic stall can "delay" aerodynamic stall to angles of attack that are significantly beyond the static stall angle of attack. During dynamic stall a large leading edge vortex (LEV) is formed, which creates greater fluid acceleration over the wing or airfoil, thus sustaining lift. As this vortex is shed downstream stall eventually occurs and there is an abrupt increase in drag and a large shift in pitching moment. Research has been performed to better understand the mechanisms occurring during dynamic stall in an effort to find ways to best take advantage of the increased lift associated with dynamic stall, but avoid the downfalls that occur once stall is initiated. Few attempts have been made to alter the LEV, and these attempts have used methods associated with laminar boundary layer separation control. Although these methods have shown promise, they suffer from the drawback that they exhaust more energy than is gained by flow control, while also only being effective at certain flight regimes. The research described herein documents the first study on the ability of dynamic roughness to alter the LEV encountered on a rapidly pitching airfoil. Both numerical and experimental studies were performed, including two-dimensional and three-dimensional computational fluid dynamics (CFD) simulations as well as stereo and planar particle image velocimetry (PIV) experiments. Evidence for the ability of small scale dynamic roughness to alter the development of the LEV was

  18. Persistent Increase in Microglial RAGE Contributes to Chronic Stress-Induced Priming of Depressive-like Behavior.

    Science.gov (United States)

    Franklin, Tina C; Wohleb, Eric S; Zhang, Yi; Fogaça, Manoela; Hare, Brendan; Duman, Ronald S

    2018-01-01

    Chronic stress-induced inflammatory responses occur in part via danger-associated molecular pattern (DAMP) molecules, such as high mobility group box 1 protein (HMGB1), but the receptor(s) underlying DAMP signaling have not been identified. Microglia morphology and DAMP signaling in enriched rat hippocampal microglia were examined during the development and expression of chronic unpredictable stress (CUS)-induced behavioral deficits, including long-term, persistent changes after CUS. The results show that CUS promotes significant morphological changes and causes robust upregulation of HMGB1 messenger RNA in enriched hippocampal microglia, an effect that persists for up to 6 weeks after CUS exposure. This coincides with robust and persistent upregulation of receptor for advanced glycation end products (RAGE) messenger RNA, but not toll-like receptor 4 in hippocampal microglia. CUS also increased surface expression of RAGE protein on hippocampal microglia as determined by flow cytometry and returned to basal levels 5 weeks after CUS. Importantly, exposure to short-term stress was sufficient to increase RAGE surface expression as well as anhedonic behavior, reflecting a primed state that results from a persistent increase in RAGE messenger RNA expression. Further evidence for DAMP signaling in behavioral responses is provided by evidence that HMGB1 infusion into the hippocampus was sufficient to cause anhedonic behavior and by evidence that RAGE knockout mice were resilient to stress-induced anhedonia. Together, the results provide evidence of persistent microglial HMGB1-RAGE expression that increases vulnerability to depressive-like behaviors long after chronic stress exposure. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    Science.gov (United States)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  20. Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer’s Disease Not Evident in Mouse Models

    Directory of Open Access Journals (Sweden)

    Brad A. Friedman

    2018-01-01

    Full Text Available Microglia, the CNS-resident immune cells, play important roles in disease, but the spectrum of their possible activation states is not well understood. We derived co-regulated gene modules from transcriptional profiles of CNS myeloid cells of diverse mouse models, including new tauopathy model datasets. Using these modules to interpret single-cell data from an Alzheimer’s disease (AD model, we identified microglial subsets—distinct from previously reported “disease-associated microglia”—expressing interferon-related or proliferation modules. We then analyzed whole-tissue RNA profiles from human neurodegenerative diseases, including a new AD dataset. Correcting for altered cellular composition of AD tissue, we observed elevated expression of the neurodegeneration-related modules, but also modules not implicated using expression profiles from mouse models alone. We provide a searchable, interactive database for exploring gene expression in all these datasets (http://research-pub.gene.com/BrainMyeloidLandscape. Understanding the dimensions of CNS myeloid cell activation in human disease may reveal opportunities for therapeutic intervention.

  1. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure.

    Science.gov (United States)

    Dulka, Eden A; Moenter, Suzanne M

    2017-11-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  2. Altered T cell memory and effector cell development in chronic lymphatic filarial infection that is independent of persistent parasite antigen.

    Directory of Open Access Journals (Sweden)

    Cathy Steel

    2011-04-01

    Full Text Available Chronic lymphatic filarial (LF infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN, microfilaria (mf positive infected patients (Inf had a reduced CD4 central memory (T(CM compartment. In addition, Inf patients tended to have more effector memory cells (T(EM and fewer effector cells (T(EFF than did ENs giving significantly smaller T(EFF:T(EM ratios. These contracted T(CM and T(EFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf. Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells, was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted T(CM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children

  3. Neonatal systemic inflammation in rats alters retinal vessel development and simulates pathologic features of retinopathy of prematurity.

    Science.gov (United States)

    Hong, Hye Kyoung; Lee, Hyun Ju; Ko, Jung Hwa; Park, Ji Hyun; Park, Ji Yeon; Choi, Chang Won; Yoon, Chang-Hwan; Ahn, Seong Joon; Park, Kyu Hyung; Woo, Se Joon; Oh, Joo Youn

    2014-05-15

    Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats. To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml) or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and apoptosis. We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+ inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located. Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.

  4. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  5. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    Science.gov (United States)

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  6. Alteration in peripheral blood concentration of certain pro-inflammatory cytokines in cows developing retention of fetal membranes.

    Science.gov (United States)

    Boro, Prasanta; Kumaresan, A; Pathak, Rupal; Patbandha, T K; Kumari, Susavi; Yadav, Asha; Manimaran, A; Baithalu, R K; Attupuram, Nitin M; Mohanty, T K

    2015-06-01

    Retention of fetal membranes (RFM) adversely affects the production and reproduction potential of the affected cows leading to huge economic loss. Physiological separation of fetal membranes is reported to be an inflammatory process. The present study compared the concentrations of certain pro inflammatory cytokines [Interleukin 1β (IL-1), Interleukin 6 (IL-6), Interleukin 8 (IL-8) and Tumor necrosis factor α (TNF-α) between the cows that developed RFM (n=10) and the cows that expelled fetal membranes normally (n=10) to find out if they could serve as a predictive tool for RFM. Blood samples were collected from the cows from 30 days before expected parturition through day -21, day -14, day -7, day -5, day -3, day -1, on the day of parturition (day 0), day 1 postpartum and the pro-inflammatory cytokines were estimated in blood plasma by ELISA method. The IL-1β concentration was significantly lower (Pmembranes normally from 3 days before calving till the day of calving. The plasma concentrations of IL-6 and IL-8 were also lower (Pmembranes normally. It may be inferred that the concentrations of IL-1, IL-6, IL-8 and TNF-α around parturition were altered in cows developing RFM compared to those expelled fetal membranes normally. Copyright © 2015. Published by Elsevier B.V.

  7. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  8. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  9. Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751(SL mice.

    Directory of Open Access Journals (Sweden)

    Melinda E Lull

    Full Text Available NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD. Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM, to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751(SL.Four month old hAPP(751(SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months.Only hAPP(751(SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751(SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751(SL mice. To discern how apocynin was affecting plaque levels (plaque load and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ phagocytosis, microglial proliferation, or microglial survival.Together, this study suggests that while hAPP(751(SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin may have additional

  10. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells.

    Science.gov (United States)

    Klimaszewska-Łata, Joanna; Gul-Hinc, Sylwia; Bielarczyk, Hanna; Ronowska, Anna; Zyśk, Marlena; Grużewska, Katarzyna; Pawełczyk, Tadeusz; Szutowicz, Andrzej

    2015-04-01

    There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that

  11. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer?s disease

    OpenAIRE

    Streit, Wolfgang J.; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-01-01

    The role of microglial cells in the pathogenesis of Alzheimer’s disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of d...

  12. Octylphenol and UV-B radiation alter larval development and hypothalamic gene expression in the leopard frog (Rana pipiens).

    Science.gov (United States)

    Crump, Douglas; Lean, David; Trudeau, Vance L

    2002-03-01

    We assessed octylphenol (OP), an estrogenic endocrine-disrupting chemical, and UV-B radiation, a known stressor in amphibian development, for their effects on hypothalamic gene expression and premetamorphic development in the leopard frog Rana pipiens. Newly hatched tadpoles were exposed for 10 days to OP alone at two different dose levels; to subambient UV-B radiation alone; and to two combinations of OP and UV-B. Control animals were exposed to ethanol vehicle (0.01%) exposure, a subset of tadpoles from each treatment group was raised to metamorphosis to assess differences in body weight and time required for hindlimb emergence. Tadpoles from one of the OP/UV-B combination groups had greater body weight and earlier hindlimb emergence (p weight or hindlimb emergence, indicating a potential mechanism of interaction between OP and UV-B. We hypothesized that the developing hypothalamus might be a potential environmental sensor for neurotoxicologic studies because of its role in the endocrine control of metamorphosis. We used a differential display strategy to identify candidate genes differentially expressed in the hypothalamic region of the exposed tadpoles. Homology cloning was performed to obtain R. pipiens glutamate decarboxylases--GAD65 and GAD67, enzymes involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). cDNA expression profiles revealed that OP and UV-B affected the levels of several candidate transcripts in tadpole (i.e., Nck, Ash, and phospholipase C gamma-binding protein 4 and brain angiogenesis inhibitor-3) and metamorph (i.e., GAD67, cytochrome C oxidase, and brain angiogenesis inhibitor-2 and -3) brains. This study represents a novel approach in toxicology that combines physiologic and molecular end points and indicates that levels of OP commonly found in the environment and subambient levels of UV-B alter the expression of important hypothalamic genes and disrupt tadpole growth patterns.

  13. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish.

    Science.gov (United States)

    Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro

    2015-10-01

    The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Alteration in molecular markers of oocyte development and intersex condition in mullets impacted by wastewater treatment plant effluents.

    Science.gov (United States)

    Valencia, Ainara; Rojo-Bartolomé, Iratxe; Bizarro, Cristina; Cancio, Ibon; Ortiz-Zarragoitia, Maren

    2017-05-01

    Wastewater Treatment Plant (WWTP) discharges are an important source of endocrine disrupting chemicals (EDCs) into the aquatic environment. Fish populations inhabiting downstream of WWTP effluents show alterations in gonad and gamete development such as intersex condition, together with xenoestrogenic effects such as vitellogenin up-regulation. However, the molecular mechanisms participating in the development of intersex condition in fish are not elucidated. The aim of this study was to assess the impact of two WWTPs effluents (Gernika and Bilbao-Galindo situated in the South East Bay of Biscay) with different contaminant loads, in thicklip grey mullet (Chelon labrosus) populations inhabiting downstream, examining the presence and severity of intersex condition, during two seasons. Molecular markers of xenoestrogenicity and oocyte differentiation and development (vtgAa, cyp19a1a, cyp19a1b, cyp11b, foxl2, dmrt1 and gtf3a) were also studied. Intersex mullets were identified downstream of both WWTPs and vtgAa was upregulated in intersex and non intersex males. Sex dependent differential transcription levels of target genes were detected in mullets from Galindo. However, no such pattern was observed in mullets from Gernika, suggesting an attenuating effect over studied genes caused by a higher presence of EDCs in this site, as indicated by the elevated prevalence of intersex mullets in this population. In conclusion, no direct association between xenoestrogenic responses and intersex condition was established. Mullets from Gernika showed signs of severe EDC exposure compared to those from Galindo, as demonstrated by the higher prevalence of intersex males and the reduction in transcription profile differences between sexes of gametogenic gene markers. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Directory of Open Access Journals (Sweden)

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  16. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  17. Estimation of absolute microglial cell numbers in mouse fascia dentata using unbiased and efficient stereological cell counting principles

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Dalmau, Ishar; Finsen, Bente

    2003-01-01

    Stereology offers a set of unbiased principles to obtain precise estimates of total cell numbers in a defined region. In terms of microglia, which in the traumatized and diseased CNS is an extremely dynamic cell population, the strength of stereology is that the resultant estimate is unaffected...... of microglia, although with this thickness, the intensity of the staining is too high to distinguish single cells. Lectin histochemistry does not visualize microglia throughout the section and, accordingly, is not suited for the optical fractionator. The mean total number of Mac-1+ microglial cells...... in the unilateral dentate gyrus of the normal young adult male C57BL/6 mouse was estimated to be 12,300 (coefficient of variation (CV)=0.13) with a mean coefficient of error (CE) of 0.06. The perspective of estimating microglial cell numbers using stereology is to establish a solid basis for studying the dynamics...

  18. Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides.

    Science.gov (United States)

    Saih, Fatima-Ezzahra; Andreoletti, Pierre; Mandard, Stéphane; Latruffe, Norbert; El Kebbaj, M'Hammed Saïd; Lizard, Gérard; Nasser, Boubker; Cherkaoui-Malki, Mustapha

    2017-01-07

    In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli -LPS decreased ACOX1 activity while Salmonella minnesota -LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activity activation and an anti-inflammatory effect by reducing nitric oxide (NO) LPS-dependent production. These results suggest that cactus extracts may possess a neuroprotective activity through the induction of peroxisomal antioxidant activity and the inhibition of NO production by activated microglial cells.

  19. Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    Fatima-Ezzahra Saih

    2017-01-01

    Full Text Available In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli-LPS decreased ACOX1 activity while Salmonella minnesota-LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activity activation and an anti-inflammatory effect by reducing nitric oxide (NO LPS-dependent production. These results suggest that cactus extracts may possess a neuroprotective activity through the induction of peroxisomal antioxidant activity and the inhibition of NO production by activated microglial cells.

  20. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells.

    Science.gov (United States)

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-09-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

  1. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation

    International Nuclear Information System (INIS)

    Hou, Liyan; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Wang, Hongwei; Che, Yuning; Sun, Fuqiang; Zhou, Xueying; Zhao, Xiulan; Wang, Qingshan

    2017-01-01

    Highlights: • Microglial activation induced by paraquat and maneb precedes noradrenergic neurodegeneration in locus coeruleus. • NADPH oxidase activation contributes to microglia-mediated neuroinflammation and related noradrenergic neurodegeneration. • Inhibition of NADPH oxidase by apocynin protects noradrenergic neurons against paraquat and maneb-induced toxicity. - Abstract: Co-exposure to paraquat (PQ) and maneb (Mb) has been shown to increase the risk of Parkinson’s disease (PD) and dopaminergic (DA) neurodegeneration in the substantia nigra pars compacta (SNpc) is observed in PQ and Mb-treated experimental animals. The loss of noradrenergic locus coeruleus (LC/NE) neurons in brainstem is a common feature shared by multiple neurodegenerative diseases, including PD. However, whether PQ and Mb is able to damage LC/NE neurons remains undefined. In this study, mice treated with combined PQ and Mb displayed progressive LC/NE neurodegeneration. Time course studies revealed that the activation of microglia preceded LC/NE neurodegeneration. Mechanistically, the activation of NADPH oxidase contributed to microglial activation and subsequent LC/NE neurodegeneration. We found that PQ and Mb co-exposure induced activation of NADPH oxidase as shown by increased superoxide production and membrane translocation of p47 phox , a cytosolic subunit of NADPH oxidase. Inhibition of NADPH oxidase by apocynin, a widely used NADPH oxidase inhibitor, suppressed microglial activation and gene expressions of proinflammatory factors. Furthermore, reduced activation of nuclear factor-κB (NF-κB) pathway was observed in apocynin-treated mice. More importantly, inhibition of NADPH oxidase by apocynin afforded LC/NE neuroprotection against PQ and Mb-induced neurotoxicity. Thus, our findings revealed the critical role NADPH oxidase-mediated microglial activation in driving LC/NE neurodegeneration induced by PQ and Mb, providing new insights into the pathogenesis of environmental

  2. The Role of MAC1 in Diesel Exhaust Particle-induced Microglial Activation and Loss of Dopaminergic Neuron Function

    OpenAIRE

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E.; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L.

    2013-01-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson’s disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (

  3. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    Energy Technology Data Exchange (ETDEWEB)

    Crestani, Carlos C. [Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Univ. Estadual Paulista—UNESP (Brazil); Lopes da Silva, Andréia [Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Scopinho, América A. [Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Ruginsk, Silvia G.; Uchoa, Ernane T. [Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Correa, Fernando M.A. [Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Elias, Lucila L.K.; Antunes-Rodrigues, José [Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil); Resstel, Leonardo B.M., E-mail: leoresstel@yahoo.com.br [Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (Brazil)

    2014-10-15

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α{sub 1}-adrenoceptor protein in the mesenteric bed was enhanced at the first week, whereas β{sub 2}-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT{sub 1A} receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity

  5. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    Science.gov (United States)

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

  6. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/β-catenin signaling in the thymus resulting in altered thymocyte development

    International Nuclear Information System (INIS)

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-01

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/β-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/β-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4 + cells and a subpopulation of double-negative cells (DN; CD4 - CD8 - ), DN4 (CD44 - CD25 - ). Shh and Wnt/β-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/β-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  7. LncRNA FIRRE/NF-kB feedback loop contributes to OGD/R injury of cerebral microglial cells.

    Science.gov (United States)

    Zang, Yunhua; Zhou, Xiyan; Wang, Qun; Li, Xia; Huang, Hailiang

    2018-04-28

    Stroke is one of the leading causes for serious long-term neurological disability. LncRNAs have been investigated to be dysregulated in ischemic stroke. However, the underlying mechanisms of some specific lncRNAs have not been clearly clarified. To determine lncRNA-mediated regulatory mechanism in ischemic stroke, we constructed OGD/R injury model of cerebral microglial cells. Microarray analysis was carried out and analyzed that lncRNA functional intergenic repeating RNA element (FIRRE) was associated with OGD/R injury. Based on the molecular biotechnology, we demonstrated that FIRRE could activate NF-kB signal pathway. Meanwhile, the activated NF-kB promoted FIRRE expression in OGD/R-treated cerebral microglial cells. Therefore, FIRRE and NF-kB formed a positive feedback loop to promote the transcription of NLRP3 inflammasome, thus contributed to the OGD/R injury of cerebral microglial cells. All findings in this study may help to explore novel and specific therapeutic target for ischemic stroke. Copyright © 2018. Published by Elsevier Inc.

  8. Development of basic data for modelling the residual alteration rate in aqueous media of AVM nuclear glasses

    International Nuclear Information System (INIS)

    Thien, B.

    2010-01-01

    During their aqueous alteration, AVM French nuclear glasses exhibit a large range of behaviour, in spite of a small range of composition. AVM glasses alteration rates are controlled by two phenomena: (i) precipitation of secondary phases, mostly aluminous hectorites, and (ii) diffusion of water across a more or less protective gel. The magnesium contained in these glasses increases the precipitation of these secondary phases, leading to a partial or total dissolution of the gel layer. This dissolution increases the glass alteration rates. On the other hand, Mg also incorporates in the gel, increasing his passivation properties. The predominance of one of these two phenomena depends on the initial composition of the glass, the pH of the solution, and the alteration conditions. In presence of Bure geological disposal site water (Mg and Ca rich), AVM glasses undergo less alteration than in initially pure water, in spite of larger amounts of secondary phase precipitates. This results from incorporation of calcium in the gel instead of sodium and magnesium, improving its passivating properties. We have adapted the geochemical GRAAL model for AVM glasses. In spite of its limitations, this model allows us to describe the differences of behaviour between these glasses, in function of their composition. Moreover, GRAAL can be proposed as a basis of a future operational model for predicting the alteration of AVM glasses. (author) [fr

  9. The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation

    Directory of Open Access Journals (Sweden)

    Shi Fushan

    2012-07-01

    Full Text Available Abstract Background Prion diseases are neurodegenerative disorders characterized by the accumulation of an abnormal disease-associated prion protein, PrPSc. In prion-infected brains, activated microglia are often present in the vicinity of PrPSc aggregates, and microglial activation is thought to play a key role in the pathogenesis of prion diseases. Although interleukin (IL-1β release by prion-induced microglia has been widely reported, the mechanism by which primed microglia become activated and secrete IL-1β in prion diseases has not yet been elucidated. In this study, we investigated the role of the NACHT, LRR and PYD domains-containing protein (NALP3 inflammasome in IL-1β release from lipopolysaccharide (LPS-primed microglia after exposure to a synthetic neurotoxic prion fragment (PrP106-126. Methods The inflammasome components NALP3 and apoptosis-associated speck-like protein (ASC were knocked down by gene silencing. IL-1β production was assessed using ELISA. The mRNA expression of NALP3, ASC, and pro-inflammatory factors was measured by quantitative PCR. Western blot analysis was used to detect the protein level of NALP3, ASC, caspase-1 and nuclear factor-κB. Results We found that that PrP106-126-induced IL-1β release depends on NALP3 inflammasome activation, that inflammasome activation is required for the synthesis of pro-inflammatory and chemotactic factors by PrP106-126-activated microglia, that inhibition of NF-κB activation abrogated PrP106-126-induced NALP3 upregulation, and that potassium efflux and production of reactive oxygen species were implicated in PrP106-126-induced NALP3 inflammasome activation in microglia. Conclusions We conclude that the NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation. To our knowledge, this is the first time that strong evidence for the involvement of NALP3 inflammasome in prion-associated inflammation has been found.

  10. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies.

    Science.gov (United States)

    Andrews, Jessica L; Goodfellow, Frederic J; Matosin, Natalie; Snelling, Mollie K; Newell, Kelly A; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2017-07-01

    Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory.

    Science.gov (United States)

    Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L

    2016-05-04

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.

  12. Targeting Microglial KATP Channels to Treat Neurodegenerative Diseases: A Mitochondrial Issue

    Directory of Open Access Journals (Sweden)

    Manuel J. Rodríguez

    2013-01-01

    Full Text Available Neurodegeneration is a complex process involving different cell types and neurotransmitters. A common characteristic of neurodegenerative disorders is the occurrence of a neuroinflammatory reaction in which cellular processes involving glial cells, mainly microglia and astrocytes, are activated in response to neuronal death. Microglia do not constitute a unique cell population but rather present a range of phenotypes closely related to the evolution of neurodegeneration. In a dynamic equilibrium with the lesion microenvironment, microglia phenotypes cover from a proinflammatory activation state to a neurotrophic one directly involved in cell repair and extracellular matrix remodeling. At each moment, the microglial phenotype is likely to depend on the diversity of signals from the environment and of its response capacity. As a consequence, microglia present a high energy demand, for which the mitochondria activity determines the microglia participation in the neurodegenerative process. As such, modulation of microglia activity by controlling microglia mitochondrial activity constitutes an innovative approach to interfere in the neurodegenerative process. In this review, we discuss the mitochondrial KATP channel as a new target to control microglia activity, avoid its toxic phenotype, and facilitate a positive disease outcome.

  13. Age-related memory decline is associated with vascular and microglial degeneration in aged rats.

    Science.gov (United States)

    Zhang, Rong; Kadar, Tamar; Sirimanne, Ernest; MacGibbon, Alastair; Guan, Jian

    2012-12-01

    The hippocampus processes memory is an early target of aging-related biological and structural lesions, leading to memory decline. With absent neurodegeneration in the hippocampus, which identified in rodent model of normal aging the pathology underlying age-related memory impairment is not complete. The effective glial-vascular networks are the key for maintaining neuronal functions. The changes of glial cells and cerebral capillaries with age may contribute to memory decline. Thus we examined age associated changes in neurons, glial phenotypes and microvasculature in the hippocampus of aged rats with memory decline. Young adult (6 months) and aged (35 months) male rats (Fisher/Norway-Brown) were used. To evaluate memory, four days of acquisition phase of Morris water maze tasks were carried out in both age groups and followed by a probe trial 2 h after the acquisition. The brains were then collected for analysis using immunochemistry. The aged rats showed a delayed latency (pvascular and microglial degeneration with reduced vascular endothelial growth factor and elevated GFAP expression in the hippocampus. The data indicate the memory decline with age is associated with neuronal dysfunction, possibly due to impaired glial-vascular-neuronal networks, but not neuronal degeneration. Glial and vascular degeneration found in aged rats may represent early event of aging pathology prior to neuronal degeneration. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells.

    Science.gov (United States)

    Hu, Yawei; Zeng, Ziling; Wang, Baojie; Guo, Shougang

    2017-10-01

    Amyloid β (Aβ) is the major component of senile plaques (SP) in the brains of Alzheimer's disease (AD) patients, and serves as an inflammatory stimulus for microglia. Trans-caryophyllene (TC), a major component in the essential oils derived from various species of medicinal plants, has displayed its neuro-protective effects in previous studies. However, whether TC has a protective role in AD remains unknown. In this study, the effects of TC on Aβ 1-42 -induced neuro-inflammation were investigated. We found that TC reduced the release of LDH in BV-2 microglial cells treated with Aβ 1-42 . In addition, pretreatment of BV2 microglia with TC at concentrations of 10, 25, and 50μM prior to Aβ stimulation led to significant inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2) production, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and secretion of pro-inflammatory cytokines. Notably, our results indicate that TC remarkably attenuated Aβ 1-42 -activated overexpression of toll-like receptor 4 (TLR4). We further demonstrated that TC markedly reversed Aβ 1-42 -induced phosphorylation and degradation of IκBα, nuclear translocation of p65, and NF-κB transcriptional activity. These findings suggest that TC may have therapeutic potential for the treatment of AD. Copyright © 2017. Published by Elsevier B.V.

  15. Enhanced detection and study of murine norovirus-1 using a more efficient microglial cell line

    Directory of Open Access Journals (Sweden)

    Lu Yuanan

    2009-11-01

    Full Text Available Abstract Background Human Noroviruses are the predominant cause of non-bacterial gastroenteritis worldwide. To facilitate prevention and control, a norovirus isolated from mice can provide a model to understand human noroviruses. To establish optimal viral infectivity conditions for murine noroviruses, several cell lines of hematopoietic lineage, including murine BV-2, RAW 264.7, and TIB, as well as human CHME-5, were tested comparatively for their sensitivity to murine norovirus-1. Results Except for CHME-5, all three murine-derived cell lines were susceptible to MNV infection. Viral infection of these cells was confirmed by RT-PCR. Using both viral plaque and replication assays, BV-2 and RAW 264.7 cells were determined to have comparable sensitivities to MNV-1 infection. Comparisons of cell growth characteristics, general laboratory handling and potential in-field applications suggest the use of BV-2 to be more advantageous. Conclusion Results obtained from these studies demonstrate that an immortalized microglial cell line can support MNV-1 replication and provides a more efficient method to detect and study murine noroviruses, facilitating future investigations using MNV-1 as a model to study, detect, and control Human Norovirus.

  16. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  17. Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice.

    Science.gov (United States)

    Alhadidi, Qasim; Nash, Kevin M; Alaqel, Saleh; Sayeed, Muhammad Shahdaat Bin; Shah, Zahoor A

    2018-05-08

    Intracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH. Animals given stereotaxic injections of cofilin siRNA, 72-h prior to induction of ICH by collagenase injection within the area of siRNA administration showed significantly decreased cofilin expression levels and lower hemorrhage volume and edema, and the animals performed significantly better in neurobehavioral tasks i.e., rotarod, grip strength and neurologic deficit scores. Cofilin siRNA knocked-down mice had reduced ICH-induced DNA fragmentation, blood-brain barrier disruption and microglial activation, with a concomitant increase in astrocyte activation. Increased expression of pro-survival proteins and decreased markers of oxidative stress were also observed in cofilin siRNA-treated mice possibly due to the reduced levels of cofilin. Our results suggest that cofilin plays a major role in ICH-induced secondary injury, and could become a potential therapeutic target. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Izumi Maezawa

    2012-01-01

    Full Text Available There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD; however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4, which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

  19. Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles.

    Science.gov (United States)

    Oliveira, L H; Nascimento, A B; Monteiro, P L J; Guardieiro, M M; Wiltbank, M C; Sartori, R

    2016-11-01

    The objective of this study was to test the hypothesis that high-producing dairy cows become increasingly resistant to insulin throughout lactation and that, consequently, oocyte quality is compromised. We used Holstein cows at 50 (51.5±3.7; n=30), 100 (102.3±9.4; n=30), and 150 (154.5±18.9; n=30) days in milk (DIM). We measured circulating insulin and glucose and performed a glucose tolerance test (GTT) after 5h of fasting. To evaluate oocyte quality, we performed ovum pickup on the day before the GTT (581 oocytes). We performed statistical analyses using the MIXED procedure of SAS. The model included the fixed effects of DIM, period, time, parity, and an interaction between DIM and time. We observed no difference in the GTT between groups for any variable related to circulating glucose (for example, glucose peak=203.3±7.2, 208.8±6.3, and 194.3±5.9mg/dL). However, various measures of circulating insulin were different in cows at 150 DIM compared with 50 or 100 DIM: higher basal insulin (8.8±0.9, 8.8±0.8, and 11.9±0.8 µIU/mL), peak insulin (61.9±6.2 , 69.1±5.7, and 89.0±6.1 µIU/mL), delta maximum insulin (51.1±5.5 , 59.4±5.0, and 73.5±5.4 µIU/mL), and area under the curve 5-60 (1,874.8±171.0 , 2,189.5±157.8, and 2,610.5±174.0 µIU/mL × min). Nevertheless, we observed no difference among groups in the number of viable oocytes (3.2±0.7, 3.9±0.7, and 3.6±0.7 per cow per ovum pickup) or percentage of viable oocytes (49.3, 52.2, and 51.8%). Increased circulating insulin before and throughout the GTT in cows at 150 DIM indicates that cows develop increasing insulin resistance with increasing DIM; however, increased insulin resistance was not associated with a detectable alteration in the quality of oocytes aspirated from small and medium-sized follicles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  1. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    Science.gov (United States)

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  2. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    Science.gov (United States)

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  3. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  4. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2018-01-01

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  5. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Orlando, Edward F.

    2016-01-01

    Endogenous progestogens are important regulators of vertebrate reproduction. Synthetic progestins are components of human contraceptive and hormone replacement pharmaceuticals. Both progestogens and progestins enter the environment through a number of sources, and have been shown to cause profound effects on reproductive health in various aquatic vertebrates. Progestins are designed to bind human progesterone receptors, but they also have been shown to strongly activate androgen receptors in fish. Levonorgestrel (LNG) activates fish androgen receptors and induces development of male secondary sex characteristics in females of other species. Although behavior has been postulated to be a sensitive early indicator of exposure to certain environmental contaminants, no such research on the reproductive behavior of gestagen-exposed fish has been conducted to date. The goal of our study was to examine the exposure effects of a human contraceptive progestin, LNG, on the reproductive development and behavior of the viviparous eastern mosquitofish (Gambusia holbrooki). Internal fertilization is a requisite characteristic of viviparous species, and is enabled by an androgen driven elongation of the anal fin into the male gonopodium (i.e., phallus). In this study, we exposed adult mosquitofish to ethanol (EtOH control), 10 ng/L, and 100 ng/L LNG for 8 d using a static replacement exposure design. After 8 d, a subset of males and females from each treatment were examined for differences in the 4:6 anal fin ratio. In addition, paired social interaction trials were performed using individual control males and control females or females treated 10 ng/L or 100 ng/L LNG. Female mosquitofish exposed to LNG were masculinized as evidenced by the elongation of the anal fin rays, a feature normal to males and abnormal to females. LNG caused significant increases in the 4:6 anal fin ratios of female mosquitofish in both the 10 ng/L and 100 ng/L treatments, although these

  6. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lin Nan

    2011-06-01

    Full Text Available Abstract Background Reactive microglia are associated with β-amyloid (Aβ deposit and clearance in Alzhiemer's Disease (AD. Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ, a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ. However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42 fibrils, not Aβ(1-42 oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42 not only attenuated fAβ(1-42-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42. Compared with the fAβ(1-42 treatment, the oAβ(1-42 treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β level and produced higher levels of tumor necrosis factor-α (TNF-α, nitric oxide (NO, prostaglandin E2 (PGE2 and intracellular superoxide anion (SOA. The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42-induced microglia was decreased by IL-1β, lippolysaccharide (LPS and tert-butyl hydroperoxide (t-BHP. The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC, a nuclear factor-κB (NF-κB inhibitor, and N-acetyl-L-cysteine (NAC, a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42 stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1, and Ig

  7. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    Directory of Open Access Journals (Sweden)

    Lalita Subedi

    2017-02-01

    Full Text Available Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max as primary isoflavones, possess anti‐inflammatory activity, but the effect of its active metabolite Equol (7‐hydroxy‐3‐(4′‐hydroxyphenyl‐chroman has not been well established. In this study, we investigated the anti‐neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS cells, including microglia (BV‐2, astrocytes (C6, and neurons (N2a, were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase (COX‐2, Mitogen activated protein kinase (MAPK signaling proteins, and apoptosis‐related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS‐induced TLR4 activation, MAPK activation, NF‐kB‐mediated transcription of inflammatory mediators, production of nitric oxide (NO, release of prostaglandin E2 (PGE‐2, secretion of tumor necrosis factor‐α (TNF‐α and interleukin 6 (IL‐6, in Lipopolysaccharide (LPS‐activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS‐activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti‐neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration.

  8. Alterations of parenchymal microstructure, neuronal connectivity and cerebrovascular resistance at adolescence following mild to moderate traumatic brain injury in early development.

    Science.gov (United States)

    Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar

    2018-06-01

    TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain

  9. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [18F]FEPPA.

    Science.gov (United States)

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P; Suridjan, Ivonne; Wilson, Alan A; Meyer, Jeffrey H; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M; Mizrahi, Romina

    2017-02-01

    Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [ 18 F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [ 18 F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (V T ) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [ 18 F]FEPPA V T , in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [ 18 F]FEPPA V T and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. The lack of significant differences in [ 18 F]FEPPA V T between groups suggests that microglial activation is not present in first-episode psychosis.

  10. HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity.

    Directory of Open Access Journals (Sweden)

    Giorgio Mangino

    Full Text Available The potential role of the human immunodeficiency virus-1 (HIV-1 accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef treatment has been shown to activate NF-κB, MAP kinases and interferon responsive factor 3 (IRF-3, thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT-1, STAT-2 and STAT-3 through the production of proinflammatory factors.We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-κB activation and, at least in part, interferon-β (IFNβ release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells.These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.

  11. Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity.

    Science.gov (United States)

    Gallina, Donika; Zelinka, Christopher Paul; Cebulla, Colleen M; Fischer, Andy J

    2015-11-01

    Reactive microglia and macrophages are prevalent in damaged retinas. Glucocorticoid signaling is known to suppress inflammation and the reactivity of microglia and macrophages. In the vertebrate retina, the glucocorticoid receptor (GCR) is known to be activated and localized to the nuclei of Müller glia (Gallina et al., 2014). Accordingly, we investigated how signaling through GCR influences the survival of neurons using the chick retina in vivo as a model system. We applied intraocular injections of GCR agonist or antagonist, assessed microglial reactivity, and the survival of retinal neurons following different damage paradigms. Microglial reactivity was increased in retinas from eyes that were injected with vehicle, and this reactivity was decreased by GCR-agonist dexamethasone (Dex) and increased by GCR-antagonist RU486. We found that activation of GCR suppresses the reactivity of microglia and inhibited the loss of retinal neurons resulting from excitotoxicity. We provide evidence that the protection-promoting effects of Dex were maintained when the microglia were selectively ablated. Similarly, intraocular injections of Dex protected ganglion cells from colchicine-treatment and protected photoreceptors from damage caused by retinal detachment. We conclude that activation of GCR promotes the survival of ganglion cells in colchicine-damaged retinas, promotes the survival of amacrine and bipolar cells in excitotoxin-damaged retinas, and promotes the survival of photoreceptors in detached retinas. We propose that suppression of microglial reactivity is secondary to activation of GCR in Müller glia, and this mode of signaling is an effective means to lessen the damage and vision loss resulting from different types of retinal damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Directory of Open Access Journals (Sweden)

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  13. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body

  14. Complexity of the Microglial Activation Pathways that Drive Innate Host Responses During Lethal Alphavirus Encephalitis in Mice

    Directory of Open Access Journals (Sweden)

    Nilufer Esen

    2012-04-01

    Full Text Available Microglia express multiple TLRs (Toll-like receptors and provide important host defence against viruses that invade the CNS (central nervous system. Although prior studies show these cells become activated during experimental alphavirus encephalitis in mice to generate cytokines and chemokines that influence virus replication, tissue inflammation and neuronal survival, the specific PRRs (pattern recognition receptors and signalling intermediates controlling microglial activation in this setting remain unknown. To investigate these questions directly in vivo, mice ablated of specific TLR signalling molecules were challenged with NSV (neuroadapted Sindbis virus and CNS viral titres, inflammatory responses and clinical outcomes followed over time. To approach this problem specifically in microglia, the effects of NSV on primary cells derived from the brains of wild-type and mutant animals were characterized in vitro. From the standpoint of the virus, microglial activation required viral uncoating and an intact viral genome; inactivated virus particles did not elicit measurable microglial responses. At the level of the target cell, NSV triggered multiple PRRs in microglia to produce a broad range of inflammatory mediators via non-overlapping signalling pathways. In vivo, disease survival was surprisingly independent of TLR-driven responses, but still required production of type-I IFN (interferon to control CNS virus replication. Interestingly, the ER (endoplasmic reticulum protein UNC93b1 facilitated host survival independent of its known effects on endosomal TLR signalling. Taken together, these data show that alphaviruses activate microglia via multiple PRRs, highlighting the complexity of the signalling networks by which CNS host responses are elicited by these infections.

  15. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum.

    Science.gov (United States)

    Ano, Yasuhisa; Kutsukake, Toshiko; Hoshi, Ayaka; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of dementia patients worldwide, fundamental therapeutic approaches to treat this disease remain to be established. Preventive approaches such as diet, exercise and learning attract attention. Several epidemiological studies suggest that ingestion of fermented dairy products prevents cognitive decline in the elderly. These reports indicate that specific ingredients in the fermented dairy products elicit an anti-inflammatory or anti-oxidative activity that facilitates neuroprotection. The responsible components remain to be investigated. A number of studies have shown that inflammation caused by microglia is closely related to exaggeration of the pathology and cognitive decline seen in the elderly. Many researchers have proposed that controlling microglial activities could be effective in preventing and possibly curing dementia. In the present study, to elucidate specific compounds that regulate microglial activity from dairy products, repeated purification by HPLC, combined with evaluation using primary microglia, facilitated the identification of dehydroergosterol (DHE) as a novel component of the extract that enhances microglial anti-inflammatory activity. DHE contains three conjugated double bonds in a steroid ring system and is an analogue of ergosterol. Despite their related chemical structures, the anti-inflammatory activity of DHE is markedly stronger than that of ergosterol. P. candidum for camembert cheese produces DHE, but P. Roqueforti for blue cheese and Aspergillus do not. DHE also induces CD11b-positive microglia cells into CD206-positive M2 type microglia. Neurotoxicity and neuronal cell death induced by excessively activated microglia is suppressed by treatment with DHE. Thus, this is the first report to demonstrate that DHE, identified as a responsible compound in dairy products, can induce microglia into a preferable phenotype for our brain environment and can be safely introduced into the body by consumption of

  16. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    Energy Technology Data Exchange (ETDEWEB)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito; Takahashi, Satoru

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB by analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.

  17. Sharp and blunt force trauma concealment by thermal alteration in homicides: an in-vitro experiment for methodology and protocol development in forensic anthropological analysis of burnt bones

    OpenAIRE

    Macoveciuc, I; Marquez-Grant, N; Horsfall, I; Zioupos, P

    2017-01-01

    Burning of human remains is one method used by perpetrators to conceal fatal trauma and expert opinions regarding the degree of skeletal evidence concealment are often disparate. This experiment aimed to reduce this incongruence in forensic anthropological interpretation of burned human remains and implicitly contribute to the development of research methodologies sufficiently robust to withstand forensic scrutiny in the courtroom. We have tested the influence of thermal alteration on pre-exi...

  18. Microradiographic investigations on experimentally provoked structural alterations in hard tooth tissues after sealing with plastic material in places where caries is apt to develop

    International Nuclear Information System (INIS)

    Falten, E.

    1981-01-01

    The aim of the present investigation was, after sealing three areas in extracted human teeth: fissures, dental necksand approximate areas and subsequent exposure to experimentally produced cariogenous noxae, to establish possible alterations in the area of transition between sealed and unsealed dental enamal. This would provide a further decision-taking aid with regard to the question whether also the remaining parts where caries is apt to develop should be sealed. (orig./MG) [de

  19. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    Energy Technology Data Exchange (ETDEWEB)

    Vigano, Luigi, E-mail: vigano@irsa.cnr.i [Water Research Institute, National Council of Research, Brugherio, Milan (Italy); Benfenati, Emilio [Mario Negri Institute, Laboratory of Environmental Chemistry and Toxicology, Milan (Italy); Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta [Department of Environmental, Experimental and Applied Biology, University of Genoa, Genoa (Italy)

    2010-12-15

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17{beta}-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  20. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    International Nuclear Information System (INIS)

    Vigano, Luigi; Benfenati, Emilio; Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta

    2010-01-01

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17β-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  1. Chronic variable stress in fathers alters paternal and social behavior but not pup development in the biparental California mouse (Peromyscus californicus).

    Science.gov (United States)

    Harris, Breanna N; de Jong, Trynke R; Yang, Vanessa; Saltzman, Wendy

    2013-11-01

    Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n=8), separation control (SC, n=7), or unmanipulated control (UC, n=8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions. © 2013.

  2. Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development

    DEFF Research Database (Denmark)

    Zieger, Karsten; Marcussen, Niels; Borre, Michael

    2009-01-01

    Bladder cancer develops through different pathways, provisionally entitled "papillary" and "invasive." Carcinoma in situ (CIS) is thought to be the precursor of invasive bladder cancer. However, little is known about chromosomal alterations of these clinically important lesions......, and the relationship between chromosomal alterations and the different pathways. We laser-microdissected 12 CIS and 4 dysplasia samples concomitant to invasive bladder cancer. We determined genome-wide chromosome copy number changes and loss of heterozygosity (LOH) using Mapping 10K SNP microarrays. We further...... examined 48 high-risk non-muscle-invasive bladder cancers using SNP microarrays to reveal characteristic changes correlated with the CIS-phenotype. DNA copy-number changes were further validated using QPCR in 77 independent tumor samples. CIS was found to be chromosomal unstable in 8 of 12 cases...

  3. Paeoniflorin Attenuates Inflammatory Pain by Inhibiting Microglial Activation and Akt-NF-κB Signaling in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-05-01

    Full Text Available Background/Aims: Paeoniflorin (PF is known to have anti-inflammatory and paregoric effects, but the mechanism underlying its analgesic effect remains unclear. The aim of this study was to clarify the effect of PF on Freund’s complete adjuvant (CFA-induced inflammatory pain and explore the underlying molecular mechanism. Methods: An inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After intrathecal injection of PF daily for 8 consecutive days, thermal and mechanical withdrawal thresholds, the levels of inflammatory factors TNF-α, IL-1β and IL-6, microglial activity, and the expression of Akt-NF-κB signaling pathway in the spinal cord tissue were detected by animal ethological test, cell culture, enzyme-linked immunosorbent assay, immunofluorescence histochemistry, and western blot. Results: PF inhibited the spinal microglial activation in the CFA-induced pain model. The production of proinflammatory cytokines was decreased in the central nervous system after PF treatment both in vivo and in vitro. PF further displayed a remarkable effect on inhibiting the activation of Akt-NF-κB signaling pathway in vivo and in vitro. Conclusion: These results suggest that PF is a potential therapeutic agent for inflammatory pain and merits further investigation.

  4. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease.

    Science.gov (United States)

    Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina; Ekdahl, Christine T; Nitsch, Roger M

    2012-01-01

    Activated microglia with macrophage-like functions invade and surround β-amyloid (Aβ) plaques in Alzheimer's disease (AD), possibly contributing to the turnover of Aβ, but they can also secrete proinflammatory factors that may be involved in the pathogenesis of AD. Microglia are known to modulate adult hippocampal neurogenesis. To determine the role of microglia on neurogenesis in brains with Aβ pathology, we inhibited microglial activation with the tetracycline derivative minocycline in doubly transgenic mice expressing mutant human amyloid precursor protein (APP) and mutant human presenilin-1 (PS1). Minocycline increased the survival of new dentate granule cells in APP/PS1 mice indicated by more BrdU+/NeuN+ cells as compared to vehicle-treated transgenic littermates, accompanied by improved behavioral performance in a hippocampus-dependent learning task. Both brain levels of Aβ and Aβ-related morphological deficits in the new neurons labeled with GFP-expressing retrovirus were unaffected in minocycline-treated mice. These results suggest a role for microglia in Aβ-related functional deficits and in suppressing the survival of new neurons, and show that modulation of microglial function with minocycline can protect hippocampal neurogenesis in the presence of Aβ pathology. Copyright © 2012 S. Karger AG, Basel.

  5. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    Science.gov (United States)

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  6. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    Science.gov (United States)

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in

  7. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    Directory of Open Access Journals (Sweden)

    McCullagh Paul

    2010-06-01

    Full Text Available Abstract Background Genome wide association studies (GWAS have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. Methods We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. Results We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10-7, and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39 and malignant tissues (n = 21 was also evident (P = 0.002. We also identified that whilst HNF1B(C and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression, HNF1B(B and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10-7 and 4 × 10-4 respectively, indicating major shifts in isoform usage. Conclusions Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.

  8. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    International Nuclear Information System (INIS)

    Harries, Lorna W; Perry, John RB; McCullagh, Paul; Crundwell, Malcolm

    2010-01-01

    Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10 -7 ), and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39) and malignant tissues (n = 21) was also evident (P = 0.002). We also identified that whilst HNF1B(C) and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression), HNF1B(B) and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10 -7 and 4 × 10 -4 respectively), indicating major shifts in isoform usage. Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms

  9. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  10. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    Science.gov (United States)

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  11. Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation.

    Science.gov (United States)

    Li, Rui; Peng, Ning; Du, Fang; Li, Xu-ping; Le, Wei-dong

    2006-04-01

    To observe whether the dopaminergic neuroprotective effect of (-)-epigallocatechin gallate (EGCG) is associated with its inhibition of microglial cell activation in vivo. The effects of EGCG at different doses on dopaminergic neuronal survival were tested in a methyl-4-phenyl-pyridinium (MPP+)-induced dopaminergic neuronal injury model in the primary mesencephalic cell cultures. With unbiased stereological method, tyrosine hydroxylase-immunoreactive (TH-ir) cells were counted in the A8, A9 and A10 regions of the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The effect of EGCG on microglial activation in the SN was also investigated. Pretreatment with EGCG (1 to 100 micromol/L) significantly attenuated MPP+-induced TH-ir cell loss by 22.2% to 80.5% in the mesencephalic cell cultures. In MPTP-treated C57BL/6 mice, EGCG at a low concentration (1 mg/kg) provided significant protection against MPTP-induced TH-ir cell loss by 50.9% in the whole nigral area and by 71.7% in the A9 region. EGCG at 5 mg/kg showed more prominent protective effect than at 1 or 10 mg/kg. EGCG pretreatment significantly inhibited microglial activation and CD11b expression induced by MPTP. EGCG exerts potent dopaminergic neuroprotective activity by means of microglial inhibition, which shed light on the potential use of EGCG in treatment of Parkinson's disease.

  12. Myelin-specific T cells induce interleukin-1beta expression in lesion-reactive microglial-like cells in zones of axonal degeneration

    DEFF Research Database (Denmark)

    Grebing, Manuela; Nielsen, Helle H; Fenger, Christina D

    2016-01-01

    lesion-reactive CD11b(+) ramified microglia. These results suggest that myelin-specific T cells stimulate lesion-reactive microglial-like cells to produce IL-1β. These findings are relevant to understand the consequences of T-cell infiltration in white and gray matter lesions in patients with MS. GLIA...

  13. Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures.

    Science.gov (United States)

    Gamer, Laura W; Cox, Karen; Carlo, Joelle M; Rosen, Vicki

    2009-09-01

    Bone morphogenetic protein-3 (BMP) has been identified as a negative regulator in the skeleton as mice lacking BMP3 have increased bone mass. To further understand how BMP3 mediates bone formation, we created transgenic mice overexpressing BMP3 using the type I collagen promoter. BMP3 transgenic mice displayed spontaneous rib fractures that were first detected at E17.0. The fractures were due to defects in differentiation of the periosteum and late hypertrophic chondrocytes resulting in thinner cortical bone with decreased mineralization. As BMP3 modulates BMP and activin signaling through ActRIIB, we examined the ribs of ActRIIB receptor knockout mice and found they had defects in late chondrogenesis and mineralization similar to BMP3 transgenic mice. These data suggest that BMP3 exerts its effects in the skeleton by altering signaling through ActRIIB in chondrocytes and the periosteum, and this results in defects in bone collar formation and late hypertrophic chondrocyte maturation leading to decreased mineralization and less bone. 2009 Wiley-Liss, Inc.

  14. Postnatal undernutrition in rats: attempts to develop alternative methods to food deprive pups without maternal behavioral alteration.

    Science.gov (United States)

    Codo, W; Carlini, E A

    1979-09-01

    Two methods were investigated as attempts to undernourish rat pups without the disturbances in maternal behavior that accompany the procedures used to date for this purpose. In the 1st method, a litter of 12 pups was raised by both a lactating mother and a "sensitized" female. The sensitized female was provided under the assumption that she could correct for the deficit in maternal care when 1 mother raises a large litter. The results showed that the pups raised by the 2 females were constantly removed by the females from each other's nests; the females engaged in constant fighting and showed altered maternal behavior. As a consequence the pups lost more weight than control underfed young. The 2nd method consisted of removing 6-8 nipples from virgin females which were mated 10 days later. After delivery these females raised litters of 6 pups. Their maternal behavior was equal to that of unoperated controls, and at weaning the pups had 20-50% less body weight. This method could be useful to study undernutrition effects on behavior, without confounding experimental variables.

  15. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  16. Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma.

    Science.gov (United States)

    Bhagat, Rahul; Kumar, Sandeep Sriram; Vaderhobli, Shilpa; Premalata, Chennagiri S; Pallavi, Venkateshaiah Reddihalli; Ramesh, Gawari; Krishnamoorthy, Lakshmi

    2014-09-01

    Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.

  17. Influence of ovarian hormones on development of ingestive responding to alterations in fatty acid oxidation in female rats

    Science.gov (United States)

    Swithers, Susan E.; McCurley, Melissa; Hamilton, Erica; Doerflinger, Alicia

    2008-01-01

    Adult male rats have been demonstrated to increase food intake in response to administration of drugs that interfere with oxidation of fatty acids (e.g. methyl palmoxirate and mercaptoacetate [MA]), effects that are larger in animals maintained on a high-fat diet. In contrast, while administration of MA has been reported to stimulate food intake in pre-pubertal female rats, food intake is not stimulated by MA in adult female rats. Instead, administration of MA to adult females results in changes in reproductive behavior and physiology. The present experiments were designed to examine the effects of administration of MA on food intake in adult female rats. The results demonstrated that, as previously reported, food intake was stimulated by MA in adult male rats on low-fat and high-fat diets, but food intake in was not stimulated by MA in gonadally-intact adult female rats on either low-fat or high-fat diet. Further, MA did not stimulate food intake in female rats ovariectomized as adults. However, when females were ovariectomized prior to the onset of puberty (postnatal day 25 – 28), food intake was stimulated by administration of MA in adulthood. Finally, cyclic injections of 17-β-estradiol benzoate given to females ovariectomized prior to the onset of puberty abolished the stimulatory effects of MA on food intake in adult females. Taken together, the data suggest that exposure to estrogens during the time of puberty in female rats can persistently alter adult ingestive responding to signals related to changes in energy utilization. PMID:18586247

  18. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells in bladder and results in altered contractile properties.

    Science.gov (United States)

    Gevaert, Thomas; Hutchings, Graham; Everaerts, Wouter; Prenen, Hans; Roskams, Tania; Nilius, Bernd; De Ridder, Dirk

    2014-04-01

    The KIT receptor is considered as a reliable marker for a subpopulation of interstitial cells (IC), and by persistent neonatal inhibition of KIT we have investigated the role of this receptor in the development of IC-networks in bladder and we have observed the functional consequences of this inhibition. Newborn rat pups were treated daily with the KIT inhibitor imatinib mesylate (IM). After 7 days animals were sacrificed and bladder samples were dissected for morphological and functional studies. Morphological research consisted of immunohistochemistry with IC specific antigens (KIT and vimentin) and electron microscopy. The functional studies were based on isolated bladder strips in organ baths, in which spontaneous bladder contractility and the response to a non-subtype selective muscarinic agonist was evaluated. Suburothelial and intramuscular IC were found and characterized in neonatal rat bladder. IM-treatment induced a significant decrease in numbers of IC based on specific immunohistochemical markers, and electron microscopy revealed evidence of IC cell injury. These morphological alterations were observed on intramuscular IC only and not on IC in the suburothelium. Isolated muscle strips from IM-treated animals had a lower contractile frequency and an altered response to muscarinic agonists. The present study shows the presence of regional subpopulations of IC in neonatal rat bladder, provides evidence for a dependence on KIT of the development of intramuscular IC and supports the hypothesis that a poor development of networks of intramuscular IC might have repercussions on spontaneous and muscarinic-induced bladder contractility. © 2013 Wiley Periodicals, Inc.

  19. Adverse fetal and neonatal outcomes associated with a life-long high fat diet: role of altered development of the placental vasculature.

    Directory of Open Access Journals (Sweden)

    Emily K Hayes

    Full Text Available Maternal obesity results in a number of obstetrical and fetal complications with both immediate and long-term consequences. The increased prevalence of obesity has resulted in increasing numbers of women of reproductive age in this high-risk group. Since many of these obese women have been subjected to hypercaloric diets from early childhood we have developed a rodent model of life-long maternal obesity to more clearly understand the mechanisms that contribute to adverse pregnancy outcomes in obese women. Female Sprague Dawley rats were fed a control diet (CON--16% of calories from fat or high fat diet (HF--45% of calories from fat from 3 to 19 weeks of age. Prior to pregnancy HF-fed dams exhibited significant increases in body fat, serum leptin and triglycerides. A subset of dams was sacrificed at gestational day 15 to evaluate fetal and placental development. The remaining animals were allowed to deliver normally. HF-fed dams exhibited a more than 3-fold increase in fetal death and decreased neonatal survival. These outcomes were associated with altered vascular development in the placenta, as well as increased hypoxia in the labyrinth. We propose that the altered placental vasculature may result in reduced oxygenation of the fetal tissues contributing to premature demise and poor neonatal survival.

  20. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation

    Directory of Open Access Journals (Sweden)

    Das Sulagna

    2010-10-01

    Full Text Available Abstract Background Activation of microglia, the resident macrophages of the central nervous system (CNS, is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (Cox-2 and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4, one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. Methods For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS. Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs. Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. Results LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown

  1. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  2. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    Science.gov (United States)

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  3. Music and Alterity Processes

    Directory of Open Access Journals (Sweden)

    Josep Martí

    2014-10-01

    Full Text Available The concept of alterity constitutes an important issue in anthropological research and, therefore, in the study of musical practices, as well. Without it, we could hardly understand other kinds of music situated in different spaces and time from the observer. In order to effectively approach these musical practices, we have to develop strategies to help us reduce as much as possible that which distorts the vision of the other. However, beyond the strictly epistemological and methodological issues, the study of music cannot ignore the ethical question related to the manner in which Western thought has understood and treated the other: through a hierarchical and stereotypical type of thinking based on the condition of otherness. Throughout the article, different alterity procedures are presented and discussed, such as synecdochization, exoticization, undervaluation, overvaluation, misunderstanding and exclusion. Taking these different alterity strategies into account may help us to better understand how the musical other is constructed, used and ultimately instrumentalized.

  4. Model applied to wistar rats for analysis of atrial alteration radioinduced: role of the TGFBeta1 cytokine on the lesions development

    International Nuclear Information System (INIS)

    Silva, Viviane Fernandes da; Andrade, Cherley Borba V. de; Nascimento, Ana Lucia Rosa do; Silva, Claudia Marcello da; Ribeiro, Andreia Fortes; Mandarim-de-Lacerda, Carlos Alberto; Carvalho, Jorge Jose de; Almeida, Carlos Eduardo de

    2009-01-01

    This paper develops a radiobiological model on Wistar rats for evaluation of atrium radioinduced alterations. Male Wistar rats were anaesthetised, immobilized and irradiated with 500, 1000 and 1500 cGy irradiated doses in the cardiac volume, pre-define through tomography. The animals were sacrificed after 15 days irradiation. The atriums were collected, fixed in formaldehyde and soaked into paraffin. A part of samples were dyed with hematoxyline-eosin (HE) and another submitted to immunohistochemistry for visualization of the cytokine TGFbeta1 expression. The observation of samples with HE indicated lesions om blood vessels and discrete inflamed infiltrated on some samples. The immunohistochemistry shown an intense expression of the TGFbeta1 cytokine, mainly on the only intine of the blood vessels. The data indicate that the atria develop alterations compatible to inflammatory answer as reaction to the damage caused by the tissue irradiation, and this answer is responsible by the production of TGFbeta1 cytokine, considered a cytokine pro-fibrotic on various models of cardiac disease. The lesions at atrium level can reflect on the correct functioning of the system generator of cardiac impulse, and can induce arrythmias and to prejudice the production of natriuretic peptides, molecules involved on the cardiac homeostasis

  5. Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure.

    Science.gov (United States)

    Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T; Raetzman, Lori T

    2015-08-01

    As the pituitary gland develops, signals from the hypothalamus are necessary for pituitary induction and expansion. Little is known about the control of cues that regulate early signaling between the two structures. Ligands and receptors of the Notch signaling pathway are found in both the hypothalamus and Rathke's pouch. The downstream Notch effector gene Hes1 is required for proper pituitary formation; however, these effects could be due to the action of Hes1 in the hypothalamus, Rathke's pouch, or both. To determine the contribution of hypothalamic Notch signaling to pituitary organogenesis, we used mice with loss and gain of Notch function within the developing hypothalamus. We demonstrate that loss of Notch signaling by conditional deletion of Rbpj in the hypothalamus does not affect expression of Hes1 within the posterior hypothalamus or expression of Hes5. In contrast, expression of activated Notch within the hypothalamus results in ectopic Hes5 expression and increased Hes1 expression, which is sufficient to disrupt pituitary development and postnatal expansion. Taken together, our results indicate that Rbpj-dependent Notch signaling within the developing hypothalamus is not necessary for pituitary development, but persistent Notch signaling and ectopic Hes5 expression in hypothalamic progenitors affects pituitary induction and expansion. © 2015 Wiley Periodicals, Inc.

  6. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)

    2011-02-15

    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  7. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    International Nuclear Information System (INIS)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko; Yagi, Shunsuke; Ouchi, Yasuomi; Yoshikawa, Etsuji; Kikuchi, Mitsuru; Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki; Ueki, Takatoshi

    2011-01-01

    Amyloid β protein (Aβ) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between Aβ accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [ 11 C](R)PK11195, [ 11 C]PIB and [ 18 F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [ 11 C](R)PK11195 were directly compared with those of [ 11 C]PIB in the brain regions with reduced glucose metabolism. BPs of [ 11 C](R)PK11195 and [ 11 C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [ 11 C](R)PK11195 BPs, but not [ 11 C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [ 11 C](R)PK11195 and [ 11 C]PIB BPs in the posterior cingulate cortex (PCC) (p 18 F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that Aβ accumulation shown by [ 11 C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of Aβ in early AD. (orig.)

  8. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2007-09-01

    Full Text Available Abstract Background The mechanisms involved in the induction and regulation of inflammation resulting in dopaminergic (DA neurotoxicity in Parkinson's disease (PD are complex and incompletely understood. Microglia-mediated inflammation has recently been implicated as a critical mechanism responsible for progressive neurodegeneration. Methods Mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanisms of sinomenine (SN-mediated anti-inflammatory and neuroprotective effects in both the lipopolysaccharide (LPS- and the 1-methyl-4-phenylpyridinium (MPP+-mediated models of PD. Results SN showed equivalent efficacy in protecting against DA neuron death in rat midbrain neuron-glial cultures at both micro- and sub-picomolar concentrations, but no protection was seen at nanomolar concentrations. The neuroprotective effect of SN was attributed to inhibition of microglial activation, since SN significantly decreased tumor necrosis factor-α (TNF-α, prostaglandin E2 (PGE2 and reactive oxygen species (ROS production by microglia. In addition, from the therapeutic point of view, we focused on sub-picomolar concentration of SN for further mechanistic studies. We found that 10-14 M of SN failed to protect DA neurons against MPP+-induced toxicity in the absence of microglia. More importantly, SN failed to show a protective effect in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX, a key enzyme for extracellular superoxide production in immune cells. Furthermore, we demonstrated that SN reduced LPS-induced extracellular ROS production through the inhibition of the PHOX cytosolic subunit p47phoxtranslocation to the cell membrane. Conclusion Our findings strongly suggest that the protective effects of SN are most likely mediated through the inhibition of microglial PHOX activity. These findings suggest a novel therapy to treat inflammation-mediated neurodegenerative diseases.

  9. Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment.

    Science.gov (United States)

    Alboni, Silvia; Poggini, Silvia; Garofalo, Stefano; Milior, Giampaolo; El Hajj, Hassan; Lecours, Cynthia; Girard, Isabelle; Gagnon, Steven; Boisjoly-Villeneuve, Samuel; Brunello, Nicoletta; Wolfer, David P; Limatola, Cristina; Tremblay, Marie-Ève; Maggi, Laura; Branchi, Igor

    2016-11-01

    It has been hypothesized that selective serotonin reuptake inhibitors (SSRIs), the most common treatment for major depression, affect mood through changes in immune function. However, the effects of SSRIs on inflammatory response are contradictory since these act either as anti- or pro-inflammatory drugs. Previous experimental and clinical studies showed that the quality of the living environment moderates the outcome of antidepressant treatment. Therefore, we hypothesized that the interplay between SSRIs and the environment may, at least partially, explain the apparent incongruence regarding the effects of SSRI treatment on the inflammatory response. In order to investigate such interplay, we exposed C57BL/6 mice to chronic stress to induce a depression-like phenotype and, subsequently, to fluoxetine treatment or vehicle (21days) while being exposed to either an enriched or a stressful condition. At the end of treatment, we measured the expression levels of several anti- and pro-inflammatory cytokines and inflammatory mediators in the whole hippocampus and in isolated microglia. We also determined microglial density, distribution, and morphology to investigate their surveillance state. Results show that the effects of fluoxetine treatment on inflammation and microglial function, as compared to vehicle, were dependent on the quality of the living environment. In particular, fluoxetine administered in the enriched condition increased the expression of pro-inflammatory markers compared to vehicle, while treatment in a stressful condition produced anti-inflammatory effects. These findings provide new insights regarding the effects of SSRIs on inflammation, which may be crucial to devise pharmacological strategies aimed at enhancing antidepressant efficacy by means of controlling environmental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Smoking and the Developing Brain : Altered White Matter Microstructure in Attention-Deficit/Hyperactivity Disorder and Healthy Controls

    NARCIS (Netherlands)

    van Ewijk, Hanneke; Groenman, Annabeth P.; Zwiers, Marcel P.; Heslenfeld, Dirk J.; Faraone, Stephen V.; Hartman, Catharina A.; Luman, Marjolein; Greven, Corina U.; Hoekstra, Pieter J.; Franke, Barbara; Buitelaar, Jan; Oosterlaan, Jaap

    Brain white matter (WM) tracts, playing a vital role in the communication between brain regions, undergo important maturational changes during adolescence and young adulthood, a critical period for the development of nicotine dependence. Attention-deficit/hyperactivity disorder (ADHD) is associated

  11. Proteomics of the rat myocardium during development of type 2 diabetes mellitus reveals progressive alterations in major metabolic pathways

    DEFF Research Database (Denmark)

    Edhager, Anders Valdemar; Povlsen, Jonas Agerlund; Løfgren, Bo

    2018-01-01

    in intracellular metabolic pathways in the Zucker diabetic fatty rat heart as T2DM develops using MS based proteomics. The pre-diabetic state only induced minor pathway changes, whereas onset and late T2DM caused pronounced perturbations. Two actin-associated proteins, ARPC2 and TPM3, were up-regulated at the pre...

  12. The effects of different endocrine disruptors defining compound-specific alterations of gene expression profiles in the developing testis

    NARCIS (Netherlands)

    López-Casas, Pedro P.; Mizrak, Sefika C.; López-Fernández, Luis A.; Paz, María; de Rooij, Dirk G.; del Mazo, Jesús

    2012-01-01

    Environmental contaminants considered endocrine disruptors have been shown to affect testis development and function but the mechanisms of action are not clear. We now have analyzed the effects on the transcriptome in testes of mice exposed to mono-(2-ethylhexyl)-phthalate (9.2; 46.3 or 92.7

  13. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.

    Science.gov (United States)

    Bauman, M D; Iosif, A-M; Ashwood, P; Braunschweig, D; Lee, A; Schumann, C M; Van de Water, J; Amaral, D G

    2013-07-09

    Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes.

  14. Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hangarter Roger P

    2007-07-01

    Full Text Available Abstract Background Proper development of plastids in embryo and seedling tissues is critical for plant development. During germination, plastids develop to perform many critical functions that are necessary to establish the seedling for further growth. A growing body of work has demonstrated that components of the plastid transcription and translation machinery must be present and functional to establish the organelle upon germination. Results We have identified Arabidopsis thaliana mutants in a gene that encodes a plastid-targeted elongation factor G (SCO1 that is essential for plastid development during embryogenesis since two T-DNA insertion mutations in the coding sequence (sco1-2 and sco1-3 result in an embryo-lethal phenotype. In addition, a point mutation allele (sco1-1 and an allele with a T-DNA insertion in the promoter (sco1-4 of SCO1 display conditional seedling-lethal phenotypes. Seedlings of these alleles exhibit cotyledon and hypocotyl albinism due to improper chloroplast development, and normally die shortly after germination. However, when germinated on media supplemented with sucrose, the mutant plants can produce photosynthetically-active green leaves from the apical meristem. Conclusion The developmental stage-specific phenotype of the conditional-lethal sco1 alleles reveals differences in chloroplast formation during seedling germination compared to chloroplast differentiation in cells derived from the shoot apical meristem. Our identification of embryo-lethal mutant alleles in the Arabidopsis elongation factor G indicates that SCO1 is essential for plant growth, consistent with its predicted role in chloroplast protein translation.

  15. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  16. Neurocognitive and electrophysiological evidence of altered face processing in parents of children with autism: implications for a model of abnormal development of social brain circuitry in autism.

    Science.gov (United States)

    Dawson, Geraldine; Webb, Sara Jane; Wijsman, Ellen; Schellenberg, Gerard; Estes, Annette; Munson, Jeffrey; Faja, Susan

    2005-01-01

    Neuroimaging and behavioral studies have shown that children and adults with autism have impaired face recognition. Individuals with autism also exhibit atypical event-related brain potentials to faces, characterized by a failure to show a negative component (N170) latency advantage to face compared to nonface stimuli and a bilateral, rather than right lateralized, pattern of N170 distribution. In this report, performance by 143 parents of children with autism on standardized verbal, visual-spatial, and face recognition tasks was examined. It was found that parents of children with autism exhibited a significant decrement in face recognition ability relative to their verbal and visual spatial abilities. Event-related brain potentials to face and nonface stimuli were examined in 21 parents of children with autism and 21 control adults. Parents of children with autism showed an atypical event-related potential response to faces, which mirrored the pattern shown by children and adults with autism. These results raise the possibility that face processing might be a functional trait marker of genetic susceptibility to autism. Discussion focuses on hypotheses regarding the neurodevelopmental and genetic basis of altered face processing in autism. A general model of the normal emergence of social brain circuitry in the first year of life is proposed, followed by a discussion of how the trajectory of normal development of social brain circuitry, including cortical specialization for face processing, is altered in individuals with autism. The hypothesis that genetic-mediated dysfunction of the dopamine reward system, especially its functioning in social contexts, might account for altered face processing in individuals with autism and their relatives is discussed.

  17. Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Shuzhen; Chen, Wenyue; Xiao, Wenfei; Yang, Changdeng; Xin, Ya; Qiu, Jieren; Hu, Weimin; Ying, Wu; Fu, Yaping; Tong, Jianxin; Hu, Guocheng; Chen, Zhongzhong; Fang, Xianping; Yu, Hong; Lai, Wenguo; Ruan, Songlin; Ma, Huasheng

    2015-01-01

    Rice hull, the outer cover of the rice grain, determines grain shape and size. Changes in the rice hull proteome in different growth stages may reflect the underlying mechanisms involved in grain development. To better understand these changes, isobaric tags for relative and absolute quantitative (iTRAQ) MS/MS was used to detect statistically significant changes in the rice hull proteome in the booting, flowering, and milk-ripe growth stages. Differentially expressed proteins were analyzed to predict their potential functions during development. Gene ontology (GO) terms and pathways were used to evaluate the biological mechanisms involved in rice hull at the three growth stages. In total, 5,268 proteins were detected and characterized, of which 563 were differentially expressed across the development stages. The results showed that the flowering and milk-ripe stage proteomes were more similar to each other (r=0.61) than either was to the booting stage proteome. A GO enrichment analysis of the differentially expressed proteins was used to predict their roles during rice hull development. The potential functions of 25 significantly differentially expressed proteins were used to evaluate their possible roles at various growth stages. Among these proteins, an unannotated protein (Q7X8A1) was found to be overexpressed especially in the flowering stage, while a putative uncharacterized protein (B8BF94) and an aldehyde dehydrogenase (Q9FPK6) were overexpressed only in the milk-ripe stage. Pathways regulated by differentially expressed proteins were also analyzed. Magnesium-protoporphyrin IX monomethyl ester [oxidative] cyclase (Q9SDJ2), and two magnesium-chelatase subunits, ChlD (Q6ATS0), and ChlI (Q53RM0), were associated with chlorophyll biosynthesis at different developmental stages. The expression of Q9SDJ2 in the flowering and milk-ripe stages was validated by qRT-PCR. The 25 candidate proteins may be pivotal markers for controlling rice hull development at various

  18. Metabolizable protein supply while grazing dormant winter forage during heifer development alters pregnancy and subsequent in-herd retention rate.

    Science.gov (United States)

    Mulliniks, J T; Hawkins, D E; Kane, K K; Cox, S H; Torell, L A; Scholljegerdes, E J; Petersen, M K

    2013-03-01

    Two studies were conducted to evaluate the effects of postweaning management of British crossbred heifers on growth and reproduction. In Exp. 1, 239 spring-born, crossbred heifers were stratified by weaning BW (234 ± 1 kg) and allotted randomly to 1 of 2 treatments. Treatments were fed at a rate equivalent to 1.14 kg/d while grazing dormant forage (6.5% CP and 80% NDF, DM basis) and were 1) 36% CP containing 36% RUP (36RUP) or 2) 36% CP containing 50% RUP (50RUP). Supplementation was initiated in February (1995 and 1996) or November (1997 and 1998) and terminated at the onset of breeding season (mid May). Heifers were weighed monthly up to breeding and again at time of palpation. After timed AI, heifers were exposed to breeding bulls for 42 ± 8 d. In Exp. 2, 191 spring-born, crossbred heifers were stratified by weaning BW to treatments. Heifer development treatments were 1) pasture developed and fed 0.9 kg/day of a 36% CP supplement containing 36% RUP (36RUP), 2) pasture developed and fed 0.9 kg/day of a 36% CP supplement containing 50% RUP (50RUP), and 3) corn silage-based growing diet in a drylot (DRYLOT). Heifers receiving 36RUP and 50RUP treatments were developed on dormant forage. Treatments started in February and ended at the onset of a 45-d breeding season in May. Heifer BW and hip height were taken monthly from initiation of supplementation until breeding and at pregnancy diagnosis. In Exp. 1, BW was not different (P ≥ 0.27) for among treatments at all measurement times. However, 50RUP heifers had greater (P = 0.02; 80 and 67%) pregnancy rates than 36RUP heifers. In Exp. 2, DRYLOT heifers had greater (P RUP or 50RUP developed heifers. However, BW at pregnancy diagnosis was not different (P = 0.24) for between treatments. Pregnancy rates tended to be greater (P = 0.10) for 50RUP heifers than 36RUP and DRYLOT. Net return per heifer was US$99.71 and $87.18 greater for 50RUP and 36RUP heifers, respectively, compared with DRYLOT heifers due to differences

  19. Does prenatal maternal stress impair cognitive development and alter temperament characteristics in toddlers with healthy birth outcomes?

    Science.gov (United States)

    Zhu, Peng; Sun, Meng-Sha; Hao, Jia-Hu; Chen, Yu-Jiang; Jiang, Xiao-Min; Tao, Rui-Xue; Huang, Kun; Tao, Fang-Biao

    2014-03-01

    The aim of this study was to assess the cognitive and behavioural development of children with healthy birth outcomes whose mothers were exposed to prenatal stress but did not experience pregnancy complications. In this prospective study, self-reported data, including the Prenatal Life Events Checklist about stressful life events (SLEs) during different stages of pregnancy, were collected at 32 to 34 weeks' gestation. Thirty-eight healthy females (mean age 27 y 8 mo, SD 2 y 4 mo) who were exposed to severe SLEs in the first trimester were defined as the exposed infant group, and 114 matched comparison participants were defined as the unexposed infant group (1:3). Maternal postnatal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale. The Bayley Scales of Infant Development and the Toddler Temperament Scale were used to evaluate the cognitive development and temperament characteristics of the infants with healthy birth outcomes when they were 16 to 18 months old. A randomized block multivariate analysis of covariance showed that the mental development index scores of the infants of mothers with prenatal exposure to SLEs in the first trimester averaged seven points (95% confidence interval 3.23-10.73 points) lower than those of the unexposed infants. Moreover, the infants in the exposed group achieved higher scores for regularity (adjusted mean [SD] 2.77 [0.65] vs. 2.52 [0.78], F(5,146) =5.27, p=0.023) and for persistence and attention span (adjusted mean 3.61 [0.72] vs. 3.35 [0.52], F(5,146) =5.51, p=0.020). This study provides evidence that lower cognitive ability and less optimal worse behavioural response in infants might independently result from prenatal maternal stress. © 2014 Mac Keith Press.

  20. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  1. Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland.

    Science.gov (United States)

    Zhao, Junbin; Peichl, Matthias; Nilsson, Mats B

    2017-08-01

    At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO 2 ) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO 2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short-term (1-3 years) and long-term (11 years) effects on CO 2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m -2  s -1 , corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m -2  s -1 ) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO 2 fluxes, suggesting that winter climate change could considerably alter the growing season CO 2 exchange in boreal peatlands through its effect on vegetation development. © 2017 John Wiley & Sons Ltd.

  2. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.

    Science.gov (United States)

    Hatada, Mika; Loew, Noya; Inose-Takahashi, Yuka; Okuda-Shimazaki, Junko; Tsugawa, Wakako; Mulchandani, Ashok; Sode, Koji

    2018-06-01

    Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Overexpression of a flower-specific aerolysin-like protein from the dioecious plant Rumex acetosa alters flower development and induces male sterility in transgenic tobacco.

    Science.gov (United States)

    Manzano, Susana; Megías, Zoraida; Martínez, Cecilia; García, Alicia; Aguado, Encarnación; Chileh, Tarik; López-Alonso, Diego; García-Maroto, Federico; Kejnovský, Eduard; Široký, Jiří; Kubát, Zdeněk; Králová, Tereza; Vyskot, Boris; Jamilena, Manuel

    2017-01-01

    Sex determination in Rumex acetosa, a dioecious plant with a complex XY 1 Y 2 sex chromosome system (females are XX and males are XY 1 Y 2 ), is not controlled by an active Y chromosome but depends on the ratio between the number of X chromosomes and autosomes. To gain insight into the molecular mechanisms of sex determination, we generated a subtracted cDNA library enriched in genes specifically or predominantly expressed in female floral buds in early stages of development, when sex determination mechanisms come into play. In the present paper, we report the molecular and functional characterization of FEM32, a gene encoding a protein that shares a common architecture with proteins in different plants, animals, bacteria and fungi of the aerolysin superfamily; many of these function as β pore-forming toxins. The expression analysis, assessed by northern blot, RT-PCR and in situ hybridization, demonstrates that this gene is specifically expressed in flowers in both early and late stages of development, although its transcripts accumulate much more in female flowers than in male flowers. The ectopic expression of FEM32 under both the constitutive promoter 35S and the flower-specific promoter AP3 in transgenic tobacco showed no obvious alteration in vegetative development but was able to alter floral organ growth and pollen fertility. The 35S::FEM32 and AP3::FEM32 transgenic lines showed a reduction in stamen development and pollen viability, as well as a diminution in fruit set, fruit development and seed production. Compared with other floral organs, pistil development was, however, enhanced in plants overexpressing FEM32. According to these effects, it is likely that FEM32 functions in Rumex by arresting stamen and pollen development during female flower development. The aerolysin-like pore-forming proteins of eukaryotes are mainly involved in defence mechanisms against bacteria, fungi and insects and are also involved in apoptosis and programmed cell death (PCD

  4. Future hydrological alterations in the Mekong Delta under the impact of water resources development, land subsidence and sea level rise

    Directory of Open Access Journals (Sweden)

    Thanh Duc Dang

    2018-02-01

    New hydrological insights for the region: Depending on hydrological characteristics of each region (river-dominated, transitional or tidal, the influence of each potential driver may vary. The operation of proposed hydropower dams would change river-dominated upper floodplain’s water levels by 26 to 70% and −0.8 to −5.9% in the dry and wet season respectively, but the impact diminishes throughout the floodplains. In the wet season, the upper Vietnamese Delta changes from a transitional stage to a river-dominated stage, and localized water infrastructure development in the upper delta has the greatest effect on water levels in the region. Land subsidence combined with sea level rise could have the greatest future influence on flooding in the delta if current rates are extrapolated. Sustainable water management strategies are thus necessary to mitigate changes in the floodplains and delta and increase resilience to sea level rise and land subsidence.

  5. Elevated copper levels during larval development cause altered locomotor behavior in the adult carabid beetle Pterostichus cupreus L. (Coleoptera: Carbidae)

    DEFF Research Database (Denmark)

    Bayley, M; Baatrup, E; Heimbach, U

    1995-01-01

    behavior of adult Pterostichus cupreus carabid beetles was quantified after being raised on copper-contaminated food and soil during larval development. Copper was found to have an acute toxic effect measured in larval mortality, to cause a slight increase in the developmental period of males......It is generally believed that copper causes changes in carabid communities indirectly by reducing food availability, because these animals are frequently found to have only slightly elevated metal contents even close to pollution sources. Using computer-centered video tracking, the locomotor......, but not to effect the emergence weights of adults of either sex. This toxic effect on the larvae was preserved through pupation to the surviving adults, which were normal in size and appearance, but displayed a dramatically depressed locomotor behavior. Copper analysis of these adults revealed that copper levels...

  6. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    International Nuclear Information System (INIS)

    Sekizawa, Shin-ichi; Joad, Jesse P.; Pinkerton, Kent E.; Bonham, Ann C.

    2010-01-01

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  7. Altered regional homogeneity in the development of minimal hepatic encephalopathy: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ling Ni

    Full Text Available BACKGROUND: Little is known about how spontaneous brain activity progresses from non-hepatic encephalopathy (non-HE to minimal HE (MHE. The purpose of this study was to evaluate the evolution pattern of spontaneous brain activities in cirrhotic patients using resting-state fMRI with a regional homogeneity (ReHo method. METHODOLOGY/PRINCIPAL FINDINGS: Resting-state fMRI data were acquired in 47 cirrhotic patients (minimal HE [MHE], n = 20, and non-HE, n = 27 and 25 age-and sex-matched healthy controls. The Kendall's coefficient of concordance (KCC was used to measure the regional homogeneity. The regional homogeneity maps were compared with ANOVA tests among MHE, non-HE, and healthy control groups and t-tests between each pair in a voxel-wise way. Correlation analyses were performed to explore the relationships between regional ReHo values and Child-Pugh scores, number connection test type A (NCT-A, digit symbol test (DST scores, venous blood ammonia levels. Compared with healthy controls, both MHE and non-HE patients showed decreased ReHo in the bilateral frontal, parietal and temporal lobes and increased ReHo in the bilateral caudate. Compared with the non-HE, MHE patients showed decreased ReHo in the bilateral precuneus, cuneus and supplementary motor area (SMA. The NCT-A of cirrhotic patients negatively correlated with ReHo values in the precuneus, cuneus and lingual gyrus. DST scores positively correlated with ReHo values in the cuneus, precuneus and lingual gyrus, and negatively correlated with ReHo values in the bilateral caudate (P<0.05, AlphaSim corrected. CONCLUSIONS/SIGNIFICANCE: Diffused abnormal homogeneity of baseline brain activity was nonspecific for MHE, and only the progressively decreased ReHo in the SMA and the cuneus, especially for the latter, might be associated with the development of MHE. The ReHo analysis may be potentially valuable for detecting the development from non-HE to MHE.

  8. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  9. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139

    Science.gov (United States)

    Watnick, Paula I.; Lauriano, Crystal M.; Klose, Karl E.; Croal, Laura; Kolter, Roberto

    2010-01-01

    Summary Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine. PMID:11136445

  10. Low dose bisphenol S or ethinyl estradiol exposures during the perinatal period alter female mouse mammary gland development.

    Science.gov (United States)

    Kolla, SriDurgaDevi; Morcos, Mary; Martin, Brian; Vandenberg, Laura N

    2018-03-08

    Throughout life, mammary tissue is strongly influenced by hormones. Scientists have hypothesized that synthetic chemicals with hormonal activities could disrupt mammary gland development and contribute to breast diseases and dysfunction. Bisphenol S (BPS) is an estrogenic compound used in many consumer products. In this study, CD-1 mice were exposed to BPS (2 or 200 μg/kg/day) during pregnancy and lactation. Mice exposed to 0.01 or 1 μg/kg/day ethinyl estradiol (EE2), a pharmaceutical estrogen, were also evaluated. Mammary glands from female offspring were collected prior to the onset of puberty, during puberty, and in early adulthood. Growth parameters, histopathology, cell proliferation and expression of hormone receptors were quantified. Our evaluations revealed age- and dose-specific effects of BPS that were different from the effects of EE2, and distinct from the effects of BPA that have been reported previously. These assessments suggest that individual xenoestrogens may have unique effects on this sensitive tissue. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Large diameter femoral heads impose significant alterations on the strains developed on femoral component and bone: a finite element analysis.

    Science.gov (United States)

    Theodorou, E G; Provatidis, C G; Babis, G C; Georgiou, C S; Megas, P D

    2011-01-01

    Total Hip Arthroplasty aims at fully recreating a functional hip joint. Over the past years modular implant systems have become common practice and are widely used, due to the surgical options they provide. In addition Big Femoral Heads have also been implemented in the process, providing more flexibility for the surgeon. The current study aims at investigating the effects that femoral heads of bigger diameter may impose on the mechanical behavior of the bone-implant assembly. Using data acquired by Computed Tomographies and a Coordinate Measurement Machine, a cadaveric femur and a Profemur-E modular stem were fully digitized, leading to a three dimensional finite element model in ANSYS Workbench. Strains and stresses were then calculated, focusing on areas of clinical interest, based on Gruen zones: the calcar and the corresponding below the greater trochanter area in the proximal femur, the stem tip region and a profile line along linea aspera. The performed finite elements analysis revealed that the use of large diameter heads produces significant changes in strain development within the bone volume, especially in the lateral side. The application of Frost's law in bone remodeling, validated the hypothesis that for all diameters normal bone growth occurs. However, in the calcar area lower strain values were recorded, when comparing with the reference model featuring a 28mm femoral head. Along line aspera and for the stem tip area, higher values were recorded. Finally, stresses calculated on the modular neck revealed increased values, but without reaching the yield strength of the titanium alloy used.

  12. Potential Association of Lead Exposure During Early Development of Mice With Alteration of Hippocampus Nitric Oxide Levels and Learning Memory

    Institute of Scientific and Technical Information of China (English)

    LI SUN; ZHENG-YAN ZHAO; JIAN HU; XIE-LAI ZHOU

    2005-01-01

    Objective Chronic lead (Pb) exposure during development is known to produce learning deficits. Nitric oxide participates in the synaptic mechanisms involved in certain forms of learning and memory. This study was designed to clarify whether Pb-induced impairment in learning and memory was associated with the changes of nitric oxide levels in mice brains.Methods Sixty Balb/c mice aged 10 days were chosen. A model of lead exposure was established by drinking 0.025%, 0.05%,0.075% lead acetate, respectively for 8 weeks. The controls were orally given distilled water. The ability to learn and memorize was examined by open field test, T-water maze test. In parallel with the behavioral data, NO level of hippocampus tissue was detected by biochemical assay. Results Compared with control groups, (1) the weight of 0.075% group was significantly reduced (P<0.05); (2) The number of times in mice attaining the required standards in T-water maze test was lower in 0.075%group (P<0.01). No significant difference was found between experimental and control groups in open field test (P>0.05); (3)NO level of mouse hippocampus tissue was decreased in 0.075% group (P<0.01). Conclusions The findings suggest that decreased hippocampus NO level may contribute to the Pb-induced deficits in learning and memory processes.

  13. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris.

    Science.gov (United States)

    Zhu, Yu Cheng; Luttrell, Randall

    2015-01-01

    Chemical spray on cotton is almost an exclusive method for controlling tarnished plant bug (TPB), Lygus lineolaris. Frequent use of imidacloprid is a concern for neonicotinoid resistance in this key pest. Information of how and why TPB becomes less susceptible to imidacloprid is essential for effective monitoring and managing resistance. Microarray analysis of 6688 genes in imidacloprid-selected TPB (Im1500FF) revealed 955 upregulated and 1277 downregulated (≥twofold) genes in Im1500FF, with 369 and 485 of them annotated. Five P450 and nine esterase genes were significantly upregulated, and only one esterase gene and no P450 genes were downregulated. Other upregulated genes include helicases, phosphodiesterases, ATPases and kinases. Pathway analyses identified 65 upregulated cDNAs that encode 51 different enzymes involved in 62 different pathways, including P450 and esterase genes for drug and xenobiotic metabolisms. Sixty-four downregulated cDNAs code only 17 enzymes that are associated with only 23 pathways mostly related to food digestion. This study demonstrated a significant change in gene expression related to metabolic processes in imidacloprid-selected TPB, resulting in overexpression of P450 and esterase genes for potential excess detoxification and cross/multiple resistance development. The identification of these and other enzyme genes establishes a foundation to explore the complicity of potential imidacloprid resistance in TPB. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring.

    Science.gov (United States)

    Pallarés, María Eugenia; Adrover, Ezequiela; Baier, Carlos Javier; Bourguignon, Nadia S; Monteleone, Melisa C; Brocco, Marcela A; González-Calvar, Silvia I; Antonelli, Marta C

    2013-07-01

    Several studies have demonstrated that the presence of stressors during pregnancy induces adverse effects on the neuroendocrine system of the offspring later in life. In the present work, we investigated the effects of early programming on the male reproductive system, employing a prenatal stress (PS) paradigm. This study found that when pregnant dams were placed in a plastic restrainer three times a day during the last week of pregnancy, the offspring showed reduced anogenital distance and delayed testicular descent. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels were decreased at postnatal day (PND) 28 and testosterone was decreased at PND 75. Increased testosterone plus dihydrotestosterone (T + DHT) concentrations correlated with increased testicular 5α Reductase-1 (5αR-1) mRNA expression at PND 28. Moreover, PS accelerated spermatogenesis at PND 35 and 60, and increased mean seminiferous tubule diameter in pubertal offspring and reduced Leydig cell number was observed at PND 35 and 60. PS offspring had increased androgen receptor (AR) mRNA level at PND 28, and at PND 35 had increased the numbers of Sertoli cells immunopositive for AR. Overall, the results confirm that stress during gestation can induce long-term effects on the male offspring reproductive system. Of particular interest is the pre-pubertal imbalance of circulating hormones that probably trigger accelerated testicular development, followed by an increase in total androgens and a decrease in testosterone concentration during adulthood. Exposure to an unfavourable intrauterine environment might prepare for harsh external conditions by triggering early puberty, increasing reproductive potential.

  15. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses.

    Directory of Open Access Journals (Sweden)

    Ravinder K Goyal

    Full Text Available Antimicrobial cationic peptides (AMPs are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani and abiotic stressors (dark-induced senescence, wounding and temperature stress. msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR and reactive oxygen species (ROS responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.

  16. A new synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells.

    Science.gov (United States)

    Lee, Young Han; Jeon, Seung-Hyun; Kim, Se Hyun; Kim, Changyoun; Lee, Seung-Jae; Koh, Dongsoo; Lim, Yoongho; Ha, Kyooseob; Shin, Soon Young

    2012-06-30

    Microglial cells are the resident innate immune cells that sense pathogens and tissue injury in the central nervous system (CNS). Microglial activation is critical for neuroinflammatory responses. The synthetic compound 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139) is a novel chalcone-derived compound. In this study, we investigated the effects of DK-139 on Toll-like receptor 4 (TLR4)-mediated inflammatory responses in BV2 microglial cells. DK-139 inhibited lipopolysaccharide (LPS)-induced TLR4 activity, as determined using a cell-based assay. DK-139 blocked LPS-induced phosphorylation of IκB and p65/RelA NF-κB, resulting in inhibition of the nuclear translocation and trans-acting activity of NF-κB in BV2 microglial cells. We also found that DK-139 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, and IL-1β, in LPS-stimulated BV2 microglial cells. Interestingly, DK-139 blocked LPS-induced Akt phosphorylation. Inhibition of Akt abrogated LPS-induced phosphorylation of p65/RelA, while overexpression of dominant- active p110CAAX enhanced p65/RelA phosphorylation as well as iNOS and COX2 expression. These results suggest that DK-139 exerts an anti-inflammatory effect on microglial cells by inhibiting the Akt/IκB kinase (IKK)/NF-κB signaling pathway.

  17. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  18. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    Science.gov (United States)

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  19. Structural alteration of industry of region as pre-condition of steady development of national economy (on the example of the Dnepropetrovsk area

    Directory of Open Access Journals (Sweden)

    V. E. Vlasiuk

    2014-02-01

    Full Text Available An economic analysis is conducted in the production sphere of the Dnepropetrovsk area in a period development and in the process of transformation production to the sector of the national economic system. In particular, an analysis of the actual state of socio ­economic development of the Dnipropetrovsk region in the late XX century and its current state in order to find trends change attributes of manifestation and impact on living standards . The analysis of individual industries Dnipropetrovsk region. It is shown that the basis of the regional industry ­ metallurgy. Comparative analysis of the sectoral structure of industrial production Dnipropetrovsk Oblast major types of products that characterize its economy in 1997 and 2012. This analysis revealed the changes in the structural transformation of the regional industry . The basic indicators of socio­ economic development of the Dnipropetrovsk region. In particular , it was found that the dynamics of socio ­economic development of the region by major figures exceeded the average values in Ukraine , and the main results of 2011 was a steady growth in key sectors of the Dnipropetrovsk region. Were clarified problems of the region’s economy and its future prospects . The factors of forming of regional economic policy and principles of structural alteration of industry are considered.

  20. Time Courses of Cortical Glucose Metabolism and Microglial Activity Across the Life Span of Wild-Type Mice: A PET Study.

    Science.gov (United States)

    Brendel, Matthias; Focke, Carola; Blume, Tanja; Peters, Finn; Deussing, Maximilian; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Albert, Nathalie; Lindner, Simon; von Ungern-Sternberg, Barbara; Bartenstein, Peter; Haass, Christian; Kleinberger, Gernot; Herms, Jochen; Rominger, Axel

    2017-12-01

    Contrary to findings in the human brain, 18 F-FDG PET shows cerebral hypermetabolism of aged wild-type (WT) mice relative to younger animals, supposedly due to microglial activation. Therefore, we used dual-tracer small-animal PET to examine directly the link between neuroinflammation and hypermetabolism in aged mice. Methods: WT mice (5-20 mo) were investigated in a cross-sectional design using 18 F-FDG ( n = 43) and translocator protein (TSPO) ( 18 F-GE180; n = 58) small-animal PET, with volume-of-interest and voxelwise analyses. Biochemical analysis of plasma cytokine levels and immunohistochemical confirmation of microglial activity were also performed. Results: Age-dependent cortical hypermetabolism in WT mice relative to young animals aged 5 mo peaked at 14.5 mo (+16%, P mice. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  1. Supplementation of fetal bovine serum alters histone modification H3R26me2 during preimplantation development of in vitro produced bovine embryos

    Directory of Open Access Journals (Sweden)

    Daniel R. Arnold

    2015-07-01

    Full Text Available Abstract In vitro production (IVP of bovine embryos is not only of great economic importance to the cattle industry, but is also an important model for studying embryo development. The aim of this study was to evaluate the histone modification, H3R26me2 during pre-implantation development of IVP bovine embryos cultured with or without serum supplementation and how these in vitro treatments compared to in vivo embryos at the morula stage. After in vitro maturation and fertilization, bovine embryos were cultured with either 0 or 2.5% fetal bovine serum (FBS. Development was evaluated and embryos were collected and fixed at different stages during development (2-, 4-, 8-, 16-cell, morula and blastocyst. Fixed embryos were then used for immunofluorescence utilizing an antibody for H3R26me2. Images of stained embryos were analyzed as a percentage of total DNA. Embryos cultured with 2.5% FBS developed to blastocysts at a greater rate than 0%FBS groups (34.85±5.43% vs. 23.38±2.93%; P<0.05. Levels of H3R26me2 changed for both groups over development. In the 0%FBS group, the greatest amount of H3R26me2 staining was at the 4-cell (P<0.05, 16-cell (P<0.05 and morula (P<0.05 stages. In the 2.5%FBS group, only 4-cell stage embryos were significantly higher than all other stages (P<0.01. Morula stage in vivo embryos had similar levels as the 0%FBS group, and both were significantly higher than the 2.5%FBS group. These results suggest that the histone modification H3R26me2 is regulated during development of pre-implantation bovine embryos, and that culture conditions greatly alter this regulation.

  2. Synergistic Effects of Psychosocial Stress and Mild Peripheral Infection on Inducing Microglial Activation in the Hippocampal Dentate Gyrus and Long-Lasting Deficits in Hippocampus-Related Memory.

    Science.gov (United States)

    Tzeng, Wen-Yu; Su, Chien-Chou; Sun, Li-Han; Cherng, Chianfang G.; Yu, Lung

    2018-04-30

    Lipopolysaccharide (LPS) treatment and stress may cause immune activation in the brain, an event which has been thought to play a role in mediating stress-induced cognitive dysfunction. However, the enduring impact of psychosocial stress on brain immune activation or cognitive deficits has not been well investigated. Likewise, it remains unexplored whether there exist synergistic effects of psychosocial stress and a weak systemic LPS treatment on brain immune activation and/or cognitive function. In this work, a 10-day social defeat regimen was used to model psychosocial stress and the number and density of ionized calcium-binding adaptor molecule 1 (Iba1)-stained microglia was used to reveal brain immune activation in male Balb/C mice. The social defeat regimen did not cause observable microglial activation in dentate gyrus (DG) 24 h after the conclusion of the regimen. Microglial activation peaked in DG 24 h following a single 1 mg/kg intra-peritoneal LPS injection. At this time point, DG microglial activation was not evident providing 0.125 mg/kg or lower of LPS was used, this dose of LPS was, thus, regarded as the “sub-threshold” in this study. Twenty-four h after the conclusion of the defeat regimen, mice received a social interaction test to determine their defeat stress susceptibility and a “sub-threshold” LPS injection. DG microglial activation was observed in the defeat-stress susceptible, but not in the resilient, mice. Furthermore, the stress-susceptible mice showed impairment in object location and Y maze tasks 24 and 72 h after the “sub-threshold” LPS injection. These results suggest that psychosocial stress, when combined with a negligible peripheral infection, may induce long-lasting hippocampus-related memory deficits exclusively in subjects susceptible to psychosocial stresses.

  3. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia.

    Science.gov (United States)

    Di Biase, M A; Zalesky, A; O'keefe, G; Laskaris, L; Baune, B T; Weickert, C S; Olver, J; McGorry, P D; Amminger, G P; Nelson, B; Scott, A M; Hickie, I; Banati, R; Turkheimer, F; Yaqub, M; Everall, I P; Pantelis, C; Cropley, V

    2017-08-29

    We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [ 11 C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide ( 11 C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BP ND ) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BP ND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BP ND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BP ND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BP ND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11 C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11 C-(R)-PK11195 BP ND .

  4. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors.

    Science.gov (United States)

    Yang, Yan-Wei; Wang, Yun-Lu; Lu, Jia-Kai; Tian, Lei; Jin, Mu; Cheng, Wei-Ping

    2018-03-01

    The neuroprotective effect against spinal cord ischemia/reperfusion injury in rats exerted by delayed xenon post-conditioning is stronger than that produced by immediate xenon post-conditioning. However, the mechanisms underlying this process remain unclear. Activated microglia are the main inflammatory cell type in the nervous system. The release of pro-inflammatory factors following microglial activation can lead to spinal cord damage, and inhibition of microglial activation can relieve spinal cord ischemia/reperfusion injury. To investigate how xenon regulates microglial activation and the release of inflammatory factors, a rabbit model of spinal cord ischemia/reperfusion injury was induced by balloon occlusion of the infrarenal aorta. After establishment of the model, two interventions were given: (1) immediate xenon post-conditioning-after reperfusion, inhalation of 50% xenon for 1 hour, 50% N 2 /50%O 2 for 2 hours; (2) delayed xenon post-conditioning-after reperfusion, inhalation of 50% N 2 /50%O 2 for 2 hours, 50% xenon for 1 hour. At 4, 8, 24, 48 and 72 hours after reperfusion, hindlimb locomotor function was scored using the Jacobs locomotor scale. At 72 hours after reperfusion, interleukin 6 and interleukin 10 levels in the spinal cord of each group were measured using western blot assays. Iba1 levels were determined using immunohistochemistry and a western blot assay. The number of normal neurons at the injury site was quantified using hematoxylin-eosin staining. At 72 hours after reperfusion, delayed xenon post-conditioning remarkably enhanced hindlimb motor function, increased the number of normal neurons at the injury site, decreased Iba1 levels, and inhibited interleukin-6 and interleukin-10 levels in the spinal cord. Immediate xenon post-conditioning did not noticeably affect the above-mentioned indexes. These findings indicate that delayed xenon post-conditioning after spinal cord injury improves the recovery of neurological function by reducing

  5. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI.

    Science.gov (United States)

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-04-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response.

    Science.gov (United States)

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun; Oh, Won Keun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata , and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (A β ) 42 -induced microglial activation related to Nrf2 and nuclear factor κ B (NF- κ B)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular A β 42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1 β , prostaglandin (PG)E 2 , and nitric oxide (NO) because of artificial phagocytic A β 42 . It decreased pNF- κ B accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits A β 42 -overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  7. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ji Yeon Seo

    2017-01-01

    Full Text Available Therapeutic approach of Alzheimer’s disease (AD has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1/nuclear factor (erythroid-derived 2-like 2 (Nrf2-mediated heme oxygenase (HO-1-inducing effects and the inhibitory activity of amyloid beta (Aβ42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL-6, IL-1β, prostaglandin (PGE2, and nitric oxide (NO because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS and cyclooxygenase II (COX-II in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  8. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  9. Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling.

    Science.gov (United States)

    Zhang, Yue; Pop, Ioana L; Carlson, Noel G; Kishore, Bellamkonda K

    2012-01-01

    Lithium (Li)-induced polyuria is due to resistance of the medullary collecting duct (mCD) to the action of arginine vasopressin (AVP), apparently mediated by increased production of PGE(2). We previously reported that the P2Y(2) receptor (P2Y(2)-R) antagonizes the action of AVP on the mCD and may play a role in Li-induced polyuria by enhancing the production of PGE(2) in mCD. Hence, we hypothesized that genetic deletion of P2Y(2)-R should ameliorate Li-induced polyuria. Wild-type (WT) or P2Y(2)-R knockout (KO) mice were fed normal or Li-added diets for 14 days and euthanized. Li-induced polyuria, and decreases in urine osmolality and AQP2 protein abundance in the renal medulla, were significantly less compared with WT mice despite the lack of differences in Li intake or terminal serum or inner medullary tissue Li levels. Li-induced increased urinary excretion of PGE(2) was not affected in KO mice. However, prostanoid EP(3) receptor (EP3-R) protein abundance in the renal medulla of KO mice was markedly lower vs. WT mice, irrespective of the dietary regimen. The protein abundances of other EP-Rs were not altered across the groups irrespective of the dietary regimen. Ex vivo stimulation of mCD with PGE(2) generated significantly more cAMP in Li-fed KO mice (130%) vs. Li-fed WT mice (100%). Taken together, these data suggest 1) genetic deletion of P2Y(2)-R offers significant resistance to the development of Li-induced polyuria; and 2) this resistance is apparently due to altered PGE(2) signaling mediated by a marked decrease in EP3-R protein abundance in the medulla, thus attenuating the EP3-mediated decrease in cAMP levels in mCD.

  10. Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Yannick Nicolas Gerber

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder characterized by selective motoneurons degeneration. There is today no clear-cut pathogenesis sequence nor any treatment. However growing evidences are in favor of the involvement, besides neurons, of several partners such as glia and muscles. To better characterize the time course of pathological events in an animal model that recapitulates human ALS symptoms, we investigated functional and cellular characteristics of hSOD1(G93A mice. METHODS AND FINDINGS: We have evaluated locomotor function of hSOD1(G93A mice through dynamic walking patterns and spontaneous motor activity analysis. We detected early functional deficits that redefine symptoms onset at 60 days of age, i.e. 20 days earlier than previously described. Moreover, sequential combination of these approaches allows monitoring of motor activity up to disease end stage. To tentatively correlate early functional deficit with cellular alterations we have used flow cytometry and immunohistochemistry approaches to characterize neuromuscular junctions, astrocytes and microglia. We show that (1 decrease in neuromuscular junction's number correlates with motor impairment, (2 astrocytes number is not altered at pre- and early-symptomatic ages but intraspinal repartition is modified at symptoms onset, and (3 microglia modifications precede disease onset. At pre-symptomatic age, we show a decrease in microglia number whereas at onset of the disease two distinct microglia sub-populations emerge. CONCLUSIONS: In conclusion, precise motor analysis updates the onset of the disease in hSOD1(G93A mice and allows locomotor monitoring until the end stage of the disease. Early functional deficits coincide with alterations of neuromuscular junctions. Importantly, we identify different sets of changes in microglia before disease onset as well as at early-symptomatic stage. This finding not only brings a new sequence of cellular

  11. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Young; Kim, Ji-Hee [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Kim, YoungHee, E-mail: yheekim@pusan.ac.kr [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  12. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    International Nuclear Information System (INIS)

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-01-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in