WorldWideScience

Sample records for alters meiotic crossover

  1. The pch2Delta mutation in baker's yeast alters meiotic crossover levels and confers a defect in crossover interference.

    Directory of Open Access Journals (Sweden)

    Sarah Zanders

    2009-07-01

    Full Text Available Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Delta mutants display wild-type crossover levels on a small (III chromosome, but increased levels on larger (VII, VIII, XV chromosomes. Second, pch2Delta mutants show defects in crossover interference. Third, crossovers observed in pch2Delta require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Delta mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover.

  2. A link between meiotic prophase progression and crossover control.

    Directory of Open Access Journals (Sweden)

    Peter M Carlton

    2006-02-01

    Full Text Available During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4 and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  3. A Link between Meiotic Prophase Progression and CrossoverControl

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  4. Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots.

    Directory of Open Access Journals (Sweden)

    Jan Drouaud

    2013-11-01

    Full Text Available The vast majority of meiotic recombination events (crossovers (COs and non-crossovers (NCOs cluster in narrow hotspots surrounded by large regions devoid of recombinational activity. Here, using a new molecular approach in plants, called "pollen-typing", we detected and characterized hundreds of CO and NCO molecules in two different hotspot regions in Arabidopsis thaliana. This analysis revealed that COs are concentrated in regions of a few kilobases where their rates reach up to 50 times the genome average. The hotspots themselves tend to cluster in regions less than 8 kilobases in size with overlapping CO distribution. Non-crossover (NCO events also occurred in the two hotspots but at very different levels (local CO/NCO ratios of 1/1 and 30/1 and their track lengths were quite small (a few hundred base pairs. We also showed that the ZMM protein MSH4 plays a role in CO formation and somewhat unexpectedly we also found that it is involved in the generation of NCOs but with a different level of effect. Finally, factors acting in cis and in trans appear to shape the rate and distribution of COs at meiotic recombination hotspots.

  5. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia.

    Directory of Open Access Journals (Sweden)

    He Ren

    Full Text Available During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA and obstructive azoospermia (OA along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in

  6. Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants

    NARCIS (Netherlands)

    Yelina, N.E.; Choi, K.; Chelysheva, L.; Macaulay, M.; Snoo, de B.; Wijnker, T.G.; Miller, N.; Drouaud, J.; Grelon, M.; Copenhaver, G.P.; Mezard, C.; Kelly, K.A.; Henderson, I.R.

    2012-01-01

    Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is d

  7. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms.

    Directory of Open Access Journals (Sweden)

    Chloe Girard

    2015-07-01

    Full Text Available Meiotic crossovers (COs generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1 as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression.

  8. Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot.

    Science.gov (United States)

    Jeffreys, Alec J; Neumann, Rita

    2005-08-01

    Little is known about the factors that influence the frequency and distribution of meiotic recombination events within human crossover hotspots. We now describe the detailed analysis of sperm recombination in the NID1 hotspot. Like the neighbouring MS32 hotspot, the NID1 hotspot is associated with a minisatellite, suggesting that hotspots predispose DNA to tandem repetition. Unlike MS32, crossover resolution breakpoints in NID1 avoid the minisatellite, producing a cold spot within the hotspot. This avoidance may be related to the palindromic nature of the minisatellite interfering with the generation and/or processing of recombination intermediates. The NID1 hotspot also contains a single nucleotide polymorphism (SNP) close to the centre, which appears to directly influence the frequency of crossover initiation. Quantitative gene conversion assays show that this SNP affects the frequency of gene conversion and crossover to a very similar extent, providing evidence that conversions and crossovers are triggered by the same recombination initiating events. The recombination-suppressing allele is over-transmitted to recombinant progeny, and provides the most dramatic example to date of recombination-mediated meiotic drive, of a magnitude sufficient to virtually guarantee that the recombination suppressor will eventually replace the more active allele in human populations.

  9. Measuring Meiotic Crossovers via Multi-Locus Genotyping of Single Pollen Grains in Barley.

    Directory of Open Access Journals (Sweden)

    Steven Dreissig

    Full Text Available The detection of meiotic crossovers in crop plants currently relies on scoring DNA markers in a segregating population or cytological visualization. We investigated the feasibility of using flow-sorted haploid nuclei, Phi29 DNA polymerase-based whole-genome-amplification (WGA and multi-locus KASP-genotyping to measure meiotic crossovers in individual barley pollen grains. To demonstrate the proof of concept, we used 24 gene-based physically mapped single nucleotide polymorphisms to genotype the WGA products of 50 single pollen nuclei. The number of crossovers per chromosome, recombination frequencies along chromosome 3H and segregation distortion were analysed and compared to a doubled haploid (DH population of the same genotype. The number of crossovers and chromosome wide recombination frequencies show that this approach is able to produce results that resemble those obtained from other methods in a biologically meaningful way. Only the segregation distortion was found to be lower in the pollen population than in DH plants.

  10. The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana

    Science.gov (United States)

    Wijnker, Erik; Velikkakam James, Geo; Ding, Jia; Becker, Frank; Klasen, Jonas R; Rawat, Vimal; Rowan, Beth A; de Jong, Daniël F; de Snoo, C Bastiaan; Zapata, Luis; Huettel, Bruno; de Jong, Hans; Ossowski, Stephan; Weigel, Detlef; Koornneef, Maarten; Keurentjes, Joost JB; Schneeberger, Korbinian

    2013-01-01

    Knowledge of the exact distribution of meiotic crossovers (COs) and gene conversions (GCs) is essential for understanding many aspects of population genetics and evolution, from haplotype structure and long-distance genetic linkage to the generation of new allelic variants of genes. To this end, we resequenced the four products of 13 meiotic tetrads along with 10 doubled haploids derived from Arabidopsis thaliana hybrids. GC detection through short reads has previously been confounded by genomic rearrangements. Rigid filtering for misaligned reads allowed GC identification at high accuracy and revealed an ∼80-kb transposition, which undergoes copy-number changes mediated by meiotic recombination. Non-crossover associated GCs were extremely rare most likely due to their short average length of ∼25–50 bp, which is significantly shorter than the length of CO-associated GCs. Overall, recombination preferentially targeted non-methylated nucleosome-free regions at gene promoters, which showed significant enrichment of two sequence motifs. DOI: http://dx.doi.org/10.7554/eLife.01426.001 PMID:24347547

  11. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint.

    Directory of Open Access Journals (Sweden)

    Ericca L Stamper

    Full Text Available Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs. DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance.

  12. Identification of DSB-1, a protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover assurance checkpoint.

    Science.gov (United States)

    Stamper, Ericca L; Rodenbusch, Stacia E; Rosu, Simona; Ahringer, Julie; Villeneuve, Anne M; Dernburg, Abby F

    2013-01-01

    Meiotic recombination, an essential aspect of sexual reproduction, is initiated by programmed DNA double-strand breaks (DSBs). DSBs are catalyzed by the widely-conserved Spo11 enzyme; however, the activity of Spo11 is regulated by additional factors that are poorly conserved through evolution. To expand our understanding of meiotic regulation, we have characterized a novel gene, dsb-1, that is specifically required for meiotic DSB formation in the nematode Caenorhabditis elegans. DSB-1 localizes to chromosomes during early meiotic prophase, coincident with the timing of DSB formation. DSB-1 also promotes normal protein levels and chromosome localization of DSB-2, a paralogous protein that plays a related role in initiating recombination. Mutations that disrupt crossover formation result in prolonged DSB-1 association with chromosomes, suggesting that nuclei may remain in a DSB-permissive state. Extended DSB-1 localization is seen even in mutants with defects in early recombination steps, including spo-11, suggesting that the absence of crossover precursors triggers the extension. Strikingly, failure to form a crossover precursor on a single chromosome pair is sufficient to extend the localization of DSB-1 on all chromosomes in the same nucleus. Based on these observations we propose a model for crossover assurance that acts through DSB-1 to maintain a DSB-permissive state until all chromosome pairs acquire crossover precursors. This work identifies a novel component of the DSB machinery in C. elegans, and sheds light on an important pathway that regulates DSB formation for crossover assurance.

  13. Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability.

    Directory of Open Access Journals (Sweden)

    K T Nishant

    2010-08-01

    Full Text Available During meiosis, the Msh4-Msh5 complex is thought to stabilize single-end invasion intermediates that form during early stages of recombination and subsequently bind to Holliday junctions to facilitate crossover formation. To analyze Msh4-Msh5 function, we mutagenized 57 residues in Saccharomyces cerevisiae Msh4 and Msh5 that are either conserved across all Msh4/5 family members or are specific to Msh4 and Msh5. The Msh5 subunit appeared more sensitive to mutagenesis. We identified msh4 and msh5 threshold (msh4/5-t mutants that showed wild-type spore viability and crossover interference but displayed, compared to wild-type, up to a two-fold decrease in crossing over on large and medium sized chromosomes (XV, VII, VIII. Crossing over on a small chromosome, however, approached wild-type levels. The msh4/5-t mutants also displayed synaptonemal complex assembly defects. A triple mutant containing a msh4/5-t allele and mutations that decreased meiotic double-strand break levels (spo11-HA and crossover interference (pch2Δ showed synergistic defects in spore viability. Together these results indicate that the baker's yeast meiotic cell does not require the ∼90 crossovers maintained by crossover homeostasis to form viable spores. They also show that Pch2-mediated crossover interference is important to maintain meiotic viability when crossovers become limiting.

  14. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yingxiang Wang

    Full Text Available During meiotic recombination, induced double-strand breaks (DSBs are processed into crossovers (COs and non-COs (NCO; the former are required for proper chromosome segregation and fertility. DNA synthesis is essential in current models of meiotic recombination pathways and includes only leading strand DNA synthesis, but few genes crucial for DNA synthesis have been tested genetically for their functions in meiosis. Furthermore, lagging strand synthesis has been assumed to be unnecessary. Here we show that the Arabidopsis thaliana DNA replication factor C1 (RFC1 important for lagging strand synthesis is necessary for fertility, meiotic bivalent formation, and homolog segregation. Loss of meiotic RFC1 function caused abnormal meiotic chromosome association and other cytological defects; genetic analyses with other meiotic mutations indicate that RFC1 acts in the MSH4-dependent interference-sensitive pathway for CO formation. In a rfc1 mutant, residual pollen viability is MUS81-dependent and COs exhibit essentially no interference, indicating that these COs form via the MUS81-dependent interference-insensitive pathway. We hypothesize that lagging strand DNA synthesis is important for the formation of double Holliday junctions, but not alternative recombination intermediates. That RFC1 is found in divergent eukaryotes suggests a previously unrecognized and highly conserved role for DNA synthesis in discriminating between recombination pathways.

  15. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants.

    Directory of Open Access Journals (Sweden)

    Nataliya E Yelina

    Full Text Available Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO. Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1 mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.

  16. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation.

    Directory of Open Access Journals (Sweden)

    Jessica P Lao

    Full Text Available During meiosis, repair of programmed DNA double-strand breaks (DSBs by recombination promotes pairing of homologous chromosomes and their connection by crossovers. Two DNA strand-exchange proteins, Rad51 and Dmc1, are required for meiotic recombination in many organisms. Studies in budding yeast imply that Rad51 acts to regulate Dmc1's strand exchange activity, while its own exchange activity is inhibited. However, in a dmc1 mutant, elimination of inhibitory factor, Hed1, activates Rad51's strand exchange activity and results in high levels of recombination without participation of Dmc1. Here we show that Rad51-mediated meiotic recombination is not subject to regulatory processes associated with high-fidelity chromosome segregation. These include homolog bias, a process that directs strand exchange between homologs rather than sister chromatids. Furthermore, activation of Rad51 does not effectively substitute for Dmc1's chromosome pairing activity, nor does it ensure formation of the obligate crossovers required for accurate homolog segregation. We further show that Dmc1's dominance in promoting strand exchange between homologs involves repression of Rad51's strand-exchange activity. This function of Dmc1 is independent of Hed1, but requires the meiotic kinase, Mek1. Hed1 makes a relatively minor contribution to homolog bias, but nonetheless this is important for normal morphogenesis of synaptonemal complexes and efficient crossing-over especially when DSB numbers are decreased. Super-resolution microscopy shows that Dmc1 also acts to organize discrete complexes of a Mek1 partner protein, Red1, into clusters along lateral elements of synaptonemal complexes; this activity may also contribute to homolog bias. Finally, we show that when interhomolog bias is defective, recombination is buffered by two feedback processes, one that increases the fraction of events that yields crossovers, and a second that we propose involves additional DSB formation

  17. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots?

    Science.gov (United States)

    Serrentino, Maria-Elisabetta; Borde, Valérie

    2012-07-15

    A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots.

  18. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination

    Science.gov (United States)

    Ziolkowski, Piotr A.; Underwood, Charles J.; Lambing, Christophe; Martinez-Garcia, Marina; Lawrence, Emma J.; Ziolkowska, Liliana; Griffin, Catherine; Choi, Kyuha; Franklin, F. Chris H.; Martienssen, Robert A.; Henderson, Ian R.

    2017-01-01

    During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection. PMID:28223312

  19. Separable Roles for a Caenorhabditis elegans RMI1 Homolog in Promoting and Antagonizing Meiotic Crossovers Ensure Faithful Chromosome Inheritance.

    Science.gov (United States)

    Jagut, Marlène; Hamminger, Patricia; Woglar, Alexander; Millonigg, Sophia; Paulin, Luis; Mikl, Martin; Dello Stritto, Maria Rosaria; Tang, Lois; Habacher, Cornelia; Tam, Angela; Gallach, Miguel; von Haeseler, Arndt; Villeneuve, Anne M; Jantsch, Verena

    2016-03-01

    During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions.

  20. Separable Roles for a Caenorhabditis elegans RMI1 Homolog in Promoting and Antagonizing Meiotic Crossovers Ensure Faithful Chromosome Inheritance

    Science.gov (United States)

    Jagut, Marlène; Hamminger, Patricia; Woglar, Alexander; Millonigg, Sophia; Paulin, Luis; Mikl, Martin; Dello Stritto, Maria Rosaria; Tang, Lois; Habacher, Cornelia; Tam, Angela; Gallach, Miguel; von Haeseler, Arndt; Villeneuve, Anne M.; Jantsch, Verena

    2016-01-01

    During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions. PMID:27011106

  1. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.

    Science.gov (United States)

    Rosu, Simona; Zawadzki, Karl A; Stamper, Ericca L; Libuda, Diana E; Reese, Angela L; Dernburg, Abby F; Villeneuve, Anne M

    2013-01-01

    For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs) and repair of a subset of these DSBs as inter-homolog crossovers (COs). However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1) ensures that sufficient DSBs are made to guarantee CO formation and (2) prevents excessive DSB levels that could have deleterious

  2. Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frank Hartung

    2008-12-01

    Full Text Available Topoisomerases are enzymes with crucial functions in DNA metabolism. They are ubiquitously present in prokaryotes and eukaryotes and modify the steady-state level of DNA supercoiling. Biochemical analyses indicate that Topoisomerase 3alpha (TOP3alpha functions together with a RecQ DNA helicase and a third partner, RMI1/BLAP75, in the resolution step of homologous recombination in a process called Holliday Junction dissolution in eukaryotes. Apart from that, little is known about the role of TOP3alpha in higher eukaryotes, as knockout mutants show early lethality or strong developmental defects. Using a hypomorphic insertion mutant of Arabidopsis thaliana (top3alpha-2, which is viable but completely sterile, we were able to define three different functions of the protein in mitosis and meiosis. The top3alpha-2 line exhibits fragmented chromosomes during mitosis and sensitivity to camptothecin, suggesting an important role in chromosome segregation partly overlapping with that of type IB topoisomerases. Furthermore, AtTOP3alpha, together with AtRECQ4A and AtRMI1, is involved in the suppression of crossover recombination in somatic cells as well as DNA repair in both mammals and A. thaliana. Surprisingly, AtTOP3alpha is also essential for meiosis. The phenotype of chromosome fragmentation, bridges, and telophase I arrest can be suppressed by AtSPO11 and AtRAD51 mutations, indicating that the protein is required for the resolution of recombination intermediates. As Atrmi1 mutants have a similar meiotic phenotype to Attop3alpha mutants, both proteins seem to be involved in a mechanism safeguarding the entangling of homologous chromosomes during meiosis. The requirement of AtTOP3alpha and AtRMI1 in a late step of meiotic recombination strongly hints at the possibility that the dissolution of double Holliday Junctions via a hemicatenane intermediate is indeed an indispensable step of meiotic recombination.

  3. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    Science.gov (United States)

    Murdoch, Brenda; Owen, Nichole; Stevense, Michelle; Smith, Helen; Nagaoka, So; Hassold, Terry; McKay, Michael; Xu, Huiling; Fu, Jun; Revenkova, Ekaterina; Jessberger, Rolf; Hunt, Patricia

    2013-01-01

    Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC) and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  4. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    Directory of Open Access Journals (Sweden)

    Brenda Murdoch

    Full Text Available Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  5. Becoming a crossover-competent DSB.

    Science.gov (United States)

    Lake, Cathleen M; Hawley, R Scott

    2016-06-01

    The proper execution of meiotic recombination (or crossing over) is essential for chromosome segregation during the first meiotic division, and thus this process is regulated by multiple, and often elaborate, mechanisms. Meiotic recombination begins with the programmed induction of DNA double-strand breaks (DSBs), of which only a subset are selected to be repaired into crossovers. This crossover selection process is carried out by a number of pro-crossover proteins that regulate the fashion in which DSBs are repaired. Here, we highlight recent studies regarding the process of DSB fate selection by a family of pro-crossover proteins known as the Zip-3 homologs.

  6. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination

    Science.gov (United States)

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C.

    2014-01-01

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved. PMID:25414342

  7. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  8. The choice in meiosis - defining the factors that influence crossover or non-crossover formation.

    Science.gov (United States)

    Youds, Jillian L; Boulton, Simon J

    2011-02-15

    Meiotic crossovers are essential for ensuring correct chromosome segregation as well as for creating new combinations of alleles for natural selection to take place. During meiosis, excess meiotic double-strand breaks (DSBs) are generated; a subset of these breaks are repaired to form crossovers, whereas the remainder are repaired as non-crossovers. What determines where meiotic DSBs are created and whether a crossover or non-crossover will be formed at any particular DSB remains largely unclear. Nevertheless, several recent papers have revealed important insights into the factors that control the decision between crossover and non-crossover formation in meiosis, including DNA elements that determine the positioning of meiotic DSBs, and the generation and processing of recombination intermediates. In this review, we focus on the factors that influence DSB positioning, the proteins required for the formation of recombination intermediates and how the processing of these structures generates either a crossover or non-crossover in various organisms. A discussion of crossover interference, assurance and homeostasis, which influence crossing over on a chromosome-wide and genome-wide scale - in addition to current models for the generation of interference - is also included. This Commentary aims to highlight recent advances in our understanding of the factors that promote or prevent meiotic crossing over.

  9. Left-handed DNA crossovers. Implications for DNA-DNA recognition and structural alterations.

    Science.gov (United States)

    Timsit, Y; Shatzky-Schwartz, M; Shakked, Z

    1999-02-01

    The close approach of DNA segments participates in many biological functions including DNA condensation and DNA processing. Previous crystallographic studies have shown that B-DNA self-fitting by mutual groove-backbone interaction produces right-handed DNA crossovers. These structures have opened new perspectives on the role of close DNA-DNA interactions in the architecture and activity the DNA molecule. In the present study, the analysis of the crystal packing of two B-DNA decamer duplexes d(CCIIICCCGG) and d(CCGCCGGCGG) reveals the existence of new modes of DNA crossing. Symmetric left-handed crossovers are produced by mutual fitting of DNA grooves at the crossing point. New sequence patterns contribute to stabilize longitudinal fitting of the sugar-phosphate backbone into the major groove. In addition, the close approach of DNA segments greatly influences the DNA conformation in a sequence dependent manner. This study provides new insights into the role of DNA sequence and structure in DNA-DNA recognition. In providing detailed molecular views of DNA crossovers of opposite chirality, this study can also help to elucidate the role of symmetry and chirality in the recognition of complex DNA structures by protein dimers or tetramers, such as topoisomerase II and recombinase enzymes. These results are discussed in the context of the possible relationships between DNA condensation and DNA processing.

  10. Meiotic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  11. Meiotic recombination intermediates are resolved with minimal crossover formation during return-to-growth, an analogue of the mitotic cell cycle.

    Directory of Open Access Journals (Sweden)

    Yaron Dayani

    2011-05-01

    Full Text Available Accurate segregation of homologous chromosomes of different parental origin (homologs during the first division of meiosis (meiosis I requires inter-homolog crossovers (COs. These are produced at the end of meiosis I prophase, when recombination intermediates that contain Holliday junctions (joint molecules, JMs are resolved, predominantly as COs. JM resolution during the mitotic cell cycle is less well understood, mainly due to low levels of inter-homolog JMs. To compare JM resolution during meiosis and the mitotic cell cycle, we used a unique feature of Saccharomyces cerevisiae, return to growth (RTG, where cells undergoing meiosis can be returned to the mitotic cell cycle by a nutritional shift. By performing RTG with ndt80 mutants, which arrest in meiosis I prophase with high levels of interhomolog JMs, we could readily monitor JM resolution during the first cell division of RTG genetically and, for the first time, at the molecular level. In contrast to meiosis, where most JMs resolve as COs, most JMs were resolved during the first 1.5-2 hr after RTG without producing COs. Subsequent resolution of the remaining JMs produced COs, and this CO production required the Mus81/Mms4 structure-selective endonuclease. RTG in sgs1-ΔC795 mutants, which lack the helicase and Holliday junction-binding domains of this BLM homolog, led to a substantial delay in JM resolution; and subsequent JM resolution produced both COs and NCOs. Based on these findings, we suggest that most JMs are resolved during the mitotic cell cycle by dissolution, an Sgs1 helicase-dependent process that produces only NCOs. JMs that escape dissolution are mostly resolved by Mus81/Mms4-dependent cleavage that produces both COs and NCOs in a relatively unbiased manner. Thus, in contrast to meiosis, where JM resolution is heavily biased towards COs, JM resolution during RTG minimizes CO formation, thus maintaining genome integrity and minimizing loss of heterozygosity.

  12. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment

    Directory of Open Access Journals (Sweden)

    Zenzes Maria

    2004-09-01

    Full Text Available Abstract We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II. Oocytes in germinal vesicle (GV stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II. The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M; 16 h nicotine (16N; 8 h medium then 8 h nicotine (8M + 8N. Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M, or for 16 h (16N, resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%. Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%. A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%. Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  13. Initiation of Meiotic Recombination in Mammals

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2010-12-01

    Full Text Available Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs. DSB repair promotes homologous interactions and pairing and leads to the formation of crossovers (COs, which are required for the proper reductional segregation at the first meiotic division. In mammals, several hundred DSBs are generated at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not well understood how the frequency and timing of DSB formation and their localization are regulated. Several approaches in humans and mice have provided an extensive description of the localization of initiation events based on CO mapping, leading to the identification and characterization of preferred sites (hotspots of initiation. This review presents the current knowledge about the proteins known to be involved in this process, the sites where initiation takes place, and the factors that control hotspot localization.

  14. SLX-1 is required for maintaining genomic integrity and promoting meiotic noncrossovers in the Caenorhabditis elegans germline.

    Directory of Open Access Journals (Sweden)

    Takamune T Saito

    2012-08-01

    Full Text Available Although the SLX4 complex, which includes structure-specific nucleases such as XPF, MUS81, and SLX1, plays important roles in the repair of several kinds of DNA damage, the function of SLX1 in the germline remains unknown. Here we characterized the endonuclease activities of the Caenorhabditis elegans SLX-1-HIM-18/SLX-4 complex co-purified from human 293T cells and determined SLX-1 germline function via analysis of slx-1(tm2644 mutants. SLX-1 shows a HIM-18/SLX-4-dependent endonuclease activity toward replication forks, 5'-flaps, and Holliday junctions. slx-1 mutants exhibit hypersensitivity to UV, nitrogen mustard, and camptothecin, but not gamma irradiation. Consistent with a role in DNA repair, recombination intermediates accumulate in both mitotic and meiotic germ cells in slx-1 mutants. Importantly, meiotic crossover distribution, but not crossover frequency, is altered on chromosomes in slx-1 mutants compared to wild type. This alteration is not due to changes in either the levels or distribution of double-strand breaks (DSBs along chromosomes. We propose that SLX-1 is required for repair at stalled or collapsed replication forks, interstrand crosslink repair, and nucleotide excision repair during mitosis. Moreover, we hypothesize that SLX-1 regulates the crossover landscape during meiosis by acting as a noncrossover-promoting factor in a subset of DSBs.

  15. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes.

    Science.gov (United States)

    Mukherjee, A; Koli, S; Reddy, K V R

    2015-09-01

    Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of

  16. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes.

    Directory of Open Access Journals (Sweden)

    Marco Barchi

    2008-05-01

    Full Text Available During meiosis in most sexually reproducing organisms, recombination forms crossovers between homologous maternal and paternal chromosomes and thereby promotes proper chromosome segregation at the first meiotic division. The number and distribution of crossovers are tightly controlled, but the factors that contribute to this control are poorly understood in most organisms, including mammals. Here we provide evidence that the ATM kinase or protein is essential for proper crossover formation in mouse spermatocytes. ATM deficiency causes multiple phenotypes in humans and mice, including gonadal atrophy. Mouse Atm-/- spermatocytes undergo apoptosis at mid-prophase of meiosis I, but Atm(-/- meiotic phenotypes are partially rescued by Spo11 heterozygosity, such that ATM-deficient spermatocytes progress to meiotic metaphase I. Strikingly, Spo11+/-Atm-/- spermatocytes are defective in forming the obligate crossover on the sex chromosomes, even though the XY pair is usually incorporated in a sex body and is transcriptionally inactivated as in normal spermatocytes. The XY crossover defect correlates with the appearance of lagging chromosomes at metaphase I, which may trigger the extensive metaphase apoptosis that is observed in these cells. In addition, control of the number and distribution of crossovers on autosomes appears to be defective in the absence of ATM because there is an increase in the total number of MLH1 foci, which mark the sites of eventual crossover formation, and because interference between MLH1 foci is perturbed. The axes of autosomes exhibit structural defects that correlate with the positions of ongoing recombination. Together, these findings indicate that ATM plays a role in both crossover control and chromosome axis integrity and further suggests that ATM is important for coordinating these features of meiotic chromosome dynamics.

  17. Polyploidization increases meiotic recombination frequency in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Rehmsmeier Marc

    2011-04-01

    Full Text Available Abstract Background Polyploidization is the multiplication of the whole chromosome complement and has occurred frequently in vascular plants. Maintenance of stable polyploid state over generations requires special mechanisms to control pairing and distribution of more than two homologous chromosomes during meiosis. Since a minimal number of crossover events is essential for correct chromosome segregation, we investigated whether polyploidy has an influence on the frequency of meiotic recombination. Results Using two genetically linked transgenes providing seed-specific fluorescence, we compared a high number of progeny from diploid and tetraploid Arabidopsis plants. We show that rates of meiotic recombination in reciprocal crosses of genetically identical diploid and autotetraploid Arabidopsis plants were significantly higher in tetraploids compared to diploids. Although male and female gametogenesis differ substantially in meiotic recombination frequency, both rates were equally increased in tetraploids. To investigate whether multivalent formation in autotetraploids was responsible for the increased recombination rates, we also performed corresponding experiments with allotetraploid plants showing strict bivalent pairing. We found similarly increased rates in auto- and allotetraploids, suggesting that the ploidy effect is independent of chromosome pairing configurations. Conclusions The evolutionary success of polyploid plants in nature and under domestication has been attributed to buffering of mutations and sub- and neo-functionalization of duplicated genes. Should the data described here be representative for polyploid plants, enhanced meiotic recombination, and the resulting rapid creation of genetic diversity, could have also contributed to their prevalence.

  18. Kinesio Taping Does Not Alter Quadriceps Isokinetic Strength and Power in Healthy Nonathletic Men: A Prospective Crossover Study

    Directory of Open Access Journals (Sweden)

    Paweł Korman

    2015-01-01

    Full Text Available Objectives. The effects of Kinesio Taping (KT on muscular performance remain largely unclear. This study aimed to investigate the acute effects of KT on the maximum concentric and eccentric quadriceps isokinetic strength. Study Design. This is a single-blinded, placebo crossover, repeated measures study. Methods. Maximum isokinetic concentric/eccentric extension torque, work, and power were assessed by an isokinetic dynamometer without taping (NT and with KT or placebo taping (PT in 17 healthy young men. Repeated measures one-way analysis of variance (ANOVA was used for statistical analyses. Results. Testing concentric contractions at 60°/s or 180°/s isokinetic speed, no significant differences in peak torque (Nm, total work (J, or mean power (W were noted among the application modes under different conditions. Testing eccentric contractions at 30°/s or 60°/s isokinetic speed, no significant differences in mentioned parameters were noted, respectively. KT on the quadriceps neither decreased nor increased muscle strength in the participants. Conclusion. KT application onto the skin overlying the quadriceps muscle does not enhance the strength or power of knee extensors in healthy men.

  19. Crossovers get a boost in Brassica allotriploid and allotetraploid hybrids.

    Science.gov (United States)

    Leflon, Martine; Grandont, Laurie; Eber, Frédérique; Huteau, Virginie; Coriton, Olivier; Chelysheva, Liudmila; Jenczewski, Eric; Chèvre, Anne-Marie

    2010-07-01

    Meiotic crossovers are necessary to generate balanced gametes and to increase genetic diversity. Even if crossover number is usually constrained, recent results suggest that manipulating karyotype composition could be a new way to increase crossover frequency in plants. In this study, we explored this hypothesis by analyzing the extent of crossover variation in a set of related diploid AA, allotriploid AAC, and allotetraploid AACC Brassica hybrids. We first used cytogenetic methods to describe the meiotic behavior of the different hybrids. We then combined a cytogenetic estimation of class I crossovers in the entire genome by immunolocalization of a key protein, MutL Homolog1, which forms distinct foci on meiotic chromosomes, with genetic analyses to specifically compare crossover rates between one pair of chromosomes in the different hybrids. Our results showed that the number of crossovers in the allotriploid AAC hybrid was higher than in the diploid AA hybrid. Accordingly, the allotetraploid AACC hybrid showed an intermediate behavior. We demonstrated that this increase was related to hybrid karyotype composition (diploid versus allotriploid versus allotetraploid) and that interference was maintained in the AAC hybrids. These results could provide another efficient way to manipulate recombination in traditional breeding and genetic studies.

  20. Arabidopsis PTD is required for type I crossover formation and affects recombination frequency in two different chromosomal regions.

    Science.gov (United States)

    Lu, Pingli; Wijeratne, Asela J; Wang, Zhengjia; Copenhaver, Gregory P; Ma, Hong

    2014-03-20

    In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSPO11-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors of Atspo11-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSPO11-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck ptd and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd-2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.

  1. Genetic Analyses of Meiotic Recombination in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination ie important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These Include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of double-Holliday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions.

  2. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Directory of Open Access Journals (Sweden)

    Maria Balcova

    2016-04-01

    Full Text Available Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm and Mus m. domesticus (Mmd, it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2 genomic locus on Chromosome X (Chr X by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s responsible for variation in the global recombination rate between closely related mouse subspecies.

  3. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Science.gov (United States)

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  4. Control of meiotic recombination frequency in plant genomes.

    Science.gov (United States)

    Henderson, Ian R

    2012-11-01

    Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.

  5. Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome

    Science.gov (United States)

    Bernstein, Max R.; Rockman, Matthew V.

    2016-01-01

    Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin. PMID:27172189

  6. Meiotic failure in male mice lacking an X-linked factor.

    Science.gov (United States)

    Yang, Fang; Gell, Katarina; van der Heijden, Godfried W; Eckardt, Sigrid; Leu, N Adrian; Page, David C; Benavente, Ricardo; Her, Chengtao; Höög, Christer; McLaughlin, K John; Wang, Peijing Jeremy

    2008-03-01

    Meiotic silencing of sex chromosomes may cause their depletion of meiosis-specific genes during evolution. Here, we challenge this hypothesis by reporting the identification of TEX11 as the first X-encoded meiosis-specific factor in mice. TEX11 forms discrete foci on synapsed regions of meiotic chromosomes and appears to be a novel constituent of meiotic nodules involved in recombination. Loss of TEX11 function causes chromosomal asynapsis and reduced crossover formation, leading to elimination of spermatocytes, respectively, at the pachytene and anaphase I stages. Specifically, TEX11-deficient spermatocytes with asynapsed autosomes undergo apoptosis at the pachytene stage, while those with only asynapsed sex chromosomes progress. However, cells that survive the pachytene stage display chromosome nondisjunction at the first meiotic division, resulting in cell death and male infertility. TEX11 interacts with SYCP2, which is an integral component of the synaptonemal complex lateral elements. Thus, TEX11 promotes initiation and/or maintenance of synapsis and formation of crossovers, and may provide a physical link between these two meiotic processes.

  7. ZIP4H (TEX11 deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over.

    Directory of Open Access Journals (Sweden)

    Carrie A Adelman

    2008-03-01

    Full Text Available We have recently shown that hypomorphic Mre11 complex mouse mutants exhibit defects in the repair of meiotic double strand breaks (DSBs. This is associated with perturbation of synaptonemal complex morphogenesis, repair and regulation of crossover formation. To further assess the Mre11 complex's role in meiotic progression, we identified testis-specific NBS1-interacting proteins via two-hybrid screening in yeast. In this screen, Zip4h (Tex11, a male germ cell specific X-linked gene was isolated. Based on sequence and predicted structural similarity to the S. cerevisiae and A. thaliana Zip4 orthologs, ZIP4H appears to be the mammalian ortholog. In S. cerevisiae and A. thaliana, Zip4 is a meiosis-specific protein that regulates the level of meiotic crossovers, thus influencing homologous chromosome segregation in these organisms. As is true for hypomorphic Nbs1 (Nbs1(DeltaB/DeltaB mice, Zip4h(-/Y mutant mice were fertile. Analysis of spermatocytes revealed a delay in meiotic double strand break repair and decreased crossover formation as inferred from DMC1 and MLH1 staining patterns, respectively. Achiasmate chromosomes at the first meiotic division were also observed in Zip4h(-/Y mutants, consistent with the observed reduction in MLH1 focus formation. These results indicate that meiotic functions of Zip4 family members are conserved and support the view that the Mre11 complex and ZIP4H interact functionally during the execution of the meiotic program in mammals.

  8. Genetic crossovers are predicted accurately by the computed human recombination map.

    Directory of Open Access Journals (Sweden)

    Pavel P Khil

    2010-01-01

    Full Text Available Hotspots of meiotic recombination can change rapidly over time. This instability and the reported high level of inter-individual variation in meiotic recombination puts in question the accuracy of the calculated hotspot map, which is based on the summation of past genetic crossovers. To estimate the accuracy of the computed recombination rate map, we have mapped genetic crossovers to a median resolution of 70 Kb in 10 CEPH pedigrees. We then compared the positions of crossovers with the hotspots computed from HapMap data and performed extensive computer simulations to compare the observed distributions of crossovers with the distributions expected from the calculated recombination rate maps. Here we show that a population-averaged hotspot map computed from linkage disequilibrium data predicts well present-day genetic crossovers. We find that computed hotspot maps accurately estimate both the strength and the position of meiotic hotspots. An in-depth examination of not-predicted crossovers shows that they are preferentially located in regions where hotspots are found in other populations. In summary, we find that by combining several computed population-specific maps we can capture the variation in individual hotspots to generate a hotspot map that can predict almost all present-day genetic crossovers.

  9. C. elegans germ cells switch between distinct modes of double-strand break repair during meiotic prophase progression.

    Directory of Open Access Journals (Sweden)

    Michiko Hayashi

    2007-11-01

    Full Text Available Chromosome inheritance during sexual reproduction relies on deliberate induction of double-strand DNA breaks (DSBs and repair of a subset of these breaks as interhomolog crossovers (COs. Here we provide a direct demonstration, based on our analysis of rad-50 mutants, that the meiotic program in Caenorhabditis elegans involves both acquisition and loss of a specialized mode of double-strand break repair (DSBR. In premeiotic germ cells, RAD-50 is not required to load strand-exchange protein RAD-51 at sites of spontaneous or ionizing radiation (IR-induced DSBs. A specialized meiotic DSBR mode is engaged at the onset of meiotic prophase, coincident with assembly of meiotic chromosome axis structures. This meiotic DSBR mode is characterized both by dependence on RAD-50 for rapid accumulation of RAD-51 at DSB sites and by competence for converting DSBs into interhomolog COs. At the mid-pachytene to late pachytene transition, germ cells undergo an abrupt release from the meiotic DSBR mode, characterized by reversion to RAD-50-independent loading of RAD-51 and loss of competence to convert DSBs into interhomolog COs. This transition in DSBR mode is dependent on MAP kinase-triggered prophase progression and coincides temporally with a major remodeling of chromosome architecture. We propose that at least two developmentally programmed switches in DSBR mode, likely conferred by changes in chromosome architecture, operate in the C. elegans germ line to allow formation of meiotic crossovers without jeopardizing genomic integrity. Our data further suggest that meiotic cohesin component REC-8 may play a role in limiting the activity of SPO-11 in generating meiotic DSBs and that RAD-50 may function in counteracting this inhibition.

  10. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination.

    Science.gov (United States)

    Qiao, Huanyu; Prasada Rao, H B D; Yang, Ye; Fong, Jared H; Cloutier, Jeffrey M; Deacon, Dekker C; Nagel, Kathryn E; Swartz, Rebecca K; Strong, Edward; Holloway, J Kim; Cohen, Paula E; Schimenti, John; Ward, Jeremy; Hunter, Neil

    2014-02-01

    Crossover recombination facilitates the accurate segregation of homologous chromosomes during meiosis. In mammals, poorly characterized regulatory processes ensure that every pair of chromosomes obtains at least one crossover, even though most recombination sites yield non-crossovers. Designation of crossovers involves selective localization of the SUMO ligase RNF212 to a minority of recombination sites, where it stabilizes pertinent factors such as MutSγ (ref. 4). Here we show that the ubiquitin ligase HEI10 (also called CCNB1IP1) is essential for this crossover/non-crossover differentiation process. In HEI10-deficient mice, RNF212 localizes to most recombination sites, and dissociation of both RNF212 and MutSγ from chromosomes is blocked. Consequently, recombination is impeded, and crossing over fails. In wild-type mice, HEI10 accumulates at designated crossover sites, suggesting that it also has a late role in implementing crossing over. As with RNF212, dosage sensitivity for HEI10 indicates that it is a limiting factor for crossing over. We suggest that SUMO and ubiquitin have antagonistic roles during meiotic recombination that are balanced to effect differential stabilization of recombination factors at crossover and non-crossover sites.

  11. MUS81 generates a subset of MLH1-MLH3-independent crossovers in mammalian meiosis.

    Directory of Open Access Journals (Sweden)

    J Kim Holloway

    2008-09-01

    Full Text Available Two eukaryotic pathways for processing double-strand breaks (DSBs as crossovers have been described, one dependent on the MutL homologs Mlh1 and Mlh3, and the other on the structure-specific endonuclease Mus81. Mammalian MUS81 has been implicated in maintenance of genomic stability in somatic cells; however, little is known about its role during meiosis. Mus81-deficient mice were originally reported as being viable and fertile, with normal meiotic progression; however, a more detailed examination of meiotic progression in Mus81-null animals and WT controls reveals significant meiotic defects in the mutants. These include smaller testis size, a depletion of mature epididymal sperm, significantly upregulated accumulation of MLH1 on chromosomes from pachytene meiocytes in an interference-independent fashion, and a subset of meiotic DSBs that fail to be repaired. Interestingly, chiasmata numbers in spermatocytes from Mus81-/- animals are normal, suggesting additional integrated mechanisms controlling the two distinct crossover pathways. This study is the first in-depth analysis of meiotic progression in Mus81-nullizygous mice, and our results implicate the MUS81 pathway as a regulator of crossover frequency and placement in mammals.

  12. [Diagnosticum of abnormalities of plant meiotic division].

    Science.gov (United States)

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  13. Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies.

    Directory of Open Access Journals (Sweden)

    Melanie Legrand

    2008-01-01

    Full Text Available Haplotype maps (HapMaps reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism.

  14. Chromosome choreography: the meiotic ballet.

    Science.gov (United States)

    Page, Scott L; Hawley, R Scott

    2003-08-08

    The separation of homologous chromosomes during meiosis in eukaryotes is the physical basis of Mendelian inheritance. The core of the meiotic process is a specialized nuclear division (meiosis I) in which homologs pair with each other, recombine, and then segregate from each other. The processes of chromosome alignment and pairing allow for homolog recognition. Reciprocal meiotic recombination ensures meiotic chromosome segregation by converting sister chromatid cohesion into mechanisms that hold homologous chromosomes together. Finally, the ability of sister kinetochores to orient to a single pole at metaphase I allows the separation of homologs to two different daughter cells. Failures to properly accomplish this elegant chromosome dance result in aneuploidy, a major cause of miscarriage and birth defects in human beings.

  15. Abnormal meiotic recombination in infertile men and its association with sperm aneuploidy.

    Science.gov (United States)

    Ferguson, Kyle A; Wong, Edgar Chan; Chow, Victor; Nigro, Mark; Ma, Sai

    2007-12-01

    Defects in early meiotic events are thought to play a critical role in male infertility; however, little is known regarding the relationship between early meiotic events and the chromosomal constitution of human sperm. Thus, we analyzed testicular tissue from 26 men (9 fertile and 17 infertile men), using immunofluorescent techniques to examine meiotic chromosomes, and fluorescent in situ hybridization to assess sperm aneuploidy. Based on a relatively small sample size, we observed that 42% (5/12) of men with impaired spermatogenesis displayed reduced genome-wide recombination when compared to the fertile men. Analysis of individual chromosomes showed chromosome-specific defects in recombination: chromosome 13 and 18 bivalents with only a single crossover and chromosome 21 bivalents lacking a crossover were more frequent among the infertile men. We identified two infertile men who displayed a novel meiotic defect in which the sex chromosomes failed to recombine: one man had an absence of sperm in the testes, while the other displayed increased sex chromosome aneuploidy in the sperm, resulting in a 45,X abortus after intracytoplasmic sperm injection. When all men were pooled, we observed an inverse correlation between the frequency of sex chromosome recombination and XY disomy in the sperm. Recombination between the sex chromosomes may be a useful indicator for identifying men at risk of producing chromosomally abnormal sperm. An understanding of the molecular mechanisms that contribute to sperm aneuploidy in infertile men could aid in risk assessment for couples undergoing assisted reproduction.

  16. Oocyte-specific differences in cell cycle control create an innate susceptibility to meiotic errors

    OpenAIRE

    Nagaoka, So Iha; Hodges, Craig A.; Albertini, David F.; Hunt, Patricia Ann

    2011-01-01

    Segregation of homologous chromosomes at the first meiotic division (MI) is facilitated by crossovers and by a physical constraint imposed on sister kinetochores that allows them to make a monopolar attachment to the MI spindle. Recombination failure or premature separation of homologs results in univalent chromosomes at MI, and univalents constrained to form monopolar attachments should be inherently unstable and trigger the spindle assembly checkpoint (SAC) [1]. Although this appears to be ...

  17. Consistent Prebiotic Effect on Gut Microbiota With Altered FODMAP Intake in Patients with Crohn's Disease: A Randomised, Controlled Cross-Over Trial of Well-Defined Diets

    OpenAIRE

    Halmos, Emma P; Christophersen, Claus T.; Bird, Anthony R.; Shepherd, Susan J; Muir, Jane G.; Gibson, Peter R

    2016-01-01

    Objectives: Altering FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) intake has substantial effects on gut microbiota. This study aimed to investigate effects of altering FODMAP intake on markers of colonic health in patients with Crohn's disease. Methods: After evaluation of their habitual diet, 9 patients with clinically quiescent Crohn's disease were randomised to 21 days of provided low or typical (“Australian”) FODMAP diets with ≥21-day washout in betwee...

  18. Meiotic functions of RAD18.

    Science.gov (United States)

    Inagaki, Akiko; Sleddens-Linkels, Esther; Wassenaar, Evelyne; Ooms, Marja; van Cappellen, Wiggert A; Hoeijmakers, Jan H J; Seibler, Jost; Vogt, Thomas F; Shin, Myung K; Grootegoed, J Anton; Baarends, Willy M

    2011-08-15

    RAD18 is an ubiquitin ligase that is involved in replication damage bypass and DNA double-strand break (DSB) repair processes in mitotic cells. Here, we investigated the testicular phenotype of Rad18-knockdown mice to determine the function of RAD18 in meiosis, and in particular, in the repair of meiotic DSBs induced by the meiosis-specific topoisomerase-like enzyme SPO11. We found that RAD18 is recruited to a specific subfraction of persistent meiotic DSBs. In addition, RAD18 is recruited to the chromatin of the XY chromosome pair, which forms the transcriptionally silent XY body. At the XY body, RAD18 mediates the chromatin association of its interaction partners, the ubiquitin-conjugating enzymes HR6A and HR6B. Moreover, RAD18 was found to regulate the level of dimethylation of histone H3 at Lys4 and maintain meiotic sex chromosome inactivation, in a manner similar to that previously observed for HR6B. Finally, we show that RAD18 and HR6B have a role in the efficient repair of a small subset of meiotic DSBs.

  19. The evolution of meiotic sex and its alternatives

    OpenAIRE

    Mirzaghaderi, Ghader; Hörandl, Elvira

    2016-01-01

    Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps...

  20. Do formulation differences alter abuse liability of methylphenidate? A placebo-controlled, randomized, double-blind, crossover study in recreational drug users.

    Science.gov (United States)

    Parasrampuria, Dolly A; Schoedel, Kerri A; Schuller, Reinhard; Silber, Steven A; Ciccone, Patrick E; Gu, Joan; Sellers, Edward M

    2007-10-01

    The primary objective of this study was to determine if the abuse liability of methylphenidate is governed by formulation differences that affect rates of drug delivery. In this double-blind, placebo-controlled, randomized, crossover study, subjects with a history of recreational drug use received single oral doses of placebo, 60 mg of immediate-release methylphenidate (IR) and 108 mg of extended-release methylphenidate (osmotic release oral system [OROS]). Over 24 hours after dosing, blood was collected to determine plasma concentrations of methylphenidate, and subjects completed subjective assessments of abuse liability (Addiction Research Center Inventory, Drug Rating Questionnaire-Subject, and Subjective Drug Value). The abuse-related subjective effects of IR and OROS methylphenidate were statistically significantly different from placebo, confirming the overall validity of the study. Although a higher dose of OROS methylphenidate was used compared with IR methylphenidate (108 mg vs 60 mg), subjective effects were consistently lower for OROS compared with IR methylphenidate (statistically significant for 3 of 6 measures of positive effects), particularly at early time points. In general, pharmacokinetic-pharmacodynamic parameters were correlated from a poor to modest degree, with greater correlations observed for IR methylphenidate. In addition, a post hoc "qualification" method was developed, which demonstrated that pharmacological qualification might improve the assessment of subjective effects. Although requiring epidemiological confirmation, the results suggest that OROS methylphenidate, with its characteristic slow ascending plasma concentration profile, may have lower abuse potential. This conclusion is reflected by lower subjective responses during early hours as compared with the IR formulation with its rapid drug delivery and accompanying greater subjective effects.

  1. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    Science.gov (United States)

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  2. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation

    OpenAIRE

    Mahadevaiah, Shantha K.; Bourc'his, Déborah; Dirk G de Rooij; Bestor, Timothy H; James M A Turner; Burgoyne, Paul S

    2008-01-01

    Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-...

  3. Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena.

    Science.gov (United States)

    Lukaszewicz, Agnieszka; Shodhan, Anura; Loidl, Josef

    2015-11-01

    The resection of 5'-DNA ends at a double-strand break (DSB) is an essential step in recombinational repair, as it exposes 3' single-stranded DNA (ssDNA) tails for interaction with a repair template. In mitosis, Exo1 and Sgs1 have a conserved function in the formation of long ssDNA tails, whereas this step in the processing of programmed meiotic DSBs is less well-characterized across model organisms. In budding yeast, which has been most intensely studied in this respect, Exo1 is a major meiotic nuclease. In addition, it exerts a nuclease-independent function later in meiosis in the conversion of DNA joint molecules into ZMM-dependent crossovers. In order to gain insight into the diverse meiotic roles of Exo1, we investigated the effect of Exo1 deletion in the ciliated protist Tetrahymena. We found that Exo1 together with Mre11, but without the help of Sgs1, promotes meiotic DSB end resection. Resection is completely eliminated only if both Mre11 and Exo1 are missing. This is consistent with the yeast model where Mre11 promotes resection in the 3'-5' direction and Exo1 in the opposite 5'-3' direction. However, while the endonuclease activity of Mre11 is essential to create an entry site for exonucleases and hence to start resection in budding yeast, Tetrahymena Exo1 is able to create single-stranded DNA in the absence of Mre11. Excluding a possible contribution of the Mre11 cofactor Sae2 (Com1) as an autonomous endonuclease, we conclude that there exists another unknown nuclease that initiates DSB processing in Tetrahymena. Consistent with the absence of the ZMM crossover pathway in Tetrahymena, crossover formation is independent of Exo1.

  4. Meiotic abnormalities in infertile males.

    Science.gov (United States)

    Egozcue, J; Sarrate, Z; Codina-Pascual, M; Egozcue, S; Oliver-Bonet, M; Blanco, J; Navarro, J; Benet, J; Vidal, F

    2005-01-01

    Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to germ cells that cannot be detected through the study of the karyotype. Although the importance of synaptic errors has been underestimated for many years, their presence is related to many cases of human male infertility. Synaptic anomalies can be studied by immunostaining of synaptonemal complexes (SCs), but in this case their frequency is probably underestimated due to the phenomenon of synaptic adjustment. They can also be studied in classic meiotic preparations, which, from a clinical point of view, is still the best approach, especially if multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm chromosome FISH studies also provide indirect evidence of their presence. Synaptic anomalies can affect the rate of recombination of all bivalents, produce achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or affect all bivalents in the cell. The frequency is variable, interindividually and intraindividually. The baseline incidence of synaptic anomalies is 6-8%, which may be increased to 17.6% in males with a severe oligozoospermia, and to 27% in normozoospermic males with one or more previous IVF failures. The clinical consequences are the production of abnormal spermatozoa that will produce a higher number of chromosomally abnormal embryos. The indications for a meiotic study in testicular biopsy are provided.

  5. Factors underlying restricted crossover localization in barley meiosis.

    Science.gov (United States)

    Higgins, James D; Osman, Kim; Jones, Gareth H; Franklin, F Chris H

    2014-01-01

    Meiotic recombination results in the formation of cytological structures known as chiasmata at the sites of genetic crossovers (COs). The formation of at least one chiasma/CO between homologous chromosome pairs is essential for accurate chromosome segregation at the first meiotic division as well as for generating genetic variation. Although DNA double-strand breaks, which initiate recombination, are widely distributed along the chromosomes, this is not necessarily reflected in the chiasma distribution. In many species there is a tendency for chiasmata to be distributed in favored regions along the chromosomes, whereas in others, such as barley and some other grasses, chiasma localization is extremely pronounced. Localization of chiasma to the distal regions of barley chromosomes restricts the genetic variation available to breeders. Studies reviewed herein are beginning to provide an explanation for chiasma localization in barley. Moreover, they suggest a potential route to manipulating chiasma distribution that could be of value to plant breeders.

  6. Understanding and Manipulating Meiotic Recombination in Plants[OPEN

    Science.gov (United States)

    2017-01-01

    Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step of meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous nonsister chromatids. This gene reshuffling during meiosis has a significant influence on evolution and also plays an essential role in plant breeding, because a successful breeding program depends on the ability to bring the desired combinations of alleles on chromosomes. However, the number and distribution of COs during meiosis is highly constrained. There is at least one CO per chromosome pair to ensure accurate segregation of homologs, but in most organisms, the CO number rarely exceeds three regardless of chromosome size. Moreover, their positions are not random on chromosomes but exhibit regional preference. Thus, genes in recombination-poor regions tend to be inherited together, hindering the generation of novel allelic combinations that could be exploited by breeding programs. Recently, much progress has been made in understanding meiotic recombination. In particular, many genes involved in the process in Arabidopsis (Arabidopsis thaliana) have been identified and analyzed. With the coming challenges of food security and climate change, and our enhanced knowledge of how COs are formed, the interest and needs in manipulating CO formation are greater than ever before. In this review, we focus on advances in understanding meiotic recombination and then summarize the attempts to manipulate CO formation. Last, we pay special attention to the meiotic recombination in polyploidy, which is a common genomic feature for many crop plants. PMID:28108697

  7. The Ubiquity Of Crossover

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    If the word 'crossover' is unfamiliar to you, perhaps it is time to get to grips with this modern phenomenon. It is one of those vague words that one is never quite clear about; how did it start? What exactly does it mean? Crossover seems to have infiltrated our lives without us even noticing.

  8. Novel roles for selected genes in meiotic DNA processing.

    Directory of Open Access Journals (Sweden)

    Philip W Jordan

    2007-12-01

    Full Text Available High-throughput studies of the 6,200 genes of Saccharomyces cerevisiae have provided valuable data resources. However, these resources require a return to experimental analysis to test predictions. An in-silico screen, mining existing interaction, expression, localization, and phenotype datasets was developed with the aim of selecting minimally characterized genes involved in meiotic DNA processing. Based on our selection procedure, 81 deletion mutants were constructed and tested for phenotypic abnormalities. Eleven (13.6% genes were identified to have novel roles in meiotic DNA processes including DNA replication, recombination, and chromosome segregation. In particular, this analysis showed that Def1, a protein that facilitates ubiquitination of RNA polymerase II as a response to DNA damage, is required for efficient synapsis between homologues and normal levels of crossover recombination during meiosis. These characteristics are shared by a group of proteins required for Zip1 loading (ZMM proteins. Additionally, Soh1/Med31, a subunit of the RNA pol II mediator complex, Bre5, a ubiquitin protease cofactor and an uncharacterized protein, Rmr1/Ygl250w, are required for normal levels of gene conversion events during meiosis. We show how existing datasets may be used to define gene sets enriched for specific roles and how these can be evaluated by experimental analysis.

  9. Meiotic recombination analysis in female ducks (Anas platyrhynchos).

    Science.gov (United States)

    Pigozzi, M I; Del Priore, L

    2016-06-01

    Meiotic recombination in female ducks was directly studied by immunolocalization of MLH1 protein, a mismatch repair protein of mature recombination nodules. In total, 6820 crossovers were scored along the autosomal synaptonemal complexes in 122 meiotic nuclei. From this analysis we predict that the female map length of the duck is 2845 cM, with a genome wide recombination rate of 2 cM/Mb. MLH1-focus mapping along the six largest bivalents shows regional variations of recombination frequencies that can be linked to differences in chromosome morphology. From this MLH1 mapping it can be inferred that distally located markers will appear more separated in genetic maps than physically equidistant markers located near the centromeres on bivalents 1 and 2. Instead, markers at interstitial positions on the acrocentric bivalents 3-6 will appear more tightly linked than expected on the basis of their physical distance because recombination is comparatively lower at the mid region of these chromosomes. The present results provide useful information to complement linkage mapping in ducks and extend previous knowledge about the variation of recombination rates among domestic Galloanserae.

  10. Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes.

    Science.gov (United States)

    Severson, Aaron F; Meyer, Barbara J

    2014-08-29

    We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the kleisin subunits REC-8 and COH-3/4 differ between meiotic cohesins and endow them with distinctive properties that specify how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.

  11. Coordination of Recombination with Meiotic Progression in the Caenorhabditis elegans Germline by KIN-18, a TAO Kinase That Regulates the Timing of MPK-1 Signaling.

    Science.gov (United States)

    Yin, Yizhi; Donlevy, Sean; Smolikove, Sarit

    2016-01-01

    Meiosis is a tightly regulated process requiring coordination of diverse events. A conserved ERK/MAPK-signaling cascade plays an essential role in the regulation of meiotic progression. The Thousand And One kinase (TAO) kinase is a MAPK kinase kinase, the meiotic role of which is unknown. We have analyzed the meiotic functions of KIN-18, the homolog of mammalian TAO kinases, in Caenorhabditis elegans. We found that KIN-18 is essential for normal meiotic progression; mutants exhibit accelerated meiotic recombination as detected both by analysis of recombination intermediates and by crossover outcome. In addition, ectopic germ-cell differentiation and enhanced levels of apoptosis were observed in kin-18 mutants. These defects correlate with ectopic activation of MPK-1 that includes premature, missing, and reoccurring MPK-1 activation. Late progression defects in kin-18 mutants are suppressed by inhibiting an upstream activator of MPK-1 signaling, KSR-2. However, the acceleration of recombination events observed in kin-18 mutants is largely MPK-1-independent. Our data suggest that KIN-18 coordinates meiotic progression by modulating the timing of MPK-1 activation and the progression of recombination events. The regulation of the timing of MPK-1 activation ensures the proper timing of apoptosis and is required for the formation of functional oocytes. Meiosis is a conserved process; thus, revealing that KIN-18 is a novel regulator of meiotic progression in C. elegans would help to elucidate TAO kinase's role in germline development in higher eukaryotes.

  12. Effect of texture alteration by thin film fabrication on the spin crossover of [Fe(3-Br-phen){sub 2}(NCS){sub 2}]{center_dot}0.5CH{sub 3}OH

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anil D; DIrtu, Marinela M; Garcia, Yann, E-mail: yann.garcia@uclouvain.b [Institut de la Matiere Condensee et des Nanosciences, Universite Catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve (Belgium)

    2010-03-01

    A mononuclear complex of composition [Fe(3-Br-phen){sub 2}(NCS){sub 2}]{center_dot}0.5CH{sub 3}OH which exhibits a gradual, incomplete spin crossover (SCO) in bulk sample (1) was selected to study the effect of alteration of particle size and shape on SCO properties. Thin films (2) were fabricated using spin coating technique on quartz substrates and silicon wafers. Morphology analysis by scanning electron micrographs shows a drastic reduction in particles size and deformation in shape compared to the bulk sample. Nearly spherical particles of 200-500 nm diameter were obtained and further reduction in size down to 50-120 nm were obtained with increase in spin coating speed. A thin film on a quartz substrate was studied by {sup 57}Fe Moessbauer spectroscopy in transmission mode which shows only a low-spin signal as opposed to a dominant high-spin signal in bulk sample thus hinting out the effect of texture modification on increasing the ligand field strength.

  13. Female meiotic sex chromosome inactivation in chicken

    NARCIS (Netherlands)

    S. Schoenmakers (Sam); E. Wassenaar (Evelyne); J.W. Hoogerbrugge (Jos); J.S.E. Laven (Joop); J.A. Grootegoed (Anton); W.M. Baarends (Willy)

    2009-01-01

    textabstractDuring meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (Z

  14. Backcrossing to increase meiotic stability in triticale.

    Science.gov (United States)

    Giacomin, R M; Assis, R; Brammer, S P; Nascimento Junior, A; Da-Silva, P R

    2015-09-22

    Triticale (X Triticosecale Wittmack) is an intergeneric hybrid derived from a cross between wheat and rye. As a newly created allopolyploid, the plant shows instabilities during the meiotic process, which may result in the loss of fertility. This genomic instability has hindered the success of triticale-breeding programs. Therefore, strategies should be developed to obtain stable triticale lines for use in breeding. In some species, backcrossing has been effective in increasing the meiotic stability of lineages. To assess whether backcrossing has the same effect in triticale, indices of meiotic abnormalities, meiotic index, and pollen viability were determined in genotypes from multiple generations of triticale (P1, P2, F1, F2, BC1a, and BC1b). All analyzed genotypes exhibited instability during meiosis, and their meiotic index values were all lower than normal. However, the backcrosses BC1a and BC1b showed the lowest mean meiotic abnormalities and the highest meiotic indices, demonstrating higher stability. All genotypes showed a high rate of pollen viability, with the backcrosses BC1a and BC1b again exhibiting the best values. Statistical analyses confirmed that backcrossing positively affects the meiotic stability of triticale. Our results show that backcrossing should be considered by breeders aiming to obtain triticale lines with improved genomic stability.

  15. Unresolved issues in pre-meiotic anther development

    Directory of Open Access Journals (Sweden)

    Timothy eKelliher

    2014-07-01

    Full Text Available Compared to the diversity of other floral organs, the steps in anther ontogeny, final cell types, and overall organ shape are remarkably conserved among Angiosperms. Defects in pre-meiotic anthers that alter cellular composition or function typically result in male-sterility. Given the ease of identifying male-sterile mutants, dozens of genes with key roles in early anther development have been identified and cloned in model species, ordered by time of action and spatiotemporal expression, and used to propose explanatory models for critical steps in cell fate specification. Despite rapid progress, fundamental issues in anther development remain unresolved, and it is unclear if insights from one species can be applied to others. Here we construct a comparison of Arabidopsis, rice, and maize immature anthers to pinpoint distinctions in developmental pace. We analyze the mechanisms by which archesporial (pre-meiotic cells are specified distinct from the soma, discuss what constitutes meiotic preparation, and review what is known about the secondary parietal layer and its terminal periclinal division that generates the tapetal and middle layers. Finally, roles for small RNAs are examined, focusing on the grass-specific phasiRNAs.

  16. Theory of meiotic spindle assembly

    Science.gov (United States)

    Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael

    2016-11-01

    The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.

  17. The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis

    Science.gov (United States)

    Lorenz, Alexander; Osman, Fekret; Sun, Weili; Nandi, Saikat; Steinacher, Roland; Whitby, Matthew C.

    2012-01-01

    The formation of healthy gametes depends on programmed DNA double strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1-mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favour of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to Humans suggests that this interplay may be a general feature of meiotic recombination. PMID:22723423

  18. Interplay between structure-specific endonucleases for crossover control during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Takamune T Saito

    Full Text Available The number and distribution of crossover events are tightly regulated at prophase of meiosis I. The resolution of Holliday junctions by structure-specific endonucleases, including MUS-81, SLX-1, XPF-1 and GEN-1, is one of the main mechanisms proposed for crossover formation. However, how these nucleases coordinately resolve Holliday junctions is still unclear. Here we identify both the functional overlap and differences between these four nucleases regarding their roles in crossover formation and control in the Caenorhabditis elegans germline. We show that MUS-81, XPF-1 and SLX-1, but not GEN-1, can bind to HIM-18/SLX4, a key scaffold for nucleases. Analysis of synthetic mitotic defects revealed that MUS-81 and SLX-1, but not XPF-1 and GEN-1, have overlapping roles with the Bloom syndrome helicase ortholog, HIM-6, supporting their in vivo roles in processing recombination intermediates. Taking advantage of the ease of genetic analysis and high-resolution imaging afforded by C. elegans, we examined crossover designation, frequency, distribution and chromosomal morphology in single, double, triple and quadruple mutants of the structure-specific endonucleases. This revealed that XPF-1 functions redundantly with MUS-81 and SLX-1 in executing crossover formation during meiotic double-strand break repair. Analysis of crossover distribution revealed that SLX-1 is required for crossover suppression at the center region of the autosomes. Finally, analysis of chromosome morphology in oocytes at late meiosis I stages uncovered that SLX-1 and XPF-1 promote meiotic chromosomal stability by preventing formation of chromosomal abnormalities. We propose a model in which coordinate action between structure-specific nucleases at different chromosome domains, namely MUS-81, SLX-1 and XPF-1 at the arms and SLX-1 at the center region, exerts positive and negative regulatory roles, respectively, for crossover control during C. elegans meiosis.

  19. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  20. Role of ubiquitination in meiotic recombination repair

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Programmed and unprogrammed double-strand breaks (DSBs) often arise from such physiological requirements as meiotic recombination, and exogenous insults, such as ionizing radiation (IR). Due to deleterious impacts on genome stability, DSBs must be appropriately processed and repaired in a regulatory manner. Recent investigations have indicated that ubiquitination is a critical factor in DNA damage response and meiotic recombination repair. This review summarizes the effects of proteins and complexes associated with ubiquitination with regard to homologous recombination (HR)-dependent DSB repair.

  1. Meiotic abnormalities and spermatogenic parameters in severe oligoasthenozoospermia.

    Science.gov (United States)

    Vendrell, J M; García, F; Veiga, A; Calderón, G; Egozcue, S; Egozcue, J; Barri, P N

    1999-02-01

    The incidence of meiotic abnormalities and their relationship with different spermatogenic parameters was assessed in 103 male patients with presumably idiopathic severe oligoasthenozoospermia (motile sperm concentration Meiotic patterns included normal meiosis and two meiotic abnormalities, i.e. severe arrest and synaptic anomalies. A normal pattern was found in 64 (62.1%), severe arrest in 21 (20.4%) and synaptic anomalies in 18 (17.5%). The overall rate of meiotic abnormalities was 37.9%. Most (66.7%) meiotic abnormalities occurred in patients with a sperm concentration meiotic abnormalities were found in 57.8% of the patients; of these, 26.7% had synaptic anomalies. When the sperm concentration was meiotic abnormalities occurred in 54.8% (synaptic anomalies in 22.6%). There were statistically significant differences among the three meiotic patterns in relation to sperm concentration (P 10 IU/l were the only predictors of meiotic abnormalities.

  2. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation.

    Science.gov (United States)

    Mahadevaiah, Shantha K; Bourc'his, Déborah; de Rooij, Dirk G; Bestor, Timothy H; Turner, James M A; Burgoyne, Paul S

    2008-07-28

    Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI.

  3. Female meiotic sex chromosome inactivation in chicken.

    Science.gov (United States)

    Schoenmakers, Sam; Wassenaar, Evelyne; Hoogerbrugge, Jos W; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2009-05-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  4. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  5. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination.

    Science.gov (United States)

    Reddy, Kirthi C; Villeneuve, Anne M

    2004-08-20

    Initiation of meiotic recombination by double-strand breaks (DSBs) must occur in a controlled fashion to avoid jeopardizing genome integrity. Here, we identify chromatin-associated protein HIM-17 as a link between chromatin state and DSB formation during C. elegans meiosis. Dependencies of several meiotic prophase events on HIM-17 parallel those seen for DSB-generating enzyme SPO-11: HIM-17 is essential for DSB formation but dispensable for homolog synapsis. Crossovers and chiasmata are eliminated in him-17 null mutants but are restored by artificially induced DSBs, indicating that all components required to convert DSBs into chiasmata are present. Unlike SPO-11, HIM-17 is also required for proper accumulation of histone H3 methylation at lysine 9 on meiotic prophase chromosomes. HIM-17 shares structural features with three proteins that interact genetically with LIN-35/Rb, a known component of chromatin-modifying complexes. Furthermore, DSB levels and incidence of chiasmata can be modulated by loss of LIN-35/Rb. These and other data suggest that chromatin state governs the timing of DSB competence.

  6. The RTR complex as caretaker of genome stability and its unique meiotic function in plants

    Directory of Open Access Journals (Sweden)

    Alexander eKnoll

    2014-02-01

    Full Text Available The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination (HR in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO-associated meiotic gene conversion (GC differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.

  7. Genetic control of mammalian meiotic recombination. I. Variation in exchange frequencies among males from inbred mouse strains.

    Science.gov (United States)

    Koehler, Kara E; Cherry, Jonathan P; Lynn, Audrey; Hunt, Patricia A; Hassold, Terry J

    2002-09-01

    Genetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains--CAST/Ei, A/J, C57BL/6, and SPRET/Ei--the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.

  8. Visualization of shared genomic regions and meiotic recombination in high-density SNP data.

    Directory of Open Access Journals (Sweden)

    Elisha D O Roberson

    Full Text Available BACKGROUND: A fundamental goal of single nucleotide polymorphism (SNP genotyping is to determine the sharing of alleles between individuals across genomic loci. Such analyses have diverse applications in defining the relatedness of individuals (including unexpected relationships in nominally unrelated individuals, or consanguinity within pedigrees, analyzing meiotic crossovers, and identifying a broad range of chromosomal anomalies such as hemizygous deletions and uniparental disomy, and analyzing population structure. PRINCIPAL FINDINGS: We present SNPduo, a command-line and web accessible tool for analyzing and visualizing the relatedness of any two individuals using identity by state. Using identity by state does not require prior knowledge of allele frequencies or pedigree information, and is more computationally tractable and is less affected by population stratification than calculating identity by descent probabilities. The web implementation visualizes shared genomic regions, and generates UCSC viewable tracks. The command-line version requires pedigree information for compatibility with existing software and determining specified relationships even though pedigrees are not required for IBS calculation, generates no visual output, is written in portable C++, and is well-suited to analyzing large datasets. We demonstrate how the SNPduo web tool identifies meiotic crossover positions in siblings, and confirm our findings by visualizing meiotic recombination in synthetic three-generation pedigrees. We applied SNPduo to 210 nominally unrelated Phase I / II HapMap samples and, consistent with previous findings, identified six undeclared pairs of related individuals. We further analyzed identity by state in 2,883 individuals from multiplex families with autism and identified a series of anomalies including related parents, an individual with mosaic loss of chromosome 18, an individual with maternal heterodisomy of chromosome 16, and

  9. Meiotic behavior of several Brazilian soybean varieties

    Directory of Open Access Journals (Sweden)

    Bione Nilton Cesar Pires

    2000-01-01

    Full Text Available Despite the importance of soybeans little cytogenetic work has traditionally been done, due to the small size and apparent similarity of the chromosomes. Fifteen soybean [Glycine max (L. Merrill] varieties adapted for cultivation in two distinct regions of Brazil were analyzed cytogenetically. A low frequency of meiotic abnormalities was noted in all varieties, although they were not equally affected. Irregular chromosome segregation, chromosome stickiness, cytoplasmic connections between cells, cytomixis and irregular spindles were the main abnormalities observed, none of which had been described previously in soybeans. All of these abnormalities can affect pollen fertility. Pollen fertility was high in most varieties and was correlated with meiotic abnormalities. Although soybean is not a model system for cytological studies, we found that it is possible to conduct cytogenetic studies on this species, though some modifications in the standard methods for meiotic studies were necessary to obtain satisfactory results.

  10. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms.

    Science.gov (United States)

    Wojtasz, Lukasz; Cloutier, Jeffrey M; Baumann, Marek; Daniel, Katrin; Varga, János; Fu, Jun; Anastassiadis, Konstantinos; Stewart, A Francis; Reményi, Attila; Turner, James M A; Tóth, Attila

    2012-05-01

    Meiotic crossover formation involves the repair of programmed DNA double-strand breaks (DSBs) and synaptonemal complex (SC) formation. Completion of these processes must precede the meiotic divisions in order to avoid chromosome abnormalities in gametes. Enduring key questions in meiosis have been how meiotic progression and crossover formation are coordinated, whether inappropriate asynapsis is monitored, and whether asynapsis elicits prophase arrest via mechanisms that are distinct from the surveillance of unrepaired DNA DSBs. We disrupted the meiosis-specific mouse HORMAD2 (Hop1, Rev7, and Mad2 domain 2) protein, which preferentially associates with unsynapsed chromosome axes. We show that HORMAD2 is required for the accumulation of the checkpoint kinase ATR along unsynapsed axes, but not at DNA DSBs or on DNA DSB-associated chromatin loops. Consistent with the hypothesis that ATR activity on chromatin plays important roles in the quality control of meiotic prophase, HORMAD2 is required for the elimination of the asynaptic Spo11(-/-), but not the asynaptic and DSB repair-defective Dmc1(-/-) oocytes. Our observations strongly suggest that HORMAD2-dependent recruitment of ATR to unsynapsed chromosome axes constitutes a mechanism for the surveillance of asynapsis. Thus, we provide convincing evidence for the existence of a distinct asynapsis surveillance mechanism that safeguards the ploidy of the mammalian germline.

  11. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    Science.gov (United States)

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  12. The SMC-5/6 Complex and the HIM-6 (BLM Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

    Directory of Open Access Journals (Sweden)

    Ye Hong

    2016-03-01

    Full Text Available Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs to generate crossovers (COs during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.

  13. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis.

    Science.gov (United States)

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J Julian; Gartner, Anton

    2016-03-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.

  14. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis

    Science.gov (United States)

    Hong, Ye; Sonneville, Remi; Agostinho, Ana; Meier, Bettina; Wang, Bin; Blow, J. Julian; Gartner, Anton

    2016-01-01

    Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis. PMID:27010650

  15. SCF ensures meiotic chromosome segregation through a resolution of meiotic recombination intermediates.

    Directory of Open Access Journals (Sweden)

    Shin-ya Okamoto

    Full Text Available The SCF (Skp1-Cul1-F-box complex contributes to a variety of cellular events including meiotic cell cycle control, but its function during meiosis is not understood well. Here we describe a novel function of SCF/Skp1 in meiotic recombination and subsequent chromosome segregation. The skp1 temperature-sensitive mutant exhibited abnormal distribution of spindle microtubules in meiosis II, which turned out to originate from abnormal bending of the spindle in meiosis I. Bent spindles were reported in mitosis of this mutant, but it remained unknown how SCF could affect spindle morphology. We found that the meiotic bent spindle in skp1 cells was due to a hypertension generated by chromosome entanglement. The spindle bending was suppressed by inhibiting double strand break (DSB formation, indicating that the entanglement was generated by the meiotic recombination machinery. Consistently, Rhp51/Rad51-Rad22/Rad52 foci persisted until meiosis I in skp1 cells, proving accumulation of recombination intermediates. Intriguingly bent spindles were also observed in the mutant of Fbh1, an F-box protein containing the DNA helicase domain, which is involved in meiotic recombination. Genetic evidence suggested its cooperation with SCF/Skp1. Thus, SCF/Skp1 together with Fbh1 is likely to function in the resolution of meiotic recombination intermediates, thereby ensuring proper chromosome segregation.

  16. Human male meiotic sex chromosome inactivation

    NARCIS (Netherlands)

    Vries, M. de; Vosters, S.; Merkx, G.F.M.; Hauwers, K.W.M. d'; Wansink, D.G.; Ramos, L.; Boer, P. de

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylate

  17. Initiation of meiotic recombination in Ustilago maydis.

    Science.gov (United States)

    Kojic, Milorad; Sutherland, Jeanette H; Pérez-Martín, José; Holloman, William K

    2013-12-01

    A central feature of meiosis is the pairing and recombination of homologous chromosomes. Ustilago maydis, a biotrophic fungus that parasitizes maize, has long been utilized as an experimental system for studying recombination, but it has not been clear when in the life cycle meiotic recombination initiates. U. maydis forms dormant diploid teliospores as the end product of the infection process. Upon germination, teliospores complete meiosis to produce four haploid basidiospores. Here we asked whether the meiotic process begins when teliospores germinate or at an earlier stage in development. When teliospores homozygous for a cdc45 mutation temperature sensitive for DNA synthesis were germinated at the restrictive temperature, four nuclei became visible. This implies that teliospores have already undergone premeiotic DNA synthesis and suggests that meiotic recombination initiates at a stage of infection before teliospores mature. Determination of homologous recombination in plant tissue infected with U. maydis strains heteroallelic for the nar1 gene revealed that Nar(+) recombinants were produced at a stage before teliospore maturation. Teliospores obtained from a spo11Δ cross were still able to germinate but the process was highly disturbed and the meiotic products were imbalanced in chromosomal complement. These results show that in U. maydis, homologous recombination initiates during the infection process and that meiosis can proceed even in the absence of Spo11, but with loss of genomic integrity.

  18. Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis.

    Science.gov (United States)

    Chen, Xiangyu; Suhandynata, Ray T; Sandhu, Rima; Rockmill, Beth; Mohibullah, Neeman; Niu, Hengyao; Liang, Jason; Lo, Hsiao-Chi; Miller, Danny E; Zhou, Huilin; Börner, G Valentin; Hollingsworth, Nancy M

    2015-12-01

    Interhomolog crossovers promote proper chromosome segregation during meiosis and are formed by the regulated repair of programmed double-strand breaks. This regulation requires components of the synaptonemal complex (SC), a proteinaceous structure formed between homologous chromosomes. In yeast, SC formation requires the "ZMM" genes, which encode a functionally diverse set of proteins, including the transverse filament protein, Zip1. In wild-type meiosis, Zmm proteins promote the biased resolution of recombination intermediates into crossovers that are distributed throughout the genome by interference. In contrast, noncrossovers are formed primarily through synthesis-dependent strand annealing mediated by the Sgs1 helicase. This work identifies a conserved region on the C terminus of Zip1 (called Zip1 4S), whose phosphorylation is required for the ZMM pathway of crossover formation. Zip1 4S phosphorylation is promoted both by double-strand breaks (DSBs) and the meiosis-specific kinase, MEK1/MRE4, demonstrating a role for MEK1 in the regulation of interhomolog crossover formation, as well as interhomolog bias. Failure to phosphorylate Zip1 4S results in meiotic prophase arrest, specifically in the absence of SGS1. This gain of function meiotic arrest phenotype is suppressed by spo11Δ, suggesting that it is due to unrepaired breaks triggering the meiotic recombination checkpoint. Epistasis experiments combining deletions of individual ZMM genes with sgs1-md zip1-4A indicate that Zip1 4S phosphorylation functions prior to the other ZMMs. These results suggest that phosphorylation of Zip1 at DSBs commits those breaks to repair via the ZMM pathway and provides a mechanism by which the crossover/noncrossover decision can be dynamically regulated during yeast meiosis.

  19. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica).

    Science.gov (United States)

    Mary, Nicolas; Barasc, Harmonie; Ferchaud, Stéphane; Billon, Yvon; Meslier, Frédéric; Robelin, David; Calgaro, Anne; Loustau-Dudez, Anne-Marie; Bonnet, Nathalie; Yerle, Martine; Acloque, Hervé; Ducos, Alain; Pinton, Alain

    2014-01-01

    For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes) were identified by immunostaining and fluorescence in situ hybridization (FISH). The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers), on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells) and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18) and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.

  20. Dynamics of rye chromosome 1R regions with high or low crossover frequency in homology search and synapsis development.

    Directory of Open Access Journals (Sweden)

    Nohelia T Valenzuela

    Full Text Available In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL, which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner

  1. Human male meiotic sex chromosome inactivation.

    Science.gov (United States)

    de Vries, Marieke; Vosters, Sanne; Merkx, Gerard; D'Hauwers, Kathleen; Wansink, Derick G; Ramos, Liliana; de Boer, Peter

    2012-01-01

    In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  2. Human male meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Marieke de Vries

    Full Text Available In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI, which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.

  3. Meiotic behavior of several Brazilian soybean varieties

    OpenAIRE

    Bione Nilton Cesar Pires; Pagliarini Maria Suely; Toledo José Francisco Ferraz de

    2000-01-01

    Despite the importance of soybeans little cytogenetic work has traditionally been done, due to the small size and apparent similarity of the chromosomes. Fifteen soybean [Glycine max (L.) Merrill] varieties adapted for cultivation in two distinct regions of Brazil were analyzed cytogenetically. A low frequency of meiotic abnormalities was noted in all varieties, although they were not equally affected. Irregular chromosome segregation, chromosome stickiness, cytoplasmic connections between ce...

  4. Crossover studies with survival outcomes.

    Science.gov (United States)

    Buyze, Jozefien; Goetghebeur, Els

    2013-12-01

    Crossover designs are well known to have major advantages when comparing the effect of two treatments which do not interact. With a right-censored survival endpoint, however, this design is quickly abandoned in favour of the more costly parallel design. Motivated by human immunodeficiency virus (HIV) prevention studies which lacked power, we evaluate what may be gained in this setting and compare parallel with crossover designs. In a heterogeneous population, we find and explain a substantial increase in power for the crossover study using a non-parametric logrank test. With frailties in a proportional hazards model, crossover designs equally lead to substantially smaller variance for the subject-specific hazard ratio (HR), while the population-averaged HR sees negligible gain. Its efficiency benefit is recovered when the population-averaged HR is reconstructed from estimated subject-specific hazard rates. We derive the time point for treatment crossover that optimizes efficiency and end with the analysis of two recent HIV prevention trials. We find that a Cellulose sulphate trial could have hardly gained efficiency from a crossover design, while a Nonoxynol-9 trial stood to gain substantial power. We conclude that there is a role for effective crossover designs in important classes of survival problems.

  5. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    OpenAIRE

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-01-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X–autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencin...

  6. Meiotic analysis in induced tetraploids of Brachiaria decumbens Stapf

    OpenAIRE

    Carine Simioni; Cacilda Borges do Valle

    2011-01-01

    The meiotic behavior of three tetraploid plants (2n=4x=36) originated from somatic chromosome duplication of sexually reproducing diploid plants of Brachiaria decumbens was evaluated. All the analyzed plants presented abnormalities related to polyploidy, such as irregular chromosome segregation, leading to precocious chromosome migration to the poles and micronuclei during both meiotic divisions. However, the abnormalities observed did not compromise the meiotic products which were characteri...

  7. Meiotic chromosome abnormalities in human spermatogenesis.

    Science.gov (United States)

    Martin, Renée H

    2006-08-01

    The last few years have witnessed an explosion in the information about chromosome abnormalities in human sperm and the meiotic events that predispose to these abnormalities. We have determined that all chromosomes are susceptible to nondisjunction, but chromosomes 21 and 22 and, especially, the sex chromosomes have an increased frequency of aneuploidy. Studies are just beginning on the effects of potential mutagens on the chromosomal constitution of human sperm. The effects of pesticides and cancer therapeutic agents have been reviewed. In the last decade, there has been a great impetus to study chromosome abnormalities in sperm from infertile men because the advent of intracytoplasmic sperm injection (ICSI) made it possible for these men to father pregnancies. A large number of studies have demonstrated that infertile men have an increased frequency of chromosomally abnormal sperm and children, even when they have a normal somatic karyotype. Meiotic studies on the pachytene stage of spermatogenesis have demonstrated that infertile men have impaired chromosome synapsis, a significantly decreased frequency of recombination, and an increased frequency of chromosomes completely lacking a recombination site. Such errors make these cells susceptible to meiotic arrest and the production of aneuploid gametes.

  8. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Hellsten, Uffe [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Wright, Kevin M. [Harvard Univ., Cambridge, MA (United States); Jenkins, Jerry [USDOE Joint Genome Inst., Walnut Creek, CA (United States); HudsonAlpha Inst. of Biotechnology, Huntsville, AL (United States); Shu, Shengqiang [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Yuan, Yao-Wu [Univ. of Connecticut, Storrs, CT (United States); Wessler, Susan R. [Univ. of California, Riverside, CA (United States); Schmutz, Jeremy [USDOE Joint Genome Inst., Walnut Creek, CA (United States); HudsonAlpha Inst. of Biotechnology, Huntsville, AL (United States); Willis, John H. [Duke Univ., Durham, NC (United States); Rokhsar, Daniel S. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Univ. of California, Berkeley, CA (United States)

    2013-11-13

    Meiotic recombination rates can vary widely across genomes, with hotspots of intense activity interspersed among cold regions. In yeast, hotspots tend to occur in promoter regions of genes, whereas in humans and mice hotspots are largely defined by binding sites of the PRDM9 protein. To investigate the detailed recombination pattern in a flowering plant we use shotgun resequencing of a wild population of the monkeyflower Mimulus guttatus to precisely locate over 400,000 boundaries of historic crossovers or gene conversion tracts. Their distribution defines some 13,000 hotspots of varying strengths, interspersed with cold regions of undetectably low recombination. Average recombination rates peak near starts of genes and fall off sharply, exhibiting polarity. Within genes, recombination tracts are more likely to terminate in exons than in introns. The general pattern is similar to that observed in yeast, as well as in PRDM9-knockout mice, suggesting that recombination initiation described here in Mimulus may reflect ancient and conserved eukaryotic mechanisms

  9. Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice

    Institute of Scientific and Technical Information of China (English)

    Ling Chang; Hong Ma; Hong-Wei Xue

    2009-01-01

    The Arabidopsis SDS (SOLO DANCERS) and RCK (ROCK-N-ROLLERS) genes are important for male meiosis, but it is still unknown whether they represent conserved functions in plants. We have performed phylogenetic analy-ses of SDS and RCK and their respective homologs, and identified their putative orthologs in poplar and rice. Quan-titative real-time RT-PCR analysis indicated that rice SDS and RCK are expressed preferentially in young flowers, and transgenic RNAi rice lines with reduced expression of these genes exhibited normal vegetative development, but showed significantly reduced fertility with partially sterile flowers and defective pollens. SDS deficiency also caused a decrease in pollen amounts. Further cytological examination of male meiocytes revealed that the SDS deficiency led to defects in homolog interaction and bivalent formation in meiotic prophase I, and RCK deficiency resulted in defec-tive meiotic crossover formation. These results indicate that rice SDS and RCK genes have similar functions to their Arabidopsis orthologs. Because rice and Arabidopsis, respectively, are members of monocots and eudicots, two largest groups of flowering plants, our results suggest that the functions of SDS and RCK are likely conserved in flowering plants.

  10. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions.

    Directory of Open Access Journals (Sweden)

    Alice Copsey

    Full Text Available During meiosis, Structural Maintenance of Chromosome (SMC complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4(Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.

  11. Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern

    Directory of Open Access Journals (Sweden)

    Marra Marco

    2010-02-01

    Full Text Available Abstract Background The original sequencing and annotation of the Caenorhabditis elegans genome along with recent advances in sequencing technology provide an exceptional opportunity for the genomic analysis of wild-type and mutant strains. Using the Illumina Genome Analyzer, we sequenced the entire genome of Rec-1, a strain that alters the distribution of meiotic crossovers without changing the overall frequency. Rec-1 was derived from ethylmethane sulfonate (EMS-treated strains, one of which had a high level of transposable element mobility. Sequencing of this strain provides an opportunity to examine the consequences on the genome of altering the distribution of meiotic recombination events. Results Using Illumina sequencing and MAQ software, 83% of the base pair sequence reads were aligned to the reference genome available at Wormbase, providing a 21-fold coverage of the genome. Using the software programs MAQ and Slider, we observed 1124 base pair differences between Rec-1 and the reference genome in Wormbase (WS190, and 441 between the mutagenized Rec-1 (BC313 and the wild-type N2 strain (VC2010. The most frequent base-substitution was G:C to A:T, 141 for the entire genome most of which were on chromosomes I or X, 55 and 31 respectively. With this data removed, no obvious pattern in the distribution of the base differences along the chromosomes was apparent. No major chromosomal rearrangements were observed, but additional insertions of transposable elements were detected. There are 11 extra copies of Tc1, and 8 of Tc2 in the Rec-1 genome, most likely the remains of past high-hopper activity in a progenitor strain. Conclusion Our analysis of high-throughput sequencing was able to detect regions of direct repeat sequences, deletions, insertions of transposable elements, and base pair differences. A subset of sequence alterations affecting coding regions were confirmed by an independent approach using oligo array comparative genome

  12. β2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: results from a double-blinded, randomised, cross-over study in healthy adults.

    Science.gov (United States)

    Clarke, Sandra T; Green-Johnson, Julia M; Brooks, Stephen P J; Ramdath, D Dan; Bercik, Premysl; Avila, Christian; Inglis, G Douglas; Green, Judy; Yanke, L Jay; Selinger, L Brent; Kalmokoff, Martin

    2016-05-28

    β2-1 Fructans are purported to improve health by stimulating growth of colonic bifidobacteria, increasing host resistance to pathogens and stimulating the immune system. However, in healthy adults, the benefits of supplementation remain undefined. Adults (thirteen men, seventeen women) participated in a double-blinded, placebo-controlled, randomised, cross-over study consisting of two 28-d treatments separated by a 14-d washout period. Subjects' regular diets were supplemented with β2-1 fructan or placebo (maltodextrin) at 3×5 g/d. Fasting blood and 1-d faecal collections were obtained at the beginning and at the end of each phase. Blood was analysed for clinical, biochemical and immunological variables. Determinations of well-being and general health, gastrointestinal (GI) symptoms, regularity, faecal SCFA content, residual faecal β2-1 fructans and faecal bifidobacteria content were undertaken. β2-1 Fructan supplementation had no effect on blood lipid or cholesterol concentrations or on circulating lymphocyte and macrophage numbers, but significantly increased serum lipopolysaccharide, faecal SCFA, faecal bifidobacteria and indigestion. With respect to immune function, β2-1 fructan supplementation increased serum IL-4, circulating percentages of CD282+/TLR2+ myeloid dendritic cells and ex vivo responsiveness to a toll-like receptor 2 agonist. β2-1 Fructans also decreased serum IL-10, but did not affect C-reactive protein or serum/faecal Ig concentrations. No differences in host well-being were associated with either treatment, although the self-reported incidence of GI symptoms and headaches increased during the β2-1 fructan phase. Although β2-1 fructan supplementation increased faecal bifidobacteria, this change was not directly related to any of the determined host parameters.

  13. Ex-vivo assessment of chronic toxicity of low levels of cadmium on testicular meiotic cells.

    Science.gov (United States)

    Geoffroy-Siraudin, Cendrine; Perrard, Marie-Hélène; Ghalamoun-Slaimi, Rahma; Ali, Sazan; Chaspoul, Florence; Lanteaume, André; Achard, Vincent; Gallice, Philippe; Durand, Philippe; Guichaoua, Marie-Roberte

    2012-08-01

    Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 μg/L cadmium (Cd) on spermatogenic cells over a 2-week culture period. With concentrations of 1 and 10 μg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 μg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 μg/L. Additionally, we observed a new SC abnormality, the "motheaten" SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied.

  14. Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.

    Directory of Open Access Journals (Sweden)

    Ana Agostinho

    Full Text Available Holliday junctions (HJs are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that

  15. Meiotic sex chromosome inactivation in Drosophila.

    Science.gov (United States)

    Vibranovski, Maria D

    2014-01-01

    In several different taxa, there is indubitable evidence of transcriptional silencing of the X and Y chromosomes in male meiotic cells of spermatogenesis. However, the so called meiotic sex chromosome inactivation (MSCI) has been recently a hot bed for debate in Drosophila melanogaster. This review covers cytological and genetic observations, data from transgenic constructs with testis-specific promoters, global expression profiles obtained from mutant, wild-type, larvae and adult testes as well as from cells of different stages of spermatogenesis. There is no dispute on that D. melanogaster spermatogenesis presents a down-regulation of X chromosome that does not result from the lack of dosage compensation. However, the issue is currently focused on the level of reduction of X-linked expression, the precise time it occurs and how many genes are affected. The deep examination of data and experiments in this review exposes the limitations intrinsic to the methods of studying MSCI in D. melanogaster. The current methods do not allow us to affirm anything else than the X chromosome down-regulation in meiosis (MSCI). Therefore, conclusion about level, degree or precise timing is inadequate until new approaches are implemented to know the details of MSCI or other processes involved for D. melanogaster model.

  16. The meiotic transcriptome architecture of plants

    Directory of Open Access Journals (Sweden)

    Stefanie eDukowic-Schulze

    2014-06-01

    Full Text Available Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings reach back as far as the 1960´s. Frequently whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis and only few studies that addressed the transcriptome of female meiosis. For this review, we compiled studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies and how to follow up on them in the future.

  17. Meiotic behavior of Brachiaria decumbens hybrids.

    Science.gov (United States)

    Souza, V F; Pagliarini, M S; Valle, C B; Bione, N C P; Menon, M U; Mendes-Bonato, A B

    2015-10-21

    Brachiaria decumbens is a forage grass of inestimable value for livestock in Brazil due to its production of good quality forage even when planted on acid and poor soils, although it is susceptible to pasture spittlebugs. Only one cultivar, cv. Basilisk, has been used as the pollen donor in crosses with Brachiaria ruziziensis since 1988 at Embrapa Gado de Corte Research Center. Breeding within the species only became possible from 2009 when sexual accessions were successfully tetraploidized using colchicine. Three sexual genotypes were obtained and hybridization within B. decumbens was finally achieved. Here, we evaluated microspore tetrads using conventional cytology and found meiotic indexes above 78% for all three female genitors (cD24-2, cD24-27, cD24-45), but a low meiotic index (abnormal tetrad frequency and non-viable pollen grains yielded a highly significant Pearson correlation coefficient. The t-test proved significant for the progeny of cD24-45 x D62, with lower abnormalities and pollen sterility when compared to the other two progenies resulting from cD24-2 and cD24-27 crossed to D62, but these two did not differ. Apomictic hybrids such as S036 and X030 with low pollen sterility have the potential for use in cultivar development, whereas the sexual hybrids T012, X072, and X078 might be of use as female genitors in polycross blocks if they display good agronomic traits.

  18. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway.

    Science.gov (United States)

    Chi, Jingyun; Mahé, Frédéric; Loidl, Josef; Logsdon, John; Dunthorn, Micah

    2014-03-01

    To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.

  19. A new light on the meiotic DSB catalytic complex.

    Science.gov (United States)

    Robert, Thomas; Vrielynck, Nathalie; Mézard, Christine; de Massy, Bernard; Grelon, Mathilde

    2016-06-01

    Meiotic recombination is initiated by the formation of programmed DNA double-strand breaks (DSBs). More than 15 years ago, Spo11 was identified as the protein responsible for meiotic DSB formation, notably because of its striking similarities with the A subunit of topoisomerase VI (TopoVI). TopoVI are enzymes that modify DNA topology by generating transient DSBs and are active as heterotetramers, composed of two A and two B subunits. A2 dimers catalyse the DNA cleavage reaction, whereas the B subunits regulate A2 conformation, DNA capture, cleavage and re-ligation. The recent identification in plants and mammals of a B-like TopoVI subunit that interacts with SPO11 and is required for meiotic DSB formation makes us to reconsider our understanding of the meiotic DSB catalytic complex. We provide here an overview of the knowledge on TopoVI structure and mode of action and we compare them with their meiotic counterparts. This allows us to discuss the nature, structure and functions of the meiotic TopoVI-like complex during meiotic DSB formation.

  20. SWI1 Is Required for Meiotic Chromosome Remodeling Events

    Institute of Scientific and Technical Information of China (English)

    Kingsley A.Boateng; Xiaohui Yang; Fuqui Dong; Heather A.Owen; Christopher A.Makaroff

    2008-01-01

    The Arabidopsis dsy10 mutant was previously identified as being defective in the synapsis of meiotic chromosomes resulting in male and female sterility.We report:here the molecular analysis of the mutation and show that it represents a T-DNA insertion in the third exon of the SWI1 gene.Four mutations have now been identified in SWI1, several of which exhibit different phenotypes.For example.the swi1-1 and dyad mutations only affect meiosis in megasporocytes,while the swi1-2 and dsy10 mutations block both male and female meiosis.Furthermore,as part of a detailed cytological characterization of dsy10 meiocytes,we identified several differences during male meiosis between the swi1-2 and dys10 mutants, including variations in the formation of axial elements,the distribution of cohesin proteins and the timing of the premature loss of sister chromatid cohesion.We demonstrate that dsy10 represents a complete loss-of-function mutation,while a truncated form of SWI1 iS expressed during meiosis in swi1-2 plants.We further show that dys10 meiocytes exhibit alterations in modified histone patterns.including acetylated histone H3 and dimethylated histone H3-Lysine 4.

  1. On the origin of crossover interference: A chromosome oscillatory movement (COM model

    Directory of Open Access Journals (Sweden)

    Hultén Maj A

    2011-04-01

    Full Text Available Abstract Background It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. Results The Chromosome Oscillatory Movement (COM model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane and the kinetochores (within the centromeres create waves along the length of chromosome pairs (bivalents so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1 there is normally at least one crossover/chiasma per bivalent, (2 the number is correlated to bivalent length, (3 the positions are dependent on the number per bivalent, (4 interference distances are on average longer over the centromere than along chromosome arms, and (5 there are significant changes in carriers of structural chromosome rearrangements. Conclusions The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the

  2. Modified Order Crossover (OX Operator

    Directory of Open Access Journals (Sweden)

    Ms. Monica Sehrawat,

    2011-05-01

    Full Text Available In this work Traveling salesperson problem is taken as Domain. TSP has long been known to be NP-complete and is a standard example of such problems. Genetic Algorithm (GA is an approximate algorithmthat doesn’t always aim to find the shortest tour but to find a reasonably short tour quickly, which is a search procedure inspired by the mechanisms of biological evolution. In genetic algorithms, crossovers are used as a main search operator for TSP. Briefly speaking: the role of crossovers is to generate offspring that are better tours by preserving partial tours from the parents. There were a lot attempts to discover an appropriate crossover operator. This paper presents the strategy which used to find the nearly optimized solution to these type of problems. It is the order crossover operator (OX which was proposed by Davis, which constructs an offspring by choosing a subsequence of one parent and preserving the relative order of cities of the other parent.

  3. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    Science.gov (United States)

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance.

  4. Meiotic DSB patterning: A multifaceted process.

    Science.gov (United States)

    Cooper, Tim J; Garcia, Valerie; Neale, Matthew J

    2016-01-01

    Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control--spatial regulation--detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed.

  5. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essen......During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  6. Coordination of Double Strand Break Repair and Meiotic Progression in Yeast by a Mek1- Ndt80 Negative Feedback Loop.

    Science.gov (United States)

    Prugar, Evelyn; Burnett, Cameron; Chen, Xiangyu; Hollingsworth, Nancy M

    2017-03-01

    During meiosis, homologous chromosomes are physically connected by crossovers and sister chromatid cohesion. Interhomolog crossovers are generated by the highly regulated repair of programmed double strand breaks (DSBs). The meiosis-specific kinase, Mek1, is critical for this regulation. Mek1 down-regulates the mitotic recombinase Rad51, indirectly promoting interhomolog strand invasion by the meiosis-specific recombinase, Dmc1. Mek1 also promotes the formation of crossovers that are distributed throughout the genome by interference and is the effector kinase for a meiosis-specific checkpoint that delays entry into Meiosis I until DSBs have been repaired. The target of this checkpoint is a meiosis-specific transcription factor, Ndt80, which is necessary to express the polo-like kinase, CDC5, and the cyclin, CLB1, thereby allowing completion of recombination and meiotic progression. This work shows that Mek1 and Ndt80 negatively feedback on each other such that when DSB levels are high, Ndt80 is inactive due to high levels of Mek1 activity. As DSBs are repaired, chromosomes synapse and Mek1 activity is reduced below a threshold that allows activation of Ndt80. Ndt80 transcription of CDC5 results in degradation of Red1, a meiosis-specific protein required for Mek1 activation, thereby abolishing Mek1 activity completely. Elimination of Mek1 kinase activity allows Rad51-mediated repair of any remaining DSBs. In this way, cells do not enter Meiosis I until recombination is complete and all DSBs are repaired.

  7. The kinesin AtPSS1 promotes synapsis and is required for proper crossover distribution in meiosis.

    Directory of Open Access Journals (Sweden)

    Yann Duroc

    2014-10-01

    Full Text Available Meiotic crossovers (COs shape genetic diversity by mixing homologous chromosomes at each generation. CO distribution is a highly regulated process. CO assurance forces the occurrence of at least one obligatory CO per chromosome pair, CO homeostasis smoothes out the number of COs when faced with variation in precursor number and CO interference keeps multiple COs away from each other along a chromosome. In several organisms, it has been shown that cytoskeleton forces are transduced to the meiotic nucleus via KASH- and SUN-domain proteins, to promote chromosome synapsis and recombination. Here we show that the Arabidopsis kinesin AtPSS1 plays a major role in chromosome synapsis and regulation of CO distribution. In Atpss1 meiotic cells, chromosome axes and DNA double strand breaks (DSBs appear to form normally but only a variable portion of the genome synapses and is competent for CO formation. Some chromosomes fail to form the obligatory CO, while there is an increased CO density in competent regions. However, the total number of COs per cell is unaffected. We further show that the kinesin motor domain of AtPSS1 is required for its meiotic function, and that AtPSS1 interacts directly with WIP1 and WIP2, two KASH-domain proteins. Finally, meiocytes missing AtPSS1 and/or SUN proteins show similar meiotic defects suggesting that AtPSS1 and SUNs act in the same pathway. This suggests that forces produced by the AtPSS1 kinesin and transduced by WIPs/SUNs, are required to authorize complete synapsis and regulate maturation of recombination intermediates into COs. We suggest that a form of homeostasis applies, which maintains the total number of COs per cell even if only a part of the genome is competent for CO formation.

  8. Effects of the anti-androgen cyproterone acetate (CPA) on oocyte meiotic maturation in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Rime, Hélène; Nguyen, Thaovi; Ombredane, Kevin; Fostier, Alexis; Bobe, Julien

    2015-07-01

    In the present study, we aimed at characterizing the effect of cyproterone acetate (CPA), an anti-androgenic compound, on oocyte meiotic maturation in a freshwater teleost fish species, the rainbow trout (Oncorhynchus mykiss). Fully-grown post-vitellogenic ovarian follicles were incubated in vitro with CPA, luteinizing hormone (Lh) or a combination of CPA and Lh. Incubations were also performed using a combination of Lh and testosterone (T). The occurrence of oocyte maturation (i.e., resumption of the meiotic process) was assessed by monitoring germinal vesicle breakdown (GVBD) after a 72h in vitro incubation. The effect of CPA on the production of 17,20β-dihydroxy-4-pregnen-3-one (17,20βP), the natural maturation-inducing steroid (MIS), was quantified by radioimmunoassay. Our results show that CPA dramatically inhibits Lh-induced oocyte maturation and MIS synthesis. We also observed a synergistic effect of Lh and T on oocyte maturation in highly competent oocytes (i.e., able to resume meiosis after stimulation by low doses of Lh). Our results also show that a combination of CPA and Lh inhibits phosphorylation of extracellular signal-regulated kinase (Erk), kinases that are associated with oocyte maturation in many species. As a whole, our results indicate that CPA has a potential to alter meiotic maturation in rainbow trout. Further analyses are, however, needed to determine the mechanisms by which this anti-androgen interferes with the meiotic process. Furthermore, the present study provides a framework for better understanding of the ecological consequences of exposure to anti-androgens and resulting meiotic maturation abnormalities observed in trout.

  9. Chromosome numbers and meiotic behavior of some Paspalum accessions

    Directory of Open Access Journals (Sweden)

    Eleniza de Victor Adamowski

    2005-12-01

    Full Text Available Chromosome number and meiotic behavior were evaluated in 36 Brazilian accessions of the grass Paspalum (which had never previously been analyzed to determinate which accessions might be useful in interspecific hybridizations. The analysis showed that one accession of Paspalum coryphaeum was diploid (2n = 2x = 20 and one accession of Paspalum conspersum hexaploid (2n = 6x = 60, the remaining 34 accessions being tetraploid (2n = 4x = 40. The pairing configuration was typical for the ploidy level i.e. in the diploid, chromosomes paired as 10 bivalents, in tetraploids as bi-, tri- and quadrivalents, and in hexaploid as 30 bivalents. A low frequency of meiotic abnormalities (less than 10% was observed in the diploid, hexaploid and some tetraploid accessions, although the majority of tetraploid accessions showed a high frequency of meiotic irregularities. The use of accessions with a low frequency of meiotic abnormalities in breeding programs is discussed.

  10. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition

    Science.gov (United States)

    Shah, Jubin N.; Kirioukhova, Olga; Pawar, Pallavi; Tayyab, Muhammad; Mateo, Juan L.; Johnston, Amal J.

    2016-01-01

    Molecular dissection of apomixis – an asexual reproductive mode – is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis) and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might serve as (epi)genetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologs of meiotic genes ASYNAPTIC 1 (ASY1) and MULTIPOLAR SPINDLE 1 (MPS1) that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologs of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologs were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by global DNA

  11. RPA homologs and ssDNA processing during meiotic recombination

    OpenAIRE

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2015-01-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate re...

  12. Meiotic chromosome behaviour in Cenchrus ciliaris

    Directory of Open Access Journals (Sweden)

    N. C. Visser

    1998-12-01

    Full Text Available A basic chromosome number of x = 9 has been confirmed for Cenchrus ciliaris L. Polyploidy is common and levels vary from tetraploid to hexaploid. Aneuploidv is reported for a single specimen, where two chromosomes of a single genome were lost. Various meiotic irregularities were observed. The highest incidence of meiotic abnormalities was observed in the pentaploid specimens. This was attributed to their uneven polyploid level All specimens varied from segmental alloploid to alloploid.

  13. Meiotic behavior as a selection tool in silage corn breeding.

    Science.gov (United States)

    Souza, V F; Pagliarini, M S; Scapim, C A; Rodovalho, M; Faria, M V

    2010-10-19

    In breeding programs, commercial hybrids are frequently used as a source of inbred lines to obtain new hybrids. Considering that maize production is dependent on viable gametes, the selection of populations to obtain inbred lines with high meiotic stability could contribute to the formation of new silage corn hybrids adapted to specific region. We evaluated the meiotic stability of five commercial hybrids of silage corn used in southern Brazil with conventional squashing methods. All of them showed meiotic abnormalities. Some abnormalities, such as abnormal chromosome segregation and absence of cytokinesis, occurred in all the genotypes, while others, including cytomixis and abnormal spindle orientation, were found only in some genotypes. The hybrid SG6010 had the lowest mean frequency of abnormal cells (21.27%); the highest frequency was found in the hybrid P30K64 (44.43%). However, the frequency of abnormal meiotic products was much lower in most genotypes, ranging from 7.63% in the hybrid CD304 to 43.86% in Garra. Taking into account the percentage of abnormal meiotic products and, hence, meiotic stability, only the hybrids CD304, P30K64, SG6010, and P30F53 are recommended to be retained in the breeding program to obtain inbred lines to create new hybrids.

  14. Dimensional crossover in semiconductor nanostructures

    Science.gov (United States)

    McDonald, Matthew P.; Chatterjee, Rusha; Si, Jixin; Jankó, Boldizsár; Kuno, Masaru

    2016-08-01

    Recent advances in semiconductor nanostructure syntheses provide unprecedented control over electronic quantum confinement and have led to extensive investigations of their size- and shape-dependent optical/electrical properties. Notably, spectroscopic measurements show that optical bandgaps of one-dimensional CdSe nanowires are substantially (approximately 100 meV) lower than their zero-dimensional counterparts for equivalent diameters spanning 5-10 nm. But what, exactly, dictates the dimensional crossover of a semiconductor's electronic structure? Here we probe the one-dimensional to zero-dimensional transition of CdSe using single nanowire/nanorod absorption spectroscopy. We find that carrier electrostatic interactions play a fundamental role in establishing dimensional crossover. Moreover, the critical length at which this transition occurs is governed by the aspect ratio-dependent interplay between carrier confinement and dielectric contrast/confinement energies.

  15. Drosophila brca2 is required for mitotic and meiotic DNA repair and efficient activation of the meiotic recombination checkpoint.

    Directory of Open Access Journals (Sweden)

    Martha Klovstad

    2008-02-01

    Full Text Available Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of homologous recombination, non-homologous end-joining, and single-strand annealing in the pre-meiotic germline of Drosophila males. We show that repair by homologous recombination is dramatically decreased in Drosophila brca2 mutants. Instead, large flanking deletions are formed, and repair by the non-conservative single-strand annealing pathway predominates. We further show that during meiosis, Drosophila Brca2 has a dual role in the repair of meiotic double-stranded breaks and the efficient activation of the meiotic recombination checkpoint. The eggshell patterning defects that result from activation of the meiotic recombination checkpoint in other meiotic DNA repair mutants can be strongly suppressed by mutations in brca2. In addition, Brca2 co-immunoprecipitates with the checkpoint protein Rad9, suggesting a direct role for Brca2 in the transduction of the meiotic recombination checkpoint signal.

  16. DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse E beta meiotic recombination hot spot.

    Science.gov (United States)

    Shenkar, R; Shen, M H; Arnheim, N

    1991-04-01

    The second intron of the E beta gene in the mouse major histocompatibility complex is the site of a meiotic recombination hot spot. We detected two DNase I-hypersensitive sites in this intron in meiotic cells isolated from mouse testes. One site appears to be constitutive and is found in other tissues regardless of whether or not they express the E beta gene. Near this hypersensitive site are potential binding motifs for H2TF1/KBF1, NF kappa B, and octamer transcription factors. Gel retardation studies with mouse lymphoma cell nuclear extracts confirmed that each of these motifs is capable of binding protein. The binding of transcription factors may contribute to the enhancement of recombination potential by altering chromatin structure and increasing the accessibility of the DNA to the recombination machinery.

  17. Ex-vivo assessment of chronic toxicity of low levels of cadmium on testicular meiotic cells

    Energy Technology Data Exchange (ETDEWEB)

    Geoffroy-Siraudin, Cendrine [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Laboratoire de Biologie de la Reproduction, AP-HM, Hôpital de la Conception, 147, Boulevard Baille, 13385 Marseille cedex 5 (France); Perrard, Marie-Hélène [Institut de Génomique Fonctionnelle de Lyon, UMR 5242 CNRS INRA Ecole Normale Supérieure de Lyon 1, 46 allée d' Italie, F-69364 Lyon Cedex 07 (France); Ghalamoun-Slaimi, Rahma [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Laboratoire de Biologie de la Reproduction, AP-HM, Hôpital de la Conception, 147, Boulevard Baille, 13385 Marseille cedex 5 (France); Ali, Sazan [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Chaspoul, Florence [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Unité de Chimie-Physique, Faculté de Pharmacie 13005, Marseille (France); Lanteaume, André [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Achard, Vincent [Laboratoire de Biologie de la Reproduction, AP-HM, Hôpital de la Conception, 147, Boulevard Baille, 13385 Marseille cedex 5 (France); Gallice, Philippe [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Unité de Chimie-Physique, Faculté de Pharmacie 13005, Marseille (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, UMR 5242 CNRS INRA Ecole Normale Supérieure de Lyon 1, 46 allée d' Italie, F-69364 Lyon Cedex 07 (France); and others

    2012-08-01

    Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 μg/L cadmium (Cd) on spermatogenic cells over a 2‐week culture period. With concentrations of 1 and 10 μg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 μg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 μg/L. Additionally, we observed a new SC abnormality, the “motheaten” SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied. -- Highlights: ► Cadmium induces ex-vivo severe time- and dose-dependent germ cell abnormalities. ► Cadmium at very low concentration (0.1 µg/l) induces synaptonemal complex abnormalities. ► The lowest concentration inducing adverse effect varied with the cell parameter studied. ► Cadmium alters proteins involved in pairing and recombination. ► Cadmium leads to achiasmate univalents and

  18. Analysis of meiotic segregation, using single-sperm typing: Meiotic drive at the myotonic dystrophy locus

    Energy Technology Data Exchange (ETDEWEB)

    Leeflang, E.P.; Arnheim, N. [Univ. of Southern California, Los Angeles, CA (United States); McPeek, M.S. [Univ. of Chicago, IL (United States)

    1996-10-01

    Meiotic drive at the myotonic dystrophy (DM) locus has recently been suggested as being responsible for maintaining the frequency, in the human population, of DM chromosomes capable of expansion to the disease state. In order to test this hypothesis, we have studied samples of single sperm from three individuals heterozygous at the DM locus, each with one allele larger and one allele smaller than 19 CTG repeats. To guard against the possible problem of differential PCR amplification rates based on the lengths of the alleles, the sperm were also typed at another closely linked marker whose allele size was unrelated to the allele size at the DM locus. Using statistical models specifically designed to study single-sperm segregation data, we find no evidence of meiotic segregation distortion. The upper limit of the two-sided 95% confidence interval for the estimate of the common segregation probability for the three donors is at or below .515 for all models considered, and no statistically significant difference from .5 is detected in any of the models. This suggests that any greater amount of segregation distortion at the myotonic dystrophy locus must result from events following sperm ejaculation. The mathematical models developed make it possible to study segregation distortion with high resolution by using sperm-typing data from any locus. 26 refs., 1 fig., 8 tabs.

  19. Meiotic recombination breakpoints are associated with open chromatin and enriched with repetitive DNA elements in potato

    Science.gov (United States)

    Meiotic recombination provides the framework for the genetic variation in natural and artificial populations of eukaryotes through the creation of novel haplotypes. Thus, determining the molecular characteristics of meiotic recombination remains essential for future plant breeding efforts, which hea...

  20. An Analysis of Semantic Aware Crossover

    Science.gov (United States)

    Uy, Nguyen Quang; Hoai, Nguyen Xuan; O'Neill, Michael; McKay, Bob; Galván-López, Edgar

    It is well-known that the crossover operator plays an important role in Genetic Programming (GP). In Standard Crossover (SC), semantics are not used to guide the selection of the crossover points, which are generated randomly. This lack of semantic information is the main cause of destructive effects from SC (e.g., children having lower fitness than their parents). Recently, we proposed a new semantic based crossover known GP called Semantic Aware Crossover (SAC) [25]. We show that SAC outperforms SC in solving a class of real-value symbolic regression problems. We clarify the effect of SAC on GP search in increasing the semantic diversity of the population, thus helping to reduce the destructive effects of crossover in GP.

  1. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.

    Science.gov (United States)

    Goh, Wee Siong Sho; Falciatori, Ilaria; Tam, Oliver H; Burgess, Ralph; Meikar, Oliver; Kotaja, Noora; Hammell, Molly; Hannon, Gregory J

    2015-05-15

    MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells.

  2. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.

    Science.gov (United States)

    Villagómez, D A F; Pinton, A

    2008-01-01

    Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals.

  3. Design, Analysis, and Presentation of Crossover Trials

    OpenAIRE

    Guyatt Gordon H; Vail Andy; Wu Ping; Chan An-Wen; Mills Edward J; Altman Douglas G

    2009-01-01

    Abstract Objective Although crossover trials enjoy wide use, standards for analysis and reporting have not been established. We reviewed methodological aspects and quality of reporting in a representative sample of published crossover trials. Methods We searched MEDLINE for December 2000 and identified all randomized crossover trials. We abstracted data independently, in duplicate, on 14 design criteria, 13 analysis criteria, and 14 criteria assessing the data presentation. Results We identif...

  4. Trans-regulation of mouse meiotic recombination hotspots by Rcr1.

    Directory of Open Access Journals (Sweden)

    Emil D Parvanov

    2009-02-01

    Full Text Available Meiotic recombination is required for the orderly segregation of chromosomes during meiosis and for providing genetic diversity among offspring. Among mammals, as well as yeast and higher plants, recombination preferentially occurs at highly delimited chromosomal sites 1-2 kb long known as hotspots. Although considerable progress has been made in understanding the roles various proteins play in carrying out the molecular events of the recombination process, relatively little is understood about the factors controlling the location and relative activity of mammalian recombination hotspots. To search for trans-acting factors controlling the positioning of recombination events, we compared the locations of crossovers arising in an 8-Mb segment of a 100-Mb region of mouse Chromosome 1 (Chr 1 when the longer region was heterozygous C57BL/6J (B6 x CAST/EiJ (CAST and the remainder of the genome was either similarly heterozygous or entirely homozygous B6. The lack of CAST alleles in the remainder of the genome resulted in profound changes in hotspot activity in both females and males. Recombination activity was lost at several hotspots; new, previously undetected hotspots appeared; and still other hotspots remained unaffected, indicating the presence of distant trans-acting gene(s whose CAST allele(s activate or suppress the activity of specific hotspots. Testing the activity of three activated hotspots in sperm samples from individual male progeny of two genetic crosses, we identified a single trans-acting regulator of hotspot activity, designated Rcr1, that is located in a 5.30-Mb interval (11.74-17.04 Mb on Chr 17. Using an Escherichia coli cloning assay to characterize the molecular products of recombination at two of these hotspots, we found that Rcr1 controls the appearance of both crossover and noncrossover gene conversion events, indicating that it likely controls the sites of the double-strand DNA breaks that initiate the recombination process.

  5. Spin-crossover materials properties and applications

    CERN Document Server

    Halcrow, Malcolm A

    2013-01-01

    The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applicat

  6. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and their synthetic hexaploid wheat derivates influenced by meiotic restitution and heat stress

    Indian Academy of Sciences (India)

    Masoumeh Rezaei; Ahmad Arzani; Badraldin Ebrahim Sayed-Tabatabaei

    2010-12-01

    Meiotic restitution is considered to be a common mechanism of polyploidization in plants and hence is one of the most important processes in plant speciation. Meiotic behaviour of plant chromosomes is influenced by both genetic and environmental factors. In this study, the meiotic behaviour of cereal crops was investigated, which includes tetraploid wheat genotypes (with and without the meiotic restitution trait) and their derivates (synthetic hexaploid wheats and a doubled haploid (DH) line), grown at two planting dates in the field. In addition, two local landraces of emmer wheat (Triticum turgidum ssp. dicoccum), one wheat cultivar (Chinese spring), one DH triticale cultivar (Eleanor) and one rye accession were included. Immature spikes of mid-autumn and end-winter sowing plants were collected in April and May 2008, respectively, fixed in Carnoy’s solution and stained with hematoxylin. Pollen mother cells (PMCs) from anthers at different stages of meiotic process were analysed for their chromosomal behaviour and irregularities. Meiotic aberrations such as laggards, chromosome bridges, micronuclei, abnormal cytokines, chromatin pulling and meiotic restitution were observed and the studied genotypes were accordingly ranked as follows: triticale > synthetic hexaploid wheats > tetraploid wheats possessing meiotic restitution > tetraploid wheats lacking meiotic restitution > rye. The results indicated that the samples that had been planted in the autumn, thus experiencing an optimum temperature level at the flowering stage, exhibited less meiotic irregularities than winter planting samples that encountered heat stress at the flowering period.

  7. Crossover patterning by the beam-film model: analysis and implications.

    Directory of Open Access Journals (Sweden)

    Liangran Zhang

    2014-01-01

    Full Text Available Crossing-over is a central feature of meiosis. Meiotic crossover (CO sites are spatially patterned along chromosomes. CO-designation at one position disfavors subsequent CO-designation(s nearby, as described by the classical phenomenon of CO interference. If multiple designations occur, COs tend to be evenly spaced. We have previously proposed a mechanical model by which CO patterning could occur. The central feature of a mechanical mechanism is that communication along the chromosomes, as required for CO interference, can occur by redistribution of mechanical stress. Here we further explore the nature of the beam-film model, its ability to quantitatively explain CO patterns in detail in several organisms, and its implications for three important patterning-related phenomena: CO homeostasis, the fact that the level of zero-CO bivalents can be low (the "obligatory CO", and the occurrence of non-interfering COs. Relationships to other models are discussed.

  8. The role of meiotic drive in hybrid male sterility.

    Science.gov (United States)

    McDermott, Shannon R; Noor, Mohamed A F

    2010-04-27

    Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation.

  9. Meiotic analysis in induced tetraploids of Brachiaria decumbens Stapf

    Directory of Open Access Journals (Sweden)

    Carine Simioni

    2011-01-01

    Full Text Available The meiotic behavior of three tetraploid plants (2n=4x=36 originated from somatic chromosome duplication ofsexually reproducing diploid plants of Brachiaria decumbens was evaluated. All the analyzed plants presented abnormalities relatedto polyploidy, such as irregular chromosome segregation, leading to precocious chromosome migration to the poles and micronucleiduring both meiotic divisions. However, the abnormalities observed did not compromise the meiotic products which were characterizedby regular tetrads and satisfactory pollen fertility varying from 61.36 to 64.86%. Chromosomes paired mostly as bivalents indiakinesis but univalents to tetravalents were also observed. These studies contributed to the choice of compatible fertile sexualgenitors to be crossed to natural tetraploid apomicts in the B. decumbens by identifying abnormalities and verifying pollen fertility.Intraespecific crosses should reduce sterility in the hybrids produced in the breeding program of Brachiaria, a problem observedwith the interspecific hybrids produced so far.

  10. Cytogenetic analysis of meiotic cells obtained from stallion testes.

    Science.gov (United States)

    Bugno-Poniewierska, Monika; Dardzińska, Aneta; Pawlina, Klaudia; Słota, Ewa

    2010-01-01

    A normal course of meiosis and the associated course of spermatogenesis in males are very significant from the viewpoint of animal breeding, in particular animal reproduction. This takes on special significance when studying late-maturing animals such as horses. The aim of the study was to analyse meiotic cells, with particular consideration of synaptonemal complexes obtained from the testes of young stallions and cryptorchids, based on observations of the X-Y bivalent. The analysis was performed in successive stages of meiotic division using the FISH technique. The greatest diversity and most advanced meiotic stages were observed in the normal testis of a unilateral cryptorchid. No abnormalities were observed that could have caused cryptorchidism in the analysed horses.

  11. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  12. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Science.gov (United States)

    Becherel, Olivier J; Yeo, Abrey J; Stellati, Alissa; Heng, Evelyn Y H; Luff, John; Suraweera, Amila M; Woods, Rick; Fleming, Jean; Carrie, Dianne; McKinney, Kristine; Xu, Xiaoling; Deng, Chuxia; Lavin, Martin F

    2013-04-01

    Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  13. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors.

    Science.gov (United States)

    Nagaoka, So Iha; Hodges, Craig A; Albertini, David F; Hunt, Patricia Ann

    2011-04-26

    Segregation of homologs at the first meiotic division (MI) is facilitated by crossovers and by a physical constraint imposed on sister kinetochores that facilitates monopolar attachment to the MI spindle. Recombination failure or premature separation of homologs results in univalent chromosomes at MI, and univalents constrained to form monopolar attachments should be inherently unstable and trigger the spindle assembly checkpoint (SAC). Although univalents trigger cell-cycle arrest in the male, this is not the case in mammalian oocytes. Because the spindle assembly portion of the SAC appears to function normally, two hypotheses have been proposed to explain the lack of response to univalents: (1) reduced stringency of the oocyte SAC to aberrant chromosome behavior, and (2) the ability of univalents to satisfy the SAC by forming bipolar attachments. The present study of Mlh1 mutant mice demonstrates that metaphase alignment is not a prerequisite for anaphase onset and provides strong evidence that MI spindle stabilization and anaphase onset require stable bipolar attachment of a critical mass--but not all--of chromosomes. We postulate that subtle differences in SAC-mediated control make the human oocyte inherently error prone and contribute to the age-related increase in aneuploidy.

  14. Gradual implementation of the meiotic recombination program via checkpoint pathways controlled by global DSB levels.

    Science.gov (United States)

    Joshi, Neeraj; Brown, M Scott; Bishop, Douglas K; Börner, G Valentin

    2015-03-05

    During meiosis, Spo11-induced double-strand breaks (DSBs) are processed into crossovers, ensuring segregation of homologous chromosomes (homologs). Meiotic DSB processing entails 5' end resection and preferred strand exchange with the homolog rather than the sister chromatid (homolog bias). In many organisms, DSBs appear gradually along the genome. Here we report unexpected effects of global DSB levels on local recombination events. Early-occurring, low-abundance "scout" DSBs lack homolog bias. Their resection and interhomolog processing are controlled by the conserved checkpoint proteins Tel1(ATM) kinase and Pch2(TRIP13) ATPase. Processing pathways controlled by Mec1(ATR) kinase take over these functions only above a distinct DSB threshold, resulting in progressive strengthening of the homolog bias. We conclude that Tel1(ATM)/Pch2 and Mec1(ATR) DNA damage response pathways are sequentially activated during wild-type meiosis because of their distinct sensitivities to global DSB levels. Moreover, relative DSB order controls the DSB repair pathway choice and, ultimately, recombination outcome.

  15. Disruption of CHTF18 causes defective meiotic recombination in male mice.

    Directory of Open Access Journals (Sweden)

    Karen M Berkowitz

    Full Text Available CHTF18 (chromosome transmission fidelity factor 18 is an evolutionarily conserved subunit of the Replication Factor C-like complex, CTF18-RLC. CHTF18 is necessary for the faithful passage of chromosomes from one daughter cell to the next during mitosis in yeast, and it is crucial for germline development in the fruitfly. Previously, we showed that mouse Chtf18 is expressed throughout the germline, suggesting a role for CHTF18 in mammalian gametogenesis. To determine the role of CHTF18 in mammalian germ cell development, we derived mice carrying null and conditional mutations in the Chtf18 gene. Chtf18-null males exhibit 5-fold decreased sperm concentrations compared to wild-type controls, resulting in subfertility. Loss of Chtf18 results in impaired spermatogenesis; spermatogenic cells display abnormal morphology, and the stereotypical arrangement of cells within seminiferous tubules is perturbed. Meiotic recombination is defective and homologous chromosomes separate prematurely during prophase I. Repair of DNA double-strand breaks is delayed and incomplete; both RAD51 and γH2AX persist in prophase I. In addition, MLH1 foci are decreased in pachynema. These findings demonstrate essential roles for CHTF18 in mammalian spermatogenesis and meiosis, and suggest that CHTF18 may function during the double-strand break repair pathway to promote the formation of crossovers.

  16. Sex Chromosome Meiotic Drive in Stalk-Eyed Flies

    OpenAIRE

    1997-01-01

    Meiotically driven sex chromosomes can quickly spread to fixation and cause population extinction unless balanced by selection or suppressed by genetic modifiers. We report results of genetic analyses that demonstrate that extreme female-biased sex ratios in two sister species of stalk-eyed flies, Cyrtodiopsis dalmanni and C. whitei, are due to a meiotic drive element on the X chromosome (X(d)). Relatively high frequencies of X(d) in C. dalmanni and C. whitei (13-17% and 29%, respectively) ca...

  17. The mechanocaloric potential of spin crossover compounds

    OpenAIRE

    Sandeman, K. G.

    2016-01-01

    We present a first evaluation of the potential for spin crossover (SCO) compounds to be considered as a new class of giant mechanocaloric effect material. From literature data on the variation of the spin crossover temperature with pressure, we estimate the maximum available adiabatic temperature change for several compounds and the relatively low pressures that may be required to observe these effects.

  18. 24 CFR 3285.701 - Electrical crossovers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section...

  19. [Cortical cytoskeletal ring in prophase II leads to correction of abnormalities of the first meiotic division and to meiotic restitution of pollen mother cell nucleus].

    Science.gov (United States)

    Shamina, N V; Zaporozhchenko, I A; Maksiutova, Iu R; Shatskaia, O A

    2007-01-01

    The deviation of prophase cytoskeletal ring formation was determined during meiotic division in 50% of pollen mother cells (PMCs) in maize haploid No 1498 (Zea mays). At prophase in both meiotic divisions the cytoskeletal ring is formed in cortical region of cytoplasm instead of perinuclear. Sometimes formation of both perinuclear and cortical rings is observed in the same cell. It has been shown that in multinucleate PMCs the cortical ring leads to the consolidation of chromosomes into common spindle and to meiotic restitution.

  20. Separation of DNA replication from the assembly of break-competent meiotic chromosomes.

    Directory of Open Access Journals (Sweden)

    Hannah G Blitzblau

    Full Text Available The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms.

  1. Chromosomal rearrangement interferes with meiotic X chromosome inactivation.

    Science.gov (United States)

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-10-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.

  2. [Meiotic chromosomes of the tree frog Smilisca baudinii (Anura: Hylidae)].

    Science.gov (United States)

    Hernández-Guzmán, Javier; Arias-Rodriguez, Lenin; Indy, Jeane Rimber

    2011-03-01

    The Mexican tree frog Smilisca baudinii, is a very common frog in Central America. In spite their importance to keep the ecological equilibrium of the rainforest, its biology and genetics are poorly known. In order to contribute with its biological knowledge, we described the typical meiotic karyotype based in standard cytogenetic protocols to specimens collected in Tabasco, Mexico. The study was centered in the analysis of 131 chromosome spreads at meiotic stage from two adults of the species (one female and one male). The metaphase analysis allowed the establishment of the modal haploid number of 1n = 12 bivalent chromosomes. The chromosomic formulae from the haploid bivalent karyotype was integrated by 12 biarmed chromosomes characterized by twelve pairs of metacentric-submetacentric (msm) chromosomes. The meiotic counting gives the idea that diploid chromosome number is integrated by a complement of 2n = 24 biarmed chromosomes. The presence of sex chromosomes from female and male meiotic spreads was not observed. Current results suggest that S. baudinii chromosome structure is well shared among Hylidae family and "B" chromosomes are particular structures that have very important evolutionary consequences in species diversification.

  3. 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Z.; Csiszar, K.; Boyd, C.D. [and others

    1996-10-01

    Williams syndrome (WS) is a multisystem disorder characterized by mental retardation, a specific neurobehavioral profile, characteristic facies, infantile hypercalcemia, cardiovascular abnormalities, progressive joint limitation, hermas, and soft skin. Recent studies have shown that hemizygosity at the elastin (ELN) gene locus on chromosome 7q is associated with WS. Furthermore, two FISH studies using cosmid recombinants containing the 5{prime} or the 3{prime} end of the ELN gene revealed deletion of the entire ELN gene in 90%-96% of classical WS cases. However, the size of the 7q11.23 deletions and the mechanism by which these deletions arise are not known. 15 refs., 2 figs., 1 tab.

  4. Universally optimal crossover designs under subject dropout

    OpenAIRE

    Zheng, Wei

    2013-01-01

    Subject dropout is very common in practical applications of crossover designs. However, there is very limited design literature taking this into account. Optimality results have not yet been well established due to the complexity of the problem. This paper establishes feasible, as well as necessary and sufficient conditions for a crossover design to be universally optimal in approximate design theory in the presence of subject dropout. These conditions are essentially linear equations with re...

  5. Assessing Different Crossover Operators for Travelling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain Khan

    2015-10-01

    Full Text Available Many crossover operators have been proposed in literature on evolutionary algorithms, however, it is still unclear which crossover operator works best for a given optimization problem. In this study, eight different crossover operators specially designed for travelling salesman problem, namely, Two-Point Crossover, Partially Mapped Crossover, Cycle Crossover, Shuffle Crossover, Edge Recombination Crossover, Uniform Order-based Crossover, Sub-tour Exchange Crossover, and Sequential Constructive Crossover are evaluated empirically. The select crossover operators were implemented to build an experimental setup upon which simulations were run. Four benchmark instances of travelling salesman problem, two symmetric (ST70 and TSP225 and two asymmetric (FTV100 and FTV170, were used to thoroughly assess the select crossover operators. The performance of these operators was analyzed in terms of solution quality and computational cost. It was found that Sequential Constructive Crossover outperformed other operators in attaining 'good' quality solution, whereas Two-Point Crossover outperformed other operators in terms of computational cost. It was also observed that the performance of different crossover operators is much better for relatively small number of cities, both in terms of solution quality and computational cost, however, for relatively large number of cities their performance greatly degrades

  6. Design, analysis, and presentation of crossover trials

    Directory of Open Access Journals (Sweden)

    Guyatt Gordon H

    2009-04-01

    Full Text Available Abstract Objective Although crossover trials enjoy wide use, standards for analysis and reporting have not been established. We reviewed methodological aspects and quality of reporting in a representative sample of published crossover trials. Methods We searched MEDLINE for December 2000 and identified all randomized crossover trials. We abstracted data independently, in duplicate, on 14 design criteria, 13 analysis criteria, and 14 criteria assessing the data presentation. Results We identified 526 randomized controlled trials, of which 116 were crossover trials. Trials were drug efficacy (48%, pharmacokinetic (28%, and nonpharmacologic (30%. The median sample size was 15 (interquartile range 8–38. Most (72% trials used 2 treatments and had 2 periods (64%. Few trials reported allocation concealment (17% or sequence generation (7%. Only 20% of trials reported a sample size calculation and only 31% of these considered pairing of data in the calculation. Carry-over issues were addressed in 29% of trial's methods. Most trials reported and defended a washout period (70%. Almost all trials (93% tested for treatment effects using paired data and also presented details on by-group results (95%. Only 29% presented CIs or SE so that data could be entered into a meta-analysis. Conclusion Reports of crossover trials frequently omit important methodological issues in design, analysis, and presentation. Guidelines for the conduct and reporting of crossover trials might improve the conduct and reporting of studies using this important trial design.

  7. Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line.

    Science.gov (United States)

    Guioli, Silvana; Lovell-Badge, Robin; Turner, James M A

    2012-01-01

    In the male mouse the X and Y chromosomes pair and recombine within the small pseudoautosomal region. Genes located on the unsynapsed segments of the X and Y are transcriptionally silenced at pachytene by Meiotic Sex Chromosome Inactivation (MSCI). The degree to which MSCI is conserved in other vertebrates is currently unclear. In the female chicken the ZW bivalent is thought to undergo a transient phase of full synapsis at pachytene, starting from the homologous ends and spreading through the heterologous regions. It has been proposed that the repair of the ZW DNA double-strand breaks (DSBs) is postponed until diplotene and that the ZW bivalent is subject to MSCI, which is independent of its synaptic status. Here we present a distinct model of meiotic pairing and silencing of the ZW pair during chicken oogenesis. We show that, in most oocytes, DNA DSB foci on the ZW are resolved by the end of pachytene and that the ZW desynapses in broad synchrony with the autosomes. We unexpectedly find that ZW pairing is highly error prone, with many oocytes failing to engage in ZW synapsis and crossover formation. Oocytes with unsynapsed Z and W chromosomes nevertheless progress to the diplotene stage, suggesting that a checkpoint does not operate during pachytene in the chicken germ line. Using a combination of epigenetic profiling and RNA-FISH analysis, we find no evidence for MSCI, associated with neither the asynaptic ZW, as described in mammals, nor the synaptic ZW. The lack of conservation of MSCI in the chicken reopens the debate about the evolution of MSCI and its driving forces.

  8. Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line.

    Directory of Open Access Journals (Sweden)

    Silvana Guioli

    Full Text Available In the male mouse the X and Y chromosomes pair and recombine within the small pseudoautosomal region. Genes located on the unsynapsed segments of the X and Y are transcriptionally silenced at pachytene by Meiotic Sex Chromosome Inactivation (MSCI. The degree to which MSCI is conserved in other vertebrates is currently unclear. In the female chicken the ZW bivalent is thought to undergo a transient phase of full synapsis at pachytene, starting from the homologous ends and spreading through the heterologous regions. It has been proposed that the repair of the ZW DNA double-strand breaks (DSBs is postponed until diplotene and that the ZW bivalent is subject to MSCI, which is independent of its synaptic status. Here we present a distinct model of meiotic pairing and silencing of the ZW pair during chicken oogenesis. We show that, in most oocytes, DNA DSB foci on the ZW are resolved by the end of pachytene and that the ZW desynapses in broad synchrony with the autosomes. We unexpectedly find that ZW pairing is highly error prone, with many oocytes failing to engage in ZW synapsis and crossover formation. Oocytes with unsynapsed Z and W chromosomes nevertheless progress to the diplotene stage, suggesting that a checkpoint does not operate during pachytene in the chicken germ line. Using a combination of epigenetic profiling and RNA-FISH analysis, we find no evidence for MSCI, associated with neither the asynaptic ZW, as described in mammals, nor the synaptic ZW. The lack of conservation of MSCI in the chicken reopens the debate about the evolution of MSCI and its driving forces.

  9. Analysis of plant meiotic chromosomes by chromosome painting.

    Science.gov (United States)

    Lysak, Martin A; Mandáková, Terezie

    2013-01-01

    Chromosome painting (CP) refers to visualization of large chromosome regions, entire chromosome arms, or entire chromosomes via fluorescence in situ hybridization (FISH). For CP in plants, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the target species or from a closely related species (comparative chromosome painting, CCP) are typically applied as painting probes. Extended pachytene chromosomes provide the highest resolution of CP in plants. CP enables identification and tracing of particular chromosome regions and/or entire chromosomes throughout all meiotic stages as well as corresponding chromosome territories in premeiotic interphase nuclei. Meiotic pairing and structural chromosome rearrangements (typically inversions and translocations) can be identified by CP. Here, we describe step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH.

  10. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    Directory of Open Access Journals (Sweden)

    Alexander A. Tokmakov

    2014-10-01

    Full Text Available Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation.

  11. Meiotic faults as a major cause of offspring inviability

    DEFF Research Database (Denmark)

    Levitis, Daniel; Zimmerman, Kolea; Pringle, Anne

    2014-01-01

    , the most sex-like form of asex. Meiotic parthenogenesis does consistently achieve lower offspring viability than does sex. However when sexual reproduction is compared to forms of asex that don't involve meiosis, asex results in higher offspring viability. Combined with experimental and demographic data......, this result demonstrates that failures associated with meiosis are a major cause of offspring inviability not only for meiotic parthenogenesis, but for sexual reproducers such as humans. Meiosis is necessary for genetic recombination in eukaryotes, but is vestigial, and costly, in parthenogens. The question...... of why meiosis persists in parthenogens despite its clear fitness costs and lack of benefits for them is addressed in terms of mechanistic constraints upon what selection can achieve. This provides a clear example of evolutionary inertia having a major and maladaptive effect on the demography of a wide...

  12. A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

    OpenAIRE

    Yoon, Yourim; Kim, Yong-Hyuk; Moraglio, Alberto; Moon, Byung-Ro

    2009-01-01

    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. This paper is...

  13. Transcription of meiotic-like-pathway genes in Giardia intestinalis

    OpenAIRE

    2008-01-01

    The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively ...

  14. Evidence for meiotic drive at the myotonic dystrophy locus

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, A.M.; Barnetson, R.A.; Phillips, M.F. [Institute of Medical Genetics, Wales (United Kingdom)] [and others

    1994-09-01

    Myotonic dystrophy (DM), an autosomal dominant disorder, is the most common form of adult muscular dystrophy, affecting at least 1 in 8000 of the population. It is a multisystemic disorder, primarily characterized by myotonia, muscle wasting and cataract. The molecular basis of DM is an expanded CTG repeat located within the 3{prime} untranslated region of a putative serine-threonine protein kinase on chromosome 19q13.3. DM exhibits anticipation, that is, with successive generations there is increasing disease severity and earlier age of onset. This mechanism and the fact that the origin of the disease has been attributed to one or a small number of founder chromosomes suggests that, in time, DM should die out. Meiotic drive has been described as a way in which certain alleles are transmitted to succeeding generations in preference to others: preferential transmission of large CTG alleles may account for their continued existence in the gene pool. There is evidence that a CTG allele with > 19 repeats may gradually increase in repeat number over many generations until it is sufficiently large to give a DM phenotype. We report a study of 495 transmissions from individuals heterozygous for the CTG repeat and with repeat numbers within the normal range (5-30). Alleles were simply classified as large or small relative to the other allele in an individual. Of 242 male meioses, 126 transmissions from parent to child were of the larger allele to their offspring (57.7%, p=0.014). This shows that there is strong evidence for meiotic drive favoring the transmission of the larger DM allele in unaffected individuals. Contrary to a previous report of meiotic drive in the male, we have shown that females preferentially transmit the larger DM allele. Taken together, the data suggest the occurrence of meiotic drive in both males and females in this locus.

  15. Chromosome numbers and meiotic behavior of some Paspalum accessions

    OpenAIRE

    Eleniza de Victor Adamowski; Maria Suely Pagliarini; Andréa Beatriz Mendes Bonato; Luiz Alberto Rocha Batista; José Francisco Montenegro Valls

    2005-01-01

    Chromosome number and meiotic behavior were evaluated in 36 Brazilian accessions of the grass Paspalum (which had never previously been analyzed) to determinate which accessions might be useful in interspecific hybridizations. The analysis showed that one accession of Paspalum coryphaeum was diploid (2n = 2x = 20) and one accession of Paspalum conspersum hexaploid (2n = 6x = 60), the remaining 34 accessions being tetraploid (2n = 4x = 40). The pairing configuration was typical for the ploidy ...

  16. Cytoskeletal abnormalities in relation with meiotic competence and ageing in porcine and bovine oocytes during in vitro maturation.

    Science.gov (United States)

    Somfai, T; Kikuchi, K; Kaneda, M; Akagi, S; Watanabe, S; Mizutani, E; Haraguchi, S; Dang-Nguyen, T Q; Inaba, Y; Geshi, M; Nagai, T

    2011-10-01

    We investigated the frequencies of cytoskeletal anomalies in metaphase-II (M-II) and incompetent [arrested at an immature metaphase (IM) stage] porcine and bovine oocytes during in vitro maturation (IVM) in relation with ageing by immunostaining and confocal microscopy. In porcine oocytes, meiotic arrest at the IM stage was associated with abnormalities of cortical actin but not with abnormal spindles. Prolongation of IVM culture to 52 h did not affect microfilament and spindle abnormalities, but reduced the microfilament-rich area overlaying the spindle. Meiotic arrest of bovine oocytes at the IM stage was associated with degenerations of microfilaments, and the frequencies of abnormal spindles were also higher than those of M-II oocytes. Ageing of bovine oocytes (IVM for 30 h) did not affect cortical microfilaments but increased the frequency of spindle alterations in both M-II and IM bovine oocytes. These results suggest that, in both species, altered ability of oocytes to polymerize F-actin might be a possible reason for the failure of polar body extrusion during IVM. Also, there seem to be differences between the two species in the sensitivity of oocytes to suffer ageing-related spindle damages.

  17. Meiotic behavior of wild Caricaceae species potentially suitable for papaya improvement

    OpenAIRE

    Emanuelli Narducci da Silva; Monique Freitas Neto; Pereira,Telma N. S.; Pereira,Messias G

    2012-01-01

    The purpose of this study was to evaluate the meiotic behavior and determine the meiotic index and pollen viability of representative plants of the wild species V. goudotiana, V. quercifolia and J. spinosa. Meiotic analysis confirmed that the species are diploid and have 18 chromosomes. Meiosis was partially normal, since some abnormalities, e.g, sticky and lagging chromosomes, precocious segregation, lack of synchrony, and disturbances in the spindle fibers were observed. These abnormalities...

  18. Synapsis and meiotic recombination in male Chinese muntjac (Muntiacus reevesi.

    Directory of Open Access Journals (Sweden)

    Qingling Yang

    Full Text Available The muntjacs (Muntiacus, Cervidae have been extensively studied in terms of chromosomal and karyotypic evolution. However, little is known about their meiotic chromosomes particularly the recombination patterns of homologous chromosomes. We used immunostained surface spreads to visualise synaptonemal complexes (SCs, recombination foci and kinetochores with antibodies against marker proteins. As in other mammals pachytene was the longest stage of meiotic prophase. 39.4% of XY bivalents lacked MLH1 foci compared to less than 0.5% of autosomes. The average number of MLH1 foci per pachytene cell in M. reevesi was 29.8. The distribution of MLH1 foci differed from other mammals. On SCs with one focus, the distribution was more even in M. reevesi than in other mammals; for SCs that have two or more MLH1 foci, usually there was a larger peak in the sub-centromere region than other regions on SC in M. reevesi. Additionally, there was a lower level of interference between foci in M. reevesi than in mouse or human. These observations may suggest that the regulation of homologous recombination in M. reevesi is slightly different from other mammals and will improve our understanding of the regulation of meiotic recombination, with respect to recombination frequency and position.

  19. Study on Haploid Inducing and Its Meiotic Abnormality in Maize

    Institute of Scientific and Technical Information of China (English)

    TANG Qi-lin; FENG Yun-chao; HAN Xue-li; ZHENG Ming-min; RONG Ting-zhao

    2009-01-01

    The haploid-inducing line Stock 6 was used to produce haploid maize and expected to obtain maize haploid plants successfully. The detailed meiotic studies on selected haploid maize (n=x=10) were conducted. Cytogenetie analysis revealed a high frequency of meiotic abnormality occurred in both meiosis Ⅰ and meiosis Ⅱ. During the prophase I, univalents were common configurations, and there were bivalents or trivalents in some pollen mother cells, however, a few cells containing five bivalents were also observed. After prophase I, chromosomes did not congregate in a single metaphase plate but they were scattered in the cytoplasm. At anaphase I, the chromosome distribution was highly irregular with almost all possible combinations. In some cells, chromosomes were grouped into the three or four masses and several spindles appeared. At the tetrad stage of meiosis Ⅱ, cytokinesis splitting abnormality occurred, and a variety of diad, triad, tetrad, pentad, hexad, as well as decury microspores were easily observed. As a consequence of abnormalities of the two meiotic stages, various microspores and the pollen grains with different size were formed, and its pollen grains were almost completely sterile.

  20. Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae.

    Science.gov (United States)

    Vozdova, Miluse; Ruiz-Herrera, Aurora; Fernandez, Jonathan; Cernohorska, Halina; Frohlich, Jan; Sebestova, Hana; Kubickova, Svatava; Rubes, Jiri

    2016-09-01

    The recurrent occurrence of sex-autosome translocations during mammalian evolution suggests common mechanisms enabling a precise control of meiotic synapsis, recombination and inactivation of sex chromosomes. We used immunofluorescence and FISH to study the meiotic behaviour of sex chromosomes in six species of Bovidae with evolutionary sex-autosome translocations (Tragelaphus strepsiceros, Taurotragus oryx, Tragelaphus imberbis, Tragelaphus spekii, Gazella leptoceros and Nanger dama ruficollis). The autosomal regions of fused sex chromosomes showed normal synapsis with their homologous counterparts. Synapsis in the pseudoautosomal region (PAR) leads to the formation of characteristic bivalent (in T. imberbis and T. spekii with X;BTA13/Y;BTA13), trivalent (in T. strepsiceros and T. oryx with X/Y;BTA13 and G. leptoceros with X;BTA5/Y) and quadrivalent (in N. dama ruficollis with X;BTA5/Y;BTA16) structures at pachynema. However, when compared with other mammals, the number of pachynema lacking MLH1 foci in the PAR was relatively high, especially in T. imberbis and T. spekii, species with both sex chromosomes involved in sex autosome translocations. Meiotic transcriptional inactivation of the sex-autosome translocations assessed by γH2AX staining was restricted to their gonosomal regions. Despite intraspecies differences, the evolutionary fixation of sex-autosome translocations among bovids appears to involve general mechanisms ensuring sex chromosome pairing, synapsis, recombination and inactivation.

  1. Homologue engagement controls meiotic DNA break number and distribution.

    Science.gov (United States)

    Thacker, Drew; Mohibullah, Neeman; Zhu, Xuan; Keeney, Scott

    2014-06-12

    Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. Here we test the hypothesis that DSB control involves a network of intersecting negative regulatory circuits. Using multiple complementary methods, we show that DSBs form in greater numbers in Saccharomyces cerevisiae cells lacking ZMM proteins, a suite of recombination-promoting factors traditionally regarded as acting strictly downstream of DSB formation. ZMM-dependent DSB control is genetically distinct from a pathway tying break formation to meiotic progression through the Ndt80 transcription factor. These counterintuitive findings suggest that homologous chromosomes that have successfully engaged one another stop making breaks. Genome-wide DSB maps uncover distinct responses by different subchromosomal domains to the ZMM mutation zip3 (also known as cst9), and show that Zip3 is required for the previously unexplained tendency of DSB density to vary with chromosome size. Thus, feedback tied to ZMM function contributes in unexpected ways to spatial patterning of recombination.

  2. Preimplantation genetic diagnosis in patients with male meiotic abnormalities.

    Science.gov (United States)

    Aran, B; Veiga, A; Vidal, F; Parriego, M; Vendrell, J M; Santaló, J; Egozcue, J; Barri, P N

    2004-04-01

    Indications and candidates for preimplantation genetic diagnosis (PGD) have increased in recent years. This study evaluates whether IVF-intracytoplasmic sperm injection (ICSI) results could be improved by selecting embryos through PGD-AS (aneuploidy screening) in couples in whom the male partner presents meiotic abnormalities. Two hundred and fifty-six embryos were biopsied and 183 were suitable for analysis (73.2%). Ninety-two embryos showed normal chromosomal analysis (50.3% of the analysed embryos and 57.5% of the diagnosed embryos). Pregnancy, abortion and implantation rates were compared with 66 IVF-ICSI cycles performed in 44 patients with meiotic abnormalities without PGD (control group). No statistically significant differences in the pregnancy rate (52 versus 43.9%), implantation rate (32.1 versus 23.5%) and miscarriage rate (15.4 versus 10.3%) were observed between the groups. Although the embryos obtained from men with meiotic abnormalities showed a high frequency of chromosome abnormalities, no improvements in pregnancy and implantation rates were obtained after PGD-AS in the series analysed.

  3. Meiotic Recombination Analyses in Pigs Carrying Different Balanced Structural Chromosomal Rearrangements.

    Directory of Open Access Journals (Sweden)

    Nicolas Mary

    Full Text Available Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci were studied in three boars (Sus scrofa domestica carrying different chromosomal rearrangements. One (T34he was heterozygote for the t(3;4(p1.3;q1.5 reciprocal translocation, one (T34ho was homozygote for that translocation, while the third (T34Inv was heterozygote for both the translocation and a pericentric inversion inv(4(p1.4;q2.3. All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities, and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls. Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms.

  4. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  5. A matched crossover design for clinical trials.

    Science.gov (United States)

    Simon, Laura J; Chinchilli, Vernon M

    2007-09-01

    Two design principles are used frequently in clinical trials: 1) A subject is "matched" or "paired" with a similar subject to reduce the chance that other variables obscure the primary comparison of interest. 2) A subject serves as his/her own control by "crossing over" from one treatment to another during the course of an experiment. There are situations in which it may be advantageous to use the two design principles - crossing over and matching - simultaneously. That is, it may be advantageous to conduct a "paired crossover design," in which each subject, while paired with a similar subject, crosses over and receives each experimental treatment. In this paper, we describe two clinical trials conducted by the National Heart, Lung and Blood Institute's Asthma Clinical Research Network that used a paired 2x2 crossover design. The Beta Adrenergic Response by GEnotype (BARGE) Study compared the effects of regular use of inhaled albuterol on mildly asthmatic patients with different genotypes at the 16th position of the beta-agonist receptor gene. The Smoking Modulates Outcomes of Glucocorticoid (SMOG) Therapy in Asthma Study evaluated the hypothesis that smoking reduces the response to inhaled corticosteroids. For such paired crossover designs, the primary parameter of interest is typically the treatment-by-pairing interaction term. In evaluating the relative efficiency of the paired 2x2 crossover design to two independent crossover designs with respect to this interaction term, we show that the paired 2x2 crossover design is more efficient if the correlations between the paired members on the same treatments are greater than their correlations on different treatments. This condition should hold in most circumstances, and therefore the paired crossover design deserves serious consideration for any clinical trial in which the crossing over and matching of subjects is deemed simultaneously beneficial.

  6. Analysis of crossover breakpoints yields new insights into the nature of the gene conversion events associated with large NF1 deletions mediated by nonallelic homologous recombination.

    Science.gov (United States)

    Bengesser, Kathrin; Vogt, Julia; Mussotter, Tanja; Mautner, Victor-Felix; Messiaen, Ludwine; Cooper, David N; Kehrer-Sawatzki, Hildegard

    2014-02-01

    Large NF1 deletions are mediated by nonallelic homologous recombination (NAHR). An in-depth analysis of gene conversion operating in the breakpoint-flanking regions of large NF1 deletions was performed to investigate whether the rate of discontinuous gene conversion during NAHR with crossover is increased, as has been previously noted in NAHR-mediated rearrangements. All 20 germline type-1 NF1 deletions analyzed were mediated by NAHR associated with continuous gene conversion within the breakpoint-flanking regions. Continuous gene conversion was also observed in 31/32 type-2 NF1 deletions investigated. In contrast to the meiotic type-1 NF1 deletions, type-2 NF1 deletions are predominantly of post-zygotic origin. Our findings therefore imply that the mitotic as well as the meiotic NAHR intermediates of large NF1 deletions are processed by long-patch mismatch repair (MMR), thereby ensuring gene conversion tract continuity instead of the discontinuous gene conversion that is characteristic of short-patch repair. However, the single type-2 NF1 deletion not exhibiting continuous gene conversion was processed without MMR, yielding two different deletion-bearing chromosomes, which were distinguishable in terms of their breakpoint positions. Our findings indicate that MMR failure during NAHR, followed by post-meiotic/mitotic segregation, has the potential to give rise to somatic mosaicism in human genomic rearrangements by generating breakpoint heterogeneity.

  7. Meiotic recombination initiated by a double-strand break in rad50{Delta} yeast cells otherwise unable to initiate meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Malkova, A.; Haber, J.E. [Brandeis Univ., Waltham, MA (United States); Dawson, D. [Tufts Univ., Boston, MA (United States)] [and others

    1996-06-01

    Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand breaks (DSBs). We have developed a system to compare the properties of meiotic DSBs with those created by the site-specific HO endonuclease. HO endonuclease was expressed under the control of the meiotic-specific SPO13 promoter, creating a DSB at a single site on one of yeast`s 16 chromosomes. In Rad{sup +} strains the times of appearance of the HO-induced DSBs and of subsequent recombinants are coincident with those induced by normal meiotic DSBs. Physical monitoring of DNA showed that SPO13::HO induced gene conversions both in Rad{sup +} and in rad50{Delta} cells that cannot initiate normal meiotic DSBs. We find that the RAD50 gene is important, but not essential, for recombination even after a DSB has been created in a meiotic cell. In rad50{Delta} cells, some DSBs are not repaired until a broken chromosome has been packaged into a spore and is subsequently germinated. This suggests that a broken chromosome does not signal an arrest of progression through meiosis. The recombination defect in rad50{Delta} diploids is not, however, meiotic specific, as mitotic rad50 diploids, experiencing an HO-induced DSB, exhibit similar departures from wild-type recombination. 57 refs., 5 figs., 3 tabs.

  8. Pre-meiotic bands and novel meiotic spindle ontogeny in quadrilobed sporocytes of leafy liverworts (Jungermannidae, Bryophyta).

    Science.gov (United States)

    Brown, Roy C; Lemmon, Betty E

    2009-10-01

    Indirect immunofluorescence and confocal microscopy were used to study the nucleation and organization of microtubules during meiosis in two species of leafy liverworts, Cephalozia macrostachya and Telaranea longifolia. This is the first such study of sporogenesis in the largest group of liverworts important as living representatives of some of the first land plant lineages. These studies show that cytoplasmic quadrilobing of pre-meiotic sporocytes into future spore domains is initiated by girdling bands of gamma-tubulin and microtubules similar to those recently described in lobed sporocytes of simple thalloid liverworts. However, spindle ontogeny is not like other liverworts studied and is, in fact, probably unique among bryophytes. Following the establishment of quadrilobing, numerous microtubules diverge from the bands and extend into the enlarging lobes. The bands disappear and are replaced by microtubules that arise from gamma-tubulin associated with the nuclear envelope. This microtubule system extends into the four lobes and is gradually reorganized into a quadripolar spindle, each half spindle consisting of a pair of poles straddling opposite cleavage furrows. Chromosomes move on this spindle to the polar cleavage furrows. The reniform daughter nuclei, each curved over a cleavage furrow, immediately enter second meiotic division with spindles now terminating in the lobes. Phragmoplasts that develop in the interzones among the haploid tetrad nuclei guide deposition of cell plates that join with the pre-meiotic furrows resulting in cleavage of the tetrad of spores. These observations document a significant variation in the innovative process of sporogenesis evolved in early land plants.

  9. Spin-crossover molecule based thermoelectric junction

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dibyajyoti [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Parida, Prakash [Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg (Germany); Pati, Swapan K. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-05-11

    Using ab-initio numerical methods, we explore the spin-dependent transport and thermoelectric properties of a spin-crossover molecule (i.e., iron complex of 2-(1H-pyrazol-1-yl)-6-(1H-tetrazole-5-yl)pyridine) based nano-junction. We demonstrate a large magnetoresistance, efficient conductance-switching, and spin-filter activity in this molecule-based two-terminal device. The spin-crossover process also modulates the thermoelectric entities. It can efficiently switch the magnitude as well as spin-polarization of the thermocurrent. We find that thermocurrent is changed by ∼4 orders of magnitude upon spin-crossover. Moreover, it also substantially affects the thermopower and consequently, the device shows extremely efficient spin-crossover magnetothermopower generation. Furthermore, by tuning the chemical potential of electrodes into a certain range, a pure spin-thermopower can be achieved for the high-spin state. Finally, the reasonably large values of figure-of-merit in the presence and absence of phonon demonstrate a large heat-to-voltage conversion efficiency of the device. We believe that our study will pave an alternative way of tuning the transport and thermoelectric properties through the spin-crossover process and can have potential applications in generation of spin-dependent current, information storage, and processing.

  10. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  11. Solving TSP Using Advanced Crossover & Mutating Operators of Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shruti Sharma

    2013-07-01

    Full Text Available In this paper we develops a new crossover and mutating operator, Round crossover (RX and Round mutating (RM operator, for a genetic algorithm that generates high quality solutions to the Traveling Salesman Problem (TSP. The round crossover operator constructs an offspring from a pair of parents in a circular way using better edges on the basis of their values that may be present in the parents’ structure maintaining the sequence of nodes in the parent chromosomes. The round mutation applied to the resultant chromosome after crossover by selecting a random cut point and then joining the remaining substring to first substring in circular way. The efficiency of the RX is compared as against some existing crossover operators; namely, edge recombination crossover (ERX, Order crossover (OX and partially Matched crossover (PMX for some benchmark TSPLIB instances. Experimental results show that the new crossover operator is better than the PMX, ERX and OX

  12. Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency.

    Science.gov (United States)

    Esch, Elisabeth; Szymaniak, Jessica M; Yates, Heather; Pawlowski, Wojciech P; Buckler, Edward S

    2007-11-01

    Recombination is a crucial component of evolution and breeding, producing new genetic combinations on which selection can act. Rates of recombination vary tremendously, not only between species but also within species and for specific chromosomal segments. In this study, by examining recombination events captured in recombinant inbred mapping populations previously created for maize, wheat, Arabidopsis, and mouse, we demonstrate that substantial variation exists for genomewide crossover rates in both outcrossed and inbred plant and animal species. We also identify quantitative trait loci (QTL) that control this variation. The method that we developed and employed here holds promise for elucidating factors that regulate meiotic recombination and for creation of hyperrecombinogenic lines, which can help overcome limited recombination that hampers breeding progress.

  13. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects.

    Directory of Open Access Journals (Sweden)

    Yannick Romero

    Full Text Available BACKGROUND: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs and endogenous small interfering RNAs (endo-siRNAs, but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice. PRINCIPAL FINDINGS: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis.

  14. Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch

    NARCIS (Netherlands)

    S. Schoenmakers (Sam); E. Wassenaar (Evelyne); J.S.E. Laven (Joop); J.A. Grootegoed (Anton); W.M. Baarends (Willy)

    2010-01-01

    textabstractDuring male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous syna

  15. Meiotic nondisjunction in the mouse: methodology for genetic testing and comparison with other methods

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L. B.

    1978-01-01

    The following topics are discussed: genetic method for detecting sex-chromosome nondisjunction; events that can produce nondisjunction in mammals; biological parameters that may maximize induced meiotic ND; comparison with other measures of germline chromosomal damage in mammals; comparison with other methods for detecting meiotic nondisjunction in mammals; and application of the genetic method for detecting nondisjunction. (HLW)

  16. Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina

    NARCIS (Netherlands)

    Gaag, van der M.; Debets, A.J.M.; Oosterhof, J.; Slakhorst, S.M.; Thijssen, J.A.G.M.; Hoekstra, R.F.

    2000-01-01

    In fungi, meiotic drive is observed as spore killing. In the secondarily homothallic ascomycete Podospora anserina it is characterized by the abortion of two of the four spores in the ascus. We have identified seven different types of meiotic drive elements (Spore killers). Among 99 isolates from na

  17. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination

    NARCIS (Netherlands)

    Revenkova, E.; Eijpe, M.; Heyting, C.; Hodges, C.A.; Hunt, P.A.; Liebe, B.; Scherthan, H.; Jessberger, R.

    2004-01-01

    Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions1, 2, 3, 4. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC15, were suggested to be required for meiotic sister chromatid cohesion a

  18. Genome-Wide Association Study of Meiotic Recombination Phenotypes

    Science.gov (United States)

    Begum, Ferdouse; Chowdhury, Reshmi; Cheung, Vivian G.; Sherman, Stephanie L.; Feingold, Eleanor

    2016-01-01

    Meiotic recombination is an essential step in gametogenesis, and is one that also generates genetic diversity. Genome-wide association studies (GWAS) and molecular studies have identified genes that influence of human meiotic recombination. RNF212 is associated with total or average number of recombination events, and PRDM9 is associated with the locations of hotspots, or sequences where crossing over appears to cluster. In addition, a common inversion on chromosome 17 is strongly associated with recombination. Other genes have been identified by GWAS, but those results have not been replicated. In this study, using new datasets, we characterized additional recombination phenotypes to uncover novel candidates and further dissect the role of already known loci. We used three datasets totaling 1562 two-generation families, including 3108 parents with 4304 children. We estimated five different recombination phenotypes including two novel phenotypes (average recombination counts within recombination hotspots and outside of hotspots) using dense SNP array genotype data. We then performed gender-specific and combined-sex genome-wide association studies (GWAS) meta-analyses. We replicated associations for several previously reported recombination genes, including RNF212 and PRDM9. By looking specifically at recombination events outside of hotspots, we showed for the first time that PRDM9 has different effects in males and females. We identified several new candidate loci, particularly for recombination events outside of hotspots. These include regions near the genes SPINK6, EVC2, ARHGAP25, and DLGAP2. This study expands our understanding of human meiotic recombination by characterizing additional features that vary across individuals, and identifying regulatory variants influencing the numbers and locations of recombination events. PMID:27733454

  19. Electrostatic spin crossover effect in polar magnetic molecules.

    Science.gov (United States)

    Baadji, Nadjib; Piacenza, Manuel; Tugsuz, Tugba; Della Sala, Fabio; Maruccio, Giuseppe; Sanvito, Stefano

    2009-10-01

    The magnetic configuration of a nanostructure can be altered by an external magnetic field, by spin-transfer torque or by its magnetoelastic response. Here, we explore an alternative route, namely the possibility of switching the sign of the exchange coupling between two magnetic centres by means of an electric potential. This general effect, which we name electrostatic spin crossover, occurs in insulating molecules with super-exchange magnetic interaction and inversion symmetry breaking. As an example we present the case of a family of di-cobaltocene-based molecules. The critical fields for switching, calculated from first principles, are of the order of 1 V nm(-1) and can be achieved in two-terminal devices. More crucially, such critical fields can be engineered with an appropriate choice of substituents to add to the basic di-cobaltocene unit. This suggests that an easy chemical strategy for achieving the synthesis of suitable molecules is possible.

  20. Chromosome numbers and meiotic analysis in the pre-breeding of Brachiaria decumbens (Poaceae)

    Indian Academy of Sciences (India)

    Gléia Cristina Laverde Ricci; Alice Maria De Souza-Kaneshima; Mariana Ferrari Felismino; Andrea Beatriz Mendes-Bonato; Maria Suely Pagliarini; Cacilda Borges Do Valle

    2011-08-01

    A total of 44 accessions of Brachiaria decumbens were analysed for chromosome count and meiotic behaviour in order to identify potential progenitors for crosses. Among them, 15 accessions presented $2n = 18$; 27 accessions, $2n = 36$; and 2 accessions, $2n = 45$ chromosomes. Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness and abnormal cytokinesis were observed in low frequency. All abnormalities can compromise pollen viability by generating unbalanced gametes. Based on the chromosome number and meiotic stability, the present study indicates the apomictic tetraploid accessions that can act as male genitor to produce interspecific hybrids with B. ruziziensis or intraspecific hybrids with recently artificially tetraploidized accessions.

  1. Meiotic behavior of wild Caricaceae species potentially suitable for papaya improvement

    Directory of Open Access Journals (Sweden)

    Emanuelli Narducci da Silva

    2012-01-01

    Full Text Available The purpose of this study was to evaluate the meiotic behavior and determine the meiotic index and pollen viability of representative plants of the wild species V. goudotiana, V. quercifolia and J. spinosa. Meiotic analysis confirmed that the species are diploid and have 18 chromosomes. Meiosis was partially normal, since some abnormalities, e.g, sticky and lagging chromosomes, precocious segregation, lack of synchrony, and disturbances in the spindle fibers were observed. These abnormalities resulted in post-meiotic products (monads, dyads, triads, and polyads that probably contributed to the meiotic index of 85.7 % (V. goudotiana to 95.9 % (J. spinosa; significant variation was observed in the species V. goudotiana. The pollen viability of 68.0% (V. goudotiana to 96.0 % (J. spinosa was reasonably good in these wild species. Crossings in breeding programs involving V. goudotiana should therefore be carefully planned, since part of the gametes of this species is unviable.

  2. Chromosome numbers and meiotic analysis in the pre-breeding of Brachiaria decumbens (Poaceae).

    Science.gov (United States)

    Ricci, Gléia Cristina Laverde; De Souza-Kaneshima, Alice Maria; Felismino, Mariana Ferrari; Mendes-Bonato, Andrea Beatriz; Pagliarini, Maria Suely; Do Valle, Cacilda Borges

    2011-08-01

    A total of 44 accessions of Brachiaria decumbens were analysed for chromosome count and meiotic behaviour in order to identify potential progenitors for crosses. Among them, 15 accessions presented 2n = 18; 27 accessions, 2n = 36; and 2 accessions, 2n = 45 chromosomes. Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness and abnormal cytokinesis were observed in low frequency. All abnormalities can compromise pollen viability by generating unbalanced gametes. Based on the chromosome number and meiotic stability, the present study indicates the apomictic tetraploid accessions that can act as male genitor to produce interspecific hybrids with B. ruziziensis or intraspecific hybrids with recently artificially tetraploidized accessions.

  3. Reversible meiotic abnormalities in azoospermic men with bilateral varicocele after microsurgical correction.

    Science.gov (United States)

    North, M O; Lellei, I; Rives, N; Erdei, E; Dittmar, A; Barbet, J P; Tritto, G

    2004-05-01

    Because of a possible relationship between microenvironmental disturbances and meiotic abnormalities and of a straight relationship between lower-quality semen in patient carrying a varicocele and first meiotic non-disjunction, bilateral bipolar testicular biopsies are realized according the thermic differential gradient described in varicocele. Systematic meiotic studies of multiple testicular biopsies from 65 azoospermic men with bilateral varicocele were done in a multi-centric study on microsurgical correction of bilateral varicocele with microthermic intra-operative evaluation using minimally invasive thermal microsensors (Betatherm 10K3MCD2). In the present study abnormal temperature raising, histomorphometric abnormalities (spermatocyte arrest) and meiotic abnormalities (class IIC) are strongly correlated. In the ten patients submitted to another testicular biopsy procedure six months after surgery for TESE, normal thermal differential is registered and no meiotic abnormalities recurrences are found.

  4. Covariation of synaptonemal complex length and mammalian meiotic exchange rates.

    Science.gov (United States)

    Lynn, Audrey; Koehler, Kara E; Judis, LuAnn; Chan, Ernest R; Cherry, Jonathan P; Schwartz, Stuart; Seftel, Allen; Hunt, Patricia A; Hassold, Terry J

    2002-06-21

    Analysis of recombination between loci (linkage analysis) has been a cornerstone of human genetic research, enabling investigators to localize and, ultimately, identify genetic loci. However, despite these efforts little is known about patterns of meiotic exchange in human germ cells or the mechanisms that control these patterns. Using recently developed immunofluorescence methodology to examine exchanges in human spermatocytes, we have identified remarkable variation in the rate of recombination within and among individuals. Subsequent analyses indicate that, in humans and mice, this variation is linked to differences in the length of the synaptonemal complex. Thus, at least in mammals, a physical structure, the synaptonemal complex, reflects genetic rather than physical distance.

  5. Meiotic abnormalities in metaphase I human spermatocytes from infertile males: frequencies, chromosomes involved, and the relationships with polymorphic karyotype and seminal parameters

    Directory of Open Access Journals (Sweden)

    Zaida Sarrate

    2014-12-01

    Full Text Available The aim of this study was to look in depth at the relationship between meiotic anomalies and male infertility, such as the determination of the chromosomes involved or the correlation with patient features. For this purpose, a total of 31 testicular tissue samples from individuals consulting for fertility problems were analyzed. Metaphase I cells were evaluated using a sequential methodology combining Leishman stained procedures and multiplex fluorescence in situ hybridization protocols. The number of chromosomal units and chiasmata count per bivalent were established and a hierarchical cluster analysis of the individuals was performed. The relationship of the seminogram and the karyotype over recombination were evaluated using Poisson regression models. Results obtained in this study show a significant percentage of infertile individuals with altered meiotic behavior, mostly specified as a reduction in chiasmata count in medium and large chromosomes, the presence of univalents, and the observation of tetraploid metaphases. Moreover, the number and the type of anomalies were found to be different between cells of the same individual, suggesting the coexistence of cell lines with normal meiotic behavior and cell lines with abnormalities. In addition, chromosomal abnormalities in metaphase I are significantly associated with oligozoospermia and/or polymorphic karyotype variants.

  6. Meiotic abnormalities in metaphase I human spermatocytes from infertile males: frequencies, chromosomes involved, and the relationships with polymorphic karyotype and seminal parameters.

    Science.gov (United States)

    Sarrate, Zaida; Vidal, Francesca; Blanco, Joan

    2014-01-01

    The aim of this study was to look in depth at the relationship between meiotic anomalies and male infertility, such as the determination of the chromosomes involved or the correlation with patient features. For this purpose, a total of 31 testicular tissue samples from individuals consulting for fertility problems were analyzed. Metaphase I cells were evaluated using a sequential methodology combining Leishman stained procedures and multiplex fluorescence in situ hybridization protocols. The number of chromosomal units and chiasmata count per bivalent were established and a hierarchical cluster analysis of the individuals was performed. The relationship of the seminogram and the karyotype over recombination were evaluated using Poisson regression models. Results obtained in this study show a significant percentage of infertile individuals with altered meiotic behavior, mostly specified as a reduction in chiasmata count in medium and large chromosomes, the presence of univalents, and the observation of tetraploid metaphases. Moreover, the number and the type of anomalies were found to be different between cells of the same individual, suggesting the coexistence of cell lines with normal meiotic behavior and cell lines with abnormalities. In addition, chromosomal abnormalities in metaphase I are significantly associated with oligozoospermia and/or polymorphic karyotype variants.

  7. Iron(III) spin crossover compounds

    NARCIS (Netherlands)

    van Koningsbruggen, PJ; Maeda, Y; Oshio, H

    2004-01-01

    In this chapter, selected results obtained so far on Fe(III) spin crossover compounds are summarized and discussed. Fe(III) spin transition materials of ligands containing chalcogen donor atoms are considered with emphasis on those of N,N-disubstituted-dithiocarbamates, N,N-disubstituted-XY-carbamat

  8. The Design of Cluster Randomized Crossover Trials

    Science.gov (United States)

    Rietbergen, Charlotte; Moerbeek, Mirjam

    2011-01-01

    The inefficiency induced by between-cluster variation in cluster randomized (CR) trials can be reduced by implementing a crossover (CO) design. In a simple CO trial, each subject receives each treatment in random order. A powerful characteristic of this design is that each subject serves as its own control. In a CR CO trial, clusters of subjects…

  9. The design of cluster randomized crossover trials

    NARCIS (Netherlands)

    Rietbergen, C.; Moerbeek, M.

    2011-01-01

    The inefficiency induced by between-cluster variation in cluster randomized (CR) trials can be reduced by implementing a crossover (CO) design. In a simple CO trial, each subject receives each treatment in random order. A powerful characteristic of this design is that each subject serves as its own

  10. Critical Crossover Functions for Simple Fluids: Towards the Crossover Modelling Uniqueness

    Science.gov (United States)

    Garrabos, Yves; Lecoutre, Carole; Marre, Samuel; LeNeindre, Bernard; Hahn, Inseob

    2016-11-01

    Based on a single non-universal temperature scaling factor present in a simple fluid case, a detailed analysis of non-universal parameters involved in different critical-to-classical crossover models is given. For the infinite limit of the cutoff wave number, a set of three scaling-parameters is defined for each model such that it shows all the shapes of the theoretical crossover functions overlap on the mean crossover function shapes close to the non-trivial fixed point. The analysis of corresponding links between their fluid-dependent parameters opens a route to define a parametric model of crossover equation-of-state, closely satisfying the universal features calculated from the Ising-like limit in the massive renormalization scheme.

  11. A High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations

    Science.gov (United States)

    Vasco, Chiara; Berríos, Soledad; Parra, María Teresa; Viera, Alberto; Rufas, Julio S.; Zuccotti, Maurizio; Garagna, Silvia; Fernández-Donoso, Raúl

    2009-01-01

    Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., γH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian

  12. A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations.

    Directory of Open Access Journals (Sweden)

    Marcia Manterola

    2009-08-01

    Full Text Available Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC. Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., gammaH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR. These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading

  13. Meiotic silencing by unpaired DNA: properties, regulation and suppression.

    Science.gov (United States)

    Shiu, Patrick K T; Metzenberg, Robert L

    2002-08-01

    In Neurospora, a gene not paired with a homolog in prophase I of meiosis generates a signal that transiently silences all sequences homologous to it by a process called meiotic silencing by unpaired DNA (MSUD). Thus a deletion mutation in a heterozygous cross is formally "ascus-dominant" because its unpaired wild-type partner silences itself. We describe in detail the isolation of a mutation, Sad-1(UV), that suppresses the dominance of various ascus-dominant mutations. Additional dominant, semidominant, and recessive Sad-1 alleles have been generated by RIP; the DNA of the dominant RIP alleles becomes methylated, but dim-2-dependent methylation is not necessary for silencing. The barrenness of homozygous Sad-1 crosses is not due to the failure to silence unpaired mating-type mat A-2 mat A-3 genes. Transcripts of sad-1(+) can be detected during the sexual phase in a homozygous wild-type cross, indicating that the gene is expressed even if all DNA can pair normally. Meiotic silencing is confined to the ascus in which DNA is unpaired, and silencing does not spread to neighboring asci in a fruiting body of mixed genetic constitution.

  14. Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion.

    Directory of Open Access Journals (Sweden)

    Raphaëlle Laureau

    2016-02-01

    Full Text Available In somatic cells, recombination between the homologous chromosomes followed by equational segregation leads to loss of heterozygosity events (LOH, allowing the expression of recessive alleles and the production of novel allele combinations that are potentially beneficial upon Darwinian selection. However, inter-homolog recombination in somatic cells is rare, thus reducing potential genetic variation. Here, we explored the property of S. cerevisiae to enter the meiotic developmental program, induce meiotic Spo11-dependent double-strand breaks genome-wide and return to mitotic growth, a process known as Return To Growth (RTG. Whole genome sequencing of 36 RTG strains derived from the hybrid S288c/SK1 diploid strain demonstrates that the RTGs are bona fide diploids with mosaic recombined genome, derived from either parental origin. Individual RTG genome-wide genotypes are comprised of 5 to 87 homozygous regions due to the loss of heterozygous (LOH events of various lengths, varying between a few nucleotides up to several hundred kilobases. Furthermore, we show that reiteration of the RTG process shows incremental increases of homozygosity. Phenotype/genotype analysis of the RTG strains for the auxotrophic and arsenate resistance traits validates the potential of this procedure of genome diversification to rapidly map complex traits loci (QTLs in diploid strains without undergoing sexual reproduction.

  15. Meiotic studies in some selected angiosperms from the Kashmir Himalayas

    Institute of Scientific and Technical Information of China (English)

    Syed Mudassir JEELANI; Santosh KUMARI; Raghbir Chand GUPTA

    2012-01-01

    As a part of our program to explore and evaluate genetic diversity of flowering plants of the Kashmir Himalayas,meiotic studies have been carried out on 150 wild species.Of these,Caltha alba (2n =32),Delphinium roylei (2n =16),D.uncinatum (2n =16),Ranunculus palmatifidus (2n =28),and Sedum heterodontum (2n =14) have been cytologically worked out for the first time.New intraspecific diploid or polyploid cytotypes have been recorded for Alchemilla vulgaris (2n =34,96),Arabis amplexicaulis (2n =16),Impatiens amphorata (2n =14),Ⅰ.racemosa (2n =12),Ⅰ.sutcata (2n =16,12),Meconopsis latifolia (2n =14),Potentilla supina (2n =14),Saxifraga cernua (2n =16),Sium latijugam (2n =24),and Vicatia coniifolia (2n =44).Four species,Arabidopsis thaliana (2n =10),Berberis vulgaris (2n =28),Potentilla nubicola (2n =14),and P.sericea (2n =28),have been cytologically reported for the first time from India.A large number of meiotic abnormalities have been observed in most of these species,leading to a reduction in pollen fertility and production of heterogeneous-sized pollen grains.

  16. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster.

    Science.gov (United States)

    Krishnan, Badri; Thomas, Sharon E; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B; McKee, Bruce D

    2014-11-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.

  17. Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch.

    Science.gov (United States)

    Schoenmakers, Sam; Wassenaar, Evelyne; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2010-06-01

    During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently. The W chromosome is already inactive in early meiotic prophase, and inactive chromatin marks may spread on to the Z upon synapsis. Mammalian MSCI is considered as a specialised form of the general meiotic silencing mechanism, named meiotic silencing of unsynapsed chromatin (MSUC). Herein, we studied the avian form of MSUC, by analysing the behaviour of the peculiar germline restricted chromosome (GRC) that is present as a single copy in zebra finch spermatocytes. In the female germline, this chromosome is present in two copies, which normally synapse and recombine. In contrast, during male meiosis, the single GRC is always eliminated. We found that the GRC in the male germline is silenced from early leptotene onwards, similar to the W chromosome in avian oocytes. The GRC remains largely unsynapsed throughout meiotic prophase I, although patches of SYCP1 staining indicate that part of the GRC may self-synapse. In addition, the GRC is largely devoid of meiotic double strand breaks. We observed a lack of the inner centromere protein INCENP on the GRC and elimination of the GRC following metaphase I. Subsequently, the GRC forms a micronucleus in which the DNA is fragmented. We conclude that in contrast to MSUC in mammals, meiotic silencing of this single chromosome in the avian germline occurs prior to, and independent of DNA double strand breaks and chromosome pairing, hence we have named this phenomenon meiotic silencing prior to synapsis (MSPS).

  18. A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

    CERN Document Server

    Yoon, Yourim; Moraglio, Alberto; Moon, Byung-Ro

    2009-01-01

    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. This paper is motivated by the fact that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. In this paper, we study a metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many example applications of the quotient geometric crossover.

  19. Exchangeability in the case-crossover design.

    Science.gov (United States)

    Mittleman, Murray A; Mostofsky, Elizabeth

    2014-10-01

    In cohort and case-control studies, confounding that arises as a result of differences in the distribution of determinants of the outcome between exposure groups leading to non-exchangeability are addressed by restriction, matching or with statistical models. In case-only studies, this issue is addressed by comparing each individual with his/herself. Although case-only designs use self-matching and only include individuals who develop the outcome of interest, issues of non-exchangeability are identical to those that arise in traditional case-control and cohort studies. In this review, we describe one type of case-only design, the case-crossover design, and discuss how the concept of exchangeability can be used to understand issues of confounding, carryover effects, period effects and selection bias in case-crossover studies.

  20. Quantum-classical crossover in electrodynamics

    CERN Document Server

    Polonyi, J

    2006-01-01

    A classical field theory is proposed for the electric current and the electromagnetic field interpolating between microscopic and macroscopic domains. It represents a generalization of the density functional for the dynamics of the current and the electromagnetic field in the quantum side of the crossover and reproduces standard classical electrodynamics on the other side. The effective action derived in the closed time path formalism and the equations of motion follow from the variational principle. The polarization of the Dirac-see can be taken into account in the quadratic approximation of the action by the introduction of the deplacement field strengths as in conventional classical electrodynamics. Decoherence appears naturally as a simple one-loop effect in this formalism. It is argued that the radiation time arrow is generated from the quantum boundary conditions in time by decoherence at the quantum-classical crossover and the Abraham-Lorentz force arises from the accelerating charge or from other char...

  1. Het dilemma van een verleidelijk crossover boek

    Directory of Open Access Journals (Sweden)

    A. Schuurman

    2008-01-01

    Full Text Available Woud, A. van der, Een nieuwe wereld. Het ontstaan van het moderne Nederland (Amsterdam 2006The Predicament of a Seductive Crossover BookAuke van der Woud’s new book is a must for everyone interested in the second half of the nineteenth century, particularly the consequences of spatial change. His book has all the virtues and vices of a crossover book, that is one which appeals to two different audiences. It is a book based on new research written for the general reader. Therefore, it is not clear enough with regard to various scientific questions. More explicit attention for the role of industrial capitalism and the process of democracy would have enriched the book even more.

  2. Optimal crossover designs for the proportional model

    OpenAIRE

    Zheng, Wei

    2013-01-01

    In crossover design experiments, the proportional model, where the carryover effects are proportional to their direct treatment effects, has draw attentions in recent years. We discover that the universally optimal design under the traditional model is E-optimal design under the proportional model. Moreover, we establish equivalence theorems of Kiefer-Wolfowitz's type for four popular optimality criteria, namely A, D, E and T (trace).

  3. Magnetic crossover effect in Nickel nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ghaddar, A. [Laboratoire de Magnetisme de Bretagne, CNRS-FRE 3117, C.S. 93837, 29238 Brest, Cedex (France); Gloaguen, F. [Laboratoire de Chimie, Electrochimie Moleculaire et Chimie Analytique, CNRS-UMR 6521, C. S. 93837 Brest Cedex 3 (France); Gieraltowski, J. [Laboratoire de Magnetisme de Bretagne, CNRS-FRE 3117, C.S. 93837, 29238 Brest, Cedex (France); Tannous, C., E-mail: tannous@univ-brest.f [Laboratoire de Magnetisme de Bretagne, CNRS-FRE 3117, C.S. 93837, 29238 Brest, Cedex (France)

    2011-05-01

    A crossover effect in the magnetic reversal mechanism within arrays of Nickel nanowires whose diameter varies from 15 to 100 nm is observed around 50 nm. Hysteresis loops and FMR measurements confirm that nanowire diameter controls effectively the nanowire easy axis as well as the magnetization reversal mechanism. This might be very interesting for spintronic devices based on current-induced domain motion such as non-volatile magnetic memory elements (MRAM) and low Ohmic loss devices.

  4. Dynamical Landau theory of the glass crossover

    Science.gov (United States)

    Rizzo, Tommaso

    2016-07-01

    I introduce a dynamical field theory to describe the glassy behavior in supercooled liquids. The mean-field approximation of the theory predicts a dynamical arrest transition, as in the ideal mode-coupling theory and mean-field discontinuous spin-glass models. Instead, beyond the mean-field approximation, the theory predicts that the transition is avoided and transformed into a crossover, as observed in experiments and simulations. To go beyond mean-field, a standard perturbative loop expansion is performed at first. Approaching the ideal critical point this expansion is divergent at all orders and I show that the leading divergent term at any given order is the same as a dynamical stochastic equation, called stochastic-beta relaxation (SBR) in Europhys. Lett. 106, 56003 (2014), 10.1209/0295-5075/106/56003. At variance with the original theory, SBR can be studied beyond mean-field directly, without the need to resort to a perturbative expansion. Thus it provides a qualitative and quantitative description of the dynamical crossover. For consistency reasons, it is important to establish the connection between the dynamical field theory and SBR beyond perturbation theory. This can be done with the help of a stronger result: the dynamical field theory is exactly equivalent to a theory with quenched disorder. Qualitatively, the nonperturbative mechanism leading to the crossover is therefore the same as the mechanism of SBR. Quantitatively, SBR is equivalent to making the mean-field approximation once the quenched disorder has been generated.

  5. Meiotic sex chromosome inactivation in the marsupial Monodelphis domestica.

    Science.gov (United States)

    Hornecker, Jacey L; Samollow, Paul B; Robinson, Edward S; Vandeberg, John L; McCarrey, John R

    2007-11-01

    In eutherian mammals, the X and Y chromosomes undergo meiotic sex chromosome inactivation (MSCI) during spermatogenesis in males. However, following fertilization, both the paternally (Xp) and maternally (Xm) inherited X chromosomes are active in the inner cell mass of the female blastocyst, and then random inactivation of one X chromosome occurs in each cell, leading to a mosaic pattern of X-chromosome activity in adult female tissues. In contrast, marsupial females show a nonrandom pattern of X chromosome activity, with repression of the Xp in all somatic tissues. Here, we show that MSCI also occurs during spermatogenesis in marsupials in a manner similar to, but more stable than that in eutherians. These findings support the suggestion that MSCI may have provided the basis for an early dosage compensation mechanism in mammals based solely on gametogenic events, and that random X-chromosome inactivation during embryogenesis may have evolved subsequently in eutherian mammals.

  6. Transcription of meiotic-like-pathway genes in Giardia intestinalis

    Directory of Open Access Journals (Sweden)

    Sandra P Melo

    2008-06-01

    Full Text Available The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.

  7. Transcription of meiotic-like-pathway genes in Giardia intestinalis.

    Science.gov (United States)

    Melo, Sandra P; Gómez, Vanessa; Castellanos, Isabel C; Alvarado, Magda E; Hernández, Paula C; Gallego, Amanda; Wasserman, Moisés

    2008-06-01

    The reproductive mechanism of Giardia intestinalis, considered one of the earliest divergent eukaryotes, has not been fully defined yet. Some evidence supports the hypothesis that Giardia is an exclusively asexual organism with a clonal population structure. However, the high genetic variability, the variation in ploidy during its life cycle, the low heterozygosity and the existence of genes involved in the meiotic-like recombination pathway in the parasite's genome cast doubt on exclusively asexual nature of Giardia. In this work, semiquantitative RT-PCR analysis was used to assess the transcription pattern of three meiosis-like-specific genes involved in homologues recombination: dmc1, hop1 and spo11. The mRNAs were amplified during the parasite's differentiation processes, encystation and excystation, and expression was found at each stage of its life cycle. A semiquantitative assessment also suggests that expression of some of the genes is regulated during encystation process.

  8. Self-organization of dynein motors generates meiotic nuclear oscillations.

    Directory of Open Access Journals (Sweden)

    Sven K Vogel

    2009-04-01

    Full Text Available Meiotic nuclear oscillations in the fission yeast Schizosaccharomyces pombe are crucial for proper chromosome pairing and recombination. We report a mechanism of these oscillations on the basis of collective behavior of dynein motors linking the cell cortex and dynamic microtubules that extend from the spindle pole body in opposite directions. By combining quantitative live cell imaging and laser ablation with a theoretical description, we show that dynein dynamically redistributes in the cell in response to load forces, resulting in more dynein attached to the leading than to the trailing microtubules. The redistribution of motors introduces an asymmetry of motor forces pulling in opposite directions, leading to the generation of oscillations. Our work provides the first direct in vivo observation of self-organized dynamic dynein distributions, which, owing to the intrinsic motor properties, generate regular large-scale movements in the cell.

  9. Homeostatic regulation of meiotic DSB formation by ATM/ATR.

    Science.gov (United States)

    Cooper, Tim J; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J

    2014-11-15

    Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  10. Does MAX open up a new avenue for meiotic research?

    Science.gov (United States)

    Suzuki, Ayumu; Hirasaki, Masataka; Okuda, Akihiko

    2017-02-01

    Meiosis is a central event of sexual reproduction. Like somatic cells, germ cells conduct mitosis to increase their cell number, but unlike somatic cells, germ cells switch their cell division mode from mitosis to meiosis at a certain point in gametogenesis. However, the molecular basis of this switch remains elusive. In this review article, we give an overview of the onset of mammalian meiosis, including our recent finding that MYC Associated Factor X (MAX) prevents ectopic and precocious meiosis in embryonic stem cells (ESCs) and germ cells, respectively. We present a hypothetical model of a MAX-centered molecular network that regulates meiotic entry in mammals and propose that inducible Max knockout ESCs provide an excellent platform for exploring the molecular mechanisms of meiosis initiation, while excluding other aspects of gametogenesis.

  11. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J., E-mail: m.neale@sussex.ac.uk

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  12. Aberrant meiotic behavior in Agave tequilana Weber var. azul

    Directory of Open Access Journals (Sweden)

    Rodríguez-Garay Benjamin

    2002-10-01

    Full Text Available Abstract Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB; 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00% and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability.

  13. A new crossover operator in genetic programming for object classification.

    Science.gov (United States)

    Zhang, Mengjie; Gao, Xiaoying; Lou, Weijun

    2007-10-01

    The crossover operator has been considered "the centre of the storm" in genetic programming (GP). However, many existing GP approaches to object recognition suggest that the standard GP crossover is not sufficiently powerful in producing good child programs due to the totally random choice of the crossover points. To deal with this problem, this paper introduces an approach with a new crossover operator in GP for object recognition, particularly object classification. In this approach, a local hill-climbing search is used in constructing good building blocks, a weight called looseness is introduced to identify the good building blocks in individual programs, and the looseness values are used as heuristics in choosing appropriate crossover points to preserve good building blocks. This approach is examined and compared with the standard crossover operator and the headless chicken crossover (HCC) method on a sequence of object classification problems. The results suggest that this approach outperforms the HCC, the standard crossover, and the standard crossover operator with hill climbing on all of these problems in terms of the classification accuracy. Although this approach spends a bit longer time than the standard crossover operator, it significantly improves the system efficiency over the HCC method.

  14. Microsporogenesis and meiotic behavior in nine species of the genus Pinus

    Institute of Scientific and Technical Information of China (English)

    Hui-Sheng DENG; Da-Ming ZHANG; De-Yuan HONG; Cheng-Xin FU

    2009-01-01

    The meiotic behavior of 10 taxa (nine species and one variety) of the genus Pinus was investigated using pollen mother cells (PMCs) to reveal the differentiation among karyotypes. Chromosome spreads were prepared by conventional squashing. The meiotic index and the average configuration were higher, whereas the frequency of aberrance (chromosomal bridges, fragments, or micronuclei) was lower, in all l0 taxa compared with other gymnosperms. The meiotic index, average configuration, and frequency of irregularity were found to be uniform among the species. It was shown that the genomes of the Pinus species investigated were highly stable, confirming results of previous mitotic analyses in this genus. However, slight differentiation of homologous chromosomes among genomes was revealed by analysis of meiotic configurations in Pinus nigra var. poiretiana. Quadrivalents were observed in 9.31% of PMCs in this species. This is the first time that quadrivalents have been observed in gynmosperms.

  15. Meiotic behavior of Adesmia DC. (Leguminosae-Faboideae species native to Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Coelho Liliana Gressler May

    1998-01-01

    Full Text Available Meiotic behavior in Adesmia DC. is described for the first time. The study encompassed twelve populations of seven Adesmia DC. species native to Rio Grande do Sul, Brazil. Populations with 2n = 2x = 20 are A. securigerifolia 9615, A. riograndensis 9590 (subnudae, A. latifolia 1568, 1775, 15025, A. bicolor JB-UFSM, A. incana var. incana 9636, 10288, A. punctata var. hilariana 6885, 10812, and A. tristis 10757. A. incana var. incana 9637 is a tetraploid with 2n = 4x = 40. The material was stained with 1% acetic orcein. The meiotic behavior of the populations studied was considered normal. The meiotic index (MI and the estimates of pollen grain viability were above 95%, except for A. latifolia 1568 (MI = 89%. The present data indicate that these plants are meiotically stable and potentially fertile, apparently with no problems for use in programs of selection, crossing and viable seed production.

  16. Cytoembryological evaluation, meiotic behavior and pollen viability of Paspalum notatum tetraploidized plants

    Directory of Open Access Journals (Sweden)

    Karine Cristina Krycki

    2016-11-01

    Full Text Available This study evaluated the mode of reproduction, the meiotic behavior and the pollen viability of three tetraploid plants (2n=4x=40 originated from somatic chromosome duplication of Paspalum notatum plants. The plant WKS 3 changed the mode of reproduction after duplication and became apomictic. The plants WKS 63 and WKS 92 confirmed sexual mode of reproduction identical to that of the original genotype. The analyzed plants presented meiotic abnormalities related to tetraploidy, and the chromosome pairing were variable, but it did not hinder the meiotic products, which were characterized by regular tetrads and satisfactory pollen fertility, ranging from 88.7 to 95.7%. Results show that all plants are meiotically stable and that they can be used in intraspecific crosses in the breeding program of Paspalum notatum.

  17. XY and ZW: Is Meiotic Sex Chromosome Inactivation the Rule in Evolution?

    OpenAIRE

    Sam Schoenmakers; Evelyne Wassenaar; Hoogerbrugge, Jos W.; Laven, Joop S E; J Anton Grootegoed; Baarends, Willy M.

    2009-01-01

    During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription ...

  18. Lack of sex chromosome specific meiotic silencing in platypus reveals origin of MSCI in therian mammals

    OpenAIRE

    Daish, Tasman J.; Casey, Aaron E.; Grutzner, Frank

    2015-01-01

    Background In therian mammals heteromorphic sex chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during meiotic prophase I while the autosomes maintain transcriptional activity. The evolution of this sex chromosome silencing is thought to result in retroposition of genes required in spermatogenesis from the sex chromosomes to autosomes. In birds sex chromosome specific silencing appears to be absent and global transcriptional reductions occur through pachytene and sex chr...

  19. The M26 hotspot of Schizosaccharomyces pombe stimulates meiotic ectopic recombination and chromosomal rearrangements.

    OpenAIRE

    Virgin, J B; Bailey, J P

    1998-01-01

    Homologous recombination is increased during meiosis between DNA sequences at the same chromosomal position (allelic recombination) and at different chromosomal positions (ectopic recombination). Recombination hotspots are important elements in controlling meiotic allelic recombination. We have used artificially dispersed copies of the ade6 gene in Schizosaccharomyces pombe to study hotspot activity in meiotic ectopic recombination. Ectopic recombination was reduced 10-1000-fold relative to a...

  20. Analysis of the epigenetics of meiotic silencing and its role in germ cell loss

    OpenAIRE

    Cloutier, J.

    2016-01-01

    Numerical and structural chromosome abnormalities are common in the human population and cause infertility associated with germ cell losses during meiotic prophase I. The precise trigger of germ cell loss in response to chromosome abnormalities in mammals is still unclear, but several models have been postulated, including a DNA damage checkpoint, an asynapsis checkpoint, and meiotic silencing of asynapsed chromosomes. Here, I investigate the contribution of these mechanisms to oocyte loss in...

  1. The Anaphase-Promoting Complex/Cyclosome Is Essential for Entry into Meiotic M-Phase.

    Science.gov (United States)

    Malhotra, Saurav; Vinod, Palakkad Krishnanunni; Mansfeld, Jörg; Stemmann, Olaf; Mayer, Thomas U

    2016-01-11

    Vertebrate immature oocytes are arrested at prophase of meiosis I (MI). Hormonal stimulation breaks this prophase-I arrest and induces re-entry into MI. The mechanism underlying meiotic resumption remains largely elusive. Here, we demonstrate that the anaphase-promoting complex/cyclosome (APC/C) in complex with Cdh1 has an unexpected function in meiosis in that it is essential for meiotic resumption. We identify the catalytic subunit of protein phosphatase 6 (PP6c) as the critical substrate whose APC/C(Cdh1)-mediated destruction is a prerequisite for the re-entry of immature Xenopus laevis oocytes into MI. Preventing PP6c destruction impairs activating autophosphorylation of Aurora A, a cell-cycle kinase critical for meiotic translation. Restoring meiotic translation rescues the meiotic resumption defect of Cdh1-depleted oocytes. Thus, our studies discover that the essential function of the APC/C in triggering cell-cycle transitions is not limited to M-phase exit but also applies to entry into meiotic M-phase, and identify a crucial APC/C-PP6c-Aurora A axis in the resumption of female meiosis.

  2. Bisphenol A exposure at an environmentally relevant dose induces meiotic abnormalities in adult male rats.

    Science.gov (United States)

    Liu, Chuan; Duan, Weixia; Zhang, Lei; Xu, Shangcheng; Li, Renyan; Chen, Chunhai; He, Mindi; Lu, Yonghui; Wu, Hongjuan; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Whether environmental exposure to bisphenol A (BPA) may induce reproductive disorders is still controversial but certain studies have reported that BPA may cause meiotic abnormalities in C. elegans and female mice. However, little is known about the effect of BPA on meiosis in adult males. To determine whether BPA exposure at an environmentally relevant dose could induce meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 20 μg/kg body weight (bw)/day for 60 consecutive days. We found that BPA significantly increased the proportion of stage VII seminiferous epithelium and decreased the proportion of stage VIII. Consequently, spermiation was inhibited and spermatogenesis was disrupted. Further investigation revealed that BPA exposure delayed meiosis initiation in the early meiotic stage and induced the accumulation of chromosomal abnormalities and meiotic DNA double-strand breaks (DSBs) in the late meiotic stage. The latter event subsequently activated the phosphatidylinositol 3-kinase-related protein kinase (ATM). Our results suggest that long-term exposure to BPA may lead to continuous meiotic abnormalities and ultimately put mammalian reproductive health at risk.

  3. Meiotic behavior and chromosome number of Urochloa adspersa (Trin.) R. D. Webster from the Brazilian Chaco.

    Science.gov (United States)

    Felismino, M F; Maior, R L S; Damasceno, G A; Pott, A; Pagliarini, M S

    2015-07-06

    This is the first report of meiotic division in Uro-chloa adspersa (Trin.) collected from the Brazilian Chaco. Meiotic analyses were performed on three specimens of U. adspersa named G10, G15, and G16. Inflorescences were collected and fixed in a mixture of ethanol and acetic acid (3:1, v/v) for 24 h and then stored in 70% alcohol. Diakinesis revealed different chromosome numbers and ploidy levels. All three plants were polyploids: G10 and G15 exhibited 2n = 6x = 54 chromosomes (arranged in 27 bivalents), while G16 exhibited 2n = 4x = 36 chromosomes (18 bivalents). Meiotic behavior was mainly normal in the hexaploid G15 and the tetraploid G16 (5.3 and 6.2% of the cells were abnormal, respective-ly), revealing only a few meiotic abnormalities that are common to polyploids, i.e., those related to irregular chromosome segregation. G10 exhibited other meiotic abnormalities during meiosis II, such as chromosome stickiness, irregular spindle orientation, and irregular cytokinesis, which led to the formation of a few triads, resulting in 16.9% of the cells being abnormal. The origin of these abnormalities is discussed, and we suggest that the genes that control meiotic steps may be present in the Urochloa gene pool.

  4. Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis.

    Science.gov (United States)

    Sun, Fengyun; Fujiwara, Yasuhiro; Reinholdt, Laura G; Hu, Jianjun; Saxl, Ruth L; Baker, Christopher L; Petkov, Petko M; Paigen, Kenneth; Handel, Mary Ann

    2015-09-01

    Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ cell nuclei at pre-leptonema to early leptonema but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots.

  5. Prdm9, a major determinant of meiotic recombination hotspots, is not functional in dogs and their wild relatives, wolves and coyotes.

    Directory of Open Access Journals (Sweden)

    Violeta Muñoz-Fuentes

    Full Text Available Meiotic recombination is a fundamental process needed for the correct segregation of chromosomes during meiosis in sexually reproducing organisms. In humans, 80% of crossovers are estimated to occur at specific areas of the genome called recombination hotspots. Recently, a protein called PRDM9 was identified as a major player in determining the location of genome-wide meiotic recombination hotspots in humans and mice. The origin of this protein seems to be ancient in evolutionary time, as reflected by its fairly conserved structure in lineages that diverged over 700 million years ago. Despite its important role, there are many animal groups in which Prdm9 is absent (e.g. birds, reptiles, amphibians, diptera and it has been suggested to have disruptive mutations and thus to be a pseudogene in dogs. Because of the dog's history through domestication and artificial selection, we wanted to confirm the presence of a disrupted Prdm9 gene in dogs and determine whether this was exclusive of this species or whether it also occurred in its wild ancestor, the wolf, and in a close relative, the coyote. We sequenced the region in the dog genome that aligned to the last exon of the human Prdm9, containing the entire zinc finger domain, in 4 dogs, 17 wolves and 2 coyotes. Our results show that the three canid species possess mutations that likely make this gene non functional. Because these mutations are shared across the three species, they must have appeared prior to the split of the wolf and the coyote, millions of years ago, and are not related to domestication. In addition, our results suggest that in these three canid species recombination does not occur at hotspots or hotspot location is controlled through a mechanism yet to be determined.

  6. A quantum genetic algorithm with quantum crossover and mutation operations

    Science.gov (United States)

    SaiToh, Akira; Rahimi, Robabeh; Nakahara, Mikio

    2013-11-01

    In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm that has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.

  7. Crossover transition in bag-like models

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Lorenzo; Koch, Volker

    2009-03-13

    We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consist of a finite number of infinitely extended bags,which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons.

  8. Generalised sequential crossover of words and languages

    CERN Document Server

    Jeganathan, L; Sengupta, Ritabrata

    2009-01-01

    In this paper, we propose a new operation, Generalised Sequential Crossover (GSCO) of words, which in some sense an abstract model of crossing over of the chromosomes in the living organisms. We extend GSCO over language $L$ iteratively ($GSCO^*(L)$ as well as iterated GSCO over two languages $GSCO^*(L_1,L_2)$). Our study reveals that $GSCO^*(L)$ is subclass of regular languages for any $L$. We compare the different classes of GSCO languages with the prominent sub-regular classes.

  9. Peritoneal Fluid From Infertile Women With Minimal/Mild Endometriosis Compromises the Meiotic Spindle of Metaphase II Bovine Oocytes.

    Science.gov (United States)

    Gazeto Melo Jianini, Bruna Talita; Giorgi, Vanessa Silvestre Innocenti; Da Broi, Michele Gomes; de Paz, Cláudia Cristina Paro; Rosa E Silva, Júlio César; Ferriani, Rui Alberto; Navarro, Paula Andrea

    2017-01-01

    Some studies have demonstrated alterations in the composition of peritoneal fluid (PF) from women with endometriosis. Controversial studies have suggested that impaired oocyte quality may be involved in the pathogenesis of endometriosis-related infertility. The aim of this study was to evaluate the spindle and chromosome distribution of in vitro-matured oocytes in the presence of 2 concentrations of PF from infertile women with minimal/mild endometriosis (EI/II) compared to fertile controls. We performed an experimental study using a bovine model. Samples of PF were obtained from 12 women who underwent videolaparoscopy-6 infertile women with EI/II and 6 fertile women without endometriosis (control group). Immature bovine oocytes underwent in vitro maturation (IVM) in the absence of PF and in the presence of 2 concentrations (1% and 10%) of PF from fertile women and from infertile women with EI/II. After 22 to 24 hours of IVM, oocytes were fixed for subsequent immunofluorescence staining for the visualization of microtubules and chromosomes by confocal microscopy. The percentage of meiotically normal oocytes was significantly lower for oocytes that underwent IVM in the presence of 1% (62.50%) and 10% (56.25%) of PF from infertile women with EI/II than in the absence of PF (88.46%) and in the presence of 1% (78.57%) and 10% (84.61%) of PF from fertile women ( P meiotic abnormalities in in vitro-matured bovine oocytes. Therefore, our results contribute to the understanding of the etiopathogenic mechanisms of infertility related to EI/II.

  10. Presence of Meiotic Spindles Indicates Early Cleavage of Embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To assess whether the detection of the meiotic spindle could anticipate the appearance of early cleavage.Methods Oocytes were obtained from stimulated ovaries of consenting patients undergoing oocytes retrieval for ICSI.Spindles were imaged with the Polscope.After ICSI,oocytes with or without spindles were cultured for examination of early cleavage and embryo development.A total of 328 oocytes from 50 cycles were examined with the Polscope and inseminated by ICSI.Results Spindles were imaged in 81.7% of oocytes.After ICSI,more oocytes with spindles (78.4%) fertilized normally than oocytes without spindles (53.3%)(P<0.001).At 25-27 h post ICSI.more fertilized oocytes developed from oocytes with spindles (81.9%) were detected early cleavage than those from oocytes without spindles(28.1%)(P<0.001).Significantly more embryos with early cleavage (82.2%) developed to high quality embryos at d 3 compared with the embryos without early cleavage(48.3%)(P=0.001).The value of rs related to the relationship between spindles and early cleavage was 0.420(P<0.0001).Conclusion The existing of the early cleavage may have a predictive value on the opportunity of high quality embryos and the existing of the spindle may have a predictive value in the appearance of early cleavage.

  11. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution.

  12. Meiotic behaviour of individual chromosomes in allotriploid Alstroemeria hybrids.

    Science.gov (United States)

    Kamstra, S A; de Jong, J H; Jacobsen, E; Ramanna, M S; Kuipers, A G J

    2004-07-01

    Chromosome association and chiasma formation were studied in pollen mother cells at metaphase I of four allotriplod BC1 plants (2n=3x=24) obtained from the backcross of the hybrid Alstroemeria aurea x A. inodora with its parent A. inodora. We distinguished the chromosomes of both parental species by genomic in situ hybridization (GISH), whereas the individual chromosomes were identified on the basis of their multicolour FISH banding patterns obtained after a second hybridization with two species-specific satellite repeats as probes. All the four BC1 plants possessed two genomes of A. inodora and one of A. aurea. Variable numbers of recombinant chromosomes, resulting from meiotic recombination in the interspecific hybrid, were present in these plants. The homologous A. inodora chromosomes generally formed bivalents, leaving the homoeologous A. aurea chromosomes unassociated. High frequencies of trivalents were observed for the chromosome sets that contained recombinant chromosomes, even when the recombinant segments were small. Chromosome associations in the trivalents were restricted to homologous segments. The implications of the absence of homoeologous chromosome pairing on gamete constitution and prospects for introgression in Alstroemeria are discussed.

  13. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis.

    Science.gov (United States)

    Melters, Daniël P; Paliulis, Leocadia V; Korf, Ian F; Chan, Simon W L

    2012-07-01

    In most eukaryotes, the kinetochore protein complex assembles at a single locus termed the centromere to attach chromosomes to spindle microtubules. Holocentric chromosomes have the unusual property of attaching to spindle microtubules along their entire length. Our mechanistic understanding of holocentric chromosome function is derived largely from studies in the nematode Caenorhabditis elegans, but holocentric chromosomes are found over a broad range of animal and plant species. In this review, we describe how holocentricity may be identified through cytological and molecular methods. By surveying the diversity of organisms with holocentric chromosomes, we estimate that the trait has arisen at least 13 independent times (four times in plants and at least nine times in animals). Holocentric chromosomes have inherent problems in meiosis because bivalents can attach to spindles in a random fashion. Interestingly, there are several solutions that have evolved to allow accurate meiotic segregation of holocentric chromosomes. Lastly, we describe how extensive genome sequencing and experiments in nonmodel organisms may allow holocentric chromosomes to shed light on general principles of chromosome segregation.

  14. Detection of meiotic DNA breaks in mouse testicular germ cells.

    Science.gov (United States)

    Qin, Jian; Subramanian, Jaichandar; Arnheim, Norman

    2009-01-01

    The study of location and intensity of double-strand breaks (DSBs) in mammalian systems is more challenging than in yeast because, unlike yeast, the progression through meiosis is not synchronous and only a small fraction of all testis cells are actually at the stage where DSB formation is initiated. We devised a quantitative approach that is sensitive enough to detect the position of rare DNA strand breaks in mouse germ cell-enriched testicular cell populations. The method can detect DNA breaks at any desired location in the genome but is not specific for DSBs-overhangs, nicks, or gaps with a free 3' OH group are also detected. The method was successfully used to compare testicular cells from mouse strains that possess or lack an active recombination hot spot at the H2-Ea gene. Breaks that were due to meiotic hot spot activity could be distinguished from the background of DNA breaks. This highly sensitive approach could be used to study other biological processes where rare DNA breaks are generated.

  15. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    Science.gov (United States)

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes.

  16. Non-meiotic chromosome instability in human immature oocytes.

    Science.gov (United States)

    Daina, Gemma; Ramos, Laia; Rius, Mariona; Obradors, Albert; Del Rey, Javier; Giralt, Magda; Campillo, Mercedes; Velilla, Esther; Pujol, Aïda; Martinez-Pasarell, Olga; Benet, Jordi; Navarro, Joaquima

    2014-02-01

    Aneuploidy has been a major issue in human gametes and is closely related to fertility problems, as it is known to be present in cleavage stage embryos and gestational losses. Pre-meiotic chromosome abnormalities in women have been previously described. The aim of this study is to assess the whole-chromosome complement in immature oocytes to find those abnormalities caused by mitotic instability. For this purpose, a total of 157 oocytes at the germinal vesicle or metaphase I stage, and discarded from IVF cycles, were analysed by CGH. Fifty-six women, between 18 and 45 years old (mean 32.5 years), including 32 IVF patients (25-45 years of age) and 24 IVF oocyte donors (18-33 years of age), were included in the study. A total of 25/157 (15.9%) of the oocytes analysed, obtained from three IVF clinics, contained chromosome abnormalities, including both aneuploidy (24/157) and structural aberrations (9/157). Independently of the maternal age, the incidence of abnormal oocytes which originated before meiosis is 15.9%, and these imbalances were found in 33.9% of the females studied. This work sheds light on the relevance of mitotic instability responsible for the generation of the abnormalities present in human oocytes.

  17. Case-crossover studies of occupational trauma: methodological caveats

    OpenAIRE

    Sorock, G; Lombardi, D; Gabel, C; Smith, G; Mittleman, M

    2001-01-01

    Objectives—The case-crossover study design was developed to examine triggers for the onset of myocardial infarction. This paper seeks to examine selected methodological issues when applying the case-crossover method to the study of traumatic injuries in the work environment.

  18. Research Update: The mechanocaloric potential of spin crossover compounds

    Science.gov (United States)

    Sandeman, Karl G.

    2016-11-01

    We present a first evaluation of the potential for spin crossover (SCO) compounds to be considered as a new class of giant mechanocaloric effect materials. From literature data on the variation of the spin crossover temperature with pressure, we estimate the maximum available adiabatic temperature change for several compounds and the relatively low pressures that may be required to observe these effects.

  19. Research Update: The mechanocaloric potential of spin crossover compounds

    OpenAIRE

    Sandeman, Karl G.

    2016-01-01

    We present a first evaluation of the potential for spin crossover (SCO) compounds to be considered as a new class of giant mechanocaloric effect materials. From literature data on the variation of the spin crossover temperature with pressure, we estimate the maximum available adiabatic temperature change for several compounds and the relatively low pressures that may be required to observe these effects.

  20. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities.

    Science.gov (United States)

    Lenie, Sandy; Cortvrindt, Rita; Eichenlaub-Ritter, Ursula; Smitz, Johan

    2008-03-12

    Bisphenol A (BPA), a widely used environmental contaminant, may exert weak estrogenic, anti-androgenic and anti-thyroidic activities. BPA is suspected to possess aneugenic properties that may affect somatic cells and mammalian oocytes. Oocyte growth and maturation depend upon a complex bi-directional signaling between the oocyte and its companion somatic cells. Consequently, disturbances in oocyte maturation may originate either from direct effects of BPA at the level of the oocyte or from indirect influences at the follicular level, such as alterations in hormonal homeostasis. This study aimed to analyze the effects of chronic BPA exposure (3 nM to 30 microM) on follicle-enclosed growth and maturation of mouse oocytes in vitro. Oocytes were cultured and their spindle and chromosomes were stained by alpha-tubulin immunofluorescence and ethidium homodimer-2, respectively. Confocal microscopy was utilized for subsequent analysis. Only follicles that were exposed to 30 microM BPA during follicular development showed a slightly reduced granulosa cell proliferation and a lower total estrogen production, but they still developed and formed antral-like cavities. However, 18% of oocytes were unable to resume meiosis after stimulation of oocyte maturation, and 37% arrested after germinal vesicle breakdown, significantly different from controls (pabnormal telophase I. Additionally, in many oocytes exposed to low chronic BPA that matured to meiosis II chromosomes failed to congress at the spindle equator. In conclusion, mouse follicle culture reveals non-linear dose-dependent effects of BPA on the meiotic spindle in mouse oocytes when exposure was chronic throughout oocyte growth and maturation.

  1. Rad3-Cds1 mediates coupling of initiation of meiotic recombination with DNA replication. Mei4-dependent transcription as a potential target of meiotic checkpoint.

    Science.gov (United States)

    Ogino, Keiko; Masai, Hisao

    2006-01-20

    Premeiotic S-phase and meiotic recombination are known to be strictly coupled in Saccharomyces cerevisiae. However, the checkpoint pathway regulating this coupling has been largely unknown. In fission yeast, Rad3 is known to play an essential role in coordination of DNA replication and cell division during both mitotic growth and meiosis. Here we have examined whether the Rad3 pathway also regulates the coupling of DNA synthesis and recombination. Inhibition of premeiotic S-phase with hydroxyurea completely abrogates the progression of meiosis, including the formation of DNA double-strand breaks (DSBs). DSB formation is restored in rad3 mutant even in the presence of hydroxyurea, although repair of DSBs does not take place or is significantly delayed, indicating that the subsequent recombination steps may be still inhibited. Examination of the roles of downstream checkpoint kinases reveals that Cds1, but not Chk1 or Mek1, is required for suppression of DSB in the presence of hydroxyurea. Transcriptional induction of some rec+ genes essential for DSB occurs at a normal timing and to a normal level in the absence of DNA synthesis in both the wild-type and cds1delta cells. On the other hand, the transcriptional induction of the mei4+ transcription factor and cdc25+ phosphatase, which is significantly suppressed by hydroxyurea in the wild-type cells, occurs almost to a normal level in cds1delta cells even in the presence of hydroxyurea. These results show that the Rad3-Cds1 checkpoint pathway coordinates initiation of meiotic recombination and meiotic cell divisions with premeiotic DNA synthesis. Because mei4+ is known to be required for DSB formation and cdc25+ is required for activation of meiotic cell divisions, we propose an intriguing possibility that the Rad3-Cds1 meiotic checkpoint pathway may target transcription of these factors.

  2. Neutrino dynamics below the electroweak crossover

    Energy Technology Data Exchange (ETDEWEB)

    Ghiglieri, J.; Laine, M. [AEC, Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2016-07-12

    We estimate the thermal masses and damping rates of active (m< eV) and sterile (M∼ GeV) neutrinos with thermal momenta k∼3T at temperatures below the electroweak crossover (5 GeV 130 GeV remains an option. Our differential rates are tabulated in a form suitable for studies of specific scenarios with given neutrino Yukawa matrices.

  3. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  4. Deformation Crossover: from nano to meso scale

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sheng [ORNL; Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Liu, Chain T [ORNL; Horton Jr, Joe A [ORNL; Brown, Donald [Los Alamos National Laboratory (LANL); Clausen, B [Los Alamos National Laboratory (LANL); Liaw, Peter K [University of Tennessee, Knoxville (UTK)

    2009-01-01

    By investigating intergranular strains using in-situ high-energy x-ray and neutron diffraction, we demonstrate significantly different deformation behavior from previously observed in nanocrystalline and ultrafine-grained Ni. Little intergranular strain or texture change was found in nanocrystalline Ni indicating a grain boundary mediated deformation mechanism. A remarkable intergranular strain build-up was observed in ultrafine-grained Ni, which was attributed to dislocation activities, but the unusual angular dependence of intergranular strains gave evidence of stress relaxation by deformation twinning, as confirmed by TEM observations. From the intergranular strain evolution and the texture change, clear evidence of deformation crossovers is presented in Ni with grain sizes from nano to meso scale.

  5. A sex-ratio meiotic drive system in Drosophila simulans. II: an X-linked distorter.

    Directory of Open Access Journals (Sweden)

    Yun Tao

    2007-11-01

    Full Text Available The evolution of heteromorphic sex chromosomes creates a genetic condition favoring the invasion of sex-ratio meiotic drive elements, resulting in the biased transmission of one sex chromosome over the other, in violation of Mendel's first law. The molecular mechanisms of sex-ratio meiotic drive may therefore help us to understand the evolutionary forces shaping the meiotic behavior of the sex chromosomes. Here we characterize a sex-ratio distorter on the X chromosome (Dox in Drosophila simulans by genetic and molecular means. Intriguingly, Dox has very limited coding capacity. It evolved from another X-linked gene, which also evolved de nova. Through retrotransposition, Dox also gave rise to an autosomal suppressor, not much yang (Nmy. An RNA interference mechanism seems to be involved in the suppression of the Dox distorter by the Nmy suppressor. Double mutant males of the genotype dox; nmy are normal for both sex-ratio and spermatogenesis. We postulate that recurrent bouts of sex-ratio meiotic drive and its subsequent suppression might underlie several common features observed in the heterogametic sex, including meiotic sex chromosome inactivation and achiasmy.

  6. Dynamics of male meiotic recombination frequency during plant development using Fluorescent Tagged Lines in Arabidopsis thaliana.

    Science.gov (United States)

    Li, Fan; De Storme, Nico; Geelen, Danny

    2017-02-13

    Meiotic homologous recombination plays a central role in creating genetic variability, making it an essential biological process relevant to evolution and crop breeding. In this study, we used pollen-specific fluorescent tagged lines (FTLs) to measure male meiotic recombination frequency during the development of Arabidopsis thaliana. Interestingly, a subset of pollen grains consistently shows loss of fluorescence expression in tested lines. Using nine independent FTL intervals, the spatio-temporal dynamics of male recombination frequency was assessed during plant development, considering both shoot type and plant age as independent parameters. In most genomic intervals assayed, male meiotic recombination frequency is highly consistent during plant development, showing no significant change between different shoot types and during plant aging. However, in some genomic regions, such as I1a and I5a, a small but significant effect of either developmental position or plant age were observed, indicating that the meiotic CO frequency in those intervals varies during plant development. Furthermore, from an overall view of all nine genomic intervals assayed, both primary and tertiary shoots show a similar dynamics of increasing recombination frequency during development, while secondary and lateral shoots remain highly stable. Our results provide new insights in the dynamics of male meiotic recombination frequency during plant development.

  7. Rotation of Meiotic Spindle Is Controlled by Microfilaments in Mouse Oocytes

    Institute of Scientific and Technical Information of China (English)

    Da-YuanChen; Jin-SongLi; LiLian; LeiLei; Zhi-MingHan; Qing-YuanSun

    2005-01-01

    The completion of meiosis requires the spatial and temporal coordination of cytokinesis and karyokirlesis. During meiotic maturation, many events, such as formation, location, and rotation of the meiotic spindle as well as chromosomal movement,Polar body extrusion,and pronuclear migration,are dependent on regulation of the cytoskeleton system.To study functions of microfilaments in meiosis,we induced metaphase Ⅱ(MII)mouse oocytes to resume meiosis by in vitro fertilization or parthenogenetic activation,and we treated such oocytes with cytochalasin B(CB).The changes of the meiotic spindle,as visualized in preparations stained for β-tubulin and chromation,were observed by fluorescent confocal microscopy.The meiotic spindle of Mll oocytes was observed to be parallel to the plasmalemma.After meiosis had resumed,the spindle rotated to the vertical position so that the second polar body could be extruded into the perivitelline space.When meiosis resumed and oocytes were treated with 10μg/ml of CB,the spindle rotation was inhibited.Consequently,the oocyte formed an extra pronucleus instead of extruding a second polar body.These results indicate that spindle rotation is essential for polar body extrusion;it is the microfilaments that play a crucial role in regulating rotation of the meiotic spindle.

  8. Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role.

    Directory of Open Access Journals (Sweden)

    Olivier Da Ines

    Full Text Available Recombination establishes the chiasmata that physically link pairs of homologous chromosomes in meiosis, ensuring their balanced segregation at the first meiotic division and generating genetic variation. The visible manifestation of genetic crossing-overs, chiasmata are the result of an intricate and tightly regulated process involving induction of DNA double-strand breaks and their repair through invasion of a homologous template DNA duplex, catalysed by RAD51 and DMC1 in most eukaryotes. We describe here a RAD51-GFP fusion protein that retains the ability to assemble at DNA breaks but has lost its DNA break repair capacity. This protein fully complements the meiotic chromosomal fragmentation and sterility of Arabidopsis rad51, but not rad51 dmc1 mutants. Even though DMC1 is the only active meiotic strand transfer protein in the absence of RAD51 catalytic activity, no effect on genetic map distance was observed in complemented rad51 plants. The presence of inactive RAD51 nucleofilaments is thus able to fully support meiotic DSB repair and normal levels of crossing-over by DMC1. Our data demonstrate that RAD51 plays a supporting role for DMC1 in meiotic recombination in the flowering plant, Arabidopsis.

  9. Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts.

    Science.gov (United States)

    Petry, Sabine; Pugieux, Céline; Nédélec, François J; Vale, Ronald D

    2011-08-30

    Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated whether a recently proposed spindle-based MT nucleation pathway that involves augmin, an 8-subunit protein complex, also contributes to spindle morphogenesis. We used an assay system in which hundreds of meiotic spindles can be observed forming around chromatin-coated beads after introduction of Xenopus egg extracts. Spindles forming in augmin-depleted extracts showed reduced rates of MT formation and were predominantly multipolar, revealing a function of augmin in stabilizing the bipolar shape of the acentrosomal meiotic spindle. Our studies also have uncovered an apparent augmin-independent MT nucleation process from acentrosomal poles, which becomes increasingly active over time and appears to partially rescue the spindle defects that arise from augmin depletion. Our studies reveal that spatially and temporally distinct MT generation pathways from chromatin, spindle MTs, and acentrosomal poles all contribute to robust bipolar spindle formation in meiotic extracts.

  10. Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation.

    NARCIS (Netherlands)

    Heijden, G.W. van der; Derijck, A.H.A.; Posfai, E.; Giele, M.M.; Pelczar, P.; Ramos, L.; Wansink, D.G.; Vlag, J. van der; Peters, A.H.; Boer, P. de

    2007-01-01

    In mammalian males, the first meiotic prophase is characterized by formation of a separate chromatin domain called the sex body. In this domain, the X and Y chromosomes are partially synapsed and transcriptionally silenced, a process termed meiotic sex-chromosome inactivation (MSCI). Likewise, unsyn

  11. Increased frequency of asynapsis and associated meiotic silencing of heterologous chromatin in the presence of irradiation-induced extra DNA double strand breaks.

    NARCIS (Netherlands)

    Schoenmakers, S.; Wassenaar, E.; Cappellen, W.A. van; Derijck, A.A.; Boer, P. de; Laven, J.S.E.; Grootegoed, J.A.; Baarends, W.M.

    2008-01-01

    In meiotic prophase of male placental mammals, the heterologous X and Y chromosomes remain largely unsynapsed, which activates meiotic sex chromosome inactivation (MSCI), leading to formation of the transcriptionally silenced XY body. MSCI is most likely related to meiotic silencing of unsynapsed ch

  12. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase.

    Science.gov (United States)

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.

  13. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants.

    Science.gov (United States)

    Edlinger, Bernd; Schlögelhofer, Peter

    2011-03-01

    Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.

  14. Meiotic control of the APC/C: similarities & differences from mitosis

    Directory of Open Access Journals (Sweden)

    Strich Randy

    2011-08-01

    Full Text Available Abstract The anaphase promoting complex is a highly conserved E3 ligase complex that mediates the destruction of key regulatory proteins during both mitotic and meiotic divisions. In order to maintain ploidy, this destruction must occur after the regulatory proteins have executed their function. Thus, the regulation of APC/C activity itself is critical for maintaining ploidy during all types of cell divisions. During mitotic cell division, two conserved activator proteins called Cdc20 and Cdh1 are required for both APC/C activation and substrate selection. However, significantly less is known about how these proteins regulate APC/C activity during the specialized meiotic nuclear divisions. In addition, both budding yeast and flies utilize a third meiosis-specific activator. In Saccharomyces cerevisiae, this meiosis-specific activator is called Ama1. This review summarizes our knowledge of how Cdc20 and Ama1 coordinate APC/C activity to regulate the meiotic nuclear divisions in yeast.

  15. Chromosome numbers, meiotic behavior and pollen fertility in a collection of Paspalum nicorae Parodi accessions

    Directory of Open Access Journals (Sweden)

    Camila Aparecida de Oliveira dos Reis

    2008-01-01

    Full Text Available Chromosome number, meiotic behavior and pollen viability were evaluated in a collection of 53 Paspalumnicorae Parodi accessions, which are part of a breeding project of the species. All accessions are tetraploid, with 2n=4x=40.Despite the invariable chromosome numbers, there was variation among accessions in the frequencies of different chromosomeconfigurations at diakinesis and metaphase I, such as univalents, trivalents and quadrivalents. Other abnormalities asbridges and laggards were also observed at anaphase and telophase I. Meiotic indexes ranged from 82.00 to 99.50% andpollen viability from 88.99 to 95.06%. As the species is pseudogamous apomictic, fertile pollen is necessary for endospermformation. Results show that all plants are meiotically stable and have enough fertile pollen to be used as male parents incontrolled crosses.

  16. Meiotic chromosome pairing in Actinidia chinensis var. deliciosa.

    Science.gov (United States)

    Mertten, D; Tsang, G K; Manako, K I; McNeilage, M A; Datson, P M

    2012-12-01

    Polyploids are defined as either autopolyploids or allopolyploids, depending on their mode of origin and/or chromosome pairing behaviour. Autopolyploids have chromosome sets that are the result of the duplication or combination of related genomes (e.g., AAAA), while allopolyploids result from the combination of sets of chromosomes from two or more different taxa (e.g., AABB, AABBCC). Allopolyploids are expected to show preferential pairing of homologous chromosomes from within each parental sub-genome, leading to disomic inheritance. In contrast, autopolyploids are expected to show random pairing of chromosomes (non-preferential pairing), potentially leading to polysomic inheritance. The two main cultivated taxa of Actinidia (kiwifruit) are A. chinensis (2x and 4x) and A. chinensis var. deliciosa (6x). There is debate whether A. chinensis var. deliciosa is an autopolyploid derived solely from A. chinensis or whether it is an allopolyploid derived from A. chinensis and one or two other Actinidia taxa. To investigate whether preferential or non-preferential chromosome pairing occurs in A. chinensis var. deliciosa, the inheritance of microsatellite alleles was analysed in the tetraploid progeny of a cross between A. chinensis var. deliciosa and the distantly related Actinidia eriantha Benth. (2x). The frequencies of inherited microsatellite allelic combinations in the hybrids suggested that non-preferential chromosome pairing had occurred in the A. chinensis var. deliciosa parent. Meiotic chromosome analysis showed predominantly bivalent formation in A. chinensis var. deliciosa, but a low frequency of quadrivalent chromosome formations was observed (1 observed in 20 pollen mother cells).

  17. Experimental Study on Meiotic Spindles and Chromosomes of Mouse Mature (MⅡ) Stage Oocytes under Laser Scanning Confocal Microscopy

    Institute of Scientific and Technical Information of China (English)

    WANG Yanlin; ZHU Guijin; LI Xia; LI Xiaolan

    2006-01-01

    Taking the mouse as a model, the experimental method of observing the morphology of meiotic spindles and chromosomes in mature oocytes were investigated in order to evaluate the effects of various interventions on the quality of oocytes accurately and rapidly. Laser scanning confocal microscope (LSCM) was used to examine the meiotic spindles and chromosomes by the technologies of optical section and three-dimensional (3D) image reconstruction. The results showed that the configurations of meiotic spindles and chromosomes could be observed clearly by LSCM.The normal rate of meiotic spindles and chromosomes was 82% and 86% respectively. It was concluded that the LSCM was a valid instrument to observe the meiotic spindles and chromosomes of mature oocytes and could be used as a valid method to evaluate the quality of M Ⅱ oocytes.

  18. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arnaud De Muyt

    2009-09-01

    Full Text Available Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.

  19. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/GAAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  20. No severe and global X chromosome inactivation in meiotic male germline of Drosophila

    OpenAIRE

    Mikhaylova Lyudmila M; Nurminsky Dmitry I

    2012-01-01

    Abstract This article is a response to Vibranovski et al. See correspondence article http://www.biomedcentral.com/1741-7007/10/49 and the original research article http://www.biomedcentral.com/1741-7007/9/29 We have previously reported a high propensity of testis-expressed X-linked genes to activation in meiotic cells, a similarity in global gene expression between the X chromosome and autosomes in meiotic germline, and under-representation of various types of tissue-specific genes on the X c...

  1. Visualizing and Analyzing Branching Microtubule Nucleation Using Meiotic Xenopus Egg Extracts and TIRF Microscopy

    Science.gov (United States)

    King, Matthew; Petry, Sabine

    2016-01-01

    Mitotic and meiotic spindles consist primarily of microtubules, which originate from centrosomes and within the vicinity of chromatin. Indirect evidence suggested that microtubules also originate throughout the spindle, but the high microtubule density within the spindle precludes the direct observation of this phenomenon. By using meiotic Xenopus laevis egg extract and employing total internal reflection (TIRF) microscopy, microtubule nucleation from preexisting microtubules could be demonstrated and analyzed. Branching microtubule nucleation is an ideal mechanism to assemble and maintain a mitotic spindle, because microtubule numbers are amplified while preserving their polarity. Here, we describe the assays that made these findings possible and the experiments that helped identify the key molecular players involved. PMID:27193844

  2. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  3. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation

    OpenAIRE

    Xu, Zhiliang; Song,Zhenhua; Li, Guoping; Tu, Huayu; Liu, Weixiao; Liu, Yujiao; Wang, Pan; Wang, Yuanting; Cui, Xiuhong; Liu, Chao; Shang, Yongliang; de Rooij, Dirk G.; Gao, Fei; Li, Wei

    2016-01-01

    Meiotic recombination is essential for fertility in most sexually reproducing species, but the molecular mechanisms underlying this process remain poorly understood in mammals. Here, we show that RNF20-mediated H2B ubiquitination is required for meiotic recombination. A germ cell-specific knockout of the H2B ubiquitination E3 ligase RNF20 results in complete male infertility. The Stra8-Rnf20−/− spermatocytes arrest at the pachytene stage because of impaired programmed double-strand break (DSB...

  4. Cytological analysis for meiotic patterns in wild rice (Oryza rufipogon Griff.

    Directory of Open Access Journals (Sweden)

    Sutanu Sarkar

    2017-03-01

    Full Text Available The present report explores the chromosomal patterns during meiosis as a fundamental cell division study in wild rice (Oryza rufipogon Griff.. Cytological assays revealed normal meiosis in most cases but in some instances meiotic abnormalities such as weak desynapsis, univalent and quadrivalent formation, translocation, spindle abnormalities and precocious movement of chromosomes were noticed. Interestingly, this wild species also has the bi-nucleoli in first meiotic stages alike the cultivated species of Oryza (O. sativa. The present investigation emphatically addresses the questions of high adaptability of wild rice supported by high pollen fertility for their potential to strong fitness in nature.

  5. Reversible phosphorylation and regulation of mammalian oocyte meiotic chromatin remodeling and segregation.

    Science.gov (United States)

    Swain, J E; Smith, G D

    2007-01-01

    The mammalian oocyte is notorious for high rates of chromosomal abnormalities. This results in subsequent embryonic aneuploidy, resulting in infertility and congenital defects. Therefore, understanding regulatory mechanisms involved in chromatin remodeling and chromosome segregation during oocyte meiotic maturation is imperative to fully understand the complex process and establish potential therapies. This review will focus on major events occurring during oocyte meiosis, critical to ensure proper cellular ploidy. Mechanistic and cellular events such as chromosome condensation, meiotic spindle formation, as well as cohesion of homologues and sister chromatids will be discussed, focusing on the role of reversible phosphorylation in control of these processes.

  6. Pressure and Temperature Sensors Using Two Spin Crossover Materials

    Directory of Open Access Journals (Sweden)

    Catalin-Maricel Jureschi

    2016-02-01

    Full Text Available The possibility of a new design concept for dual spin crossover based sensors for concomitant detection of both temperature and pressure is presented. It is conjectured from numerical results obtained by mean field approximation applied to a Ising-like model that using two different spin crossover compounds containing switching molecules with weak elastic interactions it is possible to simultaneously measure P and T. When the interaction parameters are optimized, the spin transition is gradual and for each spin crossover compounds, both temperature and pressure values being identified from their optical densities. This concept offers great perspectives for smart sensing devices.

  7. Analysis of multi-step transitions in spin crossover nanochains

    Energy Technology Data Exchange (ETDEWEB)

    Chiruta, Daniel [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); LISV, Université de Versailles Saint-Quentin-en-Yvelines, 78140 Velizy (France); Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania); Linares, Jorge, E-mail: jorge.linares@uvsq.fr [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); Garcia, Yann, E-mail: yann.garcia@uclouvain.be [Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Molecules, Solids and Reactivity (IMCN/MOST), Place Louis Pasteur, 1, 1348 Louvain-la-Neuve (Belgium); Dimian, Mihai [Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania); Dahoo, Pierre Richard [LATMOS, Université de Versailles-Saint-Quentin-en-Yvelines, CNRS-UPMC-UVSQ (UMR 8190), 78280 Guyancourt (France)

    2014-02-01

    The temperature driven phase transition occurring in spin crossover nanochains has been studied by an Ising-like model considering both short-range and long-range interactions. Various types of spin crossover profiles have been described in this framework, including a novel three-step transition identified in a nanosystem with eight molecules, which is modeled for the first time. A special interest has been also given to stepwise transitions accompanied by two hysteresis loops. The edge and size effects on spin crossover behavior have been investigated in order to get a deeper insight of the underlying mechanisms involved in these unusual spin transitions.

  8. Standard Model thermodynamics across the electroweak crossover

    Energy Technology Data Exchange (ETDEWEB)

    Laine, M.; Meyer, M. [Institute for Theoretical Physics, Albert Einstein Center, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2015-07-22

    Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.

  9. Dimensional crossover in Richtmyer-Meshkov flows

    Science.gov (United States)

    Nishihara, Katsunobu; Bhowmick, Aklant K.; Abarzhi, Snezhana

    2016-11-01

    We analyze nonlinear dynamics of large scale coherent structures in Richtmyer-Meshkov flows. Group theory based analysis is applied with a detailed consideration of RM dynamics invariant with respect to p2mm (3D rectangular), p4mm (3D square) and pm1 (2D) groups. Symmetry dictates that asymptotic solutions form a 2 parameter family for rectangular flows and a 1 parameter family for 3D square and 2D flows. For 3D square and 2D symmetry, asymptotic solutions are obtained for the 1st and 2nd order of approximation and the fastest growth rate occurs at zero bubble curvatures. Fourier amplitudes exponentially decay with increase in order showing that solutions are convergent. Both 2D and 3D square solutions are stable with respect to symmetry conserving perturbations. Isotropic 3D square solutions are universally stable, while 2D solutions are unstable to anisotropic perturbations. Furthermore, the 3D and 2D solutions cannot be continuously transformed from one to another, and the dimensional crossover is discontinuous. The work is supported by the US National Science Foundation.

  10. Microelectromechanical systems integrating molecular spin crossover actuators

    Science.gov (United States)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  11. Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers.

    Science.gov (United States)

    Cifuentes, Marta; Rivard, Maud; Pereira, Lucie; Chelysheva, Liudmila; Mercier, Raphael

    2013-01-01

    Two hallmark features of meiosis are i) the formation of crossovers (COs) between homologs and ii) the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype) in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.

  12. Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers.

    Directory of Open Access Journals (Sweden)

    Marta Cifuentes

    Full Text Available Two hallmark features of meiosis are i the formation of crossovers (COs between homologs and ii the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.

  13. Electronic bidirectional valve circuit prevents crossover distortion and threshold effect

    Science.gov (United States)

    Kernick, A.

    1966-01-01

    Four-terminal network forms a bidirectional valve which will switch or alternate an ac signal without crossover distortion or threshold effect. In this network, an isolated control signal is sufficient for circuit turn-on.

  14. New Variations of Order Crossover for Travelling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Kusum Deep

    2011-01-01

    Full Text Available Davis presented the order crossover operator for solving the travelling salesman problem (TSP using genetic algorithm and has described two basic variants of this order crossover operator. In order to improve the efficiency and validity of these variants, in this paper three new variations of the order crossover operator are presented. These are programmed in C++ and implemented on a set of benchmark test problems taken from TSPLIB.The analysis of results based on the numerical and graphical analysis indicated that the new variations of the order crossover proposed in this paper have a definite supremacy over the existing variants for TSP with number of cities less than or equal to 100 as well as greater than 100 for some instances.

  15. Variant of partially mapped crossover for the Travelling Salesman problems

    Directory of Open Access Journals (Sweden)

    Kusum Deep

    2012-01-01

    Full Text Available In this paper a variant of partially mapped crossover (VPMX is designed using cut point positions and is tested for its performance with the existing partially mapped crossover (PMX.In order to test the performance ,two mutation operators are used. These mutation operators are inverted displacement and inversion mutations. Partially mapped crossover (PMX with inversion and with inverted displacement and a variant of partially mapped crossover (VPMX with inversion and with inverted displacement are programmed in C++ and implemented on a set of ten benchmark problems taken from the Travelling salesman problem library (TSPLIB. The results indicate that the designed variant of PMX is superior by showing a better performance in eight instances in combination with the inverted displacement mutation. In two instances PMX has obtained a better result. One is PMX with inversion mutation and the other is PMX with inverted displacement mutation.

  16. Hysteretic behavior of spin-crossover noise driven system

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, Artur, E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC, 20059 (United States); Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University, Suceava 720229 (Romania)

    2016-04-01

    The influence of white Gaussian noise on hysteretic behavior of spin-crossover system is analyzed in the framework of stochastic Langevin dynamics. Various stochastic simulations are performed and several important properties of spin-transition in spin-crossover system driven by noise are reproduced. The numerical results are tested against the stationary probability function and the associated dynamic potential obtained from Fokker–Planck equation corresponding to spin-crossover Langevin dynamics. The dependence of light-induced optical hysteresis width and non-hysteretic transition curve slope on the noise intensity is illustrated. The role of low-spin and high-spin phase stabilities in the hysteretic behavior of noise-driven spin-crossover system is discussed.

  17. Research Update: The mechanocaloric potential of spin crossover compounds

    Directory of Open Access Journals (Sweden)

    Karl G. Sandeman

    2016-11-01

    Full Text Available We present a first evaluation of the potential for spin crossover (SCO compounds to be considered as a new class of giant mechanocaloric effect materials. From literature data on the variation of the spin crossover temperature with pressure, we estimate the maximum available adiabatic temperature change for several compounds and the relatively low pressures that may be required to observe these effects.

  18. PUF-8 Functions Redundantly with GLD-1 to Promote the Meiotic Progression of Spermatocytes in Caenorhabditis elegans.

    Science.gov (United States)

    Priti, Agarwal; Subramaniam, Kuppuswamy

    2015-06-10

    Successful meiotic progression of germ cells is crucial for gametogenesis. Defects in this process affect proper genetic transmission and sometimes lead to tumor formation in the germline. In Caenorhabditis elegans, the RNA-binding protein GLD-1 is essential for the meiotic development of oocytes. However, its role during spermatogenesis has not been understood. Here, we show that GLD-1 functions redundantly with the PUF family protein PUF-8 to ensure proper meiotic development of spermatocytes. When grown at 20°-the standard laboratory temperature for C. elegans growth-primary spermatocytes in both gld-1 and puf-8 single-mutant males and hermaphrodites complete the meiotic divisions normally. By contrast, some of the gld-1; puf-8 double-mutant spermatocytes exit meiosis and form germ cell tumors in both sexes. During larval development, gld-1; puf-8 double-mutant germ cells begin to express the meiotic marker HIM-3, lose P granules, and form the sperm-specific membranous organelle, which are characteristics of developing spermatocytes. However, some of these cells quickly lose HIM-3 and form germ cell tumors that lack membranous organelle but contain P granules. Mutations that block meiotic progression at late pachytene or diakinetic stage fail to arrest the tumorigenesis, suggesting that the gld-1; puf-8 double-mutant spermatocytes exit meiosis prior to the completion of pachytene. Together, results presented here uncover a novel function for gld-1 in the meiotic development of spermatocytes in both hermaphrodites and males.

  19. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing.

    Science.gov (United States)

    Royo, Hélène; Prosser, Haydn; Ruzankina, Yaroslava; Mahadevaiah, Shantha K; Cloutier, Jeffrey M; Baumann, Marek; Fukuda, Tomoyuki; Höög, Christer; Tóth, Attila; de Rooij, Dirk G; Bradley, Allan; Brown, Eric J; Turner, James M A

    2013-07-01

    In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism. The checkpoint protein ATM and Rad3-related (ATR) localizes to unsynapsed chromosomes, but its role in the initiation and maintenance of meiotic silencing is unknown. Here we show that ATR has multiple roles in silencing. ATR first regulates HORMA (Hop1, Rev7, and Mad2) domain protein HORMAD1/2 phosphorylation and localization of breast cancer I (BRCA1) and ATR cofactors ATR-interacting peptide (ATRIP)/topoisomerase 2-binding protein 1 (TOPBP1) at unsynapsed axes. Later, it acts as an adaptor, transducing signaling at unsynapsed axes into surrounding chromatin in a manner that requires interdependence with mediator of DNA damage checkpoint 1 (MDC1) and H2AFX. Finally, ATR catalyzes histone H2AFX phosphorylation, the epigenetic event leading to gene inactivation. Using a novel genetic strategy in which MSCI is used to silence a chosen gene in pachytene, we show that ATR depletion does not disrupt the maintenance of silencing and that silencing comprises two phases: The first is dynamic and reversible, and the second is stable and irreversible. Our work identifies a role for ATR in the epigenetic regulation of gene expression and presents a new technique for ablating gene function in the germline.

  20. Sumoylation precedes accumulation of phosphorylated H2AX on sex chromosomes during their meiotic inactivation.

    Science.gov (United States)

    Vigodner, Margarita

    2009-01-01

    During meiosis in male mammals, X and Y chromosomes undergo the process of meiotic sex chromosome inactivation (MSCI). A crucial role in MSCI has recently been reported for BRCA1, ATR kinase, and phosphorylated histone H2AX, but the exact mechanism remains to be determined. Small ubiquitin-like modifier (SUMO) proteins have recently been shown to localize to the sex body in mouse meiotic spermatocytes, but the role they play during MSCI is unknown. In this study, in order to better understand the molecular events of MSCI, we followed dynamic changes in gammaH2AX and SUMO localization patterns during MSCI. Using confocal laser scanning microscopy (CLSM) as an analytical tool for visualizing numerous spermatocytes from the same development stage and for consecutively following the meiotic progression, we were able to demonstrate a very early appearance of SUMO-1, which preceded gammaH2AX accumulation on the sex chromosomes during their meiotic inactivation. In contrast to SUMO-1, SUMO-2/3 was undetectable in zygotene spermatocytes, suggesting a possible specific role for SUMO-1 in the initiation of MSCI.

  1. Many X-linked microRNAs escape meiotic sex chromosome inactivation.

    Science.gov (United States)

    Song, Rui; Ro, Seungil; Michaels, Jason D; Park, Chanjae; McCarrey, John R; Yan, Wei

    2009-04-01

    Meiotic sex chromosome inactivation (MSCI) during spermatogenesis is characterized by transcriptional silencing of genes on both the X and Y chromosomes in mid-to-late pachytene spermatocytes. MSCI is believed to result from meiotic silencing of unpaired DNA because the X and Y chromosomes remain largely unpaired throughout first meiotic prophase. However, unlike X-chromosome inactivation in female embryonic cells, where 25-30% of X-linked structural genes have been reported to escape inactivation, previous microarray- and RT-PCR-based studies of expression of >364 X-linked mRNA-encoding genes during spermatogenesis have failed to reveal any X-linked gene that escapes the silencing effects of MSCI in primary spermatocytes. Here we show that many X-linked miRNAs are transcribed and processed in pachytene spermatocytes. This unprecedented escape from MSCI by these X-linked miRNAs suggests that they may participate in a critical function at this stage of spermatogenesis, including the possibility that they contribute to the process of MSCI itself, or that they may be essential for post-transcriptional regulation of autosomal mRNAs during the late meiotic and early postmeiotic stages of spermatogenesis.

  2. No severe and global X chromosome inactivation in meiotic male germline of Drosophila

    Directory of Open Access Journals (Sweden)

    Mikhaylova Lyudmila M

    2012-06-01

    Full Text Available Abstract This article is a response to Vibranovski et al. See correspondence article http://www.biomedcentral.com/1741-7007/10/49 and the original research article http://www.biomedcentral.com/1741-7007/9/29 We have previously reported a high propensity of testis-expressed X-linked genes to activation in meiotic cells, a similarity in global gene expression between the X chromosome and autosomes in meiotic germline, and under-representation of various types of tissue-specific genes on the X chromosome. Based on our findings and a critical review of the current literature, we believe that there is no global and severe silencing of the X chromosome in the meiotic male germline of Drosophila. The term 'meiotic sex chromosome inactivation' (MSCI therefore seems misleading when used to describe the minor underexpression of the X chromosome in the testis of Drosophila, because this term erroneously implies a profound and widespread silencing of the X-linked genes, by analogy to the well-studied MSCI system in mammals, and therefore distracts from identification and analysis of the real mechanisms that orchestrate gene expression and evolution in this species.

  3. Polyploidization increases meiotic recombination frequency in Arabidopsis: a close look at statistical modeling and data analysis.

    Science.gov (United States)

    Wang, Lin; Luo, Zewei

    2012-04-18

    This paper is a response to Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid, O: Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 2011, 9:24.See research article at http://www.biomedcentral.com/1741-7007/9/24.

  4. Polyploidization increases meiotic recombination frequency in Arabidopsis: a close look at statistical modeling and data analysis

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2012-04-01

    Full Text Available Abstract This paper is a response to Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid, O: Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 2011, 9:24. See research article at http://www.biomedcentral.com/1741-7007/9/24

  5. Meiotic double-strand breaks uncover and protect against mitotic errors in the C. elegans germline.

    Science.gov (United States)

    Stevens, Deanna; Oegema, Karen; Desai, Arshad

    2013-12-01

    In sexually reproducing multicellular organisms, genetic information is propagated via the germline, the specialized tissue that generates haploid gametes. The C. elegans germline generates gametes in an assembly line-like process-mitotic divisions under the control of the stem cell niche produce nuclei that, upon leaving the niche, enter into meiosis and progress through meiotic prophase [1]. Here, we characterize the effects of perturbing cell division in the mitotic region of the C. elegans germline. We show that mitotic errors result in a spindle checkpoint-dependent cell-cycle delay, but defective nuclei are eventually formed and enter meiosis. These defective nuclei are eliminated by programmed cell death during meiotic prophase. The cell death-based removal of defective nuclei does not require the spindle checkpoint but instead depends on the DNA damage checkpoint. Removal of nuclei resulting from errors in mitosis also requires Spo11, the enzyme that creates double-strand breaks to initiate meiotic recombination. Consistent with this, double-strand breaks are increased in number and persist longer in germlines with mitotic defects. These findings reveal that the process of initiating meiotic recombination inherently selects against nuclei with abnormal chromosomal content generated by mitotic errors, thereby ensuring the genomic integrity of gametes.

  6. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    NARCIS (Netherlands)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. It is generally accepted that, when no chromosomal rearrangements are involved, man

  7. Segregation distortion in chicken and the evolutionary consequences of female meiotic drive in birds

    DEFF Research Database (Denmark)

    Axelsson, Erik Gunnar; Albrechtsen, Anders; Van, A. P.

    2010-01-01

    As all four meiotic products give rise to sperm in males, female meiosis result in a single egg in most eukaryotes. Any genetic element with the potential to influence chromosome segregation, so that it is preferentially included in the egg, should therefore gain a transmission advantage; a process...

  8. Microgravity promotes differentiation and meiotic entry of postnatal mouse male germ cells.

    Directory of Open Access Journals (Sweden)

    Manuela Pellegrini

    Full Text Available A critical step of spermatogenesis is the entry of mitotic spermatogonia into meiosis. Progresses on these topics are hampered by the lack of an in vitro culture system allowing mouse spermatogonia differentiation and entry into meiosis. Previous studies have shown that mouse pachytene spermatocytes cultured in simulated microgravity (SM undergo a spontaneous meiotic progression. Here we report that mouse mitotic spermatogonia cultured under SM with a rotary cell culture system (RCCS enter into meiosis in the absence of any added exogenous factor or contact with somatic cells. We found that isolated Kit-positive spermatogonia under the RCCS condition enter into the prophase of the first meiotic division (leptotene stage, as monitored by chromosomal organization of the synaptonemal complex 3 protein (Scp3 and up-regulation of several pro-meiotic genes. SM was found to activate the phosphatidyl inositol 3 kinase (PI3K pathway and to induce in Kit-positive spermatogonia the last round of DNA replication, typical of the preleptotene stage. A PI3K inhibitor abolished Scp3 induction and meiotic entry stimulated by RCCS conditions. A positive effect of SM on germ cell differentiation was also observed in undifferentiated (Kit-negative spermatogonia, in which RCCS conditions stimulate the expression of Kit and Stra8. In conclusion, SM is an artificial environmental condition which promotes postnatal male germ cell differentiation and might provide a tool to study the molecular mechanisms underlying the switch from mitosis to meiosis in mammals.

  9. SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing

    NARCIS (Netherlands)

    F. Carofiglio (Fabrizia); A. Inagaki (Akiko); S.I. de Vries (Sanne); E. Wassenaar (Evelyne); S. Schoenmakers (Sam); C.E. Vermeulen (Cindy); W.A. van Cappellen (Gert); E. Sleddens-Linkels (Esther); J.A. Grootegoed (Anton); H.P.J. te Riele (Hein); B. de Massy (Bernard); W.M. Baarends (Willy)

    2013-01-01

    textabstractIn mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chrom

  10. The contribution of female meiotic drive to the evolution of neo-sex chromosomes.

    Science.gov (United States)

    Yoshida, Kohta; Kitano, Jun

    2012-10-01

    Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo-sex chromosomes. The results of this study showed that in mammals, the XY(1) Y(2) sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X(1) X(2) Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X-autosome fusions (XY(1) Y(2) sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y-autosome fusions (X(1) X(2) Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo-sex chromosomes.

  11. Roles of protein kinase C in oocyte meiotic maturation and fertilization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Protein kinase C (PKC) is a superfamily of Ser/Thr protein kinases that is distributed widely in eukaryotes. It plays key regulatory roles at multiple steps of oocyte meiotic maturation and fertilization. During the process of meiotic maturation, the activation of PKC in cumulus cells stimulates meiotic maturation, whereas the activation of PKC in oocytes results in the inhibition of germinal vesicle breakdown. PKC activity increases following the meiotic maturation, and decreases at the transition of metaphase/anaphase in meiosis I, so as to facilitate the release of the first polar body and the entry of meiosis II. In fertilization of mammalian oocytes, PKC may act as one of the downstream targets of Ca2+ to stimulate the cortical granule exocytosis, release the oocytes from MII arrest and to induce pronucleus formation. PKC is also involved in the regulation of maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Several PKC isoforms have been identified in mammalian oocytes, and there is evidence showing that classical PKCs may be the principal mediator of oocyte cortical reaction.

  12. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice.

    Science.gov (United States)

    Kim, Jeesun; Singh, Anup Kumar; Takata, Yoko; Lin, Kevin; Shen, Jianjun; Lu, Yue; Kerenyi, Marc A; Orkin, Stuart H; Chen, Taiping

    2015-12-02

    Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression.

  13. Meiotic recombination errors, the origin of sperm aneuploidy and clinical recommendations.

    Science.gov (United States)

    Tempest, Helen G

    2011-02-01

    Since the early 1990s male infertility has successfully been treated by intracytoplasmic sperm injection (ICSI), nevertheless concerns have been raised regarding the genetic risk of ICSI. Chromosome aneuploidy (the presence of extra or missing chromosomes) is the leading cause of pregnancy loss and mental retardation in humans. While the majority of chromosome aneuploidies are maternal in origin, the paternal contribution to aneuploidy is clinically relevant particularly for the sex chromosomes. Given that it is difficult to study female gametes investigations are predominantly conducted in male meiotic recombination and sperm aneuploidy. Research suggests that infertile men have increased levels of sperm aneuploidy and that this is likely due to increased errors in meiotic recombination and chromosome synapsis within these individuals. It is perhaps counterintuitive but there appears to be no selection against chromosomally aneuploid sperm at fertilization. In fact the frequency of aneuploidy in sperm appears to be mirrored in conceptions. Given this information this review will cover our current understanding of errors in meiotic recombination and chromosome synapsis and how these may contribute to increased sperm aneuploidy. Frequencies of sperm aneuploidy in infertile men and individuals with constitutional karyotypic abnormalities are reviewed, and based on these findings, indications for clinical testing of sperm aneuploidy are discussed. In addition, the application of single nucleotide arrays for the analysis of meiotic recombination and identification of parental origin of aneuploidy are considered.

  14. The dynamical crossover in attractive colloidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Mallamace, Domenico [Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  15. PLIN1 deficiency affects testicular gene expression at the meiotic stage in the first wave of spermatogenesis.

    Science.gov (United States)

    Chen, Min; Wang, Hong; Li, Xiangdong; Li, Ning; Xu, Guoheng; Meng, Qingyong

    2014-06-15

    PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes.

  16. SPO11-independent DNA repair foci and their role in meiotic silencing.

    Directory of Open Access Journals (Sweden)

    Fabrizia Carofiglio

    2013-06-01

    Full Text Available In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI. A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC, is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11(YF/YF, and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11(YF/YF and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.

  17. SPO11-independent DNA repair foci and their role in meiotic silencing.

    Science.gov (United States)

    Carofiglio, Fabrizia; Inagaki, Akiko; de Vries, Sandra; Wassenaar, Evelyne; Schoenmakers, Sam; Vermeulen, Christie; van Cappellen, Wiggert A; Sleddens-Linkels, Esther; Grootegoed, J Anton; Te Riele, Hein P J; de Massy, Bernard; Baarends, Willy M

    2013-06-01

    In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11(YF/YF)), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11(YF/YF) and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.

  18. Meiotic recombination counteracts male-biased mutation (male-driven evolution).

    Science.gov (United States)

    Mawaribuchi, Shuuji; Ito, Michihiko; Ogata, Mitsuaki; Oota, Hiroki; Katsumura, Takafumi; Takamatsu, Nobuhiko; Miura, Ikuo

    2016-01-27

    Meiotic recombination is believed to produce greater genetic variation despite the fact that deoxyribonucleic acid (DNA)-replication errors are a major source of mutations. In some vertebrates, mutation rates are higher in males than in females, which developed the theory of male-driven evolution (male-biased mutation). However, there is little molecular evidence regarding the relationships between meiotic recombination and male-biased mutation. Here we tested the theory using the frog Rana rugosa, which has both XX/XY- and ZZ/ZW-type sex-determining systems within the species. The male-to-female mutation-rate ratio (α) was calculated from homologous sequences on the X/Y or Z/W sex chromosomes, which supported male-driven evolution. Surprisingly, each α value was notably higher in the XX/XY-type group than in the ZZ/ZW-type group, although α should have similar values within a species. Interestingly, meiotic recombination between homologous chromosomes did not occur except at terminal regions in males of this species. Then, by subdividing α into two new factors, a replication-based male-to-female mutation-rate ratio (β) and a meiotic recombination-based XX-to-XY/ZZ-to-ZW mutation-rate ratio (γ), we constructed a formula describing the relationship among a nucleotide-substitution rate and the two factors, β and γ. Intriguingly, the β- and γ-values were larger and smaller than 1, respectively, indicating that meiotic recombination might reduce male-biased mutations.

  19. The synaptonemal complex and meiotic recombination in humans: new approaches to old questions.

    Science.gov (United States)

    Vallente, Rhea U; Cheng, Edith Y; Hassold, Terry J

    2006-06-01

    Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633-638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363-365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405-408; Pathak and Elder (1980) Hum Genet 54:171-175; Solari (1980) Chromosoma 81:315-337; Speed (1984) Hum Genet 66:176-180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215-226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833-848; Vidal et al. (1982) Hum Genet 60:301-304; Bojko (1983) Carlsberg Res Commun 48:285-305; Bojko (1985) Carlsberg Res Commun 50:43-72; Templado et al. (1984) Hum Genet 67:162-165; Navarro et al. (1986) Hum Reprod 1:523-527; Garcia et al. (1989) Hum Genet 2:147-53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.

  20. [Case-crossover design: Basic essentials and applications].

    Science.gov (United States)

    Carracedo-Martínez, Eduardo; Tobías, Aurelio; Saez, Marc; Taracido, Margarita; Figueiras, Adolfo

    2009-01-01

    Case-crossover analysis is an observational epidemiological design that was proposed by Maclure in 1991 to assess whether a given intermittent or unusual exposure may have triggered an immediate short-term, acute event. The present article outlines the basics of case-crossover designs, as well as their applications and limitations. The case-crossover design is based on exclusively selecting case subjects. To calculate relative risk, exposure during the period of time prior to the event (case period) is compared against the same subject's exposure during one or more control periods. This method is only appropriate when the exposures are transient in time and have acute short-term effects. For exposures in which there is no trend, a unidirectional approach is the most frequent and consists of selecting one or more control periods prior to the case period. When the exposure displays a time trend (e.g., air pollution), a unidirectional approach will yield biased estimates, and therefore bidirectional case-crossover designs are used, which select control time intervals preceding and subsequent to that of the event. The case-crossover design is being increasingly used across a wide range of fields, including factors triggering traffic, occupational and domestic accidents and acute myocardial infarction, and those involved in air pollution and health and pharmacoepidemiology, among others. Insofar as data-analysis is concerned, case-crossover designs can generally be regarded as matched case-control studies and consequently conditional logistic regression can be applied. Lastly, this study analyzes practical examples of distinct applications of the case-crossover design.

  1. Detection of crossover time scales in multifractal detrended fluctuation analysis

    Science.gov (United States)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  2. Crossover Analysis of CHANG'E-1 Laser Altimeter Data

    Science.gov (United States)

    Hu, W.; Yue, Z.; Di, K.

    2011-08-01

    This paper presents a preliminary result of crossover analysis and adjustment of Chang'E-1(CE-1) Laser Altimeter (LAM) data of the Moon for global and regional mapping applications. During the operation of Chang'E-1 from November 28, 2007 to December 4, 2008, the laser altimeter acquired 1400 orbital profiles with about 9.12 million altimetric points. In our experiment, we derived more than 1.38 million crossovers from 1395 ground tracks covering the entire lunar surface after eliminating outliers of orbits and altimetric points. A method of least-squares crossover adjustment with a series of basis functions of time (trigonometric functions and polynomials) is developed to reconcile the LAM data by minimizing the crossover residuals globally. The normal equations are very large but sparse; therefore they are stored and solved using sparse matrix technique. In a test area (0°N~60°N, 50°W~0°W), the crossover residuals are reduced from 62.1m to 32.8m, and the quality of the DEM generated from the adjusted LAM data is improved accordingly. We will optimize the method for the global adjustment to generate a high precision consistent global DEM, which can be used as absolute control for lunar mapping with orbital images.

  3. Y-autosome translocation interferes with meiotic sex inactivation and expression of autosomal genes: a case study in the pig.

    Science.gov (United States)

    Barasc, H; Mary, N; Letron, R; Calgaro, A; Dudez, A M; Bonnet, N; Lahbib-Mansais, Y; Yerle, M; Ducos, A; Pinton, A

    2012-01-01

    Y-autosome translocations are rare in humans and pigs. In both species, these rearrangements can be responsible for meiotic arrest and subsequent infertility. Chromosome pairing abnormalities on the SSCX, SSCY and SSC1 chromatin domains were identified by analyzing pachytene spermatocytes from a boar carrying a (Y;1) translocation by immunolocalization of specific meiotic protein combined with FISH. Disturbance of the meiotic sex chromosome inactivation (MSCI) was observed by Cot-RNA-FISH and analysis of ZFY gene expression by sequential RNA- and DNA-FISH on spermatocytes. We hypothesized that the meiotic arrest observed in this boar might be due to the silencing of critical autosomal genes and/or the reactivation of some sex chromosome genes.

  4. Proof that univalent chromosomes undergoing equational division at anaphase I are not lost during the second meiotic division

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D. F.

    1980-01-01

    Monosomics in a diploid organism are ideal for characterizing the behavior of univalent chromosomes because each meiotic cell contains a univalent chromosome. We have isolated microsporocyte samples from all monosomic types except monosomics 3 and 5 and have carried out extensive analyses of the meiotic behavior in each of the different available monosomic types. It is demonstrated that univalent chromosomes can undergo equational division at the first anaphase and the resultant monads are not lost during the remainder of meiosis.

  5. Influence analysis on crossover design experiment in bioequivalence studies.

    Science.gov (United States)

    Huang, Yufen; Ke, Bo-Shiang

    2014-01-01

    Crossover designs are commonly used in bioequivalence studies. However, the results can be affected by some outlying observations, which may lead to the wrong decision on bioequivalence. Therefore, it is essential to investigate the influence of aberrant observations. Chow and Tse in 1990 discussed this issue by considering the methods based on the likelihood distance and estimates distance. Perturbation theory provides a useful tool for the sensitivity analysis on statistical models. Hence, in this paper, we develop the influence functions via the perturbation scheme proposed by Hampel as an alternative approach on the influence analysis for a crossover design experiment. Moreover, the comparisons between the proposed approach and the method proposed by Chow and Tse are investigated. Two real data examples are provided to illustrate the results of these approaches. Our proposed influence functions show excellent performance on the identification of outlier/influential observations and are suitable for use with small sample size crossover designs commonly used in bioequivalence studies.

  6. Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

    CERN Document Server

    Denis, Kevin L; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward

    2016-01-01

    The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication

  7. An Improved Genetic Algorithm with Quasi-Gradient Crossover

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ling Zhang; Li Du; Guang-Wei Zhang; Qiang Miao; Zhong-Lai Wang

    2008-01-01

    The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.

  8. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  9. Pressure effect on hysteresis in spin-crossover solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii, E-mail: yugudyma@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Ivashko, Victor [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC 20059 (United States); Faculty of Electrical Engineering and Computer Science & Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control, Stefan cel Mare University, Suceava 720229 (Romania)

    2016-04-01

    A generalized microscopic Ising-like model is proposed to describe behavior of compressible spin-crossover solids with two states: low-spin and high-spin. The model was solved in mean-field approximation and shows hysteretic behavior at low energy difference between the states. We study the thermal transition between states under external hydrostatic pressure taking into account the changes in the volume of spin-crossover molecules in different states. Depending on the applied pressure, a spin-crossover system can have three types of behavior of molecular fraction in the high-spin state: hysteretic, second-order phase transition and no-phase transition. For the hysteretic regime, it is shown that the transition temperature under pressure is increased while the width of the hysteresis reduced.

  10. Dimensional crossover of the dephasing time in disordered mesoscopic rings

    Science.gov (United States)

    Treiber, M.; Yevtushenko, O. M.; Marquardt, F.; von Delft, J.; Lerner, I. V.

    2009-11-01

    We study dephasing by electron interactions in a small disordered quasi-one-dimensional (1D) ring weakly coupled to leads. We use an influence functional for quantum Nyquist noise to describe the crossover for the dephasing time τφ(T) from diffusive or ergodic 1D (τφ-1∝T2/3,T1) to zero-dimensional (0D) behavior (τφ-1∝T2) as T drops below the Thouless energy. The crossover to 0D, predicted earlier for two-dimensional and three-dimensional systems, has so far eluded experimental observation. The ring geometry holds promise of meeting this long-standing challenge, since the crossover manifests itself not only in the smooth part of the magnetoconductivity but also in the amplitude of Altshuler-Aronov-Spivak oscillations. This allows signatures of dephasing in the ring to be cleanly extracted by filtering out those of the leads.

  11. Analysis of self-fertilization and meiotic behavior of eleven Brazilian triticale cultivars at two sowing dates

    Directory of Open Access Journals (Sweden)

    Divanilde Guerra

    2011-01-01

    Full Text Available Eleven Brazilian hexaploid triticale cultivars (2n = 6x = 42, from three breeding programs, were evaluated for theirability of self-fertilization in 2006 and for meiotic behavior, meiotic index and pollen viability at two sowing dates in 2007. Highpotential of self-fertilization was observed, with values up to 89.52 %. Many irregularities were found in the meiotic analysis, suchas the presence of univalents, laggard chromosomes and micronuclei in tetrads, which compromised both meiotic behavior andmeiotic index. At the first sowing date, more suitable for normal plant development, overall mean values of 52.68 % for normal cellsand 64.95 % for meiotic index were observed. At the second sowing date, less appropriate for the crop, overall means of 52.23 %for normal cells and 58.24 % for meiotic index were obtained. Despite all the irregularities, considerable pollen viability wasobserved, reaching overall means of 92.08 % and 91.07 % for the first and second sowing dates, respectively.

  12. Co-Localization of Somatic and Meiotic Double Strand Breaks Near the Myc Oncogene on Mouse Chromosome 15

    Science.gov (United States)

    Ng, Siemon H.; Maas, Sarah A.; Petkov, Petko M.; Mills, Kevin D.; Paigen, Kenneth

    2010-01-01

    Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage. PMID:19603522

  13. A new crossover sine model based on trigonometric model and its application to the crossover lattice equation of state

    Science.gov (United States)

    Lee, Yongjin; Shin, Moon Sam; Kim, Hwayong

    2008-12-01

    In this study, a new crossover sine model (CSM) n was developed from a trigonometric model [M. E. Fisher, S. Zinn, and P. J. Upton, Phys. Rev. B 59, 14533 (1999)]. The trigonometric model is a parametric formulation model that is used to represent the thermodynamic variables near a critical point. Although there are other crossover models based on this trigonometric model, such as the CSM and the analytical sine model, which is an analytic formulation of the CSM, the new sine model (NSM) employs a different approach from these two models in terms of the connections between the parametric variables of the trigonometric model and thermodynamic variables. In order to test the performance of the NSM, the crossover lattice equation of state [M. S. Shin, Y. Lee, and H. Kim, J. Chem. Thermodyn. 40, 174 (2008)] was applied using the NSM for correlations of various pure fluids and fluid mixtures. The results showed that over a wide range of states, the crossover lattice fluid (xLF)/NSM yields the saturated properties of pure fluids and the phase behavior of binary mixtures more accurately than the original lattice equation of state. Moreover, a comparison with the crossover lattice equation of state using the CSM (xLF/CSM) showed that the new model presents good correlation results that are comparable to the xLF/CSM.

  14. Application of Generalised sequential crossover of languages to generalised splicing

    CERN Document Server

    Jeganathan, L; Sengupta, Ritabrata

    2009-01-01

    This paper outlines an application of iterated version of generalised sequential crossover of two languages (which in some sense, an abstraction of the crossover of chromosomes in living organisms) in studying some classes of the newly proposed generalised splicing ($GS$) over two languages. It is proved that, for $X,Y \\in \\{FIN, REG, LIN, CF, CS, RE \\}, \\sg \\in FIN$, the subclass of generalized splicing languages namely $GS(X,Y,\\sg)$, (which is a subclass of the class $GS(X,Y,FIN)$) is always regular.

  15. Superradiance at the localization-delocalization crossover in tubular chlorosomes

    CERN Document Server

    Molina, Rafael A; Somoza, Alejandro; Chen, Lipeng; Zhao, Yang

    2016-01-01

    We study the effect of disorder on spectral properties of tubular chlorosomes in green sulfur bacteria Cf. aurantiacus. Employing a Frenkel-exciton Hamiltonian with diagonal and off-diagonal disorder consistent with spectral and structural studies, we analyze excitonic localization and spectral statistics of the chlorosomes. A size-dependent localization-delocalization crossover is found to occur as a function of the excitonic energy. The crossover energy region coincides with the more optically active states with maximized superradiance, and is, consequently, more conducive for energy transfer.

  16. Impairment of pachytene spermatogenesis in Dmrt7 deficient mice, possibly causing meiotic arrest.

    Science.gov (United States)

    Date, Shiori; Nozawa, Osamu; Inoue, Hiroaki; Hidema, Shizu; Nishimori, Katsuhiko

    2012-01-01

    Although Dmrt7 has been reported to be essential for male spermatogenesis, the molecular mechanism underlying pachytene spermatogenesis by Dmrt7 is not known. In the present study, by detailed analysis of Dmrt7 protein distribution in spermatocytes in the first wave of spermatogenesis, we clarified the profile of Dmrt7 expression and localization in pachytene spermatogenesis. Dmrt7-deficient spermatocytes were arrested in the pachytene stage, followed by apoptosis. We analyzed to determine whether every event in the spermatogenesis at the Dmrt7-deficient mice progressed normally, because in several gene knockout mice with spermatogenic arrest described in the previous reports impairments of these events often appeared. Mutant mice showed normal synapsis and XY body formation, while impairment of meiotic sex chromosome inactivation (MSCI), decreased expression of backup genes, and increased expression of retrotransposons indicated incomplete meiotic recombination.

  17. Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities

    Directory of Open Access Journals (Sweden)

    Blanca Gómez-Escoda

    2017-03-01

    Full Text Available Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs and the Dbf4-dependent kinase (DDK. CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.

  18. Reduced meiotic fitness in hybrids with heterozygosity for heterochromatin in the speciating Mus terricolor complex

    Indian Academy of Sciences (India)

    Tikaram Sharma; Amit Bardhan; Min Bahadur

    2003-03-01

    Mus terricolor I, II and III are the three chromosomal species which differ in stable autosomal short-arm heterochromatin variations established in homozygous condition. Analysis of meiosis in the laboratorygenerated F1 male hybrids from crosses (both ways) between M. terricolor I and II and between M. terricolor I and III shows high frequencies of pairing abnormalities at pachytene. The backcross (N3 generation) male hybrids between M. terricolor I and II have meiotic abnormalities as in the F1 male hybrids, though to a lesser extent. They show difference in pairing abnormalities in the different karyotypic forms; the backcross hybrids heterozygous for the heterochromatic short arms have more anomalies compared to the homokaryotypic hybrids. This suggests a negative influence of the heterochromatin heterozygosity in meiotic pairing. The results indicate a role for heterochromatin variations in the development of a reproductive barrier in the speciating M. terricolor complex.

  19. Meiotic behavior of two polyploid species of genus Pleurodema (Anura: Leiuperidae from central Argentina

    Directory of Open Access Journals (Sweden)

    Nancy E. Salas

    2014-06-01

    Full Text Available Polyploidy is an important evolutionary force but rare in vertebrates. However, in anurans, the genus Pleurodema has polyploid species, two of them tetraploid and one octoploid. The manner in which the chromosomes join in diakinesis can vary among species and, crucially, if they differ in their ploidy levels. In this work, we describe the meiotic configurations in two cryptic species from central Argentina, with different ploidy levels, Pleurodema kriegi (tetraploid and P. cordobae (octoploid. A total of 306 diakineses from 19 individuals were analyzed. In meiosis, P. kriegi form 22 bivalents, whereas P. cordobae exhibits variation in meiotic figures. We discuss the possible allo- and autopolyploid origin of these species, and we consider that the autopolyploid origin of P. cordobae from P. kriegi might be the most feasible.

  20. Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities

    Science.gov (United States)

    Gómez-Escoda, Blanca; Wu, Pei-Yun Jenny

    2017-01-01

    Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism. PMID:28335524

  1. HIM-8 binds to the X chromosome pairing center and mediateschromosome-specific meiotic synapsis

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton,Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2005-06-05

    The him-8 gene is essential for proper meiotic segregationof the X chromosomes in C. elegans. Herewe show that loss of him-8function causes profound X-chromosome-specific defects in homolog pairingand synapsis.him-8 encodes a C2H2 zinc finger protein that is expressedduring meiosis andconcentrates at a site on the X chromosome known as themeiotic Pairing Center (PC). A role for HIM-8 in PC function is supportedby genetic interactions between PC lesions and him-8 mutations.HIM-8-bound chromosome sites associate with the nuclear envelope (NE)throughout meiotic prophase. Surprisingly, a point mutation in him-8 thatretains both chromosome binding and NE localization fails to stabilizepairing or promote synapsis. These observations indicate thatstabilization of homolog pairing is an active process in which thetethering of chromosome sites to the NE may be necessary but is notsufficient.

  2. Meiotic behavior and pollen viability in Moringa oleifera (Moringaceae) cultivated in southern Brazil.

    Science.gov (United States)

    Silva, N; Mendes-Bonato, A B; Sales, J G C; Pagliarini, M S

    2011-01-01

    Although originally from India, Moringa oleifera is now cultivated throughout most of the tropics, including Brazil. Despite its multipurpose value for food and traditional medicine, little is known about the meiotic behavior and pollen viability of M. oleifera. We evaluated microsporogenesis and pollen viability in eleven plants grown in southern Brazil (Maringá, Paraná). Bud flowers were collected in different stages of development. All plants that we analyzed presented 2n = 28 chromosomes, as previously reported for this species. Chromosomes paired as bivalents. Meiotic abnormalities were rare and metaphase I was the most affected phase. Pollen viability was superior to 88%. Tripolar spindles in metaphase II, leading to the formation of unreduced gametes, were recorded in some plants at a low frequency.

  3. Meiotic Studies in Some Species of Tribe Cichorieae (Asteraceae from Western Himalayas

    Directory of Open Access Journals (Sweden)

    Raghbir Chand Gupta

    2014-01-01

    Full Text Available The present paper deals with meiotic studies in 15 species belonging to 6 genera of the tribe Cichorieae from various localities of Western Himalayas. The chromosome number has been reported for the first time in Hieracium crocatum (2n=10 and Lactuca lessertiana (2n=2x=16. Further, intraspecific variability has been reported for the first time in H. umbellatum (2n=2x=10 and 2n=6x=54, Tragopogon dubius (2n=2x=14 and 2n=4x=28, and T. gracilis (2n=2x=14. The chromosome report of 2n=2x=10 in Youngia tenuifolia is made for the first time in India. Maximum numbers of the populations show laggards, chromosome stickiness, and cytomixis from early prophase to telophase-II, leading to the formation of aneuploid cells or meiocytes with double chromosome number. Such meiotic abnormalities produce unreduced pollen grains and the reduced pollen viability.

  4. Meiotic studies in some species of tribe Cichorieae (Asteraceae) from Western Himalayas.

    Science.gov (United States)

    Gupta, Raghbir Chand; Goyal, Henna; Singh, Vijay; Goel, Rajesh Kumar

    2014-01-01

    The present paper deals with meiotic studies in 15 species belonging to 6 genera of the tribe Cichorieae from various localities of Western Himalayas. The chromosome number has been reported for the first time in Hieracium crocatum (2n = 10) and Lactuca lessertiana (2n = 2x = 16). Further, intraspecific variability has been reported for the first time in H. umbellatum (2n = 2x = 10 and 2n = 6x = 54), Tragopogon dubius (2n = 2x = 14 and 2n = 4x = 28), and T. gracilis (2n = 2x = 14). The chromosome report of 2n = 2x = 10 in Youngia tenuifolia is made for the first time in India. Maximum numbers of the populations show laggards, chromosome stickiness, and cytomixis from early prophase to telophase-II, leading to the formation of aneuploid cells or meiocytes with double chromosome number. Such meiotic abnormalities produce unreduced pollen grains and the reduced pollen viability.

  5. [Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies].

    Science.gov (United States)

    Bogdanova, V S; Galieva, E R

    2009-05-01

    Meiosis in anthers and mitosis in somatic cells were studied in reciprocal F1 hybrids of the accession VIR320, which belonged to wild Pisum sativum ssp. elatius (Bieb.) Schmal., and the laboratory line Sprint-1. When VIR320 was used as a maternal form, the hybrids displayed nuclear-cytoplasmic conflict, which caused chlorophyll defects and meiotic abnormalities. One or two chromosomes lagged in the equatorial region during chromosome segregation to the poles, distorting cytokinesis and yielding abnormal microspores. Chlorophyll defects were not observed, and meiotic abnormalities were far less frequent in reciprocal hybrids and in the case of an abnormal paternal inheritance of plastids from Sprint-1. Mitosis lacked overt abnormalities in all of the hybrids.

  6. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes.

    Science.gov (United States)

    Kelliher, Timothy; Walbot, Virginia

    2014-02-01

    In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).

  7. Scrambling Eggs: Meiotic Drive and the Evolution of Female Recombination Rates

    OpenAIRE

    Brandvain, Yaniv; Coop, Graham

    2012-01-01

    Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex-differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers - alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis - present ...

  8. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)

    KAUST Repository

    Fučíková, Karolina

    2015-04-06

    © 2015 Phycological Society of America. Sexual reproduction is widespread in eukaryotes and is well documented in chlorophytan green algae. In this lineage, however, the Trebouxiophyceae represent a striking exception: in contrast to its relatives Chlorophyceae and Ulvophyceae this group appears to be mostly asexual, as fertilization has been rarely observed. Assessments of sexual reproduction in the Trebouxiophyceae have been based on microscopic observation of gametes fusing. New genomic data offer now the opportunity to check for the presence of meiotic genes, which represent an indirect evidence of a sexual life cycle. Using genomic and transcriptomic data for 12 taxa spanning the phylogenetic breadth of the class, we tried to clarify whether genuine asexuality or cryptic sexuality is the most likely case for the numerous putatively asexual trebouxiophytes. On the basis of these data and a bibliographic review, we conclude that the view of trebouxiophytes as primarily asexual is incorrect. In contrast to the limited number of reports of fertilization, meiotic genes were found in all genomes and transcriptomes examined, even in species presumed asexual. In the taxa examined the totality or majority of the genes were present, Helicosporidium and Auxenochlorella being the only partial exceptions (only four genes present). The evidence of sex provided by the meiotic genes is phylogenetically widespread in the class and indicates that sexual reproduction is not associated with any particular morphological or ecological trait. On the basis of the results, we expect that the existence of the meiotic genes will be documented in all trebouxiophycean genomes that will become available in the future.

  9. G beta gamma signaling reduces intracellular cAMP to promote meiotic progression in mouse oocytes.

    Science.gov (United States)

    Gill, Arvind; Hammes, Stephen R

    2007-02-01

    In nearly every vertebrate species, elevated intracellular cAMP maintains oocytes in prophase I of meiosis. Prior to ovulation, gonadotropins trigger various intra-ovarian processes, including the breakdown of gap junctions, the activation of EGF receptors, and the secretion of steroids. These events in turn decrease intracellular cAMP levels in select oocytes to allow meiotic progression, or maturation, to resume. Studies suggest that cAMP levels are kept elevated in resting oocytes by constitutive G protein signaling, and that the drop in intracellular cAMP that accompanies maturation may be due in part to attenuation of this inhibitory G protein-mediated signaling. Interestingly, one of these G protein regulators of meiotic arrest is the Galpha(s) protein, which stimulates adenylyl cyclase to raise intracellular cAMP in two important animal models of oocyte development: Xenopus leavis frogs and mice. In addition to G(alpha)(s), constitutive Gbetagamma activity similarly stimulates adenylyl cyclase to raise cAMP and prevent maturation in Xenopus oocytes; however, the role of Gbetagamma in regulating meiosis in mouse oocytes has not been examined. Here we show that Gbetagamma does not contribute to the maintenance of murine oocyte meiotic arrest. In fact, contrary to observations in frog oocytes, Gbetagamma signaling in mouse oocytes reduces cAMP and promotes oocyte maturation, suggesting that Gbetagamma might in fact play a positive role in promoting oocyte maturation. These observations emphasize that, while many general concepts and components of meiotic regulation are conserved from frogs to mice, specific differences exist that may lead to important insights regarding ovarian development in vertebrates.

  10. Neuregulins are essential for spermatogonial proliferation and meiotic initiation in neonatal mouse testis.

    Science.gov (United States)

    Zhang, JiDong; Eto, Ko; Honmyou, Asuka; Nakao, Kazuki; Kiyonari, Hiroshi; Abé, Shin-ichi

    2011-08-01

    The transition from mitosis to meiosis is unique to germ cells. In murine embryonic ovaries and juvenile testes, retinoic acid (RA) induces meiosis via the stimulated by retinoic acid gene 8 (Stra8), but its molecular pathway requires elucidation. We present genetic evidence in vivo and in vitro that neuregulins (NRGs) are essential for the proliferation of spermatogonia and the initiation of meiosis. Tamoxifen (TAM) was injected into 14-day post-partum (dpp) Sertoli cell-specific conditional Nrg1(Ser-/-) mutant mice. TAM induced testis degeneration, suppressed BrdU incorporation into spermatogonia and pre-leptotene primary spermatocytes, and decreased and increased the number of STRA8-positive and TUNEL-positive cells, respectively. In testicular organ cultures from 5-6 dpp wild-type mice and cultures of their re-aggregated spermatogonia and Sertoli cells, FSH, RA [all-trans-retinoic acid (ATRA), AM580, 9-cis-RA] and NRG1 promoted spermatogonial proliferation and meiotic initiation. However, TAM treatment of testicular organ cultures from the Nrg1(Ser-/-) mutants suppressed spermatogonial proliferation and meiotic initiation that was promoted by FSH or AM580. In re-aggregated cultures of purified spermatogonia, NRG1, NRG3, ATRA and 9-cis-RA promoted their proliferation and meiotic initiation, but neither AM580 nor FSH did. In addition, FSH, RAs and NRG1 promoted Nrg1 and Nrg3 mRNA expression in Sertoli cells. These results indicate that in juvenile testes RA and FSH induced meiosis indirectly through Sertoli cells when NRG1 and NRG3 were upregulated, as NRG1 amplified itself and NRG3. The amplified NRG1 and NRG3 directly induced meiosis in spermatogonia. In addition, ATRA and 9-cis-RA activated spermatogonia directly and promoted their proliferation and eventually meiotic initiation.

  11. The effects of follicle-stimulating hormone treatment on early meiotic oocytes of Podarcis sicula (Lacertilia).

    Science.gov (United States)

    Motta, C M; Borrelli, L; Filosa, S

    1995-07-01

    The effects of follicle-stimulating hormone (FSH) on early meiotic oocytes were studied by cytological, autoradiographic, and photometric techniques. In addition to regulating oogonial proliferation, oogenesis, and folliculogenesis, the hormone influenced germ cell number and the time course of early meiosis. FSH did not affect the timing of DNA replication and amplification and did not change the amount of rDNA accumulated in the nucleus by amplification. A genetic control mechanism for these processes is suggested.

  12. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase

    OpenAIRE

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with ...

  13. NEW OBSERVATIONS ON THE MEIOTIC PROCESS IN THE MARINE DINOFLAGELLATE NOCTILUCA SCINTILLANS (NOCTILUCALES, DINOPHYCEAE)

    Institute of Scientific and Technical Information of China (English)

    周成旭; 严小军

    2002-01-01

    The meiotic process in Noctiluca scintillans were observed under light microscope. Some abnormal cell divisions, incompletely separated "zoospores" and the changes of the zoospores are described in this paper. Together with the findings of field samplings and the previous results by other researchers, the process of meiosis in N. scintillans was supposed to be a pathway to reduce the extra high density of NH3-N within the cell in order to ensure normal population growth.

  14. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells.

    Directory of Open Access Journals (Sweden)

    Michelle L Churchman

    2011-07-01

    Full Text Available The mammalian Cdkn2a (Ink4a-Arf locus encodes two tumor suppressor proteins (p16(Ink4a and p19(Arf that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb and the p53 transcription factor in response to oncogenic stress. Although p19(Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.

  15. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals.

    OpenAIRE

    Cloutier, Jeffrey M.; Mahadevaiah, Shantha K.; Elias ElInati; André Nussenzweig; Attila Tóth; James M A Turner

    2015-01-01

    Author Summary Chromosome abnormalities, such as aneuploidies and structural variants (i.e. translocations, inversions), are strikingly common in the human population, causing disorders such as Down syndrome and Turner syndrome. One important consequence of chromosome abnormalities in mammals is errors during meiosis, the specialized cell division that generates sperm and eggs for reproduction. As a result of these meiotic errors, patients with chromosome abnormalities oftentimes suffer from ...

  16. New observations on the meiotic process in the marine dinoflagellate Noctiluca scintillans (Noctilucales, dinophyceae)

    Science.gov (United States)

    Zhou, Cheng-Xu; Yan, Xiao-Jun

    2002-03-01

    The meiotic process in Noctiluca scintillans were observed under light microscope. Some abnormal cell divisions, incompletely separated “zoospores” and the changes of the zoospores are described in this paper. Together with the findings of field samplings and the previous results by other researcher, the process of meiosis in N. scintillans was supposed to be a pathway to reduce the extra high density of NH3-N within the cell in order to ensure normal population growth.

  17. Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure.

    Science.gov (United States)

    Homolka, David; Jansa, Petr; Forejt, Jiri

    2012-02-01

    During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t(12) haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t(12) haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility.

  18. Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist.

    Science.gov (United States)

    Turner, James M A; Mahadevaiah, Shantha K; Elliott, David J; Garchon, Henri-Jean; Pehrson, John R; Jaenisch, Rudolf; Burgoyne, Paul S

    2002-11-01

    X chromosome inactivation occurs twice during the life cycle of placental mammals. In normal females, one X chromosome in each cell is inactivated early in embryogenesis, while in the male, the X chromosome is inactivated together with the Y chromosome in spermatogenic cells shortly before or during early meiotic prophase. Inactivation of one X chromosome in somatic cells of females serves to equalise X-linked gene dosage between males and females, but the role of male meiotic sex chromosome inactivation (MSCI) is unknown. The inactive X-chromosome of somatic cells and male meiotic cells share similar properties such as late replication and enrichment for histone macroH2A1.2, suggesting a common mechanism of inactivation. This possibility is supported by the fact that Xist RNA that mediates somatic X-inactivation is expressed in the testis of male mice and humans. In the present study we show that both Xist RNA and Tsix RNA, an antisense RNA that controls Xist function in the soma, are expressed in the testis in a germ-cell-dependent manner. However, our finding that MSCI and sex-body formation are unaltered in mice with targeted mutations of Xist that prevent somatic X inactivation suggests that somatic X-inactivation and MSCI occur by fundamentally different mechanisms.

  19. Transcription reactivation during the first meiotic prophase in bugs is not dependent on synapsis.

    Science.gov (United States)

    Viera, Alberto; Parra, María Teresa; Rufas, Julio S; Page, Jesús

    2016-02-22

    During meiosis, transcription is precisely regulated in relation to the process of chromosome synapsis. In mammals, transcription is very low until the completion of synapsis in early pachytene, and then reactivates during mid pachytene, up to the end of diplotene. Moreover, chromosomes or chromosomal regions that do not achieve synapsis undergo a specific process of inactivation called meiotic silencing of unpaired chromatin (MSUC). Sex chromosomes, which are mostly unsynapsed, present a special case of inactivation named meiotic sex chromosome inactivation (MSCI). Although processes that are similar to MSUC/MSCI have been described in other species like Sordaria and Caenorhabditis elegans, very few studies have been developed in insects. We present a study on the relationships between synapsis and transcription in two hemipteran species (Graphosoma italicum and Carpocoris fuscispinus) that possess holocentric chromosomes but develop different synaptic patterns. We have found that transcription, revealed by the presence of RNA polymerase II, is very low at the beginning of meiosis, but robustly increases during zygotene, long before the completion of synapsis, excepting in the sex chromosomes. In fact, we show that histone H3 methylation at lysine 9 (H3K9me3) may be present in the sex chromosomes at leptotene, thus acting as a likely epigenetic mark for this inactive state. Our results suggest that the meiotic transcription in these two species is differently regulated from that of mammals and, therefore, offer new opportunities to understand the relationship between synapsis and transcription and the mechanisms that govern MSUC/MSCI processes.

  20. Early meiotic-specific protein expression in post-natal rat ovaries.

    Science.gov (United States)

    Zhang, P; Lv, L X; Xing, W J

    2010-12-01

    Recent studies in mice challenged the basic doctrine that most mammalian females lose neo-oogenesis in post-natal ovaries. In order to provide more information in other species, we examined post-natal rat ovaries by histological sections and detected the germline cell marker protein RVLG (rat vasa-like gene), BrdU (5-bromodeoxyuridine) incorporation in RVLG-expressing cells, for identification of germline cells undergoing mitosis and meiosis in the ovarian surface epithelium (OSE). We also detected the expression of early meiotic-specific proteins disruption of meiotic control 1 (DMC1), stimulated by retinoic acid gene 8 (STRA8) and synaptonemal complex protein 3 (SCP3) by immunohistochemical analysis and Western blotting, and the transcript of SCP1, SCP3 and Sporulation-specific protein 11 (SPO11) by RT-PCR in the post-natal ovarian cortex. However we failed in detecting large ovoid cells in the OSE, which may represent the putative germline stem cells (GSCs) that are supposed to sustain neo-oogenesis, and the transcription of the meiotic-specific genes SCP1, SCP3 and SPO11 by RT-PCR as well as the translation of DMC1, STRA8 and SCP3 by Western blotting. Our data support the postulation that there is no neo-oogenesis occurring in the OSE of rat post-natal ovary through meiosis of GSCs.

  1. An analysis of meiotic impairment and of sex chromosome associations throughout meiosis in XYY mice.

    Science.gov (United States)

    Mahadevaiah, S K; Evans, E P; Burgoyne, P S

    2000-01-01

    The existing XYY meiotic data for mice present a very heterogeneous picture with respect to the relative frequencies of different sex chromosome associations, both at pachytene and diakinesis/metaphase I. Furthermore, where both pachytene and diakinesis/MI data are available for the same males, the frequencies of the different configurations at the two stages are very different. In the present paper we utilise "XYY" and "XY/XYY" mosaic mice with cytologically distinguishable Y chromosomes to investigate the factors responsible for this heterogeneity between different males and between the two meiotic stages. It is concluded (1) that the initial pattern of synapsis is driven by the relatedness of the three pseudoautosomal regions (PARs); (2) that the order and extent of PAR synapsis within radial trivalents are also affected by PAR relatedness and that this leads to chiasmata being preferentially formed between closely related PARs; (3) that trivalents with a single chiasma resolve into a bivalent + univalent by the diakinesis stage; (4) that although many spermatocytes with asynapsed sex chromosomes are eliminated between pachytene and diakinesis, those that survive this phase of elimination progress to the first meiotic metaphase (MI) and accumulate in large numbers, leading to an over-representation of those with univalents as compared to radial trivalents; and (5) that the arrested MI cells are eventually eliminated, so that very few "XYY" cells contribute products to MII.

  2. Meiotic behavior in apomictic Brachiaria ruziziensis × B. brizantha (Poaceae progenies

    Directory of Open Access Journals (Sweden)

    Veridiana Aparecida Fuzinatto

    2012-12-01

    Full Text Available Hybrids combining desirable traits from divergent parents are the main objective of some Brachiaria (Syn. Urochloa P. Beauv. breeding programs. There is great interest in the development of apomictic hybrid cultivars that combine desirable genes such as resistance to spittlebugs, high nutritive value, and tolerance to acid soils. Microsporogenesis of six apomictic progenies resulting from a tetraploid (2n = 4x = 36 cross between B. ruziziensis × B. brizantha was evaluated under light microscopy. Genetic recombination, ensured by multivalent chromosome association and crossing-over at prophase occurred in low frequency among progenies, and in one, recombination was almost nonexistent. The percentage of meiocytes with meiotic abnormalities among progenies ranged from 16.6 % to 85.6 %. Besides an observed irregular chromosome segregation typical of polyploid hybrids in these five progenies, putative meiotic mutations characterized as desynapsis and divergent spindle organization occurred in three progenies. These anomalies caused frequent fractionation of the genome into several microspores of different sizes. In Brachiaria, new cultivars must be apomictic to fix the genotype. However, Brachiaria is a pseudogamous apomict, and viable gametes are necessary to produce viable seeds. Considering meiotic behavior, only two progenies are promising for advancement in the breeding program.

  3. The inhibition of polo kinase by matrimony maintains G2 arrest in the meiotic cell cycle.

    Directory of Open Access Journals (Sweden)

    Youbin Xiang

    2007-12-01

    Full Text Available Many meiotic systems in female animals include a lengthy arrest in G2 that separates the end of pachytene from nuclear envelope breakdown (NEB. However, the mechanisms by which a meiotic cell can arrest for long periods of time (decades in human females have remained a mystery. The Drosophila Matrimony (Mtrm protein is expressed from the end of pachytene until the completion of meiosis I. Loss-of-function mtrm mutants result in precocious NEB. Coimmunoprecipitation experiments reveal that Mtrm physically interacts with Polo kinase (Polo in vivo, and multidimensional protein identification technology mass spectrometry analysis reveals that Mtrm binds to Polo with an approximate stoichiometry of 1:1. Mutation of a Polo-Box Domain (PBD binding site in Mtrm ablates the function of Mtrm and the physical interaction of Mtrm with Polo. The meiotic defects observed in mtrm/+ heterozygotes are fully suppressed by reducing the dose of polo+, demonstrating that Mtrm acts as an inhibitor of Polo. Mtrm acts as a negative regulator of Polo during the later stages of G2 arrest. Indeed, both the repression of Polo expression until stage 11 and the inactivation of newly synthesized Polo by Mtrm until stage 13 play critical roles in maintaining and properly terminating G2 arrest. Our data suggest a model in which the eventual activation of Cdc25 by an excess of Polo at stage 13 triggers NEB and entry into prometaphase.

  4. Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair.

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi V Subramanian

    2016-02-01

    Full Text Available Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression.

  5. Influence of spermatogenic profile and meiotic abnormalities on reproductive outcome of infertile patients.

    Science.gov (United States)

    Barri, Pedro N; Vendrell, Jose M; Martinez, Francisca; Coroleu, Buenaventura; Arán, Begoña; Veiga, Anna

    2005-06-01

    Genetic aspects of male infertility and the possible risks of new assisted reproduction and their influence on the development of zygotes and children born after intracytoplasmic sperm injection (ICSI) need further research. These patients have an increased risk of diploidy, and disomies are frequent in their spermatozoa. Meiotic disorders are more common in testicular biopsies of patients with severe oligoasthenozoospermia. For these reasons, a detailed andrological study is absolutely mandatory before accepting a couple with these characteristics into an IVF-ICSI programme. When an andrological patient has plasma FSH values >10 IU/l and/or very low total motile sperm count meiotic study in order to rule out meiotic arrest or synaptic anomalies. Another important aspect to be considered is the possible benefit of applying preimplantation genetic diagnosis in these cases because they normally have a high percentage of chromosomally abnormal embryos, although in the present study this was not evident. All studies agree on the necessity of conducting follow-up studies in the population of children born after IVF-ICSI. In this way, it will be possible to find out if these infertile patients and their offspring have a higher risk of suffering epigenetic errors and imprinting disorders.

  6. Meiotic segregation and interchromosomal effect in the sperm of a double translocation carrier: a case report

    Directory of Open Access Journals (Sweden)

    Laureano Lucimar AF

    2009-12-01

    Full Text Available Abstract Background Infertility is a natural mechanism of selection intended to prevent the delivery of a child with malformations or mental retardation. Male infertility is closely related to chromosomal abnormalities. This study was focused on the analysis of meiotic segregation involving a Robertsonian translocation, 45,XY,der(13;13 [56]/45,XY,der(13;14 [44] and the evaluation of possible interchromosomal effects. Results Hybridisation with LSI 13q14 and subtelomere 14q probes and WCP13 SpectrumGreen and WCP14 SpectrumOrange probes showed a high proportion of unbalanced gametes, corresponding to 71.2% of the spermatozoa. The disomic frequencies of the sexual chromosomes and chromosome 18 of the patient were higher (5.28% and 2.55%, respectively than those of the control (0.6% and 0.59%, respectively. Conclusion Meiotic segregation studies in sperm are an important tool for genetic counselling of chromosomal aberrations, allowing for a prediction of the risks and consequent implications for the reproductive life. The patient with this rare translocation exhibited meiotic segregation fidelity, and a high rate of unbalanced gametes with disomic spermatozoa.

  7. Function and interaction of maturation-promoting factor and mitogen-activated protein kinase during meiotic maturation and fertilization of oocyte

    Institute of Scientific and Technical Information of China (English)

    HUO Lijun; FAN Hengyu; CHEN Dayuan; SUN Qingyuan

    2004-01-01

    Mitogen-activated protein kinase (MAP kinase) cascade and maturation-promoting factor (MPF) play very important roles during meiotic maturation and fertilization of oocyte. Interaction between MAP kinase and MPF influences meiotic maturation and fertilization of oocyte throughout the animal kingdom, including stimulation of germinal vesicle breakdown (GVBD), suppression of DNA replication, control of meiotic chromosome segregation, maintenance of metaphase II arrest, and resumption and completion of second meiosis. This review focuses on the function and interaction of MAP kinase and MPF during meiotic maturation and fertilization of oocyte.

  8. 49 CFR 236.203 - Hand operated crossover between main tracks; protection.

    Science.gov (United States)

    2010-10-01

    ...) Electric locking of the switches of the crossover. Signals governing movements over either switch shall... crossover is occupied by a train, locomotive or car in such a manner as to foul the main track. It shall not... electric locking releases....

  9. Design and analysis of crossover trials for absorbing binary endpoints.

    Science.gov (United States)

    Nason, Martha; Follmann, Dean

    2010-09-01

    The crossover is a popular and efficient trial design used in the context of patient heterogeneity to assess the effect of treatments that act relatively quickly and whose benefit disappears with discontinuation. Each patient can serve as her own control as within-individual treatment and placebo responses are compared. Conventional wisdom is that these designs are not appropriate for absorbing binary endpoints, such as death or HIV infection. We explore the use of crossover designs in the context of these absorbing binary endpoints and show that they can be more efficient than the standard parallel group design when there is heterogeneity in individuals' risks. We also introduce a new two-period design where first period "survivors" are rerandomized for the second period. This design combines the crossover design with the parallel design and achieves some of the efficiency advantages of the crossover design while ensuring that the second period groups are comparable by randomization. We discuss the validity of the new designs and evaluate both a mixture model and a modified Mantel-Haenszel test for inference. The mixture model assumes no carryover or period effects while the Mantel-Haenszel approach conditions out period effects. Simulations are used to compare the different designs and an example is provided to explore practical issues in implementation.

  10. Antibiotics and oral contraceptive failure - a case-crossover study

    NARCIS (Netherlands)

    Toh, Sengwee; Mitchell, Allen A.; Anderka, Marlene; de Jong-van den Berg, Lolkje T. W.; Hernandez-Diaz, Sonia

    2011-01-01

    Background: Evidence on the association between antibiotic use and combined oral contraceptive (COC) failure is controversial. We examined the effect of concomitant antibiotic treatment on the risk of breakthrough pregnancy among COC users. Study Designs: We performed a case-crossover study of 1330

  11. Theoretical Study of Spin Crossover in 30 Iron Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor ...

  12. Semiclassical genetic algorithm with quantum crossover and mutation operations

    CERN Document Server

    SaiToh, Akira; Nakahara, Mikio

    2012-01-01

    In order for finding a good individual for a given fitness function in the context of evolutionary computing, we introduce a novel semiclassical quantum genetic algorithm. It has both of quantum crossover and quantum mutation procedures unlike conventional quantum genetic algorithms. A complexity analysis shows a certain improvement over its classical counterpart.

  13. Modulating crossover positioning by introducing large structural changes in chromosomes

    NARCIS (Netherlands)

    Ederveen, A.; Lai, Y.; Van Driel, M.A.; Gerats, T.; Peters, J.L.

    2015-01-01

    Background Crossing over assures the correct segregation of the homologous chromosomes to both poles of the dividing meiocyte. This exchange of DNA creates new allelic combinations thus increasing the genetic variation present in offspring. Crossovers are not uniformly distributed along chromosomes;

  14. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation.

    Science.gov (United States)

    Weng, Katherine A; Jeffreys, Charlotte A; Bickel, Sharon E

    2014-09-01

    Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman's thirties, not because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new cohesive linkages

  15. Functions of FZR1 and CDC20, activators of the anaphase-promoting complex, during meiotic maturation of swine oocytes.

    Science.gov (United States)

    Yamamuro, Tadashi; Kano, Kiyoshi; Naito, Kunihiko

    2008-12-01

    Cell division cycle 20 (CDC20) and fizzy/cell division cycle 20 related 1 (FZR1) are activators of the anaphase-promoting complex (APC), which ubiquitinates M-phase regulating proteins, such as cyclin B and securin, and induces their degradation. In the present study, porcine CDC20 and FZR1 were cloned by reverse transcriptase-polymerase chain reaction, and their functions in the meiotic maturation of porcine oocytes were analyzed. FZR1 was readily detected in porcine immature oocytes by immunoblotting, but its levels decreased substantially during maturation. In contrast, CDC20 levels rose during oocyte maturation and were highest by the second meiotic metaphase. The inhibition of CDC20 expression by the injection of CDC20 antisense RNA induced the meiotic arrest at the first meiotic metaphase (M1) and the accumulation of a large amount of cyclin B. On the other hand, the inhibition of FZR1 expression accelerated cyclin B accumulation and the start of germinal vesicle breakdown (GVBD), but did not affect the exit from M1. Conversely, the overexpression of FZR1 by the injection of FZR1 mRNA suppressed the cyclin B accumulation and retarded GVBD. Surprisingly, the injection of CDC20 mRNA into the immature oocytes could not increase CDC20 expression, but increased cyclin B accumulation and accelerated the meiotic progression. As CDC20 is a substrate of APC (FZR1), CDC20 might have competed with cyclin B and inhibited the FZR1 function. These results suggest that porcine FZR1 and CDC20 work on the maintenance of meiotic arrest at the first meiotic prophase and on the exit from M1, respectively, and that their functional phases are strictly distinguished during porcine oocyte maturation.

  16. Meiotic prophase abnormalities and metaphase cell death in MLH1-deficient mouse spermatocytes: insights into regulation of spermatogenic progress.

    Science.gov (United States)

    Eaker, Shannon; Cobb, John; Pyle, April; Handel, Mary Ann

    2002-09-01

    The MLH1 protein is required for normal meiosis in mice and its absence leads to failure in maintenance of pairing between bivalent chromosomes, abnormal meiotic division, and ensuing sterility in both sexes. In this study, we investigated whether failure to develop foci of MLH1 protein on chromosomes in prophase would lead to elimination of prophase spermatocytes, and, if not, whether univalent chromosomes could align normally on the meiotic spindle and whether metaphase spermatocytes would be delayed and/or eliminated. In spite of the absence of MLH1 foci, no apoptosis of spermatocytes in prophase was detected. In fact, chromosomes of pachytene spermatocytes from Mlh1(-/-) mice were competent to condense metaphase chromosomes, both in vivo and in vitro. Most condensed chromosomes were univalents with spatially distinct FISH signals. Typical metaphase events, such as synaptonemal complex breakdown and the phosphorylation of Ser10 on histone H3, occurred in Mlh1(-/-) spermatocytes, suggesting that there is no inhibition of onset of meiotic metaphase in the face of massive chromosomal abnormalities. However, the condensed univalent chromosomes did not align correctly onto the spindle apparatus in the majority of Mlh1(-/-) spermatocytes. Most meiotic metaphase spermatocytes were characterized with bipolar spindles, but chromosomes radiated away from the microtubule-organizing centers in a prometaphase-like pattern rather than achieving a bipolar orientation. Apoptosis was not observed until after the onset of meiotic metaphase. Thus, spermatocytes are not eliminated in direct response to the initial meiotic defect, but are eliminated later. Taken together, these observations suggest that a spindle assembly checkpoint, rather than a recombination or chiasmata checkpoint, may be activated in response to meiotic errors, thereby ensuring elimination of chromosomally abnormal gamete precursors.

  17. The Method Quality of Cross-Over Studies Involved in Cochrane Systematic Reviews

    OpenAIRE

    Hong Ding; Guang Li Hu; Xue Yan Zheng; Qing Chen; Diane Erin Threapleton; Zeng Huan Zhou

    2015-01-01

    Background It is possible that cross-over studies included in current systematic reviews are being inadequately assessed, because the current risk of bias tools do not consider possible biases specific to cross-over design. We performed this study to evaluate whether this was being done in cross-over studies included in Cochrane Systematic Reviews (CSRs). Methods We searched the Cochrane Library (up to 2013 issue 5) for CSRs that included at least one cross-over trial. Two authors independent...

  18. What's Mine Is Yours: The Crossover of Day-Specific Self-Esteem

    Science.gov (United States)

    Neff, Angela; Sonnentag, Sabine; Niessen, Cornelia; Unger, Dana

    2012-01-01

    This diary study examines the daily crossover of self-esteem within working couples. By integrating self-esteem research into the crossover framework, we hypothesized that the day-specific self-esteem experienced by one partner after work crosses over to the other partner. Furthermore, we proposed that this daily crossover process is moderated by…

  19. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    Science.gov (United States)

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes.

  20. Sexual antagonism and meiotic drive cause stable linkage disequilibrium and favour reduced recombination on the X chromosome.

    Science.gov (United States)

    Rydzewski, W T; Carioscia, S A; Liévano, G; Lynch, V D; Patten, M M

    2016-06-01

    Sexual antagonism and meiotic drive are sex-specific evolutionary forces with the potential to shape genomic architecture. Previous theory has found that pairing two sexually antagonistic loci or combining sexual antagonism with meiotic drive at linked autosomal loci augments genetic variation, produces stable linkage disequilibrium (LD) and favours reduced recombination. However, the influence of these two forces has not been examined on the X chromosome, which is thought to be enriched for sexual antagonism and meiotic drive. We investigate the evolution of the X chromosome under both sexual antagonism and meiotic drive with two models: in one, both loci experience sexual antagonism; in the other, we pair a meiotic drive locus with a sexually antagonistic locus. We find that LD arises between the two loci in both models, even when the two loci freely recombine in females and that driving haplotypes will be enriched for male-beneficial alleles, further skewing sex ratios in these populations. We introduce a new measure of LD, Dz', which accounts for population allele frequencies and is appropriate for instances where these are sex specific. Both models demonstrate that natural selection favours modifiers that reduce the recombination rate. These results inform observed patterns of congealment found on driving X chromosomes and have implications for patterns of natural variation and the evolution of recombination rates on the X chromosome.

  1. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Olivier Da Ines

    Full Text Available During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.

  2. Net baryon fluctuations from a crossover equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, J.; Albright, M. [University of Minnesota, School of Physics and Astronomy, Minneapolis, MN (United States); Young, C. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2016-08-15

    We have constructed an equation of state which smoothly interpolates between an excluded-volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy-Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out. (orig.)

  3. Net Baryon Fluctuations from a Crossover Equation of State

    CERN Document Server

    Kapusta, J; Young, C

    2016-01-01

    We have constructed an equation of state which smoothly interpolates between an excluded volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR collaboration in a beam energy scan at the Relativistic Heavy Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out.

  4. Guest effect on nanopatterned spin-crossover thin films.

    Science.gov (United States)

    Bartual-Murgui, Carlos; Akou, Amal; Salmon, Lionel; Molnár, Gábor; Thibault, Christophe; Real, Jose Antonio; Bousseksou, Azzedine

    2011-12-02

    Nanopatterned thin films of the metal-organic framework {Fe(bpac)[Pt(CN)4]} (bpac=bis(4-pyridyl)acetylene) are elaborated by the combination of a sequential assembly process and a lithographic method. Raman microspectroscopy is used to probe the temperature dependence of the spin state of the iron(II) ions in the films (40-90 nm in thickness), and reveals an incomplete but cooperative spin transition comparable to that of the bulk material. Adsorption/desorption of pyridine guest molecules is found to have a substantial influence on the spin-crossover properties of the thin layers. This interplay between host-guest and spin-crossover properties in thin films and nanopatterns demonstrates the potential ability of using this kind of material as a microsensor.

  5. Hot Neutron Stars with Hadron-Quark Crossover

    Science.gov (United States)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-12-01

    The effects of the hadron-quark crossover on the bulk properties of cold and hot neutron stars (NSs) are studied. We suggested a new phenomenological equation of state (EOS), which interpolates the two phases at around 3 times the nuclear matter density (ρ0), and found that the cold NSs with the gravitational mass larger than 2M⊙ can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition where the quark matter inevitably leads to soft EOS. The interpolated EOS is also generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition due to the color degrees of freedom.

  6. Dynamical Crossover in Complex Networks near the Percolation Transition

    Science.gov (United States)

    Kawasaki, Fumiya; Yakubo, Kousuke

    2011-10-01

    The return probability P0(t) of random walkers is investigated numerically for several scale-free fractal networks. Our results show that P0(t) is proportional to t-ds/2 with the non-integer spectral dimension ds as in the case of non-scale free fractal networks. We also study how the diffusion process is affected by the structural crossover from a fractal to a small-world architecture in a network near the percolation transition. It is elucidated that the corresponding dynamical crossover is scaled only by the unique characteristic time tξ regardless of whether the network is scale free or not. In addition, the scaling relation ds= 2Df/dw is found to be valid even for scale-free fractal networks, where Df and dw are the fractal and the walk dimensions. These results suggest that qualitative properties of P0(t) are irrelevant to the scale-free nature of networks.

  7. 3D Framework DNA Origami with Layered Crossovers.

    Science.gov (United States)

    Hong, Fan; Jiang, Shuoxing; Wang, Tong; Liu, Yan; Yan, Hao

    2016-10-04

    Designer DNA architectures with nanoscale geometric controls provide a programmable molecular toolbox for engineering complex nanodevices. Scaffolded DNA origami has dramatically improved our ability to design and construct DNA nanostructures with finite size and spatial addressability. Here we report a novel design strategy to engineer multilayered wireframe DNA structures by introducing crossover pairs that connect neighboring layers of DNA double helices. These layered crossovers (LX) allow the scaffold or helper strands to travel through different layers and can control the relative orientation of DNA helices in neighboring layers. Using this design strategy, we successfully constructed four versions of two-layer parallelogram structures with well-defined interlayer angles, a three-layer structure with triangular cavities, and a 9- and 15-layer square lattices. This strategy provides a general route to engineer 3D framework DNA nanostructures with controlled cavities and opportunities to design host-guest networks analogs to those produced with metal organic frameworks.

  8. Thermodynamic characterization of two novel spin-crossover complexes

    Institute of Scientific and Technical Information of China (English)

    DING Bin; WANG Hongmei; YI Long; CHENG Peng; LI Licun; ZHAI Yuping; LIAO Daizheng; YAN Shiping; JIANG Zonghui

    2003-01-01

    Two novel FeⅡspin crossover complexes [Fe(L1)3](BF4)2·5H2O (1) and [Fe(L2)3](BF4)2·2H2O (2) with 4-NHR-1,2,4-triazole (R = isopropyl, L1; cyclohexyl, L2) were synthesized. 1 and 2 remain white at room temperature, whereas they turn purple at liquid temperature. Variable temperature optical detection and magnetic susceptibilities measurement show that the spin-crossover phenomenon for 1 was observed between 120 K and 170 K. The hysteresis loop is about 10 K. The Tc temperature of 2 is 190 K, but no thermal hysteresis loop was found. The molar thermodynamic functions and the microscopic parameters were obtained from the theoretical analysis in terms of the domain model, two level Ising model and regular solution model, respectively.

  9. Cascading dynamics on random networks: Crossover in phase transition

    Science.gov (United States)

    Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong

    2012-02-01

    In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.

  10. Strategy Uniform Crossover Adaptation Evolution in a Minority Game

    Institute of Scientific and Technical Information of China (English)

    杨伟松; 汪秉宏; 全宏俊; 胡进锟

    2003-01-01

    We propose a new adaptation minority game for understanding the complex dynamical behaviour characterized by agent interactions competing limited resources in many natural and social systems. Intelligent agents may modify a part of their strategies periodically, depending on the strategyperformances. In the present model, the strategies will be updated according to a uniform-crossover variation process inspired by genetic evolution algorithm in biology. The performances of the agents in our model are calculated for different parameter conditions. It has been found that the new system may evolve via the strategy uniform crossover adaptation mechanism into a frozen equilibrium state in which the performance of the system may reach the best limit, implying the strongest cooperation among agents and the most effective utilization of the social resources.

  11. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  12. Dimensionality crossover in critical behaviour of ultrathin ferromagnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Prudnikov, Pavel V., E-mail: prudnikp@univer.omsk.su; Prudnikov, Vladimir V.; Menshikova, Maria A.; Piskunova, Natalia I.

    2015-08-01

    We propose the model which takes account of magnetocrystalline anisotropy effects in thin magnetic films. The dimensionality crossover from two-dimensional monolayer to three-dimensional system in multilayer magnetic films is studied using a Monte Carlo technique. Finite-size scaling is applied for the determination of the critical characteristics as a function of film thickness. The transition to intermediate planar phase is discussed. - Highlights: • We make Monte Carlo simulations in a anisotropy Heisenberg films. • Anisotropy effects lead to dimensionality crossover in Heisenberg films. • The transition to intermediate XY-like phase for 14–19 ML was discovered. • The critical exponents agree with experiments for Ni and Co films.

  13. An inverted crossover resonance within one Zeeman manifold

    CERN Document Server

    Salter, Liam A

    2016-01-01

    We detect and describe inverted crossover resonances in $\\pi$-driven four-level systems where $\\Delta F$ can be zero. The signal is observed through sub-Doppler frequency modulation spectroscopy of the $(6s^{2})$ $^{1}S_{0}$ $-$ $(6s6p)$ $^{3}P_{1}$ transition in $^{171}$Yb, where the nuclear spin $I=1/2$. The resonance is inherently insensitive to first-order Zeeman shifts. Optical frequency measurements of the $F'=1/2$ hyperfine line recorded over several weeks demonstrate a statistical uncertainty of $2\\times10^{-11}$. The inverted crossover resonance found with the $F'=3/2$ line is used for 556 nm laser frequency stabilization and this light cools $^{171}$Yb atoms in a two-stage magneto-optical trap. We test the atomic cloud temperatures on the frequency instability of the light.

  14. Tuning the quantum critical crossover in quantum dots

    Science.gov (United States)

    Murthy, Ganpathy

    2005-03-01

    Quantum dots with large Thouless number g embody a regime where both disorder and interactions can be treated nonperturbatively using large-N techniques (with N=g) and quantum phase transitions can be studied. Here we focus on dots where the noninteracting Hamiltonian is drawn from a crossover ensemble between two symmetry classes, where the crossover parameter introduces a new, tunable energy scale independent of and much smaller than the Thouless energy. We show that the quantum critical regime, dominated by collective critical fluctuations, can be accessed at the new energy scale. The nonperturbative physics of this regime can only be described by the large-N approach, as we illustrate with two experimentally relevant examples. G. Murthy, PRB 70, 153304 (2004). G. Murthy, R. Shankar, D. Herman, and H. Mathur, PRB 69, 075321 (2004)

  15. Thermodynamics of ultracold Bose gases at a dimensional crossover

    Science.gov (United States)

    Labouvie, Ralf; Vogler, Andreas; Guarrera, Vera; Ott, Herwig

    2013-05-01

    We have studied the thermodynamics of ultracold Bose gases in the crossover from a three-dimensional to a one-dimensional regime. In our experiment, we use a focused electron-beam to probe in situ atomic density distributions with high temporal and spatial resolution. Starting with a Bose-Einstein-Condensate in a single beam optical dipole trap we can create one-dimensional systems by loading the atoms in a two-dimensional blue-detuned optical lattice. With increasing strength of the lattices we go from a three-dimensional into a one-dimensional system. Furthermore we tune the interaction strengths of the one-dimensional quantum-gases from weak (quasi-condensate) to strong (Tonks-Girardeau). By measuring the density profiles and applying an inverse Abel-Transformation we extract the equation of states of these systems and characterize the crossover from the three-dimensional to the one-dimensional regime.

  16. Microsporogenesis in the endangered species Cupressus dupreziana A. Camus: evidence for meiotic defects yielding unreduced and abortive pollen.

    Science.gov (United States)

    El Maâtaoui, M; Pichot, C

    2001-08-01

    To understand the reproductive biology of Cupressus dupreziana A. Camus (Cupressaceae), a highly endangered Mediterranean conifer, the processes of microsporogenesis and pollen differentiation were investigated cytologically. Pre-meiotic development proved to be similar to the coniferous pattern: the microsporangia differentiated sporogenous tissue in which microsporocytes separated and underwent meiosis. As the meiotic steps proceeded, unexpected irregularities were observed concerning chromosomal and nuclear behaviour. This mainly included: abnormal chromosome segregation and cytokinesis, and nuclear fusion of the meiotic products. The result was the formation, in the same microsporangium, of heterogeneous microspore populations arranged in monads, dyads, triads, tetrads, and polyads, and cytoplasts giving rise to pollen grains of different sizes. This indicates that in C. dupreziana both abortive and unreduced pollen grains are generated. The significance of the finding is discussed in relation to reproductive biology and vulnerability to extinction.

  17. Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata.

    Science.gov (United States)

    Guan, J-Z; Wang, J-J; Cheng, Z-H; Liu, Y; Li, Z-Y

    2012-01-17

    Houttuynia cordata (Saururaceae) is a leaf vegetable and a medicinal herb througout much of Asia. Cytomixis and meiotic abnormalities during microsporogenesis were found in two populations of H. cordata with different ploidy levels (2n = 38, 96). Cytomixis occurred in pollen mother cells during meiosis at high frequencies and with variable degrees of chromatin/chromosome transfer. Meiotic abnormalities, such as chromosome laggards, asymmetric segregation and polyads, also prevailed in pollen mother cells at metaphase of the first division and later stages. They were caused by cytomixis and resulted in very low pollen viability and male sterility. Pollen mother cells from the population with 2n = 38 showed only simultaneous cytokinesis, but most pollen mother cells from the population with 2n = 96 showed successive cytokinesis; a minority underwent simultaneous cytokinesis. Cytomixis and irregular meiotic divisions appear to be the origin of the intraspecific polyploidy in this species, which has large variations in chromosome numbers.

  18. The case-crossover study design in pharmacoepidemiology.

    Science.gov (United States)

    Delaney, Joseph A 'Chris'; Suissa, Samy

    2009-02-01

    In the study of the association of transient drug exposures with acute outcomes, the case-crossover design is an efficient alternative to the case-control approach. This design based exclusively on the case series uses within-subject comparisons of drug exposures over time to estimate the rate ratio of the outcome associated with the drug under study. This design inherently removes the biasing effects of unmeasured, time-invariant confounding factors from the estimated rate ratio, but is sensitive to several assumptions. We illustrated the case-crossover design and explored its sensitivity using data from 4028 cases of gastrointestinal bleeding from the General Practice Research Database in assessing the effects of the drug warfarin. We compared the use of different time window lengths to assess exposure and considered the use of a case-time-control design to account for exposure time trends. The case-crossover approach found no excess risk of bleeding with warfarin exposure [rate ratio 0.98; 95% confidence interval (CI): 0.74-1.28] using a 1-month time window. When we restricted the analysis to subjects with truly transient drug exposure, defined by 1 to 3 prescriptions in the previous year, the rate ratio was 2.59 (95% CI: 1.42-4.74). To consider the longer 1-year exposure time window, the case-time-control approach was used and resulted in a rate ratio of 1.72 (95% CI: 1.08-2.43). In conclusion, the case-crossover design is potentially a powerful approach to assess the risk of drugs. This design is, however, highly sensitive to assumptions about intermittency of drug use and the length of the exposure time window, as demonstrated with the example of bleeding associated with warfarin use.

  19. Ternary and senary representations using DNA double-crossover tiles

    CERN Document Server

    Kim, Byeonghoon; Son, Junyoung; Kim, Junghoon; Hwang, Si Un; Dugasani, Sreekantha Reddy; Kim, Min Hyeok; Kim, Byung-Dong; Chang, Iksoo; Liu, Wing Kam; Kim, Moon Ki; Park, Sung Ha

    2016-01-01

    The information capacity of double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure.

  20. Hyperon puzzle, hadron-quark crossover and massive neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Kota [The University of Tokyo, Department of Physics, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); Hatsuda, Tetsuo [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan); The University of Tokyo, Kavli IPMU (WPI), Chiba (Japan); Takatsuka, Tatsuyuki [Nishina Center, RIKEN, Theoretical Research Division, Wako (Japan)

    2016-03-15

    Bulk properties of cold and hot neutron stars are studied on the basis of the hadron-quark crossover picture where a smooth transition from the hadronic phase to the quark phase takes place at finite baryon density. By using a phenomenological equation of state (EOS) ''CRover'', which interpolates the two phases at around 3 times the nuclear matter density (ρ{sub 0}), it is found that the cold NSs with the gravitational mass larger than 2M {sub CircleDot} can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition. The radii of the cold NSs with the CRover EOS are in the narrow range (12.5 ± 0.5) km which is insensitive to the NS masses. Due to the stiffening of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most 4 ρ{sub 0} and the hyperon-mixing barely occurs inside the NS core. This constitutes a solution of the long-standing hyperon puzzle. The effect of color superconductivity (CSC) on the NS structures is also examined with the hadron-quark crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due to two-flavor CSC (2SC) takes place and the maximum mass is reduced by about 0.2M {sub CircleDot}. The CRover EOS is generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition. The gravitational energy release and the spin-up rate during the contraction from the hot NS to the cold NS are also estimated. (orig.)

  1. Surface and Size Effects in Spin-Crossover Nanocrystals

    Science.gov (United States)

    Gudyma, Iurii; Ivashko, Victor; Bobák, Andrej

    2017-02-01

    We perform Monte Carlo simulations to analyze the surface and size effects in spin-crossover nanocrystals using an Ising-like model including surface and core intermolecular interactions. The consequences of downsizing effect on the transition temperature and the width of hysteresis as finger of the system cooperativity are discussed. The critical temperature is calculated using the real-space renormalization method. The obtained results are in agreement with the experimental data.

  2. Crossover from Nonequilibrium Fractal Growth to Equilibrium Compact Growth

    DEFF Research Database (Denmark)

    Sørensen, Erik Schwartz; Fogedby, Hans C.; Mouritsen, Ole G.

    1988-01-01

    Solidification controlled by vacancy diffusion is studied by Monte Carlo simulations of a two-dimensional Ising model defined by a Hamiltonian which models a thermally driven fluid-solid phase transition. The nonequilibrium morphology of the growing solid is studied as a function of time as the s...... as the system relaxes into equilibrium described by a temperature. At low temperatures the model exhibits fractal growth at early times and crossover to compact solidification as equilibrium is approached....

  3. Light slowdown in the vicinity of cross-over resonances

    CERN Document Server

    Perdian, M; Zaremba, J; Zielinska-Kaniasty, S

    2004-01-01

    Pulse propagation is considered in an inhomogeneously broadened medium of three-level atoms in a V-configuration, dressed by a counter-propagating pump pulse. A significant signal slowdown is demonstrated in this of the three frequency windows of a reduced absorption and a steep normal dispersion, which is due to a cross-over resonance. Particular properties of the group index in the vicinity of such a resonance are demonstrated in the case of closely spaced upper levels.

  4. The frequency crossover for the Goos-Hanchen shift

    OpenAIRE

    Araujo, Manoel; Carvalho, Silvania; De Leo, Stefano

    2014-01-01

    For total reflection, the Goos-Hanchen (GH) shift is proportional to the wavelength of the laser beam. At critical angles, such a shift is instead proportional to the square root of the product of the beam waist and wavelength. By using the stationary phase method (SPM) and, when necessary, numerical calculations, we present a detailed analysis of the frequency crossover for the GH shift. The study, done in different incidence regions, sheds new light on the validity of the analytic formulas ...

  5. Plasticity in the Meiotic Epigenetic Landscape of Sex Chromosomes in Caenorhabditis Species.

    Science.gov (United States)

    Larson, Braden J; Van, Mike V; Nakayama, Taylor; Engebrecht, JoAnne

    2016-08-01

    During meiosis in the heterogametic sex in some species, sex chromosomes undergo meiotic sex chromosome inactivation (MSCI), which results in acquisition of repressive chromatin and transcriptional silencing. In Caenorhabditis elegans, MSCI is mediated by MET-2 methyltransferase deposition of histone H3 lysine 9 dimethylation. Here we examined the meiotic chromatin landscape in germ lines of four Caenorhabditis species; C. remanei and C. brenneri represent ancestral gonochorism, while C. briggsae and C. elegans are two lineages that independently evolved hermaphroditism. While MSCI is conserved across all four species, repressive chromatin modifications are distinct and do not correlate with reproductive mode. In contrast to C. elegans and C. remanei germ cells where X chromosomes are enriched for histone H3 lysine 9 dimethylation, X chromosomes in C. briggsae and C. brenneri germ cells are enriched for histone H3 lysine 9 trimethylation. Inactivation of C. briggsae MET-2 resulted in germ-line X chromosome transcription and checkpoint activation. Further, both histone H3 lysine 9 di- and trimethylation were reduced in Cbr-met-2 mutant germ lines, suggesting that in contrast to C. elegans, H3 lysine 9 di- and trimethylation are interdependent. C. briggsae H3 lysine 9 trimethylation was redistributed in the presence of asynapsed chromosomes in a sex-specific manner in the related process of meiotic silencing of unsynapsed chromatin. However, these repressive marks did not influence X chromosome replication timing. Examination of additional Caenorhabditis species revealed diverse H3 lysine 9 methylation patterns on the X, suggesting that the sex chromosome epigenome evolves rapidly.

  6. Escape of X-linked miRNA genes from meiotic sex chromosome inactivation.

    Science.gov (United States)

    Sosa, Enrique; Flores, Luis; Yan, Wei; McCarrey, John R

    2015-11-01

    Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis.

  7. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis.

    Science.gov (United States)

    Wang, Qian; Wei, Haojie; Du, Juan; Cao, Yan; Zhang, Nana; Liu, Xiaoyun; Liu, Xiaoyu; Chen, Dandan; Ma, Wei

    2016-01-01

    Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.

  8. Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Lima, D C; Braz, G T; Dos Reis, G B; Techio, V H; Davide, L C; de F B Abreu, A

    2016-05-23

    The common bean has great social and economic importance in Brazil and is the subject of a high number of publications, especially in the fields of genetics and breeding. Breeding programs aim to increase grain yield; however, mitosis and meiosis represent under explored research areas that have a direct impact on grain yield. Therefore, the study of cell division could be another tool available to bean geneticists and breeders. The aim of this study was to investigate irregularities occurring during the cell cycle and meiosis in common bean. The common bean cultivar used was BRSMG Talismã, which owing to its high yield and grain quality is recommended for cultivation in Brazil. We classified the interphase nuclei, estimated the mitotic and meiotic index, grain pollen viability, and percentage of abnormalities in both processes. The mitotic index was 4.1%, the interphase nucleus was non-reticulated, and 19% of dividing somatic cells showed abnormal behavior. Meiosis also presented irregularities resulting in a meiotic index of 44.6%. Viability of pollen grains was 94.3%. These results indicate that the common bean cultivar BRSMG Talismã possesses repair mechanisms that compensate for changes by producing a large number of pollen grains. Another important strategy adopted by bean plants to ensure stability is the elimination of abnormal cells by apoptosis. As the common bean cultivar BRSMG Talismã is recommended for cultivation because of its good agronomic performance, it can be concluded that mitotic and meiotic irregularities have no negative influence on its grain quality and yield.

  9. Persistent User Bias in Case-Crossover Studies in Pharmacoepidemiology

    DEFF Research Database (Denmark)

    Hallas, Jesper; Pottegård, Anton; Wang, Shirley

    2016-01-01

    Studying the effect of chronic medication exposure by means of a case-crossover design may result in an upward-biased odds ratio. In this study, our aim was to assess the occurrence of this bias and to evaluate whether it is remedied by including a control group (the case-time-control design......). Using Danish data resources from 1995-2012, we conducted case-crossover and case-time-control analyses for 3 medications (statins, insulin, and thyroxine) in relation to 3 outcomes (retinal detachment, wrist fracture, and ischemic stroke), all with assumed null associations. Controls were matched on age......, sex, and index date, and exposure over the preceding 12 months was ascertained. For retinal detachment, the case-crossover odds ratio was 1.60 (95% confidence interval (CI): 1.42, 1.80) for statins, 1.40 (95% CI: 1.02, 1.92) for thyroxine, and 1.53 (95% CI: 1.04, 2.24) for insulin. Estimates...

  10. Residuals and outliers in replicate design crossover studies.

    Science.gov (United States)

    Schall, Robert; Endrenyi, Laszlo; Ring, Arne

    2010-07-01

    Outliers in bioequivalence trials may arise through various mechanisms, requiring different interpretation and handling of such data points. For example, regulatory authorities might permit exclusion from analysis of outliers caused by product or process failure, while exclusion of outliers caused by subject-by-treatment interaction generally is not acceptable. In standard 2 x 2 crossover studies it is not possible to distinguish between relevant types of outliers based on statistical criteria alone. However, in replicate design (2-treatment, 4-period) crossover studies three types of outliers can be distinguished: (i) Subject outliers are usually unproblematic, at least regarding the analysis of bioequivalence, and may require no further action; (ii) Subject-by-formulation outliers may affect the outcome of the bioequivalence test but generally cannot simply be removed from analysis; and (iii) Removal of single-data-point outliers from analysis may be justified in certain cases. As a very simple but effective diagnostic tool for the identification and classification of outliers in replicate design crossover studies we propose to calculate and plot three types of residual corresponding to the three different types of outliers that can be distinguished. The residuals are obtained from four mutually orthogonal linear contrasts of the four data points associated with each subject. If preferred, outlier tests can be applied to the resulting sets of residuals after suitable standardization.

  11. Master crossover functions for one-component fluids.

    Science.gov (United States)

    Garrabos, Yves; Lecoutre, Carole; Palencia, Fabien; Le Neindre, Bernard; Erkey, Can

    2008-02-01

    By introducing three well-defined dimensionless numbers, we establish the link between the scale dilatation method able to estimate master (i.e., unique) singular behaviors of the one-component fluid subclass and the universal crossover functions recently estimated [Garrabos and Bervillier, Phys. Rev. E 74, 021113 (2006)] from the bounded results of the massive renormalization scheme applied to the Phi(d)(4)(n) model of scalar order parameter (n=1) and three dimensions (d=3), representative of the Ising-like universality class. The master (i.e., rescaled) crossover functions are then able to fit the singular behaviors of any one-component fluid without adjustable parameter, using only one critical energy scale factor, one critical length scale factor, and two dimensionless asymptotic scale factors, which characterize the fluid critical interaction cell at its liquid-gas critical point. An additional adjustable parameter accounts for quantum effects in light fluids at the critical temperature. The effective extension of the thermal field range along the critical isochore where the master crossover functions seems to be valid corresponds to a correlation length greater than three times the effective range of the microscopic short-range molecular interaction.

  12. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    Science.gov (United States)

    Sugiyama, Tomoyasu; Sugioka-Sugiyama, Rie; Hada, Kazumasa; Niwa, Ryusuke

    2012-01-01

    In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ), and to UV. Interestingly, meiotic mRNAs--including moa1(+), mcp5(+), and mug96(+)--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2) in the C-terminal domain (CTD) of RNA polymerase II (Pol II), and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+), leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  13. Rhn1, a nuclear protein, is required for suppression of meiotic mRNAs in mitotically dividing fission yeast.

    Directory of Open Access Journals (Sweden)

    Tomoyasu Sugiyama

    Full Text Available In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in meiotic mRNA suppression in vegetative fission yeast. Rhn1 is homologous to budding yeast Rtt103 and localizes to one or a few discrete nuclear dots in growing vegetative cells. Rhn1 colocalizes with a pre-mRNA 3'-end processing factor, Pcf11, and with the 5'-3' exoribonuclease, Dhp1; moreover, Rhn1 coimmunoprecipitates with Pcf11. Loss of rhn1 results in elevated sensitivity to high temperature, to thiabendazole (TBZ, and to UV. Interestingly, meiotic mRNAs--including moa1(+, mcp5(+, and mug96(+--accumulate in mitotic rhn1Δ cells. Accumulation of meiotic mRNAs also occurs in strains lacking Lsk1, a kinase that phosphorylates serine 2 (Ser-2 in the C-terminal domain (CTD of RNA polymerase II (Pol II, and in strains lacking Sen1, an ATP-dependent 5'-3' RNA/DNA helicase: notably, both Lsk1 and Sen1 have been implicated in termination of Pol II-dependent transcription. Furthermore, RNAi knockdown of cids-2, a Caenorhabditis elegans ortholog of rhn1(+, leads to elevated expression of a germline-specific gene, pgl-1, in somatic cells. These results indicate that Rhn1 contributes to the suppression of meiotic mRNAs in vegetative fission yeast and that the mechanism by which Rhn1 downregulates germline-specific transcripts may be conserved in unicellular and multicellular organisms.

  14. Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast.

    Directory of Open Access Journals (Sweden)

    Bilge Argunhan

    Full Text Available Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs. The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI whereas no significant reduction was found in smaller chromosomes (III and VI. On the other hand, the absence of Rad17 (a critical component of the ATR pathway lead to an increase in DSB formation (chromosomes VII and II were tested. We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.

  15. The mouse Eb meiotic recombination hotspot contains a tissue-specific transcriptional enhancer.

    Science.gov (United States)

    Ling, X; Shenkar, R; Sakai, D; Arnheim, N

    1993-01-01

    A meiotic recombination hotspot exists within the second intron of the mouse major histocompatibility complex (MHC) gene, Eb. In the present study, a small fragment from the intron which contains two potential transcriptional regulatory elements was cloned into an expression vector and its effect on transcription was tested. This fragment was found to contain tissue-specific transcriptional enhancer activity. An octamer-like sequence and a B motif may contribute to this enhancer activity. Similar regulatory sequences with the same orientation and distance from one another are found in another mouse MHC recombination hotspot.

  16. Mitotic and meiotic chromosomes of a southern Brazilian population of Boophilus microplus (Acari, Ixodidae

    Directory of Open Access Journals (Sweden)

    Rosane Nunes Garcia

    Full Text Available Using conventional staining with acetic orcein and C-banding techniques it was investigated constitutive heterochromatin chromosomal polymorphisms and the mitotic and the meiotic behavior of male and female chromosomes of Boophilus microplus (Canestrini, 1887. Some differences were detected in the population of southern Brazil as compared to the data of other authors for populations in other latitudes. The differences being mainly concerned with the distribution of constitutive centromeric heterochromatin and variation in the length of heterochromatic blocks in the pericentromeric regions of some chromosome pairs.

  17. Molecular cell biology of male meiotic chromosomes and isolation of male meiocytes in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Yingxiang; Cheng, Zhihao; Lu, Pingli; Timofejeva, Ljudmilla; Ma, Hong

    2014-01-01

    Plants typically produce numerous flowers whose meiotic chromosomes are relatively easy to observe, making them excellent structures for studying the cellular processes underlying meiosis. In recent years, breakthroughs in light and electron microscopic technologies for small chromosomes, combined with molecular genetic methods, have resulted in major advances in the understanding of meiosis in the model plant Arabidopsis thaliana. In this chapter, we summarize protocols for basic cytology, fluorescence in situ hybridization, immunofluorescence, electron microscopy, and isolation of male meiocytes for the analysis of Arabidopsis meiosis.

  18. Effects of DNA damage on oocyte meiotic maturation and early embryonic development

    Directory of Open Access Journals (Sweden)

    Shen YIN,Junyu MA,Wei SHEN

    2014-09-01

    Full Text Available DNA damage is one of the most common threats to meiotic cells. It has the potential to induce infertility and genetic abnormalities that may be passed to the embryo. Here, we reviewed exogenous factors which could induce DNA damage. Specially, we addressed the different effects of DNA damage on mouse oocytes and embryonic development. Complex DNA damage, double-strand breaks, represents a more difficult repair process and involves various repair pathways. Understanding the mechanisms involved in DNA damage responses may improve therapeutic strategies for ovarian cancer and fertility preservation.

  19. Preferential accumulation of sex and Bs chromosomes in biarmed karyotypes by meiotic drive and rates of chromosomal changes in fishes.

    Science.gov (United States)

    Molina, Wagner F; Martinez, Pablo A; Bertollo, Luiz A C; Bidau, Claudio J

    2014-12-01

    Mechanisms of accumulation based on typical centromeric drive or of chromosomes carrying pericentric inversions are adjusted to the general karyotype differentiation in the principal Actinopterygii orders. Here, we show that meiotic drive in fish is also supported by preferential establishment of sex chromosome systems and B chromosomes in orders with predominantly bi-brachial chromosomes. The mosaic of trends acting at an infra-familiar level in fish could be explained as the interaction of the directional process of meiotic drive as background, modulated on a smaller scale by adaptive factors or specific karyotypic properties of each group, as proposed for the orthoselection model.

  20. Crossover between cooper-pair condensation and Bose condensation. Kupa tsui gyoshuku to Bose gyoshuku no crossover

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, K. (Osaka Univ., Osaka (Japan). Faculty of Engineering and Science)

    1992-06-05

    When the effective attractions acting among electrons are strengthened gradually, the superconducting state at low temperature is thought to cross over from Cooper pairs condensation to the state of dielectronic compound boson Bose condensation. Firstly, the ground state is discussed. Nozieres {ampersand} Schmitt-Rink (NSR) have proposed a framework for discussion of transition temperature crossover by introducing the effect of pair fluctuation having finite moment. T {sub c} can be expressed by BCS expression for weak coupling, and by ideal Bose gas transition temperature expression for strong coupling. For the middle of the two extremity limits, NSR obtain numerical solution for a three dimensional case to show the transition temperature and smooth transition of chemical potential at the temperature. Namely, the NSR theory seems to be able to express the crossover of the transition temperature consistently. It has, however, difficulty in the application to two dimensional problems. 14 refs., 3 figs.

  1. Evidence that meiotic sex chromosome inactivation is essential for male fertility.

    Science.gov (United States)

    Royo, Hélène; Polikiewicz, Grzegorz; Mahadevaiah, Shantha K; Prosser, Haydn; Mitchell, Mike; Bradley, Allan; de Rooij, Dirk G; Burgoyne, Paul S; Turner, James M A

    2010-12-07

    The mammalian X and Y chromosomes share little homology and are largely unsynapsed during normal meiosis. This asynapsis triggers inactivation of X- and Y-linked genes, or meiotic sex chromosome inactivation (MSCI). Whether MSCI is essential for male meiosis is unclear. Pachytene arrest and apoptosis is observed in mouse mutants in which MSCI fails, e.g., Brca1(-/-), H2afx(-/-), Sycp1(-/-), and Msh5(-/-). However, these also harbor defects in synapsis and/or recombination and as such may activate a putative pachytene checkpoint. Here we present evidence that MSCI failure is sufficient to cause pachytene arrest. XYY males exhibit Y-Y synapsis and Y chromosomal escape from MSCI without accompanying synapsis/recombination defects. We find that XYY males, like synapsis/recombination mutants, display pachytene arrest and that this can be circumvented by preventing Y-Y synapsis and associated Y gene expression. Pachytene expression of individual Y genes inserted as transgenes on autosomes shows that expression of the Zfy 1/2 paralogs in XY males is sufficient to phenocopy the pachytene arrest phenotype; insertion of Zfy 1/2 on the X chromosome where they are subject to MSCI prevents this response. Our findings show that MSCI is essential for male meiosis and, as such, provide insight into the differential severity of meiotic mutations' effects on male and female meiosis.

  2. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation.

    Science.gov (United States)

    Turner, James M A; Aprelikova, Olga; Xu, Xiaoling; Wang, Ruihong; Kim, Sangsoo; Chandramouli, Gadisetti V R; Barrett, J Carl; Burgoyne, Paul S; Deng, Chu-Xia

    2004-12-14

    In mammalian spermatogenesis, the X and Y chromosomes are transcriptionally silenced during the pachytene stage of meiotic prophase (meiotic sex chromosome inactivation, MSCI), forming a condensed chromatin domain termed the sex or XY body. The nucleosomal core histone H2AX is phosphorylated within the XY chromatin domain just prior to MSCI, and it has been hypothesized that this triggers the chromatin condensation and transcriptional repression. Here, we show that the kinase ATR localizes to XY chromatin at the onset of MSCI and that this localization is disrupted in mice with a mutant form of the tumor suppressor protein BRCA1. In the mutant pachytene cells, ATR is usually present at nonsex chromosomal sites, where it colocalizes with aberrant sites of H2AX phosphorylation; in these cells, there is MSCI failure. In rare pachytene cells, ATR does locate to XY chromatin, H2AX is then phosphorylated, a sex body forms, and MSCI ensues. These observations highlight an important role for BRCA1 in recruiting the kinase ATR to XY chromatin at the onset of MSCI and provide compelling evidence that it is ATR that phosphorylates H2AX and triggers MSCI.

  3. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA

    Science.gov (United States)

    Decker, Logan M.; Xiao, Hua; Boone, Erin C.; Vierling, Michael M.; Shanker, Benjamin S.; Kingston, Shanika L.; Boone, Shannon F.; Haynes, Jackson B.; Shiu, Patrick K.T.

    2017-01-01

    In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus combat these repetitive elements. One of these defense mechanisms is called meiotic silencing by unpaired DNA (MSUD), which identifies and silences unpaired genes during meiosis. Utilizing common RNA interference (RNAi) proteins, such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified an additional silencing component, namely the cap-binding complex (CBC). Made up of cap-binding proteins CBP20 and CBP80, CBC associates with the 5′ cap of mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. As seen in animals but not in plants, CBP20’s robust nuclear import depends on CBP80 in Neurospora. CBC interacts with a component (Argonaute) of the perinuclear meiotic silencing complex (MSC), directly linking the two cellular factors. PMID:28179391

  4. Biochanin a and Daidzein Influence Meiotic Maturation of Pig Oocytes in a Different Manner

    Directory of Open Access Journals (Sweden)

    Hošková K.

    2014-09-01

    Full Text Available The aim of the study was to determine the influence of different concentrations of phytoestrogens biochanin A (BIO A; 20, 40, 50μg ml-1 and daidzein (DAI; 10, 20, 40, 50μg ml-1 on the course of meiotic maturation of pig oocytes. After a 24-hour cultivation, a stage of nuclear maturation was achieved and the areas of cumulus-oocyte complexes (COCs, as an indicator of cumulus expansion, were evaluated. The effects of both contaminants on oocytes were mani - fested from the lowest concentration used. Nuclear maturation was inhibited in a dose-dependent manner in the case of BIO A. Effects of DAI reached a plateau at a concentration of 20μg ml-1.Possible relationship to limited solubility of DAI was excluded because limits of DAI solubility in culture medium were confirmed at 50 μg ml-1.The cumulus expansion was also influenced in a different manner - reduction of the COC’s area by BIO A was dose-dependent, whereas DAI had the strongest effect on CCs in the lowest and highest concentrations used. Both phytoestrogens negatively influence the meiotic maturation of porcine oocytes but there are significant differences in their concrete effects which could relate to the diverse mechanisms of their acting on target cells.

  5. Sperm Nuclear Expansion and Meiotic Maturation in Normal and Gynogenetic Eggs of the Scallop, Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sperm nuclear expansion, meiosis and the association of the male and female pronuclei leading to the four-cell stage in normal Chlamys farreri eggs were observed under a fluorescence microscope. The effects of ultraviolet (UV) irradiation on the fertilizing sperm were also examined. Both normal and UV-irradiated sperm nuclei enlarged at three distinct phases (phase A, metaphase Ⅰ; phase B, polar body formation; and phase C, female pronuclear development and expansion) that were temporally correlated with meiotic process of the maternal chromosomes. Sperm nuclei underwent a rapid, initial enlargement during phase A, but condensed slightly during phase B, then re-enlarged during phase C. The effects of UV irradiation were not apparent during transformation of the sperm nucleus into a male pronucleus, and there was not any apparent effect on meiotic maturation and development of the female pronucleus. However, the rate of expansion of the UV-irradiated sperm nuclei and the size of male pronuclei were reduced apparently. Unlike the female pronucleus, the male pronucleus derived from sperm genome inactivated by UV irradiation did not form chromosomes, but became a dense chromatin body (DCB). At mitotic anaphase, DCB did not participate in the karyokinesis of the first cleavage as evidenced by chromosomal nondisjunction, demonstrating the effectiveness of using UV irradiation to induce gynogenetic scallop embryos.

  6. Abnormal meiotic recombination with complex chromosomal rearrangement in an azoospermic man.

    Science.gov (United States)

    Wang, Liu; Iqbal, Furhan; Li, Guangyuan; Jiang, Xiaohua; Bukhari, Ihtisham; Jiang, Hanwei; Yang, Qingling; Zhong, Liangwen; Zhang, Yuanwei; Hua, Juan; Cooke, Howard J; Shi, Qinghua

    2015-06-01

    Spermatocyte spreading and immunostaining were applied to detect meiotic prophase I progression, homologous chromosome pairing, synapsis and recombination in an azoospermic reciprocal translocation 46, XY, t(5;7;9;13)(5q11;7p11;7p15;9q12;13p12) carrier. Histological examination of the haematoxylin and eosin stained testicular sections revealed reduced germ cells with no spermatids or sperm in the patient. TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labelling assay showed apoptotic cells in testicular sections of translocation carrier. Immnunofluorescence analysis indicated the presence of an octavalent in all the pachytene spermatocytes analysed in the patient. Meiotic progression was disturbed, as an increase in zygotene (P recombination frequency was observed on 5p, 5q, 7q, 9p and 13q in the translocation carrier compared with the reported controls. A significant reduction in XY recombination frequency was also found in the participants. Our results indicated that complex chromosomal rearrangements can impair synaptic integrity of translocated chromosomes, which may reduce chromosomal recombination on translocated as well as non-translocated chromosomes, a phenomenon commonly known as interchromosomal effect.

  7. Location of 45S Ribosomal Genes in Mitotic and Meiotic Chromosomes of Buthid Scorpions.

    Science.gov (United States)

    Mattos, Viviane Fagundes; Carvalho, Leonardo Sousa; Cella, Doralice Maria; Schneider, Marielle Cristina

    2014-09-01

    Buthid scorpions exhibit a high variability in diploid number within genera and even within species. Cytogenetically, Buthidae differs from other families of Scorpiones based on its low diploid numbers, holocentric chromosomes, and complex chromosomal chains, which form during meiosis. In this study, we analyzed the distribution of the 45S ribosomal DNA (rDNA) genes in the mitotic and meiotic chromosomes of seven buthid species belonging to the genera Rhopalurus and Tityus with the ultimate goal of elucidating the chromosome organization in these scorpions. The chromosome number ranged from 2n=6 to 2n=28. Despite the high variance in diploid number, all species examined carried their 45S rDNA sites in the terminal region of exactly two chromosomes. Analyses of meiotic cells revealed 45S rDNA clusters in the chromosomal chains of Rhopalurus agamemnon, Tityus bahiensis, Tityus confluens, and Tityus martinpaechi, or in bivalent-like configuration in Rhopalurus rochai, Tityus bahiensis, Tityus confluens, Tityus fasciolatus, and Tityus paraguayensis. In the species examined, the 45S rDNA sites colocalized with constitutive heterochromatin regions. In light of the high chromosome variability and maintenance of number and terminal position of 45S rDNA sites in buthids, the heterochromatin may act to conserve the integrity of the ribosomal genes.

  8. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Cloutier

    2015-10-01

    Full Text Available Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX. We find that DNA double-strand break (DSB foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.

  9. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals.

    Science.gov (United States)

    Cloutier, Jeffrey M; Mahadevaiah, Shantha K; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M A

    2015-10-01

    Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.

  10. Sperm nuclear expansion and meiotic maturation in normal and gynogenetic eggs of the scallop, Chlamys farreri

    Science.gov (United States)

    Pan, Ying; Li, Qi; Yu, Ruihai; Wang, Rucai

    2008-02-01

    Sperm nuclear expansion, meiosis and the association of the male and female pronuclei leading to the four-cell stage in normal Chlamys farreri eggs were observed under a fluorescence microscope. The effects of ultraviolet (UV) irradiation on the fertilizing sperm were also examined. Both normal and UV-irradiated sperm nuclei enlarged at three distinct phases (phase A, metaphase I; phase B, polar body formation; and phase C, female pronuclear development and expansion) that were temporally correlated with meiotic process of the maternal chromosomes. Sperm nuclei underwent a rapid, initial enlargement during phase A, but condensed slightly during phase B, then re-enlarged during phase C. The effects of UV irradiation were not apparent during transformation of the sperm nucleus into a male pronucleus, and there was not any apparent effect on meiotic maturation and development of the female pronucleus. However, the rate of expansion of the UV-irradiated sperm nuclei and the size of male pronuclei were reduced apparently. Unlike the female pronucleus, the male pronucleus derived from sperm genome inactivated by UV irradiation did not form chromosomes, but became a dense chromatin body (DCB). At mitotic anaphase, DCB did not participate in the karyokinesis of the first cleavage as evidenced by chromosomal nondisjunction, demonstrating the effectiveness of using UV irradiation to induce gynogenetic scallop embryos.

  11. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  12. Meiotic pairing as an indicator of genome composition in polyploid prairie cordgrass (Spartina pectinata Link).

    Science.gov (United States)

    Bishop, Jeffrey W; Kim, Sumin; Villamil, María B; Lee, D K; Rayburn, A Lane

    2017-04-01

    The existence of neopolyploidy in prairie cordgrass (Spartina pectinata Link) has been documented. The neohexaploid was discovered coexisting with tetraploids in central Illinois, and has been reported to exhibit competitiveness in the natural environment. It is hypothesized that the natural tetraploid cytotype produced the hexaploid cytotype via production of unreduced gametes. Meiosis I chromosome pairing was observed in tetraploid (2n = 4x = 40), hexaploid (2n = 6x = 60), and octoploid (2n = 8x = 80) accessions and the percentage of meiotic abnormality was determined. Significant differences in meiotic abnormality exist between tetraploid, hexaploid, and octoploid cytotypes. An elevated incidence of abnormal, predominantly trivalent pairing in the neohexaploid suggests that it may possess homologous chromosomes in sets of three, in contrast to the tetraploid and octoploid cytotypes, which likely possess homologous chromosomes in sets of two. Abnormal chromosome pairing in the hexaploid may result in unequal allocation of chromosomes to daughter cells during later stages of meiosis. Chromosome pairing patterns in tetraploid, hexaploid, and octoploid cytotypes indicate genome compositions of AABB, AAABBB, and AABBA'A'B'B', respectively.

  13. Reinvestigation of an endogenous meiotic drive system in the mosquito, Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Mori, Akio; Chadee, Dave D; Graham, Douglas H; Severson, David W

    2004-11-01

    We have initiated efforts to determine the molecular basis for the M(D) meiotic drive system in the mosquito, Aedes aegypti. The effect of the M(D) gene is a highly male-biased sex ratio, but varies depending on the frequency and sensitivity of a susceptible responder m(s) allele. The M(D) system has potential as a mechanism for driving trangenes for pathogen resistance into natural Ae. aegypti populations. Because all previously existing laboratory strains carrying the M(D) gene have been lost, we have selected for a new strain, T37, that carries a strong driver. Matings between T37 males and drive-susceptible m(s) females result in progeny with highly biased sex ratios, wherein only approximately 14.7% females are produced. We discuss the potential for identifying M(D) candidate genes based on comparisons with the well-described Drosophila melanogaster segregation distorter (SD) meiotic drive system and considerations for release of transgenic Ae. aegypti into natural populations where M(D) and insensitive m3 alleles are likely segregating.

  14. Meiotic drive impacts expression and evolution of x-linked genes in stalk-eyed flies.

    Science.gov (United States)

    Reinhardt, Josephine A; Brand, Cara L; Paczolt, Kimberly A; Johns, Philip M; Baker, Richard H; Wilkinson, Gerald S

    2014-01-01

    Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species.

  15. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA

    Directory of Open Access Journals (Sweden)

    Logan M. Decker

    2017-04-01

    Full Text Available In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus combat these repetitive elements. One of these defense mechanisms is called meiotic silencing by unpaired DNA (MSUD, which identifies and silences unpaired genes during meiosis. Utilizing common RNA interference (RNAi proteins, such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified an additional silencing component, namely the cap-binding complex (CBC. Made up of cap-binding proteins CBP20 and CBP80, CBC associates with the 5′ cap of mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. As seen in animals but not in plants, CBP20’s robust nuclear import depends on CBP80 in Neurospora. CBC interacts with a component (Argonaute of the perinuclear meiotic silencing complex (MSC, directly linking the two cellular factors.

  16. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy.

    Science.gov (United States)

    Traut, W; Winking, H

    2001-01-01

    We describe SC complements and results from comparative genomic hybridization (CGH) on mitotic and meiotic chromosomes of the zebrafish Danio rerio, the platyfish Xiphophorus maculatus and the guppy Poecilia reticulata. The three fish species represent basic steps of sex chromosome differentiation: (1) the zebrafish with an all-autosome karyotype; (2) the platyfish with genetically defined sex chromosomes but no differentiation between X and Y visible in the SC or with CGH in meiotic and mitotic chromosomes; (3) the guppy with genetically and cytogenetically differentiated sex chromosomes. The acrocentric Y chromosomes of the guppy consists of a proximal homologous and a distal differential segment. The proximal segment pairs in early pachytene with the respective X chromosome segment. The differential segment is unpaired in early pachytene but synapses later in an 'adjustment' or 'equalization' process. The segment includes a postulated sex determining region and a conspicuous variable heterochromatic region whose structure depends on the particular Y chromosome line. CGH differentiates a large block of predominantly male-specific repetitive DNA and a block of common repetitive DNA in that region.

  17. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    Science.gov (United States)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  18. Confined trisomy 8 mosaicism of meiotic origin: a rare cause of aneuploidy in childhood cancer.

    Science.gov (United States)

    Valind, Anders; Pal, Niklas; Asmundsson, Jurate; Gisselsson, David; Holmquist Mengelbier, Linda

    2014-07-01

    Whether chromosome abnormalities observed in tumor cells may in some cases reflect low-grade somatic mosaicism for anomalies present already at zygote formation, rather than acquired somatic mutations, has for long remained a speculation. We here report a patient with Wilms tumor, where constitutional somatic mosaicism of trisomy 8 was detected in a previously healthy 2 ½-year-old boy. Single Nucleotide Polymorphism (SNP) array analysis of tumor tissue revealed a complex distribution of allele frequencies for chromosome 8 that could not be explained solely by mitotic events. Combined analysis of allele frequencies, chromosome banding, and fluorescence in situ hybridization revealed that the majority of tumor cells contained four copies of chromosome 8, with three distinct haplotypes at a 2:1:1 ratio. Because the patient had not been subject to organ transplantation, these findings indicated that the tumor karyotype evolved from a cell with trisomy 8 of meiotic origin, with subsequent somatic gain of one additional chromosome copy. Haplotype analysis was consistent with trisomy 8 through nondisjunction at meiosis I. Matched normal renal tissue or peripheral blood did not contain detectable amounts of cells with trisomy 8, consistent with the complete lack of mosaic trisomy 8 syndrome features in the patient. This case provides proof of principle for the hypothesis that tumor genotypes may in rare cases reflect meiotic rather than mitotic events, also in patients lacking syndromic features. © 2014 Wiley Periodicals, Inc.

  19. Quadrivalent asymmetry in reciprocal translocation carriers predicts meiotic segregation patterns in cleavage stage embryos.

    Science.gov (United States)

    Zhang, Yueping; Zhu, Saijuan; Wu, Jialong; Liu, Suying; Sun, Xiaoxi

    2014-10-01

    The effect of quadrivalent geometry on meiotic behaviour was evaluated. Segregation patterns of 404 cleavage stage embryos from 40 reciprocal translocation carriers undergoing 75 PGD cycles were analysed according to the asymmetric degree of quadrivalent. The percentage of alternate products with severe asymmetric quadrivalents was significantly lower than patients with mild asymmetric quadrivalents (22.5% versus 38.7%, P = 0.001). The incidence of 3:1 products was significantly higher in patients with severe compared with mild asymmetric quadrivalents (23.1% versus 12.2%, P = 0.004). The incidence of adjacent 1 (25.8% versus 24.3%), 2 (11.5% versus 12.6%) and 4:0/other segregation products (17.0% versus 12.2%) were not statistically significantly different between embryos from patients with severe or mild asymmetric quadrivalents. After adjusting for the confounder of sex using a logistic regression model, the odds of alternate embryos is about one-half for carriers classified as severe (OR 0.456, 95% CI 0.291 to 0.705), and the odds of 3:1 embryos is 2.2 times higher for carriers with severe asymmetric quadrivalents (OR 2.235, 95% CI 1.318 to 3.846). Our results suggest that the meiotic segregation pattern is related to the degree of asymmetry of specific quadrivalents. Severe asymmetric quadrivalents increases the risk of abnormal embryos.

  20. Alteration of fasting heat production during fescue toxicosis in Holstein steers

    Science.gov (United States)

    This study was designed to examine alteration of fasting heat production (FHP) during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=348 ±13 kg) were weight-matched into pairs and utilized in a two period crossover design experiment. Each period consisted of two temperature segments,...

  1. Towards Analyzing Crossover Operators in Evolutionary Search via General Markov Chain Switching Theorem

    CERN Document Server

    Yu, Yang; Zhou, Zhi-Hua

    2011-01-01

    Evolutionary algorithms (EAs), simulating the evolution process of natural species, are used to solve optimization problems. Crossover (also called recombination), originated from simulating the chromosome exchange phenomena in zoogamy reproduction, is widely employed in EAs to generate offspring solutions, of which the effectiveness has been examined empirically in applications. However, due to the irregularity of crossover operators and the complicated interactions to mutation, crossover operators are hard to analyze and thus have few theoretical results. Therefore, analyzing crossover not only helps in understanding EAs, but also helps in developing novel techniques for analyzing sophisticated metaheuristic algorithms. In this paper, we derive the General Markov Chain Switching Theorem (GMCST) to facilitate theoretical studies of crossover-enabled EAs. The theorem allows us to analyze the running time of a sophisticated EA from an easy-to-analyze EA. Using this tool, we analyze EAs with several crossover o...

  2. Increased frequency of asynapsis and associated meiotic silencing of heterologous chromatin in the presence of irradiation-induced extra DNA double strand breaks.

    Science.gov (United States)

    Schoenmakers, Sam; Wassenaar, Evelyne; van Cappellen, Wiggert A; Derijck, Alwin A; de Boer, Peter; Laven, Joop S E; Grootegoed, J Anton; Baarends, Willy M

    2008-05-01

    In meiotic prophase of male placental mammals, the heterologous X and Y chromosomes remain largely unsynapsed, which activates meiotic sex chromosome inactivation (MSCI), leading to formation of the transcriptionally silenced XY body. MSCI is most likely related to meiotic silencing of unsynapsed chromatin (MSUC), a mechanism that can silence autosomal unsynapsed chromatin. However, heterologous synapsis and escape from silencing also occur. In mammalian species, formation of DNA double strand breaks (DSBs) during leptotene precedes meiotic chromosome pairing. These DSBs are essential to achieve full synapsis of homologous chromosomes. We generated 25% extra meiotic DSBs by whole body irradiation of mice. This leads to a significant increase in meiotic recombination frequency. In mice carrying translocation chromosomes with synaptic problems, we observed an approximately 35% increase in asynapsis and MSUC of the nonhomologous region in the smallest chromosome pair following irradiation. However, the same nonhomologous region in the largest chromosome pair, shows complete synapsis and escape from MSUC in almost 100% of the nuclei, irrespective of exposure to irradiation. We propose that prevention of synapsis and associated activation of MSUC is linked to the presence of unrepaired meiotic DSBs in the nonhomologous region. Also, spreading of synaptonemal complex formation from regions of homology may act as an opposing force, and drive heterologous synapsis.

  3. Meiotic studies of infertile men in case of non-obstructive azoospermia with normal karyotype and no microdeleted Y-chromosome precise the clinical couple management.

    Science.gov (United States)

    North, Marie-Odile; Lellei, Ilona; Erdei, Edit; Barbet, Jacques Patrick; Tritto, Joseph

    2004-01-01

    To identify meiotic criteria for infertility management in non-obstructive azoospermic men, a prospective and multicentric study was organized in Andrological Departments of Paris (France), Roma (Italy) and Budapest (Hungary). In 117 non-obstructive azoospermic men with normal karyotype and no Y-chromosome microdeletion, histology and meiotic studies on bilateral bipolar testicular biopsies were done. Histologically, 40 patients (34%) presented spermatocyte or spermatid arrest, 39 (33%) hypospermatogenesis whereas no meiotic cell could be observed in the remaining patients (33%). Cytogenetically, meiotic figures could only be obtained from the two first histological groups. Meiotic abnormalities were observed in a total of 44 patients (37.6%) including nine patients (7.7%) with severe class I and class IIB anomalies and 19 patients (16.2%) with class IIC environmentally linked meiotic abnormalities. These results provided essential clues for an accurate clinical management. For patients with no meiotic figures and patients with class I and class IIB anomalies, an hormonal stimulation is illusory and a sperm gift should be directly proposed. An hormonal stimulation should be proposed to all the other patients, either directly or following the treatment of the testicular microenvironment for the patients presenting class IIC anomalies. The genetic risk and possibility of prenatal chromosomal analysis in case of pregnancy should be clearly exposed to all the couples in all the cases where type IIA, III or IV anomalies are present. This therapeutical strategy has been applied to all the patients in our series.

  4. Meiotic behaviour and sperm aneuploidy in an infertile man with a mosaic 45,X/46,XY karyotype.

    Science.gov (United States)

    Ren, He; Chow, Victor; Ma, Sai

    2015-12-01

    The meiotic behaviour of the germ cells in 45,X/46,XY men has not been extensively studied. This study investigated the meiotic events and sperm aneuploidy in an azoospermic man with a 45,X/46,XY (50/50) mosaic karyotype to better understand the fate of the 45,X cells and the production of chromosomally abnormal spermatozoa. Combining immunofluorescence techniques and fluorescence in-situ hybridization, meiotic recombination, synapsis, meiotic sex chromosome inactivation (MSCI) and configuration were analysed, as well as sperm aneuploidy in the patient and 10 normal, fertile men. Despite the 50:50 somatic mosaicism in the patient, 25% of pachytene cells analysed were 45,X. Furthermore, 63% of pachytene cells were 46,XY with paired sex chromosomes, and 12% were 46,XY with unpaired sex chromosomes, which displayed abnormal MCSI patterns. Although the patient's testicular spermatozoa showed increased aneuploidy, the majority were of normal constitution. The X:Y sperm ratio was significantly increased compared with the controls (P < 0.001), which may indicate that some 45,X cells gave rise to X-bearing spermatozoa. The findings provide insight into the fate of 45,X/46,XY cells in meiosis, supporting the hypothesis that stringent checkpoints ensure the favourable production of spermatozoa with normal chromosomal constitution despite an individual's abnormal karyotype.

  5. Comparative Meiotic Studies in Triatoma sordida (Stål and T. guasayana Wygodzinsky & Abalos (Reduviidae, Heteroptera

    Directory of Open Access Journals (Sweden)

    P Rebagliati

    1998-05-01

    Full Text Available Triatoma sordida and T. guasayana are competent Trypanosoma cruzi vectors, with overlapping distribution areas in Argentina. Both species are morphologically similar, and their immature stages are hard to discriminate. Cytogenetic studies in the genus Triatoma reveal scarce karyotypic variations, being 2n= 20 + XY the most frequent diploid number in males. In the present work the meiotic behaviour of different Argentinian populations of T. sordida and T. guasayana has been analyzed; the meiotic karyotype of both species has also been compared. The species differ in total chromosome area and in the relative area of the sex chromosomes. These meiotic karyotypic differences constitute an additional tool for the taxonomic characterization of T. sordida and T. guasayana. The analysis of an interpopulation hybrid of T. sordida (Brazil x Argentina reveals a regular meiotic behaviour, despite the presence of heteromorphic bivalents. Our observations support the hypothesis that karyotype variations through the gain or loss of heterochromatin can not be considered as a primary mechanism of reproductive isolation in Triatoma.

  6. Evidence that sex chromosome asynapsis, rather than excess Y gene dosage, is responsible for the meiotic impairment of XYY mice.

    Science.gov (United States)

    Rodriguez, T A; Burgoyne, P S

    2000-01-01

    There is extensive evidence for the existence of a meiotic checkpoint that acts to eliminate spermatocytes that fail to achieve full sex chromosome synapsis at the pachytene stage of the first meiotic prophase. XYY mice are nearly always sterile, with clear signs of meiotic impairment, and sex chromosome asynapsis has been proposed to underlie this impairment. However, a study of XYY*(X) mice (mice having three sex chromosomes but only a single dose of Y genes) revealed that these mice are fertile, and thus implicated Y gene dosage as a major factor in the sterility of XYY mice. To address this question further, sex chromosome synapsis and spermatogenic proficiency were compared between XYY*(X) and XYY mice generated in the same litters. This established that differences in spermatogenic proficiency within and between the two genotypes correlated with the frequency of radial trivalent formation (full sex chromosome synapsis); XYY*(X) males, as a group, had double the radial trivalent frequency of XYY males. This observation provides strong support for the view that sex chromosome asynapsis (or some consequence thereof), rather than Y gene dosage, is the major factor leading to the meiotic impairment of XYY mice.

  7. The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in Arabidopsis.

    Science.gov (United States)

    Andreuzza, Sébastien; Nishal, Bindu; Singh, Aparna; Siddiqi, Imran

    2015-09-01

    Meiosis produces haploid cells essential for sexual reproduction. In yeast, entry into meiosis activates transcription factors which trigger a transcriptional cascade that results in sequential co-expression of early, middle and late meiotic genes. However, these factors are not conserved, and the factors and regulatory mechanisms that ensure proper meiotic gene expression in multicellular eukaryotes are poorly understood. Here, we report that DUET/MMD1, a PHD finger protein essential for Arabidopsis male meiosis, functions as a transcriptional regulator in plant meiosis. We find that DUET-PHD binds H3K4me2 in vitro, and show that this interaction is critical for function during meiosis. We also show that DUET is required for proper microtubule organization during meiosis II, independently of its function in meiosis I. Remarkably, DUET protein shows stage-specific expression, confined to diplotene. We identify two genes TDM1 and JAS with critical functions in cell cycle transitions and spindle organization in male meiosis, as DUET targets, with TDM1 being a direct target. Thus, DUET is required to regulate microtubule organization and cell cycle transitions during male meiosis, and functions as a direct transcription activator of the meiotic gene TDM1. Expression profiling showed reduced expression of a subset comprising about 12% of a known set of meiosis preferred genes in the duet mutant. Our results reveal the action of DUET as a transcriptional regulator during male meiosis in plants, and suggest that transcription of meiotic genes is under stagewise control in plants as in yeast.

  8. Chromosome analysis in the Kruger National Park: Mitotic and meiotic studies in the African elephant loxodonta africana

    Directory of Open Access Journals (Sweden)

    C. Wallace

    1978-09-01

    Full Text Available The present report is published because of the paucity of publication on the mitotic chromosomes of the African elephant Loxodonta africana, and because it is the fisrt study in which the meiotic chromosomes of the species are described.

  9. Single water entropy: hydrophobic crossover and application to drug binding.

    Science.gov (United States)

    Sasikala, Wilbee D; Mukherjee, Arnab

    2014-09-11

    Entropy of water plays an important role in both chemical and biological processes e.g. hydrophobic effect, molecular recognition etc. Here we use a new approach to calculate translational and rotational entropy of the individual water molecules around different hydrophobic and charged solutes. We show that for small hydrophobic solutes, the translational and rotational entropies of each water molecule increase as a function of its distance from the solute reaching finally to a constant bulk value. As the size of the solute increases (0.746 nm), the behavior of the translational entropy is opposite; water molecules closest to the solute have higher entropy that reduces with distance from the solute. This indicates that there is a crossover in translational entropy of water molecules around hydrophobic solutes from negative to positive values as the size of the solute is increased. Rotational entropy of water molecules around hydrophobic solutes for all sizes increases with distance from the solute, indicating the absence of crossover in rotational entropy. This makes the crossover in total entropy (translation + rotation) of water molecule happen at much larger size (>1.5 nm) for hydrophobic solutes. Translational entropy of single water molecule scales logarithmically (Str(QH) = C + kB ln V), with the volume V obtained from the ellipsoid of inertia. We further discuss the origin of higher entropy of water around water and show the possibility of recovering the entropy loss of some hypothetical solutes. The results obtained are helpful to understand water entropy behavior around various hydrophobic and charged environments within biomolecules. Finally, we show how our approach can be used to calculate the entropy of the individual water molecules in a protein cavity that may be replaced during ligand binding.

  10. Crossover between tetrahedral and hexagonal structures in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Chara, Osvaldo [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina); McCarthy, Andres N., E-mail: amccarthy@iflysib.unlp.edu.a [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina); Grigera, J. Raul [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina)

    2011-01-17

    It is widely accepted that liquid water structure is comprised of two closely interweaved components; i.e. tetrahedral (low density) and hexagonal (high density) structures. The relative amount of these components is temperature and pressure dependent. We propose an order parameter, based on the radial distribution function, that quantifies the relative structural composition at any defined temperature and pressure, thus establishing the crossover point in structural dominance. At 300 K this point lies close to 2 kbar, pressure at which water looses most of its 'anomalous' properties.

  11. The frequency crossover for the Goos-Hanchen shift

    CERN Document Server

    Araujo, Manoel; De Leo, Stefano

    2014-01-01

    For total reflection, the Goos-Hanchen (GH) shift is proportional to the wavelength of the laser beam. At critical angles, such a shift is instead proportional to the square root of the product of the beam waist and wavelength. By using the stationary phase method (SPM) and, when necessary, numerical calculations, we present a detailed analysis of the frequency crossover for the GH shift. The study, done in different incidence regions, sheds new light on the validity of the analytic formulas found in literature.

  12. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree.

    Directory of Open Access Journals (Sweden)

    Linnéa Smeds

    2016-05-01

    Full Text Available Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb than in female meiosis (2.28 cM/Mb, and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18 in favour of 'strong' (G, C over 'weak' (A, T alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups.

  13. The high frequency of sperm aneuploidy in klinefelter patients and in nonobstructive azoospermia is due to meiotic errors in euploid spermatocytes.

    Science.gov (United States)

    Vialard, François; Bailly, Marc; Bouazzi, Habib; Albert, Martine; Pont, Jean Christophe; Mendes, Vanda; Bergere, Marianne; Gomes, Denise Molina; de Mazancourt, Philippe; Selva, Jacqueline

    2012-01-01

    For nonobstructive azoospermic (NOA) patients with a normal karyotype or for Klinefelter syndrome (47,XXY) patients, intracytoplasmic sperm injection is associated with an increased aneuploidy risk in offspring. We examined testicular cells from patients with different azoospermia etiologies to determine the origin of the aneuploid spermatozoa. The incidence of chromosome abnormalities was investigated in all types of azoospermia. Four study subgroups were constituted: Klinefelter patients (group 1), NOA patients with spermatogenesis failure but a normal karyotype (group 2), obstructive azoospermic patients with normal spermatogenesis (group 3), and control patients with normal sperm (group 4). The pachytene stage (in the three azoospermic groups) and postmeiotic cells (in all groups) were analyzed with fluorescence in situ hybridization. No aneuploid pachytene spermatocytes were observed. Postmeiotic aneuploidy rates were higher in the two groups with spermatogenesis failure (5.3% and 4.0% for groups 1 and 2, respectively) than in patients with normal spermatogenesis (0.6% for group 3 and group 4). Whatever the etiology of the azoospermia, the spermatozoa originated from euploid pachytene spermatocytes. These results strengthen the hypothesis whereby sperm aneuploidy in both Klinefelter patients and NOA patients with a normal karyotype results from meiotic abnormalities and not from aneuploid spermatocytes. The fact that sperm aneuploidy was more frequent when spermatogenesis was altered suggests a deleterious testicular environment. The study results also provide arguments for offering preimplantation genetic diagnosis or prenatal diagnosis when a pregnancy occurs for fathers with NOA (whatever the karyotype).

  14. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity.

    Science.gov (United States)

    Liu, C; Duan, W; Li, R; Xu, S; Zhang, L; Chen, C; He, M; Lu, Y; Wu, H; Pi, H; Luo, X; Zhang, Y; Zhong, M; Yu, Z; Zhou, Z

    2013-06-20

    The effect of bisphenol A (BPA) on the reproductive system is highly debated but has been associated with meiotic abnormalities. However, evidence is lacking with regard to the mechanisms involved. In order to explore the underlying mechanisms of BPA-induced meiotic abnormalities in adult male rats, we exposed 9-week-old male Wistar rats to BPA by gavage at 0, 2, 20 or 200 μg/kg body weight (bw)/day for 60 consecutive days. 17β-Estradiol (E2) was administered at 10 μg/kg bw/day as the estrogenic positive control. Treatments with 200 μg/kg bw/day of BPA and E2 significantly decreased sperm counts and inhibited spermiation, characterized by an increase in stage VII and decrease in stage VIII in the seminiferous epithelium. This was concomitant with a disruption in the progression of meiosis I and the persistence of meiotic DNA strand breaks in pachytene spermatocytes,and the ataxia-telangiectasia-mutated and checkpoint kinase 2 signal pathway was also activated; Eventually, germ cell apoptosis was triggered as evaluated by terminal dUTP nick-end labeling assay and western blot for caspase 3. Using the estrogen receptor (ER) antagonist ICI 182780, we determined that ER signaling mediated BPA-induced meiotic disruption and reproductive impairment. Our results suggest that ER signaling-mediated meiotic disruption may be a major contributor to the molecular events leading to BPA-related male reproductive disorders. These rodent data support the growing association between BPA exposure and the rapid increase in the incidence of male reproductive disorders.

  15. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants

    Directory of Open Access Journals (Sweden)

    Pezzotti Mario

    2011-07-01

    Full Text Available Abstract Background Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. Results The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. Conclusion In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In

  16. Indication of BCS-BEC crossover behavior in halo nuclei

    CERN Document Server

    Hagino, K; Sagawa, H; Schuck, P

    2006-01-01

    We investigate the spatial structure of two-neutron wave function in a Borromean nucleus $^{11}$Li using a three-body model in which two valence neutrons interact with each other by a density-dependent contact force. The behavior of the neutron Cooper pair at different densities is simulated by calculating the two-neutron wave function at several distances between the core nucleus and the center of mass of the two neutrons. We find that the neutron pair wave function in $^{11}$Li has an oscillation at normal density, while it becomes a well localized single peak in the dilute density region around the nuclear surface. These features are in close analogue to the BCS-BEC crossover of the Cooper pair wave function found in the infinite nuclear matter. The present results also provide a unified picture of the di-neutron and the cigar-like configurations in Borromian nuclei as a manifestation of the BCS-BEC crossover phenomenon.

  17. Dimensional BCS-BEC crossover in ultracold Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, Igor

    2014-12-10

    We investigate thermodynamics and phase structure of ultracold Fermi gases, which can be realized and measured in the laboratory with modern trapping techniques. We approach the subject from a both theoretical and experimental perspective. Central to the analysis is the systematic comparison of the BCS-BEC crossover of two-component fermions in both three and two dimensions. A dimensional reduction can be achieved in experiments by means of highly anisotropic traps. The Functional Renormalization Group (FRG) allows for a description of both cases in a unified theoretical framework. In three dimensions we discuss with the FRG the influence of high momentum particles onto the density, extend previous approaches to the Unitary Fermi Gas to reach quantitative precision, and study the breakdown of superfluidity due to an asymmetry in the population of the two fermion components. In this context we also investigate the stability of the Sarma phase. For the two-dimensional system scattering theory in reduced dimension plays an important role. We present both the theoretically as well as experimentally relevant aspects thereof. After a qualitative analysis of the phase diagram and the equation of state in two dimensions with the FRG we describe the experimental determination of the phase diagram of the two-dimensional BCS-BEC crossover in collaboration with the group of S. Jochim at PI Heidelberg.

  18. Ordering and dimensional crossovers in metallic glasses and liquids

    Science.gov (United States)

    Chen, David Z.; An, Qi; Goddard, William A.; Greer, Julia R.

    2017-01-01

    The atomic-level structures of liquids and glasses are amorphous, lacking long-range order. We characterize the atomic structures by integrating radial distribution functions (RDF) from molecular dynamics (MD) simulations for several metallic liquids and glasses: C u46Z r54 , N i80A l20 , N i33.3Z r66.7 , and P d82S i18 . Resulting cumulative coordination numbers (CN) show that metallic liquids have a dimension of d =2.55 ±0.06 from the center atom to the first coordination shell and metallic glasses have d =2.71 ±0.04 , both less than 3. Between the first and second coordination shells, both phases crossover to a dimension of d =3 , as for a crystal. Observations from discrete atom center-of-mass position counting are corroborated by continuously counting Cu glass- and liquid-phase atoms on an artificial grid, which accounts for the occupied atomic volume. Results from Cu grid analysis show short-range d =2.65 for Cu liquid and d =2.76 for Cu glass. Cu grid structures crossover to d =3 at ξ ˜8 Å (˜3 atomic diameters). We study the evolution of local structural dimensions during quenching and discuss its correlation with the glass transition phenomenon.

  19. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids.

    Science.gov (United States)

    Turner, James M A; Mahadevaiah, Shantha K; Ellis, Peter J I; Mitchell, Michael J; Burgoyne, Paul S

    2006-04-01

    Transcriptional silencing of the sex chromosomes during male meiosis (MSCI) is conserved among organisms with limited sex chromosome synapsis, including mammals. Since the 1990s the prevailing view has been that MSCI in mammals is transient, with sex chromosome reactivation occurring as cells exit meiosis. Recently, we found that any chromosome region unsynapsed during pachytene of male and female mouse meiosis is subject to transcriptional silencing (MSUC), and we hypothesized that MSCI is an inevitable consequence of this more general meiotic silencing mechanism. Here, we provide direct evidence that asynapsis does indeed drive MSCI. We also show that a substantial degree of transcriptional repression of the sex chromosomes is retained postmeiotically, and we provide evidence that this postmeiotic repression is a downstream consequence of MSCI/MSUC. While this postmeiotic repression occurs after the loss of MSUC-related proteins at the end of prophase, other histone modifications associated with transcriptional repression have by then become established.

  20. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes.

    Science.gov (United States)

    Vernet, Nadège; Mahadevaiah, Shantha K; de Rooij, Dirk G; Burgoyne, Paul S; Ellis, Peter J I

    2016-10-13

    During spermatogenesis, germ cells that fail to synapse their chromosomes or fail to undergo meiotic sex chromosome inactivation (MSCI) are eliminated via apoptosis during mid-pachytene. Previous work showed that Y-linked genes Zfy1 and Zfy2 act as 'executioners' for this checkpoint, and that wrongful expression of either gene during pachytene triggers germ cell death. Here, we show that in mice, Zfy genes are also necessary for efficient MSCI and the sex chromosomes are not correctly silenced in Zfy-deficient spermatocytes. This unexpectedly reveals a triple role for Zfy at the mid-pachytene checkpoint in which Zfy genes first promote MSCI, then monitor its progress (since if MSCI is achieved, Zfy genes will be silenced), and finally execute cells with MSCI failure. This potentially constitutes a negative feedback loop governing this critical checkpoint mechanism.

  1. Preparation and analysis of spermatocyte meiotic pachytene bivalents of pigs for gene mapping

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Well-spread meiotic pachytene bivalents were obtained by using the prolonged hypotonic treatment com-bined with high chloroform Carnory's fixative solution from cells of the testes of domestic pigs. Comparisonin the division index and length of pachytenc bivalents with metaphase chromosomes showed that those ofthe former are 5 times higher and 3.42(1.87-5.98) times longer than those of the latter. Comparative studieson chromomere maps of bivalents and mitotic chromosomal G-bands were conducted by using the chromo-some 12 as a example. Sex vesicle and various shapes of synaptic sex chromosomes have been observed.Two-color PRimed IN Situ (PRINS) labeling has been conducted successfully on pachytene bivalents of pigs.

  2. Ascospores of large-spored Metschnikowia species are genuine meiotic products of these yeasts

    DEFF Research Database (Denmark)

    Marinoni, G.; Piskur, Jure; Lachance, M.A.

    2003-01-01

    continentalis var. continentalis, and M. continentalis var. borealis. Asci were dissected and the segregation patterns for various phenotypes analyzed. In all cases (n = 47) both mating types (h(+) and h(-)) were recovered in pairs of sister spores, casting further uncertainty as to whether normal meiosis takes...... place. However, the segregation patterns for cycloheximide resistance and several auxotrophic markers were random, suggesting that normal meiosis indeed occurs. To explain the lack of second-division segregation of mating types, we concluded that crossing-over does not occur between the mating......-type locus and the centromere, and that meiosis I is tied to spore formation, which explains why the number of spores is limited to two. The latter assumption was also supported by fluorescence microscopy. The second meiotic division takes place inside the spores and is followed by the resorption of two...

  3. Single-molecule observation of DNA compaction by meiotic protein SYCP3

    Science.gov (United States)

    Syrjänen, Johanna L; Heller, Iddo; Candelli, Andrea; Davies, Owen R; Peterman, Erwin J G; Wuite, Gijs J L; Pellegrini, Luca

    2017-01-01

    In a previous paper (Syrjänen et al., 2014), we reported the first structural characterisation of a synaptonemal complex (SC) protein, SYCP3, which led us to propose a model for its role in chromosome compaction during meiosis. As a component of the SC lateral element, SYCP3 has a critical role in defining the specific chromosome architecture required for correct meiotic progression. In the model, the reported compaction of chromosomal DNA caused by SYCP3 would result from its ability to bridge distant sites on a DNA molecule with the DNA-binding domains located at each end of its strut-like structure. Here, we describe a single-molecule assay based on optical tweezers, fluorescence microscopy and microfluidics that, in combination with bulk biochemical data, provides direct visual evidence for our proposed mechanism of SYCP3-mediated chromosome organisation. DOI: http://dx.doi.org/10.7554/eLife.22582.001 PMID:28287952

  4. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error.

    Science.gov (United States)

    Vogt, E; Kirsch-Volders, M; Parry, J; Eichenlaub-Ritter, U

    2008-03-12

    The spindle assembly checkpoint (SAC) monitors attachment to microtubules and tension on chromosomes in mitosis and meiosis. It represents a surveillance mechanism that halts cells in M-phase in the presence of unattached chromosomes, associated with accumulation of checkpoint components, in particular, Mad2, at the kinetochores. A complex between the anaphase promoting factor/cylosome (APC/C), its accessory protein Cdc20 and proteins of the SAC renders APC/C inactive, usually until all chromosomes are properly assembled at the spindle equator (chromosome congression) and under tension from spindle fibres. Upon release from the SAC the APC/C can target proteins like cyclin B and securin for degradation by the proteasome. Securin degradation causes activation of separase proteolytic enzyme, and in mitosis cleavage of cohesin proteins at the centromeres and arms of sister chromatids. In meiosis I only the cohesin proteins at the sister chromatid arms are cleaved. This requires meiosis specific components and tight regulation by kinase and phosphatase activities. There is no S-phase between meiotic divisions. Second meiosis resembles mitosis. Mammalian oocytes arrest constitutively at metaphase II in presence of aligned chromosomes, which is due to the activity of the cytostatic factor (CSF). The SAC has been identified in spermatogenesis and oogenesis, but gender-differences may contribute to sex-specific differential responses to aneugens. The age-related reduction in expression of components of the SAC in mammalian oocytes may act synergistically with spindle and other cell organelles' dysfunction, and a partial loss of cohesion between sister chromatids to predispose oocytes to errors in chromosome segregation. This might affect dose-response to aneugens. In view of the tendency to have children at advanced maternal ages it appears relevant to pursue studies on consequences of ageing on the susceptibility of human oocytes to the induction of meiotic error by

  5. Mitotic and Meiotic Behavior of B Chromosomes in Crenicichla lepidota: New Report in the Family Cichlidae.

    Science.gov (United States)

    Pires, Larissa B; Sampaio, Tatiane R; Dias, Ana Lucia

    2015-01-01

    B chromosomes are additional genetic elements to the standard complement. They display distinctive features and have been found in 15% of eukaryote species. In this study, we analyzed 4 populations of Crenicichla lepidota from hydrographic system of Laguna dos Patos/RS (Brazil). All specimens showed 2n = 48 with 6m + 42st - a, FN = 54, with a secondary constriction on the first pair of the complement. Among the 18 samples analyzed, 6 individuals belonging to the Gasômetro and Saco da Alemoa populations presented 1-3 small-sized heterochromatic B chromosomes, with intra- and interindividual variation. Simple AgNORs coincident with 18S rDNA and CMA3 positive/DAPI negative sites were present in all populations. The extra chromosomes did not exhibit any 18S rDNA sites. The meiotic analyses showed heteropycnotic regions in leptotene and zygotene stages, which may be related to the presence of B chromosomes. During pachytene were found 24 bivalents and 1 spatially separated, as well as during metaphases I and diplotene, indicating that there is no association between B chromosomes and those of the A complement. During diakinesis, an unusual meiotic configuration was observed, revealing a proximity between the bivalent and chromosome B (univalent), that might be the result of a heterochromatin affinity between these chromosomes. In anaphase I, late migration of B chromosomes was detected. The low frequency of B chromosomes in the Cichlidae family and in Crenicichla suggests its recent origin in this group and may be ascribable to animal exposure to deleterious effects under certain environmental conditions. Moreover, this is the first report in C. lepidota.

  6. Meiotic Interactors of a Mitotic Gene TAO3 Revealed by Functional Analysis of its Rare Variant

    Directory of Open Access Journals (Sweden)

    Saumya Gupta

    2016-08-01

    Full Text Available Studying the molecular consequences of rare genetic variants has the potential to identify novel and hitherto uncharacterized pathways causally contributing to phenotypic variation. Here, we characterize the functional consequences of a rare coding variant of TAO3, previously reported to contribute significantly to sporulation efficiency variation in Saccharomyces cerevisiae. During mitosis, the common TAO3 allele interacts with CBK1—a conserved NDR kinase. Both TAO3 and CBK1 are components of the RAM signaling network that regulates cell separation and polarization during mitosis. We demonstrate that the role of the rare allele TAO3(4477C in meiosis is distinct from its role in mitosis by being independent of ACE2—a RAM network target gene. By quantitatively measuring cell morphological dynamics, and expressing the TAO3(4477C allele conditionally during sporulation, we show that TAO3 has an early role in meiosis. This early role of TAO3 coincides with entry of cells into meiotic division. Time-resolved transcriptome analyses during early sporulation identified regulators of carbon and lipid metabolic pathways as candidate mediators. We show experimentally that, during sporulation, the TAO3(4477C allele interacts genetically with ERT1 and PIP2, regulators of the tricarboxylic acid cycle and gluconeogenesis metabolic pathways, respectively. We thus uncover a meiotic functional role for TAO3, and identify ERT1 and PIP2 as novel regulators of sporulation efficiency. Our results demonstrate that studying the causal effects of genetic variation on the underlying molecular network has the potential to provide a more extensive understanding of the pathways driving a complex trait.

  7. Zona pellucida birefringence and meiotic spindle visualisation of human oocytes are not influenced by IVM technology.

    Science.gov (United States)

    Omidi, Marjan; Khalili, Mohammad Ali; Ashourzadeh, Sareh; Rahimipour, Marzieh

    2014-03-01

    The aim of the present study was to investigate the relationship between the presence of the meiotic spindle and zona pellucida (ZP) birefringence with morphology of in vivo- and in vitro-matured human oocytes. Germinal vesicles (n=47) and MI (n=38) oocytes obtained from stimulated ovaries of patients undergoing intracytoplasmic sperm injection (ICSI) underwent IVM. Using a PolScope (OCTAX PolarAID; Octax, Herbon, Germany), the presence of spindles and ZP birefringence was assessed in both in vivo-matured (n=56) and IVM (n=56) oocytes. In addition, the morphology of each matured oocyte was evaluated microscopically. There were insignificant differences for ZP birefringence and meiotic spindle between the in vivo-matured and IVM MII oocytes. Subanalysis revealed that the rates of morphologically abnormal oocytes did not differ significantly between the two groups, except in the case of irregular shape (P=0.001), refractile body (P=0.001) and fragmented polar body (P=0.03), which were higher in IVM oocytes. In the case of in vivo-matured oocytes, a significantly higher percentage of oocytes with intracytoplasmic and both intra- and extracytoplasmic abnormalities have a low birefringent ZP (P=0.007 and P=0.02, respectively). There was no relationship between morphological abnormalities and spindle detection. The findings suggest that clinical IVM is a safe technology that maintains the high maturation rate and integrity of oocytes. In addition, the use of the non-invasive PolScope is recommended for the detection of oocytes most suitable for ICSI.

  8. Male meiotic segregation analyses of peri- and paracentric inversions in the pig species.

    Science.gov (United States)

    Massip, K; Bonnet, N; Calgaro, A; Billoux, S; Baquié, V; Mary, N; Bonnet-Garnier, A; Ducos, A; Yerle, M; Pinton, A

    2009-01-01

    Inversions are well-known structural chromosomal rearrangements in humans and pigs. Such rearrangements generally have no effect on the carriers' phenotype. However, the presence of an inversion can lead to spermatogenesis impairments and to the production of unbalanced (recombinant) gametes, responsible for early miscarriages, stillbirth, or congenital abnormalities. Sperm samples from boars heterozygote for pericentric inv(2)(p1.1;q1.1), inv(2) (p1.1;q2.1), inv(1)(p2.1;q2.10), or inv(1)(p2.4;q2.9), as well as for paracentric inv(2)(q1.3;q2.5) or inv(1)(q1.2;q2.4) were analyzed using sperm FISH (fluorescent in situ hybridization on decondensed sperm heads) to determine the male meiotic segregation profiles of the rearrangements. Furthermore, the availability of sperm samples for 2 unrelated carriers of inv(2)(p1.1;q1.1) allowed us to check for the occurrence of inter-individual variability of the rates of unbalanced meiotic products for this rearrangement. The estimated proportions of recombinant gametes were very low for all the inversions studied (0.62%, 1.30%, 3.05%, 1.27%, 4.12% and 0.84%, respectively), albeit significantly higher than the control. The rearrangements should therefore have very little impact on the reproductive performance of the carriers. No difference was found between the 2 carriers of inv(2)(p1.1;q1.1), suggesting a lack of inter-individual variability for this rearrangement. Overall, no significant correlation was found between the sizes of the inverted fragments and the proportions of recombinant (unbalanced) gametes for the 6 inversions studied. This is in contradiction with most human results. Further studies (pairing and recombination analysis using immunostaining techniques) should be carried out to elucidate the origin of such an inter-species difference.

  9. Mammalian DNA ligase III: Molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingwen; Danehower, S.; Besterman, J.M.; Husain, I. [Glaxo Research Inst., Research Triangle Park, NC (United States)] [and others

    1995-10-01

    Three biochemically distinct DNA ligase activities have been identified in mammalian cell extracts. We have recently purified DNA ligase II and DNA ligase III to near homogeneity from bovine liver and testis tissue, respectively. Amino acid sequencing studies indicated that these enzymes are encoded by the same gene. In the present study, human and murine cDNA clones encoding DNA ligase III were isolated with probes based on the peptide sequences. The human DNA ligase III cDNA encodes a polypeptide of 862 amino acids, whose sequence is more closely related to those of the DNA ligases encoded by poxviruses than to replicative DNA ligases, such as human DNA ligase I. In vitro transcription and translation of the cDNA produced a catalytically active DNA ligase similar in size and substrate specificity to the purified bovine enzyme. The DNA ligase III gene was localized to human chromosome 17, which eliminated this gene as a candidate for the cancer-prone disease Bloom syndrome that is associated with DNA joining abnormalities. DNA ligase III is ubiquitously expressed at low levels, except in the testes, in which the steady-state levels of DNA ligase III mRNA are at least 10-fold higher than those detected in other tissues and cells. Since DNA ligase I mRNA is also present at high levels in the testes, we examined the expression of the DNA ligase genes during spermatogenesis. DNA ligase I mRNA expression correlated with the contribution of proliferating supermatogonia cells to the testes, in agreement with the previously defined role of this enzyme in DNA replications. In contrast, elevated levels of DNA ligase III mRNA were observed in primary supermatocytes undergoing recombination prior to the first meiotic division. Therefore, we suggest that DNA ligase III seals DNA strand breaks that arise during the process of meiotic recombination in germ cells and as a consequence of DNA damage in somatic cells. 62 refs., 7 figs.

  10. Neckties and Cerebrovascular Reactivity in Young Healthy Males: A Pilot Randomised Crossover Trial

    Directory of Open Access Journals (Sweden)

    Mark Rafferty

    2011-01-01

    Full Text Available Background. A necktie may elevate intracranial pressure through compression of venous return. We hypothesised that a tight necktie would deleteriously alter cerebrovascular reactivity. Materials and Methods. A necktie was simulated using bespoke apparatus comprising pneumatic inner-tube with aneroid pressure-gauge. Using a randomised crossover design, cerebrovascular reactivity was measured with the “pseudo-tie” worn inflated or deflated for 5 minutes (simulating tight/loose necktie resp.. Reactivity was calculated using breath hold index (BHI and paired “t” testing used for comparative analysis. Results. We enrolled 40 healthy male volunteers. There was a reduction in cerebrovascular reactivity of 0.23 units with “tight” pseudotie (BHI loose 1.44 (SD 0.48; BHI tight 1.21 (SD 0.38 P<.001. Conclusion. Impairment in cerebrovascular reactivity was found with inflated pseudo-tie. However, mean BHI is still within a range of considered normal. The situation may differ in patients with vascular risk factors, and confirmatory work is recommended.

  11. Methods for adjusting for bias due to crossover in oncology trials.

    Science.gov (United States)

    Ishak, K Jack; Proskorovsky, Irina; Korytowsky, Beata; Sandin, Rickard; Faivre, Sandrine; Valle, Juan

    2014-06-01

    Trials of new oncology treatments often involve a crossover element in their design that allows patients receiving the control treatment to crossover to receive the experimental treatment at disease progression or when sufficient evidence about the efficacy of the new treatment is achieved. Crossover leads to contamination of the initial randomized groups due to a mixing of the effects of the control and experimental treatments in the reference group. This is further complicated by the fact that crossover is often a very selective process whereby patients who switch treatment have a different prognosis than those who do not. Standard statistical techniques, including those that attempt to account for the treatment switch, cannot fully adjust for the bias introduced by crossover. Specialized methods such as rank-preserving structural failure time (RPSFT) models and inverse probability of censoring weighted (IPCW) analyses are designed to deal with selective treatment switching and have been increasingly applied to adjust for crossover. We provide an overview of the crossover problem and highlight circumstances under which it is likely to cause bias. We then describe the RPSFT and IPCW methods and explain how these methods adjust for the bias, highlighting the assumptions invoked in the process. Our aim is to facilitate understanding of these complex methods using a case study to support explanations. We also discuss the implications of crossover adjustment on cost-effectiveness results.

  12. Solution Theory of Ginzburg-Landau Theory on BCS-BEC Crossover

    Directory of Open Access Journals (Sweden)

    Shuhong Chen

    2014-01-01

    Full Text Available We establish strong solution theory of time-dependent Ginzburg-Landau (TDGL systems on BCS-BEC crossover. By the properties of Besov, Sobolev spaces, and Fourier functions and the method of bootstrapping argument, we deduce that the global existence of strong solutions to time-dependent Ginzburg-Landau systems on BCS-BEC crossover in various spatial dimensions.

  13. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Sun, J.R.; Zhao, T.Y.;

    2009-01-01

    directions was observed with the appearance of magnetic-field-induced metal-insulator transition, which further led to a sign crossover in the AMR effect. The AMR crossover may give a direct evidence of the drastic modification of electronic structure or possible orbital reconstruction with the magnetic...

  14. Fluoropolymer-coated dacron versus PTFE grafts for femorofemoral crossover bypass: randomised trial

    DEFF Research Database (Denmark)

    Eiberg, J P; Røder, Ole Christian; Stahl-Madsen, Morten

    2006-01-01

    To investigate whether patency of a thin walled 8 mm fluoropassivated Dacron graft was similar to that of a standard 8mm PTFE graft for femorofemoral crossover bypass surgery.......To investigate whether patency of a thin walled 8 mm fluoropassivated Dacron graft was similar to that of a standard 8mm PTFE graft for femorofemoral crossover bypass surgery....

  15. 50 CFR 660.320 - Open access fishery-crossover provisions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Open access fishery-crossover provisions... West Coast Groundfish-Open Access Fisheries § 660.320 Open access fishery—crossover provisions. (a) Operating in both limited entry and open access fisheries. See provisions at § 660.60, subpart C....

  16. Hybrid Genetic Algorithm with Multiparents Crossover for Job Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Noor Hasnah Moin

    2015-01-01

    Full Text Available The job shop scheduling problem (JSSP is one of the well-known hard combinatorial scheduling problems. This paper proposes a hybrid genetic algorithm with multiparents crossover for JSSP. The multiparents crossover operator known as extended precedence preservative crossover (EPPX is able to recombine more than two parents to generate a single new offspring distinguished from common crossover operators that recombine only two parents. This algorithm also embeds a schedule generation procedure to generate full-active schedule that satisfies precedence constraints in order to reduce the search space. Once a schedule is obtained, a neighborhood search is applied to exploit the search space for better solutions and to enhance the GA. This hybrid genetic algorithm is simulated on a set of benchmarks from the literatures and the results are compared with other approaches to ensure the sustainability of this algorithm in solving JSSP. The results suggest that the implementation of multiparents crossover produces competitive results.

  17. EXPLORATION/EXPLOITATION TRADEOFF WITH CELL-SHIFT AND HEURISTIC CROSSOVER FOR EVOLUTIONARY ALGORITHMS

    Institute of Scientific and Technical Information of China (English)

    Xinchao ZHAO; Junling HAO

    2007-01-01

    In order to tradeoff exploration/exploitation and inspired by cell genetic algorithm a cellshift crossover operator for evolutionary algorithm(EA) is proposed in this paper.The definition domain is divided into n-dimension cubic sub-domains(cell) and each individual locates at an ndimensional cube.Cell-shift crossover first exchanges the cell numbers of the crossover pair if they are in the different cells(exploration)and subsequently shift the first individual from its initial place to the other individual's cell place.If they are already in the same cell heuristic crossover(exploitation) is used.Cell-shift/heuristic crossover adaptively executes exploration/exploitation search with the vary of genetic diversity.The cell-shift EA has excellent performance in terms of efficiency and efficacy on ten usually used optimization benchmarks when comparing with the recent well-known FEP evolutionary algorithm.

  18. Crossover behavior in the distance dependence of hydrophobic force law

    CERN Document Server

    Samanta, Tuhin; Bagchi, Biman

    2016-01-01

    Understanding about both the range and the strength of the effective force between two hydrophobic surfaces suspended in water is important in many areas of natural science but unfortunately has remained imperfect. Even the experimental observations have not been explained quantitatively. Here we find by varying distance (d) between two hydrophobic walls in computer simulations of water that the force exhibits a bi-exponential distance dependence. The long range part of the force can be fitted to an exponential force law with correlation length of 2 nm while the short range part displays a correlation length of only 0.5 nm. The crossover from shorter range to longer range force law is rather sharp. We show that the distance dependence of the tetrahedrality order parameter provides a reliable marker of the force law, and exhibits similar distance dependence.

  19. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2015-07-16

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  20. Optimal adaptive sequential designs for crossover bioequivalence studies.

    Science.gov (United States)

    Xu, Jialin; Audet, Charles; DiLiberti, Charles E; Hauck, Walter W; Montague, Timothy H; Parr, Alan F; Potvin, Diane; Schuirmann, Donald J

    2016-01-01

    In prior works, this group demonstrated the feasibility of valid adaptive sequential designs for crossover bioequivalence studies. In this paper, we extend the prior work to optimize adaptive sequential designs over a range of geometric mean test/reference ratios (GMRs) of 70-143% within each of two ranges of intra-subject coefficient of variation (10-30% and 30-55%). These designs also introduce a futility decision for stopping the study after the first stage if there is sufficiently low likelihood of meeting bioequivalence criteria if the second stage were completed, as well as an upper limit on total study size. The optimized designs exhibited substantially improved performance characteristics over our previous adaptive sequential designs. Even though the optimized designs avoided undue inflation of type I error and maintained power at ≥ 80%, their average sample sizes were similar to or less than those of conventional single stage designs.

  1. Critical velocity in the BEC-BCS crossover.

    Science.gov (United States)

    Weimer, Wolf; Morgener, Kai; Singh, Vijay Pal; Siegl, Jonas; Hueck, Klaus; Luick, Niclas; Mathey, Ludwig; Moritz, Henning

    2015-03-01

    We map out the critical velocity in the crossover from Bose-Einstein condensation to Bardeen-Cooper-Schrieffer superfluidity with ultracold ^{6}Li gases. A small attractive potential is dragged along lines of constant column density. The rate of the induced heating increases steeply above a critical velocity v_{c}. In the same samples, we measure the speed of sound v_{s} by exciting density waves and compare the results to the measured values of v_{c}. We perform numerical simulations in the Bose-Einstein condensation regime and find very good agreement, validating the approach. In the strongly correlated regime our measurements of v_{c} provide a testing ground for theoretical approaches.

  2. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimamura, Kohei [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Graduate School of System Informatics, Kobe University, Kobe 657-8501 (Japan); Misawa, Masaaki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  3. Crossover from nucleation to spinodal decomposition in a condensing vapor.

    Science.gov (United States)

    Wedekind, Jan; Chkonia, Guram; Wölk, Judith; Strey, Reinhard; Reguera, David

    2009-09-21

    The mechanism controlling the initial step of a phase transition has a tremendous influence on the emerging phase. We study the crossover from a purely nucleation-controlled transition toward spinodal decomposition in a condensing Lennard-Jones vapor using molecular dynamics simulations. We analyze both the kinetics and at the same time the thermodynamics by directly reconstructing the free energy of cluster formation. We estimate the location of the spinodal, which lies at much deeper supersaturations than expected. Moreover, the nucleation barriers we find differ only by a constant from the classical nucleation theory predictions and are in very good agreement with semiempirical scaling relations. In the regime from very small barriers to the spinodal, growth controls the rate of the transition but not its nature because the activation barrier has not yet vanished. Finally, we discuss in detail the influence of the chosen reaction coordinate on the interpretation of such simulation results.

  4. Design and numerical characterization of a crossover EBIS

    Science.gov (United States)

    Geyer, Sabrina; Langbein, A.; Meusel, Oliver; Kester, Oliver

    2015-01-01

    For the investigation of highly charged ions, a crossover EBIS (XEBIS) was developed at the University of Frankfurt. In contrast to conventional EBIS/T devices the compression of the electron beam is achieved by electrostatic focusing to a crossover point in the interaction region. This concept allows a compact and simple design. Simulations performed with EGUN show a perveance of 2.1×10-7 A/V3/2 for the realized gun system. In the interaction region the electron beam has a density of around 10 A/cm2 and a minimum radius of 0.15 mm. The XEBIS has a total length of 112 mm with a trap length of 26 mm. It is designed for electron beam energies of up to 6 keV/q. The storage capacity of the trap region is in the order of 1×108 charges. Charge state breeding studies with CBSIM indicate for the noble gases as maximal achievable charge state Ar16+, Kr30+ and Xe35+. Thus ion beam currents of around 2.04 nA assuming 50 Hz repetition rate can be expected. The emittance of the extracted beam is approximated to 8 mm mrad. After completion of the construction phase, the XEBIS will be installed for first performance investigations at a dedicated test bench, equipped with a fast Faraday Cup (FC), a retarding field spectrometer, a luminescence screen and optical diagnostics. Subsequently the XEBIS will serve as source for highly charged ions at different experimental setups.

  5. Relativistic description of BCS-BEC crossover in nuclear matter

    Science.gov (United States)

    Sun, Bao Yuan; Toki, Hiroshi; Meng, Jie

    2010-01-01

    We study theoretically the di-neutron spatial correlations and the crossover from superfluidity of neutron Cooper pairs in the S10 pairing channel to Bose-Einstein condensation (BEC) of di-neutron pairs for both symmetric and neutron matter in the microscopic relativistic pairing theory. We take the bare nucleon-nucleon interaction Bonn-B in the particle-particle channel and the effective interaction PK1 of the relativistic mean-field approach in the particle-hole channel. It is found that the spatial structure of neutron Cooper pair wave function evolves continuously from BCS-type to BEC-type as density decreases. We see a strong concentration of the probability density revealed for the neutron pairs in the fairly small relative distance around 1.5 fm and the neutron Fermi momentum kFn ∈ [ 0.6 , 1.0 ] fm-1. However, from the effective chemical potential and the quasiparticle excitation spectrum, there is no evidence for the appearance of a true BEC state of neutron pairs at any density. The most BEC-like state may appear at kFn ∼ 0.2 fm-1 by examining the density correlation function. From the coherence length and the probability distribution of neutron Cooper pairs as well as the ratio between the neutron pairing gap and the kinetic energy at the Fermi surface, some features of the BCS-BEC crossover are seen in the density regions, 0.05 fm-1

  6. Karyotype of Zea luxurians and Z. mays subsp. mays using FISH/DAPI, and analysis of meiotic behavior of hybrids.

    Science.gov (United States)

    González, Graciela E; Poggio, Lidia

    2011-01-01

    The karyotypes of Zea luxurians and a race of maize from northwestern Argentina are described and compared using 4′,6-diamidino-2-phenylindole (DAPI) banding and fluorescent in situ hybridization (FISH) to localize the 180 bp knobs. The meiotic behavior of the F₁ artificial hybrids Z. luxurians × maize is also analyzed to determine the genomic relationships between both species. Neocentromere activity at knobs in the meiosis of the hybrids is particularly discussed. The meiotic behavior and the high pollen sterility of the hybrid revealed genetical and (or) chromosomal divergences, leading to postzygotic reproductive isolation among their parents. Here, we propose that maize shows lower genomic affinity to Z. luxurians than to other species of the genus with 2n = 20.

  7. Karyotype evolution in Tilapia: mitotic and meiotic chromosome analysis of Oreochromis karongae and O. niloticus x O. karongae hybrids.

    Science.gov (United States)

    Harvey, S C; Campos-Ramos, R; Kennedy, D D; Ezaz, M T; Bromage, N R; Griffin, D K; Penman, D J

    2002-06-01

    The karyotype of Oreochromis species is considered to be highly conserved, with a diploid chromosome complement of 2n = 44. Here we show, by analysis of mitotic and meiotic chromosomes, that the karyotype of O. karongae, one of the Lake Malawi 'chambo' species, is 2n = 38. This difference in chromosome number does not prevent the production of inter-specific hybrids between O. niloticus (2n = 44) and O. karongae (2n = 38). Analysis of the meiotic chromosomes of the O. niloticus x O. karongae hybrids indicates that three separate chromosome fusion events have occurred in O. karongae. Comparison of the O. karongae and O. niloticus karyotypes suggests that these consist of one Robertsonian fusion and two fusions of a more complex nature.

  8. HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells.

    Science.gov (United States)

    Breuer, Manuel; Kolano, Agnieszka; Kwon, Mijung; Li, Chao-Chin; Tsai, Ting-Fen; Pellman, David; Brunet, Stéphane; Verlhac, Marie-Hélène

    2010-12-27

    In contrast to somatic cells, formation of acentriolar meiotic spindles relies on the organization of microtubules (MTs) and MT-organizing centers (MTOCs) into a stable bipolar structure. The underlying mechanisms are still unknown. We show that this process is impaired in hepatoma up-regulated protein (Hurp) knockout mice, which are viable but female sterile, showing defective oocyte divisions. HURP accumulates on interpolar MTs in the vicinity of chromosomes via Kinesin-5 activity. By promoting MT stability in the spindle central domain, HURP allows efficient MTOC sorting into distinct poles, providing bipolarity establishment and maintenance. Our results support a new model for meiotic spindle assembly in which HURP ensures assembly of a central MT array, which serves as a scaffold for the genesis of a robust bipolar structure supporting efficient chromosome congression. Furthermore, HURP is also required for the clustering of extra centrosomes before division, arguing for a shared molecular requirement of MTOC sorting in mammalian meiosis and cancer cell division.

  9. Pollen viability and meiotic analysis of Solanum commersonii commersonii Dun., Solanum commersonii malmeanum Bitt. and Solanum tuberosum L.

    Directory of Open Access Journals (Sweden)

    Alexandre Alonso Alves

    2007-01-01

    Full Text Available Meiotic abnormalities in potato hamper sexual recombination, due to their influence on pollen production andviability rate. In this study we evaluated pollen viability and meiosis of three clones of Solanum commersonii commersoniiDun. (SCC, two of Solanum commersonii malmeanum Bitt. (SCM and seven clones and four cultivars of Solanum tuberosumL., with the purpose of indicating promising genotypes for genetic breeding of potato. Early chromosome migration atmetaphases I and II and chromosome pairing anomalies were the main causes of pollen inviability in the evaluated genotypes.Clones SCC 07 and SCM 60 are the most suitable for sexual recombination, owing to the high percentage of viable pollengrains and low frequencies of meiotic abnormalities.

  10. Meiotic behaviour in three interspecific three-way hybrids between Brachiaria ruziziensis and B. brizantha (Poaceae: Paniceae).

    Science.gov (United States)

    Adamowski, Eleniza de Victor; Pagliarini, Maria Suely; do Valle, Cacilda Borges

    2008-04-01

    The meiotic behaviour of three three-way interspecific promising hybrids (H17, H27, and H34) was evaluated. These hybrids resulted from the crosses between B. ruziziensis X B. brizantha and crossed to another B. brizantha. Two half-sib hybrids (H27 and H34) presented an aneuploid chromosome number (2n = 4x = 33), whereas hybrid H17 was a tetraploid (2n = 4x = 36), as expected. Chromosome paired predominantly as multivalents suggesting that genetic recombination and introgression of specific target genes from B. brizantha into B. ruziziensis can be expected. Arrangement of parental genomes in distinct metaphase plates was observed in H27 and H34, which have different male genitors. Hybrids H17 and H34 have the same male genitor, but did not display this abnormality. In H17, abnormalities were more frequent from anaphase II, when many laggard chromosomes appeared, suggesting that each genome presented a different genetic control for meiotic phase timing. Despite the phylogenetic proximity among these two species, these three hybrids presented a high frequency of meiotic abnormalities, mainly those related to irregular chromosome segregation typical of polyploids, H34, 69.1%; H27, 56.1% and H17, 44.9%. From the accumulated results obtained through cytological studies in Brachiaria hybrids, it is evident that cytogenetical analysis is of prime importance in determining which genotypes can continue in the process of cultivar development and which can be successfully used in the breeding. Hybrids with high frequency of meiotic abnormalities can seriously compromise seed production, a key trait in assuring adoption of a new apomictic cultivar of Brachiaria for pasture formation.

  11. A Meiotic Drive Element in the Maize Pathogen Fusarium verticillioides Is Located Within a 102 kb Region of Chromosome V.

    Science.gov (United States)

    Pyle, Jay; Patel, Tejas; Merrill, Brianna; Nsokoshi, Chabu; McCall, Morgan; Proctor, Robert H; Brown, Daren W; Hammond, Thomas M

    2016-08-09

    Fusarium verticillioides is an agriculturally important fungus because of its association with maize and its propensity to contaminate grain with toxic compounds. Some isolates of the fungus harbor a meiotic drive element known as Spore killer (Sk(K)) that causes nearly all surviving meiotic progeny from an Sk(K) × Spore killer-susceptible (Sk(S)) cross to inherit the Sk(K) allele. Sk(K) has been mapped to chromosome V but the genetic element responsible for meiotic drive has yet to be identified. In this study, we used cleaved amplified polymorphic sequence markers to genotype individual progeny from an Sk(K) × Sk(S) mapping population. We also sequenced the genomes of three progeny from the mapping population to determine their single nucleotide polymorphisms. These techniques allowed us to refine the location of Sk(K) to a contiguous 102 kb interval of chromosome V, herein referred to as the Sk region. Relative to Sk(S) genotypes, Sk(K) genotypes have one extra gene within this region for a total of 42 genes. The additional gene in Sk(K) genotypes, herein named SKC1 for Spore Killer Candidate 1, is the most highly expressed gene from the Sk region during early stages of sexual development. The Sk region also has three hyper-variable regions, the longest of which includes SKC1 The possibility that SKC1, or another gene from the Sk region, is an essential component of meiotic drive and spore killing is discussed.

  12. The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.).

    OpenAIRE

    Golubovskaya, Inna N.; Harper, Lisa C.; Pawlowski, Wojciech P.; Schichnes, Denise; Cande, W. Zacheus

    2002-01-01

    The clustering of telomeres on the nuclear envelope (NE) during meiotic prophase to form the bouquet arrangement of chromosomes may facilitate homologous chromosome synapsis. The pam1 (plural abnormalities of meiosis 1) gene is the first maize gene that appears to be required for telomere clustering, and homologous synapsis is impaired in pam1. Telomere clustering on the NE is arrested or delayed at an intermediate stage in pam1. Telomeres associate with the NE during the leptotene-zygotene t...

  13. Meiotic behaviour in three interspecific three-way hybrids between Brachiaria ruziziensis and B. brizantha (Poaceae: Paniceae)

    Indian Academy of Sciences (India)

    Eleniza De Victor Adamowski; Maria Suely Pagliarini; Cacilda Borges Do Valle

    2008-04-01

    The meiotic behaviour of three three-way interspecific promising hybrids (H17, H27, and H34) was evaluated. These hybrids resulted from the crosses between B. ruziziensis × B. brizantha and crossed to another B. brizantha. Two half-sib hybrids (H27 and H34) presented an aneuploid chromosome number ($2n = 4x = 33$), whereas hybrid H17 was a tetraploid ($2n = 4x = 36$), as expected. Chromosome paired predominantly as multivalents suggesting that genetic recombination and introgression of specific target genes from B. brizantha into B. ruziziensis can be expected. Arrangement of parental genomes in distinct metaphase plates was observed in H27 and H34, which have different male genitors. Hybrids H17 and H34 have the same male genitor, but did not display this abnormality. In H17, abnormalities were more frequent from anaphase II, when many laggard chromosomes appeared, suggesting that each genome presented a different genetic control for meiotic phase timing. Despite the phylogenetic proximity among these two species, these three hybrids presented a high frequency of meiotic abnormalities, mainly those related to irregular chromosome segregation typical of polyploids, H34, 69.1%; H27, 56.1% and H17, 44.9%. From the accumulated results obtained through cytological studies in Brachiaria hybrids, it is evident that cytogenetical analysis is of prime importance in determining which genotypes can continue in the process of cultivar development and which can be successfully used in the breeding. Hybrids with high frequency of meiotic abnormalities can seriously compromise seed production, a key trait in assuring adoption of a new apomictic cultivar of Brachiaria for pasture formation.

  14. Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation.

    Science.gov (United States)

    van der Heijden, Godfried W; Derijck, Alwin A H A; Pósfai, Eszter; Giele, Maud; Pelczar, Pawel; Ramos, Liliana; Wansink, Derick G; van der Vlag, Johan; Peters, Antoine H F M; de Boer, Peter

    2007-02-01

    In mammalian males, the first meiotic prophase is characterized by formation of a separate chromatin domain called the sex body. In this domain, the X and Y chromosomes are partially synapsed and transcriptionally silenced, a process termed meiotic sex-chromosome inactivation (MSCI). Likewise, unsynapsed autosomal chromatin present during pachytene is also silenced (meiotic silencing of unsynapsed chromatin, MSUC). Although it is known that MSCI and MSUC are both dependent on histone H2A.X phosphorylation mediated by the kinase ATR, and cause repressive H3 Lys9 dimethylation, the mechanisms underlying silencing are largely unidentified. Here, we demonstrate an extensive replacement of nucleosomes within unsynapsed chromatin, depending on and initiated shortly after induction of MSCI and MSUC. Nucleosomal eviction results in the exclusive incorporation of the H3.3 variant, which to date has primarily been associated with transcriptional activity. Nucleosomal exchange causes loss and subsequent selective reacquisition of specific histone modifications. This process therefore provides a means for epigenetic reprogramming of sex chromatin presumably required for gene silencing in the male mammalian germ line.

  15. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis.

    Science.gov (United States)

    Ramesh, Marilee A; Malik, Shehre-Banoo; Logsdon, John M

    2005-01-26

    Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.

  16. KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly.

    Science.gov (United States)

    Connolly, Amy A; Sugioka, Kenji; Chuang, Chien-Hui; Lowry, Joshua B; Bowerman, Bruce

    2015-09-14

    During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere-associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(-) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(-) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore-microtubule (k-MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(-) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k-MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.

  17. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes

    Science.gov (United States)

    Wigglesworth, Karen; Lee, Kyung-Bon; O’Brien, Marilyn J.; Peng, Jia; Matzuk, Martin M.; Eppig, John J.

    2013-01-01

    Coordinated regulation of oocyte and ovarian follicular development is essential for fertility. In particular, the progression of meiosis, a germ cell-specific cell division that reduces the number of chromosomes from diploid to haploid, must be arrested until just before ovulation. Follicular somatic cells are well-known to impose this arrest, which is essential for oocyte–follicle developmental synchrony. Follicular somatic cells sustain meiotic arrest via the natriuretic peptide C/natriuretic peptide receptor 2 (NPPC/NPR2) system, and possibly also via high levels of the purine hypoxanthine in the follicular fluid. Upon activation by the ligand NPPC, NPR2, the predominant guanylyl cyclase in follicular somatic cells, produces cyclic guanosine monophosphate (cGMP), which maintains meiotic arrest after transfer to the oocyte via gap junctions. Here we report that both the NPPC/NPR2 system and hypoxanthine require the activity of inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme required for the production of guanylyl metabolites and cGMP. Furthermore, oocyte-derived paracrine factors, particularly the growth differentiation factor 9–bone morphogenetic protein 15 heterodimer, promote expression of Impdh and Npr2 and elevate cGMP levels in cumulus cells. Thus, although the somatic compartment of ovarian follicles plays an essential role in the maintenance of oocyte meiotic arrest, as has been known for many years, this function of the somatic cells is surprisingly regulated by signals from the oocyte itself. PMID:23980176

  18. The role of meiotic cohesin REC8 in chromosome segregation in {gamma} irradiation-induced endopolyploid tumour cells

    Energy Technology Data Exchange (ETDEWEB)

    Erenpreisa, Jekaterina [Latvian Biomedicine Research and Study Centre, Riga, LV-1067 (Latvia); Cragg, Mark S. [Tenovus Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton SO16 6YD (United Kingdom); Salmina, Kristine [Latvian Biomedicine Research and Study Centre, Riga, LV-1067 (Latvia); Hausmann, Michael [Kirchhoff Inst. fuer Physik, Univ. of Heidelberg, D-69120 Heidelberg (Germany); Scherthan, Harry, E-mail: scherth@web.de [Inst. fuer Radiobiologie der Bundeswehr in Verbindung mit der Univ. Ulm, D-80937 Munich (Germany); MPI for Molec. Genetics, 14195 Berlin (Germany)

    2009-09-10

    Escape from mitotic catastrophe and generation of endopolyploid tumour cells (ETCs) represents a potential survival strategy of tumour cells in response to genotoxic treatments. ETCs that resume the mitotic cell cycle have reduced ploidy and are often resistant to these treatments. In search for a mechanism for genome reduction, we previously observed that ETCs express meiotic proteins among which REC8 (a meiotic cohesin component) is of particular interest, since it favours reductional cell division in meiosis. In the present investigation, we induced endopolyploidy in p53-dysfunctional human tumour cell lines (Namalwa, WI-L2-NS, HeLa) by gamma irradiation, and analysed the sub-cellular localisation of REC8 in the resulting ETCs. We observed by RT-PCR and Western blot that REC8 is constitutively expressed in these tumour cells, along with SGOL1 and SGOL2, and that REC8 becomes modified after irradiation. REC8 localised to paired sister centromeres in ETCs, the former co-segregating to opposite poles. Furthermore, REC8 localised to the centrosome of interphase ETCs and to the astral poles in anaphase cells where it colocalised with the microtubule-associated protein NuMA. Altogether, our observations indicate that radiation-induced ETCs express features of meiotic cell divisions and that these may facilitate chromosome segregation and genome reduction.

  19. Meiotic behavior and H3K4m distribution in B chromosomes of Characidium gomesi (Characiformes, Crenuchidae)

    Science.gov (United States)

    Serrano, Érica Alves; Araya-Jaime, Cristian; Suárez-Villota, Elkin Y.; Oliveira, Claudio; Foresti, Fausto

    2016-01-01

    Abstract Characidium gomesi Travasso, 1956 specimens from the Pardo River have up to four heterochromatic supernumerary chromosomes, derived from the sex chromosomes. To access the meiotic behavior and distribution of an active chromatin marker, males and females of Characidium gomesi with two or three B chromosomes were analyzed. Mitotic chromosomes were characterized using C-banding and FISH with B chromosome probes. Meiocytes were subjected to immunofluorescence-FISH assay using anti-SYCP3, anti-H3K4m, and B chromosomes probes. Molecular homology of supernumeraries was confirmed by FISH and by its bivalent conformation in individuals with two of these chromosomes. In individuals with three Bs, these elements formed a bivalent and a univalent. Supernumerary and sex chromosomes exhibited H3K4m signals during pachytene contrasting with their heterochromatic and asynaptic nature, which suggest a more structural role than functional of this histone modification. The implications of this result are discussed in light of the homology, meiotic nuclear organization, and meiotic silencing of unsynapsed chomatin. PMID:27551347

  20. Chromosomal stickiness and related meiotic irregularities in Inula racemosa - a critically endangered medicinal herb of North Western Himalayas

    Directory of Open Access Journals (Sweden)

    Peerzada Arshid Shabir

    2013-07-01

    Full Text Available Background: The species Inula racemosa, a rare species of Kashmir Himalaya, has been included in the list of endangered species of India. In the present study, we aimed to make a more formal quantitative analysis of the fertility of I. racemosa, wild as well as transplanted populations, using a meiotic behaviour analysis and pollen viability test. Materials and Methods: Inflorescences at an ideal stage for meiotic study were collected and fixed in acetic ethanol (1:3 for 24 h and stored in 70% alcohol under refrigeration at 4˚C until use. For slide preparation the anthers were squashed in 2% acetocarmine. Results: The present study revealed a peculiar chromosomal stickiness and formation of interbivalent chromatin connections among 2-4 bivalents. This stickiness of chromosomes along with interbivalent chromatin connections impairs the correct segregation of chromosomes, as a result single and double chromosomal bridges of different thickness, different number of lagging chromosomes, unequal separation, and multipolarity were continuously observed from anaphase I to microspore stage. Consequent to stickiness and associated meiotic abnormalities, the pollen grains varied greatly in size, individuals show 24.05-38.83% pollen sterility. Conclusion: The presence of sticky chromosomes in I. racemosa impairs the correct segregation during anaphase which compromises the pollen viability of the species. Although the percentage of pollen sterility was not completely concord to the high rates of observed chromosomal abnormalities but the findings can aid in the successful conservation and management of the species.