WorldWideScience

Sample records for alters lipid absorption

  1. Intestinal Cgi-58 deficiency reduces postprandial lipid absorption.

    Science.gov (United States)

    Xie, Ping; Guo, Feng; Ma, Yinyan; Zhu, Hongling; Wang, Freddy; Xue, Bingzhong; Shi, Hang; Yang, Jian; Yu, Liqing

    2014-01-01

    Comparative Gene Identification-58 (CGI-58), a lipid droplet (LD)-associated protein, promotes intracellular triglyceride (TG) hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.

  2. Intestinal Cgi-58 deficiency reduces postprandial lipid absorption.

    Directory of Open Access Journals (Sweden)

    Ping Xie

    Full Text Available Comparative Gene Identification-58 (CGI-58, a lipid droplet (LD-associated protein, promotes intracellular triglyceride (TG hydrolysis in vitro. Mutations in human CGI-58 cause TG accumulation in numerous tissues including intestine. Enterocytes are thought not to store TG-rich LDs, but a fatty meal does induce temporary cytosolic accumulation of LDs. Accumulated LDs are eventually cleared out, implying existence of TG hydrolytic machinery in enterocytes. However, identities of proteins responsible for LD-TG hydrolysis remain unknown. Here we report that intestine-specific inactivation of CGI-58 in mice significantly reduces postprandial plasma TG concentrations and intestinal TG hydrolase activity, which is associated with a 4-fold increase in intestinal TG content and large cytosolic LD accumulation in absorptive enterocytes during the fasting state. Intestine-specific CGI-58 knockout mice also display mild yet significant decreases in intestinal fatty acid absorption and oxidation. Surprisingly, inactivation of CGI-58 in intestine significantly raises plasma and intestinal cholesterol, and reduces hepatic cholesterol, without altering intestinal cholesterol absorption and fecal neutral sterol excretion. In conclusion, intestinal CGI-58 is required for efficient postprandial lipoprotein-TG secretion and for maintaining hepatic and plasma lipid homeostasis. Our animal model will serve as a valuable tool to further define how intestinal fat metabolism influences the pathogenesis of metabolic disorders, such as obesity and type 2 diabetes.

  3. Alterations In Lipid Profile Of Patients With Advanced Cervical Cancer

    African Journals Online (AJOL)

    Background The changes in lipid profile have long been associated with cancer because lipids play key role in maintenance of cell integrity. Aims. The study evaluated alterations in plasma lipid profile in patients with advanced squamous cervical cancer. Materials And Method This hospital-based study included 30 cervical ...

  4. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice C.; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.; Ruby, Edward G.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  5. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  6. A Corn Tissue Culture Cell Line with Altered Lipid Metabolism

    OpenAIRE

    Yue-ie C, Hsing; Jack M, Widholm; Robert W, Rinne; Institute of Botany, Academia Sinica; Department of Agronomy, University of Illinois at Urbana; Plant Physiology and Genetics Research Unit, Department of Agriculture, Agricultural Research Service and Department of Agronomy, University of Illinois at Urbana

    1991-01-01

    A variant corn callus line derived from callus which originated from etiolated leaves of Illinois High Oil corn (Zea mays L.) has been identified. The variant corn callus line had increased lipid content concomitant with increased acetyl-CoA carboxylase activity and altered biotin-containing protein patterns relative to the wild type callus. The variant callus line also had altered fatty acid composition concomitant with decreased oleate desaturase activity compared to the wild type callus. T...

  7. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    Science.gov (United States)

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  8. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.

    Science.gov (United States)

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca

    2016-10-28

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Alterations of Plasma lipid profile patterns in oral leukoplakia

    Science.gov (United States)

    Mahesh, N; Rahamthullah, S A K Uroof; Naidu, Guntipalli M; Rajesh, Amudala; Babu, P Ravisekhar; Reddy, J Muralinath

    2014-01-01

    Background: Oral cancer is associated initially by the presence of pre-malignant lesions or pre-malignant conditions. Oral Leukoplakia is one of the best-known pre-malignant lesions in the oral cavity that have the highest rate of malignant transformation. Numerous studies have shown an altered lipid profile in various cancers including head and neck cancers. An inverse relationship between plasma lipid profiles has been seen in oral cancer and pre-cancerous subjects. The present study evaluated the plasma lipid profiles in oral leukoplakia and controls. Materials & Methods: This study was done in department of Oral Medicine and Radiology, Sibar dental College and Konacc diagnostics. 30 patients were included in the study (15 patients with oral leukoplakia (histo-pathologically proven) and 15 patients for comparison of results as controls). Patients with cardiovascular diseases, uncontrolled diabetes mellitus, acute hepatitis and nephrosis were excluded from the sample and lipid profile assay was done by fully automated biochemistry analyser (EM–360). Paired-t and Scheffe tests were used to find statistical significance between two groups. Results: The plasma lipid levels were estimated in between the two groups by arithmetic mean along with standard deviation. The lipid parameters included were Total cholesterol, HDL, LDL, VLDL, Triglycerides. The lipid parameters of the patients in between the two groups were compared and analysed. Conclusion: In this study TC, HDL, LDL, Triglyceride level analysis showed slightly lower levels in oral leukoplakia patients than that of the controls. Higher VLDL levels were observed in leukoplakia than the control group. How to cite the article: Mahesh N, Rahamthullah SA, Naidu GM, Rajesh A, Babu PR, Reddy JM. Alterations of Plasma lipid profile patterns in oral leukoplakia. J Int Oral Health 2014;6(1):78-84. PMID:24653608

  10. Lipid-based formulations and drug supersaturation: harnessing the unique benefits of the lipid digestion/absorption pathway.

    Science.gov (United States)

    Williams, Hywel D; Trevaskis, Natalie L; Yeap, Yan Yan; Anby, Mette U; Pouton, Colin W; Porter, Christopher J H

    2013-12-01

    Drugs with low aqueous solubility commonly show low and erratic absorption after oral administration. Myriad approaches have therefore been developed to promote drug solubilization in the gastrointestinal (GI) fluids. Here, we offer insight into the unique manner by which lipid-based formulations (LBFs) may enhance the absorption of poorly water-soluble drugs via co-stimulation of solubilization and supersaturation. Supersaturation provides an opportunity to generate drug concentrations in the GI tract that are in excess of the equilibrium crystalline solubility and therefore higher than that achievable with traditional formulations. Incorporation of LBF into lipid digestion and absorption pathways provides multiple drivers of supersaturation generation and the potential to enhance thermodynamic activity and absorption. These drivers include 1) formulation dispersion, 2) lipid digestion, 3) interaction with bile and 4) lipid absorption. However, high supersaturation ratios may also stimulate drug precipitation and reduce exposure where re-dissolution limits absorption. The most effective formulations are likely to be those that generate moderate supersaturation and do so close to the site of absorption. LBFs are particularly well suited to these criteria since solubilization protects against high supersaturation ratios, and supersaturation initiation typically occurs in the small intestine, at the absorptive membrane.

  11. Detection of trans-isomers of hydrocarbon residues of lipid molecules by IR absorption

    Science.gov (United States)

    Mikhalovsky, I. S.; Samoylov, M. V.; Wileishikova, N. P.

    2009-01-01

    IR spectroscopy is used for a comparative analysis of the trans-isomerization of double bonds in hydrocarbon residuals of lactic and hydrogenated lipids. The maximum of the absorption band of the trans-isomers for all the lipid samples is found to lie at 965 cm-1. An absorption band at 970 cm-1 is discovered in the spectra of the lactic lipids near the analytic band of the trans-isomers at 965 cm-1. Based on a gaussian approximation for their absorption spectral bands, the trans-isomer content in the lactic lipid samples is 10-11%. The absorption by lipid molecules at 970 cm-1 has to be taken into account when determining the trans-isomer content of fat and oil products.

  12. Altered lipid homeostasis in Sertoli cells stressed by mild hyperthermia.

    Directory of Open Access Journals (Sweden)

    Ana S Vallés

    Full Text Available Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC. Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days of rat testes to 43 °C led to accumulation of neutral lipids. This SC-specific lipid function took 1-2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43 °C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin and microfilament (f-actin organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.

  13. Addition of electrophilic lipids to actin alters filament structure

    International Nuclear Information System (INIS)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores

    2006-01-01

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Δ 12,14 -PGJ 2 (15d-PGJ 2 ) and PGA 1 in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA 1 and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ 2 or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ 2 at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles

  14. New insights of altered lipid profile in Fragile X Syndrome.

    Directory of Open Access Journals (Sweden)

    Artuela Çaku

    Full Text Available Fragile X Syndrome (FXS is the main genetic cause of autism and intellectual deficiency resulting the absence of the Fragile X Mental Retardation Protein (FMRP. Clinical picture is characterized by cognitive impairment associated with a broad spectrum of psychiatric comorbidities including autism spectrum disorders and attention-deficit/hyperactivity disorders. Some of these disorders have been associated with lipid abnormalities and lower cholesterol levels. Since lipids are important for neuronal development, we aim to investigate the lipid profile of French Canadian-FXS individuals and to identify the altered components of cholesterol metabolism as well as their association with clinical profile.Anthropometric data were collected from 25 FXS individuals and 26 controls. Lipid assessment included: total cholesterol (TC, triglycerides, LDL, HDL, ApoB, ApoA1, PCSK9, Lp(a and lipoprotein electrophoresis. Aberrant and adaptive behaviour of affected individuals was respectively assessed by the ABC-C and ABAS questionnaires.FXS participants had a higher body mass index as compared to controls while 38% of them had TC<10th percentile. Lower levels of LDL, HDL and apoA1 were observed in FXS group as compared to controls. However, PCSK9 levels did not differ between the two groups. As expected, PCSK9 levels correlated with total cholesterol (rs = 0.61, p = 0.001 and LDL (rs = 0.46, p = 0.014 in the control group, while no association was present in the FXS group. An inverse relationship was observed between total cholesterol and aberrant behaviour as determined by ABC-C total score.Our results showed the presence of hypocholesterolemia in French Canadian-FXS population, a condition that seems to influence their clinical phenotype. We identified for the first time a potential underlying alteration of PCSK9 function in FXS that could result from the absence of FMRP. Further investigations are warranted to better understand the association between

  15. Minimal alteration in muscle lipid genes following stabilized weight loss.

    Science.gov (United States)

    Coker, Robert H; Robinette, Leizleigh; Kern, Philip A

    2017-12-01

    Variations in skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), carntine palmitoyltransferase-1 (CPT-1), perilipin protein 2 (PLIN2), and adipose tissue triglyceride lipase (ATGL), and comparative gene identification-58 (CGI-58) have been described as playing important roles in the metabolic regulation of lipid oxidation, and may influence intramyocellular lipid (IMCL) and muscle lipid droplet size (LDS). While acute changes in caloric balance and/or aerobic capacity may affect lipid metabolism, the influence of sustained weight loss derived from caloric restriction with weight loss (CWL) compared with exercise training with weight loss (EWL) on the abovementioned parameters has not been fully elucidated. Using a combination of metabolic feeding and/or supervised exercise training, we evaluated the influence of stabilized weight loss elicited by CWL compared with EWL without the confounding influence of acute alterations in caloric balance on molecular markers of mitochondrial metabolism and lipid droplet size in middle-aged overweight individuals with impaired glucose tolerance. There were no significant changes in PGC-1α, CPT-1, PLIN2, ATGL and, CGI-58 messenger RNA (mRNA) in CWL and EWL. While there were no changes in ATGL mRNA in CWL, there was a strong trend (P = 0.05) for the ΔATGL mRNA in EWL with stabilized weight loss. There were no significant changes in IMCL or LDS within skeletal muscle in CWL or EWL, respectively. In conclusion, under the conditions of chronic caloric balance following dietary or exercise-based interventions, mediators of mitochondrial function, IMCL and LDS, were largely unaffected. Future studies should focus on intervention-based changes in protein expression and/or phosphorylation and the relationship to physiological endpoints.

  16. Lipids in the Stomach - Implications for the Evaluation of Food Effects on Oral Drug Absorption.

    Science.gov (United States)

    Koziolek, Mirko; Carrière, Frédéric; Porter, Christopher J H

    2018-02-08

    Food effects on oral drug bioavailability can have significant impact on the provision of safe and reliable oral pharmacotherapy. A mechanistic understanding of the events that contribute to the occurrence of food effects is therefore critical. An increased oral bioavailability is often seen for poorly water-soluble drugs after co-administration with lipids, including lipids in food, and is commonly explained by the ability of lipids to enhance drug solubility in intestinal luminal fluids. In contrast, the impact of lipids on drug solubilisation in the stomach has received less attention. This is in spite of the fact that lipid digestion is initiated in the stomach by human gastric lipase and that gastric events also initiate emulsification of lipids in the gastrointestinal tract. The stomach therefore acts to 'pre-process' lipids for subsequent events in the intestine and may significantly affect downstream events at intestinal drug absorption sites. In this article, the mechanisms by which lipids are processed in the stomach are reviewed and the potential impact of these processes on drug absorption discussed. Attention is also focused on in vitro methods that are used to assess gastric processing of lipids and their application to better understand food effects on drug release and absorption.

  17. Laxative Treatment With Polyethylene Glycol Does Not Affect Lipid Absorption in Rats

    NARCIS (Netherlands)

    van der Wulp, Mariette Y. M.; Cuperus, Frans J. C.; Stellaard, Frans; van Dijk, Theo H.; Dekker, Jan; Rings, Edmond H. H. M.; Groen, Albert K.; Verkade, Henkjan J.

    2012-01-01

    Objectives: Polyethylene glycol (PEG) is a frequently used laxative agent. It is unknown, however, whether PEG affects the absorptive capacity of the intestine. Reduced lipid (dietary fat and cholesterol) absorption induced by long-term PEG treatment could negatively affect growth in children. We

  18. Dietary manipulation of the sow milk does not influence the lipid absorption capacity of the progeny

    DEFF Research Database (Denmark)

    Lauridsen, Charlotte; Hedemann, Mette Skou; Pierzynowski, Stefan

    2007-01-01

    A control diet without supplemental fat and four diets containing 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were fed to lactating sows in order to investigate the lipid absorption capacity of their progeny in terms of pancreatic enzyme activity, hormonal regulation, and bile salt...

  19. Alterations in the lipid profile and liver enzymes of rats treated with ...

    African Journals Online (AJOL)

    ... aminotransferase activities and lipid profile, hence monosodium glutamate though a flavor enhancer food additive but it must be carefully used in food preparation due to it alterations in both the liver enzymes and the lipid profile. Keywords: Adult rats, dyslipidaemia, flavor enhancer, hepatotoxic, monosodium glutamate ...

  20. Alterations in lipid metabolism and antioxidant status in lichen planus

    Directory of Open Access Journals (Sweden)

    Falguni H Panchal

    2015-01-01

    Full Text Available Background: Lichen planus (LP, a T-cell-mediated inflammatory disorder, wherein inflammation produces lipid metabolism disturbances, is linked to increase in cardiovascular (CV risk with dyslipidemia. Increased reactive oxygen species and lipid peroxides have also been implicated in its pathogenesis. Aim and Objective: The aim of the study was to evaluate the status on lipid disturbances, oxidative stress, and inflammation in LP patients. Materials and Methods: The study was initiated after obtaining Institutional Ethics Committee permission and written informed consent from participants. The study included 125 patients (74 LP patients and 51 age and sex-matched controls visiting the outpatient clinic in the dermatology department of our hospital. Variables analyzed included lipid profile, C-reactive protein (CRP, malondialdehyde (MDA, and catalase (CAT activity. Results: Analysis of lipid parameters revealed significantly higher levels of total cholesterol (TC, triglycerides, and low-density lipoprotein cholesterol (LDL-C along with decreased levels of high-density lipoprotein cholesterol (HDL-C in LP patients as compared to their respective controls. LP patients also presented with a significantly higher atherogenic index that is, (TC/HDL-C and LDL-C/HDL-C ratios than the controls. A significant increase in CRP levels was observed among the LP patients. There was a statistically significant increase in the serum levels of the lipid peroxidation product, MDA and a statistically significant decrease in CAT activity in LP patients as compared to their respective controls. A statistically significant positive correlation (r = 0.96 was observed between serum MDA levels and duration of LP whereas a significantly negative correlation (r = −0.76 was seen between CAT activity and LP duration. Conclusion: Chronic inflammation in patients with LP may explain the association with dyslipidemia and CV risk. Our findings also suggest that an increase in

  1. 95 Alteration of Plasma Lipid Profile and Atherogenic Indices of ...

    African Journals Online (AJOL)

    JTEkanem

    2009-07-15

    Jul 15, 2009 ... 4. Hemalatha, R. (2008) Anti-hepatotoxic and anti-oxidant defense potential of. Tridax procumbens. Int. J. Green Pharm. 2:164-169. 5. Zicha, J., Kunes, J. and Devynck, M. A.. (1999) Abnormalities of membrane function and lipid metabolism in hypertension: a review. Am. J. Hypertens. 12: 315-331. 6. Franz ...

  2. Alterations in serum lipid, lipoprotein and visceral abdominal fat pad ...

    African Journals Online (AJOL)

    Commercially available garlic preparation in the form of garlic oil, garlic powder and pills are widely used for certain therapeutic purposes, including lowering blood pressure and improving lipid profile. The aim of the present study was to determine short term effects of dietary consumption of garlic on the serum levels of ...

  3. Alteration of Plasma Lipid Profile and Atherogenic Indices of ...

    African Journals Online (AJOL)

    The effect of the administration of 20mg/100g aqueous extract of the leaves of Tridax procumbens on the packed cell volume (PCV), daily weight gain, plasma lipid profiles and atherogenic indices of rats fed 1g/100g cholesterol, was investigated. The mean daily weight gain and plasma concentrations of triglyceride, LDL-, ...

  4. Alteration of Plasma Lipid Profiles and Atherogenic Indices by ...

    African Journals Online (AJOL)

    JTEkanem

    2009-07-15

    Jul 15, 2009 ... The effects of Stachytarpheta jamaicensis tea on the plasma lipid profile and atherogenic indices were ... metabolism may be useful for reducing the ... The animals were housed in clean, disinfected hutches and acclimatized on guinea growers mash (Bendel. Feed and Flour Mills Ltd., Ewu, Nigeria) for a.

  5. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2.

    Science.gov (United States)

    Ahmad, Irshad; Sharma, Anil K; Daniell, Henry; Kumar, Shashi

    2015-05-01

    Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Investigating the correlation between in vivo absorption and in vitro release of fenofibrate from lipid matrix particles in biorelevant medium

    DEFF Research Database (Denmark)

    Borkar, Nrupa Nitin; Xia, Dengning; Holm, René

    2014-01-01

    Lipid matrix particles (LMP) may be used as better carriers for poorly water-soluble drugs than liquid lipid carriers because of reduced drug mobilization in the formulations. However, the digestion process of solid lipid particles and their effect on the absorption of poorly water-soluble drugs...... LMP in rat model which correlates well with the in vitro drug release performed in the biorelevant medium....

  7. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  8. Lipid nanoparticles as carrier for octyl-methoxycinnamate: in vitro percutaneous absorption and photostability studies.

    Science.gov (United States)

    Puglia, Carmelo; Bonina, Francesco; Rizza, Luisa; Blasi, Paolo; Schoubben, Aurelie; Perrotta, Rosario; Tarico, Maria Stella; Damiani, Elisabetta

    2012-01-01

    The aim of the present study was the evaluation of lipid nanoparticles (solid lipid nanoparticles, SLN, and nanostructured lipid carriers, NLC) as potential carriers for octyl-methoxycinnamate (OMC). The release pattern of OMC from SLN and NLC was evaluated in vitro, determining its percutaneous absorption through excised human skin. Additional in vitro studies were performed in order to evaluate, after UVA radiation treatment, the spectral stability of OMC-loaded lipid nanoparticles. From the obtained results, ultrasonication method yielded both SLN and NLC in the nanometer range with a high active loading and a particle shape close to spherical. Differential scanning calorimetry data pointed out the key role of the inner oil phase of NLC in stabilizing the particle architecture and in increasing the solubility of OMC as compared with SLN. In vitro results showed that OMC, when incorporated in viscosized NLC dispersions (OMC-NLC), exhibited a lower flux with respect to viscosized SLN dispersions (OMC-SLN) and two reference formulations: a microemulsion (OMC-ME) and a hydroalcoholic gel (OMC-GEL). Photostability studies revealed that viscosized NLC dispersions were the most efficient at preserving OMC from ultraviolet-mediated photodegradation. Copyright © 2011 Wiley-Liss, Inc.

  9. Changes of lipid and fatty acid absorption induced by high dose of citric acid ester and lecithin emulsifiers.

    Science.gov (United States)

    Sadouki, Mohamed; Bouchoucha, Michel

    2014-09-01

    To describe the effect of two food emulsifiers, lecithin (E322) and citric acid esters of mono-and diglycerides of fatty acids (E472c), on the intestinal absorption of lipids. The experiment was conducted on 24 male Wistar rats randomly assigned in three groups. For two groups of six rats, 30% of the lipid intake was replaced with lecithin (L) or citric acid ester of mono and diglycerides, (E); the remaining 12 rats were the control group (C). Diet and fecal fat analysis was used to determine the apparent lipid absorption (ALA) and fatty acids. ALA was significantly lower in the group E than in the groups C and L (p acids decreased while the length of the carbon chains increased, and this decrease was higher in the group E. E472c emulsifier decreased the intestinal absorption of lipids.

  10. Distal small bowel motility and lipid absorption in patients following abdominal aortic aneurysm repair surgery

    Science.gov (United States)

    Fraser, Robert J; Ritz, Marc; Matteo, Addolorata C Di; Vozzo, Rosalie; Kwiatek, Monika; Foreman, Robert; Stanley, Brendan; Walsh, Jack; Burnett, Jim; Jury, Paul; Dent, John

    2006-01-01

    AIM: To investigate distal small bowel motility and lipid absorption in patients following elective abdominal aortic aneurysm (AAA) repair surgery. METHODS: Nine patients (aged 35-78 years; body mass index (BMI) range: 23-36 kg/m2) post-surgery for AAA repair, and seven healthy control subjects (20-50 years; BMI range: 21-29 kg/m2) were studied. Continuous distal small bowel manometry was performed for up to 72 h, during periods of fasting and enteral feeding (Nutrison®). Recordings were analyzed for the frequency, origin, length of migration, and direction of small intestinal burst activity. Lipid absorption was assessed on the first day and the third day post surgery in a subset of patients using the 13C-triolein-breath test, and compared with healthy controls. Subjects received a 20-min intraduodenal infusion of 50 mL liquid feed mixed with 200 μL 13C-triolein. End-expiratory breath samples were collected for 6 h and analyzed for 13CO2 concentration. RESULTS: The frequency of burst activity in the proximal and distal small intestine was higher in patients than in healthy subjects, under both fasting and fed conditions (P < 0.005). In patients there was a higher proportion of abnormally propagated bursts (71% abnormal), which began to normalize by d 3 (25% abnormal) post-surgery. Lipid absorption data was available for seven patients on d 1 and four patients on d 3 post surgery. In patients, absorption on d 1 post-surgery was half that of healthy control subjects (AUC 13CO2 1 323 ± 244 vs 2 646 ±365; P < 0.05, respectively), and was reduced to the one-fifth that of healthy controls by d 3 (AUC 13CO2 470 ± 832 vs 2 646 ± 365; P < 0.05, respectively). CONCLUSION: Both proximal and distal small intestinal motor activity are transiently disrupted in critically ill patients immediately after major surgery, with abnormal motility patterns extending as far as the ileum. These motor disturbances may contribute to impaired absorption

  11. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.

    Science.gov (United States)

    Yamauchi, Saori; Obara, Keisuke; Uchibori, Kenya; Kamimura, Akiko; Azumi, Kaoru; Kihara, Akio

    2015-01-01

    Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry. © 2015. Published by The Company of Biologists Ltd.

  12. The alteration of lipid metabolism in Burkitt lymphoma identifies a novel marker: adipophilin.

    Directory of Open Access Journals (Sweden)

    Maria R Ambrosio

    Full Text Available BACKGROUND: Recent evidence suggests that lipid pathway is altered in many human tumours. In Burkitt lymphoma this is reflected by the presence of lipid droplets which are visible in the cytoplasm of neoplastic cells in cytological preparations. These vacuoles are not identifiable in biopsy section as lipids are "lost" during tissue processing. METHODS AND RESULTS: In this study we investigated the expression of genes involved in lipid metabolism, at both RNA and protein level in Burkitt lymphoma and in other B-cell aggressive lymphoma cases. Gene expression profile indicated a significant over-expression of the adipophilin gene and marked up-regulation of other genes involved in lipid metabolism in Burkitt lymphoma. These findings were confirmed by immunohistochemistry on a series od additional histological samples: 45 out of 47 BL cases showed strong adipophilin expression, while only 3 cases of the 33 of the not-Burkitt lymphoma category showed weak adipophilin expression (p<0.05. CONCLUSIONS: Our preliminary results suggest that lipid metabolism is altered in BL, and this leads to the accumulation of lipid vacuoles. These vacuoles may be specifically recognized by a monoclonal antibody against adipophilin, which may therefore be a useful marker for Burkitt lymphoma because of its peculiar expression pattern. Moreover this peptide might represent an interesting candidate for interventional strategies.

  13. Cholesterol mobilization from hepatic lipid droplets during endotoxemia is altered in obese ob/ob mice.

    Science.gov (United States)

    Arisqueta, Lino; Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2015-10-01

    The innate immune response to pathogens during the acute phase response includes lipid metabolism adaptations. Hepatic triacylglycerol (TG) and cholesteryl ester (CE) storage in and mobilization from lipid droplets (LDs) respond to metabolic changes under the control of liver X receptor (LXR) transactivation and cytokine transduction. To evaluate whether alterations of these mechanisms have an impact in the adaptive response to endotoxemia, we analysed liver metabolism changes in lipopolysaccharide (LPS)-treated ob/ob mice, which show altered metabolic and innate responses and a higher sensitivity to sepsis. Lipid composition of serum lipoproteins and hepatic LDs was determined in wild type and ob/ob mice 24 h after LPS treatment. Liver metabolic profiling was done by measuring enzyme activities and mRNA levels. Increased CE hydrolase activity in LDs from endotoxemic mice was accompanied by a lower content of CE and low or no induction of LXR-mediated expression of genes involved in HDL secretion. The attenuated response in liver lipid mobilization accompanied by the strain-specific cholesterol enrichment of secreted VLDL might lead to accumulation of LDL cholesterol. According to our findings, obese leptin-deficient mice present an altered control of hepatic lipid metabolism responses to LPS, which might be, in part at least, a consequence of impaired LXR. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  14. Dietary sphingomyelin lowers hepatic lipid levels and inhibits intestinal cholesterol absorption in high-fat-fed mice.

    Directory of Open Access Journals (Sweden)

    Rosanna W S Chung

    Full Text Available Controlling intestinal lipid absorption is an important strategy for maintaining lipid homeostasis. Accumulation of lipids in the liver is a major risk factor for metabolic syndrome and nonalcoholic fatty liver disease. It is well-known that sphingomyelin (SM can inhibit intestinal cholesterol absorption. It is, however, unclear if dietary SM also lowers liver lipid levels. In the present study (i the effect of pure dietary egg SM on hepatic lipid metabolism and intestinal cholesterol absorption was measured with [(14C]cholesterol and [(3H]sitostanol in male C57BL/6 mice fed a high-fat (HF diet with or without 0.6% wt/wt SM for 18 days; and (ii hepatic lipid levels and gene expression were determined in mice given a HF diet with or without egg SM (0.3, 0.6 or 1.2% wt/wt for 4 weeks. Mice supplemented with SM (0.6% wt/wt had significantly increased fecal lipid and cholesterol output and reduced hepatic [(14C]cholesterol levels after 18 days. Relative to HF-fed mice, SM-supplemented HF-fed mice had significantly lower intestinal cholesterol absorption (-30%. Liver weight was significantly lower in the 1.2% wt/wt SM-supplemented mice (-18%. Total liver lipid (mg/organ was significantly reduced in the SM-supplemented mice (-33% and -40% in 0.6% wt/wt and 1.2% wt/wt SM, respectively, as were triglyceride and cholesterol levels. The reduction in liver triglycerides was due to inactivation of the LXR-SREBP-1c pathway. In conclusion, dietary egg SM has pronounced hepatic lipid-lowering properties in mice maintained on an obesogenic diet.

  15. Dietary Sphingomyelin Lowers Hepatic Lipid Levels and Inhibits Intestinal Cholesterol Absorption in High-Fat-Fed Mice

    Science.gov (United States)

    Chung, Rosanna W. S.; Kamili, Alvin; Tandy, Sally; Weir, Jacquelyn M.; Gaire, Raj; Wong, Gerard; Meikle, Peter J.; Cohn, Jeffrey S.; Rye, Kerry-Anne

    2013-01-01

    Controlling intestinal lipid absorption is an important strategy for maintaining lipid homeostasis. Accumulation of lipids in the liver is a major risk factor for metabolic syndrome and nonalcoholic fatty liver disease. It is well-known that sphingomyelin (SM) can inhibit intestinal cholesterol absorption. It is, however, unclear if dietary SM also lowers liver lipid levels. In the present study (i) the effect of pure dietary egg SM on hepatic lipid metabolism and intestinal cholesterol absorption was measured with [14C]cholesterol and [3H]sitostanol in male C57BL/6 mice fed a high-fat (HF) diet with or without 0.6% wt/wt SM for 18 days; and (ii) hepatic lipid levels and gene expression were determined in mice given a HF diet with or without egg SM (0.3, 0.6 or 1.2% wt/wt) for 4 weeks. Mice supplemented with SM (0.6% wt/wt) had significantly increased fecal lipid and cholesterol output and reduced hepatic [14C]cholesterol levels after 18 days. Relative to HF-fed mice, SM-supplemented HF-fed mice had significantly lower intestinal cholesterol absorption (−30%). Liver weight was significantly lower in the 1.2% wt/wt SM-supplemented mice (−18%). Total liver lipid (mg/organ) was significantly reduced in the SM-supplemented mice (−33% and −40% in 0.6% wt/wt and 1.2% wt/wt SM, respectively), as were triglyceride and cholesterol levels. The reduction in liver triglycerides was due to inactivation of the LXR-SREBP-1c pathway. In conclusion, dietary egg SM has pronounced hepatic lipid-lowering properties in mice maintained on an obesogenic diet. PMID:23409094

  16. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    Directory of Open Access Journals (Sweden)

    T.A. Beacham

    2015-09-01

    Full Text Available Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  17. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis.

    Science.gov (United States)

    Beacham, T A; Macia, V Mora; Rooks, P; White, D A; Ali, S T

    2015-09-01

    Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  18. Progressive alterations in lipid and glucose metabolism during short-term fasting in young adult men

    NARCIS (Netherlands)

    Klein, S.; Sakurai, Y.; Romijn, J. A.; Carroll, R. M.

    1993-01-01

    Stable isotope tracers and indirect calorimetry were used to evaluate the progressive alterations in lipid and glucose metabolism after 12, 18, 24, 30, 42, 54, and 72 h of fasting in six healthy male volunteers. The rates of appearance (Ra) of glycerol and palmitic acid in plasma doubled from 2.08

  19. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period

    Science.gov (United States)

    Crossbred steers (n = 20; 235 +/- 4 kg) were fed 53 days during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brandChromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0...

  20. Chromium supplementation alters the glucose and lipid metabolism of feedlot cattle during the receiving period

    Science.gov (United States)

    Crossbreed steers (n = 20; 235 ± 4 kg) were fed 53 d during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brand Chromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0 (C...

  1. Alterations in Lipid and Inositol Metabolisms in Two Dopaminergic Disorders.

    Directory of Open Access Journals (Sweden)

    Eva C Schulte

    Full Text Available Serum metabolite profiling can be used to identify pathways involved in the pathogenesis of and potential biomarkers for a given disease. Both restless legs syndrome (RLS and Parkinson`s disease (PD represent movement disorders for which currently no blood-based biomarkers are available and whose pathogenesis has not been uncovered conclusively. We performed unbiased serum metabolite profiling in search of signature metabolic changes for both diseases.456 metabolites were quantified in serum samples of 1272 general population controls belonging to the KORA cohort, 82 PD cases and 95 RLS cases by liquid-phase chromatography and gas chromatography separation coupled with tandem mass spectrometry. Genetically determined metabotypes were calculated using genome-wide genotyping data for the 1272 general population controls.After stringent quality control, we identified decreased levels of long-chain (polyunsaturated fatty acids of individuals with PD compared to both RLS (PD vs. RLS: p = 0.0001 to 5.80x10-9 and general population controls (PD vs. KORA: p = 6.09x10-5 to 3.45x10-32. In RLS, inositol metabolites were increased specifically (RLS vs. KORA: p = 1.35x10-6 to 3.96x10-7. The impact of dopaminergic drugs was reflected in changes in the phenylalanine/tyrosine/dopamine metabolism observed in both individuals with RLS and PD.A first discovery approach using serum metabolite profiling in two dopamine-related movement disorders compared to a large general population sample identified significant alterations in the polyunsaturated fatty acid metabolism in PD and implicated the inositol metabolism in RLS. These results provide a starting point for further studies investigating new perspectives on factors involved in the pathogenesis of the two diseases as well as possible points of therapeutic intervention.

  2. Absorption of dietary triacylglycerol by lipolysis and lipid resynthesis in the mesenteron of larval Aeshan cyanea (Insecta, Odonata)

    Energy Technology Data Exchange (ETDEWEB)

    Komnick, H.; Kukulies, J. (Bonn Univ. (Germany, F.R.)); Bongers, J.; Fischer, W. (Bonn Univ. (Germany, F.R.). Inst. fuer Angewandte Zoologie)

    1984-01-01

    Voluntary uptake of triolein, margarine, and lipid-rich natural food (Tubifex) by fasting dragonfly larvae (Aeshna cyanea) led to heavy accumulations of lipid absorption droplets in the enterocytes within 2 days, while subsequent lipid clearance of the midgut epithelium took several weeks depending on the ingested lipid load. No endocytotic lipid uptake was observed after application of a molecular-dispersed fat dye. The smallest lipid droplets first appeared in the subapical groundplasm of the enterocytes and showed a reversible increase in size on their way towards the base. Lipid droplets were also observed at appropriate intervals after oral administration of oleic acid, after feeding margarine in the cold, and after injection of triolein into the isolated midgut. Comparative biochemical analysis after triolein feeding evidenced release of lipase and hydrolytic liberation of FA from TG in the midgut lumen, as well as time-dependent accumulations of TG in the midgut epithelium and of DG in the hemolymph. Oral injection of (/sup 14/C)oleic acid was followed by its rapid absorption into the midgut epithelium, where it was utilized for the synthesis of MG and esterification to DG and TG. Discharge of radioactive lipid into the hemolymph occurred in the form of FA and DG, while the rectal fat body showed approximately equal labeling of the FA, DG, and TG fractions.

  3. Caco-2 Cell Conditions Enabling Studies of Drug Absorption from Digestible Lipid-Based Formulations.

    Science.gov (United States)

    Keemink, Janneke; Bergström, Christel A S

    2018-02-26

    To identify conditions allowing the use of cell-based models for studies of drug absorption during in vitro lipolysis of lipid-based formulations (LBFs). Caco-2 was selected as the cell-based model system. Monolayer integrity was evaluated by measuring mannitol permeability after incubating Caco-2 cells in the presence of components available during lipolysis. Pure excipients and formulations representing the lipid formulation classification system (LFCS) were evaluated before and after digestion. Porcine mucin was evaluated for its capacity to protect the cell monolayer. Most undigested formulations were compatible with the cells (II-LC, IIIB-LC, and IV) although some needed mucin to protect against damaging effects (II-MC, IIIB-MC, I-LC, and IIIA-LC). The pancreatic extract commonly used in digestion studies was incompatible with the cells but the Caco-2 monolayers could withstand immobilized recombinant lipase. Upon digestion, long chain formulations caused more damage to Caco-2 cells than their undigested counterparts whereas medium chain formulations showed better tolerability after digestion. Most LBFs and components thereof (undigested and digested) are compatible with Caco-2 cells. Pancreatic enzyme is not tolerated by the cells but immobilized lipase can be used in combination with the cell monolayer. Mucin is beneficial for critical formulations and digestion products.

  4. Dietary Lipid Type, Rather Than Total Number of Calories, Alters Outcomes of Enteric Infection in Mice.

    Science.gov (United States)

    DeCoffe, Daniella; Quin, Candice; Gill, Sandeep K; Tasnim, Nishat; Brown, Kirsty; Godovannyi, Artem; Dai, Chuanbin; Abulizi, Nijiati; Chan, Yee Kwan; Ghosh, Sanjoy; Gibson, Deanna L

    2016-06-01

    Dietary lipids modulate immunity, yet the means by which specific fatty acids affect infectious disease susceptibility remains unclear. Deciphering lipid-induced immunity is critical to understanding the balance required for protecting against pathogens while avoiding chronic inflammatory diseases. To understand how specific lipids alter susceptibility to enteric infection, we fed mice isocaloric, high-fat diets composed of corn oil (rich in n-6 polyunsaturated fatty acids [n-6 PUFAs]), olive oil (rich in monounsaturated fatty acids), or milk fat (rich in saturated fatty acids) with or without fish oil (rich in n-3 PUFAs). After 5 weeks of dietary intervention, mice were challenged with Citrobacter rodentium, and pathological responses were assessed. Olive oil diets resulted in little colonic pathology associated with intestinal alkaline phosphatase, a mucosal defense factor that detoxifies lipopolysaccharide. In contrast, while both corn oil and milk fat diets resulted in inflammation-induced colonic damage, only milk fat induced compensatory protective responses, including short chain fatty acid production. Fish oil combined with milk fat, unlike unsaturated lipid diets, had a protective effect associated with intestinal alkaline phosphatase activity. Overall, these results reveal that dietary lipid type, independent of the total number of calories associated with the dietary lipid, influences the susceptibility to enteric damage and the benefits of fish oil during infection. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Detecting alterations of glucose and lipid components in human serum by near-infrared Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Fernandes Borges

    Full Text Available Introduction Raman spectroscopy may become a tool for the analysis of glucose and triglycerides in human serum in real time. This study aimed to detect spectral differences in lipid and glucose components of human serum, thus evaluating the feasibility of Raman spectroscopy for diagnostic purposes. Methods A total of 44 samples of blood serum were collected from volunteers and submitted for clinical blood biochemical analysis. The concentrations of glucose, cholesterol, triglycerides, and low-density and high-density lipoproteins (LDL and HDL were obtained using standard biochemical assays. Serum samples were placed in Eppendorf tubes (200 µL, kept cooled (5 °C and analyzed with near-infrared Raman spectroscopy (830 nm, 250 mW, 50 s accumulation. The mean spectra of serum with normal or altered concentrations of each parameter were compared to determine which Raman bands were related to the differences between these two groups. Results Differences in peak intensities of altered sera compared to normal ones depended on the parameter under analysis: for glucose, peaks were related to glucose; for lipid compounds the main changes occurred in the peaks related to cholesterol, lipids (mainly triolein and proteins. Principal Components Analysis discriminated altered glucose, cholesterol and triglycerides from the normal serum based on the differences in the concentration of these compounds. Conclusion Differences in the peak intensities of selected Raman bands could be seen in normal and altered blood serum samples, and may be employed as a means of diagnosis in clinical analysis.

  6. Investigating the correlation between in vivo absorption and in vitro release of fenofibrate from lipid matrix particles in biorelevant medium.

    Science.gov (United States)

    Borkar, Nrupa; Xia, Dengning; Holm, René; Gan, Yong; Müllertz, Anette; Yang, Mingshi; Mu, Huiling

    2014-01-23

    Lipid matrix particles (LMP) may be used as better carriers for poorly water-soluble drugs than liquid lipid carriers because of reduced drug mobilization in the formulations. However, the digestion process of solid lipid particles and their effect on the absorption of poorly water-soluble drugs are not fully understood. This study aimed at investigating the effect of particle size of LMP on drug release in vitro as well as absorption in vivo in order to get a better understanding on the effect of degradation of lipid particles on drug solubilisation and absorption. Fenofibrate, a model poorly water-soluble drug, was incorporated into LMP in this study using probe ultrasound sonication. The resultant LMP were characterised in terms of particle size, size distribution, zeta potential, entrapment efficiency, in vitro lipolysis and in vivo absorption in rat model. LMP of three different particle sizes i.e. approximately 100 nm, 400 nm, and 10 μm (microparticles) were produced with high entrapment efficiencies. The in vitro lipolysis study showed that the recovery of fenofibrate in the aqueous phase for 100 nm and 400 nm LMP was significantly higher (pmicroparticles>control. In summary, the present study demonstrated the particle size dependence of bioavailability of fenofibrate loaded LMP in rat model which correlates well with the in vitro drug release performed in the biorelevant medium. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Alterations in lipid composition and fluidity of liver plasma membranes in copper-deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Lei, K.Y.; Rosenstein, F.; Shi, F.; Hassel, C.A.; Carr, T.P.; Zhang, J. (Univ. of Arizona, Tucson (USA))

    1988-07-01

    In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.

  8. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis

    Energy Technology Data Exchange (ETDEWEB)

    Lyssimachou, Angeliki [Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Navarro, Juan Carlos [Institute of Aquaculture of Torre de la Sal, CSIC, 12595 Ribera de Cabanes, Castellon (Spain); Bachmann, Jean [Department of Ecology and Evolution-Ecotoxicology, Johann Wolfgang Goethe-University Frankfurt, D-60054 Frankfurt am Main (Germany); Porte, Cinta, E-mail: cinta.porte@cid.csic.e [Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain)

    2009-05-15

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males. - Short-term exposure to the fungicide TPT disrupts lipid metabolism in M. cornuarietis at environmentally realistic concentrations.

  9. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis

    International Nuclear Information System (INIS)

    Lyssimachou, Angeliki; Navarro, Juan Carlos; Bachmann, Jean; Porte, Cinta

    2009-01-01

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males. - Short-term exposure to the fungicide TPT disrupts lipid metabolism in M. cornuarietis at environmentally realistic concentrations.

  10. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    Science.gov (United States)

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia

    Directory of Open Access Journals (Sweden)

    Manivannan Subramanian

    2013-05-01

    Obesity is a complex metabolic disorder that often manifests with a strong genetic component in humans. However, the genetic basis for obesity and the accompanying metabolic syndrome is poorly defined. At a metabolic level, obesity arises from an imbalance between the nutritional intake and energy utilization of an organism. Mechanisms that sense the metabolic state of the individual and convey this information to satiety centers help achieve this balance. Mutations in genes that alter or modify such signaling mechanisms are likely to lead to either obese individuals, who in mammals are at high risk for diabetes and cardiovascular disease, or excessively thin individuals with accompanying health problems. Here we show that Drosophila mutants for an intracellular calcium signaling channel, the inositol 1,4,5-trisphosphate receptor (InsP3R store excess triglycerides in their fat bodies and become unnaturally obese on a normal diet. Although excess insulin signaling can rescue obesity in InsP3R mutants to some extent, we show that it is not the only cause of the defect. Through mass spectrometric analysis of lipids we find that homeostasis of storage and membrane lipids are altered in InsP3R mutants. Possibly as a compensatory mechanism, InsP3R mutant adults also feed excessively. Thus, reduced InsP3R function alters lipid metabolism and causes hyperphagia in adults. Together, the metabolic and behavioral changes lead to obesity. Our results implicate altered InsP3 signaling as a previously unknown causative factor for metabolic syndrome in humans. Importantly, our studies also suggest preventive dietary interventions.

  12. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration.

    Science.gov (United States)

    Branchu, Julien; Boutry, Maxime; Sourd, Laura; Depp, Marine; Leone, Céline; Corriger, Alexandrine; Vallucci, Maeva; Esteves, Typhaine; Matusiak, Raphaël; Dumont, Magali; Muriel, Marie-Paule; Santorelli, Filippo M; Brice, Alexis; El Hachimi, Khalid Hamid; Stevanin, Giovanni; Darios, Frédéric

    2017-06-01

    Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Lipid composition of microdomains is altered in neuronopathic Gaucher disease sheep brain and spleen.

    Science.gov (United States)

    Hein, Leanne K; Rozaklis, Tina; Adams, Melissa K; Hopwood, John J; Karageorgos, Litsa

    2017-07-01

    Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls. We observed significant increases in the concentrations of glucosylceramide, hexosylsphingosine, BMP and gangliosides and decreases in the percentage of cholesterol and phosphatidylcholine leading to an altered DRM composition. Altered sphingolipid/cholesterol homeostasis would dramatically disrupt DRM architecture making them less ordered and more fluid. In addition, significant changes in the length and degree of lipid saturation within the DRM microdomains in the Gaucher brain were also observed. As these DRM microdomains are involved in many cellular events, an imbalance or disruption of the cell membrane homeostasis may impair normal cell function. This disruption of membrane raft microdomains and imbalance within the environment of cellular membranes of neuronal cells may be a key factor in initiating a cascade process leading to neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Nauck, Michael A; Pott, Andrea

    2006-01-01

    BACKGROUND & AIMS: The gut-derived peptide glucagon-like peptide 2 (GLP-2) has been suggested as a potential drug candidate for the treatment of various intestinal diseases. However, the acute effects of GLP-2 on gastric functions as well as on glucose and lipid homeostasis in humans are less well...... emptying. The stimulation of glucagon secretion by GLP-2 may counteract the glucagonostatic effect of GLP-1. Changes in postprandial lipid excursions seem to reflect enhanced intestinal nutrient absorption during GLP-2 administration....

  15. Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders

    NARCIS (Netherlands)

    Saini-Chohan, Harjot K.; Mitchell, Ryan W.; Vaz, Frédéric M.; Zelinski, Teresa; Hatch, Grant M.

    2012-01-01

    As the specific composition of lipids is essential for the maintenance of membrane integrity, enzyme function, ion channels, and membrane receptors, an alteration in lipid composition or metabolism may be one of the crucial changes occurring during skeletal and cardiac myopathies. Although the

  16. Antioxidant status and circulating lipids are altered in human gestational diabetes and macrosomia.

    Science.gov (United States)

    Grissa, Oussama; Atègbo, Jean-Marc; Yessoufou, Akadiri; Tabka, Zouhair; Miled, Abdelhedi; Jerbi, Mehdi; Dramane, Karim L; Moutairou, Kabirou; Prost, Josiane; Hichami, Aziz; Khan, Naim Akhtar

    2007-09-01

    Fetuses from mothers with gestational diabetes are at increased risk of developing neonatal macrosomia and oxidative stress. We investigated the modulation of antioxidant status and circulating lipids in gestational diabetic mothers and their macrosomic babies and in healthy age-matched pregnant women and their newborns. The serum antioxidant status was assessed by employing anti-radical resistance kit (KRL; Kirial International SA, Couternon, France) and determining levels of vitamin A, C, and E and the activity of superoxide dismutase (SOD). Circulating serum lipids were quantified, and lipid peroxidation was measured as the concentrations of serum thiobarbituric acid-reactive substances (TBARS). As compared with non-diabetic mothers, gestational diabetic women exhibited decreased levels of vitamin E and enhanced concentrations of vitamin C without any changes in vitamin A. Vitamin A and C levels did not change in macrosomic babies except vitamin E whose levels were lower in these infants than in the newborns of non-diabetic mothers. Gestational diabetes mellitus (GDM) and macrosomia were also associated with impaired SOD activities and enhanced TBARS levels. Globally, total serum antioxidant defense status in diabetic mothers and their macrosomic babies was diminished as compared with control subjects. Triglyceride and cholesterol concentrations did not differ significantly between gestational diabetic and control mothers; however, macrosomia was associated with enhanced plasma cholesterol and triglyceride levels. These results suggest that human GDM and macrosomia are associated with downregulation of antioxidant status, and macrosomic infants also exhibit altered lipid metabolism.

  17. Cartap and carbofuran induced alterations in serum lipid profile of Wistar rats.

    Science.gov (United States)

    Rai, Devendra K; Rai, Prashant Kumar; Gupta, Aradhna; Watal, Geeta; Sharma, Bechan

    2009-04-01

    Wistar rats of 6-8 weeks in age weighing between 120-150 g were exposed to the fixed doses of each of the carbamate pesticides such as cartap (50% LD(50)) and carbofuran (50% LD(50)) as well as a combination of these two with 25% LD(50) of each for one week. The effect of treatments was studied in terms of serum lipid parameters such as high-density lipoprotein, total cholesterol, triglyceride, low-density lipoprotein and very low-density lipoprotein. Treatment with individual doses of carbofuran (50% LD(50)) and cartap (50 % LD(50)) caused significant alterations in the levels of serum lipid parameters. The pesticides treatment resulted in marked decrease in the level of serum high-density lipoprotein where as that of other lipids got significantly elevated. Further, the rats exhibited relatively higher impact of pesticides when treated with the compounds in combination (25 % LD(50) of each). The results indicated that these compounds when used together may exert enhanced effect on the levels of serum lipids in rat.

  18. Subchronic Arsenic Exposure Through Drinking Water Alters Lipid Profile and Electrolyte Status in Rats.

    Science.gov (United States)

    Waghe, Prashantkumar; Sarkar, Souvendra Nath; Sarath, Thengumpallil Sasindran; Kandasamy, Kannan; Choudhury, Soumen; Gupta, Priyanka; Harikumar, Sankarankutty; Mishra, Santosh Kumar

    2017-04-01

    Arsenic is a groundwater pollutant and can cause various cardiovascular disorders in the exposed population. The aim of the present study was to assess whether subchronic arsenic exposure through drinking water can induce vascular dysfunction associated with alteration in plasma electrolytes and lipid profile. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. On the 91st day, rats were sacrificed and blood was collected. Lipid profile and the levels of electrolytes (sodium, potassium, and chloride) were assessed in plasma. Arsenic reduced high-density lipoprotein cholesterol (HDL-C) and HDL-C/LDL-C ratio, but increased the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), and electrolytes. The results suggest that the arsenic-mediated dyslipidemia and electrolyte retention could be important mechanisms in the arsenic-induced vascular disorder.

  19. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    Directory of Open Access Journals (Sweden)

    Huan Cai

    Full Text Available Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT, ghrelin knockout (ghrelin(-/-, and GOAT knockout (GOAT(-/- mice. Ghrelin(-/- mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/- mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/- and GOAT(-/- mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/- mice, yet potentiated in GOAT(-/- mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/- mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/- and GOAT(-/- mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  20. Altered Lipid and Salt Taste Responsivity in Ghrelin and GOAT Null Mice

    Science.gov (United States)

    Daimon, Caitlin M.; Wang, Rui; Tschöp, Matthias H.; Sévigny, Jean; Martin, Bronwen; Maudsley, Stuart

    2013-01-01

    Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT) is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT), ghrelin knockout (ghrelin−/−), and GOAT knockout (GOAT−/−) mice. Ghrelin−/− mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT−/− mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin−/− and GOAT−/− mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin−/− mice, yet potentiated in GOAT−/− mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT−/− mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin−/− and GOAT−/− mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities. PMID:24124572

  1. Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes.

    Science.gov (United States)

    Djebali, W; Zarrouk, M; Brouquisse, R; El Kahoui, S; Limam, F; Ghorbel, M H; Chaïbi, W

    2005-07-01

    The effects of cadmium (Cd) uptake on ultrastructure and lipid composition of chloroplasts were investigated in 28-day-old tomato plants (Lycopersicon esculentum var. Ibiza F1) grown for 10 days in the presence of various concentrations of CdCl2. Different growth parameters, lipid and fatty acid composition, lipid peroxidation, and lipoxygenase activity were measured in the leaves in order to assess the involvement of this metal in the generation of oxidative stress. We first observed that the accumulation of Cd increased with external metal concentration, and was considerably higher in roots than in leaves. Cadmium induced a significant inhibition of growth in both plant organs, as well as a reduction in the chlorophyll and carotenoid contents in the leaves. Ultrastructural investigations revealed that cadmium induced disorganization in leaf structure, essentially marked by a lowered mesophyll cell size, reduced intercellular spaces, as well as severe alterations in chloroplast fine structure, which exhibits disturbed shape and dilation of thylakoid membranes. High cadmium concentrations also affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the fatty acid content and a shift in the composition of fatty acids, resulting in a lower degree of fatty acid unsaturation in chloroplast membranes. The level of lipid peroxides and the activity of lipoxygenase were also significantly enhanced at high Cd concentrations. These biochemical and ultrastructural changes suggest that cadmium, through its effects on membrane structure and composition, induces premature senescence of leaves.

  2. Altered epidermal lipid layers induced by long-term exposure to suberythemal-dose ultraviolet.

    Science.gov (United States)

    Bak, Hana; Hong, Seung-Phil; Jeong, Se-Kyoo; Choi, Eung-Ho; Lee, Sang E; Lee, Seung-Hun; Ahn, Sung-Ku

    2011-07-01

    Although several studies have reported on the biological effects of ultraviolet (UV) radiation, there have been only a few reports on the changes in epidermal lipids following long-term UV irradiation at suberythemal dose (SED), to which people are usually exposed during their lifetime. To investigate the changes of epidermal lipid properties after long-term UV radiation with SED. Hairless mice were irradiated three times weekly for 15 weeks at an SED of UV (UVB: 20 mJ/cm(2) ; UVA: 14 J/cm(2) ). Every three weeks, transepidermal water loss (TEWL) was measured by a Tewameter. The morphological alterations of stratum corneum (SC) lipid lamellae were examined by electron microscopy (EM). Activities of three key enzymes for mRNA of serine palmitoyl transferase, fatty acid synthase, and HMG CoA reductase were analyzed with real time reverse transcriptase-polymerase chain reaction. We also measured the amount of ceramide, cholesterol sulfate, and free fatty acid in the SC by high-performance thin-layer chromatography with exposed times. The SED UV-irradiated group showed increased TEWL after 12 weeks. Following the irradiation period, EM revealed incomplete and separated lamellae at SC intercellular space. mRNA of three key enzymes was increased until six weeks of UV irradiation and decreased thereafter. However, three major lipid amounts gradually decreased throughout the exposed period, with a notable decrease in ceramide. Long-term UV irradiation even with SED influences skin barrier function and structure with prominent ceramide decrease in SC intercellular lipid. © 2011 The International Society of Dermatology.

  3. Dietary Fatty Acids Alter Lipid Profiles and Induce Myocardial Dysfunction without Causing Metabolic Disorders in Mice.

    Science.gov (United States)

    Chen, Bainian; Huang, Yifan; Zheng, Dong; Ni, Rui; Bernards, Mark A

    2018-01-19

    Oversupply of bulk saturated fatty acids (SFA) induces metabolic disorders and myocardial dysfunction. We investigated whether, without causing metabolic disorders, the uptake of individual dietary SFA species alters lipid profiles and induces myocardial dysfunction. C57BL/6 mice were fed various customized long-chain SFA diets (40% caloric intake from SFA), including a beef tallow (HBD), cocoa butter (HCD), milk fat (HMD) and palm oil diet (HPD), for 6 months. An isocaloric fat diet, containing medium-chain triglycerides, served as a control (CHD). Long-term intake of dietary long-chain SFA differentially affected the fatty acid composition in cardiac phospholipids. All long-chain SFA diets increased the levels of arachidonic acid and total SFA in cardiac phospholipids. The preferential incorporation of individual SFA into the cardiac phospholipid fraction was dependent on the dietary SFA species. Cardiac ceramide content was elevated in all mice fed long-chain SFA diets, while cardiac hypertrophy was only presented in mice fed HMD or HPD. We have demonstrated that the intake of long-chain SFA species differentially alters cardiac lipid profiles and induces cardiac dysfunction, without causing remarkable metabolic disorders.

  4. Lipid-associated Oral Delivery: Mechanisms and Analysis of Oral Absorption Enhancement

    OpenAIRE

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca L.

    2016-01-01

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of pe...

  5. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. © 2013 Elsevier Inc. All rights reserved.

  6. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils.

    Science.gov (United States)

    Perona, Javier S

    2017-09-01

    The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High saturated fat diet alters the lipid composition of triacylglycerol and polar lipids in the femur of dam and offspring rats.

    Science.gov (United States)

    Miotto, Paula M; Castelli, Laura M; Amoye, Foyinsola; Ward, Wendy E; LeBlanc, Paul J

    2015-06-01

    Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post-weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n-3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n-3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5-month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19-day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n-3 and n-6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n-6:n-3 ratio in dams only. The PL fraction showed decreased n-6 PUFA in both dams and pups. The magnitude of the diet-mediated responses, specifically TAG 18:1 and PL n-6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet-induced changes in bone lipids on bone structure, as quantified through micro-computed tomography.

  8. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function.

    Science.gov (United States)

    Guebre-Egziabher, Fitsum; Alix, Pascaline M; Koppe, Laetitia; Pelletier, Caroline C; Kalbacher, Emilie; Fouque, Denis; Soulage, Christophe O

    2013-11-01

    Ectopic lipid accumulation is now known to be a mechanism that contributes to organ injury in the context of metabolic diseases. In muscle and liver, accumulation of lipids impairs insulin signaling. This hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, aging and lipodystrophy. Increasing data suggest that lipid accumulation in the kidneys could also contribute to the alteration of kidney function in the context of metabolic syndrome and obesity. Furthermore and more unexpectedly, animal models of kidney disease exhibit a decreased adiposity and ectopic lipid redistribution suggesting that kidney disease may be a state of lipodystrophy. However, whether this abnormal lipid partitioning during chronic kidney disease (CKD) may have any functional impact in these tissues needs to be investigated. Here, we provide a perspective by defining the problem and analyzing the possible causes and consequences. Further human studies are required to strengthen these observations, and provide novel therapeutic approaches. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Effect of randomization of mixtures of butter oil and vegetable oil on absorption and lipid metabolism in rats

    DEFF Research Database (Denmark)

    Becker, C.; Lund, Pia; Hølmer, Gunhild Kofoed

    2001-01-01

    of the dietary fats compared. Data on the fate of such lipids beyond the bloodstream is rather scarce and animal model studies are needed. Aim of the study To compare the metabolism of butter oil and mixtures of butter and rapeseed oil, native or randomized, in a model. The regiospecific fatty acid distribution...... present in dietary fats was followed through absorption, chylomicron formation, and deposition in adipose tissue and in different liver lipids (triacylglycerols, phospholipids, and cholesterol esters). Methods Rats were fed for 6 weeks from weaning either butter oil (BO), a butteroil- rapeseed oil mixture...... (interesterification) of butter oil with rapeseed oil (65:35 w/w) for use as edible fat did not have any impact on the fatty acid composition beyond the chylomicron step when compared to the native mixture....

  10. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  11. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  12. Impacts of fat fromruminants’ meat on cardiovascular health and possible strategies to alter its lipid composition

    DEFF Research Database (Denmark)

    Vargas-Bello-Pérez, Einar; Larraín, Rafael E.

    2017-01-01

    intake of fat, saturated FAs and cholesterol as a means of reducing the risk of cardiovascular disease. Interestingly, ruminant meat has some bioactive lipids such as C18:1t11 and C18:2 c9, t11 which have been reported to have positive effects on human health. In order to improve muscle fat composition......In the last few decades there has been increased consumer interest in the fatty acid (FA) composition of ruminant meat due to its content of saturated FAs, which have been implicated in diseases associated with modern life. However, recent studies have questioned the recommendations to reduce...... from a human health standpoint, oilseeds, plant oils andmarine oils can be used in ruminant diets. On the other hand,molecular mechanisms play an important role in the alteration of the FA composition of muscle fat. Genetics offer a wide range of possibilities for improvement of muscle fat...

  13. Chronic consumption of fructose rich soft drinks alters tissue lipids of rats

    Directory of Open Access Journals (Sweden)

    Botezelli Jose D

    2010-06-01

    Full Text Available Abstract Background Fructose-based diets are apparently related to the occurrence of several metabolic dysfunctions, but the effects of the consumption of high amounts of fructose on body tissues have not been well described. The aim of this study was to analyze the general characteristics and the lipid content of different tissues of rats after chronic ingestion of a fructose rich soft drink. Methods Forty-five Wistar rats were used. The rats were divided into three groups (n = 15 and allowed to consume water (C, light Coca Cola ® (L or regular Coca Cola® (R as the sole source of liquids for eight weeks. Results The R group presented significantly higher daily liquid intake and significantly lower food intake than the C and L groups. Moreover, relative to the C and L groups, the R group showed higher triglyceride concentrations in the serum and liver. However, the L group animals presented lower values of serum triglycerides and cholesterol than controls. Conclusions Based on the results, it can be concluded that daily ingestion of a large amount of fructose- rich soft drink resulted in unfavorable alterations to the lipid profile of the rats.

  14. Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice.

    Science.gov (United States)

    Aswad, Hala; Forterre, Alexis; Wiklander, Oscar P B; Vial, Guillaume; Danty-Berger, Emmanuelle; Jalabert, Audrey; Lamazière, Antonin; Meugnier, Emmanuelle; Pesenti, Sandra; Ott, Catherine; Chikh, Karim; El-Andaloussi, Samir; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer; Rome, Sophie

    2014-10-01

    Exosomes released from cells can transfer both functional proteins and RNAs between cells. In this study we tested the hypothesis that muscle cells might transmit specific signals during lipid-induced insulin resistance through the exosomal route. Exosomes were collected from quadriceps muscles of C57Bl/6 mice fed for 16 weeks with either a standard chow diet (SD) or an SD enriched with 20% palm oil (HP) and from C2C12 cells exposed to 0.5 mmol/l palmitate (EXO-Post Palm), oleate (EXO-Post Oleate) or BSA (EXO-Post BSA). HP-fed mice were obese and insulin resistant and had altered insulin-induced Akt phosphorylation in skeletal muscle (SkM). They also had reduced expression of Myod1 and Myog and increased levels of Ccnd1 mRNA, indicating that palm oil had a deep impact on SkM homeostasis in addition to insulin resistance. HP-fed mouse SkM secreted more exosomes than SD-fed mouse SkM. This was reproduced in-vitro using C2C12 cells pre-treated with palmitate, the most abundant saturated fatty acid of palm oil. Exosomes from HP-fed mice, EXO-Post Palm and EXO-Post Oleate induced myoblast proliferation and modified the expressions of genes involved in the cell cycle and muscle differentiation but did not alter insulin-induced Akt phosphorylation. Lipidomic analyses showed that exosomes from palmitate-treated cells were enriched in palmitate, indicating that exosomes likely transfer the deleterious effect of palm oil between muscle cells by transferring lipids. Muscle exosomes were incorporated into various tissues in vivo, including the pancreas and liver, suggesting that SkM could transfer specific signals through the exosomal route to key metabolic tissues. Exosomes act as 'paracrine-like' signals and modify muscle homeostasis during high-fat diets.

  15. Plasma lipids, lipoprotein metabolism and HDL lipid transfers are equally altered in metabolic syndrome and in type 2 diabetes.

    Science.gov (United States)

    Silva, Vanessa M; Vinagre, Carmen G C; Dallan, Luis A O; Chacra, Ana P M; Maranhão, Raul C

    2014-07-01

    Metabolic syndrome (MetS) refers to states of insulin resistance that predispose to development of cardiovascular disease and type 2 diabetes (T2DM). The aim was to investigate whether plasma lipids and lipid metabolism differ in MetS patients compared to those with T2DM with poor glycemic control (glycated hemoglobin > 7.0). Eighteen patients with T2DM, 18 with MetS and 14 controls, paired for age (40-70 years) and body mass index (BMI), were studied. Plasma lipids and the kinetics of a triacylglycerol-rich emulsion labeled with [(3)H]-triolein ([(3)H]-TAG) and [(14)C]-cholesteryl esters ([(14)C]-CE) injected intravenously followed by one-hour blood sampling were determined. Lipid transfers from an artificial nanoemulsion donor to high-density lipoprotien (HDL) were assayed in vitro. Low-density lipoprotein (LDL) and HDL cholesterol (mg/dl) were not different in T2DM (128 ± 7; 42 ± 7) and MetS (142 ± 6; 39 ± 3), but triacylglycerols were even higher in MetS (215 ± 13) than in T2DM (161 ±11, p lipid metabolism examined here, and suggest that there are different thresholds for the insulin action on glucose and lipids. These findings highlight the magnitude of the lipid disturbances in MetS, and may have implications in the prevention of cardiovascular diseases.

  16. Effect of Oral Lipid Matrix Supplement on Fat Absorption in Cystic Fibrosis: A Randomized Placebo-Controlled Trial

    Science.gov (United States)

    Stallings, Virginia A.; Schall, Joan I.; Maqbool, Asim; Mascarenhas, Maria R.; Alshaikh, Belal N.; Dougherty, Kelly A.; Hommel, Kevin; Ryan, Jamie; Elci, Okan U.; Shaw, Walter A.

    2016-01-01

    Pancreatic enzyme therapy does not normalize dietary fat absorption in patients with cystic fibrosis (CF) and pancreatic insufficiency (PI). Efficacy of LYM-X-SORBTM (LXS), an easily absorbable lipid matrix that enhances fat absorption was evaluated in a 12-month randomized, double-blinded, placebo-controlled trial with plasma fatty acids (FA), and coefficient of fat absorption (CFA) outcomes. 110 subjects (age 10.4±3.0 y) were randomized. Total FA increased with LXS at 3 and 12 months (+1.58; +1.14 mmol/L) and not with placebo (P=0.046). With LXS, linoleic acid (LA) increased at 3 and 12 months (+298; +175 nmol/mL, P≤0.046), with a 6% increase in CFA (P<0.01). LA increase was significant in LXS vs. placebo (445 vs. 42 nmol/mL, P= 0.038). Increased FA and LA predicted increased BMI Z scores. In summary, LXS treatment improved dietary fat absorption compared to placebo as indicated by plasma FA and LA and was associated with better growth status. PMID:27050056

  17. Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury.

    Science.gov (United States)

    Moustafa, Tarek; Fickert, Peter; Magnes, Christoph; Guelly, Christian; Thueringer, Andrea; Frank, Sasa; Kratky, Dagmar; Sattler, Wolfgang; Reicher, Helga; Sinner, Frank; Gumhold, Judith; Silbert, Dagmar; Fauler, Günter; Höfler, Gerald; Lass, Achim; Zechner, Rudolf; Trauner, Michael

    2012-01-01

    The liver controls central processes of lipid and bile acid homeostasis. We aimed to investigate whether alterations in lipid metabolism contribute to the pathogenesis of chronic cholestatic liver disease in mice. We used microarray and metabolic profiling analyses to identify alterations in systemic and hepatic lipid metabolism in mice with disruption of the gene ATP-binding cassette sub-family B member 4 (Abcb4(-/-) mice), a model of inflammation-induced cholestatic liver injury, fibrosis, and cancer. Alterations in Abcb4(-/-) mice, compared with wild-type mice, included deregulation of genes that control lipid synthesis, storage, and oxidation; decreased serum levels of cholesterol and phospholipids; and reduced hepatic long-chain fatty acyl-CoAs (LCA-CoA). Feeding Abcb4(-/-) mice the side chain-modified bile acid 24-norursodeoxycholic acid (norUDCA) reversed their liver injury and fibrosis, increased serum levels of lipids, lowered phospholipase and triglyceride hydrolase activities, and restored hepatic LCA-CoA and triglyceride levels. Additional genetic and nutritional studies indicated that lipid metabolism contributed to chronic cholestatic liver injury; crossing peroxisome proliferator-activated receptor (PPAR)-α-deficient mice with Abcb4(-/-) mice (to create double knockouts) or placing Abcb4(-/-) mice on a high-fat diet protected against liver injury, with features similar to those involved in the response to norUDCA. Placing pregnant Abcb4(-/-) mice on high-fat diets prevented liver injury in their offspring. However, fenofibrate, an activator of PPARα, aggravated liver injury in Abcb4(-/-) mice. Alterations in lipid metabolism contribute to the pathogenesis and progression of cholestatic liver disease in mice. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Alteration in lipid metabolism induced by a diet rich in soya-oil and ...

    African Journals Online (AJOL)

    PGD

    2013-09-11

    Sep 11, 2013 ... enriched in 20% soy- oil and another enriched with 20% amylopectin. The starved group ..... samples were: 1, Total brain lipids from lipid fed rats; 2, total brain lipids from control group; 3, total brain lipids from starved group; 4, total brain .... might be attributed to unavailability of food for synthesis of building ...

  19. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity

    International Nuclear Information System (INIS)

    Kunst, L.; Browse, J.; Somerville, C.

    1988-01-01

    The leaf membrane lipids of many plant species, including Arabidopsis thaliana (L.) Heynh., are synthesized by two complementary pathways that are associated with the chloroplast and the endoplasmic reticulum. By screening directly for alterations in lipid acyl-group composition, the authors have identified several mutants of Arabidopsis that lack the plastid pathway because of a deficiency in activity of the first enzyme in the plastid pathway of glycerolipid synthesis, acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The lesion results in an increased synthesis of lipids by the cytoplasmic pathway that largely compensates for the loss of the plastid pathway and provides nearly normal amounts of all the lipids required for chloroplast biogenesis. However, the fatty acid composition of the leaf membrane lipids of the mutants is altered because the acyltransferases associated with the two pathways normally exhibit different substrate specificities. The remarkable flexibility of the system provides an insight into the nature of the regulatory mechanisms that allocate lipids for membrane biogenesis

  20. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1 H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  1. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  2. Partial prevention of hepatic lipid alterations in nude mice by neonatal thymulin gene therapy.

    Science.gov (United States)

    García de Bravo, Margarita M; Polo, Mónica P; Reggiani, Paula C; Rimoldi, Omar J; Dardenne, Mireille; Goya, Rodolfo G

    2006-08-01

    During adult life athymic (nude) male mice display not only a severe T-cell-related immunodeficiency but also endocrine imbalances and a moderate hyperglycemia. We studied the impact of congenital athymia on hepatic lipid composition and also assessed the ability of neonatal thymulin gene therapy to prevent the effects of athymia. We constructed a recombinant adenoviral vector, RAd-metFTS, expressing a synthetic DNA sequence encoding met-FTS, an analog of the thymic peptide facteur thymique sérique (FTS), whose Zn-bound biologically active form is known as thymulin. On postnatal day 1-2 homozygous (nu/nu) nude and heterozygous (nu/+) mice were injected with 10(8) pfu of RAd-metFTS or RAd-betagal (control vector) intramuscularly. The animals were processed at 52 d of age. Serum thymulin, glycemia, hepatic phospholipid FA composition and free and esterified cholesterol were determined. Adult homozygous male nudes were significantly (P < 0.01) hyperglycemic when compared with their heterozygous counterparts (2.04 vs. 1.40 g/L, respectively). The relative percentage of 16:0, 18:1 n-9, and 18:1n-7 FA was lower, whereas that of 18:0, 20:4n-6, and 22:6n-3 FA was higher, in hepatic phospholipid (PL) of nu/nu animals as compared with their nu/+ counterparts. Some of these alterations, such as that in the relative content of 22:6n-3 in liver PL and the unsaturation index, were completely or partially prevented by neonatal thymulin gene therapy. We conclude that the thymus influences lipid metabolism and that thymulin is involved in this modulatory activity.

  3. Perilipin-2 Modulates Lipid Absorption and Microbiome Responses in the Mouse Intestine.

    Science.gov (United States)

    Frank, Daniel N; Bales, Elise S; Monks, Jenifer; Jackman, Matthew J; MacLean, Paul S; Ir, Diana; Robertson, Charles E; Orlicky, David J; McManaman, James L

    2015-01-01

    Obesity and its co-morbidities, such as fatty liver disease, are increasingly prevalent worldwide health problems. Intestinal microorganisms have emerged as critical factors linking diet to host physiology and metabolic function, particularly in the context of lipid homeostasis. We previously demonstrated that deletion of the cytoplasmic lipid drop (CLD) protein Perilipin-2 (Plin2) in mice largely abrogates long-term deleterious effects of a high fat (HF) diet. Here we test the hypotheses that Plin2 function impacts the earliest steps of HF diet-mediated pathogenesis as well as the dynamics of diet-associated changes in gut microbiome diversity and function. WT and perilipin-2 null mice raised on a standard chow diet were randomized to either low fat (LF) or HF diets. After four days, animals were assessed for changes in physiological (body weight, energy balance, and fecal triglyceride levels), histochemical (enterocyte CLD content), and fecal microbiome parameters. Plin2-null mice had significantly lower respiratory exchange ratios, diminished frequencies of enterocyte CLDs, and increased fecal triglyceride levels compared with WT mice. Microbiome analyses, employing both 16S rRNA profiling and metagenomic deep sequencing, indicated that dietary fat content and Plin2 genotype were significantly and independently associated with gut microbiome composition, diversity, and functional differences. These data demonstrate that Plin2 modulates rapid effects of diet on fecal lipid levels, enterocyte CLD contents, and fuel utilization properties of mice that correlate with structural and functional differences in their gut microbial communities. Collectively, the data provide evidence of Plin2 regulated intestinal lipid uptake, which contributes to rapid changes in the gut microbial communities implicated in diet-induced obesity.

  4. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    Directory of Open Access Journals (Sweden)

    Rosamond B. Guillermo

    2015-03-01

    Full Text Available Background: Supplementation with complex milk lipids (CML during postnatal brain development has been shown to improve spatial reference learning in rats. Objective: The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design: The study used the brain tissues from the rats (male Wistar, 80 days of age after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results: Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01, but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05, but did not alter glutamate receptors, myelination or vascular density. Conclusion: CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling.

  5. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    Science.gov (United States)

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  6. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio A. Rosales-Corral

    2012-01-01

    Full Text Available Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-ß (Aß generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-ß (Aß. The purpose was to determine how Aß may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aß in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid ß was injected, favoring an endogenous anti-inflammatory pathway.

  7. Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers.

    Science.gov (United States)

    Chanburee, Sanipon; Tiyaboonchai, Waree

    2018-02-01

    This study aimed to compare the intestinal permeation of curcumin-loaded polymer coated nanostructured lipid carriers (NLCs) and uncoated NLCs using the Caco-2 cell model. The uncoated NLCs were prepared using a warm microemulsion technique, while polymer-coated NLCs were prepared with the same method but were followed by coating particle surface with polyethylene glycol (PEG) 400 or polyvinyl alcohol (PVA). After lyophilization, all formulations possessed a mean size of  0.05) compared to those freshly prepared formulations. Considered overall, polymer coated NLCs are an important strategy to improve the oral bioavailability of curcumin. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 734-741, 2018. © 2017 Wiley Periodicals, Inc.

  8. Intravenous lipid emulsion alters the hemodynamic response to epinephrine in a rat model.

    Science.gov (United States)

    Carreiro, Stephanie; Blum, Jared; Jay, Gregory; Hack, Jason B

    2013-09-01

    Intravenous lipid emulsion (ILE) is an adjunctive antidote used in selected critically ill poisoned patients. These patients may also require administration of advanced cardiac life support (ACLS) drugs. Limited data is available to describe interactions of ILE with standard ACLS drugs, specifically epinephrine. Twenty rats with intra-arterial and intravenous access were sedated with isoflurane and split into ILE or normal saline (NS) pretreatment groups. All received epinephrine 15 μm/kg intravenously (IV). Continuous mean arterial pressure (MAP) and heart rate (HR) were monitored until both indices returned to baseline. Standardized t tests were used to compare peak MAP, time to peak MAP, maximum change in HR, time to maximum change in HR, and time to return to baseline MAP/HR. There was a significant difference (p = 0.023) in time to peak MAP in the ILE group (54 s, 95 % CI 44-64) versus the NS group (40 s, 95 % CI 32-48) and a significant difference (p = 0.004) in time to return to baseline MAP in ILE group (171 s, 95 % CI 148-194) versus NS group (130 s, 95 % CI 113-147). There were no significant differences in the peak change in MAP, peak change in HR, time to minimum HR, or time to return to baseline HR between groups. ILE-pretreated rats had a significant difference in MAP response to epinephrine; ILE delayed the peak effect and prolonged the duration of effect of epinephrine on MAP, but did not alter the peak increase in MAP or the HR response.

  9. Altered Concentrations in Dyslipidemia Evidence a Role for ANGPTL8/Betatrophin in Lipid Metabolism in Humans.

    Science.gov (United States)

    Gómez-Ambrosi, Javier; Pascual-Corrales, Eider; Catalán, Victoria; Rodríguez, Amaia; Ramírez, Beatriz; Romero, Sonia; Vila, Neus; Ibáñez, Patricia; Margall, María A; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema

    2016-10-01

    Angiopoietin-like protein 8 (ANGPTL8)/betatrophin is a secreted protein initially involved in β-cell replication. Recent data in humans and mice models suggest that ANGPTL8/betatrophin is more related to lipid metabolism. The aim of the present study was to compare the circulating concentrations of ANGPTL8/betatrophin in individuals with dyslipidemia defined as having high or low levels of high-density lipoprotein (HDL)-cholesterol or triglycerides, respectively. Serum concentrations of ANGPTL8/betatrophin were measured by an ELISA in 177 subjects. We studied two different selected case-control dyslipidemic cohorts including individuals with high (n = 43) or low (n = 46) circulating concentrations of HDL-cholesterol or with low (n = 48) or high (n = 40) levels of triglycerides. Circulating concentrations of ANGPTL8/betatrophin were significantly lower in individuals with dyslipidemia (P < .001) in both males (controls 27.8 ± 15.2 vs dyslipidemic 17.0 ± 11.2 ng/mL) and females (controls 50.0 ± 22.2 vs dyslipidemic 27.0 ± 16.5 ng/mL). The magnitude of the differences was higher in dyslipidemic patients with low HDL-cholesterol than in those with high triglyceride concentrations. ANGPTL8/betatrophin levels were lower in subjects with type 2 diabetes (P < .001), but the impact of type 2 diabetes vanished (P = .257) when the effect of dyslipidemia was included in the analysis. We conclude that serum ANGPTL8/betatrophin concentrations are altered in human dyslipidemia. ANGPTL8/betatrophin emerges as a potential player in dyslipidemia with a strong association with HDL-cholesterol and a potential therapeutic tool for the treatment of dyslipidemia.

  10. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles.

    Science.gov (United States)

    Horn, Patrick J; Silva, Jillian E; Anderson, Danielle; Fuchs, Johannes; Borisjuk, Ljudmilla; Nazarenus, Tara J; Shulaev, Vladimir; Cahoon, Edgar B; Chapman, Kent D

    2013-10-01

    Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed-specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue-specific heterogeneity in triacylglycerol metabolism. Phosphatidylcholines and triacylglycerols enriched in linoleic acid (C18:2) were preferentially localized to the axis tissues, whereas lipid classes enriched in gadoleic acid (C20:1) were preferentially localized to the cotyledons. Manipulation of seed lipid compositions by heterologous over-expression of an acyl-acyl carrier protein thioesterase, or by suppression of fatty acid desaturases and elongases, resulted in new overall seed storage lipid compositions with altered patterns of distribution of phospholipid and triacylglycerol in transgenic embryos. Our results reveal previously unknown differences in acyl lipid distribution in Camelina embryos, and suggest that this spatial heterogeneity may or may not be able to be changed effectively in transgenic seeds depending upon the targeted enzyme(s)/pathway(s). Further, these studies point to the importance of resolving the location of metabolites in addition to their quantities within plant tissues. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription.

    Science.gov (United States)

    Fan, Jianhua; Cui, Yanbin; Zhou, Yang; Wan, Minxi; Wang, Weiliang; Xie, Jingli; Li, Yuanguang

    2014-07-01

    Heterotrophy to photoautotrophy transition leads to the accumulation of lipids in Chlorella, which has potential to produce both healthy food and biofuels. Therefore, it is of key interest to study the metabolism shift and gene expression changes that influenced by the transition. Both total and neutral lipids contents were increased rapidly within 48 h after the switch to light environment, from 24.5% and 18.0% to 35.3% and 27.4%, respectively, along with the sharp decline of starch from 42.3% to 10.4% during 24h photoinduction phase. By analyzing the correlation between lipid content and gene expression, results revealed several genes viz. me g3137, me g6562, pepc g6833, dgat g3280 and dgat g7566, which encode corresponding enzymes in the de novo lipid biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. These results represented the feasibility of lipid production through trophic converting cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of randomization of mixtures of butter oil and vegetable oil on absorption and lipid metabolism in rats.

    Science.gov (United States)

    Becker, C; Lund, P; Hølmer, G

    2001-02-01

    The nutritional effect of the regiospecific distribution of fatty acids in edible fats is currently discussed due to an increased use of interesterification of fats for human consumption. However, disagreeing results have been reported which may be due to the varying composition of the dietary fats compared. Data on the fate of such lipids beyond the bloodstream is rather scarce and animal model studies are needed. To compare the metabolism of butter oil and mixtures of butter and rapeseed oil, native or randomized, in a rat model. The regiospecific fatty acid distribution present in dietary fats was followed through absorption, chylomicron formation, and deposition in adipose tissue and in different liver lipids (triacylglycerols, phosholipids, and cholesterol esters). Rats were fed for 6 weeks from weaning either butter oil (BO), a butteroil-rapeseed oil mixture 65:35 w/w (BR) or a randomized mixture of BR (tBR). Half of the animals were used for organ analysis, the rest for a postprandial study with the same fats and isolation of chylomicrons. The regiospecific distribution of the fatty acids present in the dietary fats was followed during metabolism by analyses of chylomicrons, depot fat and liver lipids, using regiospecific cleavage followed by TLC separation and quantification by GC. Randomization of edible fat mixtures leading to equal distribution of fatty acids between TG positions is directly reflected in the composition of chylomicrons. During clearing by lipoprotein lipase this positional distribution is abolished and the regiospecific composition of triacylglycerols in adipose tissue is completely identical for BR and tBR. Chylomicron remnants, which are taken up by the liver, are correspondingly fully degraded to free fatty acids by hepatic lipase, and distribution of fatty acids in liver triacylglycerols, phospholipids and cholesterol esters are identical for the groups fed either BR or tBR. The group fed BO with a low content of linoleic acid is on

  13. Improvement of Lipid Profile Is Accompanied by Atheroprotective Alterations in High-Density Lipoprotein Composition Upon Tumor Necrosis Factor Blockade A Prospective Cohort Study in Ankylosing Spondylitis

    NARCIS (Netherlands)

    Eijk, van I.C.; Vries, de M.K.; Levels, J.H.M.; Peters, M.J.L.; Huizer, E.E.; Dijkmans, B.A.C.; Horst - Bruinsma, van der I.E.; Hazenberg, B.P.C.; Stadt, van de R.J.; Wolbink, G.; Nurmohamed, M.T.

    2009-01-01

    Objective. Cardiovascular mortality is increased in ankylosing spondylitis (AS), and inflammation plays an important role. Inflammation deteriorates the lipid profile and alters high-density lipoprotein cholesterol (HDL-c) composition, reflected by increased concentrations of serum amyloid A (SAA)

  14. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  15. Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1

    NARCIS (Netherlands)

    Wellington, Cheryl L.; Brunham, Liam R.; Zhou, Steven; Singaraja, Roshni R.; Visscher, Henk; Gelfer, Allison; Ross, Colin; James, Erick; Liu, Guoqing; Huber, Mary T.; Yang, Yu-Zhou; Parks, Robin J.; Groen, Albert; Fruchart-Najib, Jamila; Hayden, Michael R.

    2003-01-01

    ATP binding cassette transporter A1 (ABCA1) is a widely expressed lipid transporter essential for the generation of HDL. ABCA1 is particularly abundant in the liver, suggesting that the liver may play a major role in HDL homeostasis. To determine how hepatic ABCA1 affects plasma HDL cholesterol

  16. Excess abdominal adiposity remains correlated with altered lipid concentrations in healthy older women.

    Science.gov (United States)

    DiPietro, L; Katz, L D; Nadel, E R

    1999-04-01

    To determine associations between overall adiposity, absolute and relative abdominal adiposity, and lipid concentrations in healthy older women. Cross-sectional analysis of baseline data. Subjects were 21 healthy, untrained older women (71 +/- 1 y) entering a randomized, controlled aerobic training program. Overall adiposity was assessed by anthropometry and the body mass index (BMI=kg/m2). Absolute and relative abdominal adiposity was determined by computed tomography (CT) and circumference measures. Fasting serum lipid concentrations of total-, high density lipoprotein (HDL)-, and low density lipoprotein (LDL)-cholesterol (C) and triglycerides (TGs) were determined by standard enzymatic procedures. Compared to the measures of overall adiposity, we observed much stronger correlations between measures more specific to absolute or relative abdominal adiposity and lipid concentrations. Visceral fat area was the strongest correlate of HDL-C (r = -0.75; P HDL-C ratio (r = 0.86; P correlated with TGs (r = 0.54; P HDL-C (r= -0.69; P HDL-C ratio (r = 0.75; P adiposity remains an important correlate of lipid metabolism, even in healthy older women of normal weight. Thus, overall obesity is not a necessary condition for the correlation between excess abdominal fat and metabolic risk among postmenopausal women.

  17. Chia induces clinically discrete weight loss and improves lipid profile only in altered previous values.

    Science.gov (United States)

    Tavares Toscano, Luciana; Tavares Toscano, Lydiane; Leite Tavares, Renata; da Oliveira Silva, Cássia Surama; Silva, Alexandre Sérgio

    2014-12-14

    chia (Salvia hispanica L.) has an elevated concentration of dietary fiber, it has been used to weight loss and enhance blood glucose and lipid profile. However, data in human are still scarce or do not exist, according to the analyzed variable. to evaluate the effect of chia supplementation in body composition, lipid profile and blood glucose in overweight or obese individuals. men and women were randomly allocated in groups that ingested 35 g of chia flour/day (CHIA; n=19; 48.8±1.8 years) or placebo (PLA; n=7; 51.4±3.1 years) for 12 weeks. Body composition and food intake were evaluated in each four weeks. Lipid profile and blood glucose were measured in the beginning and in the end of the study. Chia induced significant intragroup reduction in body weight (-1.1±0.4 kg; pCHIA group (p chia flour and presented abnormal initial values. Triglycerides, blood glucose and LDL-C showed no changes for either group. consumption of chia for 12 weeks promotes significant but discrete reduction in weight and waist circumference, and enhances lipid profile dependent of initial values. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  18. Alteration in lipid metabolism induced by a diet rich in soya-oil and ...

    African Journals Online (AJOL)

    This present study was designed to evaluate the impact of different dietary regimens on lipid metabolism in brain, liver and plasma of albino rat model. Twenty (20) male Wister albino rats (110 g) were assigned to two dietary groups and housed individually. One group received a control diet enriched in 20% soy- oil and ...

  19. Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Jinbao Huang

    Full Text Available Our previous results showed that green tea polyphenols (GTPs significantly altered the expression of lipid-metabolizing genes in the liver of chickens. However, the underlying mechanism was not elucidated. In this study, we further characterized how GTPs influence AMP-activated protein kinase (AMPK in the regulation of hepatic fat metabolism. Thirty-six male chickens were fed GTPs at a daily dose of 0, 80 or 160 mg/kg of body weight for 4 weeks. The results demonstrated that oral administration of GTPs significantly reduced hepatic lipid content and abdominal fat mass, enhanced the phosphorylation levels of AMPKα and ACACA, and altered the mRNA levels and enzymatic activities of lipid-metabolizing enzymes in the liver. These results suggested that the activation of AMPK is a potential mechanism by which GTPs regulate hepatic lipid metabolism in such a way that lipid synthesis is reduced and fat oxidation is stimulated.

  20. Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase.

    Science.gov (United States)

    Huang, Jinbao; Zhou, Yibin; Wan, Bei; Wang, Qiushi; Wan, Xiaochun

    2017-01-01

    Our previous results showed that green tea polyphenols (GTPs) significantly altered the expression of lipid-metabolizing genes in the liver of chickens. However, the underlying mechanism was not elucidated. In this study, we further characterized how GTPs influence AMP-activated protein kinase (AMPK) in the regulation of hepatic fat metabolism. Thirty-six male chickens were fed GTPs at a daily dose of 0, 80 or 160 mg/kg of body weight for 4 weeks. The results demonstrated that oral administration of GTPs significantly reduced hepatic lipid content and abdominal fat mass, enhanced the phosphorylation levels of AMPKα and ACACA, and altered the mRNA levels and enzymatic activities of lipid-metabolizing enzymes in the liver. These results suggested that the activation of AMPK is a potential mechanism by which GTPs regulate hepatic lipid metabolism in such a way that lipid synthesis is reduced and fat oxidation is stimulated.

  1. Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Weiqin Chen

    Full Text Available Mutations in BSCL2 underlie human congenital generalized lipodystrophy type 2 disease. We previously reported that Bscl2 (-/- mice develop lipodystrophy of white adipose tissue (WAT due to unbridled lipolysis. The residual epididymal WAT (EWAT displays a browning phenotype with much smaller lipid droplets (LD and higher expression of brown adipose tissue marker proteins. Here we used targeted lipidomics and gene expression profiling to analyze lipid profiles as well as genes involved in lipid metabolism in WAT of wild-type and Bscl2(-/- mice. Analysis of total saponified fatty acids revealed that the residual EWAT of Bscl2(-/- mice contained a much higher proportion of oleic 18:1n9 acid concomitant with a lower proportion of palmitic 16:0 acid, as well as increased n3- polyunsaturated fatty acids (PUFA remodeling. The acyl chains in major species of triacylglyceride (TG and diacylglyceride (DG in the residual EWAT of Bscl2(-/- mice were also enriched with dietary fatty acids. These changes could be reflected by upregulation of several fatty acid elongases and desaturases. Meanwhile, Bscl2(-/- adipocytes from EWAT had increased gene expression in lipid uptake and TG synthesis but not de novo lipogenesis. Both mitochondria and peroxisomal β-oxidation genes were also markedly increased in Bscl2(-/- adipocytes, highlighting that these machineries were accelerated to shunt the lipolysis liberated fatty acids through uncoupling to dissipate energy. The residual subcutaneous white adipose tissue (ScWAT was not browning but displays similar changes in lipid metabolism. Overall, our data emphasize that, other than being essential for adipocyte differentiation, Bscl2 is also important in fatty acid remodeling and energy homeostasis.

  2. Alterations in Lipids and Adipocyte Hormones in Female-to-Male Transsexuals

    Directory of Open Access Journals (Sweden)

    Prakash Chandra

    2010-01-01

    Full Text Available Testosterone therapy in men and women results in decreased high-density lipoprotein cholesterol (HDL and increased low-density lipoprotein cholesterol (LDL. We sought to determine whether testosterone therapy has this same effect on lipid parameters and adipocyte hormones in female-to-male (FTM transsexuals. Twelve FTM transsexuals provided a fasting lipid profile including serum total cholesterol, HDL, LDL, and triglycerides prior to and after 1 year of testosterone therapy (testosterone enanthate or cypionate 50–125 mg IM every two weeks. Subjects experienced a significant decrease in mean serum HDL (52±11 to 40±7 mg/dL (P<.001. The mean LDL (P=.316, triglyceride (P=.910, and total cholesterol (P=.769 levels remained unchanged. In a subset of subjects, we measured serum leptin levels which were reduced by 25% but did not reach statistical significance (P=.181 while resistin levels remained unchanged. We conclude that testosterone therapy in FTM transsexuals can promote an increased atherogenic lipid profile by lowering HDL and possibly reduce serum leptin levels. However, long-term studies are needed to determine whether decreases in HDL result in adverse cardiovascular outcomes.

  3. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities.

    Science.gov (United States)

    Krzemińska, Izabela; Piasecka, Agata; Nosalewicz, Artur; Simionato, Diana; Wawrzykowski, Jacek

    2015-11-01

    Chlorella protothecoides is a valuable source of lipids that may be used for biodiesel production. The present work shows analysis of the potential of photoheterotrophic cultivation of C. protothecoides under various light intensities aiming to identify the conditions with maximal biomass and lipid content. An increase in light intensity was associated with an increased specific growth rate and a shortened doubling time. Also, the relative total lipid content increased from 24.8% to 37.5% with increase of light intensity. The composition of fatty acid methyl esters was affected by light intensity with the C16-18 fatty acids increased from 76.97% to 90.24% of total fatty acids. However, the content of linolenic acids decreased with the increase of the culture irradiance. These studies indicate that cultures irradiated with high light intensities achieve the minimal specifications for biodiesel quality on linolenic acids and thus are suitable for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Toxoplasma gondii infection induces lipid metabolism alterations in the murine host

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2009-03-01

    Full Text Available Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2 at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1, or sacrificed at days zero, 14 and 42 (model 2 for the measurement of total cholesterol (Chl, high density lipoproteins (HDL, low density lipoproteins (LDL and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02 in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013. Conversely, LDL was unaltered until day 42, when it increased (p = 0.043. Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice, while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041 and cyst counts above 300 (p = 0.044. Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.

  5. Lipid absorption and metabolism

    NARCIS (Netherlands)

    Verkade, Hendrik Jan

    1993-01-01

    Vetten in de voeding zijn belangrijk voor het menselijk lichaam als bronnen van energie en als bouwstenen, vooral in perioden van groei en ontwikkeling. Gewoonlijk is het menselijk lichaam in staat om voedingsvetten zeer efficient op te nemen. Er zijn echter verschillende aandoeningen op de

  6. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  7. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  8. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  9. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Kyle Farmer

    2015-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disease affecting the nigrostriatal pathway, where patients do not manifest motor symptoms until >50% of neurons are lost. Thus, it is of great importance to determine early neuronal changes that may contribute to disease progression. Recent attention has focused on lipids and their role in pro- and anti-apoptotic processes. However, information regarding the lipid alterations in animal models of PD is lacking. In this study, we utilized high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS and novel HPLC solvent methodology to profile phosphatidylcholines and sphingolipids within the substantia nigra. The ipsilateral substantia nigra pars compacta was collected from rats 21 days after an infusion of 6-hydroxydopamine (6-OHDA, or vehicle into the anterior dorsal striatum. We identified 115 lipid species from their mass/charge ratio using the LMAPS Lipid MS Predict Database. Of these, 19 lipid species (from phosphatidylcholine and lysophosphotidylcholine lipid classes were significantly altered by 6-OHDA, with most being down-regulated. The two lipid species that were up-regulated were LPC (16:0 and LPC (18:1, which are important for neuroinflammatory signalling. These findings provide a first step in the characterization of lipid changes in early stages of PD-like pathology and could provide novel targets for early interventions in PD.

  10. Classification of metabolic syndrome according to lipid alterations: analysis from the Mexican National Health and Nutrition Survey 2006.

    Science.gov (United States)

    Pedroza-Tobias, Andrea; Trejo-Valdivia, Belem; Sanchez-Romero, Luz M; Barquera, Simon

    2014-10-09

    There are 16 possible Metabolic Syndrome (MS) combinations out of 5 conditions (glucose intolerance, low levels of high-density lipoprotein Cholesterol (HDL-C), high triglycerides, high blood pressure and abdominal obesity), when selecting those with at least three. Studies suggest that some combinations have different cardiovascular risk. However evaluation of all 16 combinations is complex and difficult to interpret. The purpose of this study is to describe and explore a classification of MS groups according to their lipid alterations. This is a cross-sectional study with data from the Mexican National Health and Nutrition Survey 2006. Subjects (n = 5,306) were evaluated for the presence of MS; four mutually-exclusive MS groups were considered: mixed dyslipidemia (altered triglycerides and HDL-C), hypoalphalipoproteinemia: (normal triglycerides but low HDL-C), hypertriglyceridemia (elevated triglycerides and normal HDL-C) and without dyslipidemia (normal triglycerides and HDL-C). A multinomial logistic regression model was fitted in order to identify characteristics that were associated with the groups. The most frequent MS group was hypoalphalipoproteinemia in females (51.3%) and mixed dyslipidemia in males (43.5%). The most prevalent combination of MS for both genders was low HDL-C + hypertension + abdominal obesity (20.4% females, 19.4% males). The hypoalphalipoproteinemia group was characteristic of women and less developed areas of the country. The group without dyslipidemia was more frequent in the highest socioeconomic level and less prevalent in the south of the country. The mixed dyslipidemia group was characteristic of men, and the Mexico City region. A simple system to classify MS based on lipid alterations was useful to evaluate prevalences by diverse biologic and sociodemographic characteristics. This system may allow prevention and early detection strategies with emphasis on population-specific components and may serve as a guide for

  11. Fluoride Intensifies Hypercaloric Diet-Induced ER Oxidative Stress and Alters Lipid Metabolism.

    Directory of Open Access Journals (Sweden)

    Heloisa Aparecida Barbosa Silva Pereira

    Full Text Available Here, we evaluated the relationship of diet and F-induced oxidative stress to lipid metabolism in the liver of rats eating normocaloric or hypercaloric diets for two time periods (20 or 60 days.Seventy-two 21-day-old Wistar rats were divided into 2 groups (n = 36 based on the type of diet they were eating; each of these groups was then further divided into another two groups (n = 18 based on the time periods of either 20 or 60 days, for a total of four groups. Each of these was divided into 3 subgroups (n = 6 animals/subgroup, dependent on the dose of F administered in the drinking water (0 mg/L(control, 15 mg/L or 50 mg/L. After the experimental period, blood samples and the liver were collected. Plasma samples were analyzed for HDL, cholesterol and triglycerides. Western blots were performed to probe for GRP78, Erp29, SOD2, Apo-E and SREBP in hepatic tissues.As expected,the expression of target proteins involved in oxidative stress increased in the F-treated groups, especially in liver tissue obtained from animals eating a hypercaloric diet. Most changes in the lipid levels and pathological conditions were seen earlier in the time period, at day 20. The morphometric analyses showed a reduction in steatosis in groups on ahypercaloric diet and treated with 50 mg F/L compared to the control, while no changes were obtained in normocaloric-fed rats. Accordingly, plasma TG was reduced in the F-treated group. The reduced expression of Apo-E in a time- and diet-dependent pattern may account for the particular decrease in steatosis in hypercaloric-fed F-treated rats.These results suggest that F changes liver lipid homeostasis, possibly because of the induction of oxidative stress, which seems to be higher in animals fed hypercaloric diets.

  12. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats.

    Directory of Open Access Journals (Sweden)

    Kathryn Bauerly

    Full Text Available We have reported that pyrroloquinoline quinone (PQQ improves reproduction, neonatal development, and mitochondrial function in animals by mechanisms that involve mitochondrial related cell signaling pathways. To extend these observations, the influence of PQQ on energy and lipid relationships and apparent protection against ischemia reperfusion injury are described herein. Sprague-Dawley rats were fed a nutritionally complete diet with PQQ added at either 0 (PQQ- or 2 mg PQQ/Kg diet (PQQ+. Measurements included: 1 serum glucose and insulin, 2 total energy expenditure per metabolic body size (Wt(3/4, 3 respiratory quotients (in the fed and fasted states, 4 changes in plasma lipids, 5 the relative mitochondrial amount in liver and heart, and 6 indices related to cardiac ischemia. For the latter, rats (PQQ- or PQQ+ were subjected to left anterior descending occlusions followed by 2 h of reperfusion to determine PQQ's influence on infarct size and myocardial tissue levels of malondialdehyde, an indicator of lipid peroxidation. Although no striking differences in serum glucose, insulin, and free fatty acid levels were observed, energy expenditure was lower in PQQ- vs. PQQ+ rats and energy expenditure (fed state was correlated with the hepatic mitochondrial content. Elevations in plasma di- and triacylglyceride and β-hydroxybutryic acid concentrations were also observed in PQQ- rats vs. PQQ+ rats. Moreover, PQQ administration (i.p. at 4.5 mg/kg BW for 3 days resulted in a greater than 2-fold decrease in plasma triglycerides during a 6-hour fast than saline administration in a rat model of type 2 diabetes. Cardiac injury resulting from ischemia/reperfusion was more pronounced in PQQ- rats than in PQQ+ rats. Collectively, these data demonstrate that PQQ deficiency impacts a number of parameters related to normal mitochondrial function.

  13. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    Science.gov (United States)

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.

  14. Myotoxic reactions to lipid-lowering therapy are associated with altered oxidation of fatty acids.

    Science.gov (United States)

    Phillips, Paul S; Ciaraldi, Theodore P; Kim, Dong-Lim; Verity, M Anthony; Wolfson, Tanya; Henry, Robert R

    2009-02-01

    Despite exceptional efficacy and safety, fear of muscle toxicity remains a major reason statins are underutilized. Evidence suggests that statin muscle toxicity may be mediated by abnormalities in lipid metabolism. To test the hypothesis that myotubes from patients intolerant of lipid-lowering therapies have abnormal fatty acid oxidation (FAO) responses we compared muscle from 11 subjects with statin intolerance (Intolerant) with muscle from seven statin-naive volunteers undergoing knee arthroplasty (Comparator). Gross muscle pathology was graded and skeletal muscle cell cultures were produced from each subject. FAO was assessed following treatment with increasing statin concentrations. There was no difference in muscle biopsy myopathy scores between the groups. Basal octanoate oxidation was greater in Intolerant than in Comparator subjects (P = 0.03). Lovastatin-stimulated palmitate oxidation tended to be greater for Intolerant compared to Control subjects' myotubes (P = 0.07 for 5 microM and P = 0.06 for 20 microM lovastatin). In conclusion abnormalities in FAO of Intolerant subjects appear to be an intrinsic characteristic of these subjects that can be measured in their cultured myotubes.

  15. Ionic Liquid Forms of Weakly Acidic Drugs in Oral Lipid Formulations: Preparation, Characterization, in Vitro Digestion, and in Vivo Absorption Studies.

    Science.gov (United States)

    Sahbaz, Yasemin; Nguyen, Tri-Hung; Ford, Leigh; McEvoy, Claire L; Williams, Hywel D; Scammells, Peter J; Porter, Christopher J H

    2017-11-06

    This study aimed to transform weakly acidic poorly water-soluble drugs (PWSD) into ionic liquids (ILs) to promote solubility in, and the utility of, lipid-based formulations. Ionic liquids (ILs) were formed directly from tolfenamic acid (Tolf), meclofenamic acid, diclofenac, and ibuprofen by pairing with lipophilic counterions. The drug-ILs were obtained as liquids or low melting solids and were significantly more soluble (either completely miscible or highly soluble) in lipid based, self-emulsifying drug delivery systems (SEDDS) when compared to the equivalent free acid. In vivo assessment of a SEDDS lipid solution formulation of Tolf didecyldimethylammonium salt and the same formulation of Tolf free acid at low dose (18 mg/kg, where the free acid was soluble in the SEDDS), resulted in similar absorption profiles and overall exposure. At high dose (100 mg/kg), solution SEDDS formulations of the Tolf ILs (didecyldimethylammonium, butyldodecyldimethylammonium or didecylmethylammonium salts) were possible, but the lower lipid solubility of Tolf free acid dictated that administration of the free acid was only possible as a suspension in the SEDDS formulation or as an aqueous suspension. Under these conditions, total drug plasma exposure was similar for the IL formulations and the free acid, but the plasma profiles were markedly different, resulting in flatter, more prolonged exposure profiles and reduced C max for the IL formulations. Isolation of a weakly acidic drug as an IL may therefore provide advantage as it allows formulation as a solution SEDDS rather than a lipid suspension, and in some cases may provide a means of slowing or sustaining absorption. The current studies compliment previous studies with weakly basic PWSD and demonstrate that transformation into highly lipophilic ILs is also possible for weakly acidic compounds.

  16. Alterations in lipid peroxidation and T-cell function in women with hyperemesis gravidarum.

    Science.gov (United States)

    Biberoglu, E H; Kirbas, A; Dirican, A Ö; Genc, M; Avci, A; Doganay, B; Uygur, D; Biberoglu, K

    2016-01-01

    The objective of this study was to investigate serum adenosine deaminase (ADA) activity as a marker of T lymphocyte activation and parameters of oxidative stress and antioxidant defence in hyperemesis gravidarum (HG). Serum ADA activity, malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels were investigated in 40 pregnant women with the HG and 40 with healthy pregnancies, in a descriptive study. Although serum ADA and CAT were measured to be higher in HG group, the difference was not significant. Serum MDA and GPx levels were significantly elevated in women with HG when compared with those without HG. The significance of changes in lipid peroxidation and T-cell activation in the pathogenesis of HG and whether this is a cause or a compensatory reaction to HG requires further investigations with larger multicentre trials.

  17. Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer

    OpenAIRE

    Roy, Debarshi; Mondal, Susmita; Wang, Chen; He, Xiaoping; Khurana, Ashwani; Giri, Shailendra; Hoffmann, Robert; Jung, Deok-Beom; Kim, Sung H; Chini, Eduardo N; Periera, Juliana Camacho; Folmes, Clifford D; Mariani, Andrea; Dowdy, Sean C; Bakkum-Gamez, Jamie N

    2014-01-01

    Background Loss of the endosulfatase HSulf-1 is common in ovarian cancer, upregulates heparin binding growth factor signaling and potentiates tumorigenesis and angiogenesis. However, metabolic differences between isogenic cells with and without HSulf-1 have not been characterized upon HSulf-1 suppression in vitro. Since growth factor signaling is closely tied to metabolic alterations, we determined the extent to which HSulf-1 loss affects cancer cell metabolism. Results Ingenuity pathway anal...

  18. Pioglitazone attenuates prostatic enlargement in diet-induced insulin-resistant rats by altering lipid distribution and hyperinsulinaemia.

    Science.gov (United States)

    Vikram, Ajit; Jena, Gopabandhu; Ramarao, Poduri

    2010-12-01

    Increased incidence of benign prostatic hyperplasia among insulin-resistant individuals suggests a role for hyperinsulinaemia in prostatic enlargement. We have already reported increased cell proliferation and enlargement of prostate gland in insulin-resistant rats. The present study aimed to elucidate the molecular mechanisms underlying the reversal of prostatic enlargement in insulin-resistant rats by the peroxisome proliferator-activated receptor γ agonist pioglitazone. Sprague-Dawley rats were fed a normal pellet or a high-fat diet for 12 weeks with or without pioglitazone (20 mg·kg(-1)). Subgroups of animals fed different diets were castrated. Effects of dietary manipulation and pioglitazone were measured on insulin sensitivity, lipid distribution, cell proliferation and apoptosis. A high-fat diet led to the accumulation of fat in non-adipose tissues, insulin resistance, compensatory hyperinsulinaemia and prostatic enlargement in rats. Pioglitazone treatment altered fat distribution, improved insulin sensitivity and normalized lipid and insulin level in rats on the high-fat diet. The improved metabolic parameters led to decreased cellular proliferation and increased apoptosis in the prostate gland. High-fat diet feeding and pioglitazone treatment did not change plasma testosterone levels. However, significant prostatic atrophy was observed in castrated rats irrespective of dietary intervention. Our results show a previously unexplored therapeutic potential of pioglitazone for prostatic enlargement under insulin-resistant condition and further suggest that targeting distribution of lipid from non-adipose tissue to adipose tissue and insulin signalling could be new strategies for the treatment of benign prostatic hyperplasia. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  19. Alterations in carbohydrate and lipid metabolism induced by a diet rich in coconut oil and cholesterol in a rat model.

    Science.gov (United States)

    Zulet, M A; Barber, A; Garcin, H; Higueret, P; Martínez, J A

    1999-02-01

    The type of dietary fat as well as the amount of cholesterol occurring in the diet have been associated with several metabolic disorders. Thus, the aim of the present study was to investigate the influence of a hypercholesterolemic diet enriched with coconut oil and cholesterol on carbohydrate and lipid metabolism in a rat model. Twenty male Wistar rats weighing about 190 g were assigned to two dietary groups. One group received a semipurified control diet and the other was given a diet enriched in coconut oil (25% by weight) and cholesterol (1% by weight) for 26 days. Our results indicated a significant increase in serum total cholesterol (+285%; pcholesterol (+1509%; pcholesterol acyltransferase activity (-66%; p<0.001) was found. The situation of hypoglycemia (-18%; p<0.05) was accompanied by lower levels of serum insulin (-45%; p<0.01) and liver glycogen (-30%; p<0.05) in the hypercholesterolemic rats. Furthermore, glucose utilization was altered since lower glucose-6-Pase (-33%; p<0.05) and increased glucokinase (+212%; p<0.001) activities in the liver were found in the rat model of hypercholesterolemia. These results provide new evidence that a diet-induced hypercholesterolemia in rats is associated with several adaptative changes in carbohydrate metabolism. These findings may be of importance not only considering the role of western diets on cholesterogenesis, but also in other metabolic disturbances involving lipid and carbohydrate metabolism.

  20. Rat amylin-(8-37) enhances insulin action and alters lipid metabolism in normal and insulin-resistant rats.

    Science.gov (United States)

    Hettiarachchi, M; Chalkley, S; Furler, S M; Choong, Y S; Heller, M; Cooper, G J; Kraegen, E W

    1997-11-01

    To clarify roles of amylin, we investigated metabolic responses to rat amylin-(8-37), a specific amylin antagonist, in normal and insulin-resistant, human growth hormone (hGH)-infused rats. Fasting conscious rats were infused with saline or hGH, each with and without amylin-(8-37) (0.125 mumol/h), over 5.75 h. At 3.75 h, a hyperinsulinemic (100 mU/l) clamp with bolus 2-deoxy-D-[3H]glucose and [14C]glucose was started. hGH infusion led to prompt (2- to 3-fold) basal hyperamylinemia (P hGH-infused rats. Amylin-(8-37) corrected hGH-induced liver insulin resistance, increased basal plasma triglycerides and lowered plasma nonesterified fatty acids in both groups, and reduced muscle triglyceride and total long-chain acyl-CoA content in saline-treated rats (P hGH infusion; 2) amylin-(8-37) increases whole body and muscle insulin sensitivity and consistently reduces basal insulin levels in normal and hGH-induced insulin resistant rats; and 3) amylin-(8-37) elicits a significant alteration of in vivo lipid metabolism. These findings support a role of amylin in modulating insulin action and suggest that this could be mediated by effects on lipid metabolism.

  1. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    Science.gov (United States)

    Atig, Fatma; Raffa, Monia; Ali, Habib Ben; Abdelhamid, Kerkeni; Saad, Ali; Ajina, Mounir

    2012-01-01

    Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF) for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40), asthenozoospermics (Astheno; n=45) and oligoasthenoteratozoospermics (OAT; n=35). Seminal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and the levels of glutathione (GSH), zinc (Zn) and malondialdehyde (MDA) were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome. PMID:22211112

  2. Seed pretreatment with magnetic field alters the storage proteins and lipid profiles in harvested soybean seeds.

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    2018-03-01

    The increase in crop productivity is an urgent need of the time to reduce scarcity of food in underdeveloped countries. Several biological, chemical and physical methods have been applied to promote crop yield. Application of magnetic field (MF) is an emerging physical method used to increase plant growth and yield. The reports on MF pretreatment-induced nutritional changes in harvested seeds are scarce. We previously identified the optimal frequency of MF to improve plant growth and yield as 1500 nT at 10.0 Hz. This study was aimed to investigate the effect of MF treatment on storage proteins and fatty acids in harvested soybean seeds. The results showed that MF triggered globulin production and suppressed prolamin production. However, lipid content in seeds increased, because MF exposure caused an elevation of several fatty acids including caprylic acid, palmitic acid, heptadecanoic acid, linoleic acid, lignoceric acid and eicosapentaenoic acid. This is the first report to reveal the seed pretreated MF on nutritional values of harvested seeds. This study suggests that MF treatment improves seed quality by regulating the metabolism of storage proteins and fatty acids.

  3. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation.

    Science.gov (United States)

    Mock, Kaitlin; Lateef, Sundus; Benedito, Vagner A; Tou, Janet C

    2017-01-01

    High-fructose corn syrup-55 (HFCS-55) has been suggested to be more lipogenic than sucrose, which increases the risk for nonalcoholic fatty liver disease (NAFLD) and dyslipidemia. The study objectives were to determine the effects of drinking different sugar-sweetened solutions on hepatic gene expression in relation to liver fatty acid composition and risk of NAFLD. Female rats were randomly assigned (n=7 rats/group) to drink water or water sweetened with 13% (w/v) HFCS-55, sucrose or fructose for 8 weeks. Rats drinking HFCS-55 solution had the highest (P=.03) hepatic total lipid and triglyceride content and histological evidence of fat infiltration. Rats drinking HFCS-55 solution had the highest hepatic de novo lipogenesis indicated by the up-regulation of stearoyl-CoA desaturase-1 and the highest (Ptriglyceride-rich lipoprotein from the liver was increased as shown by up-regulation of gene expression of microsomal triglyceride transfer protein in rats drinking sucrose, but not HFCS-55 solution. The observed lipogenic effects were attributed to the slightly higher fructose content of HFCS-55 solution in the absence of differences in macronutrient and total caloric intake between rats drinking HFCS-55 and sucrose solution. Results from gene expression and fatty acid composition analysis showed that, in a hypercaloric state, some types of sugars are more detrimental to the liver. Based on these preclinical study results, excess consumption of caloric sweetened beverage, particularly HFCS-sweetened beverages, should be limited. Published by Elsevier Inc.

  4. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism.

    Directory of Open Access Journals (Sweden)

    For Yue Tso

    2018-01-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is the etiologic agent of Kaposi's sarcoma (KS. It is endemic in a number of sub-Saharan African countries with infection rate of >50%. The high prevalence of HIV-1 coupled with late presentation of advanced cancer staging make KS the leading cancer in the region with poor prognosis and high mortality. Disease markers and cellular functions associated with KS tumorigenesis remain ill-defined. Several studies have attempted to investigate changes of the gene profile with in vitro infection of monoculture models, which are not likely to reflect the cellular complexity of the in vivo lesion environment. Our approach is to characterize and compare the gene expression profile in KS lesions versus non-cancer tissues from the same individual. Such comparisons could identify pathways critical for KS formation and maintenance. This is the first study that utilized high throughput RNA-seq to characterize the viral and cellular transcriptome in tumor and non-cancer biopsies of African epidemic KS patients. These patients were treated anti-retroviral therapy with undetectable HIV-1 plasma viral load. We found remarkable variability in the viral transcriptome among these patients, with viral latency and immune modulation genes most abundantly expressed. The presence of KSHV also significantly affected the cellular transcriptome profile. Specifically, genes involved in lipid and glucose metabolism disorder pathways were substantially affected. Moreover, infiltration of immune cells into the tumor did not prevent KS formation, suggesting some functional deficits of these cells. Lastly, we found only minimal overlaps between our in vivo cellular transcriptome dataset with those from in vitro studies, reflecting the limitation of in vitro models in representing tumor lesions. These findings could lead to the identification of diagnostic and therapeutic markers for KS, and will provide bases for further mechanistic

  5. Properties of glycerol-75Se-triether: A lipid-soluble marker for the estimation of intestinal fat absorption.

    Science.gov (United States)

    Hoving, J; Valkema, A J; Wilsin, J H; Woldring, M G

    1975-08-01

    The properties of a 75Se-labeled glycerol triether were investigated in rat experiments designed to test this substance as a nonabsorbable marker for the assessment of intestinal fat absorption. After oral administration of 75Se-triether, the radioactivity was excreted almost completely with the feces. Amounts in excess of the quantity required tor clinical use did not interfere with overall fat absorption. No evidence for toxicity of 75Se-triether was observed. 131l-triolein was used as tracer fat and fat absorption was calculated by the following methods: (1) isotope balance method-oral intake minus fecal excretion of 131L; (2) isotope ratio method-comparison of the 131L to 75Se ratios in the test dose and in a stool sample. Results obtained from the isotope ratio method were in close agreement with those of the isotope balance method over a range of fat absorption of 80 to 95 per cent, thus indicating that the marker and the radioactive fat pass the gastrointestinal tract at the same rate under these experimental conditions. These results show that 75Se-triether possesses several of the properties of an ideal marker for fat absorption studies. Its advantages over other proposed markers for fat absorption studies are discussed. Simultaneous administration of 131L-TRIOLEIN AND 75Se-triether in a single dose may provide a reliable, rapid, and simple method to estimate intestinal fat absorption in man.

  6. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism.Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1 whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group, (2 Whole grain enriched diet (WGED group, which includes principally the same grain products as group (1, but with no change in fish or berry consumption, and (3 refined wheat breads (Control. Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3 long-chain PUFAs increased (False Discovery Rate p-values <0.05. Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3 PUFA.The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a beneficial effect in the efforts to prevent type 2 diabetes in high risk

  7. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats.

    Science.gov (United States)

    Morita, Ippei; Tanimoto, Keiichi; Akiyama, Nobuteru; Naya, Noriyuki; Fujieda, Kumiko; Iwasaki, Takanori; Yukioka, Hideo

    2017-04-01

    Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats. Copyright © 2017 the American Physiological Society.

  8. Reduced macrophage selenoprotein expression alters oxidized lipid metabolite biosynthesis from arachidonic and linoleic acid.

    Science.gov (United States)

    Mattmiller, Sarah A; Carlson, Bradley A; Gandy, Jeff C; Sordillo, Lorraine M

    2014-06-01

    Uncontrolled inflammation is an underlying etiology for multiple diseases and macrophages orchestrate inflammation largely through the production of oxidized fatty acids known as oxylipids. Previous studies showed that selenium (Se) status altered the expression of oxylipids and magnitude of inflammatory responses. Although selenoproteins are thought to mediate many of the biological effects of Se, the direct effect of selenoproteins on the production of oxylipids is unknown. Therefore, the role of decreased selenoprotein activity in modulating the production of biologically active oxylipids from macrophages was investigated. Thioglycollate-elicited peritoneal macrophages were collected from wild-type and myeloid-cell-specific selenoprotein knockout mice to analyze oxylipid production by liquid chromatography/mass spectrometry as well as oxylipid biosynthetic enzyme and inflammatory marker gene expression by quantitative real-time polymerase chain reaction. Decreased selenoprotein activity resulted in the accumulation of reactive oxygen species, enhanced cyclooxygenase and lipoxygenase expression and decreased oxylipids with known anti-inflammatory properties such as arachidonic acid-derived lipoxin A₄ (LXA₄) and linoleic acid-derived 9-​oxo-octadecadienoic acid (9-oxoODE). Treating RAW 264.7 macrophages with LXA₄ or 9-oxoODE diminished oxidant-induced macrophage inflammatory response as indicated by decreased production of TNFα. The results show for the first time that selenoproteins are important for the balanced biosynthesis of pro- and anti-inflammatory oxylipids during inflammation. A better understanding of the Se-dependent control mechanisms governing oxylipid biosynthesis may uncover nutritional intervention strategies to counteract the harmful effects of uncontrolled inflammation due to oxylipids. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease.

    Science.gov (United States)

    Lecommandeur, Emmanuelle; Baker, David; Cox, Timothy M; Nicholls, Andrew W; Griffin, Julian L

    2017-07-01

    Drug-induced phospholipidosis (DIPL) is characterized by an increase in the phospholipid content of the cell and the accumulation of drugs and lipids inside the lysosomes of affected tissues, including in the liver. Although of uncertain pathological significance for patients, the condition remains a major impediment for the clinical development of new drugs. Human Sandhoff disease (SD) is caused by inherited defects of the β subunit of lysosomal β-hexosaminidases (Hex) A and B, leading to a large array of symptoms, including neurodegeneration and ultimately death by the age of 4 in its most common form. The substrates of Hex A and B, gangliosides GM2 and GA2, accumulate inside the lysosomes of the CNS and in peripheral organs. Given that both DIPL and SD are associated with lysosomes and lipid metabolism in general, we measured the hepatic lipid profiles in rodent models of these two conditions using untargeted LC/MS to examine potential commonalities. Both model systems shared a number of perturbed lipid pathways, notably those involving metabolism of cholesteryl esters, lysophosphatidylcholines, bis(monoacylglycero)phosphates, and ceramides. We report here profound alterations in lipid metabolism in the SD liver. In addition, DIPL induced a wide range of lipid changes not previously observed in the liver, highlighting similarities with those detected in the model of SD and raising concerns that these lipid changes may be associated with underlying pathology associated with lysosomal storage disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Aminoclay–lipid hybrid composite as a novel drug carrier of fenofibrate for the enhancement of drug release and oral absorption

    Directory of Open Access Journals (Sweden)

    Yang L

    2016-03-01

    Full Text Available Liang Yang, Yating Shao, Hyo-Kyung Han BK Plus Project Team, College of Pharmacy, Dongguk University, Goyang, South Korea Abstract: This study aimed to prepare the aminoclay–lipid hybrid composite to enhance the drug release and improve the oral bioavailability of poorly water-soluble fenofibrate. Antisolvent precipitation coupled with an immediate freeze-drying method was adopted to incorporate fenofibrate into aminoclay–lipid hybrid composite (ALC. The optimal composition of the ALC formulation was determined as the ratios of aminoclay to krill oil of 3:1 (w/w, krill oil to fenofibrate of 2:1 (w/w, and antisolvent to solvent of 6:4 (v/v. The morphological characteristics of ALC formulation were determined using scanning electron microscopy, differential scanning calorimetry, and X-ray powder diffraction, which indicated microcrystalline state of fenofibrate in ALC formulation. The ALC formulation achieved almost complete dissolution within 30 minutes, whereas the untreated powder and physical mixture exhibited less than 15% drug release. Furthermore, ALC formulation effectively increased the peak plasma concentration (Cmax and area under the curve (AUC of fenofibric acid (an active metabolite in rats by approximately 13- and seven-fold, respectively. Furthermore, ALC formulation exhibited much lower moisture sorption behavior than the lyophilized formulation using sucrose as a cryoprotectant. Taken together, the present findings suggest that ALC formulation is promising for improving the oral absorption of poorly soluble fenofibrate. Keywords: aminoclay, omega-3 phospholipids, fenofibrate, drug release, oral absorption 

  11. Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction

    NARCIS (Netherlands)

    Dorninger, Fabian; Herbst, Ruth; Kravic, Bojana; Camurdanoglu, Bahar Z.; Macinkovic, Igor; Zeitler, Gerhard; Forss-Petter, Sonja; Strack, Siegfried; Khan, Muzamil Majid; Waterham, Hans R.; Rudolf, Rüdiger; Hashemolhosseini, Said; Berger, Johannes

    2017-01-01

    Inherited deficiency in ether lipids, a subgroup of phospholipids whose biosynthesis needs peroxisomes, causes the fatal human disorder rhizomelic chondrodysplasia punctata. The exact roles of ether lipids in the mammalian organism and, therefore, the molecular mechanisms underlying the disease are

  12. Binding of the GTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection–Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Christian Schwieger

    2017-11-01

    Full Text Available Membrane-interacting proteins are polyphilic polymers that engage in dynamic protein–protein and protein–lipid interactions while undergoing changes in conformation, orientation and binding interfaces. Predicting the sites of interactions between such polypeptides and phospholipid membranes is still a challenge. One example is the small eukaryotic GTPase Sar1, which functions in phospholipid bilayer remodeling and vesicle formation as part of the multimeric coat protein complex (COPII. The membrane interaction of Sar1 is strongly dependent on its N-terminal 23 amino acids. By monolayer adsorption experiments and infrared reflection-absorption spectroscopy (IRRAS, we elucidate the role of lipids in inducing the amphipathicity of this N-terminal stretch, which inserts into the monolayer as an amphipathic helix (AH. The AH inserting angle is determined and is consistent with the philicities and spatial distribution of the amino acid monomers. Using an advanced method of IRRAS data evaluation, the orientation of Sar1 with respect to the lipid layer prior to the recruitment of further COPII proteins is determined. The result indicates that only a slight reorientation of the membrane-bound Sar1 is needed to allow coat assembly. The time-course of the IRRAS analysis corroborates a role of slow GTP hydrolysis in Sar1 desorption from the membrane.

  13. Microarray Analysis Reveals Altered Lipid and Glucose Metabolism Genes in Differentiated, Ritonavir-Treated 3T3-L1 Adipocytes.

    Science.gov (United States)

    Loonam, Cathriona R; O'Dell, Sandra D; Sharp, Paul A; Mullen, Anne

    2016-01-01

    HIV lipodystrophy is characterised by abnormal adipose tissue distribution and metabolism, as a result of altered adipocyte function and gene expression. The protease inhibitor ritonavir is associated with the development of lipodystrophy. Quantifying changes in adipogenic gene expression in the presence of ritonavir may help to identify therapeutic targets for HIV lipodystrophy. Affymetrix Mouse Genome 430 2.0 oligonucleotide microarray was used to investigate gene expression in 3T3-L1 adipocytes treated with 20 µmol/l ritonavir or vehicle control (ethanol). Pparg, Adipoq, Retn and Il6 expression were validated by real time RT-PCR. Transcriptional signalling through PPAR-γ was investigated using a DNA-binding ELISA. Changes in adipocyte function were investigated through secreted adiponectin quantification using ELISA and Oil Red O staining for triglyceride storage. Expression of 389 genes was altered by more than 5-fold in the presence of ritonavir (all P Gene ontology analysis revealed down-regulation of genes responsible for adipocyte triglyceride accumulation including complement factor D (Cfd; 238.42-fold), Cidec (73.75-fold) and Pparg (5.63-fold). Glucose transport genes were also down-regulated including Adipoq (24.42-fold) and Glut4 (13.36-fold), while Il6 was up-regulated (10.39-fold). PPAR-γ regulatory genes Cebpa (11.33-fold) and liver-X-receptor α (Nr1h3) were down-regulated. Changes in Pparg, Adipoq and Il6 were confirmed by RT-PCR. PPAR-γ binding to its nuclear consensus site, adiponectin secretion and triglyceride accumulation were all reduced by ritonavir. Ritonavir had a significant effect on expression of genes involved in adipocyte differentiation, lipid accumulation and glucose metabolism. Down-regulation of Pparg may be mediated by changes in Cebpa, Lcn2 and Nr1h3.

  14. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model

    Directory of Open Access Journals (Sweden)

    Monica A. Newman

    2017-03-01

    Full Text Available Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON or TGS. A meal tolerance test (MTT was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin (p < 0.05 and glucose (p < 0.10 peaks compared to CON-fed pigs. The MTT showed increased (p < 0.05 serum urea with TGS-fed pigs compared to CON, indicative of increased protein catabolism. Metabolome profiling showed reduced (p < 0.05 amino acids such as alanine and glutamine with TGS, suggesting increased gluconeogenesis compared to CON, probably due to a reduction in available glucose. Of all metabolites affected by dietary treatment, alkyl-acyl-phosphatidylcholines and sphingomyelins were generally increased (p < 0.05 preprandially, whereas diacyl-phosphatidylcholines and lysophosphatidylcholines were decreased (p < 0.05 postprandially in TGS-fed pigs compared to CON. In conclusion, TGS led to changes in postprandial insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  15. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies.

    Science.gov (United States)

    Stellaard, Frans; von Bergmann, Klaus; Sudhop, Thomas; Lütjohann, Dieter

    2017-05-01

    Regulation of cholesterol (Chol) homeostasis is controlled by three main fluxes, i.e. intestinal absorption, de novo synthesis (ChS) and catabolism, predominantly as bile acid synthesis (BAS). High serum total Chol and LDL-Chol concentrations in particular are considered risk factors and markers for the development of atherosclerosis. Pharmaceutical treatments to lower serum Chol have focused on reducing absorption or ChS and increasing BAS. Monitoring of these three parameters is complex involving isotope techniques, cholesterol balance experiments and advanced mass spectrometry based analysis methods. Surrogate markers were explored that require only one single fasting blood sample collection. These markers were validated in specific, mostly physiological conditions and during statin treatment to inhibit ChS. They were also applied under cholesterol absorption restriction, but were not validated in this condition. We retrospectively evaluated the use of serum campesterol (Camp), sitosterol (Sit) and cholestanol (Cholol) as markers for cholesterol absorption, lathosterol (Lath) as marker for ChS and 7α-hydroxycholesterol (7α-OH-Ch) and 27-hydroxycholesterol (27-OH-Ch) as markers for BAS under conditions of Chol absorption restriction. Additionally, their values were corrected for Chol concentration (R_sterol or oxysterols). Thirty-seven healthy male omnivore subjects were studied under treatments with placebo (PLAC), ezetimibe (EZE) to inhibit cholesterol absorption, simvastatin (SIMVA) to reduce cholesterol synthesis and a combination of both (EZE+SIMVA). Results were compared to those obtained in 18 pure vegetarian subjects (vegans) whose dietary Chol intake is extremely low. Relative or fractional Chol absorption (FrChA) was measured with the continuous feeding stable isotope procedure, ChS and BAS with the cholesterol balance method. The daily Chol intake (DICh) was inventoried and the daily Chol absorption (DACh) calculated. Monitoring cholesterol

  16. Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation.

    Science.gov (United States)

    Chen, Charles H; Wiedman, Gregory; Khan, Ayesha; Ulmschneider, Martin B

    2014-09-01

    Unbiased molecular simulation is a powerful tool to study the atomic details driving functional structural changes or folding pathways of highly fluid systems, which present great challenges experimentally. Here we apply unbiased long-timescale molecular dynamics simulation to study the ab initio folding and partitioning of melittin, a template amphiphilic membrane active peptide. The simulations reveal that the peptide binds strongly to the lipid bilayer in an unstructured configuration. Interfacial folding results in a localized bilayer deformation. Akin to purely hydrophobic transmembrane segments the surface bound native helical conformer is highly resistant against thermal denaturation. Circular dichroism spectroscopy experiments confirm the strong binding and thermostability of the peptide. The study highlights the utility of molecular dynamics simulations for studying transient mechanisms in fluid lipid bilayer systems. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014. Published by Elsevier B.V.

  17. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in l-NAME hypertensive rats by sinapic acid--Role of HMG-CoA reductase.

    Science.gov (United States)

    Silambarasan, Thangarasu; Manivannan, Jeganathan; Raja, Boobalan; Chatterjee, Suvro

    2016-04-15

    The present study was designed to evaluate the effect of sinapic acid, a bioactive phenolic acid on high blood pressure associated cardiac dysfunction, kidney fibrosis and lipid alterations in N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) induced hypertensive rats. Sinapic acid was administered to rats orally at a dosage of 40 mg/kg everyday for a period of 4 weeks. Sinapic acid treatment significantly decreased mean arterial pressure, left ventricular end diastolic pressure, organ weights (liver and kidney), lipid peroxidation products in tissues (liver and kidney), activities of hepatic marker enzymes and the levels of renal function markers in serum of l-NAME rats. Sinapic acid treatment also significantly increased the level of plasma nitric oxide metabolites, and enzymatic and non-enzymatic antioxidants in tissues of l-NAME rats. Tissue damage was assessed by histopathological examination. Alterations in plasma angiotensin-converting enzyme activity, level of plasma lipoproteins and tissue lipids were corrected by sinapic acid treatment in l-NAME rats. Sinapic acid treatment significantly decreased the activity of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase in plasma and liver, whereas the activity of lecithin cholesterol acyl transferase was significantly increased in the plasma of hypertensive rats. Docking result showed the interaction between sinapic acid and HMG-CoA reductase. Sinapic acid has shown best ligand binding energy of -5.5 kcal/M. Moreover, in chick embryo model, sinapic acid improved vessel density on chorioallantoic membrane. These results of the present study concludes that sinapic acid acts as a protective agent against hypertension associated cardiac dysfunction, kidney fibrosis and lipid alterations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd

    2014-01-01

    Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore...

  19. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  20. Muscle and liver-specific alterations in lipid and acylcarnitine metabolism after a single bout of exercise in mice.

    Science.gov (United States)

    Hoene, Miriam; Li, Jia; Li, Yanjie; Runge, Heike; Zhao, Xinjie; Häring, Hans-Ulrich; Lehmann, Rainer; Xu, Guowang; Weigert, Cora

    2016-02-26

    Intracellular lipid pools are highly dynamic and tissue-specific. Physical exercise is a strong physiologic modulator of lipid metabolism, but most studies focus on changes induced by long-term training. To assess the acute effects of endurance exercise, mice were subjected to one hour of treadmill running, and (13)C16-palmitate was applied to trace fatty acid incorporation in soleus and gastrocnemius muscle and liver. The amounts of carnitine, FFA, lysophospholipids and diacylglycerol and the post-exercise increase in acetylcarnitine were pronouncedly higher in soleus than in gastrocnemius. In the liver, exercise increased the content of lysophospholipids, plasmalogens and carnitine as well as transcript levels of the carnitine transporter. (13)C16-palmitate was detectable in several lipid and acylcarnitine species, with pronounced levels of tracer-derived palmitoylcarnitine in both muscles and a strikingly high incorporation into triacylglycerol and phosphatidylcholine in the liver. These data illustrate the high lipid storing activity of the liver immediately after exercise whereas in muscle, fatty acids are directed towards oxidation. The observed muscle-specific differences accentuate the need for single-muscle analyses as well as careful consideration of the particular muscle employed when studying lipid metabolism in mice. In addition, our results reveal that lysophospholipids and plasmalogens, potential lipid signalling molecules, are acutely regulated by physical exercise.

  1. Osbpl8 deficiency in mouse causes an elevation of high-density lipoproteins and gender-specific alterations of lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Olivier Béaslas

    Full Text Available OSBP-related protein 8 (ORP8 encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid metabolism. We generated an Osbpl8(-/- (KO C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL cholesterol (+79% and phospholipids (+35%, while only minor increase of apolipoprotein A-I (apoA-I was detected. In chow-fed female KO mice a less prominent increase of HDL cholesterol (+27% was observed, while on western diet the HDL increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in lecithin:cholesterol acyltransferase (LCAT or hepatic lipase (HL activity, or in the fractional catabolic rate of fluorescently labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid transfer protein (PLTP activity, but only on chow diet. These findings are consistent with a model in which Osbpl8 deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase (LPL activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model

  2. Absorption and distribution of deuterium-labeled trans- and cis-11-octadecenoic acid in human plasma and lipoprotein lipids

    International Nuclear Information System (INIS)

    Emken, E.A.; Rohwedder, W.K.; Adlof, R.O.; DeJarlais, W.J.; Gulley, R.M.

    1986-01-01

    Triglycerides of deuterium-labeled trans-11-, trans-11-cis-11- and cis-9-octadecenoic acid (11t-18:1-2H, 11c-18:1-2H) were simultaneously fed to two young adult male subjects. Plasma lipids from blood samples collected periodically for 48 hr were analyzed by gas chromatography-mass spectroscopy. The results indicate the delta 11-18:1-2H acids and 9c-18:1-2H were equally well absorbed; relative turnover rates were higher for the delta 11-18-1-2H acids in plasma triglycerides; incorporation of the delta 11-18:1-2H acids into plasma phosphatidylcholine was similar to 9c-18:1-2H, but distribution at the 1- and 2-acyl positions was substantially different; esterification of cholesterol with 11t-18:1 was extremely low; chain shortening of the delta 11-18:1-2H acids was 2-3 times greater than for 9c-18:1-2H; no evidence for desaturation or elongation of the 18:1-2H acids was detected; and a 40% isotopic dilution of the 18:1-2H acids in the chylomicron triglyceride fraction indicated the presence of a substantial intestinal triglyceride pool. Based on our present knowledge, these metabolic results for delta 11-18:1 acids present in hydrogenated oils and animal fats indicate that the delta 11 isomers are no more likely than 9c-18:1 to contribute to dietary fat-related health problems

  3. Iron Dextran Increases Hepatic Oxidative Stress and Alters Expression of Genes Related to Lipid Metabolism Contributing to Hyperlipidaemia in Murine Model

    Directory of Open Access Journals (Sweden)

    Maísa Silva

    2015-01-01

    Full Text Available The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S, which was fed the AIN-93M diet, and the standard plus iron group (SI, which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress.

  4. The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats.

    Science.gov (United States)

    Badalzadeh, Reza; Shaghaghi, Mehrnoush; Mohammadi, Mustafa; Dehghan, Gholamreza; Mohammadi, Zeynab

    2014-12-01

    Regular training is suggested to offer a host of benefits especially on cardiovascular system. In addition, medicinal plants can attenuate oxidative stress-mediated damages induced by stressor insults. In this study, we investigated the concomitant effect of cinnamon extract and long-term aerobic training on cardiac function, biochemical alterations and lipid profile following exhaustive exercise. Male Wistar rats (250-300 g) were divided into five groups depending on receiving regular training, cinnamon bark extraction, none or both of them, and then encountered with an exhausted exercise in last session. An 8-week endurance training program was designed with a progressive increase in training speed and time. Myocardial hemodynamics was monitored using a balloon-tipped catheter inserted into left ventricles. Blood samples were collected for analyzing biochemical markers, lipid profiles and lipid-peroxidation marker, malondealdehyde (MDA). Trained animals showed an enhanced cardiac force and contractility similar to cinnamon-treated rats. Co-application of regular training and cinnamon had additive effect in cardiac hemodynamic (Ptraining and supplementation with cinnamon significantly decreased serum levels of total cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) level and HDL/LDL ratio as compared to control group (Ptraining significantly reduced MDA level elevation induced by exhausted exercise (Ptraining improved cardiac hemodynamic through an additive effect. The positive effects of cinnamon and regular training on cardiac function were associated with a reduced serum MDA level and an improved blood lipid profile.

  5. Diet and the Role of Altered Carbohydrate Absorption in the Treatment of Noninsulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Thomas MS Wolever

    1996-01-01

    Full Text Available The gastrointestinal tract has no clear role in the pathophysiology of noninsulin-dependent diabetes mellitus (NIDDM, but it may be an appropriate site for therapeutic intervention, specifically changes in diet, meal frequency and medications. Studies suggest that for patients with NIDDM, a calorie-restricted, high carbohydrate diet low in fat and rich in fibre may improve glycemic control, mitigate the risk of atherosclerosis and retard such diabetic complications as nephropathy and retinopathy. Increased meal frequency slows the rate of carbohydrate absorption, flattens blood insulin responses and reduces serum cholesterol. New therapeutic interventions, such as soluble fibre, low glycemic index foods or alpha glucosidase inhibitors, can further slow carbohydrate absorption and thus reduce secondary risks from hyperglycemia and hyperinsulinemia.

  6. Phytosterol stearate esters elicit similar responses on plasma lipids and cholesterol absorption but different responses on fecal neutral sterol excretion and hepatic free cholesterol in male Syrian hamsters.

    Science.gov (United States)

    Ash, Mark M; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2011-07-01

    The dietary impact of specific phytosterols incorporated into phytosterol fatty acid esters has not been elucidated. Therefore, we tested the hypothesis that phytosterol esters containing different sterol moieties (sitosterol, sitostanol, or stigmasterol) but the same fatty acid moiety (stearic acid) produce different effects on cholesterol metabolism. Male Syrian hamsters were fed sitosterol, sitostanol, and stigmasterol stearate esters (25 g/kg diet) in an atherogenic diet containing cholesterol (1.2 g/kg) and coconut oil (80 g/kg). The phytosterol stearates produced no decrease in cholesterol absorption or plasma non-high-density lipoprotein cholesterol despite a reduction in liver free cholesterol in hamsters fed both sitosterol and sitostanol stearate diets. In addition, sitosterol stearate significantly increased fecal esterified and total neutral sterol excretion. Stigmasterol stearate did not differ from control in neutral sterol excretion, plasma lipids, or hepatic lipid concentration. Sitosterol stearate demonstrated the highest level of net intestinal hydrolysis, whereas sitostanol and stigmasterol stearate equivalently demonstrated the lowest. The cholesterol-lowering effect in liver-but not plasma-and the limited presence of fecal free sterols indicate that intact (unhydrolyzed) phytosterol stearates may impact cholesterol metabolism by mechanisms unrelated to the role of free phytosterols. The consumption of phytosterol esters at 2.5% of the diet elicited only modest impacts on cholesterol metabolism, although sitosterol stearate had a slightly greater therapeutic impact by lowering liver free cholesterol and increasing esterified and total neutral sterol fecal excretion, possibly due to a greater level of intestinal hydrolysis. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model.

    Science.gov (United States)

    Oliva, María E; Creus, Agustina; Ferreira, María R; Chicco, Adriana; Lombardo, Yolanda B

    2018-01-01

    This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (Psoya protein significantly increased (Psoya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.

  8. Environmental Toxin Acrolein Alters Levels of Endogenous Lipids, Including TRP Agonists: A Potential Mechanism for Headache Driven by TRPA1 Activation.

    Science.gov (United States)

    Leishman, Emma; Kunkler, Phillip E; Manchanda, Meera; Sangani, Kishan; Stuart, Jordyn M; Oxford, Gerry S; Hurley, Joyce H; Bradshaw, Heather B

    2017-01-01

    Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1), a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1) agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N -acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N -arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization.

  9. Environmental toxin acrolein alters levels of endogenous lipids, including TRP agonists: A potential mechanism for headache driven by TRPA1 activation

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    2017-01-01

    Full Text Available Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1, a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1 agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization. Keywords: Lipidomics, Endogenous cannabinoid, TRPA1, TRPV1, Lipoamine, Acrolein, Migraine

  10. Altered colonic mucosal Polyunsaturated Fatty Acid (PUFA derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology.

    Directory of Open Access Journals (Sweden)

    Mojgan Masoodi

    Full Text Available Ulcerative colitis (UC is a relapsing inflammatory disorder of unconfirmed aetiology, variable severity and clinical course, characterised by progressive histological inflammation and with elevation of eicosanoids which have a known pathophysiological role in inflammation. Therapeutic interventions targetting eicosanoids (5-aminosalicylates (ASA are effective first line and adjunctive treatments in mild-moderate UC for achieving and sustaining clinical remission. However, the variable clinical response to 5-ASA and frequent deterioration in response to cyclo-oxygenase (COX inhibitors, has prompted an in depth simultaneous evaluation of multiple lipid mediators (including eicosanoids within the inflammatory milieu in UC. We hypothesised that severity of inflammation is associated with alteration of lipid mediators, in relapsing UC.Study was case-control design. Mucosal lipid mediators were determined by LC-MS/MS lipidomics analysis on mucosal biopsies taken from patients attending outpatients with relapsing UC. Univariate and multivariate statistical analyses were used to investigate the association of mucosal lipid mediators, with the disease state and severity graded histologically.Levels of PGE2, PGD2, TXB2, 5-HETE, 11-HETE, 12-HETE and 15-HETE are significantly elevated in inflamed mucosa and correlate with severity of inflammation, determined using validated histological scoring systems.Our approach of capturing inflammatory mediator signature at different stages of UC by combining comprehensive lipidomics analysis and computational modelling could be used to classify and predict mild-moderate inflammation; however, predictive index is diminished in severe inflammation. This new technical approach could be developed to tailor drug treatments to patients with active UC, based on the mucosal lipid mediator profile.

  11. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    Science.gov (United States)

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  12. Alterations in lipid transfers to HDL associated with the presence of coronary artery disease in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Sprandel, Marilia C O; Hueb, Whady A; Segre, Alexandre; Ramires, José A F; Kalil-Filho, Roberto; Maranhão, Raul C

    2015-08-14

    We previously showed that unesterified-cholesterol transfer to high-density lipoprotein (HDL), a crucial step in cholesterol esterification and role in reverse cholesterol transport, was diminished in non-diabetic patients with coronary artery disease (CAD). The aim was to investigate whether, in patients with type 2 diabetes mellitus (T2DM), the occurrence of CAD was also associated with alterations in lipid transfers and other parameters of plasma lipid metabolism. Seventy-nine T2DM with CAD and 76 T2DM without CAD, confirmed by cineangiography, paired for sex, age (40-80 years), BMI and without statin use, were studied. In vitro transfer of four lipids to HDL was performed by incubating plasma of each patient with a donor emulsion containing radioactive lipids during 1 h at 37 °C. Lipids transferred to HDL were measured after chemical precipitation of non-HDL fractions and the emulsion. Results are expressed as % of total radioactivity of each lipid in HDL. In T2DM + CAD, LDL-cholesterol and apo B were higher than in T2DM. T2DM + CAD also showed diminished transfer to HDL of unesterified cholesterol (T2DM + CAD = 7.6 ± 1.2; T2DM = 8.2 ± 1.5%, p < 0.01) and of cholesteryl-esters (4.0 ± 0.6 vs 4.3 ± 0.7, p < 0.01). Unesterified cholesterol in the non-HDL serum fraction was higher in T2DM + CAD (0.93 ± 0.20 vs 0.85 ± 0.15, p = 0.02) and CETP concentration was diminished (2.1 ± 1.0 vs 2.5 ± 1.1, p = 0.02). Lecithin-cholesterol acyltransferase activity, HDL size and lipid composition were equal. Reduction in T2DM + CAD of cholesterol transfer to HDL may impair cholesterol esterification and reverse cholesterol transport and altogether with simultaneous increased plasma unesterified cholesterol may facilitate CAD development in T2DM.

  13. Mice exposed in situ to urban air pollution exhibit pulmonary alterations in gene expression in the lipid droplet synthesis pathways.

    Science.gov (United States)

    Rowan-Carroll, Andrea; Halappanavar, Sabina; Williams, Andrew; Somers, Christophers M; Yauk, Carole L

    2013-05-01

    It is clear that particulate air pollution poses a serious risk to human health; however, the underlying mechanisms are not completely understood. We investigated pulmonary transcriptional responses in mice following in-situ exposure to ambient air in a heavily industrialized urban environment. Mature C57BL/CBA male mice were caged in sheds near two working steel mills and a major highway in Hamilton, Ontario, Canada in the spring/summer of 2004. Control mice were housed in the same environment, but received only high-efficiency particle filtered air (HEPA). Whole lung tissues were collected from mice exposed for 3, 10, or for 10 weeks followed by 6 weeks recovery in the laboratory (16 weeks). DNA microarrays were used to profile changes in pulmonary gene expression. Transcriptional profiling revealed changes in the expression of genes implicated in the lipid droplet synthesis (Plin I, Dgat2, Lpl, S3-12, and Agpat2), and antioxidant defense (Ucp1) pathways in mice breathing unfiltered air. We postulate that exposure to urban air, containing an abundance of particulate matter adsorbed with polycyclic aromatic hydrocarbons, triggers lipid droplet (holding depots for lipids and malformed/excess proteins tagged for degradation) synthesis in the lungs, which may act to sequester particulates. Increased lipid droplet synthesis could lead to endogenous/stressor-induced production of reactive oxygen species and activation of antioxidant mechanisms. Further investigation into the stimulation of lipid droplet synthesis in the lung in response to air pollution and the resulting health implications is warranted. Copyright © 2013 Wiley Periodicals, Inc.

  14. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  15. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-01-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  16. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Abhro Jyoti; Stanely Mainzen Prince, P

    2013-10-01

    The present study evaluated the preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days and then injected with isoproterenol (100mg/kg body weight) on 8th and 9th day to induce myocardial infarction. Myocardial infarction induced by isoproterenol was indicated by increased level of cardiac sensitive marker and elevated ST-segments in the electrocardiogram. Also, the levels/concentrations of serum and heart cholesterol, triglycerides and free fatty acids were increased in myocardial infarcted rats. Isoproterenol also increased the levels of serum low density and very low density lipoprotein cholesterol and decreased the levels of high density lipoprotein cholesterol. It also enhanced the activity of liver 3-hydroxy-3 methyl glutaryl-Coenzyme-A reductase. p-Coumaric acid pretreatment revealed preventive effects on all the biochemical parameters and electrocardiogram studied in myocardial infarcted rats. The in vitro study confirmed the free radical scavenging property of p-coumaric acid. Thus, p-coumaric acid prevented cardiac hypertrophy and alterations in lipids, lipoproteins, and electrocardiogram, by virtue of its antihypertrophic, antilipidemic, and free radical scavenging effects in isoproterenol induced myocardial infarcted rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil

    Directory of Open Access Journals (Sweden)

    Edgar Weigand

    2017-01-01

    Full Text Available The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each, were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ and 22% cocoa butter (CB or 22% safflower oil (SF for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control. The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  19. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil.

    Science.gov (United States)

    Weigand, Edgar; Egenolf, Jennifer

    2017-01-01

    The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each), were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ) and 22% cocoa butter (CB) or 22% safflower oil (SF) for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control). The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  20. Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation

    Directory of Open Access Journals (Sweden)

    Agnieszka Gęgotek

    2017-01-01

    Full Text Available Background. Rutin is a natural nutraceutical that is a promising compound for the prevention of UV-induced metabolic changes in skin cells. The aim of this study was to examine the effects of rutin on redox and endocannabinoid systems, as well as proinflammatory and proapoptotic processes, in UV-irradiated fibroblasts. Methods. Fibroblasts exposed to UVA and UVB radiation were treated with rutin. The activities and levels of oxidants/antioxidants and endocannabinoid system components, as well as lipid, DNA, and protein oxidation products, and the proinflammatory and pro/antiapoptotic proteins expression were measured. Results. Rutin reduced UV-induced proinflammatory response and ROS generation and enhanced the activity/levels of antioxidants (SOD, GSH-Px, vitamin E, GSH, and Trx. Rutin also normalized UV-induced Nrf2 expression. Its biological activity prevented changes in the levels of the lipid mediators: MDA, 4-HNE, and endocannabinoids, as well as the endocannabinoid receptors CB1/2, VR1, and GPR55 expression. Furthermore, rutin prevented the protein modifications (tyrosine derivatives formation in particular and decreased the levels of the proapoptotic markers—caspase-3 and cytochrome c. Conclusion. Rutin prevents UV-induced inflammation and redox imbalance at protein and transcriptional level which favors lipid, protein, and DNA protection. In consequence rutin regulates endocannabinoid system and apoptotic balance.

  1. Pharmaceutical quality evaluation of lipid emulsions containing PGE1: alteration in the number of large particles in infusion solutions.

    Science.gov (United States)

    Shibata, Hiroko; Saito, Haruna; Yomota, Chikako; Kawanishi, Toru

    2009-08-13

    There are two generics of a parenteral lipid emulsion of prostaglandin E1 (PGE(1)) (Lipo-PGE(1)) in addition to two innovators. It was reported the change from innovator to generic in clinical practice caused the slowing of drip rate and formation of aggregates in the infusion line. Thus, we investigated the difference of pharmaceutical quality in these Lipo-PGE(1) formulations. After mixing with some infusion solutions, the mean diameter and number of large particles were determined. Although the mean diameter did not change in any infusion solutions, the number of large particles (diameter >1.0 microm) dramatically increased in generics with Hartmann's solution pH 8 or Lactec injection with 7% sodium bicarbonate. Next, we investigated the effect of these infusion solutions on the retention rate of PGE(1) in lipid particles. The retention rate of PGE(1) in these two infusion solutions decreased more quickly than that in normal saline. Nevertheless, there were no significant differences among the formulations tested. Our results suggest that there is no difference between innovators and generics except in mixing with these infusion solutions. Furthermore, that monitoring the number of large particles can be an effective means of evaluating pharmaceutical interactions and/or the stability of lipid emulsions.

  2. Role of C-peptide in Altered Lipid Profile among Apparently Healthy Adults of Vijayapura City, Karnataka

    Directory of Open Access Journals (Sweden)

    Chandrahas M.Kulkarni

    2016-04-01

    Full Text Available Background: C-peptide is produced in equimolar concentration during insulin production as inactive molecule by beta islet cells of Langerhans. C-peptide is most useful biomarker of endogenous insulin production. Aim and Objectives: To predict metabolic syndrome in advance by estimation of C-peptide and lipid profile in healthy adults. Material and Methods: Serum C-peptide, fasting blood glucose and lipid profile of 128 healthy individuals were estimated. Adults in the age group of 18 to 60 years of both sexes were included in study. Results: C-peptide levels were increased in 27%, Serum cholesterol in 30%, LDL Cholesterol in 55% and triglyceride levels in 21% of healthy individuals. Significant correlation was observed between C peptide, age, serum cholesterol, LDL and cholesterol LDL ratio in male subjects only. In our study group most of the subjects (both males and females fell in overweight group. Conclusion: Cpeptide level and lipid profile may be considered as useful biomarkers to predict type 2 diabetes mellitus in advance, possibly due to insulin resistance.

  3. Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach.

    Directory of Open Access Journals (Sweden)

    Kayode A Balogun

    Full Text Available BACKGROUND: Omega (n-3 polyunsaturated fatty acids (PUFA are converted to bioactive lipid components that are important mediators in metabolic and physiological pathways; however, which bioactive compounds are metabolically active, and their mechanisms of action are still not clear. We investigated using lipidomic techniques, the effects of diets high in n-3 PUFA on the fatty acid composition of various bioactive lipids in plasma and liver. METHODOLOGY AND PRINCIPAL FINDINGS: Female C57BL/6 mice were fed semi-purified diets (20% w/w fat containing varying amounts of n-3 PUFA before mating, during gestation and lactation, and until weaning. Male offspring were continued on their mothers' diets for 16 weeks. Hepatic and plasma lipids were extracted in the presence of non-naturally occurring internal standards, and tandem electrospray ionization mass spectrometry methods were used to measure the fatty acyl compositions. There was no significant difference in total concentrations of phospholipids in both groups. However, there was a significantly higher concentration of eicosapentaenoic acid containing phosphatidylcholine (PC, lysophosphatidylcholine (LPC, and cholesteryl esters (CE (p < 0.01 in the high n-3 PUFA group compared to the low n-3 PUFA group in both liver and plasma. Plasma and liver from the high n-3 PUFA group also had a higher concentration of free n-3 PUFA (p < 0.05. There were no significant differences in plasma concentrations of different fatty acyl species of phosphatidylethanolamine, triglycerides, sphingomyelin and ceramides. CONCLUSIONS/SIGNIFICANCE: Our findings reveal for the first time that a diet high in n-3 PUFA caused enrichment of n-3 PUFA in PC, LPC, CE and free fatty acids in the plasma and liver of C57BL/6 mice. PC, LPC, and unesterified free n-3 PUFA are important bioactive lipids, thus altering their fatty acyl composition will have important metabolic and physiological roles.

  4. N-3 Polyunsaturated Fatty Acids Supplementation Does not Affect Changes of Lipid Metabolism Induced in Rats by Altered Thyroid Status

    Czech Academy of Sciences Publication Activity Database

    Rauchová, Hana; Vokurková, Martina; Pavelka, Stanislav; Behuliak, Michal; Tribulová, N.; Soukup, Tomáš

    2013-01-01

    Roč. 45, č. 7 (2013), s. 507-512 ISSN 0018-5043 R&D Projects: GA ČR(CZ) GA303/09/0570; GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) 7AMB12SK158 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : hypothyriodism * hyperthyroidism * mitochondrial glycerol-3-phosphate dehydrogenase * glucose * plasma lipids Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.038, year: 2013

  5. Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile

    DEFF Research Database (Denmark)

    Kjærgaard, Maj; Nilsson, C.; Rosendal, A.

    2014-01-01

    of overfeeding during different developmental periods. Methods: Sprague-Dawley rats were offered chow or high-fat/high-sucrose diet (chow plus chocolate and soft drink) during gestation and lactation. At birth, offspring were randomly cross-fostered within each dietary group into small and normal litter sizes...... weight gain and adiposity in offspring born to chow-fed dams. Conclusion: Our results suggest that supplementation of chocolate and soft drink during gestation and lactation contributes to early onset of hepatic steatosis associated with changes in hepatic gene expression and lipid handling....

  6. Altered lipid partitioning and glucocorticoid availability in CBG-deficient male mice with diet-induced obesity.

    Science.gov (United States)

    Gulfo, José; Ledda, Angelo; Serra, Elisabet; Cabot, Cristina; Esteve, Montserrat; Grasa, Mar

    2016-08-01

    To evaluate how deficiency in corticosteroid-binding globulin (CBG), the specific carrier of glucocorticoids, affects glucocorticoid availability and adipose tissue in obesity. C57BL/6 (WT) and CBG-deficient (KO) male mice were fed during 12 weeks with standard or hyperlipidic diet (HL). Glucocorticoid availability and metabolic parameters were assessed. Body weight and food intake were increased in KO compared with WT mice fed a standard diet and were similar when fed a HL diet. Expression of CBG was found in white adipose tissue by immunochemistry, real-time PCR, and Western blot. In obesity, the subcutaneous depot developed less in KO mice compared with WT, which was associated with a minor adipocyte area and peroxisome proliferator-activated receptor-γ expression. Conversely, the epididymal depot displayed higher weight and adipocyte area in KO than in WT mice. CBG deficiency caused a fall of hepatic 11β-hydroxysteroid dehydrogenase type 2 expression and an increase in epidymal adipose tissue, particularly in HL mice. Deficiency in CBG drives lipid partitioning from subcutaneous to visceral adipose depot under a context of lipid excess and differentially modulates 11β-hydroxysteroid dehydrogenase type 2 expression. © 2016 The Obesity Society.

  7. Alterations in serum paraoxonase-1 activity and lipid profile in chronic alcoholic patients infected with Strongyloides stercoralis.

    Science.gov (United States)

    de Jesus Inês, Elizabete; Sampaio Silva, Mônica Lopes; de Souza, Joelma Nascimento; Galvão, Alana Alcântara; Aquino Teixeira, Márcia Cristina; Soares, Neci Matos

    2017-02-01

    The objective of this study was to investigate paraoxonase-1 (PON1) activity, cortisol levels, and the lipid profile in the sera of alcoholic and non-alcoholic Strongyloides stercoralis-infected and uninfected individuals in a sample of 276 individuals attended at the National Health System in Salvador, Bahia, Brazil. The activity of PON1 was measured by the Beltowski method, serum lipids, and cortisol levels using commercial kits. PON1 activity was low in both alcoholic and non-alcoholic individuals infected with S. stercoralis. A positive correlation was observed between PON1 activity and cortisol concentration in alcoholic individuals who were not infected with S. stercoralis; whereas a negative correlation occurred in S. stercoralis-infected nonalcoholic individuals. The levels of triglycerides, LDL-C, and VLDL-C in S. stercoralis-infected alcoholic individuals were significantly lower than in uninfected alcoholic individuals. The high level of HDL-C and the low level of LDL-C, VLDL, triglycerides and PON1 activity in alcoholic patients infected with S. stercoralis evidenced an anti-atherogenic pattern. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Trp53 deficient mice predisposed to preterm birth display region-specific lipid alterations at the embryo implantation site

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela; Cha, Jeeyeon; Kyle, Jennifer E.; Dey, Sudhansu K.; Laskin, Julia; Burnum-Johnson, Kristin E.

    2016-09-13

    Here we demonstrate that conditional deletion of mouse uterine Trp53 (p53d/d), molecularly linked to mTORC1 activation and causally linked to premature uterine senescence and preterm birth, results in aberrant lipid signatures within the heterogeneous cell types of embryo implantation sites on day 8 of pregnancy. In situ nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) was used to characterize the molecular speciation of free fatty acids, monoacylglycerols, unmodified and oxidized phosphatidylcholine (PC/Ox-PC), and diacylglycerol (DG) species within implantation sites of p53d/d mice and floxed littermates. Implantation sites from p53d/d mice exhibited distinct spatially resolved changes demonstrating accumulation of DG species, depletion of Ox-PC species, and increase in species with more unsaturated acyl chains, including arachidonic and docosahexaenoic acid. Understanding abnormal changes in the abundance and localization of individual lipid species early in the progression to premature birth is important for discovering novel targets for treatments and diagnosis.

  9. Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation.

    Science.gov (United States)

    Brand, A; Gil, S; Seger, R; Yavin, E

    2001-02-01

    The present work examines the effect of membrane lipid composition on activation of extracellular signal-regulated protein kinases (ERK) and cell death following oxidative stress. When subjected to 50 microM docosahexaenoic acid (DHA, 22 : 6 n-3), cellular phospholipids of OLN 93 cells, a clonal line of oligodendroglia origin low in DHA, were enriched with this polyunsaturated fatty acid. In the presence of 1 mM N,N-dimethylethanolamine (dEa) a new phospholipid species analog was formed in lieu of phosphatidylcholine. Exposure of DHA-enriched cells to 0.5 mM H2O2, caused sustained activation of ERK up to 24 h. At this time massive apoptotic cell death was demonstrated by ladder and TUNEL techniques. H2O2-induced stress applied to dEa or DHA/dEa co-supplemented cells showed only a transient ERK activation and no cell death after 24 h. Moreover, while ERK was rapidly translocated into the nucleus in DHA-enriched cells, dEa supplements completely blocked ERK nuclear translocation. This study suggests that H2O2-induced apoptotic cell death is associated with prolonged ERK activation and nuclear translocation in DHA-enriched OLN 93 cells, while both phenomena are prevented by dEa supplements. Thus, the membrane lipid composition ultimately modulates ERK activation and translocation and therefore can promote or prevent apoptotic cell death.

  10. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice.

    Science.gov (United States)

    Baumeier, Christian; Kaiser, Daniel; Heeren, Jörg; Scheja, Ludger; John, Clara; Weise, Christoph; Eravci, Murat; Lagerpusch, Merit; Schulze, Gunnar; Joost, Hans-Georg; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-01

    Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species. Copyright © 2015. Published by Elsevier B.V.

  11. Altered lipid peroxidation markers are related to post-traumatic stress disorder (PTSD) and not trauma itself in earthquake survivors.

    Science.gov (United States)

    Atli, Abdullah; Bulut, Mahmut; Bez, Yasin; Kaplan, İbrahim; Özdemir, Pınar Güzel; Uysal, Cem; Selçuk, Hilal; Sir, Aytekin

    2016-06-01

    The traumatic life events, including earthquakes, war, and interpersonal conflicts, cause a cascade of psychological and biological changes known as post-traumatic stress disorder (PTSD). Malondialdehyde (MDA) is a reliable marker of lipid peroxidation, and paraoxonase is a known antioxidant enzyme. The aims of this study were to investigate the relationship between earthquake trauma, PTSD effects on oxidative stress and the levels of serum paraoxonase 1 (PON1) enzyme activity, and levels of serum MDA. The study was carried out on three groups called: the PTSD group, the traumatized with earthquake exercise group, and healthy control group, which contained 32, 31, and 38 individuals, respectively. Serum MDA levels and PON1 enzyme activities from all participants were measured, and the results were compared across all groups. There were no significant differences between the PTSD patients and non-PTSD earthquake survivors in terms of the study variables. The mean PON1 enzyme activity from PTSD patients was significantly lower, while the mean MDA level was significantly higher than that of the healthy control group (p develop PTSD showed higher MDA levels and lower PON1 activity when compared to healthy controls. However, the differences between these groups did not reach a statistically significant level. Increased MDA level and decreased PON1 activity measured in PTSD patients after earthquake and may suggest increased oxidative stress in these patients. The nonsignificant trends that are observed in lipid peroxidation markers of earthquake survivors may indicate higher impact of PTSD development on these markers than trauma itself. For example, PTSD diagnosis seems to add to the effect of trauma on serum MDA levels and PON1 enzyme activity. Thus, serum MDA levels and PON1 enzyme activity may serve as biochemical markers of PTSD diagnosis.

  12. Altered lipid metabolism in rat offspring of dams fed a low-protein diet containing soy protein isolate.

    Science.gov (United States)

    Yoon, Mi; Won, Sae Bom; Kwon, Young Hye

    2017-04-01

    Substantial studies have reported that maternal protein restriction may induce later development of cardiovascular disease in offspring by impairing antioxidant system and lipid metabolism. Because a unique amino acid composition of soy protein isolate has been shown to provide health benefits, including hypolipidemic effects, we investigated effects of maternal low-protein diet composed of low-isoflavone soy protein isolate (SPI) on oxidative stress and lipid metabolism in offspring. Sprague-Dawley dams were fed 20% or 10% SPI diet throughout pregnancy and lactation. On postnatal day 21, male offspring and their dams were studied. Maternal consumption of low-protein diet composed of SPI did not induce hepatic oxidative stress in offspring. Although serum triacylglycerol and cholesterol levels in dams were not different between groups, serum triacylglycerol levels were lower in offspring of dams fed a 10% SPI diet (10% SPI group) compared to offspring of dams fed a 20% SPI diet (20% SPI group). Maternal protein restriction also reduced serum HDL/total cholesterol levels. The mRNA levels of apolipoprotein A1, which is required for HDL formation, were lower in 10% SPI group compared to 20% SPI group and were positively correlated with serum HDL-cholesterol levels. Although maternal consumption of low-protein diet containing SPI did not induce oxidative stress and hypertriglyceridemia, the present study indicates that it may disturb cholesterol metabolism of rat offspring on postnatal day 21. Further studies are warranted to investigate the effect of maternal diet composed of soy protein isolate on later development of cardiovascular disease in offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men.

    Science.gov (United States)

    Joosten, Michel M; van Erk, Marjan J; Pellis, Linette; Witkamp, Renger F; Hendriks, Henk F J

    2012-08-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the effects of alcohol consumption on gene expression patterns using large-scale profiling of whole-genome transcriptomics in blood cells and on a number of proteins in blood. In a randomised, open-label, cross-over trial, twenty-four young, normal-weight men consumed 100 ml vodka (30 g alcohol) with 200 ml orange juice or only orange juice daily during dinner for 4 weeks. After each period, blood was sampled for measuring gene expression and selected proteins. Pathway analysis of 345 down-regulated and 455 up-regulated genes revealed effects of alcohol consumption on various signalling responses, immune processes and lipid metabolism. Among the signalling processes, the most prominently changed was glucocorticoid receptor signalling. A network on immune response showed a down-regulated NF-κB gene expression together with increased plasma adiponectin and decreased pro-inflammatory IL-1 receptor antagonist and IL-18, and acute-phase proteins ferritin and α1-antitrypsin concentrations (all P alcohol consumption. Furthermore, a network of gene expression changes related to lipid metabolism was observed, with a central role for PPARα which was supported by increased HDL-cholesterol and several apo concentrations (all P alcohol consumption. In conclusion, an integrated approach of profiling both genes and proteins in blood showed that 4 weeks of moderate alcohol consumption altered immune responses and lipid metabolism.

  14. Increased ApoB/ApoA1 ratio is associated with excess weight, body adiposity, and altered lipid profile in children.

    Science.gov (United States)

    Castro, Ana Paula Pereira; Hermsdorff, Helen Hermana Miranda; Milagres, Luana Cupertino; Albuquerque, Fernanda Martins de; Filgueiras, Mariana De Santis; Rocha, Naruna Pereira; Novaes, Juliana Farias de

    2018-02-10

    To investigate ApoB/ApoA1 ratio and its association with cardiovascular risk factors in children. Cross-sectional study with 258 children aged 8 and 9 years old, enrolled in all urban schools in the city of Viçosa-MG. Anthropometric and body composition assessment, as well as biochemical profile of the children was performed. Socioeconomic variables and sedentary lifestyle were evaluated through a semi-structured questionnaire. Many children had excess weight (35.2%), abdominal adiposity (10.5%), and body fat (15.6%), as well as increased ApoB/ApoA1 ratio (14.7%), total cholesterol (51.8%), and triglycerides (19.8%). Children with excess weight and total and central fat had a higher prevalence of having a higher ApoB/ApoA1 ratio, as well as those with atherogenic lipid profile (increased LDL-c and triglycerides and low HDL-c). A direct association was found between the number of cardiovascular risk factors and the ApoB/ApoA1 ratio (p=0.001), regardless of age and income. The increased ApoB/ApoA1 ratio was associated with excess weight, body adiposity (total and central), and altered lipid profile in children. Children with a higher number of cardiovascular risk factors had higher ApoB/ApoA1 ratio, in both genders. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Combined treatment of sodium orthovanadate and Momordica charantia fruit extract prevents alterations in lipid profile and lipogenic enzymes in alloxan diabetic rats.

    Science.gov (United States)

    Yadav, Umesh C S; Moorthy, K; Baquer, Najma Z

    2005-01-01

    Momordica charantia Linn., commonly called bitter gourd, is a medicinal plant used in the Ayurvedic system of medicine for treating various diseases including diabetes mellitus. Sodium orthovanadate (SOV) is also well-known insulin mimetic and an antidiabetic compound. Our laboratory has been using reduced doses of SOV along with administration of herbal extracts to alloxan diabetic rats and has established this combination as a good antihyperglycemic agent. The present study was undertaken to investigate the effects of treatment of Momordica fruit extract (MFE) and sodium orthovanadate, separately and in combination, on serum and tissue lipid profile and on the activities of lipogenic enzymes in alloxan induced diabetic rats. The results show that there was a significant (p diabetes. In the liver and kidney of diabetic rats the levels of total lipids and triglycerides also increased significantly (p diabetic liver, while in kidney they showed an increased activity. When compared with the controls these changes were significant. The treatment of alloxan diabetic rats with MFE and SOV prevented these alterations and maintained all parameters near control values. Most effective prevention was however observed in a combined treatment of Momordica with a reduced dose of SOV (0.2%). The results suggest that Momordica fruit extract and SOV exhibit hypolipidemic as well as hypoglycemic effect in diabetic rats and their effect is pronounced when administered in combination.

  16. Alteration in membrane fluidity and lipid composition, and modulation of H(+)-ATPase activity in Saccharomyces cerevisiae caused by decanoic acid.

    Science.gov (United States)

    Alexandre, H; Mathieu, B; Charpentier, C

    1996-03-01

    Decanoic acid, a lipophilic agent, inhibited in vitro the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae grown in YPD medium. Conversely, when decanoic acid (35 microM) was present in the growth medium, the measured H(+)-ATPase activity was four times higher than that of control cells. Km, and pH and orthovanadate sensitivity were the same for the two growth conditions, which indicated that H(+)-ATPase activation was not due to conformational changes in the enzyme. The activation process was not entirely reversible which showed that plasma membrane H(+)-ATPase activation is due to several mechanisms. 1,6-diphenyl-1,3,5-hexatriene anisotropy performed on protoplasts from cells grown in YPD revealed that as decanoic acid concentration was increased, anisotropy significantly decreased, i.e. membrance fluidity increased. Cells grown in media containing decanoic acid exhibited greater membrane fluidity compared with control cells. Furthermore, these cells did not show any fluidifying effect when increased concentrations of decanoic acid were added. Chemical analysis of cell membrane lipid composition revealed a modification in the distribution of the phospholipid fatty acids and sterols in cells grown in the presence of 35 microM decanoic acid compared with control cells. Our results support the view that the plasma membrane H(+)-ATPase activation induced by decanoic acid is correlated with an alteration in membrane lipid constituents.

  17. Overexpression of miR-155 in the Liver of Transgenic Mice Alters the Expression Profiling of Hepatic Genes Associated with Lipid Metabolism

    Science.gov (United States)

    Li, Wei; Wang, Xiaoyan; Wei, Jieqiong; Lin, Xia; Zeng, Hui; Yao, Longping; Chen, Xuebing; Zhuang, Jingshen; Weng, Jie; Liu, Yu; Lin, Jihong; Wu, Qinghong; Wang, Wanshan; Yao, Kaitai; Xu, Kang; Xiao, Dong

    2015-01-01

    Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic

  18. Modeling human Coenzyme A synthase mutation in yeast reveals altered mitochondrial function, lipid content and iron metabolism

    Directory of Open Access Journals (Sweden)

    Camilla Ceccatelli Berti

    2015-04-01

    Full Text Available Mutations in nuclear genes associated with defective coenzyme A biosynthesis have been identified as responsible for some forms of neurodegeneration with brain iron accumulation (NBIA, namely PKAN and CoPAN. PKAN are defined by mutations in PANK2, encoding the pantothenate kinase 2 enzyme, that account for about 50% of cases of NBIA, whereas mutations in CoA synthase COASY have been recently reported as the second inborn error of CoA synthesis leading to CoPAN. As reported previously, yeast cells expressing the pathogenic mutation exhibited a temperature-sensitive growth defect in the absence of pantothenate and a reduced CoA content. Additional characterization revealed decreased oxygen consumption, reduced activities of mitochondrial respiratory complexes, higher iron content, increased sensitivity to oxidative stress and reduced amount of lipid droplets, thus partially recapitulating the phenotypes found in patients and establishing yeast as a potential model to clarify the pathogenesis underlying PKAN and CoPAN diseases.

  19. Hyperglycemic diet and training alter insulin sensitivity, intramyocellular lipid content but not UCP3 protein expression in rat skeletal muscles.

    Science.gov (United States)

    Vaisy, Morad; Szlufcik, Karolina; Maris, Michael; De Bock, Katrien; Hesselink, Matthijs K C; Eijnde, Bert O; Schrauwen, Patrick; Hespel, Peter

    2010-06-01

    Intramyocellular lipids (IMCL) and mitochondrial uncoupling protein-3 (UCP3) have been implicated in the development of muscular insulin resistance. This study aimed to investigate the role of IMCL and UCP3 in the development of glucose intolerance and muscular insulin resistance during 12 weeks of an obesity-inducing 'cafeteria-style' diet alone (CAF), or in conjunction with exercise training from weeks 8-12 (CAFTR), in rats. At the end of the intervention period, gain in body weight was 20% higher in CAF (305+/-10 g) than controls (CON) (255+/-14 g; pmuscles, but not in m. soleus. However, glucose transport in CAFTR was similar to CON in red gastrocnemius. In CAF fiber-specific IMCL content determined in m. soleus and extensor digitorum longus (EDL), was higher than in CON (pMuscle UCP3 protein content was not changed by any of the interventions. Interestingly, within CAF and CAFTR, ISI closely negatively correlated with IMCL content in both type I (soleus, r=-0.93; EDL, r=-0.90; pmuscle fibers. These findings indicate that changes in IMCL content but not UCP3 content are implicated in short-term effects of cafeteria-style diet and exercise training on muscular insulin sensitivity in rats.

  20. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Directory of Open Access Journals (Sweden)

    Mette J. Jacobsen

    2016-01-01

    Full Text Available Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.

  1. Metabolomic analysis of alterations in lipid oxidation, carbohydrate and amino acid metabolism in dairy goats caused by exposure to Aflotoxin B1.

    Science.gov (United States)

    Cheng, Jianbo; Huang, Shuai; Fan, Caiyun; Zheng, Nan; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2017-11-01

    The purposes of this study were to investigate the systemic and characteristic metabolites in the serum of dairy goats induced by aflatoxin B1 (AFB1) exposure and to further understand the endogenous metabolic alterations induced by it. A nuclear magnetic resonance (NMR)-based metabonomic approach was used to analyse the metabolic alterations in dairy goats that were induced by low doses of AFB1 (50 µg/kg DM). We found that AFB1 exposure caused significant elevations of glucose, citrate, acetate, acetoacetate, betaine, and glycine yet caused reductions of lactate, ketone bodies (acetate, β-hydroxybutyrate), amino acids (citrulline, leucine/isoleucine, valine, creatine) and cell membrane structures (choline, lipoprotein, N-acetyl glycoproteins) in the serum. These data indicated that AFB1 caused endogenous metabolic changes in various metabolic pathways, including cell membrane-associated metabolism, the tricarboxylic acid cycle, glycolysis, lipids, and amino acid metabolism. These findings provide both a comprehensive insight into the metabolic aspects of AFB1-induced adverse effects on dairy goats and a method for monitoring dairy animals exposed to low doses of AFB1.

  2. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity.

    Science.gov (United States)

    van Nielen, Monique; Feskens, Edith J M; Rietman, Annemarie; Siebelink, Els; Mensink, Marco

    2014-09-01

    Increasing protein intake and soy consumption appear to be promising approaches to prevent metabolic syndrome (MetS). However, the effect of soy consumption on insulin resistance, glucose homeostasis, and other characteristics of MetS is not frequently studied in humans. We aimed to investigate the effects of a 4-wk, strictly controlled, weight-maintaining, moderately high-protein diet rich in soy on insulin sensitivity and other cardiometabolic risk factors. We performed a randomized crossover trial of 2 4-wk diet periods in 15 postmenopausal women with abdominal obesity to test diets with 22 energy percent (En%) protein, 27 En% fat, and 50 En% carbohydrate. One diet contained protein of mixed origin (mainly meat, dairy, and bread), and the other diet partly replaced meat with soy meat analogues and soy nuts containing 30 g/d soy protein. For our primary outcome, a frequently sampled intravenous glucose tolerance test (FSIGT) was performed at the end of both periods. Plasma total, LDL, and HDL cholesterol, triglycerides, glucose, insulin, and C-reactive protein were assessed, and blood pressure, arterial stiffness, and intrahepatic lipid content were measured at the start and end of both periods. Compared with the mixed-protein diet, the soy-protein diet resulted in greater insulin sensitivity [FSIGT: insulin sensitivity, 34 ± 29 vs. 22 ± 17 (mU/L)(-1) · min(-1), P = 0.048; disposition index, 4974 ± 2543 vs. 2899 ± 1878, P = 0.038; n = 11]. Total cholesterol was 4% lower after the soy-protein diet than after the mixed-protein diet (4.9 ± 0.7 vs. 5.1 ± 0.6 mmol/L, P = 0.001), and LDL cholesterol was 9% lower (2.9 ± 0.7 vs. 3.2 ± 0.6 mmol/L, P = 0.004; n = 15). Thus, partly replacing meat with soy in a moderately high-protein diet has clear advantages regarding insulin sensitivity and total and LDL cholesterol. Therefore, partly replacing meat products with soy products could be important in preventing MetS. This trial was registered at clinicaltrials

  3. Secondary structure and lipid interactions of the N-terminal segment of pulmonary surfactant SP-C in Langmuir films: IR reflection-absorption spectroscopy and surface pressure studies

    DEFF Research Database (Denmark)

    Bi, Xiaohong; Flach, Carol R; Pérez-Gil, Jesus

    2002-01-01

    reflection-absorption spectroscopy (IRRAS) to determine peptide conformation and the effects of S-palmitoylation on the lipid interactions of a synthetic 13 residue N-terminal peptide [SP-C13(palm)(2)] of SP-C, in mixtures with 1,2-dipalmitoylphosphatidylcholine (DPPC) or 1,2-dipalmitoylphosphatidylglycerol...... (DPPG). Two Amide I' features, at approximately 1655 and approximately 1639 cm(-1) in the peptide IRRAS spectra, are assigned to alpha-helical peptide bonds in hydrophobic and aqueous environments, respectively. In binary DPPC/SP-C13(palm)(2) films, the proportion of hydrated/hydrophobic helix increases...

  4. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    Directory of Open Access Journals (Sweden)

    Verde Roberta

    2010-04-01

    Full Text Available Abstract Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT of subjects with both obesity and type 2 diabetes (OBT2D, characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB. Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners and 2-AG in obesity and type 2 diabetes.

  5. Alterations in innate immunity reactants and carbohydrate and lipid metabolism precede occurrence of metritis in transition dairy cows.

    Science.gov (United States)

    Dervishi, Elda; Zhang, Guanshi; Hailemariam, Dagnachew; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-02-01

    The overall purpose of the present study was to search for early screening biomarkers of disease state. Therefore the objectives of this study were to evaluate metabolites related to carbohydrate metabolism, acute phase proteins, and proinflammatory cytokines in the blood of transition dairy cows starting at -8 weeks before calving. Blood samples were collected from 100 multiparous Holstein dairy cows during -8, -4, disease diagnosis, +4 and +8 weeks relative to parturition. Six healthy cows and 6 cows that showed clinical signs of metritis were selected for serum analysis. Overall the results showed that cows with metritis had greater concentration of lactate, interleukin-6 (IL-6), tumor necrosis factor (TNF), and serum amyloid A (SAA) versus healthy cows throughout the experiment. The disease was associated with decrease in milk production and fat: protein ratio. Cows with metritis showed alteration in metabolites related to carbohydrate metabolism, acute phase proteins, and proinflammatory cytokines starting at -8 weeks prior to parturition and appearance of clinical signs of the disease. This study suggests a possible use of cytokines as early markers of disease in dairy cows. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Alterations in Lipid Mediated Signaling and Wnt/β-Catenin Signaling in DMH Induced Colon Cancer on Supplementation of Fish Oil

    Directory of Open Access Journals (Sweden)

    Shevali Kansal

    2014-01-01

    Full Text Available Ceramide mediates inhibition of cyclooxygenase-2 (COX-2 which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptorγ (PPARγ and Wnt/β-catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2, PPARγ, and β-catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/β-catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1 and FO : CO(2.5 : 1, respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPARγ were observed in postinitiation phase only. On receiving FO+CO(1 : 1+DMH and FO+CO(2.5 : 1+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β-catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1+DMH. Treatment with oils increased PPARγ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.

  7. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome*

    Science.gov (United States)

    Libby, Andrew E.; Bales, Elise; Orlicky, David J.; McManaman, James L.

    2016-01-01

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. PMID:27679530

  8. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome.

    Science.gov (United States)

    Libby, Andrew E; Bales, Elise; Orlicky, David J; McManaman, James L

    2016-11-11

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Multi-wavelength thermal-lens spectrometry for high-accuracy measurements of absorptivities and quantum yields of photodegradation of a hemoprotein–lipid complex

    Directory of Open Access Journals (Sweden)

    Kseniya Tishchenko

    2017-09-01

    Full Text Available Accurate measurements of absorptivities and quantum yields of biochemical species under various conditions are an important task of applied photonics and analytical chemistry. In this work, we provide a comparison of the capabilities of thermal-lens spectrometry to measure these parameters of various samples. Measurements of relevant model substances, biologically active substituted 2-thiohydantoins and their complexes of copper(I,II and heme proteins (forms of hemoglobin and cytochrome c, showed negligible differences in apparent molar absorptivities for thermal-lens spectrometry and optical-absorption (spectrophotometric data. The values for tabletop and microscale thermal-lens measurements under batch conditions differ insignificantly. The precision of measurements of molar absorptivities by thermal-lens spectrometry is no less than in the case of spectrophotometry or the precision is even higher in the cases of low absorptivities. For cardiolipin–cytochrome c-NO complex, the difference between absorptivity values calculated from thermal-lens data and acquired by spectrophotometry is significant due to complex photodegradation. The quantum yield of its photolysis reaction calculated from optical absorption and thermal-lens data altogether at two wavelengths for 0.4–360 s of the reaction, 0.46 ± 0.04, was estimated.

  10. Scavenger receptor class B type I (SR-BI) in pig enterocytes: trafficking from the brush border to lipid droplets during fat absorption

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, Lise-Lotte W; Immerdal, Lissi

    2003-01-01

    BACKGROUND: Scavenger receptor class B type I (SR-BI) is known to mediate cellular uptake of cholesterol from high density lipoprotein particles and is particularly abundant in liver and steroidogenic tissues. In addition, SR-BI expression in the enterocyte brush border has also been reported but...... fat, SR-BI is endocytosed from the enterocyte brush border and accumulates in cytoplasmic lipid droplets. Internalisation of the receptor occurs mainly by clathrin coated pits rather than by a caveolae/lipid raft based mechanism....

  11. Impact of co-administration of protonated nanostructured aluminum silicate (cholesterol absorption inhibitor) on the absorption of lipid soluble vitamins D3 and K1: an assessment of pharmacokinetic and in vitro intraluminal processing.

    Science.gov (United States)

    Ibrahim, Fady; Sivak, Olena; Wong, Carly; Hopkins, Patrick; Midha, Ankur; Gordon, Jacob; Darlington, Jerald W; Wasan, Kishor M

    2013-05-13

    Protonated nanostructured aluminum silicate (NSAS) is a protonated montmorillonite clay that was shown to be effective as an inhibitor of intestinal cholesterol absorption. The effect of NSAS on the intestinal absorption of nutrients is unknown. An in vitro lipolysis model was adapted to test the intraluminal processing of vitamin D3 and K1 in the presence of various amounts of NSAS. Additionally, vitamin absorption was assessed in male Sprague-Dawley rats randomized in the following treatment groups: IV administration of 0.1 mg/kg vitamin D3 and 1 mg/kg vitamin K1, and a single-dose gavage of 1 mg/kg vitamin D3 and 5mg/kg of vitamin K1 in peanut oil with various doses of NSAS slurry, 2% NSAS-fortified diet, or 50 mg/kg stigmastanol. The solubilized fraction of vitamin D3 in the lipolysis medium was reduced from 70% to 46% upon the addition of 120 mg NSAS. In contrast, the solubilized fractions of vitamin K1 were not significantly affected. Although the NSAS-fortified diet did not significantly affect the absorbed fraction of both vitamins, NSAS slurry decreased the absorption of vitamin D3 as compared to the control. These results indicate that NSAS may be incorporated in diet to treat hypercholesterolemia; however, vitamin D3 monitoring may be required. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The inhibitory effect of carboxymethylcellulose with high viscosity on lipid absorption in broiler chickens coincides with reduced bile salt concentration and raised microbial numbers in the small intestine

    NARCIS (Netherlands)

    Smits, CHM; Veldman, A; Verkade, HJ; Beynen, AC

    1998-01-01

    Two diets, with or without a nonfermentable carboxymethylcellulose (CMC) with high viscosity, were fed to broiler chickens beginning at 2 wk of age to study whether the anti-nutritive effect of gelling fibers on Lipid digestibility maybe associated with reduced intestinal bile salt concentration.

  13. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    International Nuclear Information System (INIS)

    Batenburg, A.M.; Demel, R.A.; Verkleij, A.J.; de Kruijff, B.

    1988-01-01

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary 31 P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure

  14. The composition of dietary fat alters the transcriptional profile of pathways associated with lipid metabolism in the liver and adipose tissue in the pig.

    Science.gov (United States)

    Kellner, T A; Gabler, N K; Patience, J F

    2017-08-01

    positively correlated with , , and mRNA abundance in the liver ( ≤ 0.100). To conclude, the intake of omega-3 fatty acids suppressed the mRNA abundance of genes involved in lipolysis in both adipose tissue and the liver. Dietary SFA are greater inhibitors of lipogenesis in adipose tissue than omega-6 fatty acids. Intake of medium-chain fatty acids alters hepatic lipid metabolism differently than intake of long-chain fatty acids.

  15. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.

    1992-01-01

    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  16. Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration.

    Science.gov (United States)

    Galván-Arzate, Sonia; Pedraza-Chaverrí, José; Medina-Campos, Omar N; Maldonado, Perla D; Vázquez-Román, Beatriz; Ríos, Camilo; Santamaría, Abel

    2005-07-01

    Thallium (Tl+) toxicity has been related with the generation of reactive oxygen species (ROS) and oxidative stress (OS) in the central nervous system. Since changes in endogenous antioxidant systems might contribute to acute Tl+-induced OS and neurotoxicity, in this study we measured the metal concentration and the levels of lipid peroxidation (LP) in different brain regions (hypothalamus (Ht); cerebellum (Ce); striatum (S); hippocampus (Hc) and frontal cortex (Cx)) in possible correlation with the content of reduced glutathione (GSH), the activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD), and the animal performance in behavioral tests, all evaluated after a single administration of thallium acetate (8 or 16 mg/kg, i.p.) to rats. Seven days after Tl+ administration, the metal was homogeneously and dose-dependently accumulated in all regions evaluated. LP was increased in Ht, Ce and S, while GSH was depleted in S. Cu,Zn-SOD activity was also decreased in Ht and S. All these changes occurred with 16 mg/kg dose and at 7 days after treatment, but not at 1 or 3 days. In addition, Tl+-treated animals exhibited general hypokinesis, but no changes were observed in spatial learning. Our findings suggest that a delayed response of the brain to Tl+ may be the result of its residual levels. Also, despite the regional alterations produced by Tl+ in LP and the limited changes in endogenous antioxidants, there is a correlation between the Tl+-induced oxidative damage and the affected behavioral tasks, suggesting that, although still moderate, Tl+ evokes neurotoxic patterns under the experimental conditions tested.

  17. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: EXECUTIVE SUMMARY.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2-part scientific statement examines the potential lipid benefits of bariatric procedures and represents contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on data published through June 2015. Part 1 of this 2-part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of: (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on cardiovascular disease; and finally (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the executive summary of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  18. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT.

    Science.gov (United States)

    Bays, Harold E; Jones, Peter H; Jacobson, Terry A; Cohen, David E; Orringer, Carl E; Kothari, Shanu; Azagury, Dan E; Morton, John; Nguyen, Ninh T; Westman, Eric C; Horn, Deborah B; Scinta, Wendy; Primack, Craig

    2016-01-01

    Bariatric procedures often improve lipid levels in patients with obesity. This 2 part scientific statement examines the potential lipid benefits of bariatric procedures and represents the contributions from authors representing the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and the Obesity Medicine Association. The foundation for this scientific statement was based on published data through June 2015. Part 1 of this 2 part scientific statement provides an overview of: (1) adipose tissue, cholesterol metabolism, and lipids; (2) bariatric procedures, cholesterol metabolism, and lipids; (3) endocrine factors relevant to lipid influx, synthesis, metabolism, and efflux; (4) immune factors relevant to lipid influx, synthesis, metabolism, and efflux; (5) bariatric procedures, bile acid metabolism, and lipids; and (6) bariatric procedures, intestinal microbiota, and lipids, with specific emphasis on how the alterations in the microbiome by bariatric procedures influence obesity, bile acids, and inflammation, which in turn, may all affect lipid levels. Included in part 2 of this comprehensive scientific statement will be a review of (1) the importance of nutrients (fats, carbohydrates, and proteins) and their absorption on lipid levels; (2) the effects of bariatric procedures on gut hormones and lipid levels; (3) the effects of bariatric procedures on nonlipid cardiovascular disease (CVD) risk factors; (4) the effects of bariatric procedures on lipid levels; (5) effects of bariatric procedures on CVD; and finally, (6) the potential lipid effects of vitamin, mineral, and trace element deficiencies that may occur after bariatric procedures. This document represents the full report of part 1. Copyright © 2016 National Lipid Association. All rights reserved.

  19. Captivity diets alter egg yolk lipids of a bird of prey (the American kestrel) and of a galliforme (the red-legged partridge).

    Science.gov (United States)

    Surai, P F; Speake, B K; Bortolotti, G R; Negro, J J

    2001-01-01

    The salient feature of the fatty acid profile of kestrel eggs collected in the wild was the very high proportion of arachidonic acid (15.2%+/-0.7% of fatty acid mass, n=5) in the phospholipid fraction of the yolk. Kestrels in captivity fed on day-old chickens produced eggs that differed from those of the wild birds in a number of compositional features: the proportion of linoleic acid was increased in all the lipid fractions; the proportion of arachidonic acid was increased in yolk phospholipid and cholesteryl ester; the proportion of alpha-linolenic acid was decreased in all lipid classes, and that of docosahexaenoic acid was decreased in phospholipid and cholesteryl ester. Partridge eggs from the wild contained linoleic acid as the main polyunsaturate of all the yolk lipid fractions. Captive partridges maintained on a formulated diet very rich in linoleic acid produced eggs with increased levels of linoleic, arachidonic, and n-6 docosapentaenoic acids in the phospholipid fraction; reduced proportions of alpha-linolenic acid were observed in all lipid classes, and the proportion of docosahexaenoic acid was markedly reduced in the phospholipid fraction. Thus, captive breeding of both the kestrel and the partridge increases the n-6/n-3 polyunsaturate ratio of the yolk lipids.

  20. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation.

    Science.gov (United States)

    Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan

    2017-10-01

    A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (Pinsulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.

  1. Lipid-altering efficacy and safety of ezetimibe/simvastatin versus atorvastatin in patients with hypercholesterolemia and the metabolic syndrome (from the VYMET study)

    DEFF Research Database (Denmark)

    Robinson, Jennifer G; Ballantyne, Christie M; Grundy, Scott M

    2009-01-01

    Patients with the metabolic syndrome are at an increased risk of cardiovascular disease and might require intensive lipid therapy. Many patients remain at the starting dose of lipid therapy and might not be titrated up to a higher dose. The present double-blind, randomized, 6-week study assessed...... the lipid-lowering efficacy of ezetimibe/simvastatin 10/20 mg versus atorvastatin 10 or 20 mg, and ezetimibe/simvastatin 10/40 mg versus atorvastatin 40 mg in 1,128 patients with hypercholesterolemia and the metabolic syndrome. The primary end point was the percentage of change from baseline in low...... in triglycerides, very low-density lipoprotein cholesterol, and high-sensitivity C-reactive protein were similar for both treatments. The incidence of liver, muscle, and gastrointestinal-, hepatitis- and allergic reaction/rash-related adverse events were low and generally similar to those in previous studies...

  2. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice

    Czech Academy of Sciences Publication Activity Database

    Liisberg, U.; Fauske, K. R.; Kuda, Ondřej; Fjare, E.; Myrmel, L. S.; Norberg, N.; Froyland, L.; Graff, I. E.; Liaset, B.; Kristiansen, K.; Kopecký, Jan; Madsen, L.

    2016-01-01

    Roč. 33, Jul (2016), s. 119-127 ISSN 0955-2863 Institutional support: RVO:67985823 Keywords : diet * dietary lipids * endocannabinoids * fish oil * phospholipids * liver * obesity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.518, year: 2016

  3. I. Lipid metabolism stimulated by altered intracellular calcium in cultured fibroblasts. II. Regulation of the activity of rat adipose tissue lipoprotein lipase

    International Nuclear Information System (INIS)

    Chang Wang, Huei-Hsiang Lisa.

    1988-01-01

    The cell killing process of 3T3 Swiss mouse fibroblasts stimulated by Ca 2+ plus A23187, a Ca 2+ ionophore has been studied. The aim of this research is to understand the biochemical mechanism of this process, i.e, to elucidate the step involved and to characterize the enzymes involved with each steps in the lipid metabolism stimulated in cultured fibroblasts undergoing a toxic death response. Parallel 3T3 cultures biosynthetically labeled with lipid precursors were examined under Ca 2+ -mediated killing conditions. Labeled lipids were extracted and analyzed by thin-layer chromatography and autoradiography. Evidence for activation of a phosphatidylinositol-specific phospholipase C has been obtained in injured 3T3 cells labeled with [ 3 H]glycerol and [ 3 H]inositol. To simplify the system for studying the lipoprotein lipase reaction, our laboratory prepared the chromophore containing a substrate: 1,2-dipalmitoyl-3-β-2-furylacryloyltriacylglycerol (DPFATG). By using this artificial lipid we could readily investigate the lipoprotein lipase reactions, since the absorbance change directly represents the hydrolysis of the chromophoric side chain of the substrate

  4. The ability of genetically lean or fat slow-growing chickens to synthesize and store lipids is not altered by the dietary energy source.

    Science.gov (United States)

    Baéza, E; Gondret, F; Chartrin, P; Le Bihan-Duval, E; Berri, C; Gabriel, I; Narcy, A; Lessire, M; Métayer-Coustard, S; Collin, A; Jégou, M; Lagarrigue, S; Duclos, M J

    2015-10-01

    The increasing use of unconventional feedstuffs in chicken's diets results in the substitution of starch by lipids as the main dietary energy source. To evaluate the responses of genetically fat or lean chickens to these diets, males of two experimental lines divergently selected for abdominal fat content were fed isocaloric, isonitrogenous diets with either high lipid (80 g/kg), high fiber (64 g/kg) contents (HL), or low lipid (20 g/kg), low fiber (21 g/kg) contents (LL) from 22 to 63 days of age. The diet had no effect on growth performance and did not affect body composition evaluated at 63 days of age. Glycolytic and oxidative energy metabolisms in the liver and glycogen storage in liver and Sartorius muscle at 63 days of age were greater in chicken fed LL diet compared with chicken fed HL diet. In Pectoralis major (PM) muscle, energy metabolisms and glycogen content were not different between diets. There were no dietary-associated differences in lipid contents of the liver, muscles and abdominal fat. However, the percentages of saturated (SFA) and monounsaturated fatty acids (MUFA) in tissue lipids were generally higher, whereas percentages of polyunsaturated fatty acids (PUFA) were lower for diet LL than for diet HL. The fat line had a greater feed intake and average daily gain, but gain to feed ratio was lower in that line compared with the lean line. Fat chickens were heavier than lean chickens at 63 days of age. Their carcass fatness was higher and their muscle yield was lower than those of lean chickens. The oxidative enzyme activities in the liver were lower in the fat line than in the lean line, but line did not affect energy metabolism in muscles. The hepatic glycogen content was not different between lines, whereas glycogen content and glycolytic potential were higher in the PM muscle of fat chickens compared with lean chickens. Lipid contents in the liver, muscles and abdominal fat did not differ between lines, but fat chickens stored less MUFA and

  5. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner.

    Science.gov (United States)

    Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura; Rodríguez de Fonseca, Fernando

    2017-01-01

    Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid

  6. Fat absorption and deposition in Japanese quail (Coturnix coturnix japonica) fed a high fat diet.

    Science.gov (United States)

    Magubane, Mhlengi M; Lembede, Busisani W; Erlwanger, Kennedy H; Chivandi, Eliton; Donaldson, Janine

    2013-05-17

    Dietary fat contributes significantly to the energy requirements of poultry. Not all species are able to increase their absorptive capacity for fats in response to a high fat diet. The effects of a high fat diet (10% canola oil) on the lipid absorption and deposition in the liver, breast and thigh muscles of male and female Japanese quail were investigated. Thirty-eight Japanese quail (Coturnix coturnix japonica) were randomly divided into a high fat diet (HFD) and a standard diet (STD) group. The birds were fed the diets for seven weeks after which half of the birds were subjected to oral fat loading tests (OFLT) with plant oils containing long-chain and medium-chain triglycerides. The remaining birds were included for the lipid deposition measurements. Thereafter the birds were euthanised, blood samples were collected and liver, breast and thigh muscle lipid deposition was determined. Female quail on both diets had significantly higher plasma triglyceride concentrations (p < 0.05) compared with their male counterparts. No significant differences in plasma triglyceride concentrations were observed after the OFLTs. Female quail had significantly heavier liver masses compared with the males but there was no significant difference in the liver lipid content per gram liver mass. Female quail on the HFD had higher lipid content (p < 0.05) in the breast muscle compared with their male counterparts whilst male quail on the HFD had higher lipid content (p < 0.05) in the thigh muscle in comparison with both males and females on the standard diet. Dietary supplementation with 10% canola oil did not alter gastrointestinal tract lipid absorption, but it caused differences between the sexes in muscle lipid accumulation, the physiological significance of which requires further investigation.

  7. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4 through interaction with HCV NS5B and alteration of lipid droplet formation.

    Directory of Open Access Journals (Sweden)

    In-Woo Park

    Full Text Available Hepatitis C virus (HCV RNA replication involves complex interactions among the 3'x RNA element within the HCV 3' untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3' X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4, a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.

  8. Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue.

    Directory of Open Access Journals (Sweden)

    Jialin Xu

    Full Text Available AIMS: The purpose of this study was to determine whether Nrf2 activation, via Keap1-knockdown (Keap1-KD, regulates lipid metabolism and mobilization induced by food deprivation (e.g. fasting. METHODS AND RESULTS: Male C57BL/6 (WT and Keap1-KD mice were either fed ad libitum or food deprived for 24 hours. After fasting, WT mice exhibited a marked increase in hepatic lipid accumulation, but Keap1-KD mice had an attenuated increase of lipid accumulation, along with reduced expression of lipogenic genes (acetyl-coA carboxylase, stearoyl-CoA desaturase-1, and fatty acid synthase and reduced expression of genes related to fatty acid transport, such as fatty acid translocase/CD36 (CD36 and Fatty acid transport protein (FATP 2, which may attribute to the reduced induction of Peroxisome proliferator-activated receptor (Ppar α signaling in the liver. Additionally, enhanced Nrf2 activity by Keap1-KD increased AMP-activated protein kinase (AMPK phosphorylation in liver. In white adipose tissue, enhanced Nrf2 activity did not change the lipolysis rate by fasting, but reduced expression of fatty acid transporters--CD36 and FATP1, via a PPARα-dependent mechanism, which impaired fatty acid transport from white adipose tissue to periphery circulation system, and resulted in increased white adipose tissue fatty acid content. Moreover, enhanced Nrf2 activity increased glucose tolerance and Akt phosphorylation levels upon insulin administration, suggesting Nrf2 signaling pathway plays a key role in regulating insulin signaling and enhanced insulin sensitivity in skeletal muscle. CONCLUSION: Enhanced Nrf2 activity via Keap1-KD decreased fasting-induced steatosis, pointing to an important function of Nrf2 on lipid metabolism under the condition of nutrient deprivation.

  9. Dietary α-linolenic acid supplementation alters skeletal muscle plasma membrane lipid composition, sarcolemmal FAT/CD36 abundance, and palmitate transport rates.

    Science.gov (United States)

    Chorner, Zane; Barbeau, Pierre-Andre; Castellani, Laura; Wright, David C; Chabowski, Adrian; Holloway, Graham P

    2016-12-01

    The cellular processes influenced by consuming polyunsaturated fatty acids remains poorly defined. Within skeletal muscle, a rate-limiting step in fatty acid oxidation is the movement of lipids across the sarcolemmal membrane, and therefore, we aimed to determine the effects of consuming flaxseed oil high in α-linolenic acid (ALA), on plasma membrane lipid composition and the capacity to transport palmitate. Rats fed a diet supplemented with ALA (10%) displayed marked increases in omega-3 polyunsaturated fatty acids (PUFAs) within whole muscle and sarcolemmal membranes (approximately five-fold), at the apparent expense of arachidonic acid (-50%). These changes coincided with increased sarcolemmal palmitate transport rates (+20%), plasma membrane fatty acid translocase (FAT/CD36; +20%) abundance, skeletal muscle triacylglycerol content (approximately twofold), and rates of whole body fat oxidation (~50%). The redistribution of FAT/CD36 to the plasma membrane could not be explained by increased phosphorylation of signaling pathways implicated in regulating FAT/CD36 trafficking events (i.e., phosphorylation of ERK1/2, CaMKII, AMPK, and Akt), suggesting the increased n-3 PUFA composition of the plasma membrane influenced FAT/CD36 accumulation. Altogether, the present data provide evidence that a diet supplemented with ALA increases the transport of lipids into resting skeletal muscle in conjunction with increased sarcolemmal n-3 PUFA and FAT/CD36 contents. Copyright © 2016 the American Physiological Society.

  10. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II) ions in the organization of model lipid membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Sroka, Aleksandra; Jabłońska, Klaudia

    2016-07-01

    Auxins are successfully used to improve phytoextraction efficiency of metal ions from the contaminated environment, however, the mechanism of their activity in this field is not explained. Auxins are known to exert various biochemical alterations in the plant membranes and cells, but their activity involves also direct interactions with lipids leading to changes in membrane organization. Following the suggestion that the auxins-induced modifications in membrane properties alleviate toxic effect of metal ions in this paper we have undertaken the comparative studies on the effect of metal ions and metal ions/auxins mixtures on model membrane systems. The experiments were done on lipid monolayers differing in their composition spread on water subphase and on Pb(2+), Indole-3-acetic acid (IAA), 1-Naphthaleneacetic acid (NAA) and Pb(2+)/IAA and Pb(2+)/NAA water solutions. The analysis of the collected data suggests that metal ions and auxins can change fluidity of the lipid systems and weaken the interactions between monolayer components. This manifested in the increase of the mean area per molecule and the excess area per molecule values for the films on Pb(2+), auxins as well as Pb(2+)/auxin solutions as compared to the values on pure water subphase. However, the presence of auxin in the mixture with lead(II) ions makes the alterations induced by sole metal ions weaker. This effect was more pronounced for the membranes of a higher packing. Thus it was proposed that auxins may enhance phytoextraction of metal ions by weakening their destabilizing effect on membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ultrasonic absorption

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews studies of ultrasonic absorption in liquid alkali metals. The experimental methods to measure the absorption coefficients are briefly described. Experimental results reported for the liquid metals: sodium, potassium, rubidium and caesium, at medium temperatures, are presented, as well as data for liquid alloys. Absorption losses due to the presence of an external magnetic field, and the effects of viscosity on the absorption in metals, are both discussed. (U.K.)

  12. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.

    Science.gov (United States)

    Semova, Ivana; Carten, Juliana D; Stombaugh, Jesse; Mackey, Lantz C; Knight, Rob; Farber, Steven A; Rawls, John F

    2012-09-13

    Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Captivity Diets Alter Egg Yolk Lipids of a Bird of Prey (the American Kestrel) and of a Galliforme (the Red-Legged Partridge)

    OpenAIRE

    Surai, Peter F.; Speake, Brian K.; Bortolotti, Gary R.; Negro, Juan J.

    2001-01-01

    The salient feature of the fatty acid profile of kestrel eggs collected in the wild was the very high proportion of arachidonic acid (15.2% 0.7% of fatty acid mass, np5) in the phospholipid fraction of the yolk. Kestrels in captivity fed on dayold chickens produced eggs that differed from those of the wild birds in a number of compositional features: the proportion of linoleic acid was increased in all the lipid fractions; the proportion of arachidonic acid was increased ...

  14. Skin-specific deletion of stearoyl-CoA desaturase-1 alters skin lipid composition and protects mice from high fat diet-induced obesity.

    Science.gov (United States)

    Sampath, Harini; Flowers, Matthew T; Liu, Xueqing; Paton, Chad M; Sullivan, Ruth; Chu, Kiki; Zhao, Minghui; Ntambi, James M

    2009-07-24

    Stearoyl-CoA desaturase-1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids and is an important regulator of whole body energy homeostasis. Severe cutaneous changes in mice globally deficient in SCD1 also indicate a role for SCD1 in maintaining skin lipids. We have generated mice with a skin-specific deletion of SCD1 (SKO) and report here that SKO mice display marked sebaceous gland hypoplasia and depletion of sebaceous lipids. In addition, SKO mice have significantly increased energy expenditure and are protected from high fat diet-induced obesity, thereby recapitulating the hypermetabolic phenotype of global SCD1 deficiency. Genes of fat oxidation, lipolysis, and thermogenesis, including uncoupling proteins and peroxisome proliferator-activated receptor-gamma co-activator-1alpha, are up-regulated in peripheral tissues of SKO mice. However, unlike mice globally deficient in SCD1, SKO mice have an intact hepatic lipogenic response to acute high carbohydrate feeding. Despite increased basal thermogenesis, SKO mice display severe cold intolerance because of rapid depletion of fuel substrates, including hepatic glycogen, to maintain core body temperature. These data collectively indicate that SKO mice have increased cold perception because of loss of insulating factors in the skin. This results in up-regulation of thermogenic processes for temperature maintenance at the expense of fuel economy, illustrating cross-talk between the skin and peripheral tissues in maintaining energy homeostasis.

  15. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations.

    Science.gov (United States)

    Goodrow, Elizabeth F; Wilson, Thomas A; Houde, Susan Crocker; Vishwanathan, Rohini; Scollin, Patrick A; Handelman, Garry; Nicolosi, Robert J

    2006-10-01

    Lutein and zeaxanthin accumulate in the macular pigment of the retina, and are reported to be associated with a reduced incidence of age-related macular degeneration. A rich source of lutein and zeaxanthin in the American diet is the yolk of chicken eggs. Thus, the objective of the study was to investigate the effect of consuming 1 egg/d for 5 wk on the serum concentrations of lutein, zeaxanthin, lipids, and lipoprotein cholesterol in individuals >60 y of age. In a randomized cross-over design, 33 men and women participated in the 18-wk study, which included one run-in and one washout period of no eggs prior to and between two 5-wk interventions of either consuming 1 egg or egg substitute/d. Serum lutein 26% (P egg/d compared with the phase prior to consuming eggs. Serum concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides were not affected. These findings indicate that in older adults, 5 wk of consuming 1 egg/d significantly increases serum lutein and zeaxanthin concentrations without elevating serum lipids and lipoprotein cholesterol concentrations.

  16. Gintonin absorption in intestinal model systems

    Directory of Open Access Journals (Sweden)

    Byung-Hwan Lee

    2018-01-01

    Conclusion: The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.

  17. The metabolic importance of unabsorbed dietary lipids in the colon

    NARCIS (Netherlands)

    Vonk, RJ; Kalivianakis, M; Minich, DM; Bijleveld, CMA; Verkade, HJ

    1997-01-01

    Digestion and absorption of lipids is a highly efficient process. From Western diets about 95% will be absorbed. This implies that together with lipids from endogenous sources 6-8 g of lipids will enter the colon daily. This input significantly increases during various lipid malabsorption syndromes.

  18. Methyl donor deficient diets cause distinct alterations in lipid metabolism but are poorly representative of human NAFLD [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Marcus J. Lyall

    2017-08-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is a global health issue. Dietary methyl donor restriction is used to induce a NAFLD/non-alcoholic steatohepatitis (NASH phenotype in rodents, however the extent to which this model reflects human NAFLD remains incompletely understood. To address this, we undertook hepatic transcriptional profiling of methyl donor restricted rodents and compared these to published human NAFLD datasets.              Methods: Adult C57BL/6J mice were maintained on control, choline deficient (CDD or methionine/choline deficient (MCDD diets for four weeks; the effects on methyl donor and lipid biology were investigated by bioinformatic analysis of hepatic gene expression profiles followed by a cross-species comparison with human expression data of all stages of NAFLD. Results: Compared to controls, expression of the very low density lipoprotein (VLDL packaging carboxylesterases (Ces1d, Ces1f, Ces3b and the NAFLD risk allele Pnpla3 were suppressed in MCDD; with Pnpla3 and the liver predominant Ces isoform, Ces3b, also suppressed in CDD. With respect to 1-carbon metabolism, down-regulation of Chka, Chkb, Pcty1a, Gnmt and Ahcy with concurrent upregulation of Mat2a suggests a drive to maintain S-adenosylmethionine levels. There was minimal similarity between global gene expression patterns in either dietary intervention and any stage of human NAFLD, however some common transcriptomic changes in inflammatory, fibrotic and proliferative mediators were identified in MCDD, NASH and HCC. Conclusions: This study suggests suppression of VLDL assembly machinery may contribute to hepatic lipid accumulation in these models, but that CDD and MCDD rodent diets are minimally representative of human NAFLD at the transcriptional level.

  19. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators

    Science.gov (United States)

    Ramírez-López, María T.; Arco, Rocío; Decara, Juan; Vázquez, Mariam; Rivera, Patricia; Blanco, Rosario Noemi; Alén, Francisco; Gómez de Heras, Raquel; Suárez, Juan; Rodríguez de Fonseca, Fernando

    2016-01-01

    Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner. PMID:28082878

  20. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    Science.gov (United States)

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  1. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  2. Lipid Profile

    Science.gov (United States)

    ... Known As Coronary Risk Panel Formal Name Lipid Profile This article was last reviewed on June 29, ... phospholipid molecules. The particles measured with a lipid profile are classified by their density into high-density ...

  3. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Directory of Open Access Journals (Sweden)

    Mafu Akier

    2002-01-01

    Full Text Available Abstract Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent.

  4. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Science.gov (United States)

    St-Onge, Marie-Pierre; Farnworth, Edward R; Savard, Tony; Chabot, Denise; Mafu, Akier; Jones, Peter JH

    2002-01-01

    Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p Kefir supplementation resulted in increased fecal bacterial content in the majority of the subjects. Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent. PMID:11825344

  5. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  6. Does Ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis.

    Science.gov (United States)

    Kul, Seval; Savaş, Esen; Öztürk, Zeynel Abidin; Karadağ, Gülendam

    2014-06-01

    In this study, we conducted a meta-analysis of self-controlled cohort studies comparing body weights, blood levels of lipids and fasting blood glucose levels before and after Ramadan taking into account gender differences. Several databases were searched up to June 2012 for studies showing an effect of Ramadan fasting in healthy subjects, yielding 30 articles. The primary finding of this meta-analysis was that after Ramadan fasting, low-density lipoprotein (SMD = -1.67, 95 % CI = -2.48 to -0.86) and fasting blood glucose levels (SMD = -1.10, 95 % CI = -1.62 to -0.58) were decreased in both sex groups and also in the entire group compared to levels prior to Ramadan. In addition, in the female subgroup, body weight (SMD = -0.04, 95 % CI = -0.20, 0.12), total cholesterol (SMD = 0.05, 95 % CI = -0.51 to 0.60), and triglyceride levels (SMD = 0.03, 95 % CI = -0.31, 0.36) remained unchanged, while HDL levels (SMD = 0.86, 95 % CI = 0.11 to 1.61, p = 0.03) were increased. In males, Ramadan fasting resulted in weight loss (SMD = -0.24, 95 % CI = -0.36, -0.12, p = 0.001). Also, a substantial reduction in total cholesterol (SMD = -0.44, 95 % CI = -0.77 to -0.11) and LDL levels (SMD = -2.22, 95 % CI = -3.47 to -0.96) and a small decrease in triglyceride levels (SMD = -0.35, 95 % CI = -0.67 to -0.02) were observed in males. In conclusion, by looking at this data, it is evident that Ramadan fasting can effectively change body weight and some biochemical parameters in healthy subjects especially in males compared to pre-Ramadan period.

  7. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring.

    Directory of Open Access Journals (Sweden)

    Zoe E Clayton

    Full Text Available Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation.Pregnant rats were randomised to either control (CON or high-fructose (FR diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21 and postnatal day (P10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR.Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes.Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may point to impaired

  8. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. Nor...... do we fully realize how we might have changed as we return for the fictional worlds we have visited. The feeling of being absorbed is one of the most illusive and transient feelings, but also one that motivates audiences to spend considerable amounts of time in narrative worlds, and one...... that is central to our understanding of the effects of narratives on beliefs and behavior. Key specialists inform the reader of this book about the nature of the peculiar state of consciousness during episodes of absorption, the perception of absorption in history, the role of absorption in meaningful experiences...

  9. TNFα altered inflammatory responses, impaired health and productivity, but did not affect glucose or lipid metabolism in early-lactation dairy cows.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Inflammation may be a major contributing factor to peripartum metabolic disorders in dairy cattle. We tested whether administering an inflammatory cytokine, recombinant bovine tumor necrosis factor-α (rbTNFα, affects milk production, metabolism, and health during this period. Thirty-three Holstein cows (9 primiparous and 24 multiparous were randomly assigned to 1 of 3 treatments at parturition. Treatments were 0 (Control, 1.5, or 3.0 µg/kg body weight rbTNFα, which were administered once daily by subcutaneous injection for the first 7 days of lactation. Statistical contrasts were used to evaluate the treatment and dose effects of rbTNFα administration. Plasma TNFα concentrations at 16 h post-administration tended to be increased (P0.10 was detected; rbTNFα treatments increased (P0.10 by rbTNFα administration, but 6 out of 16 measured eicosanoids changed (P0.10 by rbTNFα treatment. Glucose turnover rate was unaffected (P=0.18 by rbTNFα administration. The higher dose of rbTNFα tended to increase the risk of cows developing one or more health disorders (P=0.08. Taken together, these results indicate that administration of rbTNFα daily for the first 7 days of lactation altered inflammatory responses, impaired milk production and health, but did not significantly affect liver triglyceride accumulation or nutrient metabolism in dairy cows.

  10. Circulating levels of endocannabinoids and oxylipins altered by dietary lipids in older women are likely associated with previously identified gene targets.

    Science.gov (United States)

    Watkins, Bruce A; Kim, Jeffrey; Kenny, Anne; Pedersen, Theresa L; Pappan, Kirk L; Newman, John W

    2016-11-01

    Postmenopausal women (PMW) report marginal n-3 PUFA intakes and are at risk of chronic diseases associated with the skeletal, muscular, neuroendocrine, and cardiovascular systems. How n-3 PUFA affect the amounts of endocannabinoids (ECs) and oxylipins (OLs) of metabolic and physiologic importance in PMW is not clear. Based on our recent findings that dietary n-3 PUFA alter gene targets of the EC system and lower pro-inflammatory OL we proceeded to characterize these actions in blood of PMW. Our aim was to determine levels of the ECs, OLs, and global metabolites (GM) in white PMW (75±7y), randomized in a double-masked manner, from baseline to 6mo after receiving a fish oil supplement of n-3 PUFA (720mg 20:5n3+480mg 22:6n3/d, n=20) or placebo (1.8g oleic acid/d, n=20). ECs and OLs in serum were determined by UPLC-MS/MS and GM by GC-MS and LC-MS/MS. Plasma 20:5n3 and 22:6n3 levels increased in PMW given fish oil. EC n-6 acyl-ethanolamides, arachidonate-derived diols were decreased and 20:5n3 and 22:6n3 diols, epoxides, and alcohols were increased in PMW given fish oil. GM analysis revealed that n-3 PUFA supplementation increased renal steroid hormone and proteolytic metabolite levels in PMW. Herein, we confirm that gene targets of the EC system, previously found as modifiable by n-3 PUFA result in changes in the levels of ECs and OLs in PMW. This study shows phenotypic responses (in levels) to n-3 PUFA supplementation in PMW and increases of n-3 acyl-ethanolamide and n-3-derived OL of clinical considerations in aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding.

    Directory of Open Access Journals (Sweden)

    Michael E Reschen

    2015-04-01

    Full Text Available Genome-wide association studies (GWAS have identified over 40 loci that affect risk of coronary artery disease (CAD and the causal mechanisms at the majority of loci are unknown. Recent studies have suggested that many causal GWAS variants influence disease through altered transcriptional regulation in disease-relevant cell types. We explored changes in transcriptional regulation during a key pathophysiological event in CAD, the environmental lipid-induced transformation of macrophages to lipid-laden foam cells. We used a combination of open chromatin mapping with formaldehyde-assisted isolation of regulatory elements (FAIRE-seq and enhancer and transcription factor mapping using chromatin immuno-precipitation (ChIP-seq in primary human macrophages before and after exposure to atherogenic oxidized low-density lipoprotein (oxLDL, with resultant foam cell formation. OxLDL-induced foam cell formation was associated with changes in a subset of open chromatin and active enhancer sites that strongly correlated with expression changes of nearby genes. OxLDL-regulated enhancers were enriched for several transcription factors including C/EBP-beta, which has no previously documented role in foam cell formation. OxLDL exposure up-regulated C/EBP-beta expression and increased genomic binding events, most prominently around genes involved in inflammatory response pathways. Variants at CAD-associated loci were significantly and specifically enriched in the subset of chromatin sites altered by oxLDL exposure, including rs72664324 in an oxLDL-induced enhancer at the PPAP2B locus. OxLDL increased C/EBP beta binding to this site and C/EBP beta binding and enhancer activity were stronger with the protective A allele of rs72664324. In addition, expression of the PPAP2B protein product LPP3 was present in foam cells in human atherosclerotic plaques and oxLDL exposure up-regulated LPP3 in macrophages resulting in increased degradation of pro-inflammatory mediators

  12. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground......-breaking identification of a number of lipid scramblases....

  13. Heart, lipids and hormones.

    Science.gov (United States)

    Wolf, Peter; Winhofer, Yvonne; Krššák, Martin; Krebs, Michael

    2017-05-01

    Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases. © 2017 The authors.

  14. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  15. Lipid peroxidation and water penetration in lipid bilayers

    DEFF Research Database (Denmark)

    Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu

    2012-01-01

    Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (Hp......PLPC) and 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-lecithin (OHPLPC), exhibiting a hydroperoxide or a hydroxy group at position 13, respectively. The two oxidized lipids were used either pure or in a 1:1 molar ratio mixture with untreated 1-palmitoyl-2-linoleoyl-lecithin (PLPC). The model membranes...... were doped with spin-labeled lipids to study bilayer alterations by electron paramagnetic resonance (EPR) spectroscopy. Two different spin-labeled lipids were used, bearing the doxyl ring at position (n) 5 or 16: γ-palmitoyl-β-(n-doxylstearoyl)-lecithin (n-DSPPC) and n-doxylstearic acid (n-DSA). Small...

  16. Toward the Establishment of Standardized In Vitro Tests for Lipid-Based Formulations. 5. Lipolysis of Representative Formulations by Gastric Lipase

    DEFF Research Database (Denmark)

    Bakala-N'Goma, Jean-Claude; Williams, Hywel D.; Sassene, Philip J.

    2015-01-01

    Purpose Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase...... on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated. Methods The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range...

  17. Effects of dietary lipids on the hepatopancreas transcriptome of Chinese mitten crab (Eriocheir sinensis.

    Directory of Open Access Journals (Sweden)

    Banghong Wei

    Full Text Available Fish oil supplies worldwide have declined sharply over the years. To reduce the use of fish oil in aquaculture, many studies have explored the effects of fish oil substitutions on aquatic animals. To illustrate the effects of dietary lipids on Chinese mitten crab and to improve the use of vegetable oils in the diet of the crabs, 60 male juvenile Chinese mitten crabs were fed one of five diets for 116 days: fish oil (FO, soybean oil (SO, linseed oil (LO, FO + SO (1:1, FSO, and FO + LO (1:1, FLO. Changes in the crab hepatopancreas transcriptome were analyzed using RNA sequencing. There were a total 55,167 unigenes obtained from the transcriptome, of which the expression of 3030 was significantly altered in the FLO vs. FO groups, but the expression of only 412 unigenes was altered in the FSO vs. FO groups. The diets significantly altered the expression of many enzymes involved in lipid metabolism, such as pancreatic lipase, long-chain acyl-CoA synthetases, carnitine palmitoyltransferase I, acetyl-CoA carboxylase, fatty acid synthase, and fatty acyl Δ9-desaturase. The dietary lipids also affected the Toll-like receptor and Janus activated kinase-signal transducers and activators of transcription signaling pathways. Our results indicate that substituting fish oil with vegetable oils in the diet of Chinese mitten crabs might decrease the digestion and absorption of dietary lipids, fatty acids biosynthesis, and immunologic viral defense, and increase β-oxidation by altering the expression of the relevant genes. Our results lay the foundation for further understanding of lipid nutrition in Chinese mitten crab.

  18. Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model.

    Directory of Open Access Journals (Sweden)

    Marjorie Buttet

    Full Text Available The metabolic syndrome (MetS greatly increases risk of cardiovascular disease and diabetes and is generally associated with abnormally elevated postprandial triglyceride levels. We evaluated intestinal synthesis of triglyceride-rich lipoproteins (TRL in a mouse model of the MetS obtained by feeding a palm oil-rich high fat diet (HFD. By contrast to control mice, MetS mice secreted two populations of TRL. If the smaller size population represented 44% of total particles in the beginning of intestinal lipid absorption in MetS mice, it accounted for only 17% after 4 h due to the secretion of larger size TRL. The MetS mice displayed accentuated postprandial hypertriglyceridemia up to 3 h due to a defective TRL clearance. These alterations reflected a delay in lipid induction of genes for key proteins of TRL formation (MTP, L-FABP and blood clearance (ApoC2. These abnormalities associated with blunted lipid sensing by CD36, which is normally required to optimize jejunal formation of large TRL. In MetS mice CD36 was not downregulated by lipid in contrast to control mice. Treatment of controls with the proteosomal inhibitor MG132, which prevented CD36 downregulation, resulted in blunted lipid-induction of MTP, L-FABP and ApoC2 gene expression, as in MetS mice. Absence of CD36 sensing was due to the hyperinsulinemia in MetS mice. Acute insulin treatment of controls before lipid administration abolished CD36 downregulation, lipid-induction of TRL genes and reduced postprandial triglycerides (TG, while streptozotocin-treatment of MetS mice restored lipid-induced CD36 degradation and TG secretion. In vitro, insulin treatment abolished CD36-mediated up-regulation of MTP in Caco-2 cells. In conclusion, HFD treatment impairs TRL formation in early stage of lipid absorption via insulin-mediated inhibition of CD36 lipid sensing. This impairment results in production of smaller TRL that are cleared slowly from the circulation, which might contribute to the

  19. Cholecystokinin elevates mouse plasma lipids.

    Directory of Open Access Journals (Sweden)

    Lichun Zhou

    Full Text Available Cholecystokinin (CCK is a peptide hormone that induces bile release into the intestinal lumen which in turn aids in fat digestion and absorption in the intestine. While excretion of bile acids and cholesterol into the feces eliminates cholesterol from the body, this report examined the effect of CCK on increasing plasma cholesterol and triglycerides in mice. Our data demonstrated that intravenous injection of [Thr28, Nle31]-CCK at a dose of 50 ng/kg significantly increased plasma triglyceride and cholesterol levels by 22 and 31%, respectively, in fasting low-density lipoprotein receptor knockout (LDLR(-/- mice. The same dose of [Thr28, Nle31]-CCK induced 6 and 13% increases in plasma triglyceride and cholesterol, respectively, in wild-type mice. However, these particular before and after CCK treatment values did not achieve statistical significance. Oral feeding of olive oil further elevated plasma triglycerides, but did not alter plasma cholesterol levels in CCK-treated mice. The increased plasma cholesterol in CCK-treated mice was distributed in very-low, low and high density lipoproteins (VLDL, LDL and HDL with less of an increase in HDL. Correspondingly, the plasma apolipoprotein (apo B48, B100, apoE and apoAI levels were significantly higher in the CCK-treated mice than in untreated control mice. Ligation of the bile duct, blocking CCK receptors with proglumide or inhibition of Niemann-Pick C1 Like 1 transporter with ezetimibe reduced the hypercholesterolemic effect of [Thr28, Nle31]-CCK in LDLR(-/- mice. These findings suggest that CCK-increased plasma cholesterol and triglycerides as a result of the reabsorption of biliary lipids from the intestine.

  20. Blood lipids and prostate cancer

    DEFF Research Database (Denmark)

    Bull, Caroline J; Bonilla, Carolina; Holly, Jeff M P

    2016-01-01

    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL...... into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL.......95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk...

  1. Simple parametrization of photon mass energy absorption ...

    Indian Academy of Sciences (India)

    E-mail: tku@physics.uni-mysore.ac.in; umeshtk@gmail.com. MS received 21 May 2008; ... Complex molecules such as carbohydrates, proteins, lipids, enzymes, vitamins and hormones perform a variety of ... where φ is the fluence of photon flux of energy E and µen/ρ is the mass energy absorption coefficient. Thus, in ...

  2. Dietary lipid emulsions and endotoxemia

    Directory of Open Access Journals (Sweden)

    Michalski Marie-Caroline

    2016-05-01

    Full Text Available The low-grade inflammation observed in obesity is a risk factor for cardiovascular diseases and insulin resistance. Among factors triggering such inflammation, recent works revealed the role of bacterial lipopolysaccharides (LPS, so-called endotoxins. LPS are naturally present in the gut via the intestinal microbiota. Recent studies show that they can induce in plasma a metabolic endotoxemia after the consumption of unbalanced hyperlipidic meals. This article reviews recent knowledge gained on the role of intestinal lipid absorption and the composition of dietary lipids on: (i the induction of metabolic endotoxemia, (ii the types of plasma transporters of LPS and (iii associated low-grade inflammation. Notably, lipids are present in foods under various physicochemical structures and notably in emulsified form. Our recent works reveal that such structure and the type of emulsifier can modulate postprandial lipemia; recent results on the possible consequences on metabolic endotoxemia will be discussed.

  3. Relationship of Gender and Lipid Profile with Cardiac ...

    African Journals Online (AJOL)

    ... tests; whereas HDL was positively correlated with parasympathetic function tests. Conclusion: Sex hormone levels may alter the autonomic nervous system response and lipid metabolismand lipids play an important role in modulation of autonomic functions. Keywords: Parasympathetic reactivity, gender, lipid metabolism ...

  4. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  5. Lipid metabolism in experimental animals

    Directory of Open Access Journals (Sweden)

    Sánchez-Muñiz, Francisco J.

    1998-08-01

    Full Text Available Publications are scarce in the way in chich metabolic processes are affected by the ingestion of heated fats used to prepare food. Similarly studies measuring metabolic effects of the consumption on fried food are poorly known. The purpose of this presentation is to summarize information on frying fats and frying foods upon lipid metabolism in experimental animals. Food consumption is equivalent or even higher when oils or the fat content of frying foods are poorly alterated decreasing their acceptability when their alteration degree increase. After 4hr. experiment the digestibility and absorption coefficients of a single dosis of thermooxidized oils were significantly decreased in rats, however the digestive utilization of frying thermooxidized oils included in diets showed very little change in comparison with unused oils by feeding trials on rats. Feeding rats different frying fats induced a slight hypercholesterolemic effect being the magnitude of this effect related to the linoleic decrease in diet produced by frying. However HDL, the main rat-cholesterol carrier, also increased, thus the serum cholesterol/HDL-cholesterol ratio did not change. Results suggest that rats fed frying fats adapt their lipoprotein metabolism increasing the number of HDL particles. Deep fat frying deeply changed the fatty acid composition of foods, being possible to increase their n-9 or n-6 fatty acid and to decrease the saturated fatty acid contents by frying. When olive oil-and sunflower oil-fried sardines were used as the only protein and fat sources of rats-diets in order to prevent the dietary hypercholesterolemia it was provided that both fried-sardine diets showed a powerful check effect on the cholesterol raising effect induced by dietary cholesterol. The negative effect of feeding rats cholesterol plus bovine bile to induce hypercholesterolemia on some cell-damage markers such as lactate dehydrogenase, transaminases, alkaline phosphatase, was

  6. Seed lipids.

    Science.gov (United States)

    Wolff, I A

    1966-12-02

    Many of the newly discovered seedoil acids have reactive or unusual functional groups or other facets of molecular structure that permit their ready differentiation from oleic, linoleic, linolenic, and the other most prevalent saturated and unsaturated long-chain fatty acids. The recognition and availability of the new acids, coupled with methods that make detection and determination easy, will help studies of lipid biosynthesis in the plant and of lipid metabolism and utilization in animals, and will stimulate more studies in depth on the fine points of seedlipid structure. Correlations of structural patterns in seed lipids of particular groups of plants with classical taxonomic categories will permit clarifications, raise needed questions concerning classifications, and accelerate research in chemotaxonomy and phylogenetics. Seed lipids are particularly well suited for establishing relationships among plants because of their great variety in structure compared to the more limited structural types of amino acids, sugars, purines, and many other plant substances. The newly characterized seed oils are potentially important industrial raw materials whenever they come from agronomically promising plant species. The molecular structures of seed triglycerides have major influence on their physical properties and therefore advances in knowledge in that sphere have practical implications. For example, the unusual characteristics of cocoa butter that make it so valuable for food and confectionery use are attributed to the specific arrangement of fatty acids it its triglycerides. The glycerides are almost all 2-oleic-1,3-disaturated acid triglycerides. The physical characteristics of lard are advantageously changed by catalytically rearranging fatty acyl groups among the glycerides initially in the fat to achieve a more nearly random distribution, followed sometimes by further fractionation to remove more saturated glycerides. Through this change of glyceride structures a

  7. The effect of interesterification on the bioavailability of fatty acids in structured lipids.

    Science.gov (United States)

    Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P

    2013-08-15

    Fatty acid (FA) profile is a critical factor in the nutritional properties of fats, but, stereochemistry may also play a fundamental role in the rate and extent to which FAs are absorbed and become available. To better understand this phenomenon, we evaluated the bioavailability of FAs in linseed-oil and palm-stearin blends compared to their interesterified mix, using a sn-1,3 stereospecific lipase, to determine if there was any difference in terms of FA availability when using this technology. Test meals were fed through an intragastric feeding tube on Sprague-Dawley male rats after 18 h fasting. Postprandial blood samples were collected after meal or physiological serum (control) administration and the FA profile of plasma lipids was determined. Results showed that modification of the melting profile through interesterification, without altering the bioavailability determined by sn-2 stereochemistry, could delay lipid absorption at the beginning, but had no effect on total lipid absorption. Copyright © 2013. Published by Elsevier Ltd.

  8. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians

    DEFF Research Database (Denmark)

    Muller, Yunhua Li; Bogardus, Clifton; Pedersen, Oluf

    2003-01-01

    Indians. There was no association of the Gly482Ser polymorphism with either type 2 diabetes or BMI (n = 984). However, among nondiabetic Pima Indians (n = 183-201), those with the Gly/Gly genotype had a lower mean insulin secretory response to intravenous and oral glucose and a lower mean rate of lipid...... oxidation (over 24 h in a respiratory chamber) despite a larger mean subcutaneous abdominal adipocyte size and a higher mean plasma free fatty acid concentration. These data indicate that the Gly482Ser missense polymorphism in PGC-1 has metabolic consequences on lipid metabolism that could influence insulin...

  9. Proteomic Analysis of Lipid Droplets from Caco-2/TC7 Enterocytes Identifies Novel Modulators of Lipid Secretion

    Science.gov (United States)

    Beilstein, Frauke; Bouchoux, Julien; Rousset, Monique; Demignot, Sylvie

    2013-01-01

    In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG) in lipid droplets (LD) during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL) production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography and tandem mass spectrometry). We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2), which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity. PMID:23301014

  10. Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion.

    Directory of Open Access Journals (Sweden)

    Frauke Beilstein

    Full Text Available In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG in lipid droplets (LD during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ labeling coupled with liquid chromatography and tandem mass spectrometry. We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2, which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity.

  11. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  12. Alcohol Interactions with Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Tomáš Kondela

    2017-11-01

    Full Text Available We investigate the structural changes to lipid membrane that ensue from the addition of aliphatic alcohols with various alkyl tail lengths. Small angle neutron diffraction from flat lipid bilayers that are hydrated through water vapor has been employed to eliminate possible artefacts of the membrane curvature and the alcohol’s membrane-water partitioning. We have observed clear changes to membrane structure in both transversal and lateral directions. Most importantly, our results suggest the alteration of the membrane-water interface. The water encroachment has shifted in the way that alcohol loaded bilayers absorbed more water molecules when compared to the neat lipid bilayers. The experimental results have been corroborated by molecular dynamics simulations to reveal further details. Namely, the order parameter profiles have been fruitful in correlating the mechanical model of structural changes to the effect of anesthesia.

  13. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    /dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  14. Water deficit modifies the carbon isotopic composition of lipids, soluble sugars and leaves of Copaifera langsdorffii Desf. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Angelo Albano da Silva Bertholdi

    2017-11-01

    Full Text Available ABSTRACT Water deficit is most frequent in forest physiognomies subjected to climate change. As a consequence, several tree species alter tissue water potential, gas exchange and production of carbon compounds to overcome damage caused by water deficiency. The working hypothesis, that a reduction in gas exchange by plants experiencing water deficit will affect the composition of carbon compounds in soluble sugars, lipids and vegetative structures, was tested on Copaifera langsdorffii. Stomatal conductance, leaf water potential, and CO2 assimilation rate declined after a period of water deficit. After rehydration, leaf water potential and leaf gas exchange did not recover completely. Water deficit resulted in 13C enrichment in leaves, soluble sugars and root lipids. Furthermore, the amount of soluble sugars and root lipids decreased after water deficit. In rehydration, the carbon isotopic composition and amount of root lipids returned to levels similar to the control. Under water deficit, 13C-enriched in root lipids assists in the adjustment of cellular membrane turgidity and avoids damage to the process of water absorption by roots. These physiological adjustments permit a better understanding of the responses of Copaifera langsdorffi to water deficit.

  15. Changes in membrane lipids and carotenoids during light ...

    Indian Academy of Sciences (India)

    2012-07-24

    Jul 24, 2012 ... increased their content, the changes of PG(18:3/16:0) and MGDG(18:3/16:0) being primarily significant. Major lipid changes were also ... reported to increase with exposure to high light in Cyano- bacteria (Masamoto and .... Absorption spectrum of the other carotenoid (unkn1) has absorption maxima at 448/.

  16. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians

    DEFF Research Database (Denmark)

    Muller, Yunhua Li; Bogardus, Clifton; Pedersen, Oluf

    2003-01-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) is a transcriptional coactivator of peroxisome proliferator-activated receptor gamma and alpha, which play important roles in adipogenesis and lipid metabolism. A single nucleotide polymorphism within the coding region...... of the PGC-1 gene predicts a glycine to serine substitution at amino acid 482 and has been associated with type 2 diabetes in a Danish population. In this study, we examined whether this Gly482Ser polymorphism is associated with type 2 diabetes or obesity, or metabolic predictors of these diseases, in Pima...... Indians. There was no association of the Gly482Ser polymorphism with either type 2 diabetes or BMI (n = 984). However, among nondiabetic Pima Indians (n = 183-201), those with the Gly/Gly genotype had a lower mean insulin secretory response to intravenous and oral glucose and a lower mean rate of lipid...

  17. Lipid Metabolism Disorders

    Science.gov (United States)

    ... metabolic disorder, something goes wrong with this process. Lipid metabolism disorders, such as Gaucher disease and Tay-Sachs disease, involve lipids. Lipids are fats or fat-like substances. They ...

  18. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery.

    Science.gov (United States)

    Zoubari, Gaith; Staufenbiel, Sven; Volz, Pierre; Alexiev, Ulrike; Bodmeier, Roland

    2017-01-01

    Lipid nanoparticles have gained increased interest in the field of dermal products because of various advantages such as improved drug absorption and controlled drug release. The main objective was to investigate the influence of drug solubility and type of lipid carrier on the in vitro drug release. Drugs of different solubilities in the release medium PBS pH 7.4 (dexamethasone: 0.1mg/ml and diclofenac sodium: 5.0mg/ml) and three different lipids (in which the drugs had the highest solubility), Gelucire® 50/13 (solid lipid, mp: 50°C), Witepsol® S55 (solid lipid, mp: 33.5-35.5°C) and Capryol® 90 (liquid lipid) were chosen. The lipid nanoparticles were prepared by high shear homogenization. All nanosuspensions were in the nanometer range (up to 400nm) and the drug encapsulation efficiency was between 84% and 95%. The drug release was prolonged over 48h without an initial burst release and was dependent on the lipid carrier. Formulations containing a higher amount of solid Gelucire® 50/13 released the drugs slower due to the high affinity of the drugs to this lipid product. Inclusion of the liquid lipid Capryol® 90 resulted in a less organized lipidic structures (softer particles) and therefore a faster drug release. Despite its higher water solubility, diclofenac was released slower than dexamethasone because of its higher solubility in the lipid carriers. DSC studies indicated a partial miscibility between the solid lipids and a good miscibility between the solid and liquid lipids. Primary studies using total internal reflection fluorescence (TIRF) microscopy indicated that it is possible to detect individual fluorescently labeled dexamethasone (DXM-F) molecules dissolved in the liquid lipid Capryol® 90. These studies will allow for the precise determination of the drug distribution within the lipid carrier, and the changes upon drug release. In conclusion, lipid carrier type and drug solubility in the lipid have a large influence on the in vitro drug

  19. Interaction of DNA with Cationic Lipid Mixtures-Investigation at Langmuir Lipid Monolayers.

    Science.gov (United States)

    Janich, Christopher; Hädicke, André; Bakowsky, Udo; Brezesinski, Gerald; Wölk, Christian

    2017-10-03

    Four different binary lipid mixtures composed of a cationic lipid and the zwitterionic colipids DOPE or DPPC, which show different DNA transfer activities in cell culture models, were investigated at the soft air/water interface to identify transfection efficiency determining characteristics. Langmuir films are useful models to investigate the interaction between DNA and lipid mixtures in a two-dimensional model system by using different surface sensitive techniques, namely, epifluorescence microscopy and infrared reflection-absorption spectroscopy. Especially, the effect of adsorbed DNA on the properties of the lipid mixtures has been examined. Distinct differences between the lipid composites were found which are caused by the different colipids of the mixtures. DOPE containing lipid mixtures form fluid monolayers with a uniform distribution of the fluorescent probe in the presence and absence of DNA at physiologically relevant surface pressures. Only at high nonphysiological pressures, the lipid monolayer collapses and phase separation was observed if DNA was present in the subphase. In contrast, DPPC containing lipid mixtures show domains in the liquid condensed phase state in the presence and absence of DNA in the subphase. The adsorption of DNA at the positively charged mixed lipid monolayer induces phase separation which is expressed in the morphology and the point of appearance of these domains.

  20. Archaeal lipids in oral delivery of therapeutic peptides.

    Science.gov (United States)

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert; Brandl, Martin; Treusch, Alexander H

    2017-10-15

    Archaea contain membrane lipids that differ from those found in the other domains of life (Eukarya and Bacteria). These lipids consist of isoprenoid chains attached via ether bonds to the glycerol carbons at the sn-2,3 positions. Two types of ether lipids are known, polar diether lipids and bipolar tetraether lipids. The inherent chemical stability and unique membrane-spanning characteristics of tetraether lipids render them interesting for oral drug delivery purposes. Archaeal lipids form liposomes spontaneously (archaeosomes) and may be incorporated in conventional liposomes (mixed vesicles). Both types of liposomes are promising to protect their drug cargo, such as therapeutic peptides, against the acidic environment of the stomach and proteolytic degradation in the intestine. They appear to withstand lipolytic enzymes and bile salts and may thus deliver orally administered therapeutic peptides to distant sections of the intestine or to the colon, where they may be absorbed, eventually by the help of absorption enhancers. Archaeal lipids and their semisynthetic derivatives may thus serve as biological source for the next generation oral drug delivery systems. The aim of this review is to present a systematic overview over existing literature on archaea carrying diether and tetraether lipids, lipid diversity, means of lipid extraction and purification, preparation and in vitro stability studies of archaeal lipid-based liposomal drug carriers and in vivo proof-of concepts studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Plasma Lipoproteins as Mediators of the Oxidative Stress Induced by UV Light in Human Skin: A Review of Biochemical and Biophysical Studies on Mechanisms of Apolipoprotein Alteration, Lipid Peroxidation, and Associated Skin Cell Responses

    Directory of Open Access Journals (Sweden)

    Paulo Filipe

    2013-01-01

    Full Text Available There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL and low-density lipoprotein (LDL as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces •Trp and O2•- radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO• by α-tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α-tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α-tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α-tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  2. An Interaction of the Pre- and Post-Weaning Diets Rich in Omega-6 Polyunsaturated Fats Alters Plasma Lipids, Hepatic Gene Expression and Aortic Vascular Reactivity in Adult 057Bl/6 Mice

    Directory of Open Access Journals (Sweden)

    Kanta Chechi

    2010-01-01

    Full Text Available Aim To investigate the effects of diets rich in n-6 polyunsaturated fats (PUFA fed during pre- and post-weaning time periods on the lipid metabolism and vascular reactivity in adult C57Bl/6 mice, in order to assess the impact of maternal nutrition and its interaction with the offspring diet on the metabolism of adult offspring. Methods Female C57Bl/6 mice were fed a high-fat diet enriched with n-6 PUFA (P or control diet (C for 2-weeks before, during mating, gestation and lactation, while their pups received either P or C for 8-weeks post-weaning. Results A significant interaction between the maternal and post-weaning diets was observed for the offspring body weight, food-, caloric-intake, plasma lipids, hepatic mRNA expression of lecithin cholesterol acyltransferase, aortic contractile and relaxation responses ( P < 0.05. Conclusion The overall metabolic and physiological outcome in the offspring is dependent upon the interaction between the pre- and post-weaning dietary environments.

  3. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats.

    Science.gov (United States)

    Oliva, M E; Ferreira, M R; Chicco, A; Lombardo, Y B

    2013-10-01

    This work reports the effect of dietary Salba (chia) seed rich in n-3 α-linolenic acid on the morphological and metabolic aspects involved in adipose tissue dysfunction and the mechanisms underlying the impaired glucose and lipid metabolism in the skeletal muscle of rats fed a sucrose-rich diet (SRD). Rats were fed a SRD for 3 months. Thereafter, half the rats continued with SRD while in the other half, corn oil (CO) was replaced by chia seed for 3 months (SRD+chia). In control group, corn starch replaced sucrose. The replacement of CO by chia seed in the SRD reduced adipocyte hypertrophy, cell volume and size distribution, improved lipogenic enzyme activities, lipolysis and the anti-lipolytic action of insulin. In the skeletal muscle lipid storage, glucose phosphorylation and oxidation were normalized. Chia seed reversed the impaired insulin stimulated glycogen synthase activity, glycogen, glucose-6-phosphate and GLUT-4 protein levels as well as insulin resistance and dyslipidemia. © 2013 Elsevier Ltd. All rights reserved.

  4. Fat absorption in germ-free and conventional rats artificially deprived of bile secretion

    OpenAIRE

    Demarne, Y.; Corring, T.; Pihet, A.; Sacquet, E.

    1982-01-01

    Bile duct ligation was performed in germ-free and conventional rats in order to study the effects of bile deprivation on the absorption of dietary lipids and the excretion of faecal lipids in the presence or the absence of gastrointestinal flora. The main consequence of bile duct ligation in conventional rats was decrease of about 50% in the apparent absorption of dietary lipids (peanut oil). In germ-free rats, absorption decreased by only about 25%.In conventional as well as in germ-free con...

  5. Nutrition and magnesium absorption

    OpenAIRE

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium absorption was neither affected by soybean protein in the diet nor by supplemental phytate. The inhibitory influence of soybean protein and phytate on apparent magnesium absorption was found ...

  6. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    oxide nanoparticles encapsulated in the lipid bilayer, the local temperature and membrane fluidity could be observed. DLNAs were encapsulated with different sized nanoparticles and concentrations in order to observe the effect of the bilayer nanoparticles on the lipid bilayer's phase behavior and leakage. Two different sized nanoparticles were used, a 2 nm gold nanoparticle (GNP) much smaller than the thickness of the bilayer and a 4 nm GNP near the thickness of the lipid bilayer. The 2 nm GNPs were shown to affect the lipid bilayer differently than the 4 nm GNP. Specifically, the two nanoparticles altered the phase behavior and leakage differently in a temperature dependent fashion, demonstrating that embedded nanoparticle size can be used induce or inhibit bilayer leakage. A dual solvent exchange method was used to control the lipid surface composition of an iron oxide nanoparticle with a cationic lipid and a polyethylene glycol (PEG) lipid to produce lipid coated magnetic nanoparticles (LMNPs). PEG is well known for its ability to enhance the pharmacokinetics of nanostructures by preventing uptake by the immune system. By controlling the lipid surface composition, the surface charge and PEG conformation can be controlled which allowed the LMNPs to be used as an MRI contrast agent and a delivery system for siRNA that could be triggered with temperature.

  7. Absorption and excretion tests

    International Nuclear Information System (INIS)

    Berberich, R.

    1988-01-01

    The absorption and excretion of radiopharmaceuticals is still of interest in diagnostic investigations of nuclear medicine. In this paper the most common methods of measuring absorption and excretion are described. The performance of the different tests and their standard values are discussed. More over the basic possibilities of measuring absorption and excretion including the needed measurement equipments are presented. (orig.) [de

  8. Intestinal absorption of specific structured triacylglycerols

    DEFF Research Database (Denmark)

    Mu, Huiling; Høy, Carl-Erik

    2001-01-01

    -sn-glycerol (10:0/18:2/10:0), and 1,3-didodecanoyl-2-linoleoyl-sn-glycerol (12:0/18:2/12:0) in a rat model. Safflower oil was used in the absorption study in order to compare the absorption of medium- chain fatty acids and long-chain fatty acids, The triacylglycerol species of lymph Lipids were separated......-type triacylglycerols. From the present study we conclude that the medium-chain fatty acids from STAG, in addition to absorption into the portal blood as free fatty acids, are absorbed by the same pathway as the conventional long-chain triacylglycerols, that is, they are hydrolyzed into free fatty acids, absorbed...

  9. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  10. Changes in rat liver mitochondrial lipids in vitamin A deficiency

    Indian Academy of Sciences (India)

    tribpo

    Changes in rat liver mitochondrial lipids in vitamin A deficiency. R. S. MULLICK, H. R. ADHIKARI and U. K. VAKIL. Biochemistry and Food Technology Division, Bhabha Atomic Research Centre,. Trombay, Bombay 400 085. MS received 7 February 1983; revised 16 June 1983. Abstract. The alterations in the lipid profiles of ...

  11. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people

    Directory of Open Access Journals (Sweden)

    DiSilvestro Robert A

    2012-09-01

    Full Text Available Abstract Background Curcumin extracts of turmeric are proposed to produce health benefits. To date, human intervention studies have focused mainly on people with existing health problems given high doses of poorly absorbed curcumin. The purpose of the current study was to check whether in healthy people, a low dose of a lipidated curcumin extract could alter wellness-related measures. Methods The present study was conducted in healthy middle aged people (40–60 years old with a low dose of curcumin (80 mg/day in a lipidated form expected to have good absorption. Subjects were given either curcumin (N = 19 or placebo (N = 19 for 4 wk. Blood and saliva samples were taken before and after the 4 weeks and analyzed for a variety of blood and saliva measures relevant to health promotion. Results Curcumin, but not placebo, produced the following statistically significant changes: lowering of plasma triglyceride values, lowering of salivary amylase levels, raising of salivary radical scavenging capacities, raising of plasma catalase activities, lowering of plasma beta amyloid protein concentrations, lowering of plasma sICAM readings, increased plasma myeloperoxidase without increased c-reactive protein levels, increased plasma nitric oxide, and decreased plasma alanine amino transferase activities. Conclusion Collectively, these results demonstrate that a low dose of a curcumin-lipid preparation can produce a variety of potentially health promoting effects in healthy middle aged people.

  12. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  13. Homogenization of the lipid profile values.

    Science.gov (United States)

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  14. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Directory of Open Access Journals (Sweden)

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  15. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  16. Light Absorption By Coated Soot

    Science.gov (United States)

    Sedlacek, A. J.; Lee, J.; Onasch, T. B.; Davidovits, P.; Cross, E. S.

    2009-12-01

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds will increase black carbon (BC) radiative forcing from the IPCC best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of the uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. With the advent of techniques that can directly measure aerosol light absorption without influences due to collection substrate or light scattering (e.g., photoacoustic spectroscopy (Arnott et al., 2005; Lack et al., 2006) and photothermal interferometry (Sedlacek and Lee 2007)) the potential exists for quantifying this interdependence. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve this objective measurements of both the optical and physical properties of flame-generated soot under nascent, coated and denuded conditions were conducted. In this paper, light absorption by dioctyl sebacate (DOS) encapsulated soot and sulfuric acid coated soot using the technique of photothermal interferometry will be presented. In the case of DOS-coated soot, a monotonic increase in light absorption as a function DOS coating thickness to nearly 100% is observed. This observation is consistent with a coating-induced amplification in particle light absorption. (Bond et al. 2006) However

  17. Parenteral Nutrition and Lipids.

    Science.gov (United States)

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-04-14

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them.

  18. A lipidologist perspective of global lipid guidelines and recommendations, part 1: Lipid treatment targets and risk assessment.

    Science.gov (United States)

    Bays, Harold E

    2016-01-01

    Having knowledge of worldwide lipid guidelines and recommendations may provide clinicians a more global perspective on lipid management. This perspective reviews 8 international scientific and/or medical organizations' lipid guidelines, recommendations, and position papers: the National Lipid Association (2014), National Institute for Health and Care Excellence (2014), International Atherosclerosis Society (2013), American College of Cardiology/American Heart Association (2013), Canadian Cardiovascular Society (2013), Japan Atherosclerosis Society (2012), European Society of Cardiology/European Atherosclerosis Society (2012), and Adult Treatment Panel III (2001/2004). Part 1 of this perspective focuses on sentinel components of these lipid guidelines and recommendations as applied to the role of atherogenic lipoprotein cholesterol levels, primary lipid target of therapy, other primary and secondary lipid treatment targets, and assessment of atherosclerotic cardiovascular disease (ASCVD) risk. Part 2 examines goals of lipid-altering therapy to reduce ASCVD events. Both parts 1 and 2 include the author's perspective on sentinel topics. In general, some guidelines and recommendations differ with regard to ASCVD risk assessment and lipid treatment goals. However, lipid guidelines and recommendations have significant concordance regarding the need to reduce atherogenic lipoprotein cholesterol levels, and are in general agreement on the primary lipid treatment targets. Finally, a substantial degree of agreement exists among guidelines and recommendations in their emphasis on the need for aggressive treatment of hypercholesterolemia, for which the predominance of ASCVD outcomes studies suggests statins as the first-line treatment of choice. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  19. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  20. A new approach to the modification of cell membrane glycosphingolipids: Ganglioside composition of JTC-12 P3 cells altered by feeding with galactose as a sole carbohydrate source in protein- and lipid-free synthetic medium

    International Nuclear Information System (INIS)

    Kawaguchi, Tatsuya; Takaoka, Toshiko; Yoshida, Eiko; Iwamori, Masao; Nagai, Yoshitaka; Takatsuki, Kiyoshi

    1988-01-01

    A significant difference in the glycosphingolipid composition of JTC-12 P3 cells established from monkey kidney tissue was observed when cells cultured in a protein- and lipid-free synthetic medium containing glucose (DM-160) as a sole carbohydrate source were transferred and cultured in the same medium containing galactose and pyruvic acid (DM-170) in place of glucose. In particular, the amounts of gangliosides GM3, GM2, and GD3 in the cells cultured in DM-170 were 5.3-, 17.8-, and more than 8-fold those in the cells cultured in DM-160, respectively, indicating that anabolism of gangliosides is greatly enhanced in cells cultured in the presence of galactose and pyruvic acid, as compared with cells cultured in the presence of glucose. In fact, after cultivation of cells in the medium with N-acetyl-D-[ 14 C]mannosamine for 96 h, the radioactivity incorporated into the gangliosides of the cells in DM-170 was 10-fold that of the cells in DM-160. Among the gangliosides of the cells in DM-170, highly sialylated molecules such as GD3, GD1a, GD1b, and GT1b were preferentially labeled, indicating that the sialytransferases responsible for the synthesis of gangliosides are significantly more activated in cells cultured in DM-170 than in DM-160. These observations reveal that the glycosphingolipid composition of the plasma membrane can be modified epigenetically under well-defined conditions and provide important clues for clarifying the roles of glycosphingolipids associated with particular cell functions

  1. Milk Polar Lipids Affect In Vitro Digestive Lipolysis and Postprandial Lipid Metabolism in Mice.

    Science.gov (United States)

    Lecomte, Manon; Bourlieu, Claire; Meugnier, Emmanuelle; Penhoat, Armelle; Cheillan, David; Pineau, Gaëlle; Loizon, Emmanuelle; Trauchessec, Michèle; Claude, Mathilde; Ménard, Olivia; Géloën, Alain; Laugerette, Fabienne; Michalski, Marie-Caroline

    2015-08-01

    Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking. We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro. Female Swiss mice were gavaged with 150 μL of an oil-in-water emulsion stabilized with 5.7 mg of either MPLs or soybean PLs (SPLs) and killed after 1, 2, or 4 h. Plasma lipids were quantified and in the small intestine, gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction. Emulsions were lipolyzed in vitro using a static human digestion model; triglyceride (TG) disappearance was followed by thin-layer chromatography. In mice, after 1 h, plasma TGs tended to be higher in the MPL group than in the SPL group (141 μg/mL vs. 90 μg/mL; P = 0.07) and nonesterified fatty acids (NEFAs) were significantly higher (64 μg/mL vs. 44 μg/mL; P lipid intestinal hydrolysis and promote more rapid intestinal lipid absorption and sharper kinetics of lipemia. Postprandial lipemia in mice can be modulated by emulsifying with MPLs compared with SPLs, partly through differences in chylomicron assembly, and TG hydrolysis rate as observed in vitro. MPLs may thereby contribute to the long-term regulation of lipid metabolism. © 2015 American Society for Nutrition.

  2. Solar absorption surface panel

    Science.gov (United States)

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  3. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  4. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  5. Molecular mechanisms of acetylcholine receptor-lipid interactions: from model membranes to human biology.

    Science.gov (United States)

    Baenziger, John E; daCosta, Corrie J B

    2013-03-01

    Lipids are potent modulators of the Torpedo nicotinic acetylcholine receptor. Lipids influence nicotinic receptor function by allosteric mechanisms, stabilizing varying proportions of pre-existing resting, open, desensitized, and uncoupled conformations. Recent structures reveal that lipids could alter function by modulating transmembrane α-helix/α-helix packing, which in turn could alter the conformation of the allosteric interface that links the agonist-binding and transmembrane pore domains-this interface is essential in the coupling of agonist binding to channel gating. We discuss potential mechanisms by which lipids stabilize different conformational states in the context of the hypothesis that lipid-nicotinic receptor interactions modulate receptor function at biological synapses.

  6. A lipase based approach for studying the role of wheat lipids in bread making.

    Science.gov (United States)

    Gerits, Lien R; Pareyt, Bram; Delcour, Jan A

    2014-08-01

    While endogenous wheat lipids exert a major effect on bread quality, little is known on the way they impact on bread loaf volume (LV). Here we altered wheat flour lipid composition during bread making using lipases in situ. Lipopan F, Lecitase Ultra, and surfactants increased LV to similar extents. The increases in bread LV as a result of these enzymes were related to decreased levels of galactolipids and phospholipids and concomitant increased 'lyso'-lipid as well as free fatty acid (FFA) levels. The FFA formed were transferred to the free lipid fraction, while the 'lyso'-lipids remained in the bound lipid fraction. For optimal gas cell stabilisation, an equilibrium between the lipid classes present and hence, the type of mesophase formed, is essential. Sufficient levels of lipids forming lamellar mesophases and lipids forming hexagonal I mesophases, which respectively form condensed monolayers or emulsify (deleterious) non-polar lipids in dough liquor, are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nutrients and neurodevelopment: lipids.

    Science.gov (United States)

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. Sociedad Argentina de Pediatría.

  8. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation......, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  9. Lipid raft: A floating island of death or survival

    International Nuclear Information System (INIS)

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid raft microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid raft disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. -- Highlights: ► The role of lipid rafts in apoptosis ► The pro- and anti-apoptotic effects of lipid raft disruption ► Cancer treatments targeting lipid rafts

  10. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...... of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations...

  11. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain.

    Science.gov (United States)

    Ibrahim, Sarah A; Li, S Kevin

    2010-01-04

    Previously, chemical enhancer-induced permeation enhancement on human stratum corneum (SC) lipoidal pathway at enhancer thermodynamic activities approaching unity in the absence of cosolvents (defined as Emax) was determined and hypothesized to be related to the enhancer solubilities in the SC lipid domain. The objectives of the present study were to (a) quantify enhancer uptake into SC lipid domain at saturation, (b) elucidate enhancer mechanism(s) of action, and (c) study the SC lipid phase behavior at Emax. It was concluded that direct quantification of enhancer uptake into SC lipid domain using intact SC was complicated. Therefore a liposomal model of extracted human SC lipids was used. In the liposome study, enhancer uptake into extracted human SC lipid liposomes (EHSCLL) was shown to correlate with Emax. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to evaluate lipid phase alterations in enhancer-treated intact SC. IR spectra demonstrated an increase in the lipid domain fluidity and DSC thermograms indicated a decrease in the phase transition temperature with increasing Emax. These results suggest that the enhancer mechanism of action is through enhancer intercalation into SC intercellular lipids and subsequent lipid lamellae fluidization related to enhancer lipid concentration.

  12. Cinnamon polyphenols regulate multiple metabolic pathways involved in intestinal lipid metabolism of primary small intestinal enterocytes

    Science.gov (United States)

    Increasing evidence suggests that dietary factors may affect the expression of multiple genes and signaling pathways including those that regulate intestinal lipoprotein metabolism. The small intestine is actively involved in the regulation of dietary lipid absorption, intracellular transport and me...

  13. Lipid Vesicles for the Skin Delivery of Diclofenac: Cerosomes vs. Other Lipid Suspensions

    Directory of Open Access Journals (Sweden)

    Anahita Fathi-Azarbayjani

    2015-03-01

    Full Text Available Purpose: Lipid suspensions as drug carriers, including conventional liposomes, ethosomes, transferosomes, proniosomes, niosomes, PEG-PPG-PEG niosomes and stratum corneum liposomes (cerosomes, were formulated and compared. Methods: Lipid vesicles were formulated and assessed with regards to enhancement of skin permeation of diclofenac and stability profiles of the formulations. Formulation-induced changes of the biophysical structure of excised human skin were monitored using the Fourier transform infrared spectroscopy. Results: The stability profiles of these suspensions over 12 weeks did not show any significant drug leakage from the vesicles of interest (p > 0.05. FTIR observations indicated that the vesicles increased stratum corneum (SC lipid fluidization and altered protein conformation. Skin permeability experiments showed that the free unencapsulated drug in the cerosomal formulations caused significant increase in drug permeation across the skin (p < 0.01. Low skin permeability of drug from the other lipid suspensions could be due to the entrapment of diclofenac within these vesicles which decreased the solubility of the hydrophilic drug in the skin lipids and the partition coefficient of the drug from these vesicles into the SC. Conclusion: Optimal drug entrapment in vesicles or alteration of the skin structure may not necessarily enhance the permeation of hydrophilic drugs across the human skin. These lipid vesicles may be further developed into carriers of both hydrophilic and hydrophobic drugs for topical and transdermal delivery, respectively.

  14. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  15. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  16. The physiology of lipid storage and use in reptiles.

    Science.gov (United States)

    Price, Edwin R

    2017-08-01

    Lipid metabolism is central to understanding whole-animal energetics. Reptiles store most excess energy in lipid form, mobilise those lipids when needed to meet energetic demands, and invest lipids in eggs to provide the primary source of energy to developing embryos. Here, I review the mechanisms by which non-avian reptiles store, transport, and use lipids. Many aspects of lipid absorption, transport, and storage appear to be similar to birds, including the hepatic synthesis of lipids from glucose substrates, the transport of triglycerides in lipoproteins, and the storage of lipids in adipose tissue, although adipose tissue in non-avian reptiles is usually concentrated in abdominal fat bodies or the tail. Seasonal changes in fat stores suggest that lipid storage is primarily for reproduction in most species, rather than for maintenance during aphagic periods. The effects of fasting on plasma lipid metabolites can differ from mammals and birds due to the ability of non-avian reptiles to reduce their metabolism drastically during extended fasts. The effect of fasting on levels of plasma ketones is species specific: β-hydroxybutyrate concentration may rise or fall during fasting. I also describe the process by which the bulk of lipids are deposited into oocytes during vitellogenesis. Although this process is sometimes ascribed to vitellogenin-based transport in reptiles, the majority of lipid deposition occurs via triglycerides packaged in very-low-density lipoproteins (VLDLs), based on physiological, histological, biochemical, comparative, and genomic evidence. I also discuss the evidence for non-avian reptiles using 'yolk-targeted' VLDLs during vitellogenesis. The major physiological states - feeding, fasting, and vitellogenesis - have different effects on plasma lipid metabolites, and I discuss the possibilities and potential problems of using plasma metabolites to diagnose feeding condition in non-avian reptiles. © 2016 Cambridge Philosophical Society.

  17. Insights into Biochemical Alteration in Cancer-Associated Fibroblasts by using Novel Correlative Spectroscopy.

    Science.gov (United States)

    Kumar, Saroj; Liu, Xia; Borondics, Ferenc; Xiao, Qunfeng; Feng, Renfei; Goormaghtigh, Erik; Nikolajeff, Fredrik

    2017-02-01

    The microenvironment of a tumor changes chemically and morphologically during cancer progression. Cancer-stimulated fibroblasts promote tumor growth, however, the mechanism of the transition to a cancer-stimulated fibroblast remains elusive. Here, the multi-modal spectroscopic methods Fourier transform infrared imaging (FTIRI), X-ray absorption spectroscopy (XAS) and X-ray fluorescence imaging (XFI) are used to characterize molecular and atomic alterations that occur in cancer-stimulated fibroblasts. In addition to chemical changes in lipids (olefinic and acyl chain) and protein aggregation observed with FTIRI, a new infrared biomarker for oxidative stress in stimulated fibroblasts is reported. Oxidative stress is observed to cause lipid peroxidation, which leads to the appearance of a new band at 1721 cm -1 , assigned to 4-hydroxynonenal. Complementary to FTIRI, XFI is well suited to determining atom concentrations and XAS can reveal the speciation of individual elements. XFI reveals increased concentrations of P, S, K, Ca within stimulated fibroblasts. Furthermore, XAS studies reveal alterations in the speciation of S and Ca in stimulated fibroblasts, which might provide insight into the mechanisms of cancer progression. Using XFI, not only is the concentration change of individual elements observed, but also the subcellular localization. This study demonstrates the wealth of biochemical information provided by a multi-modal imaging approach and highlights new avenues for future research into the microenvironment of breast tumors.

  18. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  19. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    Marine lipids are enriched with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acids are important membrane lipids and have many recognized health benefits, the bioavailability of these fatty acids can therefore be important for achieving...... of omega-3 fatty acids has been reported to be affected by several factors; among the important factors were the digestion and absorption processes of omega-3 containing lipids in the gastrointestinal tract. Both lipid structures and food structures can affect the bioavailability of omega-3 fatty acids....... Human studies have shown that the relative bioavailability of omega-3 fatty acids from fish oil (triglyceride formulation) was similar to that from fish, whereas lower relative bioavailability was observed from fatty acid ethyl ester (FAEE) formulation in comparison with other lipid formulations...

  20. Lipid emulsion therapy: non-nutritive uses of lipid emulsions in ...

    African Journals Online (AJOL)

    omega-3 polyunsaturated fatty acids. Unfortunately, long-chain triglycerides are pro-inflammatory. They accelerate lipid peroxidation with deleterious effects on neutrophil function ... diffusion of drug into the blood with altered drug pharmacokinetics.6,11 ..... Increased shunt fraction and pulmonary artery pressure in ARDS.

  1. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation, and the com......Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  2. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning......Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...

  3. Absorption fluids data survey

    Science.gov (United States)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  4. Smectite alteration

    International Nuclear Information System (INIS)

    Anderson, D.M.

    1984-11-01

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  5. Formation of supported lipid bilayers of charged E. coli lipids on modified gold by vesicle fusion

    Directory of Open Access Journals (Sweden)

    Ileana F. Márquez

    2017-01-01

    Full Text Available We describe a simple way of fusing E. coli lipid vesicles onto a gold surface. Supported lipid bilayers on metal surfaces are interesting for several reasons: transducing a biological signal to an electric readout, using surface analytical tools such as Surface Plasmon Resonance (SPR, Infrared Reflection Absorption Spectroscopy, Neutron Reflectivity or Electrochemistry. The most widely used method to prepare supported lipid membranes is fusion of preexisting liposomes. It is quite efficient on hydrophilic surfaces such as glass, mica or SiO2, but vesicle fusion on metals and metal oxide surfaces (as gold, titanium oxide or indium tin oxide, remains a challenge, particularly for vesicles containing charged lipids, as is the case of bacterial lipids. We describe a simple method based on modifying the gold surface with a charged mercaptopropionic acid self-assembled monolayer and liposomes partially solubilized with detergent. The formed bilayers were characterized using a Quartz Crystal Microbalance with dissipation (QCM-D and Atomic Force Microscopy (AFM. Some advantages of this protocol are that the stability of the self-assembled monolayer allows for repeated use of the substrate after detergent removal of the bilayer and that the amount of detergent required for optimal fusion can be determined previously using the lipid-detergent solubility curve.

  6. Absorption cooling device. Absorptions-Kuehlvorrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, J.; Vardi, I.; Kimchi, Y.; Ben-Dror, J.

    1980-03-25

    The invention concerns improvements of absorption refrigerators, where a lithium chloride or lithium bromide/water cycle is used. According to the invention an inner separating or dividing structure between different functional parts of a machine of this type is provided. The structure contains two sections of wall, which are separated from one another by a suitable space, in order to achieve thermal insulation. This air space is provided with an opening in the direction towards the inside of the container and the opening is shielded to prevent the entry of liquids (in liquid or spray form).

  7. Atomic force microscopy of model lipid membranes.

    Science.gov (United States)

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  8. Effects of cadmium on lipids of almond seedlings (Prunus dulcis).

    Science.gov (United States)

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Jomni, Chiraz; Marzouk, Brahim; Ben Abdallah, Ferjani

    2014-12-01

    Cadmium uptake and distribution, as well as its effects on lipid composition was investigated in almond seedlings (Prunus dulcis) grown in culture solution supplied with two concentrations of Cd (50 and 150 μM). The accumulation of Cd increased with external metal concentrations, and was considerably higher in roots than in leaves. Fourteen days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Galactolipid, phospholipid and neutral lipid concentrations decreased more in roots than in leaves by Cd-treatment. In almost all lipid classes the proportion of palmitic acid (16:0), linoleic (18: 2) and that of linolenic (18: 3) acid decreased, suggesting that heavy metal treatment induced an alteration in the fatty acid synthesis processes. In conclusion, our results show that the changes found in total fatty acids, in the quantities of all lipids classes, and in the in the profiles of individual polar lipids suggest that membrane structure and function might be altered by Cd stress.

  9. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  10. Vitamin A absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  11. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  12. Lysosomal lipid storage diseases.

    Science.gov (United States)

    Schulze, Heike; Sandhoff, Konrad

    2011-06-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.

  13. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids

    Directory of Open Access Journals (Sweden)

    Courtney B. Ferrebee

    2015-03-01

    Full Text Available The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR and the G-protein-coupled bile acid receptor (TGR5.

  14. Gastrointestinal absorption of plutonium

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Bhattacharyya, M.H.; Moretti, E.S.; Austin, D.J.

    1981-01-01

    An investigation has been made of the effect of the oxidation state of plutonium on its absorption from the gastrointestinal tract. For mice and rats that have been starved prior to gastrointestinal administration, there is no significant difference between the absorption factors for Pu(IV) and Pu(VI). The value obtained for Pu(VI) is an order of magnitude lower than that reported previously. The value obtained for Pu(IV) is two orders of magnitude higher than those reported previously for nitrate solutions and the same as those reported for citrate solutions

  15. Quantum Absorption Refrigerator

    Science.gov (United States)

    Levy, Amikam; Kosloff, Ronnie

    2012-02-01

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power Jc vanishes as Jc∝Tcα, when Tc→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  16. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  17. THE EFFECTS OF BACTERIAL ENDOTOXIN ON LIPIDE METABOLISM

    Science.gov (United States)

    LeQuire, V. S.; Hutcherson, J. D.; Hamilton, R. L.; Gray, M. E.

    1959-01-01

    Single intravenous injections of Shear's polysaccharide in varying dosages invariably produced an elevation in the levels of the total serum lipides 24 hours after injection of endotoxin. The total serum cholesterol and lipide phosphorus were also affected, although they did not change with smaller doses of endotoxin and were rarely elevated to the same degree as were the total serum lipides. The degree of elevation of the serum lipides was apparently related to the amount of endotoxin injected up to a certain point, beyond which there was no further increase. There were two types of response to endotoxin by the serum lipides, a moderate increase and an uncontrolled increase. Higher dosages of endotoxin and fasting apparently increased the incidence of the latter response. No direct correlation could be made between serum lipide responses and histologic evidence typical of the generalized Shwartzman reaction following this regimen of endotoxin injection. The Shwartzman reaction did occur with greater frequency and with lower dosages of endotoxin in fasted animals. Animals given repeated injections of endotoxin showed an initial increase in serum lipides followed by a progressive decrease to normal levels as tolerance to the febrile action of endotoxin appeared. The febrile tolerance as well as the unresponsiveness of the serum lipides to endotoxin was abolished by thorium dioxide (thorotrast) in these animals. In similar experiments a "breakthrough" of lipide unresponsiveness to endotoxin was obtained by increasing the amount of endotoxin injected. Some of the implications of these results for the metabolic alterations produced by bacterial endotoxins are discussed. PMID:13673140

  18. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  19. Neutron resonance absorption theory

    International Nuclear Information System (INIS)

    Reuss, P.

    1991-11-01

    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  20. Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

    Science.gov (United States)

    Briand, François; Mayoux, Eric; Brousseau, Emmanuel; Burr, Noémie; Urbain, Isabelle; Costard, Clément; Mark, Michael; Sulpice, Thierry

    2016-07-01

    In clinical trials, a small increase in LDL cholesterol has been reported with sodium-glucose cotransporter 2 (SGLT2) inhibitors. The mechanisms by which the SGLT2 inhibitor empagliflozin increases LDL cholesterol levels were investigated in hamsters with diet-induced dyslipidemia. Compared with vehicle, empagliflozin 30 mg/kg/day for 2 weeks significantly reduced fasting blood glucose by 18%, with significant increase in fasting plasma LDL cholesterol, free fatty acids, and total ketone bodies by 25, 49, and 116%, respectively. In fasting conditions, glycogen hepatic levels were further reduced by 84% with empagliflozin, while 3-hydroxy-3-methylglutaryl-CoA reductase activity and total cholesterol hepatic levels were 31 and 10% higher, respectively (both P empagliflozin. Importantly, none of these parameters were changed by empagliflozin in fed conditions. Empagliflozin significantly reduced the catabolism of (3)H-cholesteryl oleate-labeled LDL injected intravenously by 20%, indicating that empagliflozin raises LDL levels through reduced catabolism. Unexpectedly, empagliflozin also reduced intestinal cholesterol absorption in vivo, which led to a significant increase in LDL- and macrophage-derived cholesterol fecal excretion (both P empagliflozin, by switching energy metabolism from carbohydrate to lipid utilization, moderately increases ketone production and LDL cholesterol levels. Interestingly, empagliflozin also reduces intestinal cholesterol absorption, which in turn promotes LDL- and macrophage-derived cholesterol fecal excretion. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Lipid Production from Nannochloropsis.

    Science.gov (United States)

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-03-25

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed.

  2. Zigzag lipid tubules.

    Science.gov (United States)

    Zhao, Yue; Fang, Jiyu

    2008-09-04

    We report a method based on poly(dimethylsiloxane) (PDMS) stamp-assisted moving contact line to bend lipid tubules into zigzags on glass substrates. Atomic force microscopy (AFM) reveals that the zigzag lipid tubules buckle at the bent sites. The measurements of buckling heights as a function of bending angles suggest a gradual buckling mode. By imaging the zigzag tubules with AFM under different loading forces, we study the correlation between the loading force and the tubule compression. The reduced stiffness at the buckling sites of zigzag tubules suggests that lipid molecules are reorganized during the gradual buckling.

  3. Altered tissue mineralization, increased hepatic lipid and inhibited ...

    African Journals Online (AJOL)

    Mineral homeostasis is often disrupted in intrauterine growth retardation (IUGR) infants. Most studies focus on calcium or phosphorus metabolism of IUGR infants via determining serum mineral concentrations instead of tissues. This study was conducted to investigate the effects of IUGR on the mineralization and ...

  4. Defatted Detarium senegalense seed-based diet alters lipid profile ...

    African Journals Online (AJOL)

    Due to high cost of protein relative to other major nutrients, as part of search for cheaper alternative source for good quality protein for dietary purposes, we evaluated Detarium senegalense seed meal by comparing growth performance, tissue and reproductive toxicity markers in rats with those on soybean. Defatted ...

  5. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses.

    Science.gov (United States)

    Zeituni, Erin M; Wilson, Meredith H; Zheng, Xiaobin; Iglesias, Pablo A; Sepanski, Michael A; Siddiqi, Mahmud A; Anderson, Jennifer L; Zheng, Yixian; Farber, Steven A

    2016-11-04

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses*

    Science.gov (United States)

    Zeituni, Erin M.; Wilson, Meredith H.; Zheng, Xiaobin; Iglesias, Pablo A.; Sepanski, Michael A.; Siddiqi, Mahmud A.; Anderson, Jennifer L.; Zheng, Yixian; Farber, Steven A.

    2016-01-01

    Responding to a high-fat meal requires an interplay between multiple digestive tissues, sympathetic response pathways, and the gut microbiome. The epithelial enterocytes of the intestine are responsible for absorbing dietary nutrients and preparing them for circulation to distal tissues, which requires significant changes in cellular activity, including both morphological and transcriptional responses. Following a high-fat meal, we observe morphological changes in the enterocytes of larval zebrafish, including elongation of mitochondria, formation and expansion of lipid droplets, and the rapid and transient ruffling of the nuclear periphery. Dietary and pharmacological manipulation of zebrafish larvae demonstrated that these subcellular changes are specific to triglyceride absorption. The transcriptional changes that occur simultaneously with these morphological changes were determined using RNA sequencing, revealing a cohort of up-regulated genes associated with lipid droplet formation and lipid transport via lipoprotein particles. Using a microsomal triglyceride transfer protein (MTP) inhibitor to block β-lipoprotein particle formation, we demonstrate that the transcriptional response to a high-fat meal is associated with the transfer of ER triglyceride to nascent β-lipoproteins, possibly through the activation of Creb3l3/cyclic AMP-responsive element-binding protein. These data suggest that a transient increase in ER lipids is the likely mediator of the initial physiological response of intestinal enterocytes to dietary lipid. PMID:27655916

  7. Metabolic alterations in broiler chickens experimentally infected with sporulated oocysts of Eimeria maxima

    Directory of Open Access Journals (Sweden)

    Fagner Luiz da Costa Freitas

    Full Text Available Metabolic and morphometric alterations of the duodenal villi caused by parasitism of chickens by Eimeria maxima were evaluated, using 100 male Cobb birds, randomly distributed into two groups (control and infected. The infected group was inoculated with 0.5 ml of a solution containing 5×103 sporulated oocysts of Eimeria maxima. Ten birds per sample were sacrificed on the 6th, 11th, 22nd and 41st days post-infection (dpi. In order to evaluate the alterations, samples of duodenum, jejunum and ileum fragments were collected after necropsy for histological analysis. Villus biometry was determined by means of a slide graduated in microns that was attached to a binocular microscope. To evaluate the biochemical data, 5 ml of blood were sampled from the birds before sacrifice. The statistical analyses were performed using the GraphPad 5 statistical software for Windows. Tukey's multiple comparison test (p <0.05 was performed for the different dpi's and the unpaired t test for the difference between the groups. Infection by E. maxima causes both qualitative and quantitative alterations to the structure of the intestinal villi, thereby interfering with the absorption of nutrients such as calcium, phosphorus, magnesium, protein and lipids, with consequent reductions in the birds' weights.

  8. Metabolic alterations in broiler chickens experimentally infected with sporulated oocysts of Eimeria maxima.

    Science.gov (United States)

    Freitas, Fagner Luiz da Costa

    2014-01-01

    Metabolic and morphometric alterations of the duodenal villi caused by parasitism of chickens by Eimeria maxima were evaluated, using 100 male Cobb birds, randomly distributed into two groups (control and infected). The infected group was inoculated with 0.5 ml of a solution containing 5 × 10³ sporulated oocysts of Eimeria maxima. Ten birds per sample were sacrificed on the 6th, 11th, 22nd and 41st days post-infection (dpi). In order to evaluate the alterations, samples of duodenum, jejunum and ileum fragments were collected after necropsy for histological analysis. Villus biometry was determined by means of a slide graduated in microns that was attached to a binocular microscope. To evaluate the biochemical data, 5 ml of blood were sampled from the birds before sacrifice. The statistical analyses were performed using the GraphPad 5 statistical software for Windows. Tukey's multiple comparison test (p <0.05) was performed for the different dpi's and the unpaired t test for the difference between the groups. Infection by E. maxima causes both qualitative and quantitative alterations to the structure of the intestinal villi, thereby interfering with the absorption of nutrients such as calcium, phosphorus, magnesium, protein and lipids, with consequent reductions in the birds' weights.

  9. Perspectives on marine zooplankton lipids

    DEFF Research Database (Denmark)

    Kattner, G.; Hagen, W.; Lee, R.F.

    2007-01-01

    We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact...... of climate change. The first addresses the role of lipids in membranes, storage lipids, and buoyancy with the following key question: How are the properties of membranes and deposits affected by the various types of lipids? The second deals with the importance of various types of lipids during reproduction......, development, and resting phases and addresses the role of the different storage lipids during growth and dormancy. The third relates to trophic marker lipids, which are an important tool to follow lipid and energy transfer through the food web. The central question is how can fatty acids be used to identify...

  10. Archaeal lipids in oral delivery of therapeutic peptides

    DEFF Research Database (Denmark)

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert

    2017-01-01

    tetraether lipids. The inherent chemical stability and unique membrane-spanning characteristics of tetraether lipids render them interesting for oral drug delivery purposes. Archaeal lipids form liposomes spontaneously (archaeosomes) and may be incorporated in conventional liposomes (mixed vesicles). Both...... types of liposomes are promising to protect their drug cargo, such as therapeutic peptides, against the acidic environment of the stomach and proteolytic degradation in the intestine. They appear to withstand lipolytic enzymes and bile salts and may thus deliver orally administered therapeutic peptides...... to distant sections of the intestine or to the colon, where they may be absorbed, eventually by the help of absorption enhancers. Archaeal lipids and their semisynthetic derivatives may thus serve as biological source for the next generation oral drug delivery systems. The aim of this review is to present...

  11. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Metabolism. Part III: Lipids.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  13. Lipids in preventive dentistry.

    Science.gov (United States)

    Kensche, A; Reich, M; Kümmerer, K; Hannig, M; Hannig, C

    2013-04-01

    There is still a great demand for the improvement of oral prophylaxis methods. One repeatedly described approach is rinsing with edible oils. The aim of the present review paper was to analyze the role of lipids in bioadhesion and preventive dentistry. Despite limited sound scientific data, extensive literature search was performed to illustrate possible effects of lipids in the oral cavity. It is to be assumed that lipophilic components modulate the process of bioadhesion to the oral hard tissues as well as the composition and ultrastructure of the initial oral biofilm or the pellicle, respectively. Thereby, lipids could add hydrophobic characteristics to the tooth surface hampering bacterial colonization and eventually decreasing caries susceptibility. Also, a lipid-enriched pellicle might be more resistant in case of acid exposure and could therefore reduce the erosive mineral loss. Furthermore, anti-inflammatory effects on the oral soft tissues were described. However, there is only limited evidence for these beneficial impacts. Neither the lipid composition of saliva and pellicle nor the interactions of lipids with the initial oral biofilm and the pellicle layer have been investigated adequately until now. Edible oils might qualify as mild supplements to conventional strategies for the prevention of caries, erosion, and periodontal diseases but further research is necessary. Against the background of current scientific and empirical knowledge, edible oils might be used as oral hygiene supplements but a decisive benefit for the oral health status is questionable.

  14. Acyl-Lipid Metabolism

    Science.gov (United States)

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  15. Lipids of mitochondria.

    Science.gov (United States)

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; Holm, Sverre; Scheffler, Katja

    2016-01-01

    an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe-/- Neil3-/- mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation...... of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage....

  17. Absorptive Capacity and Diversity

    DEFF Research Database (Denmark)

    Kristinsson, Kári

    international business, organizational economics, strategic management, technology management and last but not least neo-Schumpeterian economics. The goal of this dissertation is to examine what many consider as neglected arguments from the work by Cohen and Levinthal and thereby illuminate an otherwise......One of the most influential contributions to neo-Schumpeterian economics is Cohen and Levinthal‘s papers on absorptive capacity. Since their publication in the late 1980s and early 1990s the concept absorptive capacity has had substantial impact on research in economics and management, including...... overlooked area of research. Although research based on Cohen and Levinthal‘s work has made considerable impact, there is scarcity of research on certain fundamental points argued by Cohen and Levinthal. Among these is the importance of employee diversity as well as the type and nature of interaction between...

  18. Sound absorption of snow

    OpenAIRE

    Maysenhölder, W.; Schneebeli, M.; Zhou, X.; Zhang, T.; Heggli, M.

    2008-01-01

    Recently fallen snow possesses good sound-absorbing properties. This fact is well-known and confirmed by measurements. Is the filigree structure of snowflakes decisive? In principle we know that the sound-absorbing capacity of a porous material is dependent on its structure. But until now the question as to which structural characteristics are significant has been insufficiently answered. Detailed investigations of snow are to explain this fact by precise measurements of the sound absorption,...

  19. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.

    1976-01-01

    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  20. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  1. Relic Neutrino Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  2. An Assessment of Growth Media Enrichment on Lipid Metabolome and the Concurrent Phenotypic Properties of Candida albicans

    OpenAIRE

    Mahto, Kaushal Kumar; Singh, Ashutosh; Khandelwal, Nitesh Kumar; Bhardwaj, Nitin; Jha, Jaykar; Prasad, Rajendra

    2014-01-01

    A critical question among the researchers working on fungal lipid biology is whether the use of an enriched growth medium can affect the lipid composition of a cell and, therefore, contribute to the observed phenotypes. One presumption is that enriched medias, such as YPD (yeast extract, peptone and dextrose), are likely to contain lipids, which may homogenize with the yeast lipids and play a role in masking the actual differences in the observed phenotypes or lead to an altered phenotype alt...

  3. Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans[S

    Science.gov (United States)

    Amiot, Marie Josèphe; Knol, Diny; Cardinault, Nicolas; Nowicki, Marion; Bott, Romain; Antona, Claudine; Borel, Patrick; Bernard, Jean-Paul; Duchateau, Guus; Lairon, Denis

    2011-01-01

    Phytosterols (plant sterols and stanols) can lower intestinal cholesterol absorption, but the complex dynamics of the lipid digestion process in the presence of phytosterol esters (PEs) are not fully understood. We performed a clinical experiment in intubated healthy subjects to study the time course of changes in the distribution of all lipid moieties present in duodenal phases during 4 h of digestion of meals with 3.2 g PE (PE meal) or without (control meal) PE. In vitro experiments under simulated gastrointestinal conditions were also performed. The addition of PE did not alter triglyceride (TG) hydrolysis in the duodenum or subsequent chylomicron TG occurrence in the circulation. In contrast, cholesterol accumulation in the duodenum aqueous phase was markedly reduced in the presence of PE (−32%, P < 0.10). In vitro experiments confirmed that PE reduces cholesterol transfer into the aqueous phase. The addition of PE resulted in a markedly reduced presence of meal-derived hepta-deuterated cholesterol in the circulation, i.e., in chylomicrons (−43%, PE meal vs. control; P < 0.0001) and plasma (−54%, PE meal vs. control; P < 0.0001). The present data show that addition of PE to a meal does not alter TG hydrolysis but displaces cholesterol from the intestinal aqueous phase and lowers chylomicron cholesterol occurrence in humans. PMID:21482714

  4. Lipidomics reveals a remarkable diversity of lipids in human plasma.

    Science.gov (United States)

    Quehenberger, Oswald; Armando, Aaron M; Brown, Alex H; Milne, Stephen B; Myers, David S; Merrill, Alfred H; Bandyopadhyay, Sibali; Jones, Kristin N; Kelly, Samuel; Shaner, Rebecca L; Sullards, Cameron M; Wang, Elaine; Murphy, Robert C; Barkley, Robert M; Leiker, Thomas J; Raetz, Christian R H; Guan, Ziqiang; Laird, Gregory M; Six, David A; Russell, David W; McDonald, Jeffrey G; Subramaniam, Shankar; Fahy, Eoin; Dennis, Edward A

    2010-11-01

    The focus of the present study was to define the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a first step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules.

  5. Role of Intestinal LXRα in Regulating Post-prandial Lipid Excursion and Diet-Induced Hypercholesterolemia and Hepatic Lipid Accumulation

    Directory of Open Access Journals (Sweden)

    Tibiábin Benítez-Santana

    2017-05-01

    Full Text Available Post-prandial hyperlipidemia has emerged as a cardiovascular risk factor with limited therapeutic options. The Liver X receptors (Lxrs are nuclear hormone receptors that regulate cholesterol elimination. Knowledge of their role in regulating the absorption and handling of dietary fats is incomplete. The purpose of this study was to determine the role of intestinal Lxrα in post-prandial intestinal lipid transport. Using Lxrα knockout (nr1h3−/− and intestine-limited Lxrα over-expressing [Tg(fabp2a:EGFP-nr1h3] zebrafish strains, we measured post-prandial lipid excursion with live imaging in larvae and physiological methods in adults. We also conducted a long-term high-cholesterol dietary challenge in adults to examine the chronic effect of modulating nr1h3 gene dose on the development of hypercholesterolemia and hepatic lipid accumulation. Over-expression of Lxrα in the intestine delays the transport of ingested lipids in larvae, while deletion of Lxrα increases the rate of lipid transport. Pre-treating wildtype larvae with the liver-sparing Lxr agonist hyodeoxycholic acid also delayed the rate of intestinal lipid transport in larvae. In adult males, deletion of Lxrα accelerates intestinal transport of ingested lipids. Adult females showed higher plasma Lipoprotein lipase (Lpl activity compared to males, and lower post-gavage blood triacylglycerol (TAG excursion. Despite the sexually dimorphic effect on acute intestinal lipid handling, Tg(fabp2a:EGFP-nr1h3 adults of both sexes are protected from high cholesterol diet (HCD-induced hepatic lipid accumulation, while nr1h3−/− mutants are sensitive to the effects of HCD challenge. These data indicate that intestinal Lxr activity dampens the pace of intestinal lipid transport cell-autonomously. Selective activation of intestinal Lxrα holds therapeutic promise.

  6. What determines drug solubility in lipid vehicles: is it predictable?

    Science.gov (United States)

    Rane, Sagar S; Anderson, Bradley D

    2008-03-17

    Lipid-based drug delivery systems are of increasing interest to the pharmaceutical scientist because of their potential to solubilize drug molecules that may be otherwise difficult to develop. The ability to predict lipid solubility is an important step in being able to identify the right excipients to solubilize and formulate drugs in lipid formulations. However, predicting lipid solubility is complicated by the fact that interfacial effects may play a dominant role in these mixtures and the solubility may be affected by the microstructure (microemulsions, emulsions, oily solutions, etc.), as well as by the physicochemical properties of the oil, surfactant, co-solvent, and the drug. This review illustrates the fundamental factors that govern solubility in lipid mixtures and discusses models built at varying levels of sophistication to estimate the solubility. Examples from the literature are presented that demonstrate the application of these models, how their choice is related to the drug/lipid employed, and the challenges involved in solubility prediction. New data on the role water plays in altering lipid solubility, not only through its interaction with the solute, but also by changing the structure of lipids by promoting lipid organization are highlighted. The available data demonstrate that a rational understanding of solubilization in lipids is a worthwhile pursuit and models to predict at least the relative solubility from chemical structure have potential. Prediction of absolute solubility is more difficult as it requires knowledge of the drug's escaping tendency from the crystalline state. In recent years, it has become amply clear that for polar solutes, specific interactions are a critical factor governing solubility. Methods that can better take into account the specific as well as non-specific interactions between the solute and solvent, and the lipid microstructure, hold considerable promise for the future.

  7. Peripheral myelin protein 22 alters membrane architecture

    Science.gov (United States)

    Mittendorf, Kathleen F.; Marinko, Justin T.; Hampton, Cheri M.; Ke, Zunlong; Hadziselimovic, Arina; Schlebach, Jonathan P.; Law, Cheryl L.; Li, Jun; Wright, Elizabeth R.; Sanders, Charles R.; Ohi, Melanie D.

    2017-01-01

    Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin. PMID:28695207

  8. Marine lipids and the bioavailability of omega-3 fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Müllertz, Anette

    2015-01-01

    . In vitro studies provided a mechanistic understanding on the varied bioavailability caused by different lipid structures, the lower relative bioavailability of omega-3 fatty acids from FAEE formulation was closely related to the slower digestion rate of FAEE. Microencapsulated fish oil has often been used...... as a food additive because of its better chemical stability; studies showed that microencapsulation did not affect the bioavailability significantly. Even though food structures also affect the digestion and absorption of omega-3 containing lipids, several studies have shown that long-term intake of fish...

  9. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  10. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature

    OpenAIRE

    L?pez-Malo, Mar?a; Garc?a-R?os, Est?fani; Chiva, Rosana; Guillamon, Jos? M.

    2014-01-01

    Wine produced by low-temperature fermentation is mostly considered to have improved sensory qualities. However few commercial wine strains available on the market are well-adapted to ferment at low temperature (10 – 15°C). The lipid metabolism of Saccharomyces cerevisiae plays a central role in low temperature adaptation. One strategy to modify lipid composition is to alter transcriptional activity by deleting or overexpressing the key genes of lipid metabolism. In a previous study, we identi...

  11. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    in the development of lipid-based formulations. However, in order for optimum formulations to be developed, knowledge of the mechanisms of absorption of poorly water-soluble drug substances is desired. Accordingly, the purpose of this PhD study was to study the effects of endogenous surfactants (bile salts......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... viability and monolayer integrity were developed. The effect of simulated intestinal fluids on the absorption of the poorly water-soluble drug substances, estradiol and diazepam, was studied. The flux of both drug substances across the Caco-2 cells was decreased when simulated intestinal fluids containing...

  12. Absorption heat pumps

    Science.gov (United States)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  13. Enhancing Effect of Bile Salts on Gastrointestinal Absorption of Insulin

    African Journals Online (AJOL)

    Purpose: To investigate the effect of co-administration of two absorption enhancing bile salts, sodium glycocholate (NaGc) and ... Keywords: Bile salts, Sodium glycocholate, Sodium salicylate, Insulin, Gastrointestinal administration. Tropical Journal of ..... such as micelle formation, solubilization, alteration of the mucus layer ...

  14. Characterizing Exposures of Fish to Wastewater Treatment Plant Effluent: An Integrated Metabolite and Lipid Profiling Approach

    Science.gov (United States)

    Metabolite and lipid profiling are well established techniques for studying chemical-induced alterations to normal biological function in numerous organisms. These techniques have been used successfully to identify biomarkers of chemical exposure, screen for chemical potency, or ...

  15. Rapidly variable relatvistic absorption

    Science.gov (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  16. Geospatial Absorption and Regional Effects

    Directory of Open Access Journals (Sweden)

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  17. The central clock neurons regulate lipid storage in Drosophila.

    Directory of Open Access Journals (Sweden)

    Justin R DiAngelo

    Full Text Available A proper balance of lipid breakdown and synthesis is essential for achieving energy homeostasis as alterations in either of these processes can lead to pathological states such as obesity. The regulation of lipid metabolism is quite complex with multiple signals integrated to control overall triglyceride levels in metabolic tissues. Based upon studies demonstrating effects of the circadian clock on metabolism, we sought to determine if the central clock cells in the Drosophila brain contribute to lipid levels in the fat body, the main nutrient storage organ of the fly. Here, we show that altering the function of the Drosophila central clock neurons leads to an increase in fat body triglycerides. We also show that although triglyceride levels are not affected by age, they are increased by expression of the amyloid-beta protein in central clock neurons. The effect on lipid storage seems to be independent of circadian clock output as changes in triglycerides are not always observed in genetic manipulations that result in altered locomotor rhythms. These data demonstrate that the activity of the central clock neurons is necessary for proper lipid storage.

  18. Serum lipid profile in alcoholic cirrhosis: A study in a teaching ...

    African Journals Online (AJOL)

    However, there are only a few studies regarding lipid profile in alcoholic cirrhosis that have been undertaken in India. The aim of the study is to assess the degree of alteration of serum lipid profile in alcoholic cirrhotic patients and also to detect its relationship with the age of the patients and the alcohol consumption pattern.

  19. Metabolomic profiles of lipid metabolism, arterial stiffness and hemodynamics in male coronary artery disease patients

    Directory of Open Access Journals (Sweden)

    Kaido Paapstel

    2016-06-01

    Conclusions: We demonstrated an independent association between the serum medium- and long-chain acylcarnitine profile and aortic stiffness for the CAD patients. In addition to the lipid-related classical CVD risk markers, the intermediates of lipid metabolism may serve as novel indicators for altered vascular function.

  20. Lipid profile in HIV/AIDS patients in Nigeria | Adewole | African ...

    African Journals Online (AJOL)

    Introduction: Alterations of serum lipid profiles have been reported widely among Human Immuno deficiency Virus (HIV) positive patients on Highly Active Anti Retroviral Therapy (HAART). However, there are few data on serum lipid profile among treatment naïve HIV positive patients in our environment. Objectives: To ...

  1. Exercise Intensity Modulation of Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Fábio S. Lira

    2012-01-01

    Full Text Available Lipid metabolism in the liver is complex and involves the synthesis and secretion of very low density lipoproteins (VLDL, ketone bodies, and high rates of fatty acid oxidation, synthesis, and esterification. Exercise training induces several changes in lipid metabolism in the liver and affects VLDL secretion and fatty acid oxidation. These alterations are even more conspicuous in disease, as in obesity, and cancer cachexia. Our understanding of the mechanisms leading to metabolic adaptations in the liver as induced by exercise training has advanced considerably in the recent years, but much remains to be addressed. More recently, the adoption of high intensity exercise training has been put forward as a means of modulating hepatic metabolism. The purpose of the present paper is to summarise and discuss the merit of such new knowledge.

  2. Lipid peroxidation in bovine semen.

    Science.gov (United States)

    Dawra, R K; Sharma, O P; Makkar, H P

    1983-01-01

    Bovine whole semen, spermatozoa, and seminal plasma did not undergo lipid peroxidation when aerobically incubated. However, lipid peroxidation was induced in washed spermatozoa in the presence of iron or iron plus sodium ascorbate, whereas heating, sonication, or treatment with proteolytic enzymes did not have any effect. The time required for formation of optimum concentration of lipid peroxides in washed spermatozoa is very short as compared to other systems. Lipid peroxides are entirely contributed by the lipid fraction of spermatozoa. Formation of lipid peroxides is completely inhibited by the presence of seminal plasma in incubation mixture.

  3. Monosodium glutamate inhibits the lymphatic transport of lipids in the rat.

    Science.gov (United States)

    Kohan, Alison B; Yang, Qing; Xu, Min; Lee, Dana; Tso, Patrick

    2016-10-01

    It is not well understood how monosodium glutamate (MSG) affects gastrointestinal physiology, especially regarding the absorption and the subsequent transport of dietary lipids into lymph. Thus far, there is little information about how the ingestion of MSG affects the lipid lipolysis, uptake, intracellular esterification, and formation and secretion of chylomicrons. Using lymph fistula rats treated with the infusion of a 2% MSG solution before a continuous infusion of triglyceride, we show that MSG causes a significant decrease in both triglyceride and cholesterol secretion into lymph. Intriguingly, the diminished lymphatic transport of triglyceride and cholesterol was not caused by an accumulation of these labeled lipids in the intestinal lumen or in the intestinal mucosa. Rather, it is a result of increased portal transport in the animals fed acutely the lipid plus 2% MSG in the lipid emulsion. This is a first demonstration of MSG on intestinal lymphatic transport of lipids. Copyright © 2016 the American Physiological Society.

  4. How proteins move lipids and lipids move proteins

    NARCIS (Netherlands)

    Sprong, H.|info:eu-repo/dai/nl/222364815; van der Sluijs, P.; van Meer, G.|info:eu-repo/dai/nl/068570368

    2001-01-01

    Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations

  5. Targeted metabolomics to study lipid peroxidation in biological systems

    NARCIS (Netherlands)

    Labuschagne, C.F.

    2013-01-01

    During normal cellular metabolism reactive oxygen species (ROS) are inevitably formed as by-products of respiration. ROS are extremely reactive molecules and can react with and damage surrounding DNA, protein and lipid molecules and subsequently alter their normal function in the cell. This

  6. The influence of hair lipids in ethnic hair properties.

    Science.gov (United States)

    Martí, M; Barba, C; Manich, A M; Rubio, L; Alonso, C; Coderch, L

    2016-02-01

    Biochemical studies have mainly focused on the composition of hair. African hair exhibited lower moisturization and less radial swelling when flushing with water compared with Asian or Caucasian hair, and they assumed a possible lipid differentiation among human populations. This study consists in the lipid characterization of different ethnic hairs (Caucasian, Asian and African hairs) and the influence of these lipids in different hair properties such as humidity and mechanical properties. Evaluation of water sorption and desorption of the different ethnic hairs and with and without lipids is also studied mainly to determine permeation changes of the keratin fibres. Extractions of exogenous and endogenous lipids with different organic solvents were performed; lipid analysis and its quantification using thin-layer chromatography coupled to an automated flame ionization detector (TLC/FID) were performed. Absorption and desorption curves were obtained in a thermogravimetric balance equipped with a controlled humidity chamber, the Q5000SA Sorption Analyzer (TA Instruments, New Castle, IL, U.S.A.). Also, mechanical properties (breaking stress and breaking elongation) were analysed using a computer programmable dynamometer (Instron 5500R). Lipid extraction showed the highest amount of total lipids for the African hair which may come from external sebaceous lipids compared with Asian or Caucasian hair. Caucasian fibres were found to be the most hydrated fibre, and a decrease in moisture was found in the extracted fibres, again, which is more important for the Caucasian hair. A superior lineal mass was found for the Asian fibres which supported their higher strength. The results obtained from the analysis of the mechanical properties of delipidized fibres indicate a surprising increase in the strength of African and Caucasian fibres. Perhaps this increase in strength could be related to the humidity decrease in lipid-extracted hair fibres. Results of water uptake and

  7. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis.

    Science.gov (United States)

    Fozo, E M; Rucks, E A

    2016-01-01

    In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora. © 2016 Elsevier Ltd All rights reserved.

  8. Intestinal absorption of fluorescently labeled nanoparticles.

    Science.gov (United States)

    Simovic, Spomenka; Song, Yunmei; Nann, Thomas; Desai, Tejal A

    2015-07-01

    Characterization of intestinal absorption of nanoparticles is critical in the design of noninvasive anticancer, protein-based, and gene nanoparticle-based therapeutics. Here we demonstrate a general approach for the characterization of the intestinal absorption of nanoparticles and for understanding the mechanisms active in their processing within healthy intestinal cells. It is generally accepted that the cellular processing represents a major drawback of current nanoparticle-based therapeutic systems. In particular, endolysosomal trafficking causes degradation of therapeutic molecules such as proteins, lipids, acid-sensitive anticancer drugs, and genes. To date, investigations into nanoparticle processing within intestinal cells have studied mass transport through Caco-2 cells or everted rat intestinal sac models. We developed an approach to visualize directly the mechanisms of nanoparticle processing within intestinal tissue. These results clearly identify a mechanism by which healthy intestinal cells process nanoparticles and point to the possible use of this approach in the design of noninvasive nanoparticle-based therapies. Advances in nanomedicine have resulted in the development of new therapies for various diseases. Intestinal route of administration remains the easiest and most natural. The authors here designed experiments to explore and characterize the process of nanoparticle transport across the intestinal tissue. In so doing, further insights were gained for future drug design. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Polyglutamine expansion in huntingtin increases its insertion into lipid bilayers.

    Science.gov (United States)

    Kegel, Kimberly B; Schewkunow, Vitali; Sapp, Ellen; Masso, Nicholas; Wanker, Erich E; DiFiglia, Marian; Goldmann, Wolfgang H

    2009-09-25

    An expanded polyglutamine (Q) tract (>37Q) in huntingtin (htt) causes Huntington disease. Htt associates with membranes and polyglutamine expansion in htt may alter membrane function in Huntington disease through a mechanism that is not known. Here we used differential scanning calorimetry to examine the effects of polyQ expansion in htt on its insertion into lipid bilayers. We prepared synthetic lipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine and tested interactions of htt amino acids 1-89 with 20Q, 32Q or 53Q with the vesicles. GST-htt1-89 with 53Q inserted into synthetic lipid vesicles significantly more than GST-htt1-89 with 20Q or 32Q. We speculate that by inserting more into cell membranes, mutant huntingtin could increase disorder within the lipid bilayer and thereby disturb cellular membrane function.

  10. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  11. The Effect of Polar Lipids on Tear Film Dynamics

    KAUST Repository

    Aydemir, E.

    2010-06-17

    In this paper, we present a mathematical model describing the effect of polar lipids, excreted by glands in the eyelid and present on the surface of the tear film, on the evolution of a pre-corneal tear film. We aim to explain the interesting experimentally observed phenomenon that the tear film continues to move upward even after the upper eyelid has become stationary. The polar lipid is an insoluble surface species that locally alters the surface tension of the tear film. In the lubrication limit, the model reduces to two coupled non-linear partial differential equations for the film thickness and the concentration of lipid. We solve the system numerically and observe that increasing the concentration of the lipid increases the flow of liquid up the eye. We further exploit the size of the parameters in the problem to explain the initial evolution of the system. © 2010 Society for Mathematical Biology.

  12. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    , studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  13. Lipids in airway secretions

    International Nuclear Information System (INIS)

    Bhaskar, K.R.; DeFeudis O'Sullivan, D.; Opaskar-Hincman, H.; Reid, L.M.

    1987-01-01

    Lipids form a significant portion of airway mucus yet they have not received the same attention that epithelial glycoproteins have. We have analysed, by thin layer chromatography, lipids present in airway mucus under 'normal' and hypersecretory (pathological) conditions.The 'normals' included (1) bronchial lavage obtained from healthy human volunteers and from dogs and (2) secretions produced ''in vitro'' by human (bronchial) and canine (tracheal) explants. Hypersecretory mucus samples included (1) lavage from dogs made bronchitic by exposure to SO 2 , (2) bronchial aspirates from acute and chronic tracheostomy patients, (3) sputum from patients with cystic fibrosis and chronic bronchitis and (4) postmortem secretions from patients who died from sudden infant death syndrome (SIDS) or from status asthmaticus. Cholesterol was found to be the predominant lipid in 'normal' mucus with lesser amounts of phospholipids. No glycolipids were detected. In the hypersecretory mucus, in addition to neutral and phospholipids, glycolipids were present in appreciable amounts, often the predominant species, suggesting that these may be useful as markers of disease. Radioactive precursors 14 C acetate and 14 C palmitate were incorporated into lipids secreted ''in vitro'' by canine tracheal explants indicating that they are synthesised by the airway. (author)

  14. DISTURBANCES OF LIPID METABOLISM

    Directory of Open Access Journals (Sweden)

    P. F. Litvitskii

    2012-01-01

    Full Text Available The article contains modern data on etiology, pathogenesis, manifestations and mechanisms of development of the most common forms of lipid metabolism disturbances in humans, such as obesity, emaciation, lipodystrophy, lipidosis, dyslipoproteinemia and atherosclerosis. The authors give the informative materials for self-testing and correction of the knowledge level.

  15. Exogenous lipid pneumonia

    International Nuclear Information System (INIS)

    Bernasconi, A.; Gavelli, G.; Zompatori, M.; Galleri, C.; Zanasi, A.; Fabbri, M.; Bazzocchi, F.

    1988-01-01

    Exogenous lipid pneumonia (ELP) is caused by the aspiration of animal, vegetal or, more often, mineral oils. Even though it may also be acute, ELP is most frequently a chronic disease, affecting people with predisposing factors, such as neuromuscular disorders, structural abnormalities and so on; very often exogenous lipid pneumonia is found in tracheotomized patients. The pathology of lipid pneumonia is a chronic inflammatory process evolving in foreign-body-like reaction, and eventually in ''end-stage lung'' condition. Clinically, most patients are asymptomatic; few cases only present with cough, dyspnea and chest pain. Eight cases of ELP, studied over the past 3 years, are described in this paper. All the patients were examined by chest radiographs and standard tomograms; 3 patients underwent CT. X-ray features were mono/bilateral consolidation of the lower zones, with air bronchogram and variable reduction in volume. CT density was not specific for fat tissue. In all cases the diagnosis was confirmed at biopsy. In 5 patients, followed for at least one year, clinical-radiological features showed no change. Thus, complications of ELP (especially malignant evolution) could be excluded. The authors conclude that lipid pneumonia must be considered in differential diagnosis of patients with history of usage of oils and compatible X-ray findings. The usefulness of an accurate follow-up is stressed

  16. Lipid storage myopathies.

    Science.gov (United States)

    Bruno, Claudio; Dimauro, Salvatore

    2008-10-01

    The aim of this review is to provide an update on disorders of lipid metabolism affecting skeletal muscle exclusively or predominantly and to summarize recent clinical, genetic, and therapeutic studies in this field. Over the past 5 years, new clinical phenotypes and genetic loci have been described, unusual pathogenic mechanisms have been elucidated, and novel pharmacological approaches have been developed. At least one genetic defect responsible for the myopathic form of CoQ10 deficiency has been identified, causing a disorder that is allelic with the late-onset riboflavine-responsive form of multiple acyl-coenzyme A dehydrogenation deficiency. Novel mechanisms involved in the lipolytic breakdown of cellular lipid depots have been described and have led to the identification of genes and mutations responsible for multisystemic neutral lipid storage disorders, characterized by accumulation of triglyceride in multiple tissues, including muscle. Defects in lipid metabolism can affect either the mitochondrial transport and oxidation of exogenous fatty acid or the catabolism of endogenous triglycerides. These disorders impair energy production and almost invariably involve skeletal muscle, causing progressive myopathy with muscle weakness, or recurrent acute episodes of rhabdomyolysis triggered by exercise, fasting, or infections. Clinical and genetic characterization of these disorders has important implications both for accurate diagnostic approach and for development of therapeutic strategies.

  17. Lipids in cheese

    Science.gov (United States)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  18. Lipid Therapy for Intoxications

    NARCIS (Netherlands)

    Robben, Joris Henricus; Dijkman, Marieke Annet

    This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of

  19. Lipid Therapy for Intoxications

    NARCIS (Netherlands)

    Robben, Joris Henricus; Dijkman, Marieke Annet

    2017-01-01

    This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of

  20. 443 Review Lipids

    African Journals Online (AJOL)

    Marinda

    2009-07-20

    Jul 20, 2009 ... mitochondrial long-chain fatty acid transport occurred in isolated ... be related to cardiac preference for lipid compared to the brain's preference for carbohydrates as fuel sources.32 It may also explain ... only short- and medium-chain fatty acids (length) can enter mitochondria by passive diffusion. STEP 1.

  1. Salivary lipids: A review.

    Science.gov (United States)

    Matczuk, Jan; Żendzian-Piotrowska, Małgorzata; Maciejczyk, Mateusz; Kurek, Krzysztof

    2017-09-01

    Saliva is produced by both large and small salivary glands and may be considered one of the most important factors influencing the behavior of oral cavity homeostasis. Secretion of saliva plays an important role in numerous significant biological processes. Saliva facilitates chewing and bolus formation as well as performs protective functions and determines the buffering and antibacterial prosperities of the oral environment. Salivary lipids appear to be a very important component of saliva, as their qualitative and quantitative composition can be changed in various pathological states and human diseases. It has been shown that disturbances in salivary lipid homeostasis are involved in periodontal diseases as well as various systemic disorders (e.g. cystic fibrosis, diabetes and Sjögren's syndrome). However, little is known about the role and composition of salivary lipids and their interaction with other important ingredients of human saliva, including proteins, glycoproteins and salivary mucins. The purpose of this review paper is to present the latest knowledge on salivary lipids in healthy conditions and in oral and systemic diseases.

  2. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAAreceptors.

    Science.gov (United States)

    Sierra-Valdez, Francisco Javier; Ruiz-Suárez, J C; Delint-Ramirez, Ilse

    2016-11-01

    Recent studies have shown that anesthetic agents alter the physical properties of lipid rafts on model membranes. However, if this destabilization occurs in brain membranes, altering the lipid raft-protein interaction, remains unknown. We analyzed the effects produced by pentobarbital (PB) on brain plasma membranes and lipid rafts in vivo. We characterized for the first time the thermotropic behavior of plasma membranes, synaptosomes, and lipid rafts from rat brain. We found that the transition temperature from the ordered gel to disordered liquid phase of lipids is close to physiological temperature. We then studied the effect of PB on protein composition of lipid rafts. Our results show a reduction of the total protein associated to rafts, with a higher reduction of the NMDAR compared to the GABA A receptor. Both receptors are considered the main targets of PB. In general, our results suggest that lipid rafts could be plausible mediators in anesthetic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition.

    Science.gov (United States)

    Zaloga, Gary P

    2015-09-01

    Phytosterols are plant-derived sterols that are structurally and functionally analogous to cholesterol in vertebrate animals. Phytosterols are found in many foods and are part of the normal human diet. However, absorption of phytosterols from the diet is minimal. Most lipid emulsions used for parenteral nutrition are based on vegetable oils. As a result, phytosterol administration occurs during intravenous administration of lipid. Levels of phytosterols in the blood and tissues may reach high levels during parenteral lipid administration and may be toxic to cells. Phytosterols are not fully metabolized by the human body and must be excreted through the hepatobiliary system. Accumulating scientific evidence suggests that administration of high doses of intravenous lipids that are high in phytosterols contributes to the development of parenteral nutrition-associated liver disease. In this review, mechanisms by which lipids and phytosterols may cause cholestasis are discussed. Human studies of the association of phytosterols with liver disease are reviewed. In addition, clinical studies of lipid/phytosterol reduction for reversing and/or preventing parenteral nutrition associated liver disease are discussed. © 2015 American Society for Parenteral and Enteral Nutrition.

  4. Enhancing intestinal drug solubilisation using lipid-based delivery systems.

    Science.gov (United States)

    Porter, Christopher J H; Pouton, Colin W; Cuine, Jean F; Charman, William N

    2008-03-17

    Lipid-based delivery systems are finding increasing application in the oral delivery of poorly water-soluble, lipophilic drugs. Whilst lipidic dose forms may improve oral bioavailability via several mechanisms, enhancement of gastrointestinal solubilisation remains argueably the most important method of absorption enhancement. This review firstly describes the mechanistic rationale which underpins the use of lipid-based delivery systems to enhance drug solubilisation and briefly reviews the available literature describing increases in oral bioavailability after the administration of lipid solution, suspension and self-emulsifying formulations. The use of in vitro methods including dispersion tests and more complex models of in vitro lipolysis as indicators of potential in vivo performance are subsequently described, with particular focus on recent data which suggests that the digestion of surfactants present in lipid-based formulations may impact on formulation performance. Finally, a series of seven guiding principles for formulation design of lipid-based delivery systems are suggested based on an analysis of recent data generated in our laboratories and elsewhere.

  5. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    Science.gov (United States)

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  6. Amphotericin B Lipid Complex Injection

    Science.gov (United States)

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did ... respond or are unable to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in ...

  7. Preliminary study of cell metabolism, by use of NBT test, determination the intensity of lipid peroxidation and antioxidant activity

    Directory of Open Access Journals (Sweden)

    Diana BEI

    2009-05-01

    Full Text Available Otto Warburg, in the early part of the 20th century, originated a hypothesis, that the cause of cancer is primarily a defect in energy metabolism.A decrease in the capacity of mitochondria to reduce NAD(P, together with a decline in the NAD(PH/NAD(P redox couple, uncouples oxidative phosphorylation, lead to depletion of ATP and decrease the cell viability.Nitro-bleu tetrazolium have been used to assay cell proliferation and viability. The method to measure cell proliferation is based on enzymatic cleavage of the tetrazolium salts to a water-soluble formazan dye.Succinate-tetrazolium reductase, is an enzymatic sistem, which belongs to the respiratory chain of the mitochondria and it is active only in viable cells. The reagent diffuses into the cells and it is cleaved to formazan. The absorption change is measured and analysed.Free radicals such as superoxide, can cause a damage in cellular components, but several antioxidants inhibiting the lipid peroxidation and limiting the level of free radicals in cells.In the present study we had in view the proliferation and viability of leukemia cells during antineoplastic treatment along with the alteration of the serum level of malondialdehyde (MDA and ceruloplasmin (CP. With serum level of malondialdehyde we monitored the presence of the lipid peroxidation by the reactive oxygen species, and with the oxidized ceruloplasmin level in blood serum we evidenced the activity of antioxidant system in blood.

  8. Analyzing Water's Optical Absorption

    Science.gov (United States)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  9. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  10. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  11. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles.

    Science.gov (United States)

    Sánchez-López, E; Espina, M; Doktorovova, S; Souto, E B; García, M L

    2017-01-01

    In the recent decades, various controlled delivery systems have been introduced with the aim to improve solubility, stability and bioavailability of poorly absorbed drugs. Among all, lipid nanoparticles gather interesting properties as drug or gene delivery carriers. These systems, composed either of solid lipids (SLN) or of solid and liquid lipids (NLC) stabilized with surfactants, combine the advantages of other colloidal particles such as polymeric nanoparticles, fat emulsions and liposomes avoiding their main disadvantages. Lipid nanoparticles represent an interesting approach for eye drug delivery as they can improve the corneal absorption of drugs enhancing their bioavailability. The Generally Recognized as Safe status of formulation excipients, the scaling-up facilities and the possibility of sterilization, make them suitable for industrial production. In this review, the latest findings, potential applications, and challenges related to the use of lipid nanoparticles for ocular drug delivery are comprehensively discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Lipid classification, structures and tools☆

    OpenAIRE

    Fahy, Eoin; Cotter, Dawn; Sud, Manish; Subramaniam, Shankar

    2011-01-01

    The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell biology, physiology and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively involved in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinformatics infrastruct...

  13. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art.

    Science.gov (United States)

    Weber, S; Zimmer, A; Pardeike, J

    2014-01-01

    Drug delivery by inhalation is a noninvasive means of administration that has following advantages for local treatment for airway diseases: reaching the epithelium directly, circumventing first pass metabolism and avoiding systemic toxicity. Moreover, from the physiological point of view, the lung provides advantages for systemic delivery of drugs including its large surface area, a thin alveolar epithelium and extensive vasculature which allow rapid and effective drug absorption. Therefore, pulmonary application is considered frequently for both, the local and the systemic delivery of drugs. Lipid nanoparticles - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers - are nanosized carrier systems in which solid particles consisting of a lipid matrix are stabilized by surfactants in an aqueous phase. Advantages of lipid nanoparticles for the pulmonary application are the possibility of a deep lung deposition as they can be incorporated into respirables carriers due to their small size, prolonged release and low toxicity. This paper will give an overview of the existing literature about lipid nanoparticles for pulmonary application. Moreover, it will provide the reader with some background information for pulmonary drug delivery, i.e., anatomy and physiology of the respiratory system, formulation requirements, application forms, clearance from the lung, pharmacological benefits and nanotoxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. LMSD: LIPID MAPS structure database

    Science.gov (United States)

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933

  15. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.

    1981-01-01

    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  16. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  17. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  18. Nano- and Microdelivery Systems for Marine Bioactive Lipids

    Directory of Open Access Journals (Sweden)

    David M. Pereira

    2014-12-01

    Full Text Available There is an increasing body of evidence of the positive impact of several marine lipids on human health. These compounds, which include ω-3 polyunsaturated fatty acids, have been shown to improve blood lipid profiles and exert anti-inflammatory and cardioprotective effects. The high instability of these compounds to oxidative deterioration and their hydrophobicity have a drastic impact in their pharmacokinetics. Thus, the bioavailability of these compounds may be affected, resulting in their inability to reach the target sites at effective concentrations. In this regard, micro/nanoparticles can offer a wide range of solutions that can prevent the degradation of targeted molecules, increase their absorption, uptake and bioavailability. In this work we will present the options currently available concerning micro- and nanodelivery systems for marine lipids; with emphasis on micro/nanoparticles; such as micro/nanocapsules and emulsions. A wide range of bottom-up approaches using casein, chitosan, cyclodextrins, among others; will be discussed.

  19. Lipid-based nanocarriers for the oral administration of biopharmaceutics.

    Science.gov (United States)

    Karamanidou, Theodora; Bourganis, Vassilis; Kammona, Olga; Kiparissides, Costas

    2016-11-01

    Biopharmaceutics have been recognized as the drugs of choice for the treatment of several diseases, mainly due to their high selectivity and potent action. Nonetheless, their oral administration is a rather challenging problem, since their bioavailability is significantly hindered by various physiological barriers along the GI tract, including their acid-induced hydrolysis in the stomach, their enzymatic degradation throughout the GI tract and their poor mucosa permeability. Lipid-based nanocarriers represent a viable means for enhancing the oral bioavailability of biomolecules while diminishing toxicity-related issues. The present review describes the main physiological barriers limiting the oral bioavailability of macromolecules and highlights recent advances in the field of lipid-based carriers as well as the respective lipid intestinal absorption mechanisms.

  20. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  1. Effect of lipid coating on the interaction between silica nanoparticles and membranes.

    Science.gov (United States)

    Tada, Dayane B; Suraniti, Emanuel; Rossi, Liane M; Leite, Carlos A P; Oliveira, Carla S; Tumolo, Tathyana C; Calemczuk, Roberto; Livache, Thierry; Baptista, Mauricio S

    2014-03-01

    Lipid coating is a method highly used to improve the biocompatibility of nanoparticles (NPs), even though its effect on the NP properties is still object of investigation. Herein, silica NPs containing methylene blue, which is a photosensitizer used in a variety of biomedical applications, were coated with a phospholipid bilayer. Regarding the photophysical properties, lipid-coating did not cause significant changes since bare and lipid-coated NPs presented very similar absorption spectra and generated singlet oxygen with similar efficiencies. However, NP interaction with cells and membrane mimics was totally different for bare and lipid-coated NPs. Lipid-coated NPs were distributed through the cell cytoplasm whereas bare NPs were detected only in some vacuolar regions within the cells. Since cellular uptake and cytolocalization are influenced by NP adsorption on cell membranes, the interaction of lipid-coated and bare NPs were studied on a membrane mimic, i.e., Hybrid Bilayer Membranes (HBMs) made of different compositions of negatively charged and neutral lipids. Interactions of bare and lipid-coated NPs with HBMs were analyzed by Surface Plasmon Resonance Imaging. Bare NPs presented high adsorption and aggregation on HBMs independently of the surface charge. Conversely, lipid-coated NPs presented less aggregation on the membrane surface and the adsorption was dependent on the charges of the NPs and of the HBMs. Our results indicated that NPs aggregation on the membrane surface can be modulated by lipid coating, which affects the cytosolic distribution of the NPs.

  2. Study of serum lipids in leprosy

    Directory of Open Access Journals (Sweden)

    Gupta Anju

    2002-01-01

    Full Text Available Fifty fresh and untreated patients of leprosy constituted the study group. Fifty, age and sex matched healthy individuals formed the controls. Ridly and Jopling system of classification was used in the study. Majority i.e 21 cases were of BT group, 12 of BB, 7 of BL, 9 of LL and one case was of TT leprosy. The serum triglyceride level was lower than normal in TT, showed no alteration in BT or BB and was insignificantly increased in bL and LL patients. The total cholesterol was lowerthan normal in TT, showed no alteration in BT or BB and was insignificantly increased in Bland LL patients. The total cholesterol was lower than normal in TT, whereas in BT, BB, BL and LL groups the levels were statistically decreased. The HDL cholesterol was within normal range in TT, significantly decreased in BT and LL patients, showed no significant alteration in BB and was insignificantly decreased in BL group. The LDL cholesterol in TT was low but was not so low statistically when compared with the controls, whereas in BT, BB, BL and LL groups the levels were statistically decreased. The VLDL cholesterol was within normal range in TT and BT, was raised insignificantly in 3 of 12 cases of BB, was within normal range in BL and in LL leprosy it was raised in one out of 9 cases. In the absence of any derangement of liver function tests, it can be concluded that leprosy per se leads to alterations in lipid metabolism. However, no correlation could be established between the group/type of leprosy, bacterial indices and levels of different lipid fractions in the present study.

  3. Human Milk Lipids.

    Science.gov (United States)

    Koletzko, Berthold

    2016-01-01

    Human milk lipids provide the infant with energy and essential vitamins, polyunsaturated fatty acids, and bioactive components. Adding complex lipids and milk fat globule membranes to vegetable oil-based infant formula has the potential to enhance infant development and reduce infections. Cholesterol provision with breastfeeding modulates infant sterol metabolism and may induce long-term benefits. Some 98-99% of milk lipids are comprised by triacylglycerols, whose properties depend on incorporated fatty acids. Attention has been devoted to the roles of the long-chain polyunsaturated fatty acids docosahexaenoic (DHA) and arachidonic (ARA) acids. Recent studies on gene-diet interaction (Mendelian randomization) show that breastfeeding providing DHA and ARA improves cognitive development and reduces asthma risk at school age particularly in those children with a genetically determined lower activity of DHA and ARA synthesis. It appears prudent to follow the biological model of human milk in the design of infant formula as far as feasible, unless conclusive evidence for the suitability and safety of other choices is available. The recent European Union legislative stipulation of a high formula DHA content without required ARA deviates from this concept, and such a novel formula composition has not been adequately evaluated. Great future opportunities arise with significant methodological progress for example in lipidomic analyses and their bioinformatic evaluation, which should enhance understanding of the biology of human milk lipids. Such knowledge might lead to improved dietary advice to lactating mothers as well as to further opportunities to enhance infant formula composition. © 2017 S. Karger AG, Basel.

  4. GDSL lipases modulate immunity through lipid homeostasis in rice.

    Directory of Open Access Journals (Sweden)

    Mingjun Gao

    2017-11-01

    Full Text Available Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG. We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity.

  5. GDSL lipases modulate immunity through lipid homeostasis in rice.

    Science.gov (United States)

    Gao, Mingjun; Yin, Xin; Yang, Weibing; Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Li, Qun; Shui, Guanghou; He, Zuhua

    2017-11-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity.

  6. Tear Film Lipids

    Science.gov (United States)

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  7. Gastrointestinal drug absorption in rats exposed to 60Co γ-radiation

    International Nuclear Information System (INIS)

    Brady, M.E.

    1976-01-01

    Following exposure of the gastrointestinal (GI) tract to ionizing radiation, its structure and function are altered for several days. Such alterations may affect the bioavailability of orally administered drugs. The potential mechanisms by which radiation may affect drug absorption were explored by studying the absorption of four test drugs, sulfanilamide, bretylium, sulfisoxazole acetyl, and riboflavin, in rats that were exposed to 850 R cobalt-60 gamma-radiation or sham irradiated. In one series of experiments, the drugs were administered orally and the amount of drug excreted in urine was used as a measure of the extent of their absorption. Cumulative urinary excretion of the drugs was shown to be a valid measure of absorption since it was not affected by radiation after intravenous administration of the drugs. At one day post-irradiation, the extent of absorption of sulfanilamide and bretylium was not affected by radiation but the absorption of sulfisoxazole acetyl and riboflavin was increased. At five days post-irradiation, there was no detectable difference between irradiated and control animals in the extent of absorption of the drugs. The fraction of sulfanilamide excreted in the urine as 4 N-conjugate was increased at one day post-irradiation. The increased excretion of metabolite appeared to result from metabolism of the drug by gut flora prior to absorption. This study shows that radiation-induced alterations in the absorption of orally administered drugs are due primarily to slowed gastric emptying. In general, slowed gastric emptying causes the rate of drug absorption to decline. The extent of absorption of drugs that are normally well absorbed is not affected by radiation while the extent of absorption of drugs that normally are absorbed poorly may be increased after irradiation of the GI tract

  8. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains...

  9. Atomic absorption instrument functional description

    International Nuclear Information System (INIS)

    Bystroff, R.I.; Boyle, W.G. Jr.; Barton, G.W. Jr.

    1976-01-01

    This report describes a proposed system for automating atomic absorption analysis. The system consists of two atomic absorption instruments and an automatic sampler that can be attached to either instrument. A computer program controls the sampling and gathers data. The program then uses the data to perform bookkeeping, data processing, and report writing

  10. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)

    2011-05-15

    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  11. Optical absorption of irradiated carbohydrates

    International Nuclear Information System (INIS)

    Supe, A.A.; Tiliks, Yu.E.

    1994-01-01

    The optical absorption spectra of γ-irradiated carbohydrates (glucose, lactose, sucrose, maltose, and starch) and their aqueous solutions were studied. The comparison of the data obtained with the determination of the concentrations of molecular and radical products of radiolysis allows the absorption bands with maxima at 250 and 310 nm to be assigned to the radicals trapped in the irradiated carbohydrates

  12. Water absorption in brick masonry

    NARCIS (Netherlands)

    Brocken, H.J.P.; Smolders, H.R.

    1996-01-01

    The water absorption in brick, mortar that was cured separately, and masonry samples was studied using NMR. Models of the moisture transport are usually formulated on the basis of a diffusion equation. In the case of water absorption in separate brick and mortar samples, the moisture diffusivity in

  13. Multifunctional hybrids for electromagnetic absorption

    International Nuclear Information System (INIS)

    Huynen, I.; Quievy, N.; Bailly, C.; Bollen, P.; Detrembleur, C.; Eggermont, S.; Molenberg, I.; Thomassin, J.M.; Urbanczyk, L.

    2011-01-01

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  14. Atmospheric absorption of sound - Update

    Science.gov (United States)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.

    1990-01-01

    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  15. Intestinal Absorption of Thyroid Hormone

    NARCIS (Netherlands)

    N. Kelderman-Bolk (Nienke)

    2015-01-01

    textabstractIn this thesis the treatment of hypothyroidism and absorption of T4 is described from a clinical and basic point of view. Put together the thesis gives insight in the factors influencing LT4 absorption and its results have influenced the timing of LT4 intake.

  16. Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes

    Directory of Open Access Journals (Sweden)

    Johann eSteiner

    2014-11-01

    Full Text Available Clozapine has stronger systemic metabolic side effects than haloperidol and it was hypothesized that therapeutic antipsychotic and adverse metabolic effects might be related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production.Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT and monocarboxylate (MCT transporters was determined after 6h and 24h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed.Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside.Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.

  17. Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel

    Science.gov (United States)

    Schlaepfer, Isabel R.; Hitz, Carolyn A.; Gijón, Miguel A.; Bergman, Bryan C.; Eckel, Robert H.; Jacobsen, Britta M.

    2015-01-01

    Progestins induce lipid accumulation in progesterone receptor (PR)-positive breast cancer cells. We speculated that progestin-induced alterations in lipid biology confer resistance to chemotherapy. To examine the biology of lipid loaded breast cancer cells, we used a model of progestin-induced lipid synthesis. T47D (PR-positive) and MDA-MB-231(PR-negative) cell lines were used to study progestin response. Oil red O staining of T47D cells treated with progestin showed lipid droplet formation was PR dependent, glucose dependent and reduced sensitivity to docetaxel. This protection was not observed in PR-negative MDA-MB-231 cells. Progestin treatment induced stearoyl CoA desaturase-1 (SCD-1) enzyme expression and chemical inhibition of SCD-1 diminished lipid droplets and cell viability, suggesting the importance of lipid stores in cancer cell survival. Gas chromatography/mass spectroscopy analysis of phospholipids from progestin-treated T47D cells revealed an increase in unsaturated fatty acids, with oleic acid as most abundant. Cells surviving docetaxel treatment also contained more oleic acid in phospholipids, suggesting altered membrane fluidity as a potential mechanism of chemoresistance mediated in part by SCD-1. Lastly, intact docetaxel molecules were present within progestin induced lipid droplets, suggesting a protective quenching effect of intracellular lipid droplets. Our studies suggest the metabolic adaptations produced by progestin provide novel metabolic targets for future combinatorial therapies for progestin-responsive breast cancers. PMID:22922095

  18. Optical absorption of silicon nanowires

    International Nuclear Information System (INIS)

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stiévenard, D.; Lévêque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-01-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  19. Alcohol's Effects on Lipid Bilayer Properties

    Science.gov (United States)

    Ingólfsson, Helgi I.; Andersen, Olaf S.

    2011-01-01

    Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475

  20. Update of the LIPID MAPS comprehensive classification system for lipids.

    Science.gov (United States)

    Fahy, Eoin; Subramaniam, Shankar; Murphy, Robert C; Nishijima, Masahiro; Raetz, Christian R H; Shimizu, Takao; Spener, Friedrich; van Meer, Gerrit; Wakelam, Michael J O; Dennis, Edward A

    2009-04-01

    In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a "Comprehensive Classification System for Lipids" based on well-defined chemical and biochemical principles and using an ontology that is extensible, flexible, and scalable. This classification system, which is compatible with contemporary databasing and informatics needs, has now been accepted internationally and widely adopted. In response to considerable attention and requests from lipid researchers from around the globe and in a variety of fields, the comprehensive classification system has undergone significant revisions over the last few years to more fully represent lipid structures from a wider variety of sources and to provide additional levels of detail as necessary. The details of this classification system are reviewed and updated and are presented here, along with revisions to its suggested nomenclature and structure-drawing recommendations for lipids.

  1. Radioinduced lipid peroxidation: factors determining the oxidizability of lipids

    International Nuclear Information System (INIS)

    Remita, S.

    2001-01-01

    Lipids are the essential components of cell membranes and lipoproteins. Their peroxidation plays an important role in numerous pathologies in which oxidative stress is involved. Lipid peroxidation occurs through a chain reaction that contributes to membrane damage in cells. It results in the conversion of fatty acids to polar hydroperoxides and leads to the breakdown or malfunction of the membrane. Lipids are amphiphilic molecules that aggregate in aqueous solutions into micelles and liposoms. The effect of this structural organization is significant in studies of radiation-induced peroxidation damage in highly ordered biological systems such as biological membranes. In this paper, a synthesis of the data concerning radioinduced lipid peroxidation is completed by an original review of the different parameters that determine lipid oxidizability. In addition, the influence of lipid aggregation and the effect of molecular packing are discussed. (author)

  2. Lipidated Steroid Saponins from Dioscorea villosa (Wild Yam)†

    Science.gov (United States)

    Dong, Shi-Hui; Cai, Geping; Napolitano, José G.; Nikolić, Dejan; Lankin, David C.; McAlpine, James B.; van Breemen, Richard B.; Soejarto, Djaja D.; Pauli, Guido F.; Chen, Shao-Nong

    2014-01-01

    Two groups of lipidated steroid saponins including seven new compounds (2, 3, 5, and 7–10) were isolated from the widely used botanical, wild yam (Dioscorea villosa), employing a fractionation protocol of metabolomic mining. This methodology has very recently led to the isolation of 14 diarylheptanoids from the same plant. Together with these lipidated steroid saponins, they establish additional new markers for Dioscorea villosa. The lipidation of steroids with analogue long-chain fatty acids containing different degrees of unsaturation generates entire series of compounds which are difficult to purify and analyze. The structures of the two series of lipidated steroid saponins (series A and B) were demonstrated by a combination of 1D and 2D NMR as well as GC-MS after chemical modification. Series A was determined to be a mixture of lipidated spirostanol glycosides (1–5), while series B (6–10) proved to be a mixture of five lipidated clionasterol glucosides. The latter group represents the first derivatives of clionasterol to be found in D. villosa. The discovery of this specific structural type of aliphatic esters of steroid saponins expands the characterization of the secondary metabolome of D. villosa. It also may inspire biological studies which take into account the lipophilic character and significantly altered physiochemical characteristics of these otherwise relatively polar phytoconstituents. PMID:23968665

  3. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Bunjes, Heike; Fahr, Alfred

    2008-01-01

    Various lipid nanoparticle formulations were investigated with respect to (trans)dermal drug delivery with special regard to the mechanism of their effects on human and an organotypic cell culture epidermis. Potential alterations of stratum corneum lipid domains were studied using fluorescence...... assays with labeled liposomes and thermal analysis of isolated stratum corneum. Influences on the permeation of corticosterone were investigated and the occlusive properties of the nanoparticles were determined by measurements of the transepidermal water loss (TEWL). The penetration of a fluorescence dye...... was visualized by fluorescence microscopy of cross sections of human epidermis after incubation with cubic and solid lipid nanoparticles. Corticosterone permeation was limited when applied in matrix-type lipid nanoparticles (fat emulsion, smectic and solid lipid nanoparticles). An adhesion of solid lipid...

  4. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection.

    Science.gov (United States)

    Lovewell, Rustin R; Sassetti, Christopher M; VanderVen, Brian C

    2016-02-01

    The interplay between Mycobacterium tuberculosis lipid metabolism, the immune response and lipid homeostasis in the host creates a complex and dynamic pathogen-host interaction. Advances in imaging and metabolic analysis techniques indicate that M. tuberculosis preferentially associates with foamy cells and employs multiple physiological systems to utilize exogenously derived fatty-acids and cholesterol. Moreover, novel insights into specific host pathways that control lipid accumulation during infection, such as the PPARγ and LXR transcriptional regulators, have begun to reveal mechanisms by which host immunity alters the bacterial micro-environment. As bacterial lipid metabolism and host lipid regulatory pathways are both important, yet inherently complex, components of active tuberculosis, delineating the heterogeneity in lipid trafficking within disease states remains a major challenge for therapeutic design. Copyright © 2015. Published by Elsevier Ltd.

  5. The role of Caveolin-1 in Lipid Droplets and their Biogenesis

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Chevrot, Guillaume; Khandelia, Himanshu

    2018-01-01

    We address unresolved questions of the energetics and mechanism of Lipid Droplet (LD) biogenesis, and of the role of Caveolins in the endoplasmic reticulum (ER) and in mature LDs. LDs are eukaryotic repositories of neutral lipids, which are believed to be synthesised in the ER. We investigate...... the effects of a curvature-inducing protein, caveolin-1, on the formation and structure of a spontaneously aggregated triolein (TO) lipid lens in a flat lipid bilayer using Molecular Dynamics (MD) simulations. A truncated form of Caveolin-1 (Cav1) localises on the interface between the spontaneously formed...... is in the LD core, the distribution of both neutral lipids in the LD core, and of phospholipids on the engulfing monolayer are altered significantly. Our simulations provide an unprecedented molecular description of the distribution and dynamics of various lipid species in both mature LDs and in the nascent LD...

  6. Camel milk ameliorates steatohepatitis, insulin resistance and lipid peroxidation in experimental non-alcoholic fatty liver disease.

    Science.gov (United States)

    Korish, Aida A; Arafah, Maha M

    2013-10-13

    Camel milk (CM) is gaining increasing recognition due to its beneficial effects in the control and prevention of multiple health problems. The current study aimed to investigate the effects of CM on the hepatic biochemical and cellular alterations induced by a high-fat, cholesterol-rich diet (HCD), specifically, non-alcoholic fatty liver disease (NAFLD). Seventy male Wistar rats were divided into four groups: the Control (C) Group fed a standard diet; the Control + camel milk (CCM) Group fed a standard diet and CM, the Cholesterol (Ch) Group fed a HCD with no CM, and the Cholesterol + camel milk (ChM) Group fed a HCD and CM. The following parameters were investigated in the studied groups; basal, weekly random and final fasting blood glucose levels, intraperitoneal glucose tolerance test (GTT) and insulin tolerance test (ITT), serum insulin, serum lipids, liver functions, lipid peroxidation products, the antioxidant activity of catalase (CAT) and the levels of reduced glutathione (GSH). In addition, HOMA-IR as an index of insulin resistance (IR) and the histopathology of the hepatic tissue were assessed. The Ch Group developed features similar to those of non-alcoholic steatohepatitis (NASH), characterized by hepatic steatosis; inflammatory cellular infiltration in liver tissue; altered liver functions; and increased total cholesterol, triglycerides, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, atherogenic index (AI), blood glucose, IR, and malondialdehyde (MDA) levels. Additionally, feeding the HCD to animals in the Ch Group decreased CAT activity and the GSH and high-density lipoprotein (HDL) cholesterol levels. Camel milk intake for eight weeks decreased hepatic fat accumulation and inflammatory cellular infiltration, preserved liver function, increased the GSH levels and CAT activity, decreased the MDA levels, and ameliorated the changes in the lipid profile, AI, and IR in animals from the ChM Group. CM has a unique composition

  7. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides...

  8. Molecular and structural organization of lipids in foods: their fate during digestion and impact in nutrition

    Directory of Open Access Journals (Sweden)

    Meynier Anne

    2017-03-01

    Full Text Available Lipids are basic constituents of our diet. They play an active part in the acceptability, flavour and perception of our foods. At the same time, they are also regarded as beneficial for health or as sources to various pathologies. Until now, the nutritional impact of the various dietary lipid structures beyond the amounts of ingested lipids and selected fatty acids has been marginally taken into account in nutritional studies and thus in food application. This review gathers first our current knowledge on the diversity of molecular and supramolecular structures of dietary lipids, and then based on the scientific studies carried out on the human model, tempts to sum up the current knowledge and the latest hypotheses concerning the metabolic and nutritional effects of these multiscale structures. It is shown that the perception of lipids in the mouth during oral processing modulates the production of digestive fluids and food intake. Then, during the stomach and intestine phases of lipid digestion, the kinetics of release of the fatty acids are modulated by the multiscale structures of lipids influencing the fatty acid bioaccessibility and rate of absorption. In turn this may impair the post-absorption metabolism and nutritional effects. Future trends of research are evoked as concluding remarks.

  9. Lipid simulations: a perspective on lipids in action.

    Science.gov (United States)

    Vattulainen, Ilpo; Rog, Tomasz

    2011-04-01

    In this article, we provide an overview of lipid simulations, describing how a computer can be used as a laboratory for lipid research. We briefly discuss the methodology of lipid simulations followed by a number of topical applications that show the benefit of computer modeling for complementing experiments. In particular, we show examples of cases in which simulations have made predictions of novel phenomena that have later been confirmed by experimental studies. Overall, the applications discussed in this article focus on the most recent state of the art and aim to provide a perspective of where the field of lipid simulations stands at the moment.

  10. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  11. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  12. Effect of ingested lipids on drug dissolution and release with concurrent digestion: a modeling approach

    Science.gov (United States)

    Buyukozturk, Fulden; Di Maio, Selena; Budil, David E.; Carrier, Rebecca L.

    2014-01-01

    Purpose To mechanistically study and model the effect of lipids, either from food or self-emulsifying drug delivery systems (SEDDS), on drug transport in the intestinal lumen. Methods Simultaneous lipid digestion, dissolution/release, and drug partitioning were experimentally studied and modeled for two dosing scenarios: solid drug with a food-associated lipid (soybean oil) and drug solubilized in a model SEDDS (soybean oil and Tween 80 at 1:1 ratio). Rate constants for digestion, permeability of emulsion droplets, and partition coefficients in micellar and oil phases were measured, and used to numerically solve the developed model. Results Strong influence of lipid digestion on drug release from SEDDS and solid drug dissolution into food-associated lipid emulsion were observed and predicted by the developed model. 90 minutes after introduction of SEDDS, there was 9% and 70% drug release in the absence and presence of digestion, respectively. However, overall drug dissolution in the presence of food-associated lipids occurred over a longer period than without digestion. Conclusion A systems-based mechanistic model incorporating simultaneous dynamic processes occurring upon dosing of drug with lipids enabled prediction of aqueous drug concentration profile. This model, once incorporated with a pharmacokinetic model considering processes of drug absorption and drug lymphatic transport in the presence of lipids, could be highly useful for quantitative prediction of impact of lipids on bioavailability of drugs. PMID:24234918

  13. Mannosylerythritol lipids: a review.

    Science.gov (United States)

    Arutchelvi, Joseph Irudayaraj; Bhaduri, Sumit; Uppara, Parasu Veera; Doble, Mukesh

    2008-12-01

    Mannosylerythritol lipids (MELs) are surface active compounds that belong to the glycolipid class of biosurfactants (BSs). MELs are produced by Pseudozyma sp. as a major component while Ustilago sp. produces them as a minor component. Although MELs have been known for over five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties and versatile biochemical functions. In this review, the MEL producing microorganisms, the production conditions, their applications, their diverse structures and self-assembling properties are discussed. The biosynthetic pathways and the regulatory mechanisms involved in the production of MEL are also explained here.

  14. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.

    1984-01-01

    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  15. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  16. Chlorosome lipids from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Sørensen, Peder Grove; Cox, Raymond Pickett; Miller, Mette

    2008-01-01

    We have extracted polar lipids and waxes from isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum and determined the fatty acid composition of each lipid class. Polar lipids amounted to 4.8 mol per 100 mol bacteriochlorophyll in the chlorosomes, while non-polar lipids (waxes......) were present at a ratio of 5.9 mol per 100 mol bacteriochlorophyll. Glycolipids constitute 60 % of the polar lipids while phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and an aminoglycosphingolipid make up respectively 15, 3, 8 and 12 %. A novel glycolipid was identified...... as a rhamnose derivative of monogalactosyldiacylglycerol, while the other major glycolipid was monogalactosyldiacylglycerol. Tetradecanoic acid was the major fatty acid in the aminoglycosphingolipid, while the other polar lipids contained predominantly hexandecanoic acid. The chlorosome waxes are esters...

  17. Lipid classification, structures and tools☆

    Science.gov (United States)

    Fahy, Eoin; Cotter, Dawn; Sud, Manish; Subramaniam, Shankar

    2012-01-01

    The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell biology, physiology and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively involved in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinformatics infrastructure involving a clearly defined classification of lipids, a state-of-the-art database system for molecular species and experimental data and a suite of user-friendly tools to assist lipidomics researchers. Herein, we discuss a number of recent developments by the LIPID MAPS bioinformatics core in pursuit of these objectives. This article is part of a Special Issue entitled Lipodomics and Imaging Mass Spectrometry. PMID:21704189

  18. Lipid classification, structures and tools.

    Science.gov (United States)

    Fahy, Eoin; Cotter, Dawn; Sud, Manish; Subramaniam, Shankar

    2011-11-01

    The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell biology, physiology and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively involved in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinformatics infrastructure involving a clearly defined classification of lipids, a state-of-the-art database system for molecular species and experimental data and a suite of user-friendly tools to assist lipidomics researchers. Herein, we discuss a number of recent developments by the LIPID MAPS bioinformatics core in pursuit of these objectives. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Spontaneous Lipid Nanodisc Fomation by Amphiphilic Polymethacrylate Copolymers.

    Science.gov (United States)

    Yasuhara, Kazuma; Arakida, Jin; Ravula, Thirupathi; Ramadugu, Sudheer Kumar; Sahoo, Bikash; Kikuchi, Jun-Ichi; Ramamoorthy, Ayyalusamy

    2017-12-27

    There is a growing interest in the use of lipid bilayer nanodiscs for various biochemical and biomedical applications. Among the different types of nanodiscs, the unique features of synthetic polymer-based nanodiscs have attracted additional interest. A styrene-maleic acid (SMA) copolymer demonstrated to form lipid nanodiscs has been used for structural biology related studies on membrane proteins. However, the application of SMA polymer based lipid nanodiscs is limited because of the strong absorption of the aromatic group interfering with various experimental measurements. Thus, there is considerable interest in the development of other molecular frameworks for the formation of polymer-based lipid nanodiscs. In this study, we report the first synthesis and characterization of a library of polymethacrylate random copolymers as alternatives to SMA polymer. In addition, we experimentally demonstrate the ability of these polymers to form lipid bilayer nanodiscs through the fragmentation of lipid vesicles by means of light scattering, electron microscopy, differential scanning calorimetry, and solution and solid-state NMR experiments. We further demonstrate a unique application of the newly developed polymer for kinetics and structural characterization of the aggregation of human islet amyloid polypeptide (also known as amylin) within the lipid bilayer of the polymer nanodiscs using thioflavin-T-based fluorescence and circular dichroism experiments. Our results demonstrate that the reported new styrene-free polymers can be used in high-throughput biophysical experiments. Therefore, we expect that the new polymer nanodiscs will be valuable in the structural studies of amyloid proteins and membrane proteins by various biophysical techniques.

  20. The effects of bacterial endotoxin on lipide metabolism. I. The responses of the serum lipides of rabbits to single and repeated injections of Shear's polysaccharide.

    Science.gov (United States)

    LEQUIRE, V S; HUTCHERSON, J D; HAMILTON, R L; GRAY, M E

    1959-08-01

    Single intravenous injections of Shear's polysaccharide in varying dosages invariably produced an elevation in the levels of the total serum lipides 24 hours after injection of endotoxin. The total serum cholesterol and lipide phosphorus were also affected, although they did not change with smaller doses of endotoxin and were rarely elevated to the same degree as were the total serum lipides. The degree of elevation of the serum lipides was apparently related to the amount of endotoxin injected up to a certain point, beyond which there was no further increase. There were two types of response to endotoxin by the serum lipides, a moderate increase and an uncontrolled increase. Higher dosages of endotoxin and fasting apparently increased the incidence of the latter response. No direct correlation could be made between serum lipide responses and histologic evidence typical of the generalized Shwartzman reaction following this regimen of endotoxin injection. The Shwartzman reaction did occur with greater frequency and with lower dosages of endotoxin in fasted animals. Animals given repeated injections of endotoxin showed an initial increase in serum lipides followed by a progressive decrease to normal levels as tolerance to the febrile action of endotoxin appeared. The febrile tolerance as well as the unresponsiveness of the serum lipides to endotoxin was abolished by thorium dioxide (thorotrast) in these animals. In similar experiments a "breakthrough" of lipide unresponsiveness to endotoxin was obtained by increasing the amount of endotoxin injected. Some of the implications of these results for the metabolic alterations produced by bacterial endotoxins are discussed.

  1. Lipid metabolism in rats fed diets containing different types of lipids

    Directory of Open Access Journals (Sweden)

    Águila Márcia Barbosa

    2002-01-01

    Full Text Available OBJECTIVE: To assess the effect of different types of lipid diets on the lipid metabolism of aging rats. METHODS: Fifty male Wistar rats were studied from the time of weaning to 12 and 18 months of age. Their diets were supplemented as follows: with soybean oil (S, canola oil (CA, lard and egg yolk (LE, and canola oil + lard and egg yolk (CA + LE. Blood pressure (BP was measured every month, and the heart/body ratio (H/BR was determined. The rats were euthanized at the age of 12 and 18 months, and blood samples were collected for lipid analysis as follows: total cholesterol (TC, LDL-C, VLDL-C, HDL-C, triglycerides (TG, and glucose. RESULTS: The type of oil ingested by the animals significantly altered BP, H/BR, and serum lipid levels in rats at 12 and 18 months. No difference was observed in the survival curve of the animals in the different groups. The LE group had the highest BP, and the CA group was the only one in which BP did not change with aging. A reduction in the H/BR was observed in the LE and CA+LE animals. At the age of 12 months, differences in TC, HDL-C, LDL-C, VLDL-C, TG, and glucose were observed. At the age of 18 months, a significant difference in TC, HDL-C, and glucose was observed. The highest TC value was found in the CA group and the lowest in the S group. CONCLUSION: No increase in BP occurred, and an improvement was evident in the lipid profile of rats fed a diet supplemented with CA, in which an elevation in HDL-C levels was observed, as compared with levels with the other types of diet.

  2. Obesogenic diets alter metabolism in mice.

    Science.gov (United States)

    Showalter, Megan R; Nonnecke, Eric B; Linderholm, A L; Cajka, Tomas; Sa, Michael R; Lönnerdal, Bo; Kenyon, Nicholas J; Fiehn, Oliver

    2018-01-01

    Obesity and accompanying metabolic disease is negatively correlated with lung health yet the exact mechanisms by which obesity affects the lung are not well characterized. Since obesity is associated with lung diseases as chronic bronchitis and asthma, we designed a series of experiments to measure changes in lung metabolism in mice fed obesogenic diets. Mice were fed either control or high fat/sugar diet (45%kcal fat/17%kcal sucrose), or very high fat diet (60%kcal fat/7% sucrose) for 150 days. We performed untargeted metabolomics by GC-TOFMS and HILIC-QTOFMS and lipidomics by RPLC-QTOFMS to reveal global changes in lung metabolism resulting from obesity and diet composition. From a total of 447 detected metabolites, we found 91 metabolite and lipid species significantly altered in mouse lung tissues upon dietary treatments. Significantly altered metabolites included complex lipids, free fatty acids, energy metabolites, amino acids and adenosine and NAD pathway members. While some metabolites were altered in both obese groups compared to control, others were different between obesogenic diet groups. Furthermore, a comparison of changes between lung, kidney and liver tissues indicated few metabolic changes were shared across organs, suggesting the lung is an independent metabolic organ. These results indicate obesity and diet composition have direct mechanistic effects on composition of the lung metabolome, which may contribute to disease progression by lung-specific pathways.

  3. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  4. Cholesterol absorption inhibitors as a therapeutic option for hypercholesterolaemia.

    Science.gov (United States)

    Burnett, John R; Huff, Murray W

    2006-11-01

    The development of cholesterol-lowering drugs (including a variety of statins, bile acid-binding resins and recently discovered inhibitors of cholesterol absorption) has expanded the options for cardiovascular prevention. Recent treatment guidelines emphasise that individuals at substantial risk for atherosclerotic coronary heart disease should meet defined targets for LDL cholesterol concentrations. Combination therapy with drugs that have different or complementary mechanisms of action is often needed to achieve lipid goals. Existing approaches to the treatment of hypercholesterolaemia are still ineffective in halting the progression of coronary artery disease in some patients despite combination therapies. Other patients are resistant to conventional drug treatment and remain at high risk for the development and progression of atherosclerotic cardiovascular disease and alternative approaches are needed. The discovery and development of ezetimibe (a novel, selective and potent cholesterol absorption inhibitor) has advanced the treatment of hypercholesterolaemia. New agents including the phytostanol preparation FM-VP4 and inhibitors of acyl coenzyme A:cholesterol acyltransferase, the apical Na(+)-dependent bile acid transporter and microsomal triglyceride transfer protein may also play a future role in combination therapy. This review focuses on the recent progress in the molecular mechanisms of intestinal cholesterol absorption and transport, and novel therapeutic approaches to inhibit the cholesterol absorption process.

  5. Probiotics and Other Key Determinants of Dietary Oxalate Absorption1

    OpenAIRE

    Liebman, Michael; Al-Wahsh, Ismail A.

    2011-01-01

    Oxalate is a common component of many foods of plant origin, including nuts, fruits, vegetables, grains, and legumes, and is typically present as a salt of oxalic acid. Because virtually all absorbed oxalic acid is excreted in the urine and hyperoxaluria is known to be a considerable risk factor for urolithiasis, it is important to understand the factors that have the potential to alter the efficiency of oxalate absorption. Oxalate bioavailability, a term that has been used to refer to that p...

  6. Research into energy absorption of liquid cabin subjected to close-range explosion

    Directory of Open Access Journals (Sweden)

    LI Siyu

    2017-01-01

    Full Text Available In order to study the energy absorption of different parts of a liquid cabin under a close-range explosion, a fluid-structure coupling model is built on the basis of experiments, and the deformation of the bulkhead and energy absorption ratio of different parts of the liquid cabin are analyzed, in which the influence of the water, bulkhead thickness ratio and water thickness are also discussed. The results show that the existence of a liquid medium can change the energy absorption model of a cabin. The total energy absorption is mainly affected by the front bulkhead thickness and water thickness, and alterations to the bulkhead thickness ratio or water thickness can also affect the deformation model of the bulkhead and energy absorption ratio of different parts of the cabin. A logical explanation of the energy absorption mechanisms of the liquid cabin is proposed, and some useful suggestions for designs are given.

  7. Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts

    NARCIS (Netherlands)

    Celis Ramirez, A.M.

    2017-01-01

    Malassezia yeasts are lipid-dependent fungal species that are common members of the human and animal skin microbiota. The lipid-dependency is a crucial trait in the adaptation process to grow on the skin but also plays a role in their pathogenic life style. Malassezia species can cause several skin

  8. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Solid Lipid Nanoparticles and Nanostructured Lipid. Carriers of Loratadine for Topical Application: Physicochemical Stability and Drug Penetration through. Rat Skin. Melike Üner1*, Ecem Fatma Karaman1 and Zeynep Aydoğmuş2. Istanbul University, Faculty of Pharmacy, 1Department of Pharmaceutical Technology, ...

  9. Update of the LIPID MAPS comprehensive classification system for lipids

    NARCIS (Netherlands)

    Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.|info:eu-repo/dai/nl/068570368; Wakelam, M.J.O.; Dennis, E.A.

    2009-01-01

    In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a “Comprehensive Classification System for Lipids” based on well-defined chemical and biochemical principles and using an ontology that is

  10. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Purpose: To prepare solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) of loratadine (LRT) for the treatment of allergic skin reactions. Methods: SLN and NLC were prepared by high pressure homogenization method. Their entrapment efficiency (EE) and loading capacity (LC) were determined.

  11. Dietary lipid-dependent regulation of de novo lipogenesis and lipid partitioning by ketogenic essential amino acids in mice.

    Science.gov (United States)

    Nishikata, N; Shikata, N; Kimura, Y; Noguchi, Y

    2011-03-28

    We have previously reported that dietary ketogenic amino acids (KAAs) modulate hepatic de novo lipogenesis (DNL) and prevent hepatic steatosis in mice. However, the dependence of the metabolic phenotypes generated by KAA on the type of dietary lipid source remains unclear. The aim of this study was to assess the effect of KAA combined with different dietary lipid sources on hepatic DNL and tissue lipid partitioning in mice. We compared three different KAA-supplemented diets, in which a portion of the dietary protein was replaced by five major essential amino acids (Leu, Ile, Val, Lys and Thr) in high-fat diets based on palm oil (PO), high-oleic safflower oil (FO) or soy oil (SO). To compare the effects of these diets in C57B6 mice, the differential regulation of DNL and dietary lipid partitioning due to KAA was assessed using stable isotopic flux analysis. The different dietary oils showed strikingly different patterns of lipid partitioning and accumulation in tissues. High-PO diets increased both hepatic and adipose triglycerides (TG), whereas high-FO and high-SO diets increased hepatic and adipose TG, respectively. Stable isotopic flux analysis revealed high rates of hepatic DNL in high-PO and high-FO diets, whereas it was reduced in the high-SO diet. KAA supplementation in high-PO and high-FO diets reduced hepatic TG by reducing the DNL of palmitate and the accumulation of dietary oleate. However, KAA supplementation in the high-SO diet failed to reduce hepatic DNL and TG. Interestingly, KAA reduced SO-induced accumulation of hepatic linoleate and enhanced SO-induced accumulation of dietary oleate. Overall, the reduction of hepatic TG by KAA is dependent on dietary lipid sources and occurs through the modulation of DNL and altered partitioning of dietary lipids. The current results provide further insight into the underlying mechanisms of hepatic lipid reduction by amino acids.

  12. Ultrasonic absorption in solid specimens

    International Nuclear Information System (INIS)

    Siwabessy, P.J. W.; Stewart, G.A.

    1996-01-01

    As part of a project to measure the absorption of high frequency (50 - 500 kHz) sonar signals in warm sea-water, a laboratory apparatus has been constructed and tested against room temperature distilled water and various solutions of MgSO 4 (chemical relaxation of MgSO 4 is the major contribution to absorption below 200 kHz). The technique involves monitoring the decay of an acoustic signal for different sizes of vessels of water suspended in an evacuated chamber. So far, all containing vessels used have been spherical in shape. Extrapolation of the results to infinite volume yields the absorption due to the water alone. In order to accommodate variations in temperature and pressure, and to make the system more robust (e.g. for ship deck usage), it is desirable to employ stainless steel vessels. However, it was found that the quality of the data was greatly improved when pyrex glass spheres were used. The stainless steel spheres were manufactured by welding together mechanically spun hemispheres. The linear frequency dependence characteristic of acoustic absorption in solids was observed (in contrast to the quadratic frequency dependence of acoustic absorption in water), and the acoustic absorption was found to depend strongly on the thermal history of the steel

  13. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.

    Science.gov (United States)

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio

    2017-09-01

    This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

  14. Solid lipid nanoparticles for parenteral drug delivery

    NARCIS (Netherlands)

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)

  15. Methods of synthesis of deuterium labelled lipids

    International Nuclear Information System (INIS)

    Bragina, N.A.; Chupin, V.V.

    1997-01-01

    Methods for synthesis of deuterium-labelled hydrophobic and hydrophilic lipid molecules and ways of obtaining selectively and completely deuterized phospholipids and their analogues are considered. The deuterium-labelled lipids are used for studies on structural organization and functioning of biological membranes, including studies with the NMP and neutron-diffraction methods of lipid-lipid and lipid-protein interactions

  16. Cinnamon extract regulates intestinal lipid metabolism related gene expression in primary enterocytes of rats

    Science.gov (United States)

    Emerging evidence suggests that the small intestine is not a passive organ, but is actively involved in the regulation of lipid absorption, intracellular transport, and metabolism, and is closely linked to systemic lipoprotein metabolism. We have reported previously that the water-soluble components...

  17. Alteration In Physiological And Biochemical Aspects Of GAMMA Irradiated Cotton Leaf Worm Separated Littorals (Boise.)

    International Nuclear Information System (INIS)

    EL-SHALL, S.S.A.; HAZAA, M.A.M.; ALM EL-DIN, M.M.S.

    2009-01-01

    This investigation was conducted on F 1 progeny of Spodoptera littoralis to determine the harmful effects of gamma irradiation on some biochemical variables in its larvae and adult tissues. Also, alterations in the antioxidant status, lipid peroxide levels and lipid profile were studied.The results obtained revealed that the doses of gamma irradiation (100 and 200 Gy), the insect stages (larvae, adults) and the sex effects on both sexes significantly decreased the levels of antioxidant enzymes (GSH, GPx, SOD).On the other hand, these factors elevated the levels of lipid peroxides and lipid profile (MDA, Chol, NEFA and Phospholipids). The interaction between the gamma dose, sex and insect stages gave the same previous trend for either antioxidant enzymes or lipid profile. The relationship between the alteration of biochemical variables that induced in irradiated insects and the activity of insects were discussed.

  18. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  19. Spectroscopic Studies of Mosquito Iridescent Virus, its Capsid Proteins, Lipids, and DNA

    International Nuclear Information System (INIS)

    Kravchenko, V.M.; Rud, Yu.P.; Buchatski, L.P.; Melnik, V.I.; Mogylchak, K.Yu.; Ladan, S.P.; Yashchuk, V.M.

    2012-01-01

    Mosquito iridescent virus (MIV) is an icosahedric lipid-containing virus which affects mosquitoes of Aedes, Culex, Culizeta genera. Apart from mosquitoes and other insects, iridoviruses cause the mass death of fish and can cause huge losses for industrial fish breedings. The MIV virion consists of a core of the genetic material (double-stranded viral DNA) surrounded by a capsid (icosahedral protein shell) and further encased in a lipid envelope. The aim of the work was to determine the role of MIV virion constituents (lipids, capsid proteins, and viral DNA) in the formation of spectral properties of the whole MIV virions. Measured are UV-Vis absorption, fluorescence, fluorescence excitation, and phosphorescence spectra of MIV virions, their capsid proteins, lipids, and viral DNA dissolved in various buffers. It is shown that the UV absorption of MIV virions is caused by the absorption of all virion constituents such as capsid proteins, lipids, and viral DNA. The fluorescence of MIV virions at room temperature is mainly due to the fluorescence of capsid proteins. The spectra measured at low temperatures make it possible to identify the type of a nucleic acid (DNA or RNA) inside the virion thanks to the fact that the DNA and RNA phosphorescence spectra are radically different.

  20. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  1. Comprehensive Lipidome-Wide Profiling Reveals Dynamic Changes of Tea Lipids during Manufacturing Process of Black Tea.

    Science.gov (United States)

    Li, Jia; Hua, Jinjie; Zhou, Qinghua; Dong, Chunwang; Wang, Jinjin; Deng, Yuliang; Yuan, Haibo; Jiang, Yongwen

    2017-11-22

    As important biomolecules in Camellia sinensis L., lipids undergo substantial changes during black tea manufacture, which is considered to contribute to tea sensory quality. However, limited by analytical capacity, detailed lipid composition and its dynamic changes during black tea manufacture remain unclear. Herein, we performed tea lipidome profiling using high resolution liquid chromatography coupled to mass spectrometry (LC-MS), which allows simultaneous and robust analysis of 192 individual lipid species in black tea, covering 17 (sub)classes. Furthermore, dynamic changes of tea lipids during black tea manufacture were investigated. Significant alterations of lipid pattern were revealed, involved with chlorophyll degradation, metabolic pathways of glycoglycerolipids, and other extraplastidial membrane lipids. To our knowledge, this report presented most comprehensive coverage of lipid species in black tea. This study provides a global and in-depth metabolic map of tea lipidome during black tea manufacture.

  2. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    Science.gov (United States)

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  3. The Flexibility of Ectopic Lipids

    Directory of Open Access Journals (Sweden)

    Hannah Loher

    2016-09-01

    Full Text Available In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL, skeletal (intramyocellular lipids; IMCL or cardiac muscle cells (intracardiomyocellular lipids; ICCL. Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass, insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  4. Neuroimaging of Lipid Storage Disorders

    Science.gov (United States)

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  5. Big, Fat World of Lipids

    Science.gov (United States)

    ... for a better understanding of these dynamics in human cells. Lipid Mechanics Omega-3 fatty acids-like those found in fish oil caplets-may control inflammation associated with diabetes, cancer and other diseases. Credit: Wikimedia Commons. Another important question about lipids ...

  6. Lipid and bile acid analysis

    NARCIS (Netherlands)

    Argmann, Carmen A.; Houten, Sander M.; Champy, Marie-France; Auwerx, Johan

    2006-01-01

    Lipids are important body constituents that are vital for cellular, tissue, and whole-body homeostasis. Lipids serve as crucial membrane components, constitute the body's main energy reservoir, and are important signaling molecules. As a consequence of these pleiotropic functions, many common

  7. The Flexibility of Ectopic Lipids.

    Science.gov (United States)

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-09-14

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  8. Fasting and nonfasting lipid levels

    DEFF Research Database (Denmark)

    Langsted, Anne; Freiberg, Jacob J; Nordestgaard, Børge G

    2008-01-01

    Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events.......Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events....

  9. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...

  10. Lipides polaires marins

    Directory of Open Access Journals (Sweden)

    Fanni Jacques

    2004-03-01

    Full Text Available Les lipides polaires marins, notamment les phospholipides (PL, retiennent depuis quelques années l’attention des chercheurs et des industriels en raison de leur composition, particulièrement riche en acides gras polyinsaturés à longue chaîne (AGPI-LC. Ils combinent ainsi les propriétés reconnues des AGPI-LC à l’intérêt métabolique et structural des phospholipides. Les sources sont nombreuses et d’accès très diversifié. Le défi industriel provient de leurs caractéristiques amphiphiles et aromatiques particulièrement marquées qui rend leur extraction très difficile.

  11. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Directory of Open Access Journals (Sweden)

    Christie A Bader

    Full Text Available Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in

  12. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Science.gov (United States)

    Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  13. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    Science.gov (United States)

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  14. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  16. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  17. Salivary composition in obese vs normal-weight subjects: towards a role in postprandial lipid metabolism?

    Science.gov (United States)

    Vors, C; Drai, J; Gabert, L; Pineau, G; Laville, M; Vidal, H; Guichard, E; Michalski, M-C; Feron, G

    2015-09-01

    In the pathophysiological context of obesity, oral exposure to dietary fat can modulate lipid digestion and absorption, but underlying in-mouth mechanisms have not been clearly identified. Therefore, we tested the hypothesis that salivary components related to dietary fat sensitivity would differ according to body mass index (BMI) and postprandial lipid metabolism in young men. Saliva was collected from nine normal-weight (BMI=22.3±0.5 kg m(-2)) and nine non-morbid obese (BMI=31.7±0.3 kg m(-2)) men before an 8-h postprandial metabolic exploration test involving the consumption of a 40-g fat meal, in which obese subjects revealed a delayed postprandial lipid metabolism. Nine salivary characteristics (flow, protein content, lipolysis, amylase, proteolysis, total antioxidant status, lysozyme, lipocalin 1 and carbonic anhydrase-VI) were investigated. We show that, under fasting conditions, salivary lipolysis was lower in obese vs normal-weight subjects, whereas proteolysis and carbonic anhydrase VI were higher. We reveal through multivariate and Mann-Whitney analysis that differences in fasting salivary lipolysis and proteolysis between both groups are related to differences in postprandial lipid metabolism including exogenous fatty-acid absorption and β-oxidation. These results suggest a potential role of salivary composition on postprandial lipid metabolism and bring novel causal hypotheses on the links between salivary composition, sensitivity to dietary fat oral income and postprandial lipid metabolism according to BMI.

  18. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  19. Postprandial lipids accelerate and redirect nitric oxide consumption in plasma.

    Science.gov (United States)

    Vrancken, Kurt; Schroeder, Hobe J; Longo, Lawrence D; Power, Gordon G; Blood, Arlin B

    2016-05-01

    Nitric oxide (NO) and O2 are both three-to four-fold more soluble in biological lipids than in aqueous solutions. Their higher concentration within plasma lipids accelerates NO autoxidation to an extent that may be of importance to overall NO bioactivity. This study was undertaken to test the hypothesis that increased plasma lipids after a high-fat meal appreciably accelerate NO metabolism and alter the byproducts formed. We found that plasma collected from subjects after consumption of a single high-fat meal had a higher capacity for NO consumption and consumed NO more rapidly compared to fasting plasma. This increased NO consumption showed a direct correlation with plasma triglyceride concentrations (p = 0.006). The accelerated NO consumption in postprandial plasma was reversed by removal of the lipids from the plasma, was mimicked by the addition of hydrophobic micelles to aqueous buffer, and could not be explained by the presence of either free hemoglobin or ceruloplasmin. The products of NO consumption were shifted in postprandial plasma, with 55% more nitrite (n = 12, p = 0.002) but 50% less SNO (n = 12, p = 0.03) production compared to matched fasted plasma. Modeling calculations indicated that NO autoxidation was accelerated by about 48-fold in the presence of plasma lipids. We conclude that postprandial triglyceride-rich lipoproteins exert a significant influence on NO metabolism in plasma. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-01-01

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  1. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  2. Effect of Maternal Obesity on Placental Lipid Metabolism.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Haghiac, Maricela; Minium, Judi; Glazebrook, Patricia; Ranasinghe, Geraldine Cheyana; Hoppel, Charles; Hauguel de-Mouzon, Sylvie; Catalano, Patrick; O'Tierney-Ginn, Perrie

    2017-08-01

    Obese women, on average, give birth to babies with high fat mass. Placental lipid metabolism alters fetal lipid delivery, potentially moderating neonatal adiposity, yet how it is affected by maternal obesity is poorly understood. We hypothesized that fatty acid (FA) accumulation (esterification) is higher and FA β-oxidation (FAO) is lower in placentas from obese, compared with lean women. We assessed acylcarnitine profiles (lipid oxidation intermediates) in mother-baby-placenta triads, in addition to lipid content, and messenger RNA (mRNA)/protein expression of key regulators of FA metabolism pathways in placentas of lean and obese women with normal glucose tolerance recruited at scheduled term Cesarean delivery. In isolated trophoblasts, we measured [3H]-palmitate metabolism. Placentas of obese women had 17.5% (95% confidence interval: 6.1, 28.7%) more lipid than placentas of lean women, and higher mRNA and protein expression of FA esterification regulators (e.g., peroxisome proliferator-activated receptor γ, acetyl-CoA carboxylase, steroyl-CoA desaturase 1, and diacylglycerol O-acyltransferase-1). [3H]-palmitate esterification rates were increased in trophoblasts from obese compared with lean women. Placentas of obese women had fewer mitochondria and a lower concentration of acylcarnitines, suggesting a decrease in mitochondrial FAO capacity. Conversely, peroxisomal FAO was greater in placentas of obese women. Altogether, these changes in placental lipid metabolism may serve to limit the amount of maternal lipid transferred to the fetus, restraining excess fetal adiposity in this population of glucose-tolerant women. Copyright © 2017 Endocrine Society.

  3. Transdermic absorption of Melagenina II

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, I.; Martinez Lopez, B.; Ruiz Pena, M.; Caso Pena, R.

    1997-01-01

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of ( 125I ) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  4. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  5. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses.

    Science.gov (United States)

    Köberlin, Marielle S; Snijder, Berend; Heinz, Leonhard X; Baumann, Christoph L; Fauster, Astrid; Vladimer, Gregory I; Gavin, Anne-Claude; Superti-Furga, Giulio

    2015-07-02

    Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The influence of non-polar lipids on tear film dynamics

    KAUST Repository

    Bruna, M.

    2014-04-04

    © 2014 Cambridge University Press. In this paper we examine the effect that physiological non-polar lipids, residing on the surface of an aqueous tear film, have on the film evolution. In our model we track the evolution of the thickness of the non-polar lipid layer, the thickness of the aqueous layer and the concentration of polar lipids which reside at the interface between the two. We also utilise a force balance in the non-polar lipid layer in order to determine its velocity. We show how to obtain previous models in the literature from our model by making particular choices of the parameters. We see the formation of boundary layers in some of these submodels, across which the concentration of polar lipid and the non-polar lipid velocity and film thickness vary. We solve our model numerically for physically realistic parameter values, and we find that the evolution of the aqueous layer and the polar lipid layer are similar to that described by previous authors. However, there are interesting dynamics for the non-polar lipid layer. The effects of altering the key parameters are highlighted and discussed. In particular, we see that the Marangoni number plays a key role in determining how far over the eye the non-polar lipid spreads.

  7. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high...... amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine...... in ether lipid metabolism and intracellular ether lipid trafficking....

  8. Overview of Cholesterol and Lipid Disorders

    Science.gov (United States)

    ... Goldberg, MD, Professor of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington ... Cholesterol and triglycerides are important fats (lipids) in the blood. Cholesterol ...

  9. Enhanced Oral Delivery of Bisphosphonate by Novel Absorption Enhancers: Improvement of Intestinal Absorption of Alendronate by N-Acyl Amino Acids and N-Acyl Taurates and Their Absorption-Enhancing Mechanisms.

    Science.gov (United States)

    Nakaya, Yuka; Takaya, Mayu; Hinatsu, Yuta; Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-12-01

    Bisphosphonates (BPs) are carbon-substituted pyrophosphate analogs that exhibit a high affinity to hydroxyapatite and specifically inhibit bone resorption. Alendronate sodium (sodium 4-amino-1-hydroxybutylidene-1,1-bisphosphonate trihydrate) is a typical BP compound in clinical use. BPs have very low bioavailability, typically intestinal absorption is further reduced by co-administered drugs or food. In this study, we examined the effects of N-acyl amino acids and N-acyl taurates on the small intestinal absorption of alendronate. All N-acyl amino acids and N-acyl taurates increased the small intestinal absorption of alendronate, especially 1% (wt/vol) sodium palmitoyl sarcosinate (PN), which elicited a 14-fold increase. In addition, the absorption-enhancing effects of these enhancers were reversible and they may not cause continuous and irreversible membrane toxicity in the rat small intestine. Furthermore, we examined the absorption-promoting mechanisms of PN and found that it increased the membrane fluidity of the lipid bilayers. In addition, it was found that PN may open the tight junctions by reducing the expression level of claudin-4, which is a major tight junction protein. These findings indicate that these enhancers are useful for promoting the intestinal absorption of alendronate. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Kaushal Kumar Mahto

    Full Text Available A critical question among the researchers working on fungal lipid biology is whether the use of an enriched growth medium can affect the lipid composition of a cell and, therefore, contribute to the observed phenotypes. One presumption is that enriched medias, such as YPD (yeast extract, peptone and dextrose, are likely to contain lipids, which may homogenize with the yeast lipids and play a role in masking the actual differences in the observed phenotypes or lead to an altered phenotype altogether. To address this issue, we compared the lipids of Candida albicans, our fungus of interest, grown in YPD or in a defined media such as YNB (yeast nitrogen base. Mass spectrometry-based lipid analyses showed differences in the levels of phospholipids, including phosphatidylinositol, phosphatidylglycerol, lyso-phospholipids; sphingolipids, such as mannosyldiinositolphosphorylceramide; and sterols, such as ergostatetraenol. Significant differences were observed in 70 lipid species between the cells grown in the two media, but the two growth conditions did not affect the morphological characteristics of C. albicans. The lipid profiles of the YNB- and YPD-grown C. albicans cells did vary, but these differences did not influence their response to the majority of the tested agents. Rather, the observed differences could be attributed to the slow growth rate of the Candida cells in YNB compared to YPD. Notably, the altered lipid changes between the two media did impact the susceptibility to some drugs. This data provided evidence that changes in media can lead to certain lipid alterations, which may affect specific pathways but, in general, do not affect the majority of the phenotypic properties of C. albicans. It was determined that either YNB or YPD may be suitable for the growth and lipid analysis of C. albicans, depending upon the experimental requirements, but additional precautions are necessary when correlating the phenotypes with the lipids.

  11. An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans.

    Science.gov (United States)

    Mahto, Kaushal Kumar; Singh, Ashutosh; Khandelwal, Nitesh Kumar; Bhardwaj, Nitin; Jha, Jaykar; Prasad, Rajendra

    2014-01-01

    A critical question among the researchers working on fungal lipid biology is whether the use of an enriched growth medium can affect the lipid composition of a cell and, therefore, contribute to the observed phenotypes. One presumption is that enriched medias, such as YPD (yeast extract, peptone and dextrose), are likely to contain lipids, which may homogenize with the yeast lipids and play a role in masking the actual differences in the observed phenotypes or lead to an altered phenotype altogether. To address this issue, we compared the lipids of Candida albicans, our fungus of interest, grown in YPD or in a defined media such as YNB (yeast nitrogen base). Mass spectrometry-based lipid analyses showed differences in the levels of phospholipids, including phosphatidylinositol, phosphatidylglycerol, lyso-phospholipids; sphingolipids, such as mannosyldiinositolphosphorylceramide; and sterols, such as ergostatetraenol. Significant differences were observed in 70 lipid species between the cells grown in the two media, but the two growth conditions did not affect the morphological characteristics of C. albicans. The lipid profiles of the YNB- and YPD-grown C. albicans cells did vary, but these differences did not influence their response to the majority of the tested agents. Rather, the observed differences could be attributed to the slow growth rate of the Candida cells in YNB compared to YPD. Notably, the altered lipid changes between the two media did impact the susceptibility to some drugs. This data provided evidence that changes in media can lead to certain lipid alterations, which may affect specific pathways but, in general, do not affect the majority of the phenotypic properties of C. albicans. It was determined that either YNB or YPD may be suitable for the growth and lipid analysis of C. albicans, depending upon the experimental requirements, but additional precautions are necessary when correlating the phenotypes with the lipids.

  12. Lipid composition of human meibum

    Directory of Open Access Journals (Sweden)

    R. Schnetler

    2013-12-01

    Full Text Available The structure and function of meibomian gland lipids in the tear film are highly complex. Evidence shows that the precorneal tear film consists of discrete layers: the inner mucin layer, the middle aqueous layer and the outer lipid layer. In this review we focus on the outer, biphasic lipid layer of the tear film which consists of a ‘thick’ outer, non-polar layer  and a ‘thin’ inner, polar layer. We discuss the main composition of the polar and non-polar lipids within meibum (wax esters, cholesteryl esters, mono-, di- and tri-acylglycerols, ceramides, phospholipids  et cetera. We address the composition of meibomian lipids in subjects suffering from various ocular diseases in comparison with the composition in healthy individuals. Further analysis is needed to determine whether a correlation exists between the etiology of various ocular diseases and the fluctuation on the lipids as well as to establish whether or not tear lipid analysis can be used as a diagnostic tool.

  13. Derivatization and detection of small aliphatic and lipid-bound carbonylated lipid peroxidation products by ESI-MS.

    Science.gov (United States)

    Milic, Ivana; Fedorova, Maria

    2015-01-01

    Double bonds in polyunsaturated fatty acids (PUFA) and lipids are one of the major targets of reactive oxygen species (ROS). The resulting lipid peroxidation products (LPP) represent a group of chemically diverse compounds formed by several consecutive oxidative reactions. Oxidative cleavage leads to the formation of small aliphatic and lipid-bound aldehydes and ketones (oxoLPPs). These strong electrophiles can readily react with nucleophilic substrates, for example, side chains in proteins which can alter structure, function, and cellular distribution of the modified proteins. Despite growing interest in the field of oxidative lipidomics, only a few dominantly formed oxoLPP were identified. Due to the chemical and physical properties, aliphatic oxoLPPs are usually analyzed using gas chromatography-mass spectrometry (GC- MS), while nonvolatile lipid-bound oxoLPPs require liquid chromatography-mass spectrometry (LC-MS). To overcome the need for the two analyses, we have developed a new derivatization strategy to capture all oxoLPP independent to their properties with electrospray ionization (ESI) MS allowing simultaneous detection of aliphatic and lipid-bound oxoLPPs. Thus, the 7-(diethylamino)coumarin-3-carbohydrazide (CHH) derivatization reagent allowed us to identify 122 carbonyl compounds in a mixture of four PUFA and phosphatidylcholines (PC) oxidized in vitro.

  14. Succinobucol’s New Coat — Conjugation with Steroids to Alter Its Drug Effect and Bioavailability

    Directory of Open Access Journals (Sweden)

    Satu Ikonen

    2011-11-01

    Full Text Available Synthesis, detailed structural characterization (X-ray, NMR, MS, IR, elemental analysis, and studies of toxicity, antioxidant activity and bioavailability of unique potent anti-atherosclerotic succinobucol-steroid conjugates are reported. The conjugates consist of, on one side, the therapeutically important drug succinobucol ([4-{2,6-di-tert-butyl-4-[(1-{[3-tert-butyl-4-hydroxy-5-(propan-2-ylphenyl]sulfanyl}ethylsulfanyl]phenoxy}-4-oxo-butanoic acid] possessin