WorldWideScience

Sample records for alters keratinocytes expression

  1. Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes

    OpenAIRE

    Paaske Utheim, Tor; Islam, Rakibul; Fostad, Ida G.; Eidet, Jon R.; Sehic, Amer; Ole K Olstad; Dartt, Darlene A.; Messelt, Edward B.; Griffith, May; Pasovic, Lara

    2016-01-01

    Purpose Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12 degrees C compared to 4 degrees C and 37 degrees C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4 degrees C, 12 degrees C, and 37 degrees C was assessed. Materi...

  2. Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes

    Science.gov (United States)

    Utheim, Tor Paaske; Islam, Rakibul; Fostad, Ida G.; Eidet, Jon R.; Sehic, Amer; Olstad, Ole K.; Dartt, Darlene A.; Messelt, Edward B.; Griffith, May; Pasovic, Lara

    2016-01-01

    Purpose Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed. Materials and Methods Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR. Results Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C. Conclusion HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell

  3. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  4. Abnormal hair follicle development and altered cell fate of follicular keratinocytes in transgenic mice expressing ΔNp63α

    OpenAIRE

    Romano, Rose-Anne; Smalley, Kirsten; Liu, Song; Sinha, Satrajit

    2010-01-01

    The transcription factor p63 plays an essential role in epidermal morphogenesis. Animals lacking p63 fail to form many ectodermal organs, including the skin and hair follicles. Although the indispensable role of p63 in stratified epithelial skin development is well established, relatively little is known about this transcriptional regulator in directing hair follicle morphogenesis. Here, using specific antibodies, we have established the expression pattern of ΔNp63 in hair follicle developmen...

  5. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    Science.gov (United States)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  6. H-ras expression in immortalized keratinocytes produces an invasive epithelium in cultured skin equivalents.

    Directory of Open Access Journals (Sweden)

    Melville B Vaughan

    Full Text Available BACKGROUND: Ras proteins affect both proliferation and expression of collagen-degrading enzymes, two important processes in cancer progression. Normal skin architecture is dependent both on the coordinated proliferation and stratification of keratinocytes, as well as the maintenance of a collagen-rich basement membrane. In the present studies we sought to determine whether expression of H-ras in skin keratinocytes would affect these parameters during the establishment and maintenance of an in vitro skin equivalent. METHODOLOGY/PRINCIPAL FINDINGS: Previously described cdk4 and hTERT immortalized foreskin keratinocytes were engineered to express ectopically introduced H-ras. Skin equivalents, composed of normal fibroblast-contracted collagen gels overlaid with keratinocytes (immortal or immortal expressing H-ras, were prepared and incubated for 3 weeks. Harvested tissues were processed and sectioned for histology and antibody staining. Antigens specific to differentiation (involucrin, keratin-14, p63, basement-membrane formation (collagen IV, laminin-5, and epithelial to mesenchymal transition (EMT; e-cadherin, vimentin were studied. Results showed that H-ras keratinocytes produced an invasive, disorganized epithelium most apparent in the lower strata while immortalized keratinocytes fully stratified without invasive properties. The superficial strata retained morphologically normal characteristics. Vimentin and p63 co-localization increased with H-ras overexpression, similar to basal wound-healing keratinocytes. In contrast, the cdk4 and hTERT immortalized keratinocytes differentiated similarly to normal unimmortalized keratinocytes. CONCLUSIONS/SIGNIFICANCE: The use of isogenic derivatives of stable immortalized keratinocytes with specified genetic alterations may be helpful in developing more robust in vitro models of cancer progression.

  7. Quantitative analysis of laminin 5 gene expression in human keratinocytes.

    Science.gov (United States)

    Akutsu, Nobuko; Amano, Satoshi; Nishiyama, Toshio

    2005-05-01

    To examine the expression of laminin 5 genes (LAMA3, LAMB3, and LAMC2) encoding the three polypeptide chains alpha3, beta3, and gamma2, respectively, in human keratinocytes, we developed novel quantitative polymerase chain reaction (PCR) methods utilizing Thermus aquaticus DNA polymerase, specific primers, and fluorescein-labeled probes with the ABI PRISM 7700 sequence detector system. Gene expression levels of LAMA3, LAMB3, and LAMC2 and glyceraldehyde-3-phosphate dehydrogenase were quantitated reproducibly and sensitively in the range from 1 x 10(2) to 1 x 10(8) gene copies. Basal gene expression level of LAMB3 was about one-tenth of that of LAMA3 or LAMC2 in human keratinocytes, although there was no clear difference among immunoprecipitated protein levels of alpha3, beta3, and gamma2 synthesized in radio-labeled keratinocytes. Human serum augmented gene expressions of LAMA3, LAMB3, and LAMC2 in human keratinocytes to almost the same extent, and this was associated with an increase of the laminin 5 protein content measured by a specific sandwich enzyme-linked immunosorbent assay. These results demonstrate that the absolute mRNA levels generated from the laminin 5 genes do not determine the translated protein levels of the laminin 5 chains in keratinocytes, and indicate that the expression of the laminin 5 genes may be controlled by common regulation mechanisms. PMID:15854126

  8. Sodium fluoride influences the expression of keratins in cultured keratinocytes

    OpenAIRE

    Prado, Euridice; Wurtz, Tilmann; Ferbus, Didier; Shabana, El-Hassan; FOREST, Nadine; Berdal, Ariane

    2010-01-01

    Epithelia in lung, skin, and kidney are often exposed to fluoride, and tissue damage in lung and kidney due to fluoride is well documented. Nevertheless, the biological effects of fluoride on epithelia are poorly investigated. In the present study, we report effects of sodium fluoride (NaF) on the differentiation of a human epithelial cell line, HaCaT. These cells may serve as a keratinocyte model, because they express a wide spectrum of keratins (Ks), and they associate into stratified tissu...

  9. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    International Nuclear Information System (INIS)

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity

  10. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice.

    OpenAIRE

    Guo, L.; Yu, Q C; E. Fuchs

    1993-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. Synthesized by cells of the dermal component of skin, KGF's potent mitogenic activity is on the epidermal component, which harbors the receptors for this factor. To explore the possible role of KGF in mesenchymal-epithelial interactions in skin, we used a human keratin 14 promoter to target expression of human KGF cDNA to the stratified squamous epithelia of transgenic mice. Mice expressing KGF in their...

  11. Expression and modulation of nerve growth factor in murine keratinocytes (PAM 212)

    International Nuclear Information System (INIS)

    Nerve growth factor (NGF) is a polypeptide that is required for normal development and maintenance of the sympathetic and sensory nervous systems. Skin has been shown to contain relatively high amounts of NGF, which is in keeping with the finding that the quantity of NGF in a tissue is proportional to the extent of sympathetic innervation of that organ. Since the keratinocyte, a major cellular constituent of the skin, is known to produce other growth factors and cytokines, our experiments were designed to determine whether keratinocytes are a source of NGF. Keratinocyte-conditioned media from the keratinocyte cell line PAM 212 contained NGF-like activity, approximately 2-3 ng/ml, as detected by the neurite outgrowth assay. Freshly isolated BALB/c keratinocytes contained approximately 0.1 ng/ml. Using a cDNA probe directed against NGF, we demonstrated the presence of a 1.3-kb NGF mRNA in both PAM 212 and BALB/c keratinocytes. Since ultraviolet radiation (UV) is a potentially important modulating factor for cytokines in skin, we examined the effect of UV on NGF mRNA expression. Although UV initially inhibited the expression of keratinocyte NGF mRNA (4 h), by 24 h an induction of NGF mRNA was seen. The NGF signal could also be induced by phorbol esters. Thus, keratinocytes synthesize and express NGF, and its expression is modulated by UVB and phorbol esters

  12. H-Ras Expression in Immortalized Keratinocytes Produces an Invasive Epithelium in Cultured Skin Equivalents

    OpenAIRE

    Melville B Vaughan; Ramirez, Ruben D.; Andrews, Capri M.; Wright, Woodring E.; Shay, Jerry W.

    2009-01-01

    BACKGROUND: Ras proteins affect both proliferation and expression of collagen-degrading enzymes, two important processes in cancer progression. Normal skin architecture is dependent both on the coordinated proliferation and stratification of keratinocytes, as well as the maintenance of a collagen-rich basement membrane. In the present studies we sought to determine whether expression of H-ras in skin keratinocytes would affect these parameters during the establishment and maintenance of an in...

  13. RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Meleri Jones

    2014-01-01

    Full Text Available Varicella zoster virus (VZV is the etiological agent of chickenpox and shingles, diseases characterized by epidermal skin blistering. Using a calcium-induced keratinocyte differentiation model we investigated the interaction between epidermal differentiation and VZV infection. RNA-seq analysis showed that VZV infection has a profound effect on differentiating keratinocytes, altering the normal process of epidermal gene expression to generate a signature that resembles patterns of gene expression seen in both heritable and acquired skin-blistering disorders. Further investigation by real-time PCR, protein analysis and electron microscopy revealed that VZV specifically reduced expression of specific suprabasal cytokeratins and desmosomal proteins, leading to disruption of epidermal structure and function. These changes were accompanied by an upregulation of kallikreins and serine proteases. Taken together VZV infection promotes blistering and desquamation of the epidermis, both of which are necessary to the viral spread and pathogenesis. At the same time, analysis of the viral transcriptome provided evidence that VZV gene expression was significantly increased following calcium treatment of keratinocytes. Using reporter viruses and immunohistochemistry we confirmed that VZV gene and protein expression in skin is linked with cellular differentiation. These studies highlight the intimate host-pathogen interaction following VZV infection of skin and provide insight into the mechanisms by which VZV remodels the epidermal environment to promote its own replication and spread.

  14. The expression of P63 protein in some keratinocyte original tissues and cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To examine the expression patterns of p63 in tissues of particular keratinocyte original hyperproliferate diseases and variety cell types for determining if P63 is the marker of proliferative potential keratinocytes.Methods:P63 protein Was detected and analyzed by immunoreacdvity method and Western blot in biopsy specimens of keratinocyte original disorders including squamous cell carcinomas SCC,basal cell carcinomas BCC,Bowen's disease and other tissues or cells,such as psoriasis vulgaris,normal skin tissues,primary cultured keratinocytes,immortal HaCaT cells,and epidermoid carcinoma cells A431.Results:P63 protein was expressed in the nuclei of basal and suprabasal layer of the epidermis,germinative cells of sebaceous glands in normal epidermal.P63 was strongly and diffusely detected in the majority of tumor cells in BCC and poorly-differentiated SCC.In Bowen's disease,p63expresses are remarkable in all cell layers.In the psoriasis plaque epidermal,p63 expressed mainly in basal cells and part of spinous cells.P63 expressed more strongly in primary cultured keratinocytes than in A431 cells or HaCaT cells.Conclusion:P63 is a nuclei marker of undifferentiated keratinocytes with the proliferative potential and may disrupt the terminal differentiation.The overexpression of p63 reflects immaturity of the tumor cells.The immunohistochemical staining of p63 may be useful for investigating the origin and differentiation of tumor cells.

  15. Inhibition of Inflammatory Gene Expression in Keratinocytes Using a Composition Containing Carnitine, Thioctic Acid and Saw Palmetto Extract

    Directory of Open Access Journals (Sweden)

    Sridar Chittur

    2011-01-01

    Full Text Available Chronic inflammation of the hair follicle (HF is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA. Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4 associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.

  16. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    International Nuclear Information System (INIS)

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  17. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Mishin, Vladimir; Black, Adrienne T. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Shakarjian, Michael P. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Kong, Ah-Ng Tony; Laskin, Debra L. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  18. H(+)/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport.

    Science.gov (United States)

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-01

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H(+) gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. PMID:27216463

  19. Analysis of aquaporin 9 expression in human epidermis and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Yoshinori Sugiyama

    2014-01-01

    Full Text Available Aquaporin 9 (AQP9 is a member of the aquaglyceroporin family that transports glycerol, urea and other small solutes as well as water. Compared to the expression and function in epidermal keratinocytes of AQP3, another aquaglyceroporin, our knowledge of epidermal AQP9 remains elusive. In this study, we investigated the expression of AQP9 in the human epidermis and cultured keratinocytes. Immunofluorescence studies revealed that AQP9 expression is highly restricted to the stratum granulosum of the human epidermis, where occludin is also expressed at the tight junctions. Interestingly, the AQP3 staining decreased sharply below the cell layers in which AQP9 is expressed. In cultured normal human epidermal keratinocytes (NHEK, knock-down of AQP9 expression in the differentiated cells induced by RNA interference reduced glycerol uptake, which was not as pronounced as was the case with AQP3 knock-down cells. In contrast, similar reduction of urea uptake was detected in AQP9 and AQP3 knock-down cells. These findings suggested that AQP9 expression in NHEK facilitates at least the transport of glycerol and urea. Finally, we analyzed the effect of retinoic acid (RA, a potent stimulator of keratinocyte proliferation, on AQP3 and AQP9 mRNA expression in differentiated NHEK. Stimulation with RA at 1 μM for 24 h augmented AQP3 expression and down-regulated AQP9 expression. Collectively, these results indicate that AQP9 expression in epidermal keratinocytes is regulated in a different manner from that of AQP3.

  20. Enhancing effect of tazarotene on the HLA-DR expression of cultured human keratinocytes induced by interferon-gamma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-gan; TAN Sheng-shun

    2005-01-01

    Objective: To investigate the effect of tazarotene on the expression of HLA-DR induced by IFN-γ. Methods: (1) Keratinocytes from normal human skin were cultured in vitro;(2) Tazarotene, IFN-γ and the combination of the two compounds were incubated with the keratinocytes in medium, respectively. The expression of HLA-DR in keratinocytes was determined using immunocytochemistry techniques at 24h after incubation. Results: (1) There was rare expression of HLA-DR in normal human keratinocytes; (2) 10-6mol/L tazarotene failed to induce the expression of HLA-DR in keratinocytes at 24h after incubation; (3) 500 U/ml IFN-γ obviously induced the HLA-DR expression in keratinocytes at 24h after treatment; (4) After 24h, 10-7-10-5 mol/L tazarotene had a significantly enhancing effect on the expression of HLA-DR induced by IFN-γ (P<0.005). Conclusion: Tazarotene up-regulates the expression of HLA-DR in keratinocytes cultured in vitro when combined with IFN-γ . Therefore, the reduction of HLA-DR positive keratinocytes in psoriatic lesions may be attributed to not direct interaction of tazarotene in combination with IFN-γ but other pathways.

  1. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions

    OpenAIRE

    Ramirez, Vincent P.; Stamatis, Michael; Shmukler, Anastasia; Aneskievich, Brian J.

    2014-01-01

    Epidermal keratinocytes serve as the primary barrier between the body and environmental stressors. They are subjected to numerous stress events and are likely to respond with a repertoire of heat shock proteins (HSPs). HSPA6 (HSP70B′) is described in other cell types with characteristically low to undetectable basal expression, but is highly stress induced. Despite this response in other cells, little is known about its control in keratinocytes. We examined endogenous human keratinocyte HSPA6...

  2. Investigation on etretin effects on expression of Fas/FasL ligand and apoptosis in cultured human keratinocytes

    Institute of Scientific and Technical Information of China (English)

    Ping Liu; Shunsheng Tan; Yanping Xi; Zhenping Cao

    2005-01-01

    Objective: To further illuminate a possibme mechanism of Fas/FasL in the treatment of psoriasis, the expression of it and apoptosis of KC were investigated. Methods: With cell culture,immunocytochemistry, the expression of Fas/FasL protein after the treatment with etretin was observed in cultured human normal keratinocytes. Then, the state of apoptosis in cultured keratinocyte after stimuwasn't involved in apoptosis in cultured normol human keratinocytes. But during limited period, the apoptosis of KC could be induced by etretin, thus it can antagonize benign proliferate of keratinocytes. Our data showed up-regulation of the expression of Fas/FasL and apoptosis in cultured human keratinocytes stimulated by etretin, and its function may be involved in the therapeutic machanism of psoriasis.

  3. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Declan J., E-mail: dj.mckenna@ulster.ac.uk [Biomedical Sciences Research Institute, University of Ulster, Coleraine, Co. Derry BT52 1SA (United Kingdom); Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); Patel, Daksha, E-mail: d.patel@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom); McCance, Dennis J., E-mail: d.mccance@qub.ac.uk [Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen' s University Belfast, Belfast BT9 7BL (United Kingdom)

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  4. Candidate EDA targets revealed by expression profiling of primary keratinocytes from Tabby mutant mice

    Science.gov (United States)

    Esibizione, Diana; Cui, Chang-Yi; Schlessinger, David

    2009-01-01

    EDA, the gene mutated in anhidrotic ectodermal dysplasia, encodes ectodysplasin, a TNF superfamily member that activates NF-kB mediated transcription. To identify EDA target genes, we have earlier used expression profiling to infer genes differentially expressed at various developmental time points in Tabby (Eda-deficient) compared to wild-type mouse skin. To increase the resolution to find genes whose expression may be restricted to epidermal cells, we have now extended studies to primary keratinocyte cultures established from E19 wild-type and Tabby skin. Using microarrays bearing 44,000 gene probes, we found 385 preliminary candidate genes whose expression was significantly affected by Eda loss. By comparing expression profiles to those from Eda-A1 transgenic skin, we restricted the list to 38 “candidate EDA targets”, 14 of which were already known to be expressed in hair follicles or epidermis. We confirmed expression changes for 3 selected genes, Tbx1, Bmp7, and Jag1, both in keratinocytes and in whole skin, by Q-PCR and Western blotting analyses. Thus, by the analysis of keratinocytes, novel candidate pathways downstream of EDA were detected. PMID:18848976

  5. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model.

    Science.gov (United States)

    Irfan-Maqsood, M; Matin, M M; Heirani-Tabasi, A; Bahrami, M; Naderi-Meshkin, H; Mirahmadi, M; Hassanzadeh, H; Sanjar Moussavi, N; Raza-Shah, H; Raeesolmohaddeseen, M; Bidkhori, H; Bahrami, A R

    2016-01-01

    Cutaneous wound healing is a complex type of biological event involving proliferation, differentiation, reprograming, trans/de-differentiation, recruitment, migration, and apoptosis of a number of cells (keratinocytes, fibroblasts, endothelial cells, nerve cells and stem cells) to regenerate a multi-layered tissue that is damaged by either internal or external factors. The exact regeneration mechanism of damaged skin is still unknown but the epithelial and other kinds of stem cells located in skin play crucial roles in the healing process. In this work, a co-culture model composed of adipose derived mesenchymal stem cells and keratinocytes was developed to understand the cellular differentiation behaviour in wound healing. Human mesenchymal stem cells were isolated from waste lipoaspirates. Keratinocytes were isolated from neonatal rats skin as well from human adult skin. Both types of cells were cultured and their culturing behaviour was observed microscopically under regular intervals of time. The identity of both cells was confirmed by flow cytometry and qRT-PCR. Cells were co-cultured under the proposed co-culturing model and the model was observed for 7, 14 and 21 days. The cellular behaviour was studied based on change in morphology, colonization, stratification, migration and expression of molecular markers. Expression of molecular markers was studied at transcriptional level and change in cellular morphology and migration capabilities was observed under the invert microscope regularly. Successfully isolated and characterized mesenchymal stem cells were found to express keratinocyte lineage markers i.e. K5, K10, K14, K18, K19 and Involucrin when co-cultured with keratinocytes after 14 and 21 days. Their expression was found to increase by increasing the time span of cell culturing. The keratinocyte colonies started to disappear after 10 days of culturing which might be due to stratification process initiated by possibly transdifferentiated stem cells. It can

  6. Expression of Keratin K2e in Cutaneous and Oral Lesions : Association with Keratinocyte Activation, Proliferation, and Keratinization

    OpenAIRE

    Bloor, Balvinder K.; Tidman, Nicholas; Leigh, Irene M; Odell, Edward; Dogan, Bilal; Wollina, Uwe; Ghali, Lucy; Waseem, Ahmad

    2003-01-01

    The cytoskeleton in keratinocytes is a complex of highly homologous structural proteins derived from two families of type I and type II polypeptides. Keratin K2e is a type II polypeptide that is expressed in epidermis late in differentiation. Here we report the influence of keratinocyte activation, proliferation, and keratinization on K2e expression in samples of cutaneous and oral lesions. The normal expression of K2e in the upper spinous and granular layers of interfollicular epidermis is i...

  7. Skin Barrier Defects Caused by Keratinocyte-Specific Deletion of ADAM17 or EGFR Are Based on Highly Similar Proteome and Degradome Alterations.

    Science.gov (United States)

    Tholen, Stefan; Wolf, Cristina; Mayer, Bettina; Knopf, Julia D; Löffek, Stefanie; Qian, Yawen; Kizhakkedathu, Jayachandran N; Biniossek, Martin L; Franzke, Claus-Werner; Schilling, Oliver

    2016-05-01

    Keratinocyte-specific deletion of ADAM17 in mice impairs terminal differentiation of keratinocytes leading to severe epidermal barrier defects. Mice deficient for ADAM17 in keratinocytes phenocopy mice with a keratinocyte-specific deletion of epidermal growth factor receptor (EGFR), which highlights the role of ADAM17 as a "ligand sheddase" of EGFR ligands. In this study, we aim for the first proteomic/degradomic approach to characterize the disruption of the ADAM17-EGFR signaling axis and its consequences for epidermal barrier formation. Proteomic profiling of the epidermal proteome of mice deficient for either ADAM17 or EGFR in keratinocytes at postnatal days 3 and 10 revealed highly similar protein alterations for ADAM17 and EGFR deficiency. These include massive proteome alterations of structural and regulatory components important for barrier formation such as transglutaminases, involucrin, filaggrin, and filaggrin-2. Cleavage site analysis using terminal amine isotopic labeling of substrates revealed increased proteolytic processing of S100 fused-type proteins including filaggrin-2. Alterations in proteolytic processing are supported by altered abundance of numerous proteases upon keratinocyte-specific Adam17 or Egfr deletion, among them kallikreins, cathepsins, and their inhibitors. This study highlights the essential role of proteolytic processing for maintenance of a functional epidermal barrier. Furthermore, it suggests that most defects in formation of the postnatal epidermal barrier upon keratinocyte-specific ADAM17 deletion are mediated via EGFR. PMID:27089454

  8. Expression profiling of human keratinocyte response to ultraviolet A: implications in apoptosis.

    Science.gov (United States)

    He, Yu-Ying; Huang, Jian-Li; Sik, Robert H; Liu, Jie; Waalkes, Michael P; Chignell, Colin F

    2004-02-01

    Ultraviolet A radiation from sunlight is a major human health concern, as it is not absorbed by the ozone layer and can deeply penetrate into the skin causing skin damage. To study the molecular mechanism involved in the ultraviolet A effect, human HaCaT keratinocytes were exposed to ultraviolet A at doses of 10 J per cm2 and 30 J per cm2. Ultraviolet A irradiation caused dose- and time-dependent apoptotic cell death, as evidenced by DNA fragmentation, flow cytometry, and the activation of caspase-3. To study the genes altered by ultraviolet A at an apoptosis-inducing dose (30 J per cm2), cells were harvested immediately after ultraviolet A treatment (0 h), and 6 h and 24 h after ultraviolet A exposure. Total RNA was extracted for microarray and real-time RT-PCR analysis, and cellular proteins were extracted for western blot analysis. Of the selected critical genes/proteins, the induction of c-Jun, c-myc, and p33ING1, and the repression of epidermal growth factor receptor, inhibitor of apoptosis protein, and survivin pathways, could be involved in ultraviolet-A-induced apoptosis. On the other hand, the late induction of cyclin D1 and cyclin-dependent kinase 4 was indicative of possible cell cycle recovery in surviving cells. Real-time RT-PCR analysis confirmed these results and a majority of the protein levels paralleled their corresponding RNA levels. In addition, ultraviolet A treatment altered the expression of genes involved in signal transduction, RNA processing, structural proteins, and metabolism in a time-dependent manner. This initial microarray analysis could advance our understanding of cellular responses to ultraviolet A exposure, and provide a platform from which to further study ultraviolet-A-induced apoptosis and carcinogenesis. PMID:15009741

  9. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    International Nuclear Information System (INIS)

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  10. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ge [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Department of Dermatology, The First Affiliated Hospital, Guangxi Traditional Chinese Medical University, Guangxi, Nanning, 530023 (China); Sohn, Kyung-Cheol; Choi, Tae-Young; Choi, Dae-Kyoung; Lee, Sang-Sin [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Ou, Bai-sheng [Department of Dermatology, The First Affiliated Hospital, Guangxi Traditional Chinese Medical University, Guangxi, Nanning, 530023 (China); Kim, Sooil; Lee, Young Ho [Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Yoon, Tae-Jin [Department of Dermatology, School of Medicine, Gyeongsang National University, Jinju, 660-702 (Korea, Republic of); Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, 660-702 (Korea, Republic of); Kim, Seong-Jin [Department of Dermatology, Chonnam National University Medical School, Gwangju, 501-757 (Korea, Republic of); Lee, Young; Seo, Young-Joon; Lee, Jeung-Hoon [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Kim, Chang Deok, E-mail: cdkimd@cnu.ac.kr [Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of)

    2010-11-15

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  11. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    OpenAIRE

    Komoto, Tatiana Takahasi; Bitencourt, Tamires Aparecida; Silva, Gabriel; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2015-01-01

    Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solan...

  12. Keratinocyte growth factor-2 stimulates P-glycoprotein expression and function in intestinal epithelial cells

    OpenAIRE

    Saksena, Seema; Priyamvada, Shubha; Kumar, Anoop; Akhtar, Maria; Soni, Vikas; Anbazhagan, Arivarasu Natarajan; Alakkam, Anas; Alrefai, Waddah A.; Dudeja, Pradeep K.; Gill, Ravinder K.

    2013-01-01

    Intestinal P-glycoprotein (Pgp/multidrug resistance 1), encoded by the ATP-binding cassette B1 gene, is primarily involved in the transepithelial efflux of toxic metabolites and xenobiotics from the mucosa into the gut lumen. Reduced Pgp function and expression has been shown to be associated with intestinal inflammatory disorders. Keratinocyte growth factor-2 (KGF2) has emerged as a potential target for modulation of intestinal inflammation and maintenance of gut mucosal integrity. Whether K...

  13. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B;

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is...... expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  14. Human epidermal keratinocytes death and expression of protein markers of apoptosis after ionizing radiation exposure

    Directory of Open Access Journals (Sweden)

    Sharon Wong

    2013-12-01

    Full Text Available Purpose: Knowledge of the pathophysiology of the irradiated skin is important to understand the tolerance and cosmetic response of the human skin to radiation. There are limited studies on the effect of radiotherapy dosage and fraction size in inducing apoptotic cell death in human skin. The expression of apoptotic biomarkers within a controlled population in different fractionation schemes has also never been studied. This study aims to investigate radiation induced apoptotic cell death in human skin cells after fractionated radiation exposure and the expression of unique biomarkers that reflect cell death or biology using multiplexed immunoassays.Methods: Breast skin biopsies were obtained from a single individual and divided into small pieces. Each piece was irradiated under different radiotherapy treatment fractionation schedules to a total dose of 50Gy. The irradiated skin tissues were analysed using Tunnel, immunohistochemistry and Western blot assays for expression of apoptotic keratinocytes and biomarkers (p53, p21, and PCNA. Haematoxylin and eosin (H&E immunostaining was performed to study the morphological changes in the skin cells. Results: Radiation is mostly absorbed by the epidermal layers and observed to damage the epidermal keratinocytes leading to the activation of apoptotic proteins. Apoptotic proteins (p53, p21 and PCNA were confirmed to be up-regulated in radiation exposed skin cells as compared to normal skin cells with no radiation. There is strong correlation of apoptotic protein expressions with increased radiation dosage and dose fractionation. Statistical analysis with ANOVA revealed a significant increase of PCNA and p21 expression with increased radiation dosage and dose fractionation (p < 0.05. Immunohistochemically, 14 % (range 10.71% to 17.29% of the keratinocytes were positive for PCNA and 22.5% (range 18.28% to 27.2% for p21 after 2Gy of irradiation.  The most widespread, intense and uniform staining for PCNA

  15. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes.

    Directory of Open Access Journals (Sweden)

    Anne Kraemer

    Full Text Available MicroRNA (miRNA-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2, which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis.

  16. The flavonoid apigenin suppresses vitamin D receptor expression and vitamin D responsiveness in normal human keratinocytes.

    Science.gov (United States)

    Segaert, S; Courtois, S; Garmyn, M; Degreef, H; Bouillon, R

    2000-02-01

    Apigenin, a flavonoid with chemopreventive properties, induces cellular growth arrest, with concomitant inhibition of intracellular signaling cascades and decreased proto-oncogene expression. We report that apigenin potently inhibited vitamin D receptor (VDR) mRNA and protein expression in human keratinocytes without changes in VDR mRNA half-life. Concurrently, downregulation of retinoid X receptor alpha, a dramatic loss of c-myc mRNA, and upregulation of p21(WAF1) took place. Furthermore, a nearly complete suppression of vitamin D responsiveness was observed as estimated by induction of 24-hydroxylase mRNA. The apigenin effect on VDR expression was shared by some other (quercetine and fisetine) but not all tested flavonoids. Interestingly, the apigenin-mediated VDR suppression was counteracted by the NFkappaB inhibitors sodium salicylate and caffeic acid phenethyl ester. The presented results propose suppression of nuclear receptor levels as a novel mechanism whereby flavonoids exert their pleiotropic effects. This study may also contribute to the understanding of the regulation of VDR expression in epidermal keratinocytes. PMID:10652242

  17. Novel protein in human epidermal keratinocytes: regulation of expression during differentiation.

    OpenAIRE

    Kartasova, T; van Muijen, G. N.; Pelt-Heerschap, H. van; van de Putte, P

    1988-01-01

    Recently, two groups of cDNA clones have been isolated from human epidermal keratinocytes; the clones correspond to genes whose expression is stimulated by exposure of the cells to UV light or treatment with 4-nitroquinoline 1-oxide or 12-O-tetradecanoylphorbol 13-acetate (T. Kartasova and P. van de Putte, Mol. Cell. Biol. 8:2195-2203, 1988). The proteins predicted by the nucleotide sequence of both groups of cDNAs are small (8 to 10 kilodaltons), are exceptionally rich in proline, glutamine,...

  18. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes

    DEFF Research Database (Denmark)

    Brakebusch, C; Grose, R; Quondamatteo, F;

    2000-01-01

    developed severe hair loss due to a reduced proliferation of hair matrix cells and severe hair follicle abnormalities. Eventually, the malformed hair follicles were removed by infiltrating macrophages. The epidermis of the back skin became hyperthickened, the basal keratinocytes showed reduced expression of......, the integrity of the basement membrane surrounding the beta 1-deficient hair follicle was not affected. Finally, the dermis became fibrotic. These results demonstrate an important role of beta 1 integrins in hair follicle morphogenesis, in the processing of basement membrane components, in the...

  19. MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

    Science.gov (United States)

    Schmitt, Anja; Grondona, Paula; Maier, Tabea; Brändle, Marc; Schönfeld, Caroline; Jäger, Günter; Kosnopfel, Corinna; Eberle, Franziska C; Schittek, Birgit; Schulze-Osthoff, Klaus; Yazdi, Amir S; Hailfinger, Stephan

    2016-04-01

    The protease activity of the paracaspase mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor nuclear factor-κB and is thus essential for the expression of inflammatory target genes. MALT1 is not only present in cells of the hematopoietic lineage, but is ubiquitously expressed. Here we report that stimulation with zymosan or Staphylococcus aureus induced MALT1 protease activity in human primary keratinocytes. Inhibition of the Src family of kinases or novel protein kinase C isoforms as well as silencing of CARMA2 or BCL10 interfered with activation of MALT1 protease. Silencing or inhibition of MALT1 protease strongly decreased the expression of important inflammatory genes such as TNFα, IL-17C, CXCL8 and HBD-2. MALT1-inhibited cells were unable to mount an antimicrobial response upon zymosan stimulation or phorbolester/ionomycin treatment, demonstrating a central role of MALT1 protease activity in keratinocyte immunity and suggesting MALT1 as a potential target in inflammatory skin diseases. PMID:26767426

  20. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    Science.gov (United States)

    Komoto, Tatiana Takahasi; Bitencourt, Tamires Aparecida; Silva, Gabriel; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

    2015-01-01

    Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.). Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets. PMID:26257814

  1. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Tatiana Takahasi Komoto

    2015-01-01

    Full Text Available Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.. Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets.

  2. Ceramide stimulates ABCA12 expression via peroxisome proliferator-activated receptor {delta} in human keratinocytes.

    Science.gov (United States)

    Jiang, Yan J; Uchida, Yoshikazu; Lu, Biao; Kim, Peggy; Mao, Cungui; Akiyama, Masashi; Elias, Peter M; Holleran, Walter M; Grunfeld, Carl; Feingold, Kenneth R

    2009-07-10

    ABCA12 (ATP binding cassette transporter, family 12) is a cellular membrane transporter that facilitates the delivery of glucosylceramides to epidermal lamellar bodies in keratinocytes, a process that is critical for permeability barrier formation. Following secretion of lamellar bodies into the stratum corneum, glucosylceramides are metabolized to ceramides, which comprise approximately 50% of the lipid in stratum corneum. Gene mutations of ABCA12 underlie harlequin ichthyosis, a devastating skin disorder characterized by abnormal lamellar bodies and a severe barrier abnormality. Recently we reported that peroxisome proliferator-activated receptor (PPAR) and liver X receptor activators increase ABCA12 expression in human keratinocytes. Here we demonstrate that ceramide (C(2)-Cer and C(6)-Cer), but not C(8)-glucosylceramides, sphingosine, or ceramide 1-phosphate, increases ABCA12 mRNA expression in a dose- and time-dependent manner. Inhibitors of glucosylceramide synthase, sphingomyelin synthase, and ceramidase and small interfering RNA knockdown of human alkaline ceramidase, which all increase endogenous ceramide levels, also increased ABCA12 mRNA levels. Moreover, simultaneous treatment with C(6)-Cer and each of these same inhibitors additively increased ABCA12 expression, indicating that ceramide is an important inducer of ABCA12 expression and that the conversion of ceramide to other sphingolipids or metabolites is not required. Finally, both exogenous and endogenous ceramides preferentially stimulate PPARdelta expression (but not other PPARs or liver X receptors), whereas PPARdelta knockdown by siRNA transfection specifically diminished the ceramide-induced increase in ABCA12 mRNA levels, indicating that PPARdelta is a mediator of the ceramide effect. Together, these results show that ceramide, an important lipid component of epidermis, up-regulates ABCA12 expression via the PPARdelta-mediated signaling pathway, providing a substrate-driven, feed

  3. Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes

    Directory of Open Access Journals (Sweden)

    Olerud John E

    2011-06-01

    Full Text Available Abstract Background Many chronic diseases, such as non-healing wounds are characterized by prolonged inflammation and respond poorly to conventional treatment. Bacterial biofilms are a major impediment to wound healing. Persistent infection of the skin allows the formation of complex bacterial communities termed biofilm. Bacteria living in biofilms are phenotypically distinct from their planktonic counterparts and are orders of magnitude more resistant to antibiotics, host immune response, and environmental stress. Staphylococcus aureus is prevalent in cutaneous infections such as chronic wounds and is an important human pathogen. Results The impact of S. aureus soluble products in biofilm-conditioned medium (BCM or in planktonic-conditioned medium (PCM on human keratinocytes was investigated. Proteomic analysis of BCM and PCM revealed differential protein compositions with PCM containing several enzymes involved in glycolysis. Global gene expression of keratinocytes exposed to biofilm and planktonic S. aureus was analyzed after four hours of exposure. Gene ontology terms associated with responses to bacteria, inflammation, apoptosis, chemotaxis, and signal transduction were enriched in BCM treated keratinocytes. Several transcripts encoding cytokines were also upregulated by BCM after four hours. ELISA analysis of cytokines confirmed microarray results at four hours and revealed that after 24 hours of exposure, S. aureus biofilm induced sustained low level cytokine production compared to near exponential increases of cytokines in planktonic treated keratinocytes. The reduction in cytokines produced by keratinocytes exposed to biofilm was accompanied by suppressed phosphorylation of MAPKs. Chemical inhibition of MAPKs did not drastically reduce cytokine production in BCM-treated keratinocytes suggesting that the majority of cytokine production is mediated through MAPK-independent mechanisms. Conclusions Collectively the results indicate that S

  4. Human epidermal keratinocytes death and expression of protein markers of apoptosis after ionizing radiation exposure

    Directory of Open Access Journals (Sweden)

    Sharon Wong

    2013-12-01

    Full Text Available Purpose: Knowledge of the pathophysiology of the irradiated skin is important to understand the tolerance and cosmetic response of the human skin to radiation. There are limited studies on the effect of radiotherapy dosage and fraction size in inducing apoptotic cell death in human skin. The expression of apoptotic biomarkers within a controlled population in different fractionation schemes has also never been studied. This study aims to investigate radiation induced apoptotic cell death in human skin cells after fractionated radiation exposure and the expression of unique biomarkers that reflect cell death or biology using multiplexed immunoassays. Methods: Breast skin biopsies were obtained from a single individual and divided into small pieces. Each piece was irradiated under different radiotherapy treatment fractionation schedules to a total dose of 50Gy. The irradiated skin tissues were analysed using Tunnel, immunohistochemistry and Western blot assays for expression of apoptotic keratinocytes and biomarkers (p53, p21, and PCNA. Haematoxylin and eosin (H&E immunostaining was performed to study the morphological changes in the skin cells. Results: Radiation is mostly absorbed by the epidermal layers and observed to damage the epidermal keratinocytes leading to the activation of apoptotic proteins. Apoptotic proteins (p53, p21 and PCNA were confirmed to be up-regulated in radiation exposed skin cells as compared to normal skin cells with no radiation. There is strong correlation of apoptotic protein expressions with increased radiation dosage and dose fractionation. Statistical analysis with ANOVA revealed a significant increase of PCNA and p21 expression with increased radiation dosage and dose fractionation (p < 0.05. Immunohistochemically, 14 % (range 10.71% to 17.29% of the keratinocytes were positive for PCNA and 22.5% (range 18.28% to 27.2% for p21 after 2Gy of irradiation. The most widespread, intense and uniform staining for PCNA and

  5. Temporal Gene Expression Kinetics for Human Keratinocytes Exposed to Hyperthermic Stress

    Directory of Open Access Journals (Sweden)

    Gerald J. Wilmink

    2013-04-01

    Full Text Available The gene expression kinetics for human cells exposed to hyperthermic stress are not well characterized. In this study, we identified and characterized the genes that are differentially expressed in human epidermal keratinocyte (HEK cells exposed to hyperthermic stress. In order to obtain temporal gene expression kinetics, we exposed HEK cells to a heat stress protocol (44 °C for 40 min and used messenger RNA (mRNA microarrays at 0 h, 4 h and 24 h post-exposure. Bioinformatics software was employed to characterize the chief biological processes and canonical pathways associated with these heat stress genes. The data shows that the genes encoding for heat shock proteins (HSPs that function to prevent further protein denaturation and aggregation, such as HSP40, HSP70 and HSP105, exhibit maximal expression immediately after exposure to hyperthermic stress. In contrast, the smaller HSPs, such as HSP10 and HSP27, which function in mitochondrial protein biogenesis and cellular adaptation, exhibit maximal expression during the “recovery phase”, roughly 24 h post-exposure. These data suggest that the temporal expression kinetics for each particular HSP appears to correlate with the cellular function that is required at each time point. In summary, these data provide additional insight regarding the expression kinetics of genes that are triggered in HEK cells exposed to hyperthermic stress.

  6. Expression of TNF-related apoptosis-inducing ligand (TRAIL in keratinocytes mediates apoptotic cell death in allogenic T cells

    Directory of Open Access Journals (Sweden)

    Kiefer Paul

    2009-11-01

    Full Text Available Abstract The objective of the present study was to evaluate the aptitude of TRAIL gene expression for inducing apoptosis in co-cultivated T-cells. This should allow preparing a strategy for the development of a durable, allogenic skin substitute based on the induction of an immune-privileged transplant. In order to counteract the significant potential of rejection in transplanted allogenic keratinocytes, we created a murine keratinocyte cell line which expressed TRAIL through stable gene transfer. The exogenic protein was localized on the cellular surface and was not found in soluble condition as sTRAIL. Contact to TRAIL expressing cells in co-culture induced cell death in sensitive Jurkat-cells, which was further intensified by lymphocyte activation. This cytotoxic effect is due to the induction of apoptosis. We therefore assume that the de-novo expression of TRAIL in keratinocytes can trigger apoptosis in activated lymphocytes and thus prevent the rejection of keratinocytes in allogenic, immune-privileged transplants.

  7. Enhanced Expression of Keratinocyte Growth Factor and Its Receptor Correlates with Venous Invasion in Pancreatic Cancer

    Science.gov (United States)

    Cho, Kazumitsu; Ishiwata, Toshiyuki; Uchida, Eiji; Nakazawa, Nando; Korc, Murray; Naito, Zenya; Tajiri, Takashi

    2007-01-01

    Keratinocyte growth factor (KGF) and KGF receptor (KGFR) have been implicated in cancer growth as well as tissue development and repair. In this study, we examined whether KGF and KGFR have a role in human pancreatic ductal adenocarcinoma (PDAC). KGFR mRNA was expressed in eight pancreatic cancer cell lines, whereas the KGF mRNA was detected in seven of the cell lines and was absent in MIA PaCa-2 cells. KGFR and KGF immunoreactivity were localized in the cancer cells in 41.5 and 34.0% of patients, respectively. There was a significant correlation between KGFR or KGF immunoreactivity and venous invasion and a significant correlation between the presence of both markers and venous invasion, vascular endothelial growth factor (VEGF)-A expression, and poor prognosis. Exogenous KGF increased VEGF-A expression and release in MIA PaCa-2 cells, and PANC-1 cells stably transfected to overexpress KGF-exhibited increased VEGF-A expression. Moreover, short hairpin-KGFR transfection in MIA PaCa-2 cells reduced the stimulatory effect of exogenous KGF on VEGF-A expression. Short hairpin-KGF transfection in KLM-1 cells reduced VEGF-A expression in the cells. KGFR and KGF may act to promote venous invasion and tumor angiogenesis in PDAC, raising the possibility that they may serve as novel therapeutic targets in anti-angiogenic strategies in PDAC. PMID:17525264

  8. Aberrantly Expressed Genes in HaCaT Keratinocytes Chronically Exposed to Arsenic Trioxide

    OpenAIRE

    Udensi, Udensi K; Cohly, Hari H.P.; Barbara E. Graham-Evans; Kenneth Ndebele; Natàlia Garcia-Reyero; Bindu Nanduri; Tchounwou, Paul B.; Isokpehi, Raphael D.

    2011-01-01

    Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene functio...

  9. Related gene expressions in anti-keratinocyte aging induced by Ganoderma lucidum polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Xie Shaoqiong; Liao Wanqing; Yao Zhirong; Wang Zhidong

    2008-01-01

    Objective: To examine the level of expression of anti skin aging gene of Ganoderma lucidum polysacchayides and clarify its mechanism with anti aging of this ancient Chinese medicine. Methods: HacaT cell of keratinocytes lines were cultured and treated with the polysaccharides. The total RNA was extracted with Trizol reagent and eDNA was synthesized by reverse thanscription. The obtained cDNAs were then fluorescently labeled with cy3 and cy5 respectively and hybridized with gene expressing pedigree cDNA chip. The images were scanned and analyzed with special software. The scan data were analyzed with software and checked by real time PCR. Results: Among total 18 346 human genes, the expression of 103 ones was up-regulated and 378 ones down-regulated. It was demonstrated evidently that Ganoderma lucidum polysaccharides affected the expression of genes of anti skin aging. Two ways are anastomotic. Conclusion: it is concluded by analysis of function of these up-regulation and down-regulation genes that Ganoderma lucidum polysaccharides may play an important role in boosting cell growth and against skin aging. It shows that the results of gene array reliable by real time PCR.

  10. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    International Nuclear Information System (INIS)

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC

  11. Keratinocyte-targeted expression of human laminin γ2 rescues skin blistering and early lethality of laminin γ2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Tracy L Adair-Kirk

    Full Text Available Laminin-332 is a heterotrimeric basement membrane component comprised of the α3, ß3, and γ2 laminin chains. Laminin-332 modulates epithelial cell processes, such as adhesion, migration, and differentiation and is prominent in many embryonic and adult tissues. In skin, laminin-332 is secreted by keratinocytes and is a key component of hemidesmosomes connecting the keratinocytes to the underlying dermis. In mice, lack of expression of any of the three Laminin-332 chains result in impaired anchorage and detachment of the epidermis, similar to that seen in human junctional epidermolysis bullosa, and death occurs within a few days after birth. To bypass the early lethality of laminin-332 deficiency caused by the knockout of the mouse laminin γ2 chain, we expressed a dox-controllable human laminin γ2 transgene under a keratinocyte-specific promoter on the laminin γ2 (Lamc2 knockout background. These mice appear similar to their wild-type littermates, do not develop skin blisters, are fertile, and survive >1.5 years. Immunofluorescence analyses of the skin showed that human laminin γ2 colocalized with mouse laminin α3 and ß3 in the basement membrane zone underlying the epidermis. Furthermore, the presence of "humanized" laminin-332 in the epidermal basement membrane zone rescued the alterations in the deposition of hemidesmosomal components, such as plectin, collagen type XVII/BP180, and integrin α6 and ß4 chains, seen in conventional Lamc2 knockout mice, leading to restored formation of hemidesmosomes. These mice will be a valuable tool for studies of organs deficient in laminin-332 and the role of laminin-332 in skin, including wound healing.

  12. Expression and purification of recombinant truncated human keratinocyte growth factor-1

    International Nuclear Information System (INIS)

    Objective: To construct the genetic engineering bacteria highly expressing 23 amino acids human keratinocyte growth factor-1 (rhKGF1dest23) missing N terminal, and provide experimental data for development of new drug for treatment of oral mucositis after radiotherapy and chemotherapy. Methods: PCR was used to synthese 23 amino acids rhKGF1dest23 missing N terminal and sumo gene fragments, and construct four kinds of recombinant prokaryotic expression vectors: pET22b-rhKGF1dest23, pET22b-sumo-rhKGF1dest23, pET3c-rhKGF1dest23 and pET3c-sumo-rhKGF1dest23, then they were transformed into prokaryotic expression host bacteria: Rosetta (DE3) plysS, BL21 (DE3), BL21 (DE3) Star plysS, origima(DE3) and BL21AI, the best expression combination of plasmid and host strain of rhKGF1dest23 protein was screened and purified by CM ion-exchange and heparin affinity chromatography and identified with Western blotting. Results: pET22b-rhKGF1dest23 plasmid and the BL21AI host bacteria was the best combination of expression, after induced by IPTG and arabinose, the majority of recombinant protein was expressed in soluble form, accounting for about 12% of the total bacterial proteins. Its purity reached to more than 95% of the protein after two steps chromatography, then conformed with Western blotting. Conclusion: Human genetic engineering bacteria of KGF1dest23 is successfully constructed and induced by IPTG and arabinose, then after CM weak cation exchange and heparin affinity chromatography, the purified rhKGF1dest23 protein is obtained. (authors)

  13. Gene Expression Profiling of Human Epidermal Keratinocytes in Simulated Microgravity and Recovery Cultures

    Institute of Scientific and Technical Information of China (English)

    Jade Q. Clement; Shareen M. Lacy; Bobby L. Wilson

    2008-01-01

    Simulated microgravity (SMG) bioreactors and DNA microarray technology are powerful tools to identify "space genes" that play key roles in cellular response to microgravity. We applied these biotechnology tools to investigate SMG and post-SMG recovery effects on human epidermal keratinocytes by exposing cells to SMG for 3,4,9, and 10d using the high aspect ratio vessel bioreactor followed by recovery culturing for 15,50, and 60d in normal gravity. As a result, we identified 162 differentially expressed genes, 32 of which were "center genes" that were most consistently affected in the time course experiments. Eleven of the center genes were from the integrated stress response pathways and were coordinately down regulated. Another seven of the center genes, which are all metallothionein MT-Ⅰ and MT-Ⅱ isoforms, were coordinately up-regulated. In addition, HLA-G, a key gene in cellular immune response suppression, was found to be significantly upregulated during the recovery phase. Overall, more than 80% of the differentially expressed genes from the shorter exposures (≤4d) recovered in 15d; for longer (≥9d) exposures, more than 50d were needed to recover to the impact level of shorter exposures. The data indicated that shorter SMG exposure duration would lead to quicker and more complete recovery from the microgravity effect.

  14. Keratinocyte dysfunction in vitiligo epidermis: cytokine microenvironment and correlation to keratinocyte apoptosis

    OpenAIRE

    Moretti, Silvia; Fabbri, Paolo; Baroni, Gianna; Berti, Samantha; Ban, Daniele; Berti, Emilio; Nassini, Romina; Lotti, Torello; Massi, Daniela

    2009-01-01

    Vitiligo is a skin disorder characterized by loss of functional melanocytes. Keratinocytes contribute to melanocyte homeostasis, and keratinocyte alteration may play a role in melanocyte dysfunction in vitiligo. In particular, the release of melanogenic mediators and the level of functioning keratinocytes may affect melanocyte dysfunction in vitiligo epidermis. Keratinocyte-derived mediators involved in pigmentation, analysed by in situ hybridization, and epidermal apo...

  15. A distal region of the human TGM1 promoter is required for expression in transgenic mice and cultured keratinocytes

    Directory of Open Access Journals (Sweden)

    Lu Ying

    2004-04-01

    Full Text Available Abstract Background TGM1(transglutaminase 1 is an enzyme that crosslinks the cornified envelope of mature keratinocytes. Appropriate expression of the TGM1 gene is crucial for proper keratinocyte function as inactivating mutations lead to the debilitating skin disease, lamellar ichthyosis. TGM1 is also expressed in squamous metaplasia, a consequence in some epithelia of vitamin A deficiency or toxic insult that can lead to neoplasia. An understanding of the regulation of this gene in normal and abnormal differentiation states may contribute to better disease diagnosis and treatment. Methods In vivo requirements for expression of the TGM1 gene were studied by fusing various lengths of promoter DNA to a reporter and injecting the DNA into mouse embryos to generate transgenic animals. Expression of the reporter was ascertained by Western blotting and immunohistochemistry. Further delineation of a transcriptionally important distal region was determined by transfections of progressively shortened or mutated promoter DNA into cultured keratinocytes. Results In vivo analysis of a reporter transgene driven by the TGM1 promoter revealed that 1.6 kilobases, but not 1.1 kilobases, of DNA was sufficient to confer tissue-specific and cell layer-specific expression. This same region was responsible for reporter expression in tissues undergoing squamous metaplasia as a response to vitamin A deprivation. Mutation of a distal promoter AP1 site or proximal promoter CRE site, both identified as important transcriptional elements in transfection assays, did not prevent appropriate expression. Further searching for transcriptional elements using electrophoretic mobility shift (EMSA and transfection assays in cultured keratinocytes identified two Sp1 elements in a transcriptionally active region between -1.6 and -1.4 kilobases. While mutation of either Sp1 site or the AP1 site singly had only a small effect, mutation of all three sites eliminated nearly all the

  16. Interleukin 6 is Expressed in High Levels in Psoriatic Skin and Stimulates Proliferation of Cultured Human Keratinocytes

    Science.gov (United States)

    Grossman, Rachel M.; Krueger, James; Yourish, Debra; Granelli-Piperno, Angela; Murphy, Daniel P.; May, Lester T.; Kupper, Thomas S.; Sehgal, Pravinkumar B.; Gottlieb, Alice B.

    1989-08-01

    Psoriasis is a common papulosquamous skin disease. The histopathology is characterized by epidermal hyperplasia and inflammation. Recent studies suggest that keratinocyte proliferation and inflammation in psoriasis are manifestations of the same underlying pathological process. Interleukin 6 (IL-6), a cytokine that is a major mediator of the host response to tissue injury and infection, is produced by both keratinocytes and leukocytes in culture. IL-6 expression was studied in psoriatic plaques by immunoperoxidase staining with two different polyclonal anti-recombinant IL-6 antisera and by in situ nucleic acid hybridization with IL-6 cRNA probes. Epidermal and dermal cells in active psoriatic plaques from 35 psoriasis patients stained heavily for IL-6 as compared with nonlesional skin and with plaques after treatment with antimetabolic and antiinflammatory agents. Absorption of the anti-recombinant IL-6 antisera with purified fibroblast-derived IL-6 or with recombinant IL-6, but not bovine serum albumin, removed the immunostaining. Increased levels of IL-6 were detected in the plasma of patients with active psoriasis (mean 3 ng/ml) by using two different bioassays. IL-6 production by proliferating keratinocytes was suggested by IL-6-specific immunostaining in cultured normal and psoriatic keratinocytes and by the detection of mRNA specific for IL-6 in psoriatic epidermis by in situ hybridization. IL-6 stimulated the proliferation of cultured, normal human keratinocytes as assessed by two different assays. Thus, IL-6 could directly contribute to the epidermal hyperplasia seen in psoriatic epithelium as well as affect the function of dermal inflammatory cells.

  17. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2014-03-01

    Full Text Available Wingless-type (Wnt signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα. Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers.

  18. Pimecrolimus Enhances TLR2/6-Induced Expression of Antimicrobial Peptides in Keratinocytes

    OpenAIRE

    Büchau, Amanda S.; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Richard L Gallo

    2008-01-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrol...

  19. Cytotoxic effects of sodium dodecyl benzene sulfonate on human keratinocytes are not associated with proinflammatory cytokines expression

    Institute of Scientific and Technical Information of China (English)

    Mu Zhanglei; Liu Xiaojing; Zhao Yan; Zhang Jianzhong

    2014-01-01

    Background Keratinocytes play a crucial role in the biological function of skin barrier.The relationship between sodium lauryl sulfate (SLS) and keratinocytes has been studied.However,the cytotoxicity and effects of sodium dodecyl benzene sulfonate (SDBS),a common detergent similar to SLS,on keratinocytes are still not known.This study aimed to investigate the effects of SDBS on cytotoxicity and expression of proinflammatory cytokines in cultured human keratinocytes.Methods This study was carried out using the keratinocytes cell line,HaCaT cells.The cytotoxicity of SDBS on HaCaT cells was evaluated with cell counting kit-8 (CCK-8) and phase-contrast microscopy.After exposure to different concentrations of SDBS,the total RNA of the HaCaT cells was extracted for evaluating the relative mRNA expression of IL-1α,IL-6,IL-8,and TNF-α by qPCR.The supernatants of cells were collected for measuring the levels of IL-6 and IL-8 by enzyme-linked immunosorbent assay (ELISA).Results SDBS at concentrations of 20 Jg/ml and over showed direct cytotoxicity and induced morphological changes of the HaCaT cells.The mRNA expressions of IL-1a,IL-6,IL-8,and TNF-α in different concentrations of SDBS at different time were comparable with that of controls.SDBS at concentrations of 5,10,and 15 μg/ml had no significant effects on IL-6 and IL-8 excretion from HaCaT cells after 24-hour exposure.Moreover,no significant effects on the IL-6 and IL-8 excretion were found after 10 and 15 μg/ml S DBS stimulations for 6,12,and 24 hours,respectively.Conclusion SDBS at higher concentrations had cytotoxicity on HaCaT cells but had no effects on the mRNA expression of IL-1α,IL-6,IL-8,and TNF-α,that was different from SLS.

  20. Expression of Hepatocyte Growth Factor-Like Protein in Human Wound Tissue and Its Biological Functionality in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    James C. Glasbey

    2015-02-01

    Full Text Available Hepatocyte growth factor-like protein (HGFl and its receptor, Recepteur d'Origine Nantais (RON, have been implicated in the development of wound chronicity. HGFl and RON expression was detected in acute wound tissue, chronic wound tissue and in normal skin using quantitative polymerase chain reaction (Q-PCR. HGFl and RON expression was also assessed in chronic healing and chronic non-healing wound tissues using Q-PCR and immunohistochemical staining. Expression was similarly detected in the HaCaT immortalized human keratinocyte cell line using reverse transcription polymerase chain reaction (RT-PCR. rhHGFl was used to assess the impact of this molecule on HaCaT cell functionality using in vitro growth assays and electric cell-substrate impendence sensing (ECIS migration assays. HGFl and RON transcript expression were significantly increased in acute wound tissue compared to chronic wound tissue and were also elevated, though non-significantly, in comparison to normal skin. Minimal expression was seen in both healing and non-healing chronic wounds. Treatment of HaCaT cells with rhHGFl had no effect on growth rates but did enhance cell migration. This effect was abolished by the addition of a phospholipase C gamma (PLCγ small molecule inhibitor. The increased expression of HGFl and RON in acute, healing wounds and the pro-migratory effect of HGFl in an in vitro human keratinocyte model, may indicate a role for HGFl in active wound healing.

  1. Regulation of haptoglobin expression in a human keratinocyte cell line HaCaT by inflammatory cytokines and dexamethasone

    Institute of Scientific and Technical Information of China (English)

    XIA Li-xin; XIAO Ting; CHEN Hong-duo; LI Ping; WANG Ya-kun; WANG He

    2008-01-01

    Background Haptoglobin(Hp)is one of the acute-phase proteins. Recent studies have demonstrated that Hp exerts immunoregulatory and anti-inflammatory actions and may be one of the inhibitory factors of immune reactions in the skin. In this study we investigated the regulation of Hp expression in a human keratinocyte cell line HaCaT by various cytokines and glucocorticod. Methods HaCaT cells were cultured with IL-6(50 ng/ml), TNF-α(20 ng/ml), IFN-Y(20 ng/ml)or IL-4(20 ng/ml)with or without 1 μmol/L dexamethasone in 6-well plates for 12, 24 and 48 hours. Both the cells and the supernatants were collected to detect the changes of Hp expression by reverse-transcription PCR, ELISA and immunohistochemistry. Results The results showed that Hp expression were elevated at both the mRNA and protein level by the combination of IL-6, TNF-α or IL-4 with dexamethasone, whereas the three cytokines alone did not upregulate the Hp expression. IFN-Y showed no effect on the Hp expression in HaCaT cells. Conclusions These findings suggest that different inflammatory cytokines as well as glucocorticoid may be involved in the regulation of Hp expression in keratinocytes, and this may be one of the negative feedback mechanisms in inflammatory skin diseases.

  2. Ultraviolet radiation (UVR) induces cell-surface Ro/SSA antigen expression by human keratinocytes in vitro: a possible mechanism for the UVR induction of cutaneous lupus lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.K. (Bristol Royal Infirmary (United Kingdom))

    1992-06-01

    Antinuclear antibodies are useful markers of connective tissue disease. In this study, UVB but not UVA induced the expression of Ro/SSA antigen on keratinocyte surfaces in vitro. This expression was also found with the extractable nuclear antigens RnP and Sm, but not with single or double-stranded DNA. The expression was prevented by blocking protein synthesis, suggesting that it was an active process. The results suggest that UVB exposure may result in the expression of Ro/SSA antigen on the surfaces of basal keratinocytes in vivo. This antigen could then bind circulating antibody leading to the cutaneous lesions in neonatal and subacute cutaneous lupus erythematosus. (Author).

  3. Ultraviolet radiation (UVR) induces cell-surface Ro/SSA antigen expression by human keratinocytes in vitro: a possible mechanism for the UVR induction of cutaneous lupus lesions

    International Nuclear Information System (INIS)

    Antinuclear antibodies are useful markers of connective tissue disease. In this study, UVB but not UVA induced the expression of Ro/SSA antigen on keratinocyte surfaces in vitro. This expression was also found with the extractable nuclear antigens RnP and Sm, but not with single or double-stranded DNA. The expression was prevented by blocking protein synthesis, suggesting that it was an active process. The results suggest that UVB exposure may result in the expression of Ro/SSA antigen on the surfaces of basal keratinocytes in vivo. This antigen could then bind circulating antibody leading to the cutaneous lesions in neonatal and subacute cutaneous lupus erythematosus. (Author)

  4. Cdc42 expression in keratinocytes is required for the maintenance of the basement membrane in skin

    DEFF Research Database (Denmark)

    Wu, Xunwei; Quondamatteo, Fabio; Brakebusch, Cord

    2006-01-01

    , structure and number of hemidesomosomes were not significantly changed in the Cdc42 mutant skin compared with the control mice and no blister formation was observed in mutant skin. These data indicate that Cdc42 in keratinocytes is important for maintenance of the basement membrane of skin....

  5. The Effect of Calcipotriol on the Expression of Human β Defensin-2 and LL-37 in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Beom Joon Kim

    2009-01-01

    Full Text Available Background. Vitamin D has been reported to regulate innate immunity by controlling the expression of antimicrobial peptides (AMPs. Objective. We investigated the effect of calcipotriol on the expression of AMPs in human cultured keratinocytes. Methods. Keratinocytes were treated with lipopolysaccharide (LPS, TNF-α, Calcipotriol and irradiated with UVB, cultured, and harvested. To assess the expression of human beta defensin-2 and LL-37 in the control group, not exposed to any stimulants, the experimental group was treated with LPS, TNF-α, or UVB, and another group was treated again with calcipotriol; reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemical staining were performed. Results. In the experimental group treated with LPS, UVB irradiation, and TNF-α, the expression of β-defensin and LL-37 was increased more than in the control group and then decreased in the experimental group treated with calcipotriol. Conclusions. Calcipotriol suppressed HBD-2 and LL-37, which were stimulated by UVB, LPS, and TNF-α.

  6. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Camila, E-mail: camilaquinetti@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakagami, Gojiro, E-mail: gojiron-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Minematsu, Takeo, E-mail: tminematsu-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagase, Takashi, E-mail: tnagase@fb3.so-net.ne.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Huang, Lijuan, E-mail: koureikenhlj@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sari, Yunita, E-mail: yunita-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sanada, Hiromi, E-mail: hsanada-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration

  7. Hydrolyzed Methylhesperidin Induces Antioxidant Enzyme Expression via the Nrf2-ARE Pathway in Normal Human Epidermal Keratinocytes.

    Science.gov (United States)

    Kuwano, Tetsuya; Watanabe, Manabu; Kagawa, Daiji; Murase, Takatoshi

    2015-09-16

    Methylhesperidin (MHES) is a mixture of methylated derivatives of the citrus flavonoid hesperidin and is used as a food or pharmaceutical additive. Dietary MHES could be hydrolyzed by gut microflora to give aglycons. Therefore, we prepared hydrolyzed methylhesperidin (h-MHES) and assessed its pharmacological activity in human epidermal keratinocytes. h-MHES promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and the expression of cytoprotective genes (e.g., heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit (GCLC)). h-MHES also increased intracellular glutathione levels and reduced UVB-induced reactive oxygen species. Moreover, h-MHES increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), and a p38 MAPK inhibitor significantly attenuated h-MHES-induced HO-1 and GCLC expression. Furthermore, when we purified the components of h-MHES, we identified two methoxy-chalcones as novel Nrf2 activators. Our study demonstrates that h-MHES can induce cytoprotective gene expression and reduce oxidative stress via the Nrf2-ARE pathway in keratinocytes, suggesting that MHES may contribute to the suppression of UVB-induced skin damage in vivo. PMID:26313892

  8. Exogenous stimulation with Eclipta alba promotes hair matrix keratinocyte proliferation and downregulates TGF-β1 expression in nude mice.

    Science.gov (United States)

    Begum, Shahnaz; Lee, Mi Ra; Gu, Li Juan; Hossain, Jamil; Sung, Chang Keun

    2015-02-01

    Eclipta alba (L.) Hassk (E. alba) is a traditionally acclaimed medicinal herb used for the promotion of hair growth. However, to the best of our knowledge, no report has been issued to date on its effects on genetically distorted hair follicles (HFs). In this study, we aimed to identify an agent (stimuli) that may be beneficial for the restoration of human hair loss and which may be used as an alternative to synthetic drugs. We investigated the effects of petroleum ether extract (PEE) and different solvent fractions of E. alba on HFs of nude mice. Treatment was performed by topical application on the backs of nude mice and the changes in hair growth patterns were evaluated. Histological analysis was carried out to evaluate the HF morphology and the structural differences. Immunohistochemical (IHC) staining was performed to visualize follicular keratinocyte proliferation. The histological assessments revealed that the PEE-treated skin specimens exhibited prominent follicular hypertrophy. Subsequently, IHC staining revealed a significant increase (p<0.001) in the number of follicular keratinocytes in basal epidermal and matrix cells. Our results also demonstrated that PEE significantly (p<0.001) reduced the levels of transforming growth factor-β1 (TGF-β1) expression during early anagen and anagen-catagen transition. Our results suggest that PEE of E. alba acts as an important exogenous mediator that stimulates follicular keratinocyte proliferation and delays terminal differentiation by downregulating TGF-β1 expression. Thus, this study highlights the potential use of PEE of E. alba in the treatment of certain types of alopecia. PMID:25484129

  9. Ceramide Stimulates ABCA12 Expression via Peroxisome Proliferator-activated Receptor δ in Human Keratinocytes*

    OpenAIRE

    Jiang, Yan J.; Uchida, Yoshikazu; Lu, Biao; Kim, Peggy; Mao, Cungui; Akiyama, Masashi; Elias, Peter M.; Holleran, Walter M.; Grunfeld, Carl; Feingold, Kenneth R.

    2009-01-01

    ABCA12 (ATP binding cassette transporter, family 12) is a cellular membrane transporter that facilitates the delivery of glucosylceramides to epidermal lamellar bodies in keratinocytes, a process that is critical for permeability barrier formation. Following secretion of lamellar bodies into the stratum corneum, glucosylceramides are metabolized to ceramides, which comprise ∼50% of the lipid in stratum corneum. Gene mutations of ABCA12 underlie harlequin ichthyosis, a devastating skin disorde...

  10. Stat3 binds to mitochondrial DNA and regulates mitochondrial gene expression in keratinocytes

    OpenAIRE

    Macias, Everardo; Rao, Dharanija; Carbajal, Steve; Kiguchi, Kaoru; DiGiovanni, John

    2014-01-01

    The nuclear transcription factor Stat3 has recently been reported to have a localized mitochondrial regulatory function. Current data suggest that mitochondrial Stat3 (mitoStat3) is necessary for maximal mitochondrial activity and for Ras-mediated transformation independent of Stat3 nuclear activity. We have previously shown that Stat3 plays a pivotal role in epithelial carcinogenesis. Therefore, the aim of the current study was to determine the role of mitoStat3 in epidermal keratinocytes. H...

  11. Shadows alter facial expressions of Noh masks.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. CONCLUSIONS/SIGNIFICANCE: Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety", which highly appreciates subtle emotional expressions in the darkness.

  12. Structural Patterns of Rhamnogalacturonans Modulating Hsp-27 Expression in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Yann Guerardel

    2008-05-01

    Full Text Available Polysaccharide extracts were obtained from chestnut bran (Castanea sativa, grape marc (Vitis vinifera and apple marc (Malus spp. and fractionated by size exclusion chromatography after endopolygalacturonase degradation. Compositional and linkage analyses by GC and GC-MS showed the characteristic rhamnogalacturonan structure with specific arabinan (apple marc and type II arabinogalactan (chestnut bran, grape marc side chains. Type II arabinogalactan rhamnogalacturonan from chestnut bran significantly stimulated the in vitro differentiation of human keratinocytes, giving evidence of a tight structure-function relationship. This molecule comprises short and ramified 3- and 3,6-β- D-galactan and 5- and 3,5-α-L-arabinan side chains, but also contains significant amounts of t-Xyl and 4-Xyl with a characteristic 2:1 ratio. Enzymatic hydrolysis of this polysaccharide produced fragments of lower molecular weight with unchanged xylose content which conserved the same ability to stimulate human keratinocyte differentiation. It could be then speculated that dimeric xylosyl-xylose and/or longer oligomeric xylose side chains attached to a galacturonan and closely associated to hairy rhamno-galacturonan domains are essential patterns that could determine the biological activity of pectins.

  13. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B; Mandel, U;

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate...... structures represented by the ABO blood group antigens and, in particular, by Lewis antigens and their biosynthetic precursors. To study further the relationship between cell surface carbohydrates and keratinocyte cell movement, experimental wounds were created in human oral mucosa and examined by...... immunohistochemical methods for their expression of selected cytokeratins (K5, K16, K19), basement membrane components (laminin alpha5 and gamma2-chains, BP180, collagen IV and collagen VII), and blood group antigen precursor structures Le(x), sialosyl-Le(x), Le(y), H antigen, N-acetyllactosamine, and sialosyl...

  14. Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes

    International Nuclear Information System (INIS)

    The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes

  15. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/106 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/106 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn+2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  16. Alterated integrin expression in lichen planopilaris

    Directory of Open Access Journals (Sweden)

    Erriquez Roberta

    2007-02-01

    Full Text Available Abstract Background Lichen planopilaris (LPP is an inflammatory disease characterized by a lymphomononuclear infiltrate surrounding the isthmus and infundibulum of the hair follicle of the scalp, that evolves into atrophic/scarring alopecia. In the active phase of the disease hairs are easily plucked with anagen-like hair-roots. In this study we focused on the expression of integrins and basement membrane components of the hair follicle in active LPP lesions. Methods Scalp biopsies were taken in 10 patients with LPP and in 5 normal controls. Using monoclonal antibodies against α3β1 and α6β4 integrins we showed the expression of these integrins and of the basement membrane components of the hair follicle in active LPP lesions and in healthy scalp skin. Results In the LPP involved areas, α3β1 was distributed in a pericellular pattern, the α6 subunit was present with a basolateral distribution while the β4 subunit showed discontinuous expression at the basal pole and occasionally, basolateral staining of the hair follicle. Conclusion: An altered distribution of the integrins in active LPP lesions can explain the phenomenon of easy pulling-out of the hair with a "gelatinous" root-sheath.

  17. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-08-29

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in

  18. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    International Nuclear Information System (INIS)

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34+/K15+/p63+ keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in tumors induced in

  19. Sphingomyelinase D from Loxosceles laeta Venom Induces the Expression of MMP7 in Human Keratinocytes: Contribution to Dermonecrosis.

    Science.gov (United States)

    Corrêa, Mara A; Okamoto, Cinthya K; Gonçalves-de-Andrade, Rute M; van den Berg, Carmen W; Tambourgi, Denise V

    2016-01-01

    Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism. PMID:27078876

  20. Eicosapentaenoic acid inhibits TNF-α-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    International Nuclear Information System (INIS)

    Eicosapentaenoic acid (EPA) is an omega-3 (ω-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-κB activation induced by tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-α-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-α induced MMP-9 expression by NF-κB-dependent pathway. Pretreatment of EPA inhibited TNF-α-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect IκB-α phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-κB. EPA inhibited TNF-α-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKKα-dependent event. Taken together, we demonstrate that EPA inhibits TNF-α-induced MMP-9 expression through inhibition of p38 and Akt activation

  1. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: Implications for oral carcinogenesis

    International Nuclear Information System (INIS)

    In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1α,25-dihydroxyvitamin D3. BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified the nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1α,25-dihydroxyvitamin D3. By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis

  2. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes

    OpenAIRE

    Nattaporn Pattarachotanant; Varaporn Rakkhitawatthana; Tewin Tencomnao

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K1...

  3. Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide

    OpenAIRE

    Black, Adrienne T.; Joseph, Laurie B.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-01-01

    Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100...

  4. Matrix metalloproteinases-2,-3,-7,-9 and-10, but not MMP-11, are differentially expressed in normal, benign tumorigenic and malignant human keratinocyte cell lines

    OpenAIRE

    Bachmeier, B. E.; Boukamp, P.; Lichtinghagen, R.; Fusenig, N. E.; E Fink

    2000-01-01

    In order to investigate the correlations between constitutive proteinase expression and the degree of tumorigenicity of cancer cells we have studied a model system of three keratinocyte cell lines. RT-PCR studies showed that the cell lines express the genes of matrix metalloproteinase-2, -3, -7, -9, -10 and -11, indicating that they are able to synthesize the corresponding enzymes. Actual MMP synthesis was proven by zymography and Western blotting. In conditioned media gelatinolytic activitie...

  5. Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide

    International Nuclear Information System (INIS)

    Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 μM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A4 (LTA4) hydrolase and leukotriene C4 (LTC4) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA4 hydrolase and LTC4 synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.

  6. Up-regulation of keratin 17 expression in human HaCaT keratinocytes by interferon-gamma.

    Science.gov (United States)

    Bonnekoh, B; Huerkamp, C; Wevers, A; Geisel, J; Sebök, B; Bange, F C; Greenhalgh, D A; Böttger, E C; Krieg, T; Mahrle, G

    1995-01-01

    The immortalized human keratinocyte cell line HaCaT was used to assess the effect of interferon-gamma (IFN-gamma) on expression of keratin K17. Both IFN-gamma and K17 have been implicated in the pathophysiology of psoriasis. Western and quantitative enzyme-linked immunosorbent assay analyses demonstrated increasing induction of K17 protein by 48 h exposure to IFN-gamma at concentrations of 10, 50, and 250 U/ml. At 50 U/ml IFN-gamma, immunohistochemical analysis revealed numerous K17-positive foci, whereas in situ hybridization demonstrated K17 message in the majority of cells. In addition, at low (5 U/ml) concentrations of IFN-gamma, cell proliferation and protein synthesis decreased, as determined by 3H-thymidine labeling and 14C-amino acid uptake. These data suggest that aberrant K17 expression observed in psoriatic lesions may be a consequence of IFN-gamma overexpression, and that the HaCaT cell line may be a useful in vitro model system to elucidate the underlying mechanisms. PMID:7528246

  7. Epidermal expression of the truncated prelamin A causing Hutchinson–Gilford progeria syndrome: effects on keratinocytes, hair and skin

    OpenAIRE

    Wang, Yuexia; Panteleyev, Andrey A.; Owens, David M.; Djabali, Karima; Stewart, Colin L.; Worman, Howard J.

    2008-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by point mutation in LMNA encoding A-type nuclear lamins. The mutations in LMNA activate a cryptic splice donor site, resulting in expression of a truncated, prenylated prelamin A called progerin. Expression of progerin leads to alterations in nuclear morphology, which may underlie pathology in HGPS. We generated transgenic mice expressing progerin in epidermis under control of a keratin 14 promoter. The mice ...

  8. Effect of irradiation on cell cycle, cell death and expression of its related proteins in normal human oral keratinocytes

    International Nuclear Information System (INIS)

    To investigate the radiosensitivity of the normal human oral keratinocytes (NHOK), and the effect of irradiation on cell cycle and protein expression. To evaluate the radiosensitivity of NHOK, the number of colonies and cells were counted after irradiation and the SF2 (survival fraction as 2 Gy) value, and the cell survival curve fitted on a linear-quadratic model were obtained. LDH analysis was carried out to evaluate the necrosis of NHOK at 1, 2,3, and 4 days after 2, 10, and 20 Gy irradiation. Cell cycle arrest and the induction of apoptosis were analyzed using flow cytometry at 1, 2, 3, and 4 days after 2, 10, and 20 Gy irradiation. Finally, proteins related cell cycle arrest and apoptosis were analysed by Western blot. The number of survival cell was significantly decreased in a dose-dependent manner. The cell survival curve showed SF2, α, and β values to be 0.568, 0.209, and 0.020 respectively. At 20 Gy irradiated cells showed higher optical density than the control group. After irradiation, apoptosis was not observed but G2 arrest was observed in the NHOK cells. 1 day after 10 Gy irradiation, the expression of p53 remained unchanged, the p21WAF1/Cip1 increased and the mdm2 decreased. The expression of bax, bcl-2, cyclin B1, and cyclin D remained unchanged. These results indicate that NHOK responds to irradiation by G2 arrest, which is possibly mediated by the expression of p21WAF1/Cip1, and that cell necrosis occurs by high dose irradiation.

  9. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    International Nuclear Information System (INIS)

    Highlights: ► An evidence of the positive effect of AHL on epithelialization process is provided. ► AHL enhances keratinocyte’s ability to migrate in an in vitro scratch wound model. ► AHL induces the expression of Mmp13. ► Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte’s activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte’s ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration process.

  10. The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes - A genome-wide study in UVB irradiated organotypic 3D cultures.

    Science.gov (United States)

    Rauhala, Leena; Hämäläinen, Lasse; Dunlop, Thomas W; Pehkonen, Petri; Bart, Geneviève; Kokkonen, Maarit; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-12-25

    The moisturizing and potentially protective properties of the organic osmolyte betaine (trimethylglycine) have made it an attractive component for skin care products. Its wide use despite the lack of comprehensive studies addressing its specific effects in skin led us to characterize the molecular targets of betaine in keratinocytes and to explore, whether it modifies the effects of acute UVB exposure. Genome-wide expression analysis was performed on organotypic cultures of rat epidermal keratinocytes, treated either with betaine (10mM), UVB (30 mJ/cm(2)) or their combination. Results were verified with qRT-PCR, western blotting and immunohistochemistry. Additionally, cell proliferation and differentiation were analyzed. Among the 89 genes influenced by betaine, the differentiation marker keratin 2 showed the highest upregulation, which was also confirmed at protein level. Expression of Egr1, a transcription factor, and Purkinje cell protein 4, a regulator of Ca(2+)/calmodulin metabolism, also increased, while downregulated genes included several ion-channel components, such as Fxyd2. Bioinformatics analyses suggest that genes modulated by betaine are involved in DNA replication, might counteract UV-induced processes, and include many targets of transcription factors associated with cell proliferation and differentiation. Our results indicate that betaine controls unique gene expression pathways in keratinocytes, including some involved in differentiation. PMID:26391144

  11. Sonoporation delivery of monoclonal antibodies against human papillomavirus 16 E6 restores p53 expression in transformed cervical keratinocytes.

    Directory of Open Access Journals (Sweden)

    Melissa Togtema

    Full Text Available High-risk types of human papillomavirus (HPV, such as HPV16, have been found in nearly all cases of cervical cancer. Therapies targeted at blocking the HPV16 E6 protein and its deleterious effects on the tumour suppressor pathways of the cell can reverse the malignant phenotype of affected keratinocytes while sparing uninfected cells. Through a strong interdisciplinary collaboration between engineering and biology, a novel, non-invasive intracellular delivery method for the HPV16 E6 antibody, F127-6G6, was developed. The method employs high intensity focused ultrasound (HIFU in combination with microbubbles, in a process known as sonoporation. In this proof of principle study, it was first demonstrated that sonoporation antibody delivery into the HPV16 positive cervical carcinoma derived cell lines CaSki and SiHa was possible, using chemical transfection as a baseline for comparison. Delivery of the E6 antibody using sonoporation significantly restored p53 expression in these cells, indicating the antibody is able to enter the cells and remains active. This delivery method is targeted, non-cytotoxic, and non-invasive, making it more easily translatable for in vivo experiments than other transfection methods.

  12. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    International Nuclear Information System (INIS)

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  13. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  14. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid

    DEFF Research Database (Denmark)

    Westergaard, M; Henningsen, J; Svendsen, M L; Johansen, C; Jensen, Uffe Birk; Schrøder, H D; Kratchmarova - Blagoeva, Irina H; Berge, R K; Iversen, L; Bolund, L; Kragballe, K; Kristiansen, K

    2001-01-01

    nuclear receptor corepressor and silence mediator for retinoid and thyroid hormone receptors. We critically evaluated the effects of selective PPAR ligands and a synthetic fatty acid analog, tetradecylthioacetic acid. Tetradecylthioacetic acid activated all human PPAR subtypes in the ranking order...... PPARdelta >> PPARalpha > PPARgamma. All selective PPAR ligands marginally induced transglutaminase-1 expression with the PPARdelta-selective ligand L165041 being the most potent. The PPARalpha- and PPARgamma-selective ligands Wy14643 and BRL49653 had negligible effect on involucrin expression, whereas a...

  15. Altered aquaporin expression in glaucoma eyes

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten;

    2014-01-01

    , AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure and...... intensity (p = 0.037). No difference in AQP1, AQP4 and AQP9 expression was found in the optic nerve fibres. This study is the first investigating AQPs in human glaucoma eyes. We found a reduced expression of AQP9 in the retinal ganglion cells of glaucoma eyes. Glaucoma also induced increased AQP7 expression......Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5...

  16. Human epidermal keratinocytes death and expression of protein markers of apoptosis after ionizing radiation exposure

    OpenAIRE

    Sharon Wong; Han Hor Chor; Sathiya Moorthy; Chee Tian Ong; Toan Thang Phan; Jaide Jay Lu

    2013-01-01

    Purpose: Knowledge of the pathophysiology of the irradiated skin is important to understand the tolerance and cosmetic response of the human skin to radiation. There are limited studies on the effect of radiotherapy dosage and fraction size in inducing apoptotic cell death in human skin. The expression of apoptotic biomarkers within a controlled population in different fractionation schemes has also never been studied. This study aims to investigate radiation induced apoptotic cell death in h...

  17. Tetracycline regulator expression alters the transcriptional program of mammalian cells

    OpenAIRE

    Hackl, Hubert; Rommer, Anna; Konrad, Torsten A; Nassimbeni, Christine; Wieser, Rotraud

    2010-01-01

    Tetracycline regulated ectopic gene expression is a widely used tool to study gene function. However, the tetracycline regulator (tetR) itself has been reported to cause certain phenotypic changes in mammalian cells. We, therefore, asked whether human myeloid U937 cells expressing the tetR in an autoregulated manner would exhibit alterations in gene expression upon removal of tetracycline.

  18. Fracture induces keratinocyte activation, proliferation, and expression of pronociceptive inflammatory mediators

    OpenAIRE

    Li, Wen-Wu; Guo, Tian-Zhi; Li, Xiang-Qi; Kingery, Wade S.; Clark, J. David

    2010-01-01

    Tibia fracture in rats results in chronic vascular and nociceptive changes in the injured limb resembling complex regional pain syndrome (CRPS) and up-regulates expression of interleukin 1β (IL-1β), interleukin IL-6 (IL-6), tumor necrosis factor-α(TNF-α), and nerve growth factor-β(NGF-β) in the hindpaw skin. When fracture rats are treated with cytokine or NGF inhibitors nociceptive sensitization is blocked. Because there is no leukocyte infiltration in the hindpaw skin we postulated that resi...

  19. Shadows Alter Facial Expressions of Noh Masks

    OpenAIRE

    Nobuyuki Kawai; Hiromitsu Miyata; Ritsuko Nishimura; Kazuo Okanoya

    2013-01-01

    BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressio...

  20. Chromium III histidinate exposure modulates antioxidant gene expression in HaCaT human keratinocytes exposed to oxidative stress

    Science.gov (United States)

    While the toxicity of hexavalent chromium is well established, trivalent Cr (Cr(III)) is an essential nutrient involved in insulin and glucose homeostasis. Recently, antioxidant effects of chromium (III) histidinate (Cr(III)His) were reported in HaCaT human keratinocytes exposed to oxidative stress...

  1. Cigarette Smoke Affects ABCAl Expression via Liver X Receptor Nuclear Translocation in Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Claudia Sticozzi

    2010-09-01

    Full Text Available Cutaneous tissue is the first barrier against outdoor insults. The outer most layer of the skin, the stratum corneum (SC, is formed by corneocytes embedded in a lipid matrix (cholesterol, ceramide and fatty acids. Therefore, the regulation of lipids and, in particular, of cholesterol homeostasis in the skin is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a key role in maintaining cellular cholesterol levels. Among the many factors that have been associated with skin diseases, the environmental stressor cigarette smoke has been recently studied. In the present study, we demonstrate that ABCA1 expression in human cells (HaCaT was increased (both mRNA and protein levels after CS exposure. This effect was mediated by the inhibition of NFkB (aldehydes adducts formation that allows the translocation of liver X receptor (LXR. These findings suggest that passive smoking may play a role in skin cholesterol levels and thus affect cutaneous tissues functions.

  2. A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ

    Directory of Open Access Journals (Sweden)

    Yuval Ramot

    2013-02-01

    Full Text Available Cannabinoid receptors (CB are expressed throughout human skin epithelium. CB1 activation inhibits human hair growth and decreases proliferation of epidermal keratinocytes. Since psoriasis is a chronic hyperproliferative, inflammatory skin disease, it is conceivable that the therapeutic modulation of CB signaling, which can inhibit both proliferation and inflammation, could win a place in future psoriasis management. Given that psoriasis is characterized by up-regulation of keratins K6 and K16, we have investigated whether CB1 stimulation modulates their expression in human epidermis. Treatment of organ-cultured human skin with the CB1-specific agonist, arachidonoyl-chloro-ethanolamide (ACEA, decreased K6 and K16 staining intensity in situ. At the gene and protein levels, ACEA also decreased K6 expression of cultured HaCaT keratinocytes, which show some similarities to psoriatic keratinocytes. These effects were partly antagonized by the CB1-specific antagonist, AM251. While CB1-mediated signaling also significantly inhibited human epidermal keratinocyte proliferation in situ, as shown by K6/Ki-67-double immunofluorescence, the inhibitory effect of ACEA on K6 expression in situ was independent of its anti-proliferative effect. Given recent appreciation of the role of K6 as a functionally important protein that regulates epithelial wound healing in mice, it is conceivable that the novel CB1-mediated regulation of keratin 6/16 revealed here also is relevant to wound healing. Taken together, our results suggest that cannabinoids and their receptors constitute a novel, clinically relevant control element of human K6 and K16 expression.

  3. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes

    Directory of Open Access Journals (Sweden)

    Arnouk Hilal

    2009-08-01

    Full Text Available Abstract Background Infection with high-risk type human papilloma viruses (HPVs is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE. The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23% of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2% were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1; and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27. Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.

  4. Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro: Possible role in mechanical stress-induced hyperpigmentation

    International Nuclear Information System (INIS)

    Highlights: → Influence of cyclic stretch on melanogenetic paracrine cytokines was investigated. → Keratinocyte-derived endothelin-1 was upregulated with cyclic stretch. → Degree of upregulation increases dose-dependently. → This upregulation possibly plays a role in the pathogenesis of pigmented disorders. -- Abstract: The aim of this study was to investigate the possible pathological relation between mechanical stress and hyperpigmentation. We did this by investigating the influence of cyclic stretch on the expression of keratinocyte- and fibroblast-derived melanogenetic paracrine cytokines in vitro. Using primary human keratinocytes and fibroblasts, alterations of mRNA expression of melanogenetic paracrine cytokines due to cyclic stretch were investigated using a real-time polymerase chain reaction (PCR). The cytokines included basic fibroblast growth factor (bFGF), stem cell factor (SCF), granulocyte/macrophage colony-stimulating factor, interleukin-1α, and endothelin-1 (ET-1) for keratinocytes and bFGF, SCF, and hepatocyte growth factor for fibroblasts. The dose dependence of keratinocyte-derived ET-1 upregulation was further investigated using real-time PCR and an enzyme-linked immunosorbent assay. We also investigated the effects of cyclic stretch on the proliferation and differentiation of keratinocytes. Among the melanogenetic paracrine cytokines investigated, keratinocyte-derived ET-1 was consistently upregulated in all four cell lines. The degree of upregulation increased with the degree of the length and frequency of the stretch; in contrast, cell number and differentiation markers showed no obvious alterations with cyclic stretch. Keratinocyte-derived ET-1 upregulation possibly plays a significant role in the pathogenesis of pigmented disorders, such as friction melanosis, caused by mechanical stress.

  5. Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro: Possible role in mechanical stress-induced hyperpigmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Masakazu, E-mail: masakazukurita@gmail.com [Department of Plastic Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611 (Japan); Okazaki, Mutsumi [Department of Plastic and Reconstructive Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Fujino, Takashi [Department of Pathology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611 (Japan); Takushima, Akihiko; Harii, Kiyonori [Department of Plastic Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611 (Japan)

    2011-05-27

    Highlights: {yields} Influence of cyclic stretch on melanogenetic paracrine cytokines was investigated. {yields} Keratinocyte-derived endothelin-1 was upregulated with cyclic stretch. {yields} Degree of upregulation increases dose-dependently. {yields} This upregulation possibly plays a role in the pathogenesis of pigmented disorders. -- Abstract: The aim of this study was to investigate the possible pathological relation between mechanical stress and hyperpigmentation. We did this by investigating the influence of cyclic stretch on the expression of keratinocyte- and fibroblast-derived melanogenetic paracrine cytokines in vitro. Using primary human keratinocytes and fibroblasts, alterations of mRNA expression of melanogenetic paracrine cytokines due to cyclic stretch were investigated using a real-time polymerase chain reaction (PCR). The cytokines included basic fibroblast growth factor (bFGF), stem cell factor (SCF), granulocyte/macrophage colony-stimulating factor, interleukin-1{alpha}, and endothelin-1 (ET-1) for keratinocytes and bFGF, SCF, and hepatocyte growth factor for fibroblasts. The dose dependence of keratinocyte-derived ET-1 upregulation was further investigated using real-time PCR and an enzyme-linked immunosorbent assay. We also investigated the effects of cyclic stretch on the proliferation and differentiation of keratinocytes. Among the melanogenetic paracrine cytokines investigated, keratinocyte-derived ET-1 was consistently upregulated in all four cell lines. The degree of upregulation increased with the degree of the length and frequency of the stretch; in contrast, cell number and differentiation markers showed no obvious alterations with cyclic stretch. Keratinocyte-derived ET-1 upregulation possibly plays a significant role in the pathogenesis of pigmented disorders, such as friction melanosis, caused by mechanical stress.

  6. Alterations of nitric-oxide synthase and xanthine-oxidase activities of human keratinocytes by ultraviolet-B radiation -potential role for peroxynitrite in skin inflammation

    International Nuclear Information System (INIS)

    In the present study, we demonstrated that NO synthase (cNOS) and xanthine oxidase (XO) of human keratinocytes can be activated to release NO, superoxide (O-2(-)) and peroxynitrite (ONOO-) following exposure to ultraviolet B (UVB) radiation. We defined that this photo induced response may be involved in the pathogenesis of sunburn erythema and inflammation. Treatment of human keratinocytes with UVB (290-320 nm) radiation (up to 200 mJ/cm(2)) resulted in a dose-dependent increase in NO and ONOO-release that was inhibited by N-monomethyl-L-arginine (L-NMMA). NO and ONOO- release from keratinocytes was accompanied by an increase in intracellular cGMP levels. Treatment of human keratinocyte cytosol with various doses of UVB (up to 100 mJ/cm(2)) resulted in an increase in XO activity that was inhibited by oxypurinol. In in vivo experiments, when experimental animals were subjected to UVB radiation, a protection factor (PF) of 6.5 ± 1.8 was calculated when an emulsified cream formulation containing nitro-L-arginine (L-NA) (2%) and L-NMMA (2%) was applied to their skin. The present study indicates that UVB radiation acts as a potent stimulator of cNOS and XO activities in human keratinocytes. NO and ONOO- may exert cytotoxic effects in keratinocytes themselves, as well as in their neighbouring endothelial and smooth muscle cells. This may be a major part of the integrated response leading to erythema production and the inflammation process. (UK)

  7. Transient expression of the cloned mouse c-Ha-ras 5' upstream region in transfected primary SENCAR mouse keratinocytes demonstrates its power as a promoter element.

    Science.gov (United States)

    Neades, R; Betz, N A; Sheng, X Y; Pelling, J C

    1991-01-01

    The mouse Ha-ras oncogene is activated by point mutation and overexpressed in developing papillomas during two-stage skin carcinogenesis in SENCAR mice. One of our research aims is to characterize the factors regulating Ha-ras gene expression at the transcriptional level in SENCAR mouse epidermis. Towards this goal, we sequenced 1400 bp of the 5' upstream region of the mouse Ha-ras gene so as to characterize various cis-regulatory elements present in the gene. We identified seven sites with the proper consensus sequence for binding the SP1 transcription factor and three potential binding sites for the CTF-1 factor. In addition, we located a 13-base sequence with 92% homology to the consensus sequence for an estrogen response element and two hexamers with consensus sequences identical to the core sequence of the glucocorticoid response element. A series of transient gene expression vectors was constructed in which various regions of the mouse Ha-ras 5' upstream region were fused to the chloramphenicol acetyltransferase (CAT) gene. These expression plasmids were transfected into newborn and adult primary SENCAR epidermal cells, the epidermal cell population that presumably contains the stem cells involved in two-stage skin tumorigenesis. Transient gene expression assays carried out after 48-72 h indicated that a 2.3-kb Ha-ras 5' fragment produced CAT activity comparable to that produced by pSV2CAT and pdolCMVCAT, both of which are plasmids with strong viral promoters and enhancers driving CAT gene expression. Maintenance of transfected keratinocytes under both nondifferentiating (0.05 mM calcium) and differentiating (1.2 mM calcium) culture conditions demonstrated that the mouse Ha-ras upstream region was relatively unresponsive to changes in calcium concentration in transient expression assays carried out in either newborn or adult keratinocytes. Our results demonstrated the power of the cloned mouse Ha-ras promoter and upstream region in driving transient gene

  8. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure

    OpenAIRE

    Huang, S.; Guo, S.; Guo, F; Yang, Q.; XIAO, X.; Murata, M.; Ohnishi, S.; Kawanishi, S; Ma, N

    2013-01-01

    Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the human spontaneously immortalized skin keratinocytes (HaCaT) cell line to an environmentally relevant level of arsenic (0.05 ppm) in vitrofor 18 weeks. Following sodium arsenite administration, cell cycle, colo...

  9. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach

    Directory of Open Access Journals (Sweden)

    De Marco Federico

    2010-03-01

    Full Text Available Abstract Background The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS, which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes. Results The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized. Conclusions Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.

  10. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen.

    Science.gov (United States)

    Choi, Hye-Ryung; Nam, Kyung-Mi; Lee, Hyun-Sun; Yang, Seung-Hye; Kim, Young-Soo; Lee, Jongsung; Date, Akira; Toyama, Kazumi; Park, Kyoung-Chan

    2016-01-01

    E. senticosus extract (ESE), known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ) is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs) were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA) is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen. PMID:27042261

  11. Phlorizin, an Active Ingredient of Eleutherococcus senticosus, Increases Proliferative Potential of Keratinocytes with Inhibition of MiR135b and Increased Expression of Type IV Collagen

    Directory of Open Access Journals (Sweden)

    Hye-Ryung Choi

    2016-01-01

    Full Text Available E. senticosus extract (ESE, known as antioxidant, has diverse pharmacologic effects. It is also used as an antiaging agent for the skin and phlorizin (PZ is identified as a main ingredient. In this study, the effects of PZ on epidermal stem cells were investigated. Cultured normal human keratinocytes and skin equivalents are used to test whether PZ affects proliferative potential of keratinocytes and how it regulates these effects. Skin equivalents (SEs were treated with ESE and the results showed that the epidermis became slightly thickened on addition of 0.002% ESE. The staining intensity of p63 as well as proliferating cell nuclear antigen (PCNA is increased, and integrin α6 was upregulated. Analysis of ESE confirmed that PZ is the main ingredient. When SEs were treated with PZ, similar findings were observed. In particular, the expression of integrin α6, integrin β1, and type IV collagen was increased. Levels of mRNA for type IV collagen were increased and levels of miR135b were downregulated. All these findings suggested that PZ can affect the proliferative potential of epidermal cells in part by microenvironment changes via miR135b downregulation and following increased expression of type IV collagen.

  12. Keratinocyte Apoptosis is Decreased in Psoriatic Epidermis

    Directory of Open Access Journals (Sweden)

    Fatma Eskioğlu

    2009-12-01

    Full Text Available Background and Design: Abnormal differentiation and hyperproliferation of keratinocytes are the hallmarks of psoriasis vulgaris. Although psoriasis vulgaris is generally accepted as a disease of decreased keratinocyte apoptosis, the results are contradictory. The aim of the current study is to investigate whether decreased keratinocyte apoptosis contributes to the formation of a thickened epidermis as increased keratinocyte proliferation. Material and Method: Forty-three untreated psoriasis vulgaris patients and 20 healthy control subjects were included into the study. Biopsy specimens taken from the enrollee were evaluated by immunohistochemical staining for Ki-67 expressions to show the proliferation of keratinocytes and by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL method to show the apoptotic keratinocytes. Results: Apoptotic index (percentage of the TUNEL positive cells was significantly lower in psoriatic epidermis (0.33±0.64 than in normal epidermis (0.75±0.85; whereas Ki-67 index (percentage of positively staining cells for Ki-67 was significantly higher in psoriatic epidermis (30.86±10.49 than in normal epidermis (11.65±2.98, (p=0.021 and p=0.00; respectively. Conclusion: Decreased keratinocyte apoptosis also contribute to increased epidermal thickness in psoriasis as well as increased keratinocyte proliferation.

  13. Role of taurine accumulation in keratinocyte hydration.

    Science.gov (United States)

    Janeke, Guido; Siefken, Wilfried; Carstensen, Stefanie; Springmann, Gunja; Bleck, Oliver; Steinhart, Hans; Höger, Peter; Wittern, Klaus-Peter; Wenck, Horst; Stäb, Franz; Sauermann, Gerhard; Schreiner, Volker; Doering, Thomas

    2003-08-01

    Epidermal keratinocytes are exposed to a low water concentration at the stratum corneum-stratum granulosum interface. When epithelial tissues are osmotically perturbed, cellular protection and cell volume regulation is mediated by accumulation of organic osmolytes such as taurine. Previous studies reported the presence of taurine in the epidermis of several animal species. Therefore, we analyzed human skin for the presence of the taurine transporter (TAUT) and studied the accumulation of taurine as one potential mechanism protecting epidermal keratinocytes from dehydration. According to our results, TAUT is expressed as a 69 kDa protein in human epidermis but not in the dermis. For the epidermis a gradient was evident with maximal levels of TAUT in the outermost granular keratinocyte layer and lower levels in the stratum spinosum. No TAUT was found in the basal layer or in the stratum corneum. Keratinocyte accumulation of taurine was induced by experimental induction of skin dryness via application of silica gel to human skin. Cultured human keratinocytes accumulated taurine in a concentration- and osmolarity-dependent manner. TAUT mRNA levels were increased after exposure of human keratinocytes to hyperosmotic culture medium, indicating osmosensitive TAUT mRNA expression as part of the adaptation of keratinocytes to hyperosmotic stress. Keratinocyte uptake of taurine was inhibited by beta-alanine but not by other osmolytes such as betaine, inositol, or sorbitol. Accumulation of taurine protected cultured human keratinocytes from both osmotically induced and ultraviolet-induced apoptosis. Our data indicate that taurine is an important epidermal osmolyte required to maintain keratinocyte hydration in a dry environment. PMID:12880428

  14. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling.

    Directory of Open Access Journals (Sweden)

    Stefanie Löffek

    Full Text Available The hemidesmosomal transmembrane component collagen XVII (ColXVII plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.

  15. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Nattaporn Pattarachotanant

    2014-01-01

    Full Text Available Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17, was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3. The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis.

  16. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes.

    Science.gov (United States)

    Pattarachotanant, Nattaporn; Rakkhitawatthana, Varaporn; Tencomnao, Tewin

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3). The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis. PMID:25435888

  17. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael;

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related. Methods:  A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based...... on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A...

  18. Altering sensorimotor feedback disrupts visual discrimination of facial expressions.

    Science.gov (United States)

    Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula

    2016-08-01

    Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities. PMID:26542827

  19. Increased expression of the histamine H4 receptor following differentiation and mediation of the H4 receptor on interleukin-8 mRNA expression in HaCaT keratinocytes.

    Science.gov (United States)

    Suwa, Eriko; Yamaura, Katsunori; Sato, Shiori; Ueno, Koichi

    2014-02-01

    Recent in vivo studies have demonstrated involvement of the histamine H4 receptor in pruritus and skin inflammation. We previously reported that an H4 receptor antagonist attenuated scratching behaviour and improved skin lesions in an experimental model of atopic dermatitis. We also reported the expression of the H4 receptor in human epidermal tissues. In this study, we investigated the expression of H4 receptor mRNA and the function of the receptor in a culture system that mimics in vivo inflammation on the HaCaT human keratinocyte cell line. Increased expression of the H4 receptor was observed in HaCaT cells following differentiation. Treatment of HaCaT cells with histamine and TNFα enhanced the mRNA expression of interleukin (IL)-8. These increases in expression were significantly inhibited by the H4 receptor antagonist JNJ7777120. Our results indicate that IL-8 mRNA expression might be enhanced by histamine and TNFα via H4 receptor stimulation in keratinocytes. PMID:24372819

  20. Microarray Expression Profiling Identifies Genes with Altered Expression in HDL-Deficient Mice

    OpenAIRE

    Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.; Speed, Terence P.; Rubin, Edward M.

    2000-01-01

    Based on the assumption that severe alterations in the expression of genes known to be involved in high-density lipoprotein (HDL) metabolism may affect the expression of other genes, we screened an array of >5000 mouse expressed sequence tags for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apoAI)-knockout mice, scavenger receptor BI (SR-BI) transgenic mice, and control mice were...

  1. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  2. The antipsoriatic dimethyl-fumarate suppresses interferon-gamma -induced ICAM-1 and HLA-DR expression on hyperproliferative keratinocytes. Quantification by a culture plate-directed APAAP-ELISA technique.

    Science.gov (United States)

    Sebok, B; Bonnekoh, B; Vetter, R; Schneider, I; Gollnick, H; Mahrle, G

    1998-01-01

    The derivatives of fumaric acid show antipsoriatic effects but details of the mechanism of action are largely unknown. The study focused on the effect of fumaric acid, dimethyl-fumarate, Zn-, Ca- and Mg-monoethyl-fumarate on the interferon-gamma (IFN-gamma)-induced expression of ICAM-1 and HLA-DR molecules on keratinocytes. Human hyperproliferative keratinocytes of the HaCaT cell line were exposed to IFN-gamma (10 U/ml) alone or in combination with fumaric acid and its derivatives for 48 hrs. The effect of fumarates was investigated semiquantitatively using the alkaline phosphatase-anti-alkaline phosphatase (APAAP) method. Subsequently, the effect of dimethyl-fumarate, the main component of "fumaric acid therapy", was evaluated quantitatively by means of an APAAP-ELISA technique. The semiquantitative evaluation revealed that in the micromolar dose range investigated only dimethyl-fumarate demonstrated substantial growth inhibition and down-regulation of the cell surface markers. In the quantitative evaluation, dimethyl-fumarate significantly (pexpression of ICAM-1 (84%) and HLA-DR (67%) on HaCaT keratinocytes at a subtoxic concentration of 4.0 microM as compared to untreated controls (100%). In contrast, concentrations of 4.0, 12 and 35 microM dimethyl-fumarate had no influence on the ICAM-1 and HLA-DR expression on IFN-gamma-exposed normal human epidermal keratinocytes in primary cultures. Thus, there is experimental evidence that dimethyl-fumarate may exert its antipsoriatic effect not only as an antiproliferative agent but also by down-regulation of ICAM-1 and HLA-DR molecules on hyperproliferative keratinocytes. PMID:9649687

  3. Human Keratinocytes Are Vanilloid Resistant

    OpenAIRE

    Pecze, László; Szabó, Kornélia; Széll, Márta; Jósvay, Katalin; Kaszás, Krisztián; Kúsz, Erzsébet; Letoha, Tamás; Prorok, János; Koncz, István; Tóth, András; Kemény, Lajos; Vizler, Csaba; Oláh, Zoltán

    2008-01-01

    Background Use of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular surge...

  4. Baicalin downregulates Porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available Periodontal (gum disease is one of the main global oral health burdens and severe periodontal disease (periodontitis is a leading cause of tooth loss in adults globally. It also increases the risk of cardiovascular disease and diabetes mellitus. Porphyromonas gingivalis lipopolysaccharide (LPS is a key virulent attribute that significantly contributes to periodontal pathogenesis. Baicalin is a flavonoid from Scutellaria radix, an herb commonly used in traditional Chinese medicine for treating inflammatory diseases. The present study examined the modulatory effect of baicalin on P. gingivalis LPS-induced expression of IL-6 and IL-8 in human oral keratinocytes (HOKs. Cells were pre-treated with baicalin (0-80 µM for 24 h, and subsequently treated with P. gingivalis LPS at 10 µg/ml with or without baicalin for 3 h. IL-6 and IL-8 transcripts and proteins were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of nuclear factor-κB (NF-κB, p38 mitogen-activated protein kinase (MAPK and c-Jun N-terminal kinase (JNK proteins was analyzed by western blot. A panel of genes related to toll-like receptor (TLR signaling was examined by PCR array. We found that baicalin significantly downregulated P. gingivalis LPS-stimulated expression of IL-6 and IL-8, and inhibited P. gingivalis LPS-activated NF-κB, p38 MAPK and JNK. Furthermore, baicalin markedly downregulated P. gingivalis LPS-induced expression of genes associated with TLR signaling. In conclusion, the present study shows that baicalin may significantly downregulate P. gingivalis LPS-upregulated expression of IL-6 and IL-8 in HOKs via negative regulation of TLR signaling.

  5. Vibrational force alters mRNA expression in osteoblasts

    Science.gov (United States)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  6. Expression of Hepatocyte Growth Factor-Like Protein in Human Wound Tissue and Its Biological Functionality in Human Keratinocytes

    OpenAIRE

    James C. Glasbey; Sanders, Andrew J.; David C. Bosanquet; Fiona Ruge; HARDING, KEITH G.; Jiang, Wen G

    2015-01-01

    Hepatocyte growth factor-like protein (HGFl) and its receptor, Recepteur d'Origine Nantais (RON), have been implicated in the development of wound chronicity. HGFl and RON expression was detected in acute wound tissue, chronic wound tissue and in normal skin using quantitative polymerase chain reaction (Q-PCR). HGFl and RON expression was also assessed in chronic healing and chronic non-healing wound tissues using Q-PCR and immunohistochemical staining. Expression was similarly detected in th...

  7. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  8. Analysis of the response of human keratinocytes to Malassezia globosa and restricta strains.

    Science.gov (United States)

    Donnarumma, Giovanna; Perfetto, Brunella; Paoletti, Iole; Oliviero, Giovanni; Clavaud, Cécile; Del Bufalo, Aurelia; Guéniche, Audrey; Jourdain, Roland; Tufano, Maria Antonietta; Breton, Lionel

    2014-10-01

    Malassezia spp. are saprophyte yeasts involved in skin diseases with different degrees of severity. The aim of our study was to analyze the response of human epidermal keratinocytes to Malassezia globosa and restricta strains evaluating the host defence mechanisms induced by Malassezia spp. colonization. Our results showed a different modulation of the inflammatory and immunomodulatory cytokine pathways obtained with the different strains of Malassezia tested. In addition, this expression is altered by blocking the TLR2 receptor. In comparison with M. furfur, M. globosa and restricta displayed an unexpected and striking cytotoxicity on keratinocytes. The differences observed could be related to the different modalities of interaction between keratinocytes and Malassezia strains, but also to their growth condition. Taken together, these results indicate that M. globosa or M. restricta colonization exert a different control on the cytokine inflammatory response activated in the human keratinocyte in which TLR2 might be involved. M. globosa and M. restricta may play a synergistic role in the exacerbation of skin diseases in which both are found. PMID:25038621

  9. Surfactant metabolism and anti-oxidative capacity in hyperoxic neonatal rat lungs: effects of keratinocyte growth factor on gene expression in vivo.

    Science.gov (United States)

    Koslowski, Roland; Kasper, Michael; Schaal, Katharina; Knels, Lilla; Lange, Marco; Bernhard, Wolfgang

    2013-03-01

    Development of preterm infant lungs is frequently impaired resulting in bronchopulmoary dysplasia (BPD). BPD results from interruption of physiologic anabolic intrauterine conditions, the inflammatory basis and therapeutic consequences of premature delivery, including increased oxygen supply for air breathing. The latter requires surfactant, produced by alveolar type II (AT II) cells to lower surface tension at the pulmonary air:liquid interface. Its main components are specific phosphatidylcholine (PC) species including dipalmitoyl-PC, anionic phospholipids and surfactant proteins. Local antioxidative enzymes are essential to cope with the pro-inflammatory side effects of normal alveolar oxygen pressures. However, respiratory insufficiency frequently requires increased oxygen supply. To cope with the injurious effects of hyperoxia to epithelia, recombinant human keratinocyte growth factor (rhKGF) was proposed as a surfactant stimulating, non-catabolic and epithelial-protective therapeutic. The aim of the present study was to examine the qualification of rhKGF to improve expression parameters of lung maturity in newborn rats under hyperoxic conditions (85% O(2) for 7 days). In response to rhKGF proliferating cell nuclear antigen mRNA, as a feature of stimulated proliferation, was elevated. Similarly, the expressions of ATP-binding cassette protein A3 gene, a differentiation marker of AT II cells and of peroxiredoxin 6, thioredoxin and thioredoxin reductase, three genes involved in oxygen radical protection were increased. Furthermore, mRNA levels of acyl-coA:lysophosphatidylcholine acyltransferase 1, catalyzing dipalmitoyl-PC synthesis by acyl remodeling, and adipose triglyceride lipase, considered as responsible for fatty acid supply for surfactant PC synthesis, were elevated. These results, together with a considerable body of other confirmative evidence, suggest that rhKGF should be developed into a therapeutic option to treat preterm infants at risk for

  10. UV-B Radiation Induces Macrophage Migration Inhibitory Factor–Mediated Melanogenesis through Activation of Protease-Activated Receptor-2 and Stem Cell Factor in Keratinocytes

    OpenAIRE

    Enomoto, Akiko; Yoshihisa, Yoko; Yamakoshi, Takako; Ur Rehman, Mati; Norisugi, Osamu; HARA Hiroshi; Matsunaga, Kenji; Makino, Teruhiko; Nishihira, Jun; Shimizu, Tadamichi

    2011-01-01

    UV radiation indirectly regulates melanogenesis in melanocytes through a paracrine regulatory mechanism involving keratinocytes. Protease-activated receptor (PAR)-2 activation induces melanosome transfer by increasing phagocytosis of melanosomes by keratinocytes. This study demonstrated that macrophage migration inhibitory factor (MIF) stimulated PAR-2 expression in human keratinocytes. In addition, we showed that MIF stimulated stem cell factor (SCF) release in keratinocytes; however, MIF ha...

  11. TOLL-LIKE RECEPTORS (TLR 2 AND 4 EXPRESSION OF KERATINOCYTES FROM PATIENTS WITH LOCALIZED AND DISSEMINATED DERMATOPHYTOSIS

    Directory of Open Access Journals (Sweden)

    Cristiane Beatriz de Oliveira

    2015-02-01

    Full Text Available There are few studies on the role of innate immune response in dermatophytosis. An investigation was conducted to define the involvement of Toll-Like Receptors (TLRs 2 and 4 in localized (LD and disseminated (DD dermatophytosis due to T. rubrum. Fifteen newly diagnosed patients, eight patients with LD and seven with DD, defined by involvement of at least three body segments were used in this study. Controls comprised twenty skin samples from healthy individuals undergoing plastic surgery. TLR2 and TLR4 were quantified in skin lesions by immunohistochemistry. A reduced expression of TLR4 in the lower and upper epidermis of both LD and DD patients was found compared to controls; TLR2 expression was preserved in the upper and lower epidermis of all three groups. As TLR4 signaling induces the production of inflammatory cytokines and neutrophils recruitment, its reduced expression likely contributed to the lack of resolution of the infection and the consequent chronic nature of the dermatophytosis. As TLR2 expression acts to limit the inflammatory process and preserves the epidermal structure, its preserved expression may also contribute to the persistent infection and limited inflammation that are characteristic of dermatophytic infections.

  12. Role of HuR and p38MAPK in Ultraviolet B-induced Post-transcriptional Regulation of COX-2 Expression in the Human Keratinocyte Cell Line HaCaT*

    OpenAIRE

    Fernau, Niklas S.; Fugmann, Dominik; Leyendecker, Martin; Reimann, Kerstin; Grether-Beck, Susanne; Galban, Stefanie; Ale-Agha, Niloofar; Krutmann, Jean; Klotz, Lars-Oliver

    2009-01-01

    COX-2 (cyclooxygenase-2) is a pivotal player in inflammatory processes, and ultraviolet radiation is a known stimulus for COX-2 expression in skin cells. Here, an induction of COX-2 expression in HaCaT human keratinocytes was observed only upon exposure of cells to UVB (280–320 nm) but not to UVA radiation (320–400 nm), as demonstrated by reverse transcription-PCR and Western blotting. Prostaglandin E2 levels were elevated in cell culture supernatants of HaCaT cells exposed to UVB. COX-2 mRNA...

  13. Ionizing radiation and bacterial challenge alter splenic cytokine gene expression

    International Nuclear Information System (INIS)

    Irradiation increases susceptibility to bacterial infection. Exogenous proinflammatory cytokines can alter the response of mice to γradiation, but the role of endogenous inflammatory cytokines after bacterial infection in irradiated animals is not known. Gene expression of hematopoietic (GM-CSF) and proinflammatory (IL-1β, IL-6 and TNF-α) cytokines were examined in spleens of B6D2F1/J female mice after irradiation alone (1.0- and 7.0-Gy), and after irradiation followed by Klebsiella pneumoniae s.c. challenge 4 days postirradiation by using the reverse transcription-polymerase chain reaction (RT-PCR) and Southern blot hybridization. At 4, 8, and 24 h after bacterial challenge in 7.0-Gy-irradiated mice, GM-CSF mRNA increased (p<0.05). TNF-α mRNA in irradiated mice were slightly decreased, whereas after bacterial challenge, TNF-α mRNA elevated at 30 h in 7.0-Gy-irradiated mice; at 4, and 8 h in 1.0-Gy-irradiated mice, and at 1 h in sham-irradiated mice (p<0.05). IL-6 mRNA displayed a biphasic response in 7.0-Gy-irradiated mice, and, after bacterial challenge, in both irradiated mice (1.0- and 7.0-Gy) and sham-irradiated mice. IL-1β mRNA remained at or below normal for 8 h and increased at 24 h after bacterial challenge on day 4 in 7.0-Gy-irradiated mice. These results indicate that sublethal gamma radiation alters the patterns of the hematopoietic and proinflammatory cytokine responses to bacterial challenge in vivo. Consequently, treatment protocols may need to take into account changes in cytokine gene responses to resolve infection after irradiation. (author)

  14. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure

    Directory of Open Access Journals (Sweden)

    S. Huang

    2013-01-01

    Full Text Available Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC. To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the HaCaT cells line to an environmentally relevant level of arsenic (0.05 ppm in vitro for 18 weeks. Following sodium arsenic arsenite administration, cell cycle, colony-forming efficiency (CFE, cell tumorigenicity, and expression of CD44v6, NF-κB and p53, were analyzed at different time points (0, 5, 10, 15, 20, 25 and 30 passages. We found that a chronic exposure of HaCaT cells to a low level of arsenic induced a cancer stem- like phenotype. Furthermore, arsenic-treated HaCaT cells also became tumorigenic in nude mice, their growth cycle was predominantly in G2/M and S phases. Relative to nontreated cells, they exhibited a higher growth rate and a significant increase in CFE. Western blot analysis found that arsenic was capable of increasing cell proliferation and sprouting of cancer stem-like phenotype. Additionally, immunohistochemical analysis demonstrated that CD44v6 expression was up-regulated in HaCaT cells exposed to a low level of arsenic during early stages of induction. The expression of CD44v6 in arsenic-treated cells was positively correlated with their cloning efficiency in soft agar (r=0.949, P=0.01. Likewise, the expressions of activating transcription factor NF-κB and p53 genes in the arsenic-treated HaCaT cells were significantly higher than that in non-treated cells. Higher expressions of CD44v6, NF-κB and p53 were also observed in tumor tissues isolated from Balb/c nude mice. The present results suggest that CD44v6 may be a biomarker of arsenic-induced neoplastic transformation in human skin cells, and that arsenic promotes malignant transformation in human skin lesions through a NF-κB signaling pathway-stimulated expression of CD44v6.

  15. Sphingomyelinase D from Loxosceles laeta Venom Induces the Expression of MMP7 in Human Keratinocytes: Contribution to Dermonecrosis

    OpenAIRE

    Corrêa, Mara A.; Okamoto, Cinthya K.; Gonçalves-de-Andrade, Rute M.; van den Berg, Carmen W.; Tambourgi, Denise V.

    2016-01-01

    Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the exp...

  16. Trangenic misexpression of the differentiation-specific desmocollin isoform 1 in basal keratinocytes.

    Science.gov (United States)

    Henkler, F; Strom, M; Mathers, K; Cordingley, H; Sullivan, K; King, I

    2001-01-01

    Keratinocytes undergoing terminal differentiation are characterized by well-defined changes in protein expression, which contribute towards the transformation of cytoarchitecture and epithelial morphology. Characteristic patterns of desmosomal cadherins are tightly regulated and distinct isoforms are expressed during development and differentiation of epithelial tissues. Desmocollin-1 is strictly confined to suprabasal layers of epidermis, but it is absent in mitotically active, basal keratinocytes. This raises the question of whether basal desmocollin-1 could alter desmosomal functions and compromise keratinocyte proliferation, stratification, or early differentiation in skin. In this study, we misexpressed human desmocollin-1 in mouse epidermis, under control of the keratin-14 promoter. Transgenic animals were generated, which showed a specific expression of transgenic human desmocollin-1 in epidermal basal cells. High level transgenic expression, which was equal to or greater than endogenous protein levels, was observed in mice with multiple copy integration of the transgene. A punctate distribution of desmocollin-1 was demonstrated at the cell membrane by indirect immunofluorescence. Transgenic human desmocollin-1 colocalized with endogenous desmosomal marker proteins, indicating efficient incorporation into desmosomes. Transgenic mice did not display any obvious abnormalities, either in the histology of skin and hair follicles, or in the ultrastructure of desmosomes. These observations suggest that desmocollin-1 can function as a desmosomal cadherin both in basal and suprabasal cells. We propose that the differentiation-specific desmocollin isoforms desmocollin-1 and desmocollin-3 are functionally equivalent in basal epidermal cells and suggest that their changing expression patterns are markers, but not regulators, of the initial steps in keratinocyte differentiation. PMID:11168810

  17. Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain

    Directory of Open Access Journals (Sweden)

    Wei Tzuping

    2012-07-01

    Full Text Available Abstract Tibia fracture in rats followed by cast immobilization leads to nociceptive, trophic, vascular and bone-related changes similar to those seen in Complex Regional Pain Syndrome (CRPS. Substance P (SP mediated neurogenic inflammation may be responsible for some of the signs of CRPS in humans. We therefore hypothesized that SP acting through the SP receptor (NK1 leads to the CRPS-like changes found in the rat model. In the present study, we intradermally injected rats with SP and monitored hindpaw mechanical allodynia, temperature, and thickness as well as tissue levels of tumor necrosis factor-α (TNF-α, interleukin 1β (IL-1β, interleukin 6 (IL-6, and nerve growth factor-β (NGF for 72 h. Anti-NGF antibody was utilized to block the effects of SP-induced NGF up-regulation. Fracture rats treated with the selective NK1 receptor antagonist LY303870 prior to cast removal were assessed for BrdU, a DNA synthesis marker, incorporation in skin cells to examine cellular proliferation. Bone microarchitecture was measured using micro computed tomography (μCT. We observed that: (1 SP intraplantar injection induced mechanical allodynia, warmth and edema as well as the expression of nociceptive mediators in the hindpaw skin of normal rats, (2 LY303870 administered intraperitoneally after fracture attenuated allodynia, hindpaw unweighting, warmth, and edema, as well as cytokine and NGF expression, (3 LY303870 blocked fracture-induced epidermal thickening and BrdU incorporation after fracture, (4 anti-NGF antibody blocked SP-induced allodynia but not warmth or edema, and (5 LY303870 had no effect on bone microarchitecture. Collectively our data indicate that SP acting through NK1 receptors supports the nociceptive and vascular components of CRPS, but not the bone-related changes.

  18. Areca Nut Components Affect COX-2, Cyclin B1/cdc25C and Keratin Expression, PGE2 Production in Keratinocyte Is Related to Reactive Oxygen Species, CYP1A1, Src, EGFR and Ras Signaling

    OpenAIRE

    Mei-Chi Chang; Yi-Jane Chen; Hsiao-Hua Chang; Chiu-Po Chan; Chien-Yang Yeh; Yin-Lin Wang; Ru-Hsiu Cheng; Liang-Jiunn Hahn; Jiiang-Huei Jeng

    2014-01-01

    Aims Chewing of betel quid (BQ) increases the risk of oral cancer and oral submucous fibrosis (OSF), possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa. Methods Primary gingival keratinocytes (GK cells) were exposed to areca nut (AN) components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain r...

  19. Functional analysis of ZFP36 proteins in keratinocytes.

    Science.gov (United States)

    Prenzler, Frauke; Fragasso, Annunziata; Schmitt, Angelika; Munz, Barbara

    2016-08-01

    The ZFP36 family of zinc finger proteins, including ZFP36, ZFP36L1, and ZFP36L2, regulates the production of growth factors and cytokines via destabilization of the respective mRNAs. We could recently demonstrate that in cultured keratinocytes, expression of the ZFP36, ZFP36L1, and ZFP36L2 genes is induced by growth factors and cytokines and that ZFP36L1 is a potent regulator of keratinocyte VEGF production. We now further analyzed the localization and function of ZFP36 proteins in the skin, specifically in epidermal keratinocytes. We found that in human epidermis, the ZFP36 protein could be detected in basal and suprabasal keratinocytes, whereas ZFP36L1 and ZFP36L2 were expressed mainly in the basal layer, indicating different and non-redundant functions of the three proteins in the epidermis. Consistently, upon inhibition of ZFP36 or ZFP36L1 expression using specific siRNAs, there was no major effect on expression of the respective other gene. In addition, we demonstrate that both ZFP36 and ZFP36L1 influence keratinocyte cell cycle, differentiation, and apoptosis in a distinct manner. Finally, we show that similarly as ZFP36L1, ZFP36 is a potent regulator of keratinocyte VEGF production. Thus, it is likely that both proteins regulate angiogenesis via paracrine mechanisms. Taken together, our results suggest that ZFP36 proteins might control reepithelialization and angiogenesis in the skin in a multimodal manner. PMID:27182009

  20. Effect of Spa Spring Water on Cytokine Expression in Human Keratinocyte HaCaT Cells and on Differentiation of CD4+ T Cells

    OpenAIRE

    Lee, Ho-Pyo; Choi, Yoon-Jung; Cho, Kyung-Ah; Woo, So-Youn; Yun, Seong-Taek; Lee, Jong Tae; Kim, Hong Jig; Lee, Kyung-Ho; Kim, Jin-Wou

    2012-01-01

    Background Skin acts as the first line of defense against any foreign materials outside of our body. In inflammatory skin disease, the pathogenesis is due to an immune reaction in the keratinocytes, immune cells and soluble mediators. Balneotherapy is widely used for the treatment of inflammatory skin disease, but the mechanisms are only partly understood by immune regulation. Balneotherapy in dermatologic disease can affect the secretion of pro-inflammatory cytokines, IL-1α and tumor necrosi...

  1. A Novel Role of the NRF2 Transcription Factor in the Regulation of Arsenite-Mediated Keratin 16 Gene Expression in Human Keratinocytes

    OpenAIRE

    Endo, Hitoshi; Sugioka, Yoshihiko; Nakagi, Yoshihiko; Saijo, Yasuaki; Yoshida, Takahiko

    2008-01-01

    Background Inorganic sodium arsenite (iAs) is a ubiquitous environmental contaminant and is associated with an increased risk of skin hyperkeratosis and cancer. Objectives We investigated the molecular mechanisms underlying the regulation of the keratin 16 (K16) gene by iAs in the human keratinocyte cell line HaCaT. Methods We performed reverse transcriptase polymerase chain reaction, luciferase assays, Western blots, and electrophoretic mobility shift assays to determine the transcriptional ...

  2. Ultraviolet B light-induced apoptosis in human keratinocytes enriched with epidermal stem cells and normal keratinocytes

    Institute of Scientific and Technical Information of China (English)

    MEI Xue-ling; LIAN Shi

    2011-01-01

    Background The stem-cell compartment is the primary target for the accumulation of oncogenic mutations.Overexposure to solar ultraviolet radiation is responsible for the development and progression of >90% of skin cancers.Ultraviolet B (UVB) light-induced keratinocyte apoptosis is a strong preventive mechanism against carcinogenesis. The aim of this study was to isolate keratinocytes enriched with putative human epidermal stem cells and to investigate their apoptotic induction by UVB.Methods Keratinocytes enriched with putative human epidermal stem cells were isolated by adherence to collagen Ⅳ and the expressions of β1-integrin and p63 were investigated. Keratinocytes enriched with putative human epidermal stem cells and normal keratinocytes were irradiated with UVB at 0-80 mJ/cm2. The apoptotic response was investigated with phase-contrast microscopy, Hoechst 33342 staining, flow cytometry of annexin V/PI, and procaspase-3 Western blotting.Results Keratinocyte enriched with stem cells expressed high levels of p63 protein and β1-integrin and low level of pan-keratin (C11). In comparison to non-irradiated cells, significant apoptosis of keratinocyte enriched with stem cells was found with 40 and 80 mJ/cm2 UVB. However, significant apoptosis of normal keratinocytes was only found for 80 mJ/cm2 UVB.Conclusions Human epidermal stem cells can undergo apoptosis in response to UVB radiation and are more susceptible than other keratinocytes. The method could be used in vitro studies of human epidermal stem cells.

  3. Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes.

    Science.gov (United States)

    Sun, Xiaoyun; Kim, Arianna; Nakatani, Masashi; Shen, Yao; Liu, Liang

    2016-09-01

    Solar ultraviolet radiation (UVR) is the major risk factor for skin carcinogenesis. To gain new insights into the molecular pathways mediating UVR effects in the skin, we performed comprehensive transcriptomic analyses to identify shared and distinctive molecular responses to UVR between human keratinocytes and melanocytes. Keratinocytes and melanocytes were irradiated with varying doses of UVB (10, 20 and 30 mJ/cm(2) ) then analysed by RNA-Seq at different time points post-UVB radiation (4, 24 and 72 h). Under basal conditions, keratinocytes and melanocytes expressed similar number of genes, although they each expressed a distinctive subset of genes pertaining to their specific cellular identity. Upon UVB radiation, keratinocytes displayed a clear pattern of time- and dose-dependent changes in gene expression that was different from melanocytes. The early UVB-responsive gene set (4 h post-UVR) differed significantly from delayed UVB-responsive gene sets (24 and 72 h). We also identified multiple novel UVB signature genes including PRSS23, SERPINH1, LCE3D and CNFN, which were conserved between melanocyte and keratinocyte lines from different individuals. Taken together, our findings elucidated both common and distinctive molecular features between melanocytes and keratinocytes and uncovered novel UVB signature genes that might be utilized to predict UVB photobiological effects on the skin. PMID:27119462

  4. Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Directory of Open Access Journals (Sweden)

    Marchal Joëlle

    2005-10-01

    Full Text Available Abstract Background Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. Methods Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. Results Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. Conclusion The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers.

  5. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    Science.gov (United States)

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. PMID:27093919

  6. Reorganization of the interchromosomal network during keratinocyte differentiation.

    Science.gov (United States)

    Sehgal, Nitasha; Seifert, Brandon; Ding, Hu; Chen, Zihe; Stojkovic, Branislav; Bhattacharya, Sambit; Xu, Jinhui; Berezney, Ronald

    2016-06-01

    The well-established human epidermal keratinocyte (HEK) differentiation model was investigated to determine possible alterations in chromosome territory (CT) association during differentiation. The seven human chromosomes (1, 4, 11, 12, 16, 17, and 18) selected for this analysis are representative of the chromosome size and gene density range of the overall human genome as well as including a majority of genes involved in epidermal development and differentiation (CT1, 12, and 17). Induction with calcium chloride (Ca(2+)) resulted in morphological changes characteristic of keratinocyte differentiation. Combined multi-fluorescence in situ hybridization (FISH) and computational image analysis on the undifferentiated (0 h) and differentiated (24 h after Ca(2+) treatment) HEK revealed that (a) increases in CT volumes correspond to overall nuclear volume increases, (b) radial positioning is gene density-dependent at 0 h but neither gene density- nor size-dependent at 24 h, (c) the average number of interchromosomal associations for each CT is gene density-dependent and similar at both time points, and (d) there are striking differences in the single and multiple pairwise interchromosomal association profiles. Probabilistic network models of the overall interchromosomal associations demonstrate major reorganization of the network during differentiation. Only ~40 % of the CT pairwise connections in the networks are common to both 0 and 24 h HEK. We propose that there is a probabilistic chromosome positional code which can be significantly altered during cell differentiation in coordination with reprogramming of gene expression. PMID:26490167

  7. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms

    International Nuclear Information System (INIS)

    Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms

  8. Altered gene expression in asymptomatic SHIV-infected rhesus macaques (Macacca mulatta)

    OpenAIRE

    Phillips Aaron T; Chakraborty Nabarun; Hammamieh Rasha; Carroll Erica E; Miller Stacy-Ann M; Jett Marti

    2006-01-01

    Abstract Simian-Human immunodeficiency virus is a chimeric virus which, in rhesus macaques (Macacca mulatta) closely imitates immunodeficiency virus infection in human (HIV). A relatively new way to study pathogenesis of viral infection is to study alterations in host gene expression induced by the virus. SHIV infection with certain strains does not result in clinical signs. We hypothesized that alterations in gene expression relating to the immune system would be present in SHIV-infected ani...

  9. Radiation-induced alteration of gene expression in rat liver

    International Nuclear Information System (INIS)

    Exposure of rats to high dose of γ-radiation (200 Gy) significantly enhanced the ability of mitochondria to accumulate and retain exogenously added Ca2+ one hour after irradiation. 48 hours after irradiation no differences in Ca2+ transporting parameters between mitochondria from control and irradiated animals were found. The stability of mitochondrial membrane potential - the driving force for Ca2+ accumulation and retention, depends on the expression of bcl-2 gene, whose product not only participates in the regulation of Ca2+ fluxes in, but also demonstrates antioxidant properties. The overexpression of this gene was shown to protect cell mitochondria against oxidative stress. However, the investigation of bcl-2 expression in rat liver did not show any significant changes neither 1 nor 48 hours after irradiation. Taking into account that the damage of mitochondria induced action of oxygen radicals and Ca2+ can be prevented by antioxidants, the expression of genes encoded superoxiddismutase and catalase was studied. Expression was gradually stimulated. However, under conditions employed in experiments, direct changes. Presumably this can be explained by a post-translational regulation of the activity of these enzymes. (authors)

  10. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans.

    Science.gov (United States)

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice

    2015-05-01

    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions. PMID:25504800

  11. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  12. Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development

    OpenAIRE

    Liu, Qin; Dalman, Mark; CHEN, YUN; Akhter, Mashal; Brahmandam, Sravya; Patel, Yesha; Lowe, Josef; Thakkar, Mitesh; Gregory, Akil-Vuai; Phelps, Daryllanae; Riley, Caitlin; Londraville, Richard L.

    2012-01-01

    Using morpholino antisense oligonucleotide (MO) technology, we blocked leptin A or leptin receptor expression in embryonic zebrafish, and analyzed consequences of leptin knock-down on fish development. Embryos injected with leptin A or leptin receptor MOs (leptin A or leptin receptor morphants) had smaller bodies and eyes, undeveloped inner ear, enlarged pericardial cavity, curved body and/or tail and larger yolk compared to control embryos of the same stages. The defects persisted in 6-9 day...

  13. Altered circadian clock gene expression in patients with schizophrenia.

    Science.gov (United States)

    Johansson, Anne-Sofie; Owe-Larsson, Björn; Hetta, Jerker; Lundkvist, Gabriella B

    2016-07-01

    Impaired circadian rhythmicity has been reported in several psychiatric disorders. Schizophrenia is commonly associated with aberrant sleep-wake cycles and insomnia. It is not known if schizophrenia is associated with disturbances in molecular rhythmicity. We cultured fibroblasts from skin samples obtained from patients with chronic schizophrenia and from healthy controls, respectively, and analyzed the circadian expression during 48h of the clock genes CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, REV-ERBα and DBP. In fibroblasts obtained from patients with chronic schizophrenia, we found a loss of rhythmic expression of CRY1 and PER2 compared to cells from healthy controls. We also estimated the sleep quality in these patients and found that most of them suffered from poor sleep in comparison with the healthy controls. In another patient sample, we analyzed mononuclear blood cells from patients with schizophrenia experiencing their first episode of psychosis, and found decreased expression of CLOCK, PER2 and CRY1 compared to blood cells from healthy controls. These novel findings show disturbances in the molecular clock in schizophrenia and have important implications in our understanding of the aberrant rhythms reported in this disease. PMID:27132483

  14. Human keratinocyte culture from the peritonsillar mucosa.

    Science.gov (United States)

    Neugebauer, P; Bonnekoh, B; Wevers, A; Michel, O; Mahrle, G; Krieg, T; Stennert, E

    1996-01-01

    Tonsillectomy tissue can be used as a routine source for cultures of oropharyngeal keratinocytes. In so doing, a peritonsillar strip of unaltered mucosa was dissected in the upper submucosa. Subsequent trypsinization yielded 7.0 +/- 3.4 x 10(6) keratinocytes per bilateral tonsillectomy. Keratinocyte attachment and growth in primary culture were promoted by sublethally irradiated 3T3 murine fibroblasts. Three subcultures could be performed without a feeder layer and were characterized by a population doubling time of 4.5 days during log growth phase. Electrophoretic and immunoblot analysis of the third subculture revealed a strong expression of keratin pairs 5/14 and 6/16 as well as keratins 7 and 19, whereas keratins 8/18 were expressed less intensely. The lowest intensity, was found for keratin 13, which is known to be indicative of the differentiated mucosa. The culture technique thus provides an easily available in vitro model for morphological and functional studies on the epithelial compartment of human oropharyngeal mucosa. PMID:8737778

  15. Expression of altered retinoblastoma protein inversely correlates with tumor invasion in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Nan-Hua Chou; Hui-Chun Chen; Nan-Song Chou; Ping-I Hsu; Hui-Hwa Tseng

    2006-01-01

    AIM: To investigate the clinical and pathological significance of altered retinoblastoma (Rb) encoding protein (pRb) in gastric carcinoma.METHODS: Expression of altered pRb was analyzed in 91 patients with gastric adenocarcinoma by immunohistochemistry.RESULTS: Sixty-five percent (59/91) of the tumors were positively stained and the staining in tumor nuclei of gastric carcinoma ranged 0%-90%. Moreover, strong expression of altered pRb was found in 35% (6/17),24% (5/21), 17% (8/46) and 0% (0/7) of T1, T2, T3 and T4 gastric carcinomas, respectively. Altered pRb expression was inversely correlated with the depth of tumor invasion (P = 0.047). Degree of immunoreactivity had no significant correlation with tumor grade, node metastasis and distant metastasis. In terms of prognostic significance, univariate analysis showed that poor differentiation [41 (66.1%) vs 34 (42.5%) P = 0.051],advanced tumor stage (P < 0.001) and weakly altered pRb expression [17 (80.5%) vs 58 (49.6%) P = 0.044]were associated with worse prognosis in these patients.However, multivariate analysis revealed that advanced tumor stage was the only independent poor prognostic factor (P < 0.001).CONCLUSION: The mutation of Rb gene is frequent in gastric carcinoma. The expression of altered pRb inversely correlates with tumor invasion and is not an independent prognostic marker in gastric adenocarcinoma

  16. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Holloway, Adele [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Cook, Anthony L. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Chin, Suyin P. [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia)

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  17. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    International Nuclear Information System (INIS)

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  18. Ecstasy-Induced Caspase Expression Alters Following Ginger Treatment

    OpenAIRE

    Asl, Sara Soleimani; Pourheydar, Bagher; Dabaghian, Fataneh; Nezhadi, Akram; ROOINTAN, AMIR; Mehdizadeh, Mehdi

    2013-01-01

    Introduction Exposure to 3-4, methylenedioxymethamphetamine (MDMA) leads to cell death. Herein, we studied the protective effects of ginger on MDMA- induced apoptosis. Methods 15 Sprague dawley male rats were administrated with 0, 10 mg/kg MDMA, or MDMA along with 100mg/kg ginger, IP for 7 days. Brains were removed to study the caspase 3, 8, and 9 expressions in the hippocampus by RT-PCR. Data was analyzed by SPSS 16 software using the one-way ANOVA test. Results MDMA treatment resulted in a ...

  19. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi; Pirisi, Lucia [Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC (United States); Creek, Kim E., E-mail: creekk@sccp.sc.edu [Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC (United States)

    2013-09-15

    We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer. - Highlights: • Ski oncoprotein levels increase during progression of HPV16-transformed cells. • Ski and phospho-Ski protein levels are cell cycle dependent. • Ski knock-down in HPV16-transformed keratinocytes inhibited cell proliferation. • Cervical cancer samples overexpress Ski.

  20. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer

    International Nuclear Information System (INIS)

    We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer. - Highlights: • Ski oncoprotein levels increase during progression of HPV16-transformed cells. • Ski and phospho-Ski protein levels are cell cycle dependent. • Ski knock-down in HPV16-transformed keratinocytes inhibited cell proliferation. • Cervical cancer samples overexpress Ski

  1. Polarized Integrin Mediates Human Keratinocyte Adhesion to Basal Lamina

    Science.gov (United States)

    de Luca, Michele; Tamura, Richard N.; Kajiji, Shama; Bondanza, Sergio; Rossino, Paola; Cancedda, Ranieri; Carlo Marchisio, Pier; Quaranta, Vito

    1990-09-01

    Epithelial cell interactions with matrices are critical to tissue organization. Indirect immunofluorescence and immunoprecipitations of cell lysates prepared from stratified cultures of human epidermal cells showed that the major integrins expressed by keratinocytes are α_Eβ_4 (also called α_6β_4) and α_2β_1/α_3β_1. The α_Eβ_4 integrin is localized at the surface of basal cells in contact with the basement membrane, whereas α_2β_1/ α_3β_1 integrins are absent from the basal surface and are localized only on the lateral surface of basal and spinous keratinocytes. Anti-β_4 antibodies potently inhibited keratinocyte adhesion to matrigel or purified laminin, whereas anti-β_1 antibodies were ineffective. Only anti-β_4 antibodies were able to detach established keratinocyte colonies. These data suggest that α_Eβ_4 mediates keratinocyte adhesion to basal lamina, whereas the β_1 subfamily is involved in cell-cell adhesion of keratinocytes.

  2. Micronucleus formation in human keratinocytes is dependent on radiation quality and tissue architecture.

    Science.gov (United States)

    Snijders, Antoine M; Mannion, Brandon J; Leung, Stanley G; Moon, Sol C; Kronenberg, Amy; Wiese, Claudia

    2015-01-01

    The cytokinesis-block micronucleus (MN) assay was used to assess the genotoxicity of low doses of different types of space radiation. Normal human primary keratinocytes and immortalized keratinocytes grown in 2D monolayers each were exposed to graded doses of 0.3 or 1.0 GeV/n silicon ions or similar energies of iron ions. The frequencies of induced MN were determined and compared to γ-ray data. RBE(max) values ranged from 1.6 to 3.9 for primary keratinocytes and from 2.4 to 6.3 for immortalized keratinocytes. At low radiation doses ≤ 0.4 Gy, 0.3 GeV/n iron ions were the most effective at inducing MN in normal keratinocytes. An "over-kill effect" was observed for 0.3 GeV/n iron ions at higher doses, wherein 1.0 GeV/n iron ions were most efficient in inducing MN. In immortalized keratinocytes, 0.3 GeV/n iron ions produced MN with greater frequency than 1.0 GeV/n iron ions, except at the highest dose tested. MN formation was higher in immortalized keratinocytes than in normal keratinocytes for all doses and radiation qualities investigated. MN induction was also assessed in human keratinocytes cultured in 3D to simulate the complex architecture of human skin. RBE values for MN formation in 3D were reduced for normal keratinocytes exposed to iron ions, but were elevated for immortalized keratinocytes. Overall, MN induction was significantly lower in keratinocytes cultured in 3D than in 2D. Together, the results suggest that tissue architecture and immortalization status modulate the genotoxic response to space radiation, perhaps via alterations in DNA repair fidelity. PMID:25041929

  3. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  4. Helicobacter pylori infection induced alteration of gene expression in human gastric cells

    OpenAIRE

    Chiou, C.; Chan, C.; Sheu, D; Chen, K; Li, Y; Chan, E

    2001-01-01

    BACKGROUND—Helicobacter pylori, a human pathogen responsible for many digestive disorders, induces complex changes in patterns of gene expression in infected tissues. cDNA expression arrays provide a useful tool for studying these complex phenomena.
AIM—To identify genes that showed altered expression after H pylori infection of human gastric cells compared with uninfected controls.
METHODS—The gastric adenocarcinoma cell line AGS was cocultivated with H pylori. Growth of infected cells was d...

  5. Neuroglobin-overexpression Alters Hypoxic Response Gene Expression in Primary Neuron Culture Following Oxygen Glucose Deprivation

    OpenAIRE

    Yu, Zhanyang; Liu, Jianxiang; Guo, Shuzhen; Xing, Changhong; Fan, Xiang; Ning, MingMing; Yuan, Juliet C.; Lo, Eng H.; Wang, Xiaoying

    2009-01-01

    Neuroglobin (Ngb) is a tissue globin specifically expressed in neurons. Our laboratory and others have shown that Ngb overexpression protects neurons against hypoxia/ischemia, but the underlying mechanisms remain poorly understood. Recent studies demonstrate that hypoxia/ischemia induces a multitude of spatially and temporally regulated responses in gene expression, and initial evidence suggested that Ngb might function in altering biological processes of gene expression. In this study, we as...

  6. Anomalous features of EMT during keratinocyte transformation.

    Directory of Open Access Journals (Sweden)

    Tamar Geiger

    Full Text Available During the evolution of epithelial cancers, cells often lose their characteristic features and acquire a mesenchymal phenotype, in a process known as epithelial-mesenchymal transition (EMT. In the present study we followed early stages of keratinocyte transformation by HPV16, and observed diverse cellular changes, associated with EMT. We compared primary keratinocytes with early and late passages of HF1 cells, a cell line of HPV16-transformed keratinocytes. We have previously shown that during the progression from the normal cells to early HF1 cells, immortalization is acquired, while in the progression to late HF1, cells become anchorage independent. We show here that during the transition from the normal state to late HF1 cells, there is a progressive reduction in cytokeratin expression, desmosome formation, adherens junctions and focal adhesions, ultimately leading to poorly adhesive phenotype, which is associated with anchorage-independence. Surprisingly, unlike "conventional EMT", these changes are associated with reduced Rac1-dependent cell migration. We monitored reduced Rac1-dependent migration also in the cervical cancer cell line SiHa. Therefore we can conclude that up to the stage of tumor formation migratory activity is eliminated.

  7. Skin human papillomavirus type 38 alters p53 functions by accumulation of ΔNp73

    OpenAIRE

    Accardi, Rosita; Dong, Wen; Smet, Anouk; Cui, Rutao; Hautefeuille, Agnes; Gabet, Anne-Sophie; Sylla, Bakary S.; Gissmann, Lutz; Hainaut, Pierre; Tommasino, Massimo

    2006-01-01

    The E6 and E7 of the cutaneous human papillomavirus (HPV) type 38 immortalize primary human keratinocytes, an event normally associated with the inactivation of pathways controlled by the tumour suppressor p53. Here, we show for the first time that HPV38 alters p53 functions. Expression of HPV38 E6 and E7 in human keratinocytes or in the skin of transgenic mice induces stabilization of wild-type p53. This selectively activates the transcription of ΔNp73, an isoform of the p53-related protein ...

  8. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status.

    Science.gov (United States)

    Auxenfans, Céline; Thépot, Amélie; Justin, Virginie; Hautefeuille, Agnès; Shahabeddin, Lili; Damour, Odile; Hainaut, Pierre

    2009-01-01

    Large-scale culture of primary keratinocytes allows the production of large epidermal sheet surfaces for the treatment of extensive skin burns. This method is dependent upon the capacity to establish cultures of proliferating keratinocytes in conditions compatible with their clonal expansion while maintaining their capacity to differentiate into the typical squamous pattern of human epidermis. Feeder layers are critical in this process because the fibroblasts that compose this layer serve as a source of adhesion, growth and differentiation factors. In this report, we have characterise the expression patterns of p63 isoforms in primary keratinocytes cultured on two different feeder layer systems, murine 3T3 and human fibroblasts. We show that with the latter, keratinocytes express a higher ratio of Delta N to TAp63 isoform, in relation with higher clonogenic potential. These results indicate that human fibroblasts represent an adequate feeder layer system to support the culture of primary human keratinocytes. PMID:20042803

  9. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome.

    Science.gov (United States)

    Soubere Mahamoud, Yonis; Aite, Meziane; Martin, Catherine; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves; Habauzit, Denis

    2016-01-01

    Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells. PMID:27529420

  10. Primary structure of keratinocyte transglutaminase

    International Nuclear Information System (INIS)

    The nucleotide and deduced amino acid sequences of the coding regions of human and rat keratinocyte transglutaminases (protein-glutamine: amine γ-glutamyltransferase; EC 2.3.2.13) have been determined. These yield proteins of ∼90 kDa that are 92% identical, indicative of the conservation of important structural features. Alignments of amino acid sequences show substantial similarity among the keratinocyte transglutaminase, human clotting factor XIII catalytic subunit, guinea pig liver tissue transglutaminase, and the human erythrocyte band-4.2 protein. The keratinocyte enzyme is most similar to factor XIII, whereas the band-4.2 protein is most similar to the tissue transglutaminase. A salient feature of the keratinocyte transglutaminase is its 105-residue extension beyond the N terminus of the tissue transglutaminase. This extension and the unreltaed activation peptide of factor XIII (a 37-residue extension) appear to be added for specialized functions after divergence of the tissue transglutaminase from their common lineage

  11. Altered gene expression in asymptomatic SHIV-infected rhesus macaques (Macacca mulatta

    Directory of Open Access Journals (Sweden)

    Phillips Aaron T

    2006-09-01

    Full Text Available Abstract Simian-Human immunodeficiency virus is a chimeric virus which, in rhesus macaques (Macacca mulatta closely imitates immunodeficiency virus infection in human (HIV. A relatively new way to study pathogenesis of viral infection is to study alterations in host gene expression induced by the virus. SHIV infection with certain strains does not result in clinical signs. We hypothesized that alterations in gene expression relating to the immune system would be present in SHIV-infected animals despite the lack of clinical signs. Splenic tissue from four adult male Indian-origin Rhesus monkeys serologically positive for non-pathogenic SHIV 89.6 was processed by cDNA microarray analysis. Results were compared with the corresponding outcome using splenic tissues from four unexposed adult male Rhesus monkeys. Subsequent gene analysis confirmed statistically significant variations between control and infected samples. Interestingly, SHIV-infected monkeys exhibited altered expression in genes related to apoptosis, signal transduction, T and B lymphocyte activation and importantly, to immune regulation. Although infected animals appeared asymptomatic, our study demonstrated that SHIV-infected monkeys cannot reliably be used in studies of other infectious agents as their baseline gene expression differs from that of normal Rhesus monkeys. The gene expression differences in SHIV-infected animals relative to uninfected animals offer additional clues to the pathogenesis of altered immune function in response to secondary infection.

  12. Expression of small heat shock proteins in Pisum sativum L. under gravity altered conditions

    Directory of Open Access Journals (Sweden)

    Talalaiev A. S.

    2013-11-01

    Full Text Available Altered gravity induces significant changes in the gene expression profiles of the plant cell, which are indicative of stress conditions. One of the molecular mechanisms of cell adaptation is synthesis of small heat shock proteins (sHsp. The sHsps are chaperones, and as such, they assist in the protein folding and prevent the irreversible protein aggregation. Aim. The objective of this research was to determine the effect of simulated microgravity (clinorotation and hypergravity (centrifugation on the sHsp genes expression in the etiolated pea seedlings. Methods. The gene expression was examined with the reverse transcription and real-time PCR. Results. The qPCR results demonstrated that the altered gravity conditions do not change the expression of sHsp genes which belong to the subfamilies of different subcellular localization – cytosolic-nuclear Pshsp 17.1-CII and Pshsp18.1-CI, plastid – Pshsp26.2-P, endoplasmic reticulum – Pshsp22.7-ER and mitochondrial – Pshsp22.9-M. Conclusions. The relative qPCR results demonstrate that altered gravity and temperature elevation have different effects on the sHsp genes: unlike high temperature, altered gravity does not lead to the denaturation of cell proteins and, therefore, does not modulate the sHsp genes expression.

  13. Altered vesicular glutamate transporter expression in human temporal lobe epilepsy with hippocampal sclerosis

    OpenAIRE

    Van Liefferinge, J.; Jensen, C.J.; Albertini, G.; Bentea, E.; Demuyser, T.; Merckx, E.; Aronica, E.; Smolders, I; Massie, A.

    2015-01-01

    Vesicular glutamate transporters (VGLUTs) are responsible for loading glutamate into synaptic vesicles. Altered VGLUT protein expression has been suggested to affect quantal size and glutamate release under both physiological and pathological conditions. In this study, we investigated mRNA and protein expression levels of the three VGLUT subtypes in hippocampal tissue of patients suffering from temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS), International League Against Epilepsy...

  14. Altered Expression of Cellular Bcl-2 in the Progression of Hamster Cholangiocarcinogenesis

    OpenAIRE

    Byung-suk Jeon; Byung-IL Yoon

    2012-01-01

    Bcl-2 is an intracytoplasmic and membrane-associated apoptosis suppressor, and its overexpression is closely associated with survival of malignant tumors, in particular their aggressive behavior and poor prognosis. The role of Bcl-2 is, however, still controversial in cholangiocarcinogenesis because of the discrepancies in the expression of the protein. In the present study, alteration in the expression of Bcl-2 in cholangiocarcinogenesis was investigated by studying the immunoreactivities of...

  15. Ischemia Alters the Expression of Connexins in the Aged Human Brain

    OpenAIRE

    Taizen Nakase; Tetsuya Maeda; Yasuji Yoshida; Ken Nagata

    2009-01-01

    Although the function of astrocytic gap junctions under ischemia is still under debate, increased expression of connexin 43 (Cx43) has been observed in ischemic brain lesions, suggesting that astrocytic gap junctions could provide neuronal protection against ischemic insult. Moreover, different connexin subtypes may play different roles in pathological conditions. We used immunohistochemical analysis to investigate alterations in the expression of connexin subtypes in human stroke brains. Sev...

  16. Altered microRNAs expression profiling in cumulus cells from patients with polycystic ovary syndrome

    OpenAIRE

    Liu, Suying; Zhang, Xuan; Shi, Changgen; Lin, Jimin; Chen, Guowu; Wu, Bin; Wu, Ligang; Shi, Huijuan; Yuan, Yao; Zhou, Weijin; Sun, Zhaogui; Dong, Xi; Wang, Jian

    2015-01-01

    Background Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age, and oocyte developmental competence is altered in patients with PCOS. In recent years microRNAs (miRNAs) have emerged as important regulators of gene expression, the aim of the study was to study miRNAs expression patterns of cumulus cells from PCOS patients. Methods The study included 20 patients undergoing in vitro fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI): 10 diag...

  17. Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood

    OpenAIRE

    Brydges, Nichola M.; Jin, Rowen; Seckl, Jonathan,; Holmes, Megan C; Drake, Amanda J.; Hall, Jeremy

    2013-01-01

    BackgroundExposure to stress in early life is correlated with the development of anxiety disorders in adulthood. The underlying mechanisms are not fully understood, but an imbalance in corticosteroid receptor (CR) expression in the limbic system, particularly the hippocampus, has been implicated in the etiology of anxiety disorders. However, little is known about how prepubertal stress in the so called “juvenile” period might alter the expression of these receptors.AimsTherefore, the aim of t...

  18. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms

    Directory of Open Access Journals (Sweden)

    Hyeon O Kim

    2008-09-01

    Full Text Available Hyeon O Kim1, Greg P Snyder1, Tyler M Blazey1, Richard E Race2, Bruce Chesebro2, Pamela J Skinner11Department of Veterinary and Biomedical Sciences, University of Minnesota, USA; 2NIH Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USAAbstract: Prion diseases are fatal neurodegenerative disorders that affect animals and humans. There is a need to gain understanding of prion disease pathogenesis and to develop diagnostic assays to detect prion diseases prior to the onset of clinical symptoms. The goal of this study was to identify genes that show altered expression early in the disease process in the spleen and brain of prion disease-infected mice. Using Affymetrix microarrays, we identified 67 genes that showed increased expression in the brains of prion disease-infected mice prior to the onset of clinical symptoms. These genes function in many cellular processes including immunity, the endosome/lysosome system, hormone activity, and the cytoskeleton. We confirmed a subset of these gene expression alterations using other methods and determined the time course in which these changes occur. We also identified 14 genes showing altered expression prior to the onset of clinical symptoms in spleens of prion disease infected mice. Interestingly, four genes, Atp1b1, Gh, Anp32a, and Grn, were altered at the very early time of 46 days post-infection. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as surrogate markers for the early detection and diagnosis of prion disease.Keywords: prion disease, microarrays, gene expression

  19. Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice.

    Science.gov (United States)

    Frullanti, Elisa; Amabile, Sonia; Lolli, Maria Grazia; Bartolini, Anna; Livide, Gabriella; Landucci, Elisa; Mari, Francesca; Vaccarino, Flora M; Ariani, Francesca; Massimino, Luca; Renieri, Alessandra; Meloni, Ilaria

    2016-02-01

    Foxg1 gene encodes for a transcription factor essential for telencephalon development in the embryonic mammalian forebrain. Its complete absence is embryonic lethal while Foxg1 heterozygous mice are viable but display microcephaly, altered hippocampal neurogenesis and behavioral and cognitive deficiencies. In order to evaluate the effects of Foxg1 alteration in adult brain, we performed expression profiling in total brains from Foxg1+/- heterozygous mutants and wild-type littermates. We identified statistically significant differences in expression levels for 466 transcripts (Pgenes was found a group of genes expressed in the basal ganglia and involved in the control of movements. A relevant (three to sevenfold changes) and statistically significant increase of expression, confirmed by qRT-PCR, was found in two highly correlated genes with expression restricted to the hypothalamus: Oxytocin (Oxt) and Arginine vasopressin (Avp). These neuropeptides have an important role in maternal and social behavior, and their alteration is associated with impaired social interaction and autistic behavior. In addition, Neuronatin (Nnat) levels appear significantly higher both in Foxg1+/- whole brain and in hippocampal neurons after silencing Foxg1, strongly suggesting that it is directly or indirectly repressed by Foxg1. During fetal and neonatal brain development, Nnat may regulate neuronal excitability, receptor trafficking and calcium-dependent signaling and, in the adult brain, it is predominantly expressed in parvalbumin-positive GABAergic interneurons. Overall, these results implicate the overexpression of a group of neuropeptides in the basal ganglia, hypothalamus, cortex and hippocampus in the pathogenesis FOXG1 behavioral impairments. PMID:25966633

  20. Gene expression alterations in brains of mice infected with three strains of scrapie

    Directory of Open Access Journals (Sweden)

    Race Richard E

    2006-05-01

    Full Text Available Abstract Background Transmissible spongiform encephalopathies (TSEs or prion diseases are fatal neurodegenerative disorders which occur in humans and various animal species. Examples include Creutzfeldt-Jakob disease (CJD in humans, bovine spongiform encephalopathy (BSE in cattle, chronic wasting disease (CWD in deer and elk, and scrapie in sheep, and experimental mice. To gain insights into TSE pathogenesis, we made and used cDNA microarrays to identify disease-associated alterations in gene expression. Brain gene expression in scrapie-infected mice was compared to mock-infected mice at pre-symptomatic and symptomatic time points. Three strains of mouse scrapie that show striking differences in neuropathology were studied: ME7, 22L, and Chandler/RML. Results In symptomatic mice, over 400 significant gene expression alterations were identified. In contrast, only 22 genes showed significant alteration in the pre-symptomatic animals. We also identified genes that showed significant differences in alterations in gene expression between strains. Genes identified in this study encode proteins that are involved in many cellular processes including protein folding, endosome/lysosome function, immunity, synapse function, metal ion binding, calcium regulation and cytoskeletal function. Conclusion These studies shed light on the complex molecular events that occur during prion disease, and identify genes whose further study may yield new insights into strain specific neuropathogenesis and ante-mortem tests for TSEs.

  1. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  2. Role of HuR and p38MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT.

    Science.gov (United States)

    Fernau, Niklas S; Fugmann, Dominik; Leyendecker, Martin; Reimann, Kerstin; Grether-Beck, Susanne; Galban, Stefanie; Ale-Agha, Niloofar; Krutmann, Jean; Klotz, Lars-Oliver

    2010-02-01

    COX-2 (cyclooxygenase-2) is a pivotal player in inflammatory processes, and ultraviolet radiation is a known stimulus for COX-2 expression in skin cells. Here, an induction of COX-2 expression in HaCaT human keratinocytes was observed only upon exposure of cells to UVB (280-320 nm) but not to UVA radiation (320-400 nm), as demonstrated by reverse transcription-PCR and Western blotting. Prostaglandin E(2) levels were elevated in cell culture supernatants of HaCaT cells exposed to UVB. COX-2 mRNA stability was dramatically increased by UVB irradiation. Both the stabilization of COX-2 mRNA and the enhancement of COX-2 steady-state mRNA and protein levels caused by UVB were prevented both by inhibition and small interfering RNA-induced depletion of p38(MAPK), a kinase strongly activated upon exposure to UVB, suggesting p38(MAPK)-dependent mRNA stabilization as a mechanism of UVB-induced COX-2 expression. A dramatic decrease in COX-2 expression induced by UVB was elicited by small interfering RNA-based depletion of a stress-responsive mRNA stabilizing protein regulated by p38(MAPK), i.e. HuR; UVB-induced elevation of COX-2 mRNA and protein levels coincided with an accumulation of HuR in the cytoplasm and was attenuated in cells depleted of HuR. Moreover, UVB-induced generation of prostaglandin E(2) by HaCaT cells was blunted by HuR depletion, suggesting that stress kinases (such as p38(MAPK)) as well as HuR are excellent targets for approaches aiming at interfering with induction of COX-2 expression by UVB. PMID:19917608

  3. Role of HuR and p38MAPK in Ultraviolet B-induced Post-transcriptional Regulation of COX-2 Expression in the Human Keratinocyte Cell Line HaCaT*

    Science.gov (United States)

    Fernau, Niklas S.; Fugmann, Dominik; Leyendecker, Martin; Reimann, Kerstin; Grether-Beck, Susanne; Galban, Stefanie; Ale-Agha, Niloofar; Krutmann, Jean; Klotz, Lars-Oliver

    2010-01-01

    COX-2 (cyclooxygenase-2) is a pivotal player in inflammatory processes, and ultraviolet radiation is a known stimulus for COX-2 expression in skin cells. Here, an induction of COX-2 expression in HaCaT human keratinocytes was observed only upon exposure of cells to UVB (280–320 nm) but not to UVA radiation (320–400 nm), as demonstrated by reverse transcription-PCR and Western blotting. Prostaglandin E2 levels were elevated in cell culture supernatants of HaCaT cells exposed to UVB. COX-2 mRNA stability was dramatically increased by UVB irradiation. Both the stabilization of COX-2 mRNA and the enhancement of COX-2 steady-state mRNA and protein levels caused by UVB were prevented both by inhibition and small interfering RNA-induced depletion of p38MAPK, a kinase strongly activated upon exposure to UVB, suggesting p38MAPK-dependent mRNA stabilization as a mechanism of UVB-induced COX-2 expression. A dramatic decrease in COX-2 expression induced by UVB was elicited by small interfering RNA-based depletion of a stress-responsive mRNA stabilizing protein regulated by p38MAPK, i.e. HuR; UVB-induced elevation of COX-2 mRNA and protein levels coincided with an accumulation of HuR in the cytoplasm and was attenuated in cells depleted of HuR. Moreover, UVB-induced generation of prostaglandin E2 by HaCaT cells was blunted by HuR depletion, suggesting that stress kinases (such as p38MAPK) as well as HuR are excellent targets for approaches aiming at interfering with induction of COX-2 expression by UVB. PMID:19917608

  4. Induction of differentiation in psoriatic keratinocytes by propylthiouracil and fructose.

    Science.gov (United States)

    Arul, Santhosh; Dayalan, Haripriya; Jegadeesan, Muhilan; Damodharan, Prabhavathy

    2016-12-01

    Psoriasis is characterized by uncontrolled proliferation and poor differentiation. Sirtuin1 (SIRT1) a class III deacetylase, crucial for differentiation in normal keratinocytes, is reduced in psoriasis. Down regulated SIRT1 levels may contribute to poor differentiation in psoriasis. In addition, the levels of early differentiation factors Keratin1 (K1) and Keratin10 (K10) are depleted in psoriasis. We attempted to study a possible effect of fructose, a SIRT1 upregulator and Propylthiouracil (PTU) to augment differentiation in psoriatic keratinocytes. Keratinocytes were cultured from lesional biopsies obtained from psoriatic patients and control cells were obtained from patients undergoing abdominoplasty. Cells were treated with fructose and PTU individually. K1 and K10 transcript levels were measured to evaluate early differentiation; SIRT1 protein expression was also studied to decipher its role in the mechanism of differentiation. The K1, K10 transcript levels, SIRT1 protein and transcript levels in fructose treated psoriatic keratinocytes were improved. This suggests keratinocyte differentiation was induced by fructose through SIRT1 upregulation. Whereas PTU induced differentiation, as confirmed by improved K1, K10 transcript levels followed a non-SIRT1 mechanism. We conclude that the use of fructose and PTU may be an adjunct to the existing therapies for psoriasis. PMID:27453822

  5. Nitric Oxide Donors Suppress Chemokine Production by Keratinocytes in Vitro and in Vivo

    Science.gov (United States)

    Giustizieri, Maria Laura; Albanesi, Cristina; Scarponi, Claudia; De Pità, Ornella; Girolomoni, Giampiero

    2002-01-01

    Nitric oxide (NO) is involved in the modulation of inflammatory responses. In psoriatic skin, NO is highly produced by epidermal keratinocytes in response to interferon-γ and tumor necrosis factor-α. In this study, we investigated whether the NO donors, S-nitrosoglutathione (GS-NO) and NOR-1, could regulate chemokine production by human keratinocytes activated with interferon-γ and tumor necrosis factor-α. In addition, we studied the effects of the topical application of a GS-NO ointment on chemokine expression in lesional psoriatic skin. NO donors diminished in a dose-dependent manner and at both mRNA and protein levels the IP-10, RANTES, and MCP-1 expression in keratinocytes cultured from healthy patients and psoriatic patients. In contrast, constitutive and induced interleukin-8 production was unchanged. GS-NO-treated psoriatic skin showed reduction of IP-10, RANTES, and MCP-1, but not interleukin-8 expression by keratinocytes. Moreover, the number of CD14+ and CD3+ cells infiltrating the epidermis and papillary dermis diminished significantly. NO donors also down-regulated ICAM-1 protein expression without affecting mRNA accumulation in vitro, and suppressed keratinocyte ICAM-1 in vivo. Finally, NO donors inhibited nuclear factor-κB and STAT-1, but not AP-1 activities in transiently transfected keratinocytes. These results define NO donors as negative regulators of chemokine production by keratinocytes. PMID:12368213

  6. AB202. Altered micro RNA expression in patients with non-obstructive azoospermia

    OpenAIRE

    Zhang, Xiansheng; Liang, Chaozhao

    2014-01-01

    Background MicroRNAs (miRNAs), a class of small non-coding RNA molecules, are indicated to play essential roles in spermatogenesis. However, little is known about the expression patterns or function of miRNAs in human testes involved in infertility. Methods In this study, the miRNA expression profiles of testes of patients with non-obstructive azoospermia (NOA) and normal controls were performed by using microarray technologies. Results Altered microRNA expression in NOA patients was found, w...

  7. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4+ T cells. The presence of variant CD4+ T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  8. Altered expression patterns of syndecan-1 and -2 predict biochemical recurrence in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Ledezma; Federico Cifuentes; Iván Gallegos; Juan Fullá; Enrique Ossandon; Enrique A Castellon; Héctor R Contreras

    2011-01-01

    The clinical features of prostate cancer do not provide an accurate determination of patients undergoing biochemical relapse and are therefore not suitable as indicators of prognosis for recurrence. New molecular markers are needed for proper pre-treatment risk stratification of patients. Our aim was to assess the value of altered expression of syndecan-1 and -2 as a marker for predicting biochemical relapse in patients with clinically localized prostate cancer treated by radical prostatectomy. The expression of syndecan-1 and -2 was examined by immunohistochemical staining in a series of 60 paraffin-embedded tissue samples from patients with localized prostate cancer. Ten specimens from patients with benign prostatic hyperplasia were used as non-malignant controls. Semiquantitative analysis was performed to evaluate the staining patterns. To investigate the prognostic value, Kaplan-Meier survival curves were performed and compared by a log-rank test. In benign samples, syndecan-1 was expressed in basal and secretory epithelial cells with basolateral membrane localisation, whereas syndecan-2 was expressed preferentially in basal cells. In prostate cancer samples, the expression patterns of both syndecans shifted to granular-cytoplasmic localisation. Survival analysis showed a significant difference (P<0.05) between normal and altered expression of syndecan-1 and -2 in free prostate-specific antigen recurrence survival curves. These data suggest that the expression of syndecan-1 and -2 can be used as a prognostic marker for patients with clinically localized prostate cancer, improving the prostate-specific antigen recurrence risk stratification.

  9. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain;

    2009-01-01

    . Skeletal muscle insulin resistance was observed after 12 wk of HFD. Na(+)-K(+)-ATPase alpha(1)-subunit protein expression was increased 1.6-fold (P <0.05), whereas alpha(2)- and beta(1)-subunits and protein expression were decreased twofold (P <0.01) in parallel with decrease in plasma membrane Na......) and alpha(1) mRNA expression were increased after HFD and restored by ET. DNA binding activity of Sp-1, a transcription factor involved in the regulation of alpha(2)- and beta(1)-subunit expression, was decreased after HFD. ET increased phosphorylation of the Na(+)-K(+)-ATPase regulatory protein...... phospholemman. Phospholemman mRNA and protein expression were increased after HFD and restored to control levels after ET. Insulin-stimulated translocation of the alpha(2)-subunit to plasma membrane was impaired by HFD, whereas alpha(1)-subunit translocation remained unchanged. Alterations in sodium pump...

  10. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  11. Alterations of Lymphoid Enhancer Factor-1 Isoform Expression in Solid Tumors and Acute Leukemias

    Institute of Scientific and Technical Information of China (English)

    Wenbing WANG; Carsten M(U)LLER-TIDOW; Ping JI; Bj(o)rn STEFFEN; Ralf METZGER; Paul M. SCHNEIDER; Hartmut HALFTER; Mark SCHRADER; Wolfgang E. BERDEL; Hubert SERVE

    2005-01-01

    Two major transcripts of lymphoid enhancer factor-1 (LEF-1) have been described. The long isoform with β-catenin binding domain functions as a transcriptional enhancer factor. The short isoform derives from an intronic promoter and exhibits dominant negative activity. Recently, alterations of LEF- 1isoforms distribution have been described in colon cancer. In the current study we employed a quantitative real-time reverse transcription PCR method (TaqMan) to analyze expression of LEF-1 isoforms in a large cohort of human tumor (n=304) and tumor-free control samples (n=56). The highest expression level of LEF-1 was found in carcinoma samples whereas brain cancer samples expressed little. Expression of LEF1 was different in distinct cancer types. For example, the mRNA level of LEF-1 was lower in testicular tumor samples compared with tumor-free control samples. Besides epithelial cancers, significant LEF-1expression was also found in hematopoietic cells. In hematological malignancies, overall LEF-1 level was higher in lymphocytic leukemias compared with myeloid leukemias and normal hematopoiesis. However,acute myeloid leukemia and acute lymphocytic leukemia showed a significantly increased fraction of the oncogenic LEF-1 compared with chronic lymphocytic leukemia and chronic myeloid leukemia. Taken together,these data suggest that LEF-1 is abundantly expressed in human tumors and the ratio of the oncogenic and the dominant negative short isoform altered not only in carcinomas but also in leukemia.

  12. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  13. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    Science.gov (United States)

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  14. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.

    Directory of Open Access Journals (Sweden)

    Nadia Cattane

    Full Text Available Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders.A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR in fibroblasts and analyzed in a sample of peripheral blood cell (PBC RNA from patients (n = 25 and controls (n = 22. To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD (n = 16; n = 21, respectively and Bipolar Disorder (BD patients (n = 15; n = 20, respectively.Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4 were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD.Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses.

  15. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    Science.gov (United States)

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  16. Altered Gene Expression, Mitochondrial Damage and Oxidative Stress: Converging Routes in Motor Neuron Degeneration

    Directory of Open Access Journals (Sweden)

    Luisa Rossi

    2012-01-01

    Full Text Available Motor neuron diseases (MNDs are a rather heterogeneous group of diseases, with either sporadic or genetic origin or both, all characterized by the progressive degeneration of motor neurons. At the cellular level, MNDs share features such as protein misfolding and aggregation, mitochondrial damage and energy deficit, and excitotoxicity and calcium mishandling. This is particularly well demonstrated in ALS, where both sporadic and familial forms share the same symptoms and pathological phenotype, with a prominent role for mitochondrial damage and resulting oxidative stress. Based on recent data, however, altered control of gene expression seems to be a most relevant, and previously overlooked, player in MNDs. Here we discuss which may be the links that make pathways apparently as different as altered gene expression, mitochondrial damage, and oxidative stress converge to generate a similar motoneuron-toxic phenotype.

  17. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    DEFF Research Database (Denmark)

    Thorup, A K; Reibel, J; Schiødt, M;

    1998-01-01

    Development of squamous cell carcinomas (SCCs) involves alterations in the adhesive interactions in the epithelium and invasion through the basement membrane. Therefore, changes in the expression of receptors and ligands involved in cell-cell and cell-matrix adhesion may be essential for the...... transformation of a premalignant into a malignant lesion. The aim of this study was to examine if expression of specific cell adhesion molecules can be used as markers of malignant development. By immunohistochemistry, we examined the expression pattern of integrins alpha2beta1, alpha3beta1, alpha6beta4 and...... laminin-5 in biopsies from SCCs (n=18), premalignant lesions (leukoplakias, n=21) and non-premalignant tissue with chronic inflammation (n=11). In poorly differentiated SCCs, patchy loss of alpha3beta1, alpha6beta4 and laminin-5 expression was pronounced at the invasion front, whereas there was a tendency...

  18. Induction of Gene Expression Alterations by Culture Medium from Trypsinized Cells

    Directory of Open Access Journals (Sweden)

    M. Ahmad Chaudhry

    2008-01-01

    Full Text Available This study hypothesized that trypsin treatment itself could be a stress inducer before any other physical or chemical mediated stress is introduced. To further understand the role of trypsin treatment, we incubated adherent cells with conditioned growth medium isolated from trypsinized cells after several hours of trypsin action and examined global gene expression profile with microarray technology. Microarray data identified large-scale gene expression alterations in cells receiving conditioned medium from trypsin treated cells compared to control cells that did not receive such medium. Twenty eight genes were found to be upregulated with at least two-fold change in the expression level, while 70 genes were downregulated. Gene expression signature clearly identified stress response. Taken together this data cautions the contribution of background stress while assessing the effects of radiation, certain drugs or environmental mutagens. Further attention is required while determining the role of conditioned medium in elucidating radiobiological phenomenon such as bystander effect.

  19. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production.

    Science.gov (United States)

    Holmberg, N; Lilius, G; Bailey, J E; Bülow, L

    1997-03-01

    The gene for Vitreoscilla hemoglobin (VHb) has been introduced and expressed in Nicotiana tabaccum (tobacco). Transgenic tobacco plants expressing VHb exhibited enhanced growth, on average 80-100% more dry weight after 35 days of growth compared to wild-type controls. Furthermore, germination time is reduced from 6-8 days for wild-type tobacco to 3-4 days and the growth phase from germination to flowering was 3-5 days shorter for the VHb-expressing transgenes. Transgenic plants contained, on average, 30-40% more chlorophyll and 34% more nicotine than controls. VHb expression also resulted in an altered distribution of secondary metabolites: In the trangenic tobacco plants anabasine content was decreased 80% relative to control plants. PMID:9062923

  20. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    International Nuclear Information System (INIS)

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers

  1. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Wiborg, Ove; Bouzinova, Elena

    2016-01-01

    validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes; Per1, Per2 and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at 4 h sampling interval within 24 h. We......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model....

  2. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Bouzinova, Elena; Fahrenkrug, Jan;

    2016-01-01

    validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes; Per1, Per2 and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at 4 h sampling interval within 24 h. We......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model...

  3. Curcumin alters expression of glial fibrillary acidic protein and nestin following chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang; Tianping Yu; Xiong Zhang; Yu Li

    2011-01-01

    Astrocytes can alter their appearance and become reactive following chronic cerebral ischemia. In the present study, a rat model of chronic cerebral ischemia was treated with 50 and 100 mg/kg curcumin. Results showed that pathological changes of neuronal injury in hippocampal CA1 area of rats induced by chronic cerebral ischemia were attenuated, as well as upregulated expression of glial fibrillary acidic protein and nestin, in a dose-dependent manner.

  4. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  5. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    Science.gov (United States)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  6. Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning

    Science.gov (United States)

    Xue, Kai; Xie, Jianping; Zhou, Aifen; Liu, Feifei; Li, Dejun; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong

    2016-01-01

    Soil microbial communities play critical roles in ecosystem functioning and are likely altered by climate warming. However, so far, little is known about effects of warming on microbial functional gene expressions. Here, we applied functional gene array (GeoChip 3.0) to analyze cDNA reversely transcribed from total RNA to assess expressed functional genes in active soil microbial communities after nine years of experimental warming in a tallgrass prairie. Our results showed that warming significantly altered the community wide gene expressions. Specifically, expressed genes for degrading more recalcitrant carbon were stimulated by warming, likely linked to the plant community shift toward more C4 species under warming and to decrease the long-term soil carbon stability. In addition, warming changed expressed genes in labile C degradation and N cycling in different directions (increase and decrease), possibly reflecting the dynamics of labile C and available N pools during sampling. However, the average abundances of expressed genes in phosphorus and sulfur cycling were all increased by warming, implying a stable trend of accelerated P and S processes which might be a mechanism to sustain higher plant growth. Furthermore, the expressed gene composition was closely related to both dynamic (e.g., soil moisture) and stable environmental attributes (e.g., C4 leaf C or N content), indicating that RNA analyses could also capture certain stable trends in the long-term treatment. Overall, this study revealed the importance of elucidating functional gene expressions of soil microbial community in enhancing our understanding of ecosystem responses to warming. PMID:27199978

  7. Altered tryptophan hydroxylase 2 expression in enteric serotonergic nerves in Hirschsprung’s-associated enterocolitis

    Science.gov (United States)

    Coyle, David; Murphy, Justin M; Doyle, Brian; O’Donnell, Anne Marie; Gillick, John; Puri, Prem

    2016-01-01

    AIM: To determine if expression of colonic tryptophan hydroxylase-2 (TPH2), a surrogate marker of neuronal 5-hydroxytryptamine, is altered in Hirschsprung’s-associated enterocolitis. METHODS: Entire resected colonic specimens were collected at the time of pull-through operation in children with Hirschsprung’s disease (HSCR, n = 12). Five of these patients had a history of pre-operative Hirschsprung’s-associated enterocolitis (HAEC). Controls were collected at colostomy closure in children with anorectal malformation (n = 10). The distribution of expression of TPH2 was evaluated using immunofluorescence and confocal microscopy. Protein expression of TPH2 was quantified using western blot analysis in the deep smooth muscle layers. RESULTS: TPH2 was co-expressed in nitrergic and cholinergic ganglia in the myenteric and submucosal plexuses in ganglionic colon in HSCR and healthy controls. Co-expression was also seen in submucosal interstitial cells of Cajal and PDGFRα+ cells. The density of TPH2 immuno-positive fibers decreased incrementally from ganglionic bowel to transition zone bowel to aganglionic bowel in the myenteric plexus. Expression of TPH2 was reduced in ganglionic bowel in those affected by pre-operative HAEC compared to those without HAEC and healthy controls. However, expression of TPH2 was similar or high compared to controls in the colons of children who had undergone diverting colostomy for medically refractory HAEC. CONCLUSION: Altered TPH2 expression in colonic serotonergic nerves of patients with HSCR complicated by HAEC may contribute to intestinal secretory and motor disturbances, including recurrent HAEC. PMID:27217698

  8. Altered integrity and decreased expression of hepatocyte tight junctions in rifampicin-induced cholestasis in mice

    International Nuclear Information System (INIS)

    Rifampicin is a well-known hepatotoxicant, but little is known about the mechanism of rifampicin-induced hepatotoxicity. The aim of this study was to characterize the expression and localization of hepatocyte tight junctions in rifampicin-induced cholestasis in mice. Cholestasis was induced by administration of rifampicin (200 mg/kg) for 7 consecutive days or treatment with a single dose of rifampicin (200 mg/kg) by gastric intubation. The expression of mRNA for hepatic zonula occludens (ZO)-1, ZO-2, ZO-3, occludin and claudin-1 was determined using RT-PCR. Localization of ZO-1 and occludin was detected using immunofluorescence. Results showed that there was an 82-fold increase in the conjugated bilirubin in serum in rifampicin-treated mice. In addition, an 8-fold increase in total bile acid in serum was observed after a seven-day administration of rifampicin. The integrity of hepatocyte ZO-1 and occludin was altered by a seven-day administration of rifampicin. Importantly, the integrity and intensity of hepatocyte tight junctions were altered as early as 30 min after a single dose of rifampicin. The expression of hepatic ZO-1 and ZO-2 mRNA was significantly decreased, beginning as early as 30 min and remaining a lower level 12 h after a single dose of rifampicin. Taken together, these results suggest that the altered integrity and internalization of hepatocyte tight junctions are associated with rifampicin-induced cholestasis.

  9. Mitral valve prolapse is associated with altered extracellular matrix gene expression patterns.

    Science.gov (United States)

    Greenhouse, David G; Murphy, Alison; Mignatti, Paolo; Zavadil, Jiri; Galloway, Aubrey C; Balsam, Leora B

    2016-07-15

    Mitral valve prolapse (MVP) is the leading indication for isolated mitral valve surgery in the United States. Disorganization of collagens and glycosaminoglycans in the valvular extracellular matrix (ECM) are histological hallmarks of MVP. We performed a transcriptome analysis to study the alterations in ECM-related gene expression in humans with sporadic MVP. Mitral valve specimens were obtained from individuals undergoing valve repair for MVP (n=7 patients) and from non-beating heart-tissue donors (n=3 controls). Purified RNA was subjected to whole-transcriptome microarray analysis. Microarray results were validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Gene ontology enrichment analysis was performed. 2046 unique genes showed significant differential expression (false discovery rate Functional annotation clustering calculated enrichment of ECM-related ontology groups (enrichment score=4.1). ECM-related gene expression is significantly altered in MVP. Our study is consistent with the histologically observed alterations in collagen and mucopolysaccharide profiles of myxomatous mitral valves. Furthermore, whole-transcriptome analyses suggest dysregulation of multiple pathways, including TGF-beta signaling. PMID:27063507

  10. Neoplastic transformation of immortalized human epidermal keratinocytes by ionizing radiation.

    OpenAIRE

    Thraves, P; Salehi, Z; Dritschilo, A; Rhim, J S

    1990-01-01

    Efforts to investigate the progression of events that cause human cells to become neoplastic in response to ionizing radiation have been aided by the development of tissue culture systems of epithelial cells. In the present study, nontumorigenic human epidermal keratinocytes immortalized by adenovirus type 12 and simian virus 40 have been transformed by exposure to x-ray irradiation. Such transformants showed morphological alterations, formed colonies in soft agar, and induced carcinomas when...

  11. Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive polypeptides, alpha 3, beta 3, and gamma 2, of human laminin 5 in epidermal keratinocytes.

    Science.gov (United States)

    Korang, K; Christiano, A M; Uitto, J; Mauviel, A

    1995-07-24

    Laminin 5, an anchoring filament protein previously known as nicein/kalinin/epiligrin, consists of three polypeptide chains, alpha 3, beta 3, and gamma 2, encoded by the genes LAMA3, LAMB3, and LAMC2, respectively. The expression of laminin 5 was detected by Northern hybridization with specific cDNA probes in various epidermal keratinocyte cultures, whereas no expression of any of the three genes could be detected in foreskin fibroblast cultures. Transforming growth factor-beta (TGF-beta) enhanced LAMA3, LAMB3, and LAMC2 gene expression in human epidermal keratinocytes, as well as in HaCaT and Balb/K cells in culture, although the extent of enhancement was greater for LAMA3 and LAMC2 genes than for LAMB3. Interestingly, tumor necrosis factor-alpha, (TNF-alpha) alone did not alter the expression of LAMB3 and LAMC2 genes in human epidermal keratinocytes, whereas it inhibited the expression of LAMA3. These results suggest that the expression of the three genes encoding the laminin 5 subunits is not coordinately regulated by the cytokines tested. PMID:7635220

  12. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    Science.gov (United States)

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-01-01

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration. PMID:26537246

  13. Age-related alterations in innate immune receptor expression and ability of macrophages to respond to pathogen challenge in vitro

    OpenAIRE

    Liang, Shuang; Domon, Hisanori; Hosur, Kavita B.; WANG Min; Hajishengallis, George

    2009-01-01

    The impact of ageing in innate immunity is poorly understood. Studies in the mouse model have described altered innate immune functions in aged macrophages, although these were not generally linked to altered expression of receptors or regulatory molecules. Moreover, the influence of ageing in the expression of these molecules has not been systematically examined. We investigated age-dependent expression differences in selected Toll-like and other pattern-recognition receptors, receptors invo...

  14. Progressive obesity leads to altered ovarian gene expression in the Lethal Yellow mouse: a microarray study

    Directory of Open Access Journals (Sweden)

    Brannian John

    2009-08-01

    Full Text Available Abstract Background Lethal yellow (LY; C57BL/6J Ay/a mice exhibit adult-onset obesity, altered metabolic regulation, and early reproductive senescence. The present study was designed to test the hypothesis that obese LY mice possess differences in expression of ovarian genes relative to age-matched lean mice. Methods 90- and 180-day-old LY and lean black (C57BL/6J a/a mice were suppressed with GnRH antagonist (Antide®, then stimulated with 5 IU eCG. cRNA derived from RNA extracts of whole ovarian homogenates collected 36 h post-eCG were run individually on Codelink Mouse Whole Genome Bioarrays (GE Healthcare Life Sciences. Results Fifty-two genes showed ≥ 2-fold differential (p Cyp51, and steroidogenic acute regulatory protein (Star. Fewer genes showed lower expression in LY mice, e.g. angiotensinogen. In contrast, none of these genes showed differential expression in 90-day-old LY and black mice, which are of similar body weight. Interestingly, 180-day-old LY mice had a 2-fold greater expression of 11beta-hydroxysteroid dehydrogenase type 1 (Hsd11b1 and a 2-fold lesser expression of 11beta-hydroxysteroid dehydrogenase type 2 (Hsd11b2, differences not seen in 90-day-old mice. Consistent with altered Hsd11b gene expression, ovarian concentrations of corticosterone (C were elevated in aging LY mice relative to black mice, but C levels were similar in young LY and black mice. Conclusion The data suggest that reproductive dysfunction in aging obese mice is related to modified intraovarian gene expression that is directly related to acquired obesity.

  15. Altered expression of progesterone receptor isoforms A and B in human eutopic endometrium in endometriosis patients.

    Science.gov (United States)

    Wölfler, Monika Martina; Küppers, Mareike; Rath, Werner; Buck, Volker Uwe; Meinhold-Heerlein, Ivo; Classen-Linke, Irmgard

    2016-07-01

    Recent data implicate an altered expression of progesterone receptor isoform A (PR-A) and B (PR-B) in the endometrium of endometriosis patients. This prospective exploratory study aimed to precisely determine the PR-A and PR-B expression using immunohistochemical techniques in eutopic endometrium of women with endometriosis compared with disease-free women throughout the menstrual cycle. All symptomatic patients underwent laparoscopy for the diagnosis of endometriosis and histological confirmation of the disease (EO) whereas controls were proven disease-free (CO). In CO samples (n=10) an increased expression of PR-A and PR-B during the proliferative to early secretory phase and a decreased expression of both receptor isoforms during the mid to late secretory phase was ascertained in accordance with previous studies. In patients with endometriosis (n=16) no cycle dependent pattern of PR-A and PR-B expression was identified in contrast to patients without endometriosis. Moreover, in EO samples a huge variety of inter- and intra-individual differences in PR-A and PR-B expression were detected. These data provide further evidence that dysregulation of the PR-A and PR-B expression might contribute to the pathophysiology of endometriosis. PMID:27050108

  16. Anal cancer in Chinese: human papillomavirus infection and altered expression of p53

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    AIM To detect the presence of HPV DNA and study the alteration of p53 expression in anal cancers in Chinese.METHODS HPV DNA was amplified by PCR. The amplified HPV DNA was classified by DBH. HPV antigen and p53 expression were respectively detected by immunohistochemistry.RESULTS HPV DNA was amplified only in one case of squamous cell carcinoma of the 72 Chinese anal cancers and further classified as HPV type 16. Others were all HPV negative. HPV antigen and p53 expression were also detected in this case. Positive stainings with anti-p53 antibody were seen in 61.2% anal cancers. There were no statistically significant differences between anal squamous cell carcinomas and adenocarcinomas and between anal adenocarcinomas and rectal adenocarcinomas. p53 protein expression was observed in the basal cells of squamous epithelium of condyloma acuminatum and morphologically normal squamous epithelium in 2 cases invaded by anal adenocarcinoma.CONCLUSION HPV infection was not associated with these cases of anal cancer. p53 alteration was a common event. Positive p53 immunostaining can not be regarded as a marker for differentiating benign from malignant lesions.

  17. Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model.

    Science.gov (United States)

    Imperlini, Esther; Orrù, Stefania; Corbo, Claudia; Daniele, Aurora; Salvatore, Francesco

    2014-06-01

    Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU-associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury-PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two-dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over-expressed and 17 under-expressed. An in silico bioinformatic approach indicated that protein under-expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under-expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over-expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission. We identified a set of proteins whose expression is affected by hyperphenylalaninemia. We think that phenylketonuria (PKU) brain dysfunction also depends on reduced Syn2 and Dpysl2 levels, increased Glu2/3 and NR1 levels, and decreased Pkm, Ckb, Pgam1 and Eno1 levels. These findings finally confirm that alteration in synaptic

  18. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available Chewing of betel quid (BQ increases the risk of oral cancer and oral submucous fibrosis (OSF, possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa.Primary gingival keratinocytes (GK cells were exposed to areca nut (AN components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR and western blotting. PGE2/PGF2α production was measured by enzyme-linked immunosorbent assays.Areca nut extract (ANE stimulated PGE2/PGF2α production, and upregulated the expression of cyclooxygenase-2 (COX-2, cytochrome P450 1A1 (CYP1A1 and hemeoxygenase-1 (HO-1, but inhibited expression of keratin 5/14, cyclinB1 and cdc25C in GK cells. ANE also activated epidermal growth factor receptor (EGFR, Src and Ras signaling pathways. ANE-induced COX-2, keratin 5, keratin 14 and cdc25C expression as well as PGE2 production were differentially regulated by α-naphthoflavone (a CYP 1A1/1A2 inhibitor, PD153035 (EGFR inhibitor, pp2 (Src inhibitor, and manumycin A (a Ras inhibitor. ANE-induced PGE2 production was suppressed by piper betle leaf (PBL extract and hydroxychavicol (two major BQ components, dicoumarol (aQuinone Oxidoreductase--NQO1 inhibitor and curcumin. ANE-induced cytotoxicity was inhibited by catalase and enhanced by dicoumarol, suggesting that AN components may contribute to the pathogenesis of OSF and oral cancer via induction of aberrant differentiation, cytotoxicity, COX-2 expression, and PGE2/PGF2α production.CYP4501A1, reactive oxygen species (ROS, EGFR, Src and Ras signaling pathways could all play a role in ANE-induced pathogenesis of oral cancer. Addition of PBL into BQ and curcumin consumption could inhibit the ANE-induced inflammatory response.

  19. Gene Expression Profiles are Altered in Human Papillomavirus-16 E6 D25E-Expressing Cell Lines

    Directory of Open Access Journals (Sweden)

    Jang Dai-Ho

    2011-09-01

    Full Text Available Abstract Previously, we have reported that the human papillomavirus (HPV type 16 E6 D25E is the most prevalent variant in Korean women at high risk for cervical cancers. Several studies have identified an association between the increased frequency of this variant and the elevated risk of cervical intraepithelial neoplasia and invasive cervical carcinoma. To investigate whether the HPV-16 E6 D25E variant might influence cervical cancer progression, we used an oligonucleotide microarray approach to identify transcriptionally altered gene expression patterns in recombinant wild-type E6 or E6 D25E variant-expressing HPV-negative cancer cells. We found that 211 genes were significantly up- or down-regulated (at least 1.5-fold, p

  20. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    徐永忠; 谢建平; 李瑶; 乐军; 陈建平; 淳于利娟; 王洪海

    2003-01-01

    Objective To examine the global effects of Mycobacterium tuberculosis (M.tuberculosis) infection on macrophages. Methods The gene expression profiling of macrophage U937, in response to infection with M.tuberculosis H37Ra, was monitored using a high-density cDNA microarray. Results M.tuberculosis infection caused 463 differentially expressed genes, of which 366 genes are known genes registered in the Gene Bank. These genes function in various cellular processes including intracellular signalling, cytoskeletal rearrangement, apoptosis, transcriptional regulation, cell surface receptors, cell-mediated immunity as well as a variety of cellular metabolic pathways, and may play key roles in M.tuberculosis infection and intracellular survival. Conclusions M.tuberculosis infection alters the expression of host-cell genes, and these genes will provide a foundation for understanding the infection process of M.tuberculosis. The cDNA microarray is a powerful tool for studying pathogen-host cell interaction.

  1. Ischemia Alters the Expression of Connexins in the Aged Human Brain

    Directory of Open Access Journals (Sweden)

    Taizen Nakase

    2009-01-01

    Full Text Available Although the function of astrocytic gap junctions under ischemia is still under debate, increased expression of connexin 43 (Cx43 has been observed in ischemic brain lesions, suggesting that astrocytic gap junctions could provide neuronal protection against ischemic insult. Moreover, different connexin subtypes may play different roles in pathological conditions. We used immunohistochemical analysis to investigate alterations in the expression of connexin subtypes in human stroke brains. Seven samples, sectioned after brain embolic stroke, were used for the analysis. Data, evaluated semiquantitatively by computer-assisted densitometry, was compared between the intact hemisphere and ischemic lesions. The results showed that the coexpression of Cx32 and Cx45 with neuronal markers was significantly increased in ischemic lesions. Cx43 expression was significantly increased in the colocalization with astrocytes and relatively increased in the colocalization with neuronal marker in ischemic lesions. Therefore, Cx32, Cx43, and Cx45 may respond differently to ischemic insult in terms of neuroprotection.

  2. The renal metallothionein expression profile is altered in human lupus nephritis

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund;

    2008-01-01

    -I+II expression profile is altered during lupus nephritis. METHODS: Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means of...... standard statistical methods. RESULTS: Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median...... number of proximal tubules displaying this MT expression pattern per high-power microscope field (40x magnification), was positively correlated to the creatinine clearance in the lupus nephritis cohort (P = 0.01). Furthermore, a tubular MT score below the median value of the cohort emerged as a...

  3. The Modulatory Effect of Ellagic Acid and Rosmarinic Acid on Ultraviolet-B-Induced Cytokine/Chemokine Gene Expression in Skin Keratinocyte (HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Serena Lembo

    2014-01-01

    Full Text Available Ultraviolet radiation (UV induces an increase in multiple cutaneous inflammatory mediators. Ellagic acid (EA and rosmarinic acid (RA are natural anti-inflammatory and immunomodulatory compounds found in many plants, fruits, and nuts. We assessed the ability of EA and RA to modulate IL-1β, IL-6, IL-8, IL-10, MCP-1, and TNF-α gene expression in HaCaT cells after UVB irradiation. Cells were treated with UVB (100 mJ/cm2 and simultaneously with EA (5 μM in 0.1% DMSO or RA (2.7 μM in 0.5% DMSO. Moreover, these substances were added to the UVB-irradiated cells 1 h or 6 h before harvesting, depending on the established UVB-induced cytokine expression peak. Cytokine gene expression was examined using quantitative real time polymerase chain reaction. RA produced a significant reduction in UVB-induced expression of IL-6, IL-8, MCP-1, and TNF-α when applied at the same time as irradiation. EA showed milder effects compared with RA, except for TNF-α. Both substances decreased IL-6 expression, also when applied 5 h after irradiation, and always produced a significant increase in UVB-induced IL-10 expression. Our findings suggest that EA and RA are able to prevent and/or limit the UVB-induced inflammatory cascade, through a reduction in proinflammatory mediators and the enhancement of IL-10, with its protective function.

  4. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Abdul-Rahman Omar

    2012-02-01

    Full Text Available Abstract Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1, CD47 (Cluster of Differentiation 47 and the RET (Rearranged During Transfection protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.

  5. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Marek Kiliszek

    Full Text Available BACKGROUND: Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients. METHODS AND RESULTS: Twenty-eight patients with ST-segment elevation myocardial infarction (STEMI were included. The blood was collected on the 1(st day of myocardial infarction, after 4-6 days, and after 6 months. Control group comprised 14 patients with stable coronary artery disease, without history of myocardial infarction. Gene expression analysis was performed with Affymetrix Human Gene 1.0 ST microarrays and GCS3000 TG system. Lists of genes showing altered expression levels (fold change >1.5, p<0.05 were submitted to Ingenuity Pathway Analysis. Gene lists from each group were examined for canonical pathways and molecular and cellular functions. Comparing acute phase of MI with the same patients after 6 months (stable phase and with control group we found 24 genes with changed expression. In canonical analysis three pathways were highlighted: signaling of PPAR (peroxisome proliferator-activated receptor, IL-10 and IL-6 (interleukin 10 and 6. CONCLUSIONS: In the acute phase of STEMI, dozens of genes from several pathways linked with lipid/glucose metabolism, platelet function and atherosclerotic plaque stability show altered expression. Up-regulation of SOCS3 and FAM20 genes in the first days of myocardial infarction is observed in the vast majority of patients.

  6. Ethanol-related alterations in gene expression patterns in the developing murine hippocampus.

    Science.gov (United States)

    Mandal, Chanchal; Park, Kyoung Sun; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-08-01

    It is well known that consuming alcohol prior to and during pregnancy can cause harm to the developing fetus. Fetal alcohol spectrum disorder is a term commonly used to describe a range of disabilities that may arise from prenatal alcohol exposure such as fetal alcohol syndrome, partial fetal alcohol syndrome, alcohol-related neurodevelopmental disorders, and alcohol-related birth defects. Here, we report that maternal binge alcohol consumption alters several important genes that are involved in nervous system development in the mouse hippocampus at embryonic day 18. Microarray analysis revealed that Nova1, Ntng1, Gal, Neurog2, Neurod2, and Fezf2 gene expressions are altered in the fetal hippocampus. Pathway analysis also revealed the association of the calcium signaling pathway in addition to other pathways with the differentially expressed genes during early brain development. Alteration of such important genes and dynamics of the signaling pathways may cause neurodevelopmental disorders. Our findings offer insight into the molecular mechanism involved in neurodevelopmental disorders associated with alcohol-related defects. PMID:26063602

  7. Simulated microgravity alters the expression of key genes involved in fracture healing

    Science.gov (United States)

    McCabe, N. Patrick; Androjna, Caroline; Hill, Esther; Globus, Ruth K.; Midura, Ronald J.

    2013-11-01

    Fracture healing in animal models has been shown to be altered in both ground based analogs of spaceflight and in those exposed to actual spaceflight. The molecular mechanisms behind altered fracture healing as a result of chronic exposure to microgravity remain to be elucidated. This study investigates temporal gene expression of multiple factors involved in secondary fracture healing, specifically those integral to the development of a soft tissue callus and the transition to that of hard tissue. Skeletally mature female rats were subjected to a 4 week period of simulated microgravity and then underwent a closed femoral fracture procedure. Thereafter, they were reintroduced to the microgravity and allowed to heal for a 1 or 2 week period. A synchronous group of weight bearing rats was used as a normal fracture healing control. Utilizing Real-Time quantitative PCR on mRNA from fracture callus tissue, we found significant reductions in the levels of transcripts associated with angiogenesis, chondrogenesis, and osteogenesis. These data suggest an altered fracture healing process in a simulated microgravity environment, and these alterations begin early in the healing process. These findings may provide mechanistic insight towards developing countermeasure protocols to mitigate these adaptations.

  8. Impact of altered actin gene expression on vinculin, talin, cell spreading, and motility.

    Science.gov (United States)

    Schevzov, G; Lloyd, C; Gunning, P

    1995-08-01

    Previous studies have demonstrated a strong correlation between the expression of vinculin and the shape and motility of a cell (Rodriguez Fernandez et al., 1992a, b, 1993). This hypothesis was tested by comparing the expression of vinculin and talin with the motility of morphologically altered myoblasts. These mouse C2 myoblasts were previously generated by directly perturbing the cell cytoskeleton via the stable transfection of a mutant-form of the beta-actin gene (beta sm) and three different forms of the gamma-actin gene; gamma, gamma minus 3'UTR (gamma delta'UTR), and gamma minus intron III (gamma delta IVSIII) (Schevzov et al., 1992; Lloyd and Gunning, 1993). In the case of the beta sm and gamma-actin transfectants, a two-fold decrease in the cell surface area was coupled, as predicted, with a decrease in vinculin and talin expression. In contrast, the gamma delta IVSIII transfectants with a seven-fold decrease in the cell surface area showed an unpredicted slight increase in vinculin and talin expression and the gamma delta 3'-UTR transfectants with a slight increase in the cell surface area showed no changes in talin expression and a decrease in vinculin expression. We conclude that changes in actin gene expression alone can impact on the expression of vinculin and talin. Furthermore, we observed that these actin transfectants failed to show a consistent relationship between cell shape, motility, and the expression of vinculin. However, a relationship between talin and cell motility was found to exist, suggesting a role for talin in the establishment of focal contacts necessary for motility. PMID:7646816

  9. p53 Alterations in Human Skin : A Molecular Study Based on Morphology

    OpenAIRE

    Gao, Ling

    2001-01-01

    Mutation of the p53 gene appears to be an early event in skin cancer development. The present study is based on morphology and represents a cellular and genetic investigation of p53 alterations in normal human skin and basal cell cancer. Using double immunofluorescent labelling, we have demonstrated an increase in thymine dimers and p53 protein expression in the same keratinocytes following ultraviolet radiation. Large inter-individual differences in the kinetics of thymine dimer repair and ...

  10. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response.

    Science.gov (United States)

    Reese, Tiffany A; Bi, Kevin; Kambal, Amal; Filali-Mouhim, Ali; Beura, Lalit K; Bürger, Matheus C; Pulendran, Bali; Sekaly, Rafick-Pierre; Jameson, Stephen C; Masopust, David; Haining, W Nicholas; Virgin, Herbert W

    2016-05-11

    Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth and compared their blood immune signatures to mock-infected mice before and after vaccination against yellow fever virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore, basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans. PMID:27107939

  11. Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging

    Directory of Open Access Journals (Sweden)

    Luo Jinhua

    2010-10-01

    Full Text Available Abstract Background Most neurodegenerative diseases are age-related disorders; however, how aging predisposes the brain to disease has not been adequately addressed. The objective of this study is to determine whether expression of proteins in the cerebromicrovasculature related to inflammation, oxidative stress and neurotoxicity is altered with aging. Methods Brain microvessels are isolated from Fischer 344 rats at 6, 12, 18 and 24 months of age. Levels of interleukin (IL-1β and IL-6 RNA are determined by RT-PCR and release of cytokines into the media by ELISA. Vessel conditioned media are also screened by ELISA for IL-1α, monocyte chemoattractant protein-1 (MCP-1, tumor necrosis factor-α, (TNFα, and interferon γ (IFNγ. Immunofluorescent analysis of brain sections for IL-1β and IL-6 is performed. Results Expression of IL-1β and IL-6, both at RNA and protein levels, significantly (p Conclusions These data demonstrate that cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging and suggest that the microvasculature may contribute to functional changes in the aging brain.

  12. Positional and expressive alteration of prohibitin during the induced differentiation of human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Dong-Hui Xu; Jian Tang; Qi-Fu Li; Song-Lin Shi; Xiang-Feng Chen; Ying Liang

    2008-01-01

    AIM: To explore the existence and distribution of prohibitin (PHB) in nuclear matrix and its co-localization with products of some related genes during the differentiation of human hepatocarcinoma SMMC-7721cells.METHODS: The nuclear matrix of the SHHC-7721 cells cultured with or without 5 x 10-3 mmol/L hexamethylene bisacetamide (HMBA) was selectively extracted.Western blot was used to analyze the expression of PHB in nuclear matrix; imrnunofluorescence microscope observation was used to analyze the distribution of PHB in cell. LCSM was used to observe the co-localization of PHB with products of oncogenes and tumor suppressor genes.RESULTS: Western blot analysis showed that PHB existed in the composition of nuclear matrix proteins and was down-regulated by HMBA treatment.Immunofluorescence observation revealed that PHB existed in the nuclear matrix, and its distribution regions and expression levels were altered after HMBA treatment. Laser scanning confocal microscopy revealed the co-localization between PHB and the products of oncogenes or tumor repression genes including c-fos, c-myc, p53 and Rb and its alteration of distributive area in the cells treated by HMBA.CONCLUSION: These data confirm that PHB is a nuclear matrix protein, which is located in the nuclear matrix, and the distribution and expression of PHB and its relation with associated genes may play significant roles during the differentiation of SMHC-7721 cells.

  13. Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocininduced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Lu-lu ZHANG; Guang-ji WANG; Lin XIE; Liang LU; Shi JIN; Xin-yue JING; Dan YAO; Nan HU; Li LIU; Ru DUAN; Xiao-dong LIU

    2011-01-01

    Aim: To investigate the changes of expression and function of P-glycoprotein (P-GP) in cerebral cortex, hippocampus, liver, intestinal mucosa and kidney of streptozocin-induced diabetic rats.Methods: Diabetic rats were prepared via a single dose of streptozocin (65 mg/kg, ip). Abcb1/P-GP mRNA and protein expression levels in tissues were evaluated using quantitative real time polymerase chain reaction (QRT-PCR) analysis and Western blot, respectively.P-GP function was investigated via measuring tissue-to-plasma concentration ratios and body fluid excretion percentages of rhodamine 123.Results: In 5- and 8-week diabetic rats, Abcb1a mRNA levels were significantly decreased in cerebral cortices and intestinal mucosa,but dramatically increased in hippocampus and kidney. In liver, the level was increased in 5-week diabetic rats, and decreased in 8-week diabetic rats. Abcb1b mRNA levels were increased in cerebral cortex, hippocampus and kidney, but reduced in liver and intestinal mucosa in the diabetic rats. Western blot results were in accordance with the alterations of Abcb1a mRNA levels in most tissues examined. P-GP activity was markedly decreased in most tissues of diabetic rats, except kidney tissues.Conclusion: Alterations in the expression and function of Abcb1/P-GP under diabetic conditions are tissue specific, Abcb1 specific and diabetic duration-dependent.

  14. Decreased reelin expression and organophosphate pesticide exposure alters mouse behaviour and brain morphology

    Directory of Open Access Journals (Sweden)

    Cristina A. Ghiani

    2012-02-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders. In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon. Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.

  15. MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation

    Science.gov (United States)

    Zhao, Jin; Schnitzler, Gavin R.; Iyer, Lakshmanan K.; Aronovitz, Mark J.; Baur, Wendy E.; Karas, Richard H.

    2016-01-01

    MicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We demonstrate that endogenous or over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. We report that there is a “seed region” of moR-21 as well as a “seed match region” in the target gene 3’UTR that are indispensable for moR-21-mediated gene down-regulation. We further demonstrate that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. Taken together, these findings provide the first evidence that microRNA offset RNA alters gene expression and is biologically active. PMID:27276022

  16. Altered gene expression in highly purified enterocytes from patients with active coeliac disease

    Directory of Open Access Journals (Sweden)

    Jackson John

    2008-08-01

    Full Text Available Abstract Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99% were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.

  17. Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats

    Institute of Scientific and Technical Information of China (English)

    Bin Yu; Songlin Zhou; Tianmei Qian; Yongjun Wang; Fei Ding; Xiaosong Gu

    2011-01-01

    MicroRNAs (miRNAs) are a class of small,non-coding RNAs (~22 nucleotides) that negatively regulate gene expression post-transcriptionally,either through translational inhibition or degradation of target mRNAs.We uncovered a previously unknown alteration in the expression of miRNAs in the dorsal root ganglia (DRG) at 1,4,7,and 14 days after resection of the sciatic nerve in rats using microarray analysis.Thirty-two significantly upregulated and 18 downregulated miRNAs were identified in the DRG at four time points following sciatic nerve injury.The expression of four consecutively deregulated miRNAs,analyzed by real-time Taqman polymerase chain reaction,was in agreement with the microarray data (upregulated: miR-21,miR-221; downregulated:miR-500,miR-551b),The potential targets for these miRNAs,altered after sciatic nerve resection,are involved mainly in nervous system development,multi-cellular organismal development,and the regulation of cellular processes.This study demonstrated a different involvement of miRNAs in the DRG after resection of the sciatic nerve in a rat model,and it may also contribute in illustrating the molecular mechanisms responsible for nerve regeneration.

  18. Tonic Inhibition of TRPV3 by Mg2+ in Mouse Epidermal Keratinocytes

    OpenAIRE

    Luo, Jialie; Stewart, Randi; Berdeaux, Rebecca; Hu, Hongzhen

    2012-01-01

    The transient receptor potential vanilloid 3 channel (TRPV3) is abundantly expressed in epidermal keratinocytes and plays important roles in sensory biology and skin health. Mg2+ deficiency causes skin disorders under certain pathological conditions such as type 2 diabetes mellitus. In this study, we investigated the effect of Mg2+ on TRPV3 in primary epidermal keratinocytes. Extracellular Mg2+ ([Mg2+]o) inhibited TRPV3-mediated membrane current and calcium influx. TRPV3 activation induced a ...

  19. Combined treatment with sodium butyrate and PD153035 enhances keratinocyte differentiation

    OpenAIRE

    Carrion, Sandra Leon; Sutter, Carrie Hayes; Sutter, Thomas R.

    2014-01-01

    Epidermal growth factor (EGF) receptor (EGFR) signaling is a critical determinant of keratinocyte proliferation and differentiation in both normal and diseased skin. Here we explore the effects of combined treatment with the differentiation-promoting agent sodium butyrate (SB) and the EGFR inhibitor (EGFRI) PD153035 on terminal differentiation of normal human epidermal keratinocytes (NHEKs). Cells treated with SB showed increased expression of the levels of mRNA and protein of the differentia...

  20. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model

    OpenAIRE

    Gschwandtner, M; Mildner, M.; Mlitz, V; Gruber, F.; Eckhart, L; Werfel, T.; Gutzmer, R; Elias, P.M.; Tschachler, E.

    2012-01-01

    Background Defects in keratinocyte differentiation and skin barrier are important features of inflammatory skin diseases like atopic dermatitis. Mast cells and their main mediator histamine are abundant in inflamed skin and thus may contribute to disease pathogenesis. Methods Human primary keratinocytes were cultured under differentiation-promoting conditions in the presence and absence of histamine, histamine receptor agonists and antagonists. The expression of differentiation-associated gen...

  1. Human Papillomavirus Type 16 E5 Protein Induces Expression of Beta Interferon through Interferon Regulatory Factor 1 in Human Keratinocytes

    OpenAIRE

    Muto, Valentina; Stellacci, Emilia; Lamberti, Angelo Giuseppe; Perrotti, Edvige; Carrabba, Aurora; Matera, Giovanni; Sgarbanti, Marco; Battistini, Angela; Liberto, Maria Carla; Focà, Alfredo

    2011-01-01

    Crucial steps in high-risk human papillomavirus (HR-HPV)-related carcinogenesis are the integration of HR-HPV into the host genome and loss of viral episomes. The mechanisms that promote cervical neoplastic progression are, however, not clearly understood. During HR-HPV infection, the HPV E5 protein is expressed in precancerous stages but not after viral integration. Given that it has been reported that loss of HPV16 episomes and cervical tumor progression are associated with increased expres...

  2. Transgenic poplar expressing the pine GS1a show alterations in nitrogen homeostasis during drought.

    Science.gov (United States)

    Molina-Rueda, Juan Jesús; Kirby, Edward G

    2015-09-01

    Transgenic hybrid poplars engineered to express ectopically the heterologous pine cytosolic GS1a display a number of significant pleiotropic phenotypes including enhanced growth, enhanced nitrogen use efficiency, and resistance to drought stress. The present study was undertaken in order to assess mechanisms whereby ectopic expression of pine GS1a in transgenic poplars results in enhanced agronomic phenotypes. Microarray analysis using the Agilent Populus whole genome array has allowed identification of genes differentially expressed between wild type (WT) and GS transgenics in four tissues (sink leaves, source leaves, stems, and roots) under three growth conditions (well-watered, drought, and recovery). Analysis revealed that differentially expressed genes in functional categories related to nitrogen metabolism show a trend of significant down-regulation in GS poplars compared to the WT, including genes encoding nitrate and nitrite reductases. The down-regulation of these genes was verified using qPCR, and downstream effects were further tested using NR activity assays. Results suggest that higher glutamine levels in GS transgenics regulate nitrate uptake and reduction. Transcript levels of nitrogen-related genes in leaves, including GS/GOGAT cycle enzymes, aspartate aminotransferase, GABA shunt enzymes, photorespiration enzymes, asparagine synthetase, phenylalanine ammonia lyase, isocitrate dehydrogenase, and PII, were also assessed using qPCR revealing significant differences between GS poplars and the WT. Moreover, metabolites related to these differentially expressed genes showed alterations in levels, including higher levels of GABA, hydroxyproline, and putrescine in the GS transgenic. These alterations in nitrogen homeostasis offer insights into mechanisms accounting for drought tolerance observed in GS poplars. PMID:26113157

  3. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    International Nuclear Information System (INIS)

    Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC) - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-β4 may have a role in chondrosarcoma metastasis

  4. Systemic Sclerosis Patients Present Alterations in the Expression of Molecules Involved in B-Cell Regulation

    Science.gov (United States)

    Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego

    2015-01-01

    The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788

  5. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    LENUS (Irish Health Repository)

    Norris, S

    2012-02-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y\\/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N\\/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  6. Bcl-2 expression is altered with ovarian tumor progression: an immunohistochemical evaluation

    Directory of Open Access Journals (Sweden)

    Anderson Nicole S

    2009-10-01

    Full Text Available Abstract Background Ovarian cancer is the most lethal gynecologic malignancy. The ovarian tumor microenvironment is comprised of tumor cells, surrounding stroma, and circulating lymphocytes, an important component of the immune response, in tumors. Previous reports have shown that the anti-apoptotic protein Bcl-2 is overexpressed in many solid neoplasms, including ovarian cancers, and contributes to neoplastic transformation and drug-resistant disease, resulting in poor clinical outcome. Likewise, studies indicate improved clinical outcome with increased presence of lymphocytes. Therefore, we sought to examine Bcl-2 expression in normal, benign, and cancerous ovarian tissues to determine the potential relationship between epithelial and stromal Bcl-2 expression in conjunction with the presence of lymphocytes for epithelial ovarian tumor progression. Methods Ovarian tissue sections were classified as normal (n = 2, benign (n = 17 or cancerous (n = 28 and immunohistochemically stained for Bcl-2. Bcl-2 expression was assessed according to cellular localization, extent, and intensity of staining. The number of lymphocyte nests as well as the number of lymphocytes within these nests was counted. Results While Bcl-2 staining remained cytoplasmic, both percent and intensity of epithelial and stromal Bcl-2 staining decreased with tumor progression. Further, the number of lymphocyte nests dramatically increased with tumor progression. Conclusion The data suggest alterations in Bcl-2 expression and lymphocyte infiltration correlate with epithelial ovarian cancer progression. Consequently, Bcl-2 expression and lymphocyte status may be important for prognostic outcome or useful targets for therapeutic intervention.

  7. Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry.

    Science.gov (United States)

    DeCoste, Nadine J; Gadkar, Vijay J; Filion, Martin

    2010-11-01

    The production of hydrogen cyanide (HCN) by beneficial root-associated bacteria is an important mechanism for the biological control of plant pathogens. However, little is known about the biotic factors affecting HCN gene expression in the rhizosphere of plants. In this study, real-time reverse transcription PCR (qRT-PCR) assays were developed to investigate the effect of the plant pathogen Verticillium dahliae on hcnC (encoding for HCN biosynthesis) gene expression in Pseudomonas sp. LBUM300. Strawberry plants were inoculated with Pseudomonas sp. LBUM300 and (or) V. dahliae and grown in pots filled with nonsterilized field soil. RNA was extracted from rhizosphere soil sampled at 0, 15, 30, and 45 days following inoculation with V. dahliae and used for qRT-PCR analyses. Populations of V. dahliae and Pseudomonas sp. LBUM300 were also monitored using a culture-independent qPCR approach. hcnC expression was detected at all sampling dates. The presence of V. dahliae had a significant stimulation effect on hcnC gene expression and also increased the population of Pseudomonas sp. LBUM300. However, the V. dahliae population was not altered by the presence of Pseudomonas sp. LBUM300. To our knowledge, this study is the first to evaluate the effect of a plant pathogen on HCN gene expression in the rhizosphere soil. PMID:21076481

  8. Altered Th17 Cytokine Expression in Helicobacter pylori Patients with TLR4 (D299G) Polymorphism.

    Science.gov (United States)

    Bagheri, Nader; Azadegan-Dehkordi, Fatemeh; Rahimian, Ghorbanali; Hashemzadeh-Chaleshtori, Morteza; Rafieian-Kopaei, Mahmoud; Kheiri, Soleyman; Gholipour, Abolfazl; Shirzad, Hedayatollah

    2016-02-01

    Helicobacter pylori (H. pylori) is associated with gastric ulcer and gastric adenocarcinoma. Polymorphisms in the host genes coding for Toll-like receptors (TLRs) may influence the innate and adaptive immune response to the infection, affecting the susceptibility to H. pylori or the disease outcomes. However, the details and association with different polymorphism and clinical expression of infection remain unclear. A case-control study consisting of 58 patients with H. pylori infection and 44 H. pylori uninfection was conducted. Genomic DNA was extracted and genotypes of TLR4 Asp299Gly polymorphism were assessed through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Mucosal cytokines expression in H. pylori-infected and uninfected gastric biopsies was determined by real-time PCR. The expression of IL-6, IL-17, IL-21, IL-23 and TGF-β1 was significantly higher in patients with D299G polymorphism in TLR4. But the expression of IL-18 between patients with single-nucleotide polymorphisms (SNPs) in TLR4 and patients with the wild-type allele was not significant. In H. pylori-infected patients with gastritis, SNPs in TLR4 may alter cytokine expression toward Th17 immune response in the gastric mucosa and may have increased risk for the development of peptic ulcer. PMID:26853914

  9. Experimental obstructive jaundice alters claudin-4 expression in intestinal mucosa: Effect of bombesin and neurotensin

    Institute of Scientific and Technical Information of China (English)

    Stelios F Assimakopoulos; Constantine E Vagianos; Aristides S Charonis; Ilias H Alexandris; Iris Spiliopoulou; Konstantinos C Thomopoulos; Vassiliki N Nikolopoulou; Chrisoula D Scopa

    2006-01-01

    AIM: To investigate the influence of experimental obstructive jaundice and exogenous bombesin (BBS) and neurotensin (NT) administration on the expression of the tight junction (TJ)-protein claudin-4 in intestinal epithelium of rats.METHODS: Forty male Wistar rats were randomly divided into five groups: Ⅰ = controls, Ⅱ = sham operated, Ⅲ = bile duct ligation (BDL), Ⅳ = BDL+BBS (30 μg/kg per d), V = BDL+NT (300 μg/kg per d). At the end of the experiment on d 10, endotoxin was measured in portal and aortic blood. Tissue sections of the terminal ileum were examined histologically and immunohistochemically for evaluation of claudin-4 expression in intestinal epithelium.RESULTS: Obstructive jaundice led to intestinal barrier failure demonstrated by significant portal and aortic endotoxemia. Claudin-4 expression was significantly increased in the upper third of the villi in jaundiced rats and an upregulation of its lateral distribution was noted.Administration of BBS or NT restored claudin-4 expression to the control state and significantly reduced portal and aortic endotoxemia.CONCLUSION: Experimental obstructive jaundice increases claudin-4 expression in intestinal epithelium,which may be a key factor contributing to the disruption of the mucosal barrier. Gut regulatory peptides BBS and NT can prevent this alteration and reduce portal and sysremic endotoxemia.

  10. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides

    OpenAIRE

    Dahmen, Volker; Kriehuber, Ralf

    2012-01-01

    Purpose: Triplex-forming oligonucleotides (TFO) bind to the DNA double helix in a sequence-specific manner. Therefore, TFO seem to be a suitable carrier for Auger electron emitters to damage exclusively targeted DNA sequences, e.g., in tumor cells. We studied the influence of I-125 labeled TFO with regard to cell survival and induction of DNA double-strand breaks (DSB) using TFO with different genomic targets and target numbers. Furthermore, the ability of TFO to alter the gene expression of ...

  11. Di-(2 ethylhexyl phthalate and flutamide alter gene expression in the testis of immature male rats

    Directory of Open Access Journals (Sweden)

    Yu Frank H

    2009-09-01

    Full Text Available Abstract We previously demonstrated that the androgenic and anti-androgenic effects of endocrine disruptors (EDs alter reproductive function and exert distinct effects on developing male reproductive organs. To further investigate these effects, we used an immature rat model to examine the effects of di-(2 ethylhexyl phthalate (DEHP and flutamide (Flu on the male reproductive system. Immature male SD rats were treated daily with DEHP and Flu on postnatal days (PNDs 21 to 35, in a dose-dependent manner. As results, the weights of the testes, prostate, and seminal vesicle and anogenital distances (AGD decreased significantly in response to high doses of DEHP or Flu. Testosterone (T levels significantly decreased in all DEHP- treated groups, whereas luteinizing hormone (LH plasma levels were not altered by any of the two treatments at PND 36. However, treatment with DEHP or Flu induced histopathological changes in the testes, wherein degeneration and disorders of Leydig cells, germ cells and dilatation of tubular lumen were observed in a dose-dependent manner. Conversely, hyperplasia and denseness of Leydig, Sertoli and germ cells were observed in rats given with high doses of Flu. The results by cDNA microarray analysis indicated that 1,272 genes were up-regulated by more than two-fold, and 1,969 genes were down-regulated in response to DEHP, Flu or both EDs. These genes were selected based on their markedly increased or decreased expression levels. These genes have been also classified on the basis of gene ontology (e.g., steroid hormone biosynthetic process, regulation of transcription, signal transduction, metabolic process, biosynthetic process.... Significant decreases in gene expression were observed in steroidogenic genes (i.e., Star, Cyp11a1 and Hsd3b. In addition, the expression of a common set of target genes, including CaBP1, Vav2, Plcd1, Lhx1 and Isoc1, was altered following exposure to EDs, suggesting that they may be marker genes to

  12. Altered placental expression of PAPPA2 does not affect birth weight in mice

    Directory of Open Access Journals (Sweden)

    Christians Julian K

    2010-07-01

    Full Text Available Abstract Background Pregnancy-associated plasma protein A2 (PAPPA2 is an insulin-like growth factor binding protein (IGFBP protease expressed in the placenta and upregulated in pregnancies complicated by pre-eclampsia. The mechanism linking PAPPA2 expression and pre-eclampsia and the consequences of altered PAPPA2 expression remain unknown. We previously identified PAPPA2 as a candidate gene for a quantitative trait locus (QTL affecting growth in mice and in the present study examined whether this QTL affects placental PAPPA2 expression and, in turn, placental or embryonic growth. Methods Using a line of mice that are genetically homogenous apart from a 1 megabase QTL region containing the PAPPA2 gene, we bred mice homozygous for alternate QTL genotypes and collected and weighed placentae and embryos at E12.5. We used quantitative RT-PCR to measure the mRNA levels of PAPPA2, as well as mRNA levels of IGFBP-5 (PAPPA2's substrate, and PAPPA (a closely related IGFBP protease to examine potential feedback and compensation effects. Western blotting was used to quantify PAPPA2 protein. Birth weight was measured in pregnancies allowed to proceed to parturition. Results PAPPA2 mRNA and protein expression levels in the placenta differed by a factor of 2.5 between genotypes, but we did not find a significant difference between genotypes in embryonic PAPPA2 mRNA levels. Placental IGFBP-5 and PAPPA mRNA expression levels were not altered in response to PAPPA2 levels, and we could not detect IGFBP-5 protein in the placenta by Western blotting. The observed difference in placental PAPPA2 expression had no significant effect on placental or embryonic mass at mid-gestation, birth weight or litter size. Conclusions Despite a significant difference between genotypes in placental PAPPA2 expression similar in magnitude to the difference between pre-eclamptic and normal placentae previously reported, we observed no difference in embryonic, placental or birth weight

  13. RIPK4 activates an IRF6-mediated proinflammatory cytokine response in keratinocytes.

    Science.gov (United States)

    Kwa, Mei Qi; Scholz, Glen M; Reynolds, Eric C

    2016-07-01

    Keratinocytes of the oral mucosa and epidermis play key roles in host defense. In addition to functioning as a physical barrier, they also produce cytokines to elicit inflammation in response to infection or injury. We recently established that receptor-interacting protein kinase 4 (RIPK4) and interferon regulatory factor 6 (IRF6) function as a cell-intrinsic signaling axis to regulate keratinocyte differentiation. In this study, we have demonstrated a functional relationship between RIPK4 and IRF6 in the control of proinflammatory cytokine expression in keratinocytes. The overexpression of RIPK4 by oral keratinocytes induced the strong expression of CCL5 and CXCL11. In contrast, the expression of other cytokines (e.g. IL8 and TNF) was largely unaffected, thus demonstrating specificity in the induction of proinflammatory cytokine expression by RIPK4. CCL5 and CXCL11 expression were also induced in response to the activation of the PKC pathway, and gene silencing experiments indicated that their inducible expression was dependent on RIPK4 and IRF6. Moreover, gene reporter assays suggested that RIPK4 induces CCL5 and CXCL11 expression by stimulating the transactivation of their promoters by IRF6. Accordingly, our findings suggest that the RIPK4-IRF6 signaling axis plays a multifaceted role in barrier epithelial homeostasis through its regulation of both keratinocyte inflammation and differentiation. PMID:27014863

  14. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  15. Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4

    Directory of Open Access Journals (Sweden)

    Tamotsu Kiyoshima

    2014-01-01

    Full Text Available Previous studies have shown that the recombination of cells liberated from developing tooth germs develop into teeth. However, it is difficult to use human developing tooth germ as a source of cells because of ethical issues. Previous studies have reported that thymosin beta 4 (Tmsb4x is closely related to the initiation and development of the tooth germ. We herein attempted to establish odontogenic epithelial cells from non-odontogenic HaCaT cells by transfection with TMSB4X. TMSB4X-transfected cells formed nodules that were positive for Alizarin-red S (ALZ and von Kossa staining (calcium phosphate deposits when cultured in calcification-inducing medium. Three selected clones showing larger amounts of calcium deposits than the other clones, expressed PITX2, Cytokeratin 14, and Sonic Hedgehog. The upregulation of odontogenesis-related genes, such as runt-related transcription factor 2 (RUNX2, Amelogenin (AMELX, Ameloblastin (AMBN and Enamelin (ENAM was also detected. These proteins were immunohistochemically observed in nodules positive for the ALZ and von Kossa staining. RUNX2-positive selected TMSB4X-transfected cells implanted into the dorsal subcutaneous tissue of nude mice formed matrix deposits. Immunohistochemically, AMELX, AMBN and ENAM were observed in the matrix deposits. This study demonstrated the possibility of induction of dental epithelial cell differentiation marker gene expression in non-odontogenic HaCaT cells by TMSB4X.

  16. Aged mice have increased inflammatory monocyte concentration and altered expression of cell-surface functional receptors

    Indian Academy of Sciences (India)

    Kelley Strohacker; Whitney L Breslin; Katie C Carpenter; Brian K McFarlin

    2012-03-01

    The expression of monocyte cell-surface receptors represents one index of immune dysfunction, which is common with aging. Although mouse models of aging are prevalent, monocyte subset assessment is rare. Our purpose was to compare cell receptor expression on classic (CD115+/Gr-1high) and non-classic (CD115+/Gr-1low) monocytes from 80- or 20-week-old CD-1 mice. Three-colour flow cytometry was used to determine the concentration of monocyte subsets and their respective cell-surface expression of TLR2, TLR4, CD80, CD86, MHC II and CD54. These receptors were selected because they have been previously associated with altered monocyte function. Data were analysed with independent -tests; significance was set at < 0.05. Old mice had a greater concentration of both classic (258%, =0.003) and non-classic (70%, =0.026) monocytes. The classic : non-classic monocyte ratio doubled in old as compared with that in young mice (=0.006), indicating a pro-inflammatory shift. TLR4 ($\\downarrow$27%, =0.001) and CD80 ($\\downarrow$37%, =0.004) were decreased on classic monocytes from old as compared with those from young mice. TLR2 ($\\uparrow$24%, =0.002) and MHCII ($\\downarrow$21%, =0.026) were altered on non-classic monocytes from old as compared with those from young mice. The increased classic : non-classic monocyte ratio combined with changes in the cell-surface receptor expression on both monocyte subsets is indicative of immune dysfunction, which may increase age-associated disease risk.

  17. Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice.

    Science.gov (United States)

    Christianson, Julie A; Bielefeldt, Klaus; Malin, Sacha A; Davis, Brian M

    2010-11-01

    Inflammation or pain during neonatal development can result in long-term structural and functional alterations of nociceptive pathways, ultimately altering pain perception in adulthood. We have developed a mouse model of neonatal colon irritation (NCI) to investigate the plasticity of pain processing within the viscerosensory system. Mouse pups received an intracolonic administration of 2% mustard oil (MO) on postnatal days 8 and 10. Distal colons were processed at subsequent timepoints for myeloperoxidase (MPO) activity and growth factor expression. Adult mice were assessed for visceral hypersensitivity by measuring the visceromotor response during colorectal distension. Dorsal root ganglion (DRG) neurons from adult mice were retrogradely labeled from the distal colon and calcium imaging was used to measure transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) responses to acute application of capsaicin and MO, respectively. Despite the absence of inflammation (as indicated by MPO activity), neonatal exposure to intracolonic MO transiently maintained a higher expression level of growth factor messenger RNA (mRNA). Adult NCI mice displayed significant visceral hypersensitivity, as well as increased sensitivity to mechanical stimulation of the hindpaw, compared to control mice. The percentage of TRPA1-expressing colon afferents was significantly increased in NCI mice, however they displayed no increase in the percentage of TRPV1-immunopositive or capsaicin-sensitive colon DRG neurons. These results suggest that early neonatal colon injury results in a long-lasting visceral hypersensitivity, possibly driven by an early increase in growth factor expression and maintained by permanent changes in TRPA1 function. PMID:20850221

  18. Niacin in pharmacological doses alters microRNA expression in skeletal muscle of obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Aline Couturier

    Full Text Available Administration of pharmacological niacin doses was recently reported to have pronounced effects on skeletal muscle gene expression and phenotype in obese Zucker rats, with the molecular mechanisms underlying the alteration of gene expression being completely unknown. Since miRNAs have been shown to play a critical role for gene expression through inducing miRNA-mRNA interactions which results in the degradation of specific mRNAs or the repression of protein translation, we herein aimed to investigate the influence of niacin at pharmacological doses on the miRNA expression profile in skeletal muscle of obese Zucker rats fed either a control diet with 30 mg supplemented niacin/kg diet or a high-niacin diet with 780 mg supplemented niacin/kg diet for 4 wk. miRNA microarray analysis revealed that 42 out of a total of 259 miRNAs were differentially expressed (adjusted P-value <0.05, 20 being down-regulated and 22 being up-regulated, between the niacin group and the control group. Using a biostatistics approach, we could demonstrate that the most strongly up-regulated (log2 ratio ≥0.5 and down-regulated (log2 ratio ≤-0.5 miRNAs target approximately 1,800 mRNAs. Gene-term enrichment analysis showed that many of the predicted target mRNAs from the most strongly regulated miRNAs were involved in molecular processes dealing with gene transcription such as DNA binding, transcription regulator activity, transcription factor binding and in important regulatory pathways such as Wnt signaling and MAPK signaling. In conclusion, the present study shows for the first time that pharmacological niacin doses alter the expression of miRNAs in skeletal muscle of obese Zucker rats and that the niacin-regulated miRNAs target a large set of genes and pathways which are involved in gene regulatory activity indicating that at least some of the recently reported effects of niacin on skeletal muscle gene expression and phenotype in obese Zucker rats are mediated through

  19. Altered miRNAs expression profiling in sperm of mice induced by fluoride.

    Science.gov (United States)

    Sun, Zilong; Zhang, Wen; Li, Sujuan; Xue, Xingchen; Niu, Ruiyan; Shi, Lei; Li, Baojun; Wang, Xiaowen; Wang, Jundong

    2016-07-01

    The reproductive toxicity of fluoride has become a major concern in the world. Fluoride can decrease the abilities of sperm capacitation, hyperactivation, chemotaxis, acrosome reaction and fertilization, but the studies on the responses of sperm small noncoding RNAs (sncRNAs), especially miRNAs, to fluoride exposure are lacking. miRNAs are demonstrated to influence sperm quality and male fertility by regulating gene expression at post-transcriptional levels or translational repression. The objective of this study is to analyze miRNA profiling in sperm of mice administrated with 25 and 100 mg L(-1) sodium fluoride (NaF) for 60 d using high-throughput sequencing technology. Along with reduced sperm concentration, survival, motility, and mitochondrial membrane potential, 31 differentially expressed known miRNAs were identified in fluoride groups, compared with the control group. 671 predicted target genes against the 16 altered miRNAs were mainly involved in protease inhibitor activity, apoptosis, ubiquitin mediated proteolysis, and signaling pathways of calcium, JAK-STAT, MAPK, p53, Wnt, which were proved to be directly related to sperm quality. These findings suggested that the altered sperm miRNAs could be potential biomarkers for fluoride reproductive toxicity. PMID:27108368

  20. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  1. Alteration of cadherin isoform expression and inhibition of gap junctions in stomach carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore cell malignant phenotype correlated changes of cell surface adhesion molecules and cell-cell communication in carcinogenesis, human stomach transformed and cancer cell lines were investigated. Expressions of E-cadherin, N-cadherin, ?-catenin, ?-catenin as well as gap junction (GJ) protein Cx32 were studied by utilization of immunoblotting, immunocytochemical and fluorescent dye transfer methods. Mammalian normal stomach mucosal cells expressed E-cadherin but not N-cadherin. E-cadherin immunofluorescence was detected at cell membranous adherens junctions (AJ) where colocalization with immunofluorescent staining of inner surface adhesion plaque proteins ?- and ?-catenins was observed. The existence of E-cadherin/ catenin (?-, ?-) protein complexes as AJ was suggested. In transformed and stomach cancer cells E-cadherin was inhibited, instead, N-cadherin was expressed and localized at membranous AJ where co-staining with ?- and ?-catenin fluorescence was observed. Formation of N-cadherin/catenin (?-, ?-) protein complex at AJs of transformed and cancer cells was suggested. The above observations were further supported by immunoblotting results. Normal stomach muscosal and transformed cells expressed Cx32 at membranous GJ and were competent of gap junction communication (GJIC). In stomach cancer cells, Cx32 was inhibited and GJIC was defective. The results suggested that changes of signal pathways mediated by both cell adhesion and cell communication systems are associated intracellular events of stomach carcinogenesis. The alteration of cadherin isoform from E- to N-cadherin in transformed and stomach cancer cells is the first report.

  2. Spaceflight alters expression of microRNA during T-cell activation.

    Science.gov (United States)

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21. PMID:26276131

  3. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance

  4. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    International Nuclear Information System (INIS)

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  5. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    Science.gov (United States)

    Fonseca, A. S.; Mencalha, A. L.; Campos, V. M. A.; Ferreira-Machado, S. C.; Peregrino, A. A. F.; Magalhães, L. A. G.; Geller, M.; Paoli, F.

    2013-02-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation.

  6. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Leffers, H;

    1992-01-01

    as MRP 14, L1, or calprotectin; calgranulin A or MRP 8; and cystatin A or stefin A. Here, we have cloned and sequenced the cDNA (clone 1592) encoding a new member of this group of low-molecular-weight proteins [isoelectric focusing (IEF) SSP 3007 in the keratinocyte 2D gel protein database] that we...

  7. Interferon-gamma up-regulates a unique set of proteins in human keratinocytes. Molecular cloning and expression of the cDNA encoding the RGD-sequence-containing protein IGUP I-5111

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder;

    1993-01-01

    AMP (Bt2cAMP), dibutyryl cGMP (Bt2cGMP)] and compounds known to affect keratinocytes [4 beta-phorbol 12-myristate 13-acetate (PMA), retinoic acid, Ca2+, dexamethasone, lipopolysaccharides, foetal calf serum]. Protein IGUP I-5111 was selected for further studies as its level is affected by simian-virus-40...

  8. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  9. Alterations in Mc1r gene expression are associated with regressive pigmentation in Astyanax cavefish.

    Science.gov (United States)

    Stahl, Bethany A; Gross, Joshua B

    2015-11-01

    Diverse changes in coloration across distant taxa are mediated through alterations in certain highly conserved pigmentation genes. Among these genes, Mc1r is a frequent target for mutation, and many documented alterations involve coding sequence changes. We investigated whether regulatory mutations in Mc1r may also contribute to pigmentation loss in the blind Mexican cavefish, Astyanax mexicanus. This species comprises multiple independent cave populations that have evolved reduced (or absent) melanic pigmentation as a consequence of living in darkness for millions of generations. Among the most salient cave-associated traits, complete absence (albinism) or reduced levels of pigmentation (brown) have long been the focus of degenerative pigmentation research in Astyanax. These two Mendelian traits have been linked to specific coding mutations in Oca2 (albinism) and Mc1r (brown). However, four of the seven caves harboring the brown phenotype exhibit unaffected coding sequences compared to surface fish. Thus, diverse genetic changes involving the same genes likely impact reduced pigmentation among cavefish populations. Using both sequence and expression analyses, we show that certain cave-dwelling populations harboring the brown mutation have substantial alterations to the putative Mc1r cis-regulatory region. Several of these sequence mutations in the Mc1r 5' region were present across multiple, independent cave populations. This study suggests that pigmentation reduction in Astyanax cavefish evolves through a combination of both coding and cis-regulatory mutations. Moreover, this study represents one of the first attempts to identify regulatory alterations linked to regressive changes in cave-dwelling populations of A. mexicanus. PMID:26462499

  10. MYC protein expression and genetic alterations have prognostic impact in diffuse large B-cell lymphoma treated with immunochemotherapy

    OpenAIRE

    Valera Barros, Alexandra; López Guillermo, Armando; Cardesa Salzmann, Antonio; Climent, Fina; González Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rear...

  11. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  12. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    International Nuclear Information System (INIS)

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  13. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    International Nuclear Information System (INIS)

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: ► Cybrids are useful models to study the role of mtDNA changes in cancer development. ► mtDNA changes affect the expression of nuclear genes associated with tumorigenesis. ► MMP-9 is up-regulated and

  14. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  15. The involvement of Gab1 and PI 3-kinase in β1 integrin signaling in keratinocytes

    International Nuclear Information System (INIS)

    The control of the stem cell compartment in epidermis is closely linked to the regulation of keratinocyte proliferation and differentiation. β1 integrins are expressed 2-fold higher by stem cells than transit-amplifying cells. Signaling from these β1 integrins is critical for the regulation of the epidermal stem cell compartment. To clarify the functional relevance of this differential expression of β1 integrins, we established HaCaT cells with high β1integrin expression by repeated flow cytometric sorting of this population from the parental cell line. In these obtained cells expressing β1 integrins by 5-fold, MAPK activation was markedly increased. Regarding the upstream of MAPK, Gab1 phosphorylation was also higher with high β1 integrin expression, while Shc phosphorylation was not altered. In addition, enhanced phosphatidylinositol 3-kinase activation was also observed. These observations suggest that Gab1 and phosphatidylinositol 3-kinase play pivotal roles in the β1 integrin-mediated regulation of the epidermal stem cell compartment

  16. Altered expression of prohibitin in psoriatic lesions and its cellular implication

    International Nuclear Information System (INIS)

    Psoriasis is characterized by excessive proliferation of keratinocytes accompanying acanthosis and incomplete differentiation. Prohibitin was investigated by examining its function of HaCaT as well as psoriasis. Psoriatic involved skin revealed high level of prohibitin in the basal layer. Prohibitin was analyzed by applying RNAi (PHBi) with HaCaT, which demonstrated increased S-phase. PHBi showed enhanced sensitivity to anthralin-mediated cell death due to enhanced loss of mitochondrial membrane potential, suggesting a protective role of prohibitin against apoptosis. Collectively, prohibitin plays a role both in cell cycle regulation and in maintaining mitochondrial integrity, implying its association with pathogenesis of psoriasis

  17. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases.

    Science.gov (United States)

    Wahlang, Banrida; Petriello, Michael C; Perkins, Jordan T; Shen, Shu; Hennig, Bernhard

    2016-09-01

    Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity. PMID:27288564

  18. Prenatal Oxycodone Exposure Alters CNS Endothelin Receptor Expression in Neonatal Rats.

    Science.gov (United States)

    Devarapalli, M; Leonard, M; Briyal, S; Stefanov, G; Puppala, B L; Schweig, L; Gulati, A

    2016-05-01

    Prenatal opioid exposure such as oxycodone is linked to significant adverse effects on the developing brain. Endothelin (ET) and its receptors are involved in normal development of the central nervous system. Opioid tolerance and withdrawal are mediated through ET receptors. It is possible that adverse effect of oxycodone on the developing brain is mediated through ET receptors. We evaluated brain ETA and ETB receptor expression during postnatal development in rats with prenatal oxycodone exposure. Timed pregnant Sprague-Dawley rats received either oxycodone or placebo throughout gestation. After birth, male rat pups were sacrificed on postnatal day (PND) 1, 7, 14 or 28. Brain ETA and ETB receptor expression was determined by Western blot analysis. Oxycodone pups compared to placebo demonstrated congenital malformations of the face, mouth, and vertebrae at the time of birth [4/69 (5.7%) vs. 0/60 (0%); respectively] and intrauterine growth retardation [10/69 (15%) vs. 2/60 (3.3%); respectively]. On PND 28, oxycodone pups compared to placebo had lower body and kidney weight. ETA receptor expression in the oxycodone group was significantly higher compared to placebo on PND 1 (p=0.035), but was similar on PND 7, 14, or 28. ETB receptor expression decreased in oxycodone compared to placebo on PND 1 and 7 (p=0.001); and increased on PND 28 (p=0.002), but was similar on PND 14. Oxycodone-exposed rat pups had lower birth weight and postnatal weight gain and greater congenital malformations. ETB receptor expression is altered in the brain of oxycodone-treated rat pups indicating a possible delay in CNS development. PMID:26676852

  19. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    Science.gov (United States)

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc. PMID:26638879

  20. MUC5AC/β-catenin expression and KRAS gene alteration in laterally spreading colorectal tumors

    Institute of Scientific and Technical Information of China (English)

    Kosaburo Nakae; Hiroyuki Mitomi; Tsuyoshi Saito; Michiko Takahashi; Takashi Morimoto; Yasuhiro Hidaka; Naoto Sakamoto

    2012-01-01

    To clarify differences in mucin phenotype,proliferative activity and oncogenetic alteration among subtypes of colorectal laterally spreading tumor (LST).METHODS:LSTs,defined as superficial elevated lesions greater than 10 mm in diameter with a low vertical axis,were macroscopically classified into two subtypes:(1) a granular type (Gr-LST) composed of superficially spreading aggregates of nodules forming a flat-based lesion with a granulonodular and uneven surface; and (2) a non-granular type (NGr-LST) with a flat smooth surface and an absence of granulonodular formation.A total of 69 LSTs,comprising 36 Gr-LSTs and 33 NGr-LSTs,were immunohistochemically stained with MUC2,MUC5AC,MUC6,CD10 (markers of gastrointestinal cell lineage),p53,β-catenin and Ki-67 antibodies,and examined for alteration in exon 1 of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and exon 15 of v-raf murine sarcoma viral oncogene homologue B1 (BRAF) by polymerase chain reaction followed by direct sequencing.RESULTS:Histologically,15 Gr-LST samples were adenomas with low-grade dysplasia (LGD),12 were highgrade dysplasia (HGD) and 9 were adenocarcinomas invading the submucosa (INV),while 12 NGr-LSTs demonstrated LGD,14 HGD and 7 INV.In the proximal colon,MUC5AC expression was significantly higher in the Gr-type than the NGr-type.MUC6 was expressed only in NGr-LST.MUC2 or CD10 did not differ,P53 expression demonstrated a significant stepwise increment in progression through LGD-HGD-INV with both types of LST.Nuclear β-catenin expression was significantly higher in the NGr-type.Ki-67 expression was significantly higher in the Gr-type in the lower one third zone of the tumor.In proximal,but not distal colon tumors,the incidence of KRAS provided mutation was significantly higher in the Gr-type harboring a specific mutational pattern (G12V).BRAF mutations (V600E) were detected only in two Gr-LSTs.CONCLUSION:The two subtypes of LST,especially in the proximal colon,have differing

  1. The combined effects of temperature and CO2 lead to altered gene expression in Acropora aspera

    Science.gov (United States)

    Ogawa, D.; Bobeszko, T.; Ainsworth, T.; Leggat, W.

    2013-12-01

    This study explored the interactive effects of near-term CO2 increases (40-90 ppm above current ambient) during a simulated bleaching event (34 °C for 5 d) of Acropora aspera by linking physiology to expression patterns of genes involved in carbon metabolism. Symbiodinium photosynthetic efficiency ( F v / F m ) was significantly depressed by the bleaching event, while elevated pressure of CO2 (pCO2) slightly mitigated the effects of increased temperature on F v / F m during the final 4 d of the recovery period, however, did not affect the loss of symbionts. Elevated pCO2 alone had no effect on F v / F m or symbiont density. Expression of targeted Symbiodinium genes involved in carbon metabolism and heat stress response was not significantly altered by either increased temperature and/or CO2. Of the selected host genes, two carbonic anhydrase isoforms (coCA2 and coCA3) exhibited the largest changes, most notably in crossed bleaching and elevated pCO2 treatments. CA2 was significantly down-regulated on day 14 in all treatments, with the greatest decrease in the crossed treatment (relative expression compared to control = 0.16; p bleaching were evident during this study and demonstrate that increased pCO2 in surface waters will impact corals much sooner than many studies utilising end-of-century pCO2 concentrations would indicate.

  2. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    Science.gov (United States)

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  3. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Hanyang Hu

    2014-01-01

    Full Text Available Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice.

  4. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    Science.gov (United States)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  5. Early repeated maternal separation induces alterations of hippocampus reelin expression in rats

    Indian Academy of Sciences (India)

    Jianlong Zhang; Lina Qin; Hu Zhao

    2013-03-01

    The long-term effects of repeated maternal separation (MS) during early postnatal life on reelin expression in the hippocampus of developing rats were investigated in the present study. MS was carried out by separating Wistar rat pups singly from their mothers for 3 h a day during postnatal days (PND) 2–14. Reelin mRNA and protein levels in the hippocampus were determined using qRT-PCR and Western blotting, at PND 22, PND 60 and PND 90. MS resulted in the loss of body weight in the developing rats, and reelin mRNA and protein levels in the hippocampus generally were down-regulated over the developing period, but the reelin mRNA and protein levels in the hippocampus of 90-day-old male rats were up-regulated. These findings suggest that the long-term effects of MS on the expression levels of hippocampal reelin mRNA and protein depends on the age at which the stressed rats’ brains were collected; reelin had important implications for the maternal-neonate interaction needed for normal brain development. In conclusion, repeated MS occurring during early postnatal life may cause the alterations of hippocampal reelin expression with the increasing age of developing rats.

  6. Altered expression of cellular Bcl-2 in the progression of hamster cholangiocarcinogenesis.

    Science.gov (United States)

    Jeon, Byung-Suk; Yoon, Byung-Il

    2012-01-01

    Bcl-2 is an intracytoplasmic and membrane-associated apoptosis suppressor, and its overexpression is closely associated with survival of malignant tumors, in particular their aggressive behavior and poor prognosis. The role of Bcl-2 is, however, still controversial in cholangiocarcinogenesis because of the discrepancies in the expression of the protein. In the present study, alteration in the expression of Bcl-2 in cholangiocarcinogenesis was investigated by studying the immunoreactivities of this protein in normal, hyperplastic bile ducts with or without dysplastic changes, and neoplastic bile duct cells from a hamster cholangiocarcinoma (ChC) model. Cytoplasmic staining, which reflects high-Bcl-2 immunoreactivity, was negative to very weak in normal and hyperplastic bile ducts without dysplastic changes, while hyperplastic bile ducts with dysplasia indicated heterogeneously strong expression. On the other hand, most of the neoplastic cells of invasive cholangiocarcinomas were negative to weak as much as the level of normal bile ducts. The results suggest that the antiapoptotic factor Bcl-2 plays a limited role in the survival of highly proliferative, potentially dysplastic bile duct cells. However, the role of Bcl-2 in biliary cancer cells was not significant. PMID:22654601

  7. Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1.

    Directory of Open Access Journals (Sweden)

    Anna Pakula

    Full Text Available OBJECTIVES: Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD. METHODS: Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. RESULTS: cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. CONCLUSIONS: In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.

  8. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    Directory of Open Access Journals (Sweden)

    Merhan Ragy

    2016-01-01

    Full Text Available In the brain, the heme oxygenase (HO system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA, and total antioxidant capacity (TAC were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.

  9. High glucose inhibits ClC-2 chloride channels and attenuates cell migration of rat keratinocytes

    Directory of Open Access Journals (Sweden)

    Pan F

    2015-08-01

    Full Text Available Fuqiang Pan, Rui Guo, Wenguang Cheng, Linlin Chai, Wenping Wang, Chuan Cao, Shirong LiDepartment of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: Accumulating evidence has demonstrated that migration of keratinocytes is critical to wound epithelialization, and defects of this function result in chronic delayed-healing wounds in diabetes mellitus patients, and the migration has been proved to be associated with volume-activated chloride channels. The aim of the study is to investigate the effects of high glucose (HG, 25 mM on ClC-2 chloride channels and cell migration of keratinocytes.Methods: Newborn Sprague Dawley rats were used to isolate and culture the keratinocyte in this study. Immunofluorescence assay, real-time polymerase chain reaction, and Western blot assay were used to examine the expression of ClC-2 protein or mRNA. Scratch wound assay was used to measure the migratory ability of keratinocytes. Transwell cell migration assay was used to measure the invasion and migration of keratinocytes. Recombinant lentivirus vectors were established and transducted to keratinocytes. Whole-cell patch clamp was used to perform the electrophysiological studies.Results: We found that the expression of ClC-2 was significantly inhibited when keratinocytes were exposed to a HG (25 mM medium, accompanied by the decline of volume-activated Cl- current (ICl,vol, migration potential, and phosphorylated PI3K as compared to control group. When knockdown of ClC-2 by RNAi or pretreatment with wortmannin, similar results were observed, including ICl,vol and migration keratinocytes were inhibited.Conclusion: Our study proved that HG inhibited ClC-2 chloride channels and attenuated cell migration of rat keratinocytes via inhibiting PI3K signaling.Keywords: high glucose, keratinocytes, ClC-2, cell migration, PI3K

  10. Different altered stage correlative expression of high abundance acute-phase proteins in sera of patients with epithelial ovarian carcinoma

    Directory of Open Access Journals (Sweden)

    Lim Boon-Kiong

    2009-08-01

    Full Text Available Abstract Background The general enhanced expression of α1-antichymotrypsin (ACT, clusterin (CLU, α1-antitrypsin (AAT, haptoglobin β-chain (HAP, and leucine rich glycoprotein (LRG in the sera of patients with epithelial ovarian carcinoma (EOCa was recently reported. In the present study, we compared the expression of the serum acute-phase proteins (APPs in the patients according to their stages of cancer. Results Different altered stage correlative expression of the high abundance serum APPs was demonstrated in sera of the patients studied. While the expression of ACT, HAP and AAT appeared to demonstrate positive correlation with the three initial stages of the cancer, inverse correlation was apparently detected in the expression of LRG and CLU. For patients who were diagnosed with stage IV of the cancer, expression of the serum APPs did not conform to the altered progression changes. Conclusion Our results highlight the potential prognostic significance of selective high abundance serum APPs in patients with EOCa.

  11. Modulation of Glucose Transporter 1 (GLUT1) Expression Levels Alters Mouse Mammary Tumor Cell Growth In Vitro and In Vivo

    OpenAIRE

    Young, Christian D.; Lewis, Andrew S; Rudolph, Michael C; Ruehle, Marisa D; Jackman, Matthew R.; Yun, Ui J.; Ilkun, Olesya; Pereira, Renata; Abel, E. Dale; Anderson, Steven M.

    2011-01-01

    Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential. Of the 12 GLUT family glucose transporters expressed in ...

  12. Altered endothelin receptor expression and affinity in spontaneously hypertensive rat cerebral and coronary arteries

    DEFF Research Database (Denmark)

    Cao, Lei; Cao, Yong-Xiao; Xu, Cang-Bao;

    2013-01-01

    BACKGROUND: Hypertension is associated with arterial hyperreactivity, and endothelin (ET) receptors are involved in vascular pathogenesis. The present study was performed to examine the hypothesis that ET receptors were altered in cerebral and coronary arteries of spontaneously hypertensive rats...... (SHR). METHODOLOGY/PRINCIPAL FINDINGS: Cerebral and coronary arteries were removed from SHR. Vascular contraction was recorded using a sensitive myograph system. Real-time PCR and Western blotting were used to quantify mRNA and protein expression of receptors and essential MAPK pathway molecules. The...... results demonstrated that both ETA and ETB receptor-mediated contractile responses in SHR cerebral arteries were shifted to the left in a nonparallel manner with increased maximum contraction compared with Wistar-Kyoto (WKY) rats. In SHR coronary arteries, the ETA receptor-mediated contraction curve was...

  13. Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression.

    Directory of Open Access Journals (Sweden)

    Jackson J Cone

    Full Text Available The development of diet-induced obesity (DIO can potently alter multiple aspects of dopamine signaling, including dopamine transporter (DAT expression and dopamine reuptake. However, the time-course of diet-induced changes in DAT expression and function and whether such changes are dependent upon the development of DIO remains unresolved. Here, we fed rats a high (HFD or low (LFD fat diet for 2 or 6 weeks. Following diet exposure, rats were anesthetized with urethane and striatal DAT function was assessed by electrically stimulating the dopamine cell bodies in the ventral tegmental area (VTA and recording resultant changes in dopamine concentration in the ventral striatum using fast-scan cyclic voltammetry. We also quantified the effect of HFD on membrane associated DAT in striatal cell fractions from a separate group of rats following exposure to the same diet protocol. Notably, none of our treatment groups differed in body weight. We found a deficit in the rate of dopamine reuptake in HFD rats relative to LFD rats after 6 but not 2 weeks of diet exposure. Additionally, the increase in evoked dopamine following a pharmacological challenge of cocaine was significantly attenuated in HFD relative to LFD rats. Western blot analysis revealed that there was no effect of diet on total DAT protein. However, 6 weeks of HFD exposure significantly reduced the 50 kDa DAT isoform in a synaptosomal membrane-associated fraction, but not in a fraction associated with recycling endosomes. Our data provide further evidence for diet-induced alterations in dopamine reuptake independent of changes in DAT production and demonstrates that such changes can manifest without the development of DIO.

  14. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program

    Directory of Open Access Journals (Sweden)

    Revel S M Drummond

    2012-01-01

    Full Text Available Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signalling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologues of the Arabidopsis MAX1 and MAX2 genes to characterise their role in petunia architecture. A single orthologue of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels increase as leaves age. Nonetheless, this gene functionally complements the Arabidopsis max2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over the development series. Alterations to the expression of these genes over time, or in different regions of the plant, may influence the branching growth habit of the plant. Alterations to strigolactone production and/or sensitivity could allow both subtle and dramatic changes to branching within and between species.

  15. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Directory of Open Access Journals (Sweden)

    K. de Picoli Souza

    2014-08-01

    Full Text Available Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g and triiodothyronine (0.5-50 µg/100 g for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold. Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60% ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold, and decreased heart rate (5%, fast muscle myoglobin mRNA (30% and body weight (20% in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30% and body weight (14%. These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  16. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    International Nuclear Information System (INIS)

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood

  17. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Energy Technology Data Exchange (ETDEWEB)

    Picoli Souza, K. de [Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-24

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  18. Sustained alterations in neuroimmune gene expression after daily, but not intermittent, alcohol exposure.

    Science.gov (United States)

    Gano, Anny; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2016-09-01

    Acute ethanol intoxication is associated with Rapid Alterations in Neuroimmune Gene Expression (RANGE), including increased Interleukin (IL)-6 and Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and suppressed IL-1β and Tumor necrosis factor (TNF) α, yet little is known about adaptations in cytokines across the first few ethanol exposures. Thus, the present studies examined central cytokines during intoxication (3h post-ethanol) following 2, 4 or 6 intragastric ethanol challenges (4g/kg) delivered either daily or every-other-day (EOD). Subsequent analyses of blood ethanol concentrations (BECs) and corticosterone were performed to determine whether the schedule of ethanol delivery would alter the pharmacokinetics of, or general sensitivity to, subacute ethanol exposure. As expected, ethanol led to robust increases in IL-6 and IκBα gene expression in hippocampus, amygdala and bed nucleus of the stria terminalis (BNST), whereas IL-1β and TNFα were suppressed, thereby replicating our prior work. Ethanol-dependent increases in IL-6 and IκBα remained significant in all structures - even after 6 days of ethanol. When these doses were administered EOD, modest IL-6 increases in BNST were observed, with TNFα and IL-1β suppressed exclusively in the hippocampus. Analysis of BECs revealed a small but significant reduction in ethanol after 4 EOD exposures - an effect which was not observed when ethanol was delivered after 6 daily intubations. These findings suggest that ethanol-induced RANGE effects are not simply a function of ethanol load per se, and underscore the critical role that ethanol dosing interval plays in determining the neuroimmune consequences of alcohol. PMID:27208497

  19. Addiction and Reward-related Genes Show Altered Expression in the Postpartum Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Changjiu eZhao

    2014-11-01

    Full Text Available Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET indicated that postpartum (relative to virgin NAC gene expression profile was significantly enriched for genes related to addiction and reward in 5 of 5 independently curated databases (e.g., Malacards, Phenopedia. Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder, and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.

  20. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression.

    Directory of Open Access Journals (Sweden)

    David M Gravano

    Full Text Available BACKGROUND: Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach. METHODOLOGY/PRINCIPAL FINDINGS: We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αβ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted. CONCLUSIONS/SIGNIFICANCE: In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and

  1. Toxicity of silver nanoparticles in monocytes and keratinocytes

    DEFF Research Database (Denmark)

    Orłowski, Piotr; Krzyzowska, Malgorzata; Winnicka, Anna;

    2012-01-01

    Silver nanoparticles are of interest to be used as antimicrobial agents in wound dressings and coatings in medical devices, but potential adverse effects have been reported in the literature. The possible local inflammatory response to silver nanoparticles and the role of cell death in determining...... these effects are largely unknown. Effects of the mixture of silver nanoparticles of different sizes were compared in in vitro assays for cytotoxicity, caspase-1 and caspase-9 activity and bax expression. In all tested concentrations, silver nanoparticles were more toxic for RAW 264.7 monocytes than for...... 291.03C keratinocytes and induced significant caspase-1 activity and necrotic cell death. In keratinocytes, more significantly than in macrophages, silver nanoparticles led to increase of caspase-9 activity and apoptosis. These results indicate that effects of silver nanoparticles depend on the type...

  2. Transcriptional network of p63 in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Pozzi

    Full Text Available p63 is a transcription factor required for the development and maintenance of ectodermal tissues in general, and skin keratinocytes in particular. The identification of its target genes is fundamental for understanding the complex network of gene regulation governing the development of epithelia. We report a list of almost 1000 targets derived from ChIP on chip analysis on two platforms; all genes analyzed changed in expression during differentiation of human keratinocytes. Functional annotation highlighted unexpected GO terms enrichments and confirmed that genes involved in transcriptional regulation are the most significant. A detailed analysis of these transcriptional regulators in condition of perturbed p63 levels confirmed the role of p63 in the regulatory network. Rather than a rigid master-slave hierarchical model, our data indicate that p63 connects different hubs involved in the multiple specific functions of the skin.

  3. Treatment of burn injuries with keratinocyte cultures

    International Nuclear Information System (INIS)

    The German Institute for Cell and Tissue Replacement (DIZG) provides burned patients with skin and amnion for a temporary wound closure. Severely burned patients (>60% BSA for adults, >40% BSA for children) were supplied with autologous and allogenic grafts from cultured keratinocytes. The keratinocyte culture is done under GMP-conditions using the method of Rheinwald and Green. The 3T3 fibroblasts were irradiated with 60 Gy and used as feeder cells to produce keratinocyte sheets within 3 weeks. In this time up to 6.000 cm are available. The sheets were harvested by detachment with dispase (1,2 U/ml), fixed to gauze and transported to the hospital. The DIZG has a 3 years experience in the treatment of burns with keratinocyte sheets. The sheets were transplanted to patients in different hospitals, the total transplanted area is about 30.000 cm. This paper describes the experiences with ten severely burned patients treated with keratinocyte sheet

  4. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes.

    Science.gov (United States)

    Chan, Chih-Chieh; Fan, Sabrina Mai-Yi; Wang, Wei-Hung; Mu, Yi-Fen; Lin, Sung-Jan

    2015-10-01

    Successful hair follicle (HF) neogenesis in adult life depends on the existence of both capable dermal cells and competent epidermal keratinocytes that recapitulate embryonic organogenesis through epithelial-mesenchymal interaction. In tissue engineering, the maintenance of trichogenic potential of adult epidermal cells, while expanding them remains a challenging issue. We found that although HF outer root sheath keratinocytes could be expanded for more than 100 passages as clonogenic cells without losing the proliferative potential with a 3T3J2 fibroblast feeder layer, these keratinocytes were unable to form new HFs when combined with inductive HF dermal papilla (DP) cells. However, when these high-passage keratinocytes were cocultured with HF DP cells for 4 days in vitro, they regained the trichogenic ability to form new HFs after transplantation. We found that the short-term coculture with DP cells enhanced both Wnt/β-catenin signaling, a signaling cascade key to HF development, and upregulated the expression of HF-specific genes, including K6, K16, K17, and K75, in keratinocytes, indicating that these cells were poised toward a HF fate. Hence, efficient production of trichogenic keratinocytes can be obtained by a two-stepped procedure with initial cell expansion with a 3T3J2 fibroblast feeder followed by short-term coculture with DP cells. PMID:25951188

  5. The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells.

    Directory of Open Access Journals (Sweden)

    Mathieu Kerbiriou

    Full Text Available In cystic fibrosis (CF, the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER. We previously showed that the unfolded protein response (UPR may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt and F508del-CFTR expressing cells. Here we show that the calcium-calpain-caspase-12-caspase-3 cascade is altered in F508del-CFTR expressing cells. We propose that this alteration is involved in the altered apoptosis triggering observed in CF.

  6. Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    Directory of Open Access Journals (Sweden)

    Hernan G. Garcia

    2012-07-01

    Full Text Available A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression.

  7. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression.

    Directory of Open Access Journals (Sweden)

    Marina M Bellet

    Full Text Available Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.

  8. Expression of human dopamine receptor in potato (Solanum tuberosum results in altered tuber carbon metabolism

    Directory of Open Access Journals (Sweden)

    Świędrych Anna

    2005-02-01

    Full Text Available Abstract Background Even though the catecholamines (dopamine, norepinephrine and epinephrine have been detected in plants their role is poorly documented. Correlations between norepinephrine, soluble sugars and starch concentration have been recently reported for potato plants over-expressing tyrosine decarboxylase, the enzyme mediating the first step of catecholamine synthesis. More recently norepinephrine level was shown to significantly increase after osmotic stress, abscisic acid treatment and wounding. Therefore, it is possible that catecholamines might play a role in plant stress responses by modulating primary carbon metabolism, possibly by a mechanism similar to that in animal cells. Since to date no catecholamine receptor has been identified in plants we transformed potato plants with a cDNA encoding human dopamine receptor (HD1. Results Tuber analysis of transgenic plants revealed changes in the activities of key enzymes mediating sucrose to starch conversion (ADP-glucose phosphorylase and sucrose synthase and sucrose synthesis (sucrose phosphate synthase leading to altered content of both soluble sugars and starch. Surprisingly the catecholamine level measured in transgenic plants was significantly increased; the reason for this is as yet unknown. However the presence of the receptor affected a broader range of enzyme activities than those affected by the massive accumulation of norepinephrine reported for plants over-expressing tyrosine decarboxylase. Therefore, it is suggested that the presence of the exogenous receptor activates catecholamine cAMP signalling in plants. Conclusions Our data support the possible involvement of catecholamines in regulating plant carbon metabolism via cAMP signalling pathway.

  9. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    DEFF Research Database (Denmark)

    Olesen, R H; Hyde, T M; Kleinman, J E;

    2016-01-01

    participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African...... available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins...... expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing...

  10. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    Science.gov (United States)

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism. PMID:22003434

  11. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  12. Mitochondrial and glycolytic activity of UV-irradiated human keratinocytes and its stimulation by a Saccharomyces cerevisiae autolysate.

    Science.gov (United States)

    Schütz, Rolf; Kuratli, Karin; Richard, Nathalie; Stoll, Clarissa; Schwager, Joseph

    2016-06-01

    Cutaneous aging is correlated with mitochondrial dysfunction and a concomitant decline in energy metabolism that can be accelerated by extrinsic factors such as UV radiation (UVR). In this study we compared cellular bioenergetics of normal and UV-irradiated primary human epidermal keratinocytes. Moreover, we investigated the influence of a Saccharomyces cerevisiae autolysate (SCA) on stressed keratinocytes to regain cellular homeostasis. Cellular metabolism was assessed by extracellular flux analysis which measures oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) as well as by ATP quantification. The expression level of ten mitochondria related genes in normal and UVR-stimulated (60mJ/cm(2) UVB) keratinocytes was quantified by real-time PCR and the impact of SCA addition was determined. Sublethal UV stress increased mitochondrial dysfunction in keratinocytes which resulted in reduced viability, uncoupled oxidative phosphorylation, and down-regulated mitochondrial gene expression. Particularly, gene expression of SHDA, UPC2, BID, and ATP5A1 was reduced about twofold within 4h. Treatment of keratinocytes with SCA shifted cellular metabolism towards a more energetic status by increasing the respiratory rate and glycolysis. SCA also stimulated cellular ATP production after short (4h) and prolonged (22h) incubations and induced the expression of genes related to mitochondrial function towards normal expression levels upon UV irradiation. The decreased respiratory capacity of UV-irradiated keratinocytes was partially compensated by the addition of SCA which enhanced glycolytic activity and thereby increased cellular resistance to environmental stress. PMID:27060217

  13. Csf2 Null Mutation Alters Placental Gene Expression and Trophoblast Glycogen Cell and Giant Cell Abundance in Mice1

    OpenAIRE

    Sferruzzi-Perri, Amanda N.; Macpherson, Anne M.; Roberts, Claire T.; Robertson, Sarah A.

    2009-01-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be ass...

  14. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-06-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes.

  15. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Stanniocalcin-1 (STC1, a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam formation, followed by cell migration. In this study, staurosporine (STS treatment induced human keratinocyte (HaCaT e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK, the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  16. Response of human epidermal keratinocytes to UV light

    International Nuclear Information System (INIS)

    This thesis presents a study on the response of human epidermal keratinocytes to UV light as well as to other agents like 4-NQO and TPA. The effects of ultraviolet (UV) light on the protein synthesis in cultured keratinocytes are presented in ch. III. The next chapter describes the construction of a cDNA library using mRNA isolated from UV irradiated kernatinocytes. This library was differentially screened with cDNA probes synthesized on mRNA from either UV irradiated or nonirradiated cells. Several groups of cDNA clones corresponding to transcripts whose level in the cytoplasm seem to be affected by exposure to UV light have been isolated and characterized by cross-hybridization, sequencing and Northern blot analysis. More detailed analysis of some of the cDNA clones is presented in the two chapters following ch. IV. The complete cDNA sequence of the proteinase inhibitor cystatin A and the modulation of its expression by UV light and the carcinogen 4-nitroquinoline 1-oxide (4-NQO) in keratinocytes are described in ch. V. Two other groups of cDNA clones have been isolated which do not cross-hybridize with each other on Southern blots. However, the primary structures of the proteins deduced from the nucleotide sequences of these two groups of cDNA clones are very similar. 212 refs.; 33 figs.; 2 tabs

  17. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  18. Steroid synthesis by primary human keratinocytes; implications for skin disease

    International Nuclear Information System (INIS)

    Research highlights: → Primary keratinocytes express the steroid enzymes required for cortisol synthesis. → Normal primary human keratinocytes can synthesise cortisol. → Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. → StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3βHSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-3H]-pregnenolone through each steroid intermediate to [7-3H]-cortisol in cultured PHK. Trilostane (a 3βHSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra

  19. Steroid synthesis by primary human keratinocytes; implications for skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Michael, Anthony E. [Centre for Developmental and Endocrine Signalling, Academic Section of Obstetrics and Gynaecology, Division of Clinical Developmental Sciences, 3rd Floor, Lanesborough Wing, St. George' s, University of London, Cranmer Terrace, Tooting, London SW17 0RE (United Kingdom); Jaulim, Adil [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Bhogal, Ranjit [Life Science, Unilever R and D Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Burrin, Jacky M. [Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ (United Kingdom); Philpott, Michael P. [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom)

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  20. Glycoprotein Hypersecretion Alters the Cell Wall in Trichoderma reesei Strains Expressing the Saccharomyces cerevisiae Dolichylphosphate Mannose Synthase Gene▿

    OpenAIRE

    Perlińska-Lenart, Urszula; Orłowski, Jacek; Laudy, Agnieszka E.; Zdebska, Ewa; Palamarczyk, Grażyna; Kruszewska, Joanna S.

    2006-01-01

    Expression of the Saccharomyces cerevisiae DPM1 gene (coding for dolichylphosphate mannose synthase) in Trichoderma reesei (Hypocrea jecorina) increases the intensity of protein glycosylation and secretion and causes ultrastructural changes in the fungal cell wall. In the present work, we undertook further biochemical and morphological characterization of the DPM1-expressing T. reesei strains. We established that the carbohydrate composition of the fungal cell wall was altered with an increas...

  1. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  2. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  3. Genetic Association and Altered Gene Expression of Mir-155 in Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Rosanna Asselta

    2011-12-01

    Full Text Available Multiple sclerosis (MS is a complex autoimmune disease of the central nervous system characterized by chronic inflammation, demyelination, and axonal damage. As microRNA (miRNA-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response, miRNA deregulation may result in defects in immune tolerance. In this frame, we sought to explore the possible involvement of miRNAs in MS pathogenesis by monitoring the differential expression of 22 immunity-related miRNAs in peripheral blood mononuclear cells of MS patients and healthy controls, by using a microbead-based technology. Three miRNAs resulted >2 folds up-regulated in MS vs controls, whereas none resulted down-regulated. Interestingly, the most up-regulated miRNA (mir-155; fold change = 3.30; P = 0.013 was previously reported to be up-regulated also in MS brain lesions. Mir-155 up-regulation was confirmed by qPCR experiments. The role of mir-155 in MS susceptibility was also investigated by genotyping four single nucleotide polymorphisms (SNPs mapping in the mir-155 genomic region. A haplotype of three SNPs, corresponding to a 12-kb region encompassing the last exon of BIC (the B-cell Integration Cluster non-coding RNA, from which mir-155 is processed, resulted associated with the disease status (P = 0.035; OR = 1.36, 95% CI = 1.05–1.77, suggesting that this locus strongly deserves further investigations.

  4. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  5. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin.

    Science.gov (United States)

    Malakauskas, Sandra M; Quan, Hui; Fields, Timothy A; McCall, Shannon J; Yu, Ming-Jiun; Kourany, Wissam M; Frey, Campbell W; Le, Thu H

    2007-02-01

    Defects in renal proximal tubule transport manifest in a number of human diseases. Although variable in clinical presentation, disorders such as Hartnup disease, Dent's disease, and Fanconi syndrome are characterized by wasting of solutes commonly recovered by the proximal tubule. One common feature of these disorders is aminoaciduria. There are distinct classes of amino acid transporters located in the apical and basal membranes of the proximal tubules that reabsorb >95% of filtered amino acids, yet few details are known about their regulation. We present our physiological characterization of a mouse line with targeted deletion of the gene collectrin that is highly expressed in the kidney. Collectrin-deficient mice display a reduced urinary concentrating capacity due to enhanced solute clearance resulting from profound aminoaciduria. The aminoaciduria is generalized, characterized by loss of nearly every amino acid, and results in marked crystalluria. Furthermore, in the kidney, collectrin-deficient mice have decreased plasma membrane populations of amino acid transporter subtypes B(0)AT1, rBAT, and b(0,+)AT, as well as altered cellular distribution of EAAC1. Our data suggest that collectrin is a novel mediator of renal amino acid transport and may provide further insight into the pathogenesis of a number of human disease correlates. PMID:16985211

  6. Altered stress fibers and integrin expression in the Malpighian epithelium of Drosophila type IV collagen mutants.

    Science.gov (United States)

    Kiss, András A; Popovics, Nikoletta; Szabó, Gábor; Csiszár, Katalin; Mink, Mátyás

    2016-06-01

    Basement membranes (BMs) are highly specialized extracellular matrices (ECMs) that provide support and polarization cues for epithelial cells. Proper adhesion to the BM is pivotal in epithelial cell function and survival. Type IV collagens are the predominant components of all types of BMs, that form an irregular, polygonal lattice and serve as a scaffold for numerous other BM components and BM-associated cells. Mutations in the ubiquitous human BM components COL4A1 and COL4A2 cause a multisystem disorder involving nephropathy. Affected patients develop renal dysfunction and chronic kidney failure with or without hematuria. Mouse Col4a1 and Col4a2 mutants recapitulate the human symptoms. In vertebrates, excretion is accomplished by the kidneys and by the Malpighian tubules in insects, including the fruit fly Drosophila. Our present results with dominant, temperature-sensitive mutation of the Drosophila col4a1 gene demonstrate altered integrin expression and amplified effects of mechanical stress on the Malpighian epithelial cytoskeleton. PMID:27077087

  7. RIP2: A novel player in the regulation of keratinocyte proliferation and cutaneous wound repair?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Stephanie; Valchanova, Ralitsa S. [Charite-University Medicine Berlin, Institute of Physiology, Arnimallee 22, D-14195 Berlin (Germany); Munz, Barbara, E-mail: barbara.munz@charite.de [Charite-University Medicine Berlin, Institute of Physiology, Arnimallee 22, D-14195 Berlin (Germany)

    2010-03-10

    We could recently demonstrate an important role of receptor interacting protein 4 (RIP4) in the regulation of keratinocyte differentiation. Now, we analyzed a potential role of the RIP4 homolog RIP2 in keratinocytes. Specifically, we demonstrate here that rip2 expression is induced by scratch-wounding and after the induction of differentiation in these cells. Furthermore, serum growth factors and cytokines can induce rip2, with TNF-{alpha}-dependent induction being dependent on p38 MAPK. In addition, we demonstrate that scratch-induced upregulation of rip2 expression is completely blocked by the steroid dexamethasone. Since we also show that RIP2 is an important player in the regulation of keratinocyte proliferation, these data suggest that inhibition of rip2 upregulation after wounding might contribute to the reduced and delayed wound re-epithelialization phenotype seen in glucocorticoid-treated patients.

  8. Circadian rhythm-dependent alterations of gene expression in Drosophila brain lacking fragile X mental retardation protein.

    Directory of Open Access Journals (Sweden)

    Shunliang Xu

    Full Text Available Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP. The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs, and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281 with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s underlying the altered circadian rhythms associated with loss of dFmr1.

  9. Altered expression of cytochrome P450 and possible correlation with preneoplastic changes in early stage of rat hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Lin-lin LIU; Li-kun GONG; Xin-ming QI; Yan CAI; Hui WANG; Xiong-fei WU; Ying XIAO; Jin REN

    2005-01-01

    Aim: Correlation of cytochrome P450 (CYPs) with preneoplastic changes in the early stage of hepatocarcinogenesis is still unclear. To detect the expression of carcinogen-metabolizing related microsomal P450 enzymes, namely the CYP1A1,CYP1A2, CYP2B 1/2, CYP2E1, and CYP3A, we performed the medium-term bioassay of Ito's model in Sprague-Dawley rats. Methods: The amount and activity of CYP were assessed by biochemical and immunohistochemical methods in week 8.The correlation between CYP expression and microsomal oxidative stress was investigated by comparing the generation of microsomal lipid peroxidation in the presence or absence of specific CYP inhibitor. Results: In the DEN-2-AAF and 2-AAF alone groups, the expression of CYP1A1 and CYP2E1 were up-regulated and the expression of CYP2B 1/2 and CYP1A2 were quite the contrary. Strong staining of CYP2E1 and CYP2B1/2 was found around the centrolobular vein and weak staining in the altered hepatic foci revealed by immunohistochemical procedure.There was no significant change in the activity of CYP3A among the 4 groups.Altered hepatic tissue bore more microsomal NADPH (nicotinamide adenine dimucleotide phosphate,reduced form)-dependent lipid peroxidation than normal tissue. And the difference among the 4 groups disappeared when CYP2E1 was inhibited. More microsomal lipid peroxidation was generated when incubated with CYP1A inhibitor α-naphthoflavone. Conclusion: CYP altered their expression levels and these alterations can play important roles in the alteration of cell redox status of preneoplastic tissue in the early stage of hepatocarcinogenesis.

  10. Cultured keratinocyte grafting on various biologic matrices

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Objective: To make attempts to use cell constructs from subconfluent keratinocyte cultures, which contain a much glue (TissucollR) and directly applied onto full thickness wounds in athymic mice or combined with allogenic split thickness overgrafts and compared with cultured sheet grafts. This keratinocyte fibrin glue suspension (KFGS) has also been used in burns up to 88% burned TBSA as well as in chronic wounds. Keratinocytes were also seeded onto various biomaterials (BiobraneR, HYAFF LaserskinR, IntegraTM, TissuFascieR) as carriers. Results: Human suspended keratinocytes were effective to reorganize to skin in vivo both in nude mice and in patients and superior if compared to sheet grafts. 3~ 5 d after seeding onto various biomaterials, cell reached subconfluence and were ready for grafting. These cell-membrane constructs were always tured on microspheres in spinner cultures could increase the cell yield, and the subconfluently covered microspheres were directly grafted onto" the wound. Conclusion: These experiments demonstrated that keratinocytes can grow on a variety of carrier materials in vitro and these cell constructs were able to spontaneously reform a multilayer neoepithelium in vivo. The current screening looks for the ideal carrier for keratinocytes that also would serve as a temporary wound cover and induce dermis formation by tissue conduction which further may be enhanced by gene therapy.

  11. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  12. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    International Nuclear Information System (INIS)

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  13. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  14. Lipid alterations in experimental murine colitis: role of ceramide and imipramine for matrix metalloproteinase-1 expression.

    Directory of Open Access Journals (Sweden)

    Jessica Bauer

    Full Text Available BACKGROUND: Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD. Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction. METHODOLOGY/PRINCIPAL FINDINGS: Chronic colitis was induced by dextran-sulphate-sodium (DSS or transfer of CD4(+CD62L(+ cells into RAG1(-/--mice. Lipid content of isolated murine intestinal epithelial cells (IEC was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM. Ceramide increased by 71% in chronic DSS-induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1beta in Caco-2-IEC and human intestinal fibroblasts. CONCLUSIONS/SIGNIFICANCE: Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1beta is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions.

  15. Cytotoxicity and altered c-myc gene expression by medical polyacrylamide hydrogel.

    Science.gov (United States)

    Xi, T F; Fan, C X; Feng, X M; Wan, Z Y; Wang, C R; Chou, L L

    2006-08-01

    Medical Polyacrylamide Hydrogel (PAMG)has been used in plastic and aesthetic surgery for years. However, its safety is still in doubt in many countries. In the current research, first an approach, using high performance liquid chromatography (HPLC), to determine the amount of residual acrylamide monomer (AM) in the PAMG was presented. Then the cytotoxicity of PAMG was investigated using cell counting and methyl thiazolyl tetrazolium (MTT) assay. To explore the mechanism of this toxicity, normal human fibroblasts cultured in medium extracts were analyzed. Membrane changes and other related parameters were investigated using flow cytometry (FCM). Real time fluorescent polymerase chain reaction (real time PCR) was also introduced to determine the biological response of the fibroblasts. During this process, three representative genes (p53, beta-actin, and c-myc, which are tumor suppressor genes, housekeeping genes, and proto-oncogenes respectively) were selected for examination. Results indicated that a method based on HPLC is practical and simple for determining AM in PAMG. The detection limits can reach the desired ppb level, and so it can fully meet the requirements of the studies of PAMG. Polyacylamide Hydrogel inhibits the growth of human fibroblasts and may cause the apoptosis of human fibroblasts. Moreover, it can alter physical parameters such as the size and the granularity of these cells. Furthermore, these three genes have a relatively typical amplification plot and highly related, wide-range standard curves, and so this reaction system is definitely suitable for the semiquantification of these genes. PAMG induces the increase of the message ribonucleic acid (mRNA) expression of c-myc, while the p53 and beta-actin remain even. This change is not related to the concentration of AM in the gel and may be incited by other components in the extract of PMAG. PMID:16637045

  16. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  17. Expression of HIF-1α in irradiated tissue is altered by topical negative-pressure therapy

    International Nuclear Information System (INIS)

    Background and Purpose: Despite the enormous therapeutic potential of modern radiotherapy, common side effects such as radiation-induced wound healing disorders remain a well-known clinical phenomenon. Topical negative pressure therapy (TNP) is a novel tool to alleviate intraoperative, percutaneous irradiation or brachytherapy. Since TNP has been shown to positively influence the perfusion of chronic, poorly vascularized wounds, the authors applied this therapeutic method to irradiated wounds and investigated the effect on tissue oxygenation in irradiated tissue in five patients. Material and Methods: With informed patients' consent, samples prior to and 4 and 8 days after continuous TNP with -125 mmHg were obtained during routine wound debridements. Granulation tissue was stained with hematoxylin-eosin, and additionally with CD31, HIF-1α (hypoxia-inducible factor-1α), and D2-40 to detect blood vessels, measure indirect signs of hypoxia, and lymph vessel distribution within the pre- and post-TNP samples. Results: In this first series of experiments, a positive influence of TNP onto tissue oxygenation in radiation-induced wounds could be demonstrated. TNP led to a significant decrease of 53% HIF-1α-positive cell nuclei. At the same time, a slight reduction of CD31-stained capillaries was seen in comparison to samples before TNP. Immunostaining with D2-40 revealed an increased number of lymphatic vessels with distended lumina and an alteration of the parallel orientation within the post-TNP samples. Conclusion: This study is, to the authors' knowledge, the first report on a novel previously not described histological marker to demonstrate the effects of TNP on HIF-1α expression as an indirect marker of tissue oxygenation in irradiated wounds, as demonstrated by a reduction of HIF-1α concentration after TNP. Since this observation may be of significant value to develop possible new strategies to treat radiation-induced tissue injury, further investigations of HIF

  18. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation

    International Nuclear Information System (INIS)

    Highlights: ► miR-191 expression is upregulated in senescencent human epidermal keratinocytes. ► miR-191 overexpression is sufficient per se to induce senescence in keratinocytes. ► SATB1 and CDK6 are downregulated in senescence and are direct miR-191 targets. ► SATB1 and CDK6 silencing by siRNA triggers senescence in HEKn cells. -- Abstract: Keratinocyte replicative senescence has an important role in time-dependent changes of the epidermis, a tissue with high turnover. Senescence encompasses growth arrest during which cells remain metabolically active but acquire a typical enlarged, vacuolar and flattened morphology. It is also accompanied by the expression of endogenous senescence-associated-β-galactosidase and specific gene expression profiles. MicroRNAs levels have been shown to be modulated during keratinocytes senescence, playing key roles in inhibiting proliferation and in the acquisition of senescent markers. Here, we identify miR-191 as an anti-proliferative and replicative senescence-associated miRNA in primary human keratinocytes. Its overexpression is sufficient per se to induce senescence, as evaluated by induction of several senescence-associated markers. We show that SATB1 and CDK6 3′UTRs are two miR-191 direct targets involved in this pathway. Cdk6 and Satb1 protein levels decrease during keratinocytes replicative senescence and their silencing by siRNA is able to induce a G1 block in cell cycle, accompanied by an increase in senescence-associated markers.

  19. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression.

    Science.gov (United States)

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-09-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus‑associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR‑19a, and the downregulation of miR‑1, let‑7f and miR‑124 expression levels following IPostC was confirmed utilizing reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  20. Pressure Load: The Main Factor for Altered Gene Expression in Right Ventricular Hypertrophy in Chronic Hypoxic Rats

    Science.gov (United States)

    Peters, Christian D.; Schou, Uffe K.; Jensen, Jens L.; Magnusson, Nils E.; Ørntoft, Torben F.; Kruhøffer, Mogens; Simonsen, Ulf

    2011-01-01

    Background The present study investigated whether changes in gene expression in the right ventricle following pulmonary hypertension can be attributed to hypoxia or pressure loading. Methodology/Principal Findings To distinguish hypoxia from pressure-induced alterations, a group of rats underwent banding of the pulmonary trunk (PTB), sham operation, or the rats were exposed to normoxia or chronic, hypobaric hypoxia. Pressure measurements were performed and the right ventricle was analyzed by Affymetrix GeneChip, and selected genes were confirmed by quantitative PCR and immunoblotting. Right ventricular systolic blood pressure and right ventricle to body weight ratio were elevated in the PTB and the hypoxic rats. Expression of the same 172 genes was altered in the chronic hypoxic and PTB rats. Thus, gene expression of enzymes participating in fatty acid oxidation and the glycerol channel were downregulated. mRNA expression of aquaporin 7 was downregulated, but this was not the case for the protein expression. In contrast, monoamine oxidase A and tissue transglutaminase were upregulated both at gene and protein levels. 11 genes (e.g. insulin-like growth factor binding protein) were upregulated in the PTB experiment and downregulated in the hypoxic experiment, and 3 genes (e.g. c-kit tyrosine kinase) were downregulated in the PTB and upregulated in the hypoxic experiment. Conclusion/Significance Pressure load of the right ventricle induces a marked shift in the gene expression, which in case of the metabolic genes appears compensated at the protein level, while both expression of genes and proteins of importance for myocardial function and remodelling are altered by the increased pressure load of the right ventricle. These findings imply that treatment of pulmonary hypertension should also aim at reducing right ventricular pressure. PMID:21246034

  1. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection.

    Directory of Open Access Journals (Sweden)

    Philipp Rausch

    2015-07-01

    Full Text Available Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2 are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.

  2. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    International Nuclear Information System (INIS)

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV

  3. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts.

    Science.gov (United States)

    Ramos-Jerz, Maria Del R; Villanueva, Socorro; Jerz, Gerold; Winterhalter, Peter; Deters, Alexandra M

    2013-01-01

    Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes. PMID:24371457

  4. Human keratinocytes restrict chikungunya virus replication at a post-fusion step

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Hamel, Rodolphe [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Neyret, Aymeric [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Ekchariyawat, Peeraya [Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, Contrôle, UMR 5290 CNRS/IRD/UM1, Montpellier (France); Molès, Jean-Pierre [INSERM U1058, UM1, CHU Montpellier (France); Simmons, Graham [Blood Systems Research Institute, San Francisco, CA 94118 (United States); Chazal, Nathalie [Centre d' étude d’agents Pathogènes et Biotechnologies pour la Santé, CPBS CNRS- UMR5236/UM1/UM2, Montpellier (France); Desprès, Philippe [Unité Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris (France); and others

    2015-02-15

    Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virus and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.

  5. Phorbol ester binding and protein kinase C activity in normal and transformed human keratinocytes

    International Nuclear Information System (INIS)

    Normal keratinocytes, SV40-transformed keratinocytes (SVK14), and various squamous carcinoma cell (SCC) lines have been used as an in vitro model system to study the properties of phorbol ester receptor and protein kinase C expression during keratinocyte differentiation. The cell lines used exhibit a decreasing capacity to differentiate; moreover, all cell lines respond to a low external Ca2+ concentration by a decreased capacity to differentiate. Normal keratinocytes exhibited the highest number of phorbol ester receptors as compared to the other cell lines, while each individual cell line exhibited a higher number of phorbol ester receptors during growth under normal Ca2+ conditions as compared to cells grown under low Ca2+ conditions. The apparent dissociation constant (Kd) demonstrated only small variations in the various cell lines. These studies revealed differences between protein kinase C properties from the two cell lines grown under normal and low Ca2+ conditions. The differences included the effect of phorbol 12-myristate 13-acetate (PMA) on the redistribution pattern of protein kinase C between the cytoplasmic and particulate fractions as well as the activating effect of diolein in vitro on protein kinase C activity. These observations demonstrate that the functional protein kinase C activity of keratinocytes is determined by various endogenous and exogenous activators and that these activators are modulated differently in various cell lines, under various growth conditions (low Ca2+ versus normal Ca2+)

  6. Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models.

    Science.gov (United States)

    Drgonova, Jana; Walther, Donna; Singhal, Sulabh; Johnson, Kennedy; Kessler, Brice; Troncoso, Juan; Uhl, George R

    2015-01-01

    The CUB and sushi multiple domains 1 (CSMD1) gene harbors signals provided by clusters of nearby SNPs with 10-2 > p > 10-8 associations in genome wide association (GWAS) studies of addiction-related phenotypes. A CSMD1 intron 3 SNP displays p < 10-8 association with schizophrenia and more modest associations with individual differences in performance on tests of cognitive abilities. CSDM1 encodes a cell adhesion molecule likely to influence development, connections and plasticity of brain circuits in which it is expressed. We tested association between CSMD1 genotypes and expression of its mRNA in postmortem human brains (n = 181). Expression of CSMD1 mRNA in human postmortem cerebral cortical samples differs 15-25%, in individuals with different alleles of simple sequence length and SNP polymorphisms located in the gene's third/fifth introns, providing nominal though not Bonferroni-corrected significance. These data support mice with altered CSMD1 expression as models for common human CSMD1 allelic variation. We tested baseline and/or cocaine-evoked addiction, emotion, motor and memory-related behaviors in +/- and -/- csmd1 knockout mice on mixed and on C57-backcrossed genetic backgrounds. Initial csmd1 knockout mice on mixed genetic backgrounds displayed a variety of coat colors and sizable individual differences in responses during behavioral testing. Backcrossed mice displayed uniform black coat colors. Cocaine conditioned place preference testing revealed significant influences of genotype (p = 0.02). Homozygote knockouts displayed poorer performance on aspects of the Morris water maze task. They displayed increased locomotion in some, though not all, environments. The combined data thus support roles for common level-of-expression CSMD1 variation in a drug reward phenotype relevant to addiction and in cognitive differences that might be relevant to schizophrenia. Mouse model results can complement data from human association findings of modest magnitude that

  7. Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models.

    Directory of Open Access Journals (Sweden)

    Jana Drgonova

    Full Text Available The CUB and sushi multiple domains 1 (CSMD1 gene harbors signals provided by clusters of nearby SNPs with 10-2 > p > 10-8 associations in genome wide association (GWAS studies of addiction-related phenotypes. A CSMD1 intron 3 SNP displays p < 10-8 association with schizophrenia and more modest associations with individual differences in performance on tests of cognitive abilities. CSDM1 encodes a cell adhesion molecule likely to influence development, connections and plasticity of brain circuits in which it is expressed. We tested association between CSMD1 genotypes and expression of its mRNA in postmortem human brains (n = 181. Expression of CSMD1 mRNA in human postmortem cerebral cortical samples differs 15-25%, in individuals with different alleles of simple sequence length and SNP polymorphisms located in the gene's third/fifth introns, providing nominal though not Bonferroni-corrected significance. These data support mice with altered CSMD1 expression as models for common human CSMD1 allelic variation. We tested baseline and/or cocaine-evoked addiction, emotion, motor and memory-related behaviors in +/- and -/- csmd1 knockout mice on mixed and on C57-backcrossed genetic backgrounds. Initial csmd1 knockout mice on mixed genetic backgrounds displayed a variety of coat colors and sizable individual differences in responses during behavioral testing. Backcrossed mice displayed uniform black coat colors. Cocaine conditioned place preference testing revealed significant influences of genotype (p = 0.02. Homozygote knockouts displayed poorer performance on aspects of the Morris water maze task. They displayed increased locomotion in some, though not all, environments. The combined data thus support roles for common level-of-expression CSMD1 variation in a drug reward phenotype relevant to addiction and in cognitive differences that might be relevant to schizophrenia. Mouse model results can complement data from human association findings of modest

  8. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  9. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  10. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  11. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  12. Cultured human peripheral blood mononuclear cells alter their gene expression when challenged with endocrine-disrupting chemicals

    International Nuclear Information System (INIS)

    Endocrine disrupting chemicals (EDCs) have the potential to interfere with the hormonal system and may negatively influence human health. Microarray analysis was used in this study to investigate differential gene expression in human peripheral blood cells (PBMCs) after in vitro exposure to EDCs. PBMCs, isolated from blood samples of four male and four female healthy individuals, were exposed in vitro for 18 h to either a dioxin-like polychlorinated biphenyl (PCB126, 1 μM), a non-dioxin-like polychlorinated biphenyl (PCB153, 10 μM), a brominated flame retardant (BDE47, 10 μM), a perfluorinated alkyl acid (PFOA, 10 μM) or bisphenol (BPA, 10 μM). ANOVA analysis revealed a significant change in the expression of 862 genes as a result of EDC exposure. The gender of the donors did not affect gene expression. Hierarchical cluster analysis created three groups and clustered: (1) PCB126-exposed samples, (2) PCB153 and BDE47, (3) PFOA and BPA. The number of differentially expressed genes varied per compound and ranged from 60 to 192 when using fold change and multiplicity corrected p-value as filtering criteria. Exposure to PCB126 induced the AhR signaling pathway. BDE47 and PCB153 are known to disrupt thyroid metabolism and exposure influenced the expression of the nuclear receptors PPARγ and ESR2, respectively. BPA and PFOA did not induce significant changes in the expression of known nuclear receptors. Overall, each compound produced a unique gene expression signature affecting pathways and GO processes linked to metabolism and inflammation. Twenty-nine genes were significantly altered in expression under all experimental conditions. Six of these genes (HSD11B2, MMP11, ADIPOQ, CEL, DUSP9 and TUB) could be associated with obesity and metabolic syndrome. In conclusion, microarray analysis identified that PBMCs altered their gene expression response in vitro when challenged with EDCs. Our screening approach has identified a number of gene candidates that warrant

  13. Genome-wide analysis of high risk human papillomavirus E2 proteins in human primary keratinocytes

    OpenAIRE

    Sunthamala, Nuchsupha; Pang, Chai Ling; Thierry, Francoise; Teissier, Sebastien; Pientong, Chamsai; Ekalaksananan, Tipaya

    2014-01-01

    The E2 protein is expressed in the early stage of human papillomavirus (HPV) infection that is associated with cervical lesions. This protein plays important roles in regulation of viral replication and transcription. To characterize the role of E2 protein in modulation of cellular gene expression in HPV infected cells, genome-wide expression profiling of human primary keratinocytes (HPK) harboring HPV16 E2 and HPV18 E2 was investigated using microarray. The Principle Components Analysis (PCA...

  14. Local Glucocorticoid Activation by 11β-Hydroxysteroid Dehydrogenase 1 in Keratinocytes: The Role in Hapten-Induced Dermatitis.

    Science.gov (United States)

    Terao, Mika; Itoi, Saori; Matsumura, Sayaka; Yang, Lingli; Murota, Hiroyuki; Katayama, Ichiro

    2016-06-01

    Over the past decade, extra-adrenal cortisol production was reported in various tissues. The enzyme that catalyzes the conversion of hormonally inactive cortisone into active cortisol in cells is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is also expressed in keratinocytes and regulates inflammation and keratinocyte proliferation. To investigate the function of 11β-HSD1 in keratinocytes during inflammation in vivo, we created keratinocyte-specific 11β-HSD1 knockout (K5-Hsd11b1-KO) mice and analyzed the inflammatory response in models of hapten-induced contact irritant dermatitis. K5-Hsd11b1-KO mice showed enhanced ear swelling in low-dose oxazolone-, 2,4,6-trinitro-1-chlorobenzene (TNCB)-, and 2,4-dinitrofluorobenzene-induced irritant dermatitis associated with increased inflammatory cell infiltration. Topical application of corticosterone dose dependently suppressed TNCB-induced ear swelling and cytokine expression. Similarly in mouse keratinocytes in vitro, corticosterone dose dependently suppressed 2,4,6-trinitrobenzenesulfonic acid-induced IL-1α and IL-1β expression. The effect of 11-dehydrocorticosterone was attenuated in TNCB-induced irritant dermatitis in K5-Hsd11b1-KO mice compared with wild-type mice. In human samples, 11β-HSD1 expression was decreased in epidermis of psoriasis vulgaris compared with healthy skin. Taken together, these data suggest that corticosterone activation by 11β-HSD1 in keratinocytes suppresses hapten-induced irritant dermatitis through suppression of expression of cytokines, such as IL-1α and IL-1β, in keratinocytes. PMID:27070821

  15. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy; Estudos da expressao genica mediante utilizacao de queratinocitos humanos normais transduzidos com o gene do hormonio de crscimento humano. Possivel utilizacao em terapia genica

    Energy Technology Data Exchange (ETDEWEB)

    Mathor, Monica Beatriz

    1994-12-31

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10{sup 6} cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10{sup 6} cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 {mu}M Zn{sup +2} for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs.

  16. Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines.

    Science.gov (United States)

    Mirzaei, Mohammad Reza; Najafi, Ali; Arababadi, Mohammad Kazemi; Asadi, Malek Hosein; Mowla, Seyed Javad

    2014-10-01

    OCT4B1 is a newly discovered spliced variant of OCT4 which is primarily expressed in pluripotent and tumor cells. Based on our previous studies, OCT4B1 is significantly overexpressed in tumors, where it endows an anti-apoptotic property to tumor cells. However, the mechanism by which OCT4B1 regulates the apoptotic pathway is not yet elucidated. Here, we investigated the effects of OCT4B1 suppression on the expression alteration of 84 genes involved in apoptotic pathway. The AGS (gastric adenocarcinoma), 5637 (bladder tumor), and U-87MG (brain tumor) cell lines were transfected with OCT4B1 or irrelevant siRNAs. The expression level of apoptotic genes was then quantified using a human apoptosis panel-PCR kit. Our data revealed an almost similar pattern of alteration in the expression profile of apoptotic genes in all three studied cell lines, following OCT4B1 suppression. In general, the expression of more than 54 apoptotic genes (64 % of arrayed genes) showed significant changes. Among these, some up-regulated (CIDEA, CIDEB, TNFRSF1A, TNFRSF21, TNFRSF11B, TNFRSF10B, and CASP7) and down-regulated (BCL2, BCL2L11, TP73, TP53, BAD, TRAF3, TRAF2, BRAF, BNIP3L, BFAR, and BAX) genes had on average more than tenfold gene expression alteration in all three examined cell lines. With some minor exceptions, suppression of OCT4B1 caused upregulation of pro-apoptotic and down-regulation of anti-apoptotic genes in transfected tumor cells. Uncovering OCT4B1 down-stream targets could further elucidate its part in tumorigenesis, and could lead to finding a new approach to combat cancer, based on targeting OCT4B1. PMID:25008565

  17. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    Science.gov (United States)

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. PMID:24503577

  18. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    vasocontractile G-protein coupled receptors (GPCR), such as endothelin ET(B), serotonin 5-HT(1B), and thromboxane A(2) TP receptors, in rat cerebral arteries. Studies show that these vasocontractile GPCR show alterations by lipid-soluble cigarette smoke particles via activation of mitogen-activated protein...... 5-carboxamidotryptamine, and TP receptor agonist U46619 were investigated by a sensitive myograph. The expression of ET(B), 5-HT(1B), and TP receptors was studied at mRNA and protein levels using quantitative real-time PCR and immunohistochemistry, respectively. Organ culture with WSS or DSS (25ng...... kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  19. Fluorescence-Based Codetection with Protein Markers Reveals Distinct Cellular Compartments for Altered MicroRNA Expression in Solid Tumors

    DEFF Research Database (Denmark)

    Sempere, Lorenzo F.; Preis, Meir; Yezefski, Todd;

    2010-01-01

    of altered miRNA expression in solid tumors, we developed a sensitive fluorescence-based in situ hybridization (ISH) method to visualize miRNA accumulation within individual cells in formalin-fixed, paraffin-embedded tissue specimens. This ISH method was implemented to be compatible with routine......Purpose: High-throughput profiling experiments have linked altered expression of microRNAs (miRNA) to different types of cancer. Tumor tissues are a heterogeneous mixture of not only cancer cells, but also supportive and reactive tumor microenvironment elements. To clarify the clinical significance...... clinical immunohistochemical (IHC) assays to enable the detection of miRNAs and protein markers in the same tissue section for colocalization and functional studies. Experimental Design: We used this combined ISH/IHC assay to study a subset of cancer-associated miRNAs, including miRNAs frequently detected...

  20. Developmental Hypothyroidism Alters Brain-Derived Neurotrophic Factor (BDNF) Expression in Adulthood.

    Science.gov (United States)

    Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...

  1. Diaphragm Unloading via Controlled Mechanical Ventilation Alters the Gene Expression Profile

    OpenAIRE

    DeRuisseau, Keith C.; Shanely, R Andrew; Akunuri, Nagabhavani; Hamilton, Marc T.; Van Gammeren, Darin; Zergeroglu, A. Murat; McKenzie, Michael; Powers, Scott K.

    2005-01-01

    Rationale: Prolonged controlled mechanical ventilation results in diaphragmatic inactivity and promotes oxidative injury, atrophy, and contractile dysfunction in this important inspiratory muscle. However, the impact of controlled mechanical ventilation on global mRNA alterations in the diaphragm remains unknown.

  2. Altered Hypothalamic Protein Expression in a Rat Model of Huntington's Disease

    OpenAIRE

    Cong, Wei-na; Cai, Huan; Wang, Rui; Daimon, Caitlin M.; Maudsley, Stuart; Raber, Kerstin; Canneva, Fabio; Hörsten, Stephan von; Martin, Bronwen

    2012-01-01

    Huntington's disease (HD) is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg) rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic fun...

  3. Yersinia enterocolitica serotype O:3 alters the expression of serologic HLA-B27 epitopes on human monocytes.

    OpenAIRE

    Wuorela, M; Jalkanen, S; Kirveskari, J; Laitio, P; Granfors, K

    1997-01-01

    The expression of serologic HLA-B27 epitopes on leukocytes of patients with reactive arthritis or ankylosing spondylitis has been shown to be modified in the course of the disease. The purpose of this work was to study whether phagocytosis of arthritis-triggering microbes in vitro alters the expression of HLA-B27 molecules on human antigen-presenting cells and to characterize the underlying mechanisms. Human monocytes and HLA-B27- or HLA-A2-transfected human U-937 cells were exposed to Yersin...

  4. Feeding Period Restriction Alters the Expression of Peripheral Circadian Rhythm Genes without Changing Body Weight in Mice

    OpenAIRE

    Jang, Hagoon; Lee, Gung; Kong, Jinuk; Choi, Goun; Park, Yoon Jeong; Kim, Jae Bum

    2012-01-01

    Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the ex...

  5. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    OpenAIRE

    Yinglong Su; Xiong Zheng; Yinguang Chen; Mu Li; Kun Liu

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total n...

  6. Altered melanocyte differentiation and retinal pigmented epithelium transdifferentiation induced by Mash1 expression in pigment cell precursors.

    Science.gov (United States)

    Lanning, Jessica L; Wallace, Jaclyn S; Zhang, Deming; Diwakar, Ganesh; Jiao, Zhongxian; Hornyak, Thomas J

    2005-10-01

    Transcription factor genes governing pigment cell development that are associated with spotting mutations in mice include members of several structural transcription factor classes but not members of the basic helix-loop-helix (bHLH) class, important for neurogenesis and myogenesis. To determine the effects of bHLH factor expression on pigment cell development, the neurogenic bHLH factor Mash1 was expressed early in pigment cell development in transgenic mice from the dopachrome tautomerase (Dct) promoter. Dct:Mash1 transgenic founders exhibit variable microphthalmia and patchy coat color hypopigmentation. Transgenic F1 mice exhibit microphthalmia with complete coat color dilution. Marker analysis demonstrates that Mash1 expression in the retinal pigmented epithelium (RPE) initiates neurogenesis in this cell layer, whereas expression in remaining neural crest-derived melanocytes alters their differentiation, in part by profoundly downregulating expression of the p (pink-eyed dilution) gene, while maintaining their cell fate. The effects of transcriptional perturbation of pigment cell precursors by Mash1 further highlight differences between pigment cells of distinct developmental origins, and suggest a mechanism for the alteration of melanogenesis to result in marked coat color dilution. PMID:16185282

  7. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  8. Karyotypic analysis of gene transformed human keratinocyte line

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ INTRODUCTION In order to solve the difficult problem of long term in vitro culture of human keratinocytes, the technique of gene transfer was utilized to transform human keratinocytes with simian virus 40 (SV40).

  9. Expression of the tumor suppressor gene PTEN is not altered in the progression of ovarian carcinomas and does not correlate with p27Kip1 expression.

    Science.gov (United States)

    Schöndorf, Thomas; Hoopmann, Markus; Eversheim, Barbara; Valter, Markus M; Becker, Martina; Wappenschmidt, Barbara; Göhring, Uwe-Jochen; Kübler, Tanja; Schmutzler, Rita K; Schäfer, Robert

    2003-01-01

    This study was designed to investigate the role of PTEN in the progression of ovarian cancer. We performed mutation analysis and determined PTEN gene expression in tissue from both primary and relapsed cancers and in the corresponding occult metastases. Furthermore, p27Kip1 staining was conducted in order to explore a putative functional link. The study group comprised 112 tumor tissue specimens from 37 ovarian cancer patients. Expression of both PTEN and p27Kip1 was determined by immunohistochemistry. The PTEN mutational spectrum was determined by PCR-based sequence analysis. Fifty-six per cent of the tumors were positive for PTEN expression and 75% were p27Kip1 positive. For both markers, tumor cells ranged from 0 to 90% positivity. In 55% (20/37) of the cases, PTEN expression in the primary tumor was consistent and in the corresponding advanced cancer tissues, whereas the remainder showed considerable variation. p27Kip1 was consistently expressed in 16 out of 37 cases (43%). No mutations were observed in the coding region of the PTEN gene. No correlation was observed between PTEN and p27Kip1 expression. Our data indicate that expression of PTEN, but not p27Kip1 (one of the major mediators of PTEN function) is unchanged during the progression of ovarian cancer. This study suggests that in ovarian cancer PTEN does not play a major role in disease progression and is not involved in the alteration of p27Kip1 expression. PMID:14534684

  10. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles

    International Nuclear Information System (INIS)

    Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer.

  11. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles.

    Science.gov (United States)

    Kumar, V Bharath; Yuan, Ta-Chun; Liou, Je-Wen; Yang, Chih-Jen; Sung, Ping-Jyun; Weng, Ching-Feng

    2011-02-10

    Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer. PMID:21185843

  12. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V. Bharath; Yuan, Ta-Chun [Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan (China); Liou, Je-Wen [Department of Biochemistry, School of Medicine, Tzu-Chi University, Hualien, Taiwan (China); Yang, Chih-Jen [Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan (China); Sung, Ping-Jyun [Graduate Institute of Marine Biotechnology, Department of Life Science, National Dong Hwa University, Pingtung, Taiwan (China); Weng, Ching-Feng, E-mail: cfweng@mail.ndhu.edu.tw [Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan (China)

    2011-02-10

    Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer.

  13. The cytotoxic effect of neonatal lupus erythematosus and maternal sera on keratinocyte cultures is complement-dependent and can be augmented by ultraviolet irradiation

    International Nuclear Information System (INIS)

    To elucidate the role of autoantibodies and ultraviolet (UV) exposure in the pathogenesis of the skin lesions in neonatal lupus erythematosus (NLE), keratinocytes were cultured, as the target cells, from a patient with NLE and from a normal neonate. We demonstrated that the expression of nuclear/cytoplasma Ro/SSA and La/SSB molecules on to the surface of NLE keratinocytes occurred to a much greater extent than that on normal keratinocytes. A dose of 200 mJ/cm2 UVB irradiation on NLE keratinocytes induced a 2.5-3-fold increase in Ro/SSA and La/SSB expression compared to non-irradiated cells. Sera derived from both the NLE patient and from his mother exhibited a cytotoxic effect on NLE keratinocytes, but not on control cells, in the presence of complement. Furthermore, the cytotoxicity of the sera was enhanced in UVB-irradiated NLE keratinocytes, whereas it had no cytotoxic effects on UVB-irradiated control cells. This suggests that the abnormal expression of both Ro/SSA and La/SSB on the surface membrane of NLE keratinocytes induces the autoantibodies and complements to injure the cells. This complement-mediated cytotoxic effect can be augmented by UV irradiation, a concept not incompatible with the exacerbation of the skin eruption in sun-exposed skin sites. (author)

  14. Autocrine and Paracrine Regulation of Keratinocyte Proliferation through a Novel Nrf2-IL-36γ Pathway.

    Science.gov (United States)

    Kurinna, Svitlana; Muzumdar, Sukalp; Köhler, Ulrike Anne; Kockmann, Tobias; Auf dem Keller, Ulrich; Schäfer, Matthias; Werner, Sabine

    2016-06-01

    The Nrf2 transcription factor is well known for its cytoprotective functions through regulation of genes involved in the detoxification of reactive oxygen species or toxic compounds. Therefore, activation of Nrf2 is a promising strategy for the protection of tissues from various types of insults and for cancer prevention. However, recent studies revealed a proinflammatory activity of activated Nrf2 and a stimulating effect on epithelial cell proliferation, but the underlying mechanisms of action and the responsible target genes are largely unknown. Using a combination of gene expression profiling, chromatin immunoprecipitation, and targeted proteomics via selected reaction monitoring, we show that the gene encoding the proinflammatory cytokine IL-36γ is a novel direct target of Nrf2 in keratinocytes and hepatocytes in vitro and in vivo. As a consequence, upregulation of IL-36γ expression occurred upon genetic or pharmacological activation of Nrf2 in the epidermis and in the normal and regenerating liver. Functional in vitro studies demonstrate that IL-36γ directly stimulates proliferation of keratinocytes. In particular, it induces expression of keratinocyte mitogens in fibroblasts, suggesting that the Nrf2-IL-36γ axis promotes keratinocyte proliferation through a double paracrine loop. These results provide mechanistic insight into Nrf2 action in the control of inflammation and cell proliferation through regulation of a proinflammatory cytokine with a key function in various inflammatory diseases. PMID:27183581

  15. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma

    DEFF Research Database (Denmark)

    Pedersen, Tanja Xenia; Leethanakul, Chidchanop; Patel, Vyomesh;

    2003-01-01

    we present the first analysis of global changes in keratinocyte gene expression during skin wound healing in vivo, and compare these changes to changes in gene expression during malignant conversion of keratinized epithelium. Laser capture microdissection was used to isolate RNA from wound...... reepithelialization. Furthermore, the analyses revealed that the phenotypic resemblance of wound keratinocytes to squamous cell carcinoma is mimicked at the level of gene expression, but notable differences between the two tissue-remodeling processes were also observed. The combination of laser capture...

  16. Selenoproteins are essential for proper keratinocyte function and skin development.

    Directory of Open Access Journals (Sweden)

    Aniruddha Sengupta

    Full Text Available Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec. Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14 expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development.

  17. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells

    Science.gov (United States)

    Irnaten, Mustapha; Clark, Abbot F.; O’Brien, Colm J.; Wallace, Deborah M.

    2016-01-01

    Purpose Fibrosis and a hypoxic environment are associated with the trabecular meshwork (TM) region in the blinding disease glaucoma. Hypoxia has been shown to alter DNA methylation, an epigenetic mechanism involved in regulating gene expression such as the pro-fibrotic transforming growth factor (TGF) β1 and the anti-fibrotic Ras protein activator like 1 (RASAL1). The purpose of this study was to compare DNA methylation levels, and the expression of TGFβ1 and RASAL1 in primary human normal (NTM) with glaucomatous (GTM) cells and in NTM cells under hypoxic conditions. Methods Global DNA methylation was assessed by ELISA in cultured age-matched NTM and GTM cells. qPCR was conducted for TGFβ1, collagen 1α1 (COL1A1), and RASAL1 expression. Western immunoblotting was used to determine protein expression. For hypoxia experiments, NTM cells were cultured in a 1%O2, 5%CO2 and 37°C environment. NTM and GTM cells were treated with TGFβ1 (10ng/ml) and the methylation inhibitor 5-azacytidine (5-aza) (0.5μM) respectively to determine their effects on DNA Methyltransferase 1 (DNMT1) and RASAL1 expression. Results We found increased DNA methylation, increased TGFβ1 expression and decreased RASAL1 expression in GTM cells compared to NTM cells. Similar results were obtained in NTM cells under hypoxic conditions. TGFβ1 treatment increased DNMT1 and COL1A1, and decreased RASAL1 expression in NTM cells. 5-aza treatment decreased DNMT1, TGFβ1 and COL1A1 expression, and increased RASAL1 expression in GTM cells. Conclusions TGFβ1 and RASAL1 expression, global DNA methylation, and expression of associated methylation enzymes were altered between NTM and GTM cells. We found that hypoxia in NTM cells induced similar results to the GTM cells. Furthermore, DNA methylation, TGFβ1 and RASAL1 appear to have an interacting relationship that may play a role in driving pro-fibrotic disease progression in the glaucomatous TM. PMID:27124111

  18. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  19. Context-induced reinstatement of methamphetamine seeking is associated with unique molecular alterations in Fos-expressing dorsolateral striatum neurons.

    Science.gov (United States)

    Rubio, F Javier; Liu, Qing-Rong; Li, Xuan; Cruz, Fabio C; Leão, Rodrigo M; Warren, Brandon L; Kambhampati, Sarita; Babin, Klil R; McPherson, Kylie B; Cimbro, Raffaello; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T

    2015-04-01

    Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, we found that context-induced reinstatement of methamphetamine seeking increased expression of the neural activity marker Fos in dorsal but not ventral striatum. Reversible inactivation of neural activity in dorsolateral but not dorsomedial striatum using the GABA agonists muscimol and baclofen decreased context-induced reinstatement. Based on our previous findings that Fos-expressing neurons play a critical role in conditioned drug effects, we assessed whether context-induced reinstatement was associated with molecular alterations selectively induced within context-activated Fos-expressing neurons. We used fluorescence-activated cell sorting to isolate reinstatement-activated Fos-positive neurons from Fos-negative neurons in dorsal striatum and used quantitative PCR to assess gene expression within these two populations of neurons. Context-induced reinstatement was associated with increased expression of the immediate early genes Fos and FosB and the NMDA receptor subunit gene Grin2a in only Fos-positive neurons. RNAscope in situ hybridization confirmed that Grin2a, as well as Grin2b, expression were increased in only Fos-positive neurons from dorsolateral, but not dorsomedial, striatum. Our results demonstrate an important role of dorsolateral striatum in context-induced reinstatement of methamphetamine seeking and that this reinstatement is associated with unique gene alterations in Fos-expressing neurons. PMID:25855177

  20. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA.

    Science.gov (United States)

    O'Brown, Natasha M; Summers, Brian R; Jones, Felicity C; Brady, Shannon D; Kingsley, David M

    2015-01-01

    Armor plate changes in sticklebacks are a classic example of repeated adaptive evolution. Previous studies identified ectodysplasin (EDA) gene as the major locus controlling recurrent plate loss in freshwater fish, though the causative DNA alterations were not known. Here we show that freshwater EDA alleles have cis-acting regulatory changes that reduce expression in developing plates and spines. An identical T → G base pair change is found in EDA enhancers of divergent low-plated fish. Recreation of the T → G change in a marine enhancer strongly reduces expression in posterior armor plates. Bead implantation and cell culture experiments show that Wnt signaling strongly activates the marine EDA enhancer, and the freshwater T → G change reduces Wnt responsiveness. Thus parallel evolution of low-plated sticklebacks has occurred through a shared DNA regulatory change, which reduces the sensitivity of an EDA enhancer to Wnt signaling, and alters expression in developing armor plates while preserving expression in other tissues. PMID:25629660

  1. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK).

    Science.gov (United States)

    Kleszczyński, Konrad; Zillikens, Detlef; Fischer, Tobias W

    2016-09-01

    Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress. PMID:27117941

  2. Inhibiting AP-1 activity alters cocaine induced gene expression and potentiates sensitization

    OpenAIRE

    Paletzki, Ronald F.; Myakishev, Max V.; Polesskaya, Oksana; Orosz, Andras; Hyman, Steven E.; Vinson, Charles

    2008-01-01

    We have expressed A-FOS, an inhibitor of AP-1 DNA binding, in adult mouse striatal neurons. We observe normal behavior including locomotion and exploratory activities. Following a single injection of cocaine, locomotion increased similarly in both the A-FOS expressing and littermate controls. However, following repeated injections of cocaine, the A-FOS expressing mice showed increased locomotion relative to littermate controls, an increase that persisted following a week of withdrawal and sub...

  3. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    Directory of Open Access Journals (Sweden)

    Bauman William A

    2010-10-01

    Full Text Available Abstract Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days or 29 days later (35 days attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on

  4. Alterations of organ histopathology and metallolhionein mRNA expression in silver barb, Puntius gonionotus during subchronic cadmium exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Common silver barb, Puntius gonionotus exposed to the nominal concentration of 0.06 mg/L Cd for 60 d, were assessed for histopathological alterations (gills, liver and kidney), metal accumulation, and metallothionein (MT) mRNA expression. Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae, vacuolization in hepatocytes, and prominent tubular and glomerular damage in the kidney. In addition, kidney accumulated the highest content of cadmium, more than gills and liver. Expression of MT mRNA was increased in both liver and kidney of treated fish. Hepatic MT levels remained high after fish were removed to Cd-free water. In contrast, MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water. The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.

  5. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell

    International Nuclear Information System (INIS)

    Highlights: ► Nitrite increased photo-toxicity of nano-TiO2 on human keratinocyte cells in a dose-dependant manner. ► Morphological study suggested the cell death may be mediated by apoptosis inducing factor. ► Protein nitration was generated in the cells, and the most abundant nitrated protein was identified as cystatin-A. ► Tyr35 was the most likely site to be nitrated in cystatin-A. -- Abstract: Our previous work found that in the presence of nitrite, titanium dioxide nanoparticles can cause protein tyrosine nitration under UVA irradiation in vivo. In this paper, the human keratinocyte cells was used as a skin cell model to further study the photo-toxicity of titanium dioxide nanoparticles when nitrite was present. The results showed that nitrite increased the photo-toxicity of titanium dioxide in a dose-dependant manner, and generated protein tyrosine nitration in keratinocyte cells. Morphological study of keratinocyte cells suggested a specific apoptosis mediated by apoptosis inducing factor. It was also found the main target nitrated in cells was cystatin-A, which expressed abundantly in cytoplasm and functioned as a cysteine protease inhibitor. The stress induced by titanium dioxide with nitrite under UVA irradiation in human keratinocyte cells appeared to trigger the apoptosis inducing factor mediated cell death and lose the inhibition of active caspase by cystatin-A. We conclude that nitrite can bring new damage and stress to human keratinocyte cells with titanium dioxide nanoparticles under UVA irradiation.

  6. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    International Nuclear Information System (INIS)

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m3 of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) were measured by 32P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  7. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna [Department of Health Sciences, University of Genoa, Genoa (Italy); Steele, Vernon E. [National Cancer Institute (NCI), Rockville, MD (United States); De Flora, Silvio, E-mail: sdf@unige.it [Department of Health Sciences, University of Genoa, Genoa (Italy)

    2011-12-01

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m{sup 3} of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodGuo) were measured by {sup 32}P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  8. Altered expression of CG5961, a putative Drosophila melanogaster homologue of FBXO9, provides a new model of Parkinson disease.

    Science.gov (United States)

    Merzetti, E M; Staveley, B E

    2016-01-01

    F-box proteins act as the protein recognition component of the Skp-Cul-F-box class of ubiquitin ligases. Two members of a gene sub-family encoding these proteins, FBXO7 and FBXO32, have been implicated in the onset and progression of degenerative disease. FBXO7 is responsible for rare genetic forms of Parkinson disease, while FBXO32 has been implicated in muscle wasting. The third gene in this family, FBXO9, is related to growth signaling, but the role of this gene in degenerative disease pathways has not been thoroughly investigated. Characterizing the putative Drosophila melanogaster homologue of this gene, CG5961, enables modeling and analysis of the consequence of targeted alteration of gene function and the effects on the overall health of the organism. Comparison of the protein domains of Homo sapiens FBXO9 and the putative D. melanogaster homologue CG5961 revealed a high degree of conservation between the protein domains. Directed expression of CG5961 (via CG5961(EP)) and inhibition of CG5961 (through a stable RNAi transgene) in the developing D. melanogaster eye caused abnormalities in adult structures (ommatidia and inter-ommatidial bristles). Directed expression of either CG5961 or CG5961-RNAi in the dopaminergic neurons led to a reduced lifespan compared to that in lacZ controls. We showed that protein structures of CG5961 and FBXO9 are highly similar and studied the effects of altered expression of CG5961 in neuron-rich tissues. Our results suggest that CG5961 activity is necessary for the proper formation of neuronal tissue and that targeted alteration of gene expression in dopaminergic neurons leads to a reduced lifespan. PMID:27173356

  9. Alteration of somatostatin receptor subtype 2 gene expression in pancreatic tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Ren-Yi Qin; Ru-Liang Fang; Manoj Kumar Gupta; Zheng-Ren Liu; Da-Yu Wang; Qing Chang; Yi-Bei Chen

    2004-01-01

    AIM: To explore the difference of somatostatin receptorsubtype 2 (SST2R) gene expression in pancreatic canceroustissue and its adjacent tissue, and the relationship betweenthe change of SST2R gene expression and pancreatic tumorangiogenesis related genes.METHODS: The expressions of SST2R, DPC4, p53 and ras genes in cancer tissues of 40 patients with primary pancreatic cancer, and the expression of SST2R gene in its adjacent tissue were determined by immunohistochemiscal LSAB method and EnVisionTM method. Chi-square test was used to analyze the difference in expression of SST2R in pancreatic cancer tissue and its adjacent tissue, and the correlation of SST2R gene expression with the expression of p53, ras and DPC4 genes.RESULTS: Of the tissue specimens from 40 patients with primary pancreatic cancer, 35 (87.5%) cancer tissues showed a negative expression of SST2R gene, whereas 34 (85%) a positive expression of SST2R gene in its adjacent tissues.Five (12.5%) cancer tissues and its adjacent tissues simultaneously expressed SST2R. The expression of SST2R gene was markedly higher in pancreatic tissues adjacent to cancer than in pancreatic cancer tissues (P<0.05). The expression rates of p53, ras and DPC4 genes were 50%,60% and 72.5%, respectively. There was a significant negative correlation of SST2R with p53 and ras genes (X12=9.33,X22=15.43, P<0.01), but no significant correlation with DPC4 gene (X2=2.08, P >0.05).CONCLUSION: There was a significant difference of SST2R gene expression in pancreatic cancer tissues and its adjacent tissues, which might be one cause for the different therapeutic effects of somatostatin and its analogs on pancreatic cancer patients. There were abnormal expressions of SST2R, DPC4, p53 and ras genes in pancreatic carcinogenesis, and moreover, the loss or decrease of SST2R gene expression was significantly negatively correlated with the overexpression of tumor angiogenesis correlated p53 and ras genes, suggesting that SST2R gene

  10. Alteration of gene expression profiles during mycoplasma-induced malignant cell transformation

    International Nuclear Information System (INIS)

    Mycoplasmas are the smallest microorganisms capable of self-replication. Our previous studies show that some mycoplasmas are able to induce malignant transformation of host mammalian cells. This malignant transformation is a multistage process with the early infection, reversible and irreversible stages, and similar to human tumor development in nature. The purpose of this study is to explore mechanisms for this malignant transformation. To better understand mechanisms for this unique process, we examined gene expression profiles of C3H cells at different stages of the mycoplasma-induced transformation using cDNA microarray technology. A total of 1185 genes involved in oncogenesis, apoptosis, cell growth, cell-cycle regulation, DNA repair, etc. were examined. Differences in the expression of these genes were compared and analyzed using the computer software AtlasImage. Among 1185 genes screened, 135 had aberrant expression at the early infection stage, 252 at the reversible stage and 184 at the irreversible stage. At the early infection stage, genes with increased expression (92 genes) were twice more than those with decreased expression (42 genes). The global gene expression at the reversible stage appeared to be more volatile than that at any other stages but still resembled the profile at the early infection stage. The expression profile at the irreversible stage shows a unique pattern of a wide range of expression levels and an increased number of expressing genes, especially the cancer-related genes. Oncogenes and tumor suppressors are a group of molecules that showed significant changes in expression during the transformation. The majority of these changes occurred in the reversible and irreversible stages. A prolonged infection by mycoplasmas lead to the expression of more cancer related genes at the irreversible stage. The results indicate that the expression profiles correspond with the phenotypic features of the cells in the mycoplasma induced

  11. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development

    Directory of Open Access Journals (Sweden)

    Guy eGolan

    2013-08-01

    Full Text Available Phloem sap contains a large repertoire of macromolecules in addition to sugars, amino acids, growth substances and ions. The transcription profile of melon phloem sap contains over 1,000 mRNA molecules, most of them associated with signal transduction, transcriptional control, and stress and defense responses. Heterografting experiments have established the long-distance trafficking of numerous mRNA molecules. Interestingly, several trafficking transcripts are involved in the auxin response, including two molecules coding for auxin/indole acetic acid (Aux/IAA. To further explore the biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette containing the coding sequence of this gene under a phloem-specific promoter was introduced into tomato plants. The number of lateral roots was significantly higher in transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A similar effect on root development was obtained after transient expression of CmF-308 in source leaves of N. benthamiana plants. An auxin-response assay showed that CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to the altered root development, phloem-specific expression of CmF-308 resulted in shorter plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling reduced apical dominance. In contrast to the root response, cotyledons of the transgenic plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes in leaves and an increase in the relative expression of a cytokinin-response regulator, TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.

  12. Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes.

    Science.gov (United States)

    Davies, B; Di Rosa, A; Eneva, T; Saedler, H; Sommer, H

    1996-10-01

    Floral organ identity is largely controlled by the spatially restricted expression of several MADS-box genes. In Antirrhinum majus these organ identity genes include DEF, GLO and PLE. Single and double mutant analyses indicated that the type of organ found in a particular whorl is dependent on which combination of these genes is expressed there. This paper reports the ectopic expression of Antirrhinum organ identity genes, alone and in combinations, in transgenic tobacco. Although the phenotypes are broadly in agreement with the genetic predictions, several unexpected features are observed which provide information concerning the action of the organ identity genes. The presumed tobacco homologue of DEF, NTDEF, has been isolated and used to investigate the influence of ectopic expression of the Antirrhinum organ identity genes on the endogenous tobacco genes. Analysis of the spatial and temporal expression patterns of NTDEF and NTGLO reveals that the boundaries are not coincident and that differences exist in the regulatory mechanisms of the two genes concerning both induction and maintenance of gene expression. Evidence is provided which indicates that organ development is sensitive to the relative levels of organ identity gene expression. Expression of the organ identity genes outside the flower or inflorescence produced no effects, suggesting that additional factors are required to mediate their activity. These results demonstrate that heterologous genes can be used to predictably influence floral organ identity but also reveal the existence of unsuspected control mechanisms. PMID:8893543

  13. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer

    International Nuclear Information System (INIS)

    The expression of a specific set of genes controls the different structures of heparan sulfate proteoglycans (HSPGs), which are involved in the growth, invasion and metastatic properties of cancerous cells. The purpose of this study is to increase knowledge of HSPG alterations in breast cancer. Twenty-three infiltrating ductal adenocarcinomas (IDCs), both metastatic and non-metastatic were studied. A transcriptomic approach to the structure of heparan sulfate (HS) chains was used, employing qPCR to analyze both the expression of the enzymes involved in their biosynthesis and editing, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate chains, we extended the study to include the genes involved in the biosynthesis of these glycosaminoglycans. Histochemical techniques were also used to analyze tissular expression of particular genes showing significant expression differences, of potential interest. No significant change in transcription was detected in approximately 70% of analyzed genes. However, 13 demonstrated changes in both tumor types (40% showing more intense deregulation in the metastatic), while 5 genes showed changes only in non-metastatic tumors. Changes were related to 3 core proteins: overexpression of syndecan-1 and underexpression of glypican-3 and perlecan. HS synthesis was affected by lower levels of some 3-O-sulfotransferase transcripts, the expression of NDST4 and, only in non metastatic tumors, higher levels of extracellular sulfatases. Furthermore, the expression of chondroitin sulfate also was considerably affected, involving both the synthesis of the saccharidic chains and sulfations at all locations. However, the pro-metastatic enzyme heparanase did not exhibit significant changes in mRNA expression, although in metastatic tumors it appeared related to increased levels of the most stable form of mRNA. Finally, the expression of heparanase 2, which displays anti-metastatic features

  14. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2016-05-01

    Full Text Available Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT. It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT, inguinal subcutaneous WAT (sWAT and epididymal WAT (eWAT were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA and white adipocyte (WA treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.

  15. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice.

    Science.gov (United States)

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  16. Altered CD45 isoform expression affects lymphocyte function in CD45 Tg mice.

    Science.gov (United States)

    Tchilian, Elma Z; Dawes, Ritu; Hyland, Lisa; Montoya, Maria; Le Bon, Agnes; Borrow, Persephone; Hou, Sam; Tough, David; Beverley, Peter C L

    2004-09-01

    Transgenic mice have been constructed expressing high (CD45RABC) and low (CD45R0) molecular weight CD45 isoforms on a CD45-/- background. Phenotypic analysis and in vivo challenge of these mice with influenza and lymphocytic choriomeningitis viruses shows that T cell differentiation and peripheral T cell function are related to the level of CD45 expression but not to which CD45 isoform is expressed. In contrast, B cell differentiation is not restored, irrespective of the level of expression of a single isoform. All CD45 trangenic mice have T cells with an activated phenotype and increased T cell turnover. These effects are more prominent in CD8 than CD4 cells. The transgenic mice share several properties with humans expressing variant CD45 alleles and provide a model to understand immune function in variant individuals. PMID:15302847

  17. Activated protein C: A regulator of human skin epidermal keratinocyte function

    Institute of Scientific and Technical Information of China (English)

    Kelly; McKelvey; Christopher; John; Jackson; Meilang; Xue

    2014-01-01

    Activated protein C(APC) is a physiological anticoagulant, derived from its precursor protein C(PC). Independent of its anticoagulation, APC possesses strong anti-inflammatory, anti-apoptotic and barrier protective properties which appear to be protective in a number of disorders including chronic wound healing. The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. PC/APC and its receptor, endothelial protein C receptor(EPCR), once thought to be restricted to the endothelium, are abundantly expressed by skin epidermal keratinocytes. These cells respond to APC by upregulating proliferation, migration and matrix metalloproteinase-2 activity and inhibiting apoptosis/inflammation leading to a wound healing phenotype. APC also increases barrier function of keratinocyte monolayers by promoting the expression of tight junction proteins and re-distributing them to cell-cell contacts. These cytoprotective properties of APC are mediated through EPCR, protease-activated receptors, epidermal growth factor receptor or Tie2. Future preventive and therapeutic uses of APC in skin disorders associated with disruption of barrier function and inflammation look promising. This review will focus on APC’s function in skin epidermis/keratinocytes and its therapeutical potential in skin inflammatory conditions.

  18. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  19. Altered neuronatin expression in the rat dorsal root ganglion after sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    Wu Chih-Hsien

    2010-05-01

    Full Text Available Abstract Background Several molecular changes occur following axotomy, such as gene up-regulation and down-regulation. In our previous study using Affymetrix arrays, it was found that after the axotomy of sciatic nerve, there were many novel genes with significant expression changes. Among them, neuronatin (Nnat was the one which expression was significantly up-regulated. Nnat was identified as a gene selectively expressed in neonatal brains and markedly reduced in adult brains. The present study investigated whether the expression of Nnat correlates with symptoms of neuropathic pain in adult rats with transected sciatic nerve. Methods Western blotting, immunohistochemistry, and the Randall and Selitto test were used to study the protein content, and subcellular localization of Nnat in correlation with pain-related animal behavior. Results It was found that after nerve injury, the expression of Nnat was increased in total protein extracts. Unmyelinated C-fiber and thinly myelinated A-δ fiber in adult dorsal root ganglions (DRGs were the principal sub-population of primary afferent neurons with distributed Nnat. The increased expression of Nnat and its subcellular localization were related to mechanical hyperalgesia. Conclusions The results indicated that there was significant correlation between mechanical hyperalgesia in axotomy of sciatic nerve and the increased expression of Nnat in C-fiber and A-δ fiber of adult DRG neurons.

  20. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    Directory of Open Access Journals (Sweden)

    Qiong eWang

    2015-09-01

    Full Text Available Early postnatal maternal separation (MS can play an important role in the development of psychopathologies during ontogeny. In the present study, we investigated the effects of repeated MS (4 h per day from postnatal day [PND] 1–21 on the brain-derived neurotrophic factor (BDNF expression in the medial prefrontal cortex (mPFC, the nucleus accumbens (NAc and the hippocampus of male and female juvenile (PND 21, adolescent (PND 35 and young adult (PND 56 Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and socially reared rats. However, in the mPFC, the BDNF expression was increased with age in the socially reared rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male NMS rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The

  1. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.

  2. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    International Nuclear Information System (INIS)

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis

  3. Adenovirus-induced alterations in host cell gene expression prior to the onset of viral gene expression.

    Science.gov (United States)

    Granberg, Fredrik; Svensson, Catharina; Pettersson, Ulf; Zhao, Hongxing

    2006-09-15

    In this report, we have studied gene expression profiles in human primary lung fibroblasts (IMR-90) during the very early phase of an adenovirus infection. Eight out of twelve genes with known functions encoded transcription factors linked to two major cellular processes; inhibition of cell growth (ATF3, ATF4, KLF4, KLF6 and ELK3) and immune response (NR4A1 and CEBPB), indicating that the earliest consequences of an adenovirus infection are growth arrest and induction of an immune response. A time course analysis showed that the induction of these immediate-early response genes was transient and suppressed after the onset of the adenovirus early gene expression. PMID:16860366

  4. Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats.

    Science.gov (United States)

    Lakehayli, S; Said, N; El Khachibi, M; El Ouahli, M; Nadifi, S; Hakkou, F; Tazi, A

    2016-08-25

    Early-life events have long-term effects on brain structures and cause behavioral alterations that persist into adulthood. The present experiments were designed to investigate the effects of prenatal stress on diazepam-induced withdrawal syndrome and serotonin-1A (5HT1A) receptor expression in the raphe nuclei of adult offspring. The results of the present study reveal that maternal exposure to chronic footshock stress increased the anxiety-like behavior in the prenatally stressed (PS) animals withdrawn from chronic diazepam (2.5mg/kg/day i.p for 1week). Moreover, prenatal stress induced a down-regulation of 5HT1A mRNA in the raphe nuclei of adult offspring. To our knowledge, this study is the first to demonstrate that maternal exposure to chronic footshock stress enhances diazepam withdrawal symptoms and alters 5HT1A receptor gene expression in the raphe nuclei of adult offspring. Thus, more studies are needed to clarify the mechanisms underlying the decrease of 5HT1A receptors expression in the raphe nuclei of PS rats. PMID:27235743

  5. Homologs to Cry toxin receptor genes in a de novo transcriptome and their altered expression in resistant Spodoptera litura larvae.

    Science.gov (United States)

    Gong, Liang; Wang, Huidong; Qi, Jiangwei; Han, Lanzhi; Hu, Meiying; Jurat-Fuentes, Juan Luis

    2015-07-01

    Insect resistance threatens sustainability of insecticides based on Cry proteins from the bacterium Bacillus thuringiensis (Bt). Since high levels of resistance to Cry proteins involve alterations in Cry-binding midgut receptors, their identification is needed to develop resistance management strategies. Through Illumina sequencing we generated a transcriptome containing 16,161 annotated unigenes for the Oriental leafworm (Spodoptera litura). Transcriptome mining identified 6 contigs with identity to reported lepidopteran Cry toxin receptors. Using PCR we confirmed their expression during the larval stage and compared their quantitative expression in larvae from susceptible and a field-derived Cry1Ca resistant strain of S. litura. Among reduced transcript levels detected for most tested contigs in the Cry1Ca-resistant S. litura larvae, the most dramatic reduction (up to 99%) was detected for alkaline phosphatase contigs. This study significantly expands S. litura transcriptomic resources and provides preliminary identification of putative receptor genes with altered expression in S. litura resistant to Cry1Ca toxin. PMID:25981133

  6. HSP27 and 70 expression in thymic epithelial tumors and benign thymic alterations: diagnostic, prognostic and physiologic implications.

    Science.gov (United States)

    Janik, S; Schiefer, A I; Bekos, C; Hacker, P; Haider, T; Moser, J; Klepetko, W; Müllauer, L; Ankersmit, H J; Moser, B

    2016-01-01

    Thymic Epithelial Tumors (TETs), the most common tumors in the anterior mediastinum in adults, show a unique association with autoimmune Myasthenia Gravis (MG) and represent a multidisciplinary diagnostic and therapeutic challenge. Neither risk factors nor established biomarkers for TETs exist. Predictive and diagnostic markers are urgently needed. Heat shock proteins (HSPs) are upregulated in several malignancies promoting tumor cell survival and metastases. We performed immunohistochemical staining of HSP27 and 70 in patients with TETs (n = 101) and patients with benign thymic alterations (n = 24). Further, serum HSP27 and 70 concentrations were determined in patients with TETs (n = 46), patients with benign thymic alterations (n = 33) and volunteers (n = 49) by using ELISA. HSPs were differentially expressed in histologic types and pathological tumor stages of TETs. Weak HSP tumor expression correlated with worse freedom from recurrence. Serum HSP concentrations were elevated in TETs and MG, correlated with clinical tumor stage and histologic subtype and decreased significantly after complete tumor resection. To conclude, we found HSP expression in the vast majority of TETs, in physiologic thymus and staining intensities in patients with TETs have been associated with prognosis. However, although interesting and promising the role of HSPs in TETs as diagnostic and prognostic or even therapeutic markers need to be further evaluated. PMID:27097982

  7. Motor Deficits and Altered Striatal Gene Expression in aphakia(ak) Mice

    OpenAIRE

    Singh, Bhupinder; Wilson, Jean H.; Vasavada, Hema H; Guo, Zhenchao; Allore, Heather G.; Zeiss, Caroline J.

    2007-01-01

    Like humans with Parkinsons disease (PD), the ak mouse lacks the majority of the substantia nigra pars compacta (SNc) and experiences striatal denervation. The purpose of this study was to test whether motor abnormalities in the ak mouse progress over time, and whether motor function could be associated with temporal alterations in the striatal transcriptome. Ak and wt mice (28 to 180 days old) were tested using paradigms sensitive to nigrostriatal dysfunction. Results were analyzed using a l...

  8. Alteration in body composition in the portacaval anastamosis rat is mediated by increased expression of myostatin

    OpenAIRE

    Dasarathy, Srinivasan; Muc, Sean; Runkana, Ashok; Mullen, Kevin Daniel; Kaminsky-Russ, Kristine; McCullough, Arthur Joseph

    2011-01-01

    The portacaval anastamosis (PCA) rat is a model to examine nutritional consequences of portosystemic shunting in cirrhosis. Alterations in body composition and mechanisms of diminished fat mass following PCA were examined. Body composition of male Sprague-Dawley rats with end-to-side PCA and pair-fed sham-operated (SO) controls were studied 3 wk after surgery by chemical carcass analysis (n=8 each) and total body electrical conductivity (n=6 each). Follistatin, a myostatin antagonist, or vehi...

  9. Cocaine alters BDNF expression and neuronal migration in the embryonic mouse forebin

    OpenAIRE

    McCarthy, Deirdre M.; Sadri-Vakili, Ghazaleh; Zhang, Xuan; Darnell, Shayna B.; Sangrey, Gavin R.; Yanagawa, Yuchio; Bhide, Pradeep G.

    2011-01-01

    Prenatal cocaine exposure impairs brain development and produces lasting alterations in cognitive function. In a prenatal cocaine exposure mouse model, we found that tangential migration of GABA neurons from the basal to the dorsal forebrain and radial neuron migration within the dorsal forebrain were significantly decreased in the embryonic period. The decrease in the tangential migration occurred early in gestation and normalized by late gestation, despite ongoing cocaine exposure. The decr...

  10. Zinc transporter expression profiles in the rat prostate following alterations in dietary zinc

    OpenAIRE

    Song, Yang; Elias, Valerie; Wong, Carmen P.; Scrimgeour, Angus G.; Ho, Emily

    2009-01-01

    Zinc plays important roles in numerous cellular activities and physiological functions. Intracellular zinc levels are strictly maintained by zinc homeostatic mechanisms. Zinc concentrations in the prostate are the highest of all soft tissues and could be important for prostate health. However, the mechanisms by which the prostate maintains high zinc levels are still unclear. In addition, the response of the prostate to alterations in dietary zinc is unknown. The current study explored cellula...

  11. Alterations in expression, proteolysis and intracellular localizations of clusterin in esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hong-Zhi He; Xiao-Hang Zhao; Zhen-Mei Song; Kun Wang; Liang-Hong Teng; Fang Liu; You-Sheng Mao; Ning Lu; Shang-Zhong Zhang; Min Wu

    2004-01-01

    AIM: To investigate biogenesis and intracellular localizations of clusterin to elucidate the potential molecular mechanisms implicated in tumorigenesis of esophageal mucosa.METHODS: Semi-quantitative RT-PCR for multi-region alteration analysis, Western blot for different transcriptional forms and immunohistochemical staining for intracellular localizations of clusterin were carried out in both tissues and cell lines of ESCC.RESULTS: The N-terminal deletions of the clusterin gene and the appearance of a 50-53 ku nuclear clusterin, an uncleaved, nonglycosylated, and disulfide-linked isoform,were the major alterations in cancer cells of esophagus.Naturally the 40 ku clusterin was located in the connective tissue of the lamina propria of epithelial mucosa and right under the basal membrane of epithelia, but it was disappeared in stromal mucosa of esophagus and the pre-matured clusterin was found positive in cancerous epithelia.CONCLUSION: The N-terminal deletion of clusterin may be essential for its alterations of biogenesis in ESCC.

  12. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    Directory of Open Access Journals (Sweden)

    McCullagh Paul

    2010-06-01

    Full Text Available Abstract Background Genome wide association studies (GWAS have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. Methods We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. Results We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10-7, and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39 and malignant tissues (n = 21 was also evident (P = 0.002. We also identified that whilst HNF1B(C and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression, HNF1B(B and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10-7 and 4 × 10-4 respectively, indicating major shifts in isoform usage. Conclusions Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.

  13. Respiratory syncytial virus (RSV infection in elderly mice results in altered antiviral gene expression and enhanced pathology.

    Directory of Open Access Journals (Sweden)

    Terianne M Wong

    Full Text Available Elderly persons are more susceptible to RSV-induced pneumonia than young people, but the molecular mechanism underlying this susceptibility is not well understood. In this study, we used an aged mouse model of RSV-induced pneumonia to examine how aging alters the lung pathology, modulates antiviral gene expressions, and the production of inflammatory cytokines in response to RSV infection. Young (2-3 months and aged (19-21 months mice were intranasally infected with mucogenic or non-mucogenic RSV strains, lung histology was examined, and gene expression was analyzed. Upon infection with mucogenic strains of RSV, leukocyte infiltration in the airways was elevated and prolonged in aged mice compared to young mice. Minitab factorial analysis identified several antiviral genes that are influenced by age, infection, and a combination of both factors. The expression of five antiviral genes, including pro-inflammatory cytokines IL-1β and osteopontin (OPN, was altered by both age and infection, while age was associated with the expression of 15 antiviral genes. Both kinetics and magnitude of antiviral gene expression were diminished as a result of older age. In addition to delays in cytokine signaling and pattern recognition receptor induction, we found TLR7/8 signaling to be impaired in alveolar macrophages in aged mice. In vivo, induction of IL-1β and OPN were delayed but prolonged in aged mice upon RSV infection compared to young. In conclusion, this study demonstrates inherent differences in response to RSV infection in young vs. aged mice, accompanied by delayed antiviral gene induction and cytokine signaling.

  14. Alterations in the expression of atrial calpains in electrical and structural remodeling during aging and atrial fibrillation.

    Science.gov (United States)

    Xu, Guo-Jun; Gan, Tian-Yi; Tang, Bao-Peng; Chen, Zu-Heng; Mahemuti, Ailiman; Jiang, Tao; Song, Jian-Guo; Guo, Xia; Li, Yao-Dong; Zhou, Xian-Hui; Zhang, Yu; Li, Jin-Xin

    2013-11-01

    The aim of this study was to investigate the correlation between the change in the expression of atrial calpains and electrical, molecular and structural remodeling during aging and atrial fibrillation (AF). Adult and aged canines in sinus rhythm (SR) and with persistent AF (induced by rapid atrial pacing) were investigated. A whole-cell patch clamp was used to measure the L-type Ca2+ current (ICa-L) in cells in the left atrium. The mRNA and protein expression of the L-type calcium channel alc subunit (LVDCCa1c) and calpains were measured by quantitative (q)PCR and western blot analysis. Histopathological and ultrastructural changes were analyzed via light and electron microscopy. The quantity of apoptotic myocytes was determined by a terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) assay. In SR groups, atrial cells of the aged canines exhibited a longer action potential (AP) duration to 90% repolarization (APD90), lower AP plateau potential and peak ICa-L current densities (Pcontrol group, the mRNA and protein expression levels of LVDCCa1c were decreased in the aged groups; however, the mRNA and protein expression of calpain 1 was increased in the adult and the aged groups with AF (Patrial tissue exhibited abnormal histopathological and ultrastructural changes, such as accelerated fibrosis and apoptosis with aging and in AF. Age-related alterations in atrial tissues were attributed to the increased expression of calpain 1. The general pathophysiological alterations in normal aged atria may therefore produce a substrate that is conducive to AF. PMID:24043247

  15. Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer

    International Nuclear Information System (INIS)

    Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 × 10-7), and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39) and malignant tissues (n = 21) was also evident (P = 0.002). We also identified that whilst HNF1B(C) and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression), HNF1B(B) and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 × 10-7 and 4 × 10-4 respectively), indicating major shifts in isoform usage. Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms

  16. Multi-modal proteomic analysis of retinal protein expression alterations in a rat model of diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Heather D VanGuilder

    Full Text Available BACKGROUND: As a leading cause of adult blindness, diabetic retinopathy is a prevalent and profound complication of diabetes. We have previously reported duration-dependent changes in retinal vascular permeability, apoptosis, and mRNA expression with diabetes in a rat model system. The aim of this study was to identify retinal proteomic alterations associated with functional dysregulation of the diabetic retina to better understand diabetic retinopathy pathogenesis and that could be used as surrogate endpoints in preclinical drug testing studies. METHODOLOGY/PRINCIPAL FINDINGS: A multi-modal proteomic approach of antibody (Luminex-, electrophoresis (DIGE-, and LC-MS (iTRAQ-based quantitation methods was used to maximize coverage of the retinal proteome. Transcriptomic profiling through microarray analysis was included to identify additional targets and assess potential regulation of protein expression changes at the mRNA level. The proteomic approaches proved complementary, with limited overlap in proteomic coverage. Alterations in pro-inflammatory, signaling and crystallin family proteins were confirmed by orthogonal methods in multiple independent animal cohorts. In an independent experiment, insulin replacement therapy normalized the expression of some proteins (Dbi, Anxa5 while other proteins (Cp, Cryba3, Lgals3, Stat3 were only partially normalized and Fgf2 and Crybb2 expression remained elevated. CONCLUSIONS/SIGNIFICANCE: These results expand the understanding of the changes in retinal protein expression occurring with diabetes and their responsiveness to normalization of blood glucose through insulin therapy. These proteins, especially those not normalized by insulin therapy, may also be useful in preclinical drug development studies.

  17. Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia.

    Directory of Open Access Journals (Sweden)

    Carla Maria P Ribeiro

    Full Text Available Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT modulates inflammatory responses in airways, well-differentiated primary cultures of human airway epithelia were exposed to AZT alone, an inflammatory stimulus consisting of soluble factors from cystic fibrosis airways, or AZT followed by the inflammatory stimulus. RNA microarrays were conducted to identify global and specific gene expression changes. Analysis of gene expression changes revealed that the AZT treatment alone altered the gene profile of the cells, primarily by significantly increasing the expression of lipid/cholesterol genes and decreasing the expression of cell cycle/mitosis genes. The increase in cholesterol biosynthetic genes was confirmed by increased filipin staining, an index of free cholesterol, after AZT treatment. AZT also affected genes with inflammatory annotations, but the effect was variable (both up- and down-regulation and gene specific. AZT pretreatment prevented the up-regulation of some genes, such as MUC5AC and MMP9, triggered by the inflammatory stimulus, but the up-regulation of other inflammatory genes, e.g., cytokines and chemokines, such as interleukin-8, was not affected. On the other hand, HLA genes were increased by AZT. Notably, secreted IL-8 protein levels did not reflect mRNA levels, and were, in fact, higher after AZT pretreatment in cultures exposed to the inflammatory stimulus, suggesting that AZT can affect inflammatory pathways other than by altering gene expression. These findings suggest that the specific effects of AZT on inflamed and non-inflamed airway epithelia are likely relevant to its clinical activity, and their apparent

  18. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Science.gov (United States)

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  19. Alterations in blood-brain barrier ICAM-1 expression and brain microglial activation after λ-carrageenan-induced inflammatory pain

    Science.gov (United States)

    Huber, J. D.; Campos, C. R.; Mark, K. S.; Davis, T. P.

    2014-01-01

    Previous studies showed that peripheral inflammatory pain increased blood-brain barrier (BBB) permeability and altered tight junction protein expression and the delivery of opioid analgesics to the brain. What remains unknown is which pathways and mediators during peripheral inflammation affect BBB function and structure. The current study investigated effects of λ-carrageenan-induced inflammatory pain (CIP) on BBB expression of ICAM-1. We also examined the systemic contribution of a number of proinflammatory cytokines and microglial activation in the brain to elucidate pathways involved in BBB disruption during CIP. We investigated ICAM-1 RNA and protein expression levels in isolated rat brain microvessels after CIP using RT-PCR and Western blot analyses, screened inflammatory cytokines during the time course of inflammation, assessed white blood cell counts, and probed for BBB and central nervous system stimulation and leukocyte transmigration using immunohistochemistry and flow cytometry. Results showed an early increase in ICAM-1 RNA and protein expression after CIP with no change in circulating levels of several proinflammatory cytokines. Changes in ICAM-1 protein expression were noted at 48 h. Immunohistochemistry showed that the induction of ICAM-1 was region specific with increased expression noted in the thalamus and frontal and parietal cortices, which directly correlated with increased expression of activated microglia. The findings of the present study were that CIP induces increased ICAM-1 mRNA and protein expression at the BBB and that systemic proinflammatory mediators play no apparent role in the early response (1–6 h); however, brain region-specific increases in micro-glial activation suggest a potential for a central-mediated response. PMID:16199477

  20. Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.

    Directory of Open Access Journals (Sweden)

    Anna S Sahlberg

    Full Text Available OBJECTIVE: To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP Embryonic Lethal Abnormal Vision (ELAV L1/Human antigen R (HuR expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα important in inflammatory response. METHODS: U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock, wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2 were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. RESULTS: Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC. Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. CONCLUSION: Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.

  1. Promoter DNA methylation regulates progranulin expression and is altered in FTLD

    OpenAIRE

    Banzhaf-Strathmann, Julia; Claus, Rainer; Mücke, Oliver; Rentzsch, Kristin; van der Zee, Julie; Engelborghs, Sebastiaan; De Deyn, Peter P.; Cruts, Marc; Van Broeckhoven, Christine; Plass, Christoph; Edbauer, Dieter

    2013-01-01

    Background Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear. Results We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression ...

  2. Yeast prt1 mutations alter heat-shock gene expression through transcript fragmentation.

    OpenAIRE

    Barnes, C.A.; Singer, R A; Johnston, G C

    1993-01-01

    The inhibition of translation initiation by modification or mutation of initiation factors can lead to disproportionate effects on gene expression. Here we report disproportionate decreases in gene expression in cells with mutated Prt1 activity. The PRT1 gene product of the budding yeast Saccharomyces cerevisiae is necessary for translation initiation and is thought to be a component of initiation factor 3. At a restrictive temperature the prt1-1 mutation, in addition to decreasing global pro...

  3. Hypothyroidism Affects D2 Receptor-mediated Breathing without altering D2 Receptor Expression

    OpenAIRE

    Schlenker, Evelyn H; Rio, Rodrigo Del; Schultz, Harold D.

    2014-01-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age- matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a periphera...

  4. Complete Artificial Saliva Alters Expression of Proinflammatory Cytokines in Human Dermal Fibroblasts

    OpenAIRE

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, Gaddamanugu L; Howlett, Allyn C.

    2013-01-01

    Complete artificial saliva (CAS) is a saliva substitute often used as a vehicle for test articles, including smokeless tobacco products. In the course of a study employing normal adult human dermal fibroblasts (HDFa) as a model in vitro, we discovered that CAS as a vehicle introduced a significant change in the expression of proinflammatory cytokines. To determine the effects of CAS on gene expression, real-time quantitative reverse-transcriptase PCR gene array analysis was used. Results indi...

  5. Altered Gene Expression Pattern in Peripheral Blood Mononuclear Cells in Patients with Acute Myocardial Infarction

    OpenAIRE

    Marek Kiliszek; Beata Burzynska; Marcin Michalak; Monika Gora; Aleksandra Winkler; Agata Maciejak; Agata Leszczynska; Ewa Gajda; Janusz Kochanowski; Grzegorz Opolski

    2012-01-01

    BACKGROUND: Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI) is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients. METHODS AND RESULTS: Twe...

  6. Patent ductus arteriosus ligation alters pulmonary gene expression in preterm baboons

    OpenAIRE

    Waleh, Nahid; McCurnin, Donald C.; Yoder, Bradley A.; Shaul, Philip W.; Clyman, Ronald I.

    2011-01-01

    Ibuprofen-induced ductus closure improves pulmonary mechanics and increases alveolar surface area in premature baboons compared with baboons with a persistent patent ductus arteriosus (PDA). Ibuprofen-treatment has no effect on the expression of genes that regulate pulmonary inflammation but does increase the expression of alpha-ENaC (the transepithelial sodium channel that is critical for alveolar water clearance). Although ligation eliminates the PDA, it does not improve pulmonary mechanics...

  7. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA

    OpenAIRE

    Sarro, Emma C.; Sullivan, Regina M.; Barr, Gordon

    2013-01-01

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpa...

  8. The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function

    OpenAIRE

    Lidell, Martin E.; Seifert, Erin L.; Westergren, Rickard; Heglind, Mikael; Gowing, Adrienne; Sukonina, Valentina; Arani, Zahra; Itkonen, Paula; Wallin, Simonetta; Westberg, Fredrik; Fernandez-Rodriguez, Julia; Laakso, Markku; Nilsson, Tommy; Peng, Xiao-Rong; Harper, Mary-Ellen

    2011-01-01

    OBJECTIVE Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitati...

  9. Altered Gene Expression Pattern in Peripheral Blood Mononuclear Cells in Patients with Acute Myocardial Infarction

    OpenAIRE

    Kiliszek, Marek; Burzynska, Beata; Michalak, Marcin; Gora, Monika; Winkler, Aleksandra; Maciejak, Agata; Leszczynska, Agata; Gajda, Ewa; Kochanowski, Janusz; Opolski, Grzegorz

    2012-01-01

    Background Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI) is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients. Methods and Results Twent...

  10. Tumor suppressor in lung cancer 1 (TSLC1 alters tumorigenic growth properties and gene expression

    Directory of Open Access Journals (Sweden)

    Murakami Yoshinori

    2005-08-01

    Full Text Available Abstract Background Introduction of cDNA or genomic clones of the tumor suppressor in lung cancer 1 (TSLC1 gene into the non-small cell lung cancer line, A549, reverses tumorigenic growth properties of these cells. These results and the observation that TSLC1 is down-regulated in a number of tumors suggest that TSLC1 functions as a critical switch mediating repression of tumorigenesis. Results To investigate this mechanism, we compared growth properties of A549 with the TSLC1-containing derivative. We found a G1/S phase transition delay in 12.2. Subtractive hybridization, quantitative PCR, and TranSignal Protein/DNA arrays were used to identify genes whose expression changed when TSLC1 was up-regulated. Members of common G1/S phase regulatory pathways such as TP53, MYC, RB1 and HRAS were not differentially expressed, indicating that TSLC1 may function through an alternative pathway(s. A number of genes involved in cell proliferation and tumorigenesis were differentially expressed, notably genes in the Ras-induced senescence pathway. We examined expression of several of these key genes in human tumors and normal lung tissue, and found similar changes in expression, validating the physiological relevance of the A549 and 12.2 cell lines. Conclusion Gene expression and cell cycle differences provide insights into potential downstream pathways of TSLC1 that mediate the suppression of tumor properties in A549 cells.

  11. Alteration in contractile G-protein coupled receptor expression by moist snus and nicotine in rat cerebral arteries

    International Nuclear Information System (INIS)

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression of vasocontractile G-protein coupled receptors (GPCR), such as endothelin ETB, serotonin 5-HT1B, and thromboxane A2 TP receptors, in rat cerebral arteries. Studies show that these vasocontractile GPCR show alterations by lipid-soluble cigarette smoke particles via activation of mitogen-activated protein kinases (MAPK). However, the effects of moist tobacco on the expression of GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24 h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine was kept at plasma level of snus users (25 ng nicotine/ml). A high dose (250 ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ETB receptor agonist sarafotoxin 6c, 5-HT1B receptor agonist 5-carboxamidotryptamine, and TP receptor agonist U46619 were investigated by a sensitive myograph. The expression of ETB, 5-HT1B, and TP receptors was studied at mRNA and protein levels using quantitative real-time PCR and immunohistochemistry, respectively. Organ culture with WSS or DSS (25 ng nicotine/ml) lowered the 5-HT1B receptor-mediated contraction. Furthermore, DSS shifted the TP receptor-mediated contraction curve left-wards with a stronger contraction. High dose of nicotine (250 ng nicotine/ml) increased the ETB receptor-mediated contraction. The combined 5-HT1B and 5-HT2A receptor-mediated contraction was increased, and both the 5-CT and TxA2 induced contractions were left-ward shifted by WSS, DSS, or nicotine (250 ng nicotine/ml). Only the DSS group showed that the

  12. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  13. Retinal pigment epithelial expression of complement regulator CD46 is altered early in the course of geographic atrophy.

    Science.gov (United States)

    Vogt, Susan D; Curcio, Christine A; Wang, Lan; Li, Chuan-Ming; McGwin, Gerald; Medeiros, Nancy E; Philp, Nancy J; Kimble, James A; Read, Russell W

    2011-10-01

    In geographic atrophy (GA), the non-neovascular end stage of age-related macular degeneration (AMD), the macular retinal pigment epithelium (RPE) progressively degenerates. Membrane cofactor protein (MCP, CD46) is the only membrane-bound regulator of complement expressed on the human RPE basolateral surface. Based on evidence of the role of complement in AMD, we hypothesized that altered CD46 expression on the RPE would be associated with GA development and/or progression. Here we report the timeline of CD46 protein expression changes across the GA transition zone, relative to control eyes, and relative to events in other chorioretinal layers. Eleven donor eyes (mean age 87.0 ± 4.1 yr) with GA and 5 control eyes (mean age 84.0 ± 8.9 yr) without GA were evaluated. Macular cryosections were stained with PASH for basal deposits, von Kossa for calcium, and for CD46 immunoreactivity. Internal controls for protein expression were provided by an independent basolateral protein, monocarboxylate transporter 3 (MCT3) and an apical protein, ezrin. Within zones defined by 8 different semi-quantitative grades of RPE morphology, we determined the location and intensity of immunoreactivity, outer segment length, and Bruch's membrane calcification. Differences between GA and control eyes and between milder and more severe RPE stages in GA eyes were assessed statistically. Increasing grades of RPE degeneration were associated with progressive loss of polarity and loss of intensity of staining of CD46, beginning with the stages that are considered normal aging (grades 0-1). Those GA stages with affected CD46 immunoreactivity exhibited basal laminar deposit, still-normal photoreceptors, and concomitant changes in control protein expression. Activated or anteriorly migrated RPE (grades 2-3) exhibited greatly diminished CD46. Changes in RPE CD46 expression thus occur early in GA, before there is evidence of morphological RPE change. At later stages of degeneration, CD46

  14. Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum

    Directory of Open Access Journals (Sweden)

    Peng Guoxiong

    2011-02-01

    Full Text Available Abstract Background The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering. Results We selected four Ntl over-expression and four Ntl RNA interference (RNAi transformations in which Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore, virulence was not altered in the two types of mutants compared to the wild type. Conclusions Ntl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi without affecting virulence.

  15. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  16. Specific siRNA Downregulated TLR9 and Altered Cytokine Expression Pattern in Macrophage after CpG DNA Stimulation

    Institute of Scientific and Technical Information of China (English)

    Bin Qiao; Baohua Li; Xiuli Yang; Hongyong Zhang; Yiwei Chu; Ying Wang; Sidong Xiong

    2005-01-01

    Bacterial CpG DNA or synthetic oligonucleotides (ODNs) that contain unmethylated CpG motifs (CpG ODN) can directly activate antigen-presenting cells (APCs) to secrete various cytokines through the intracellular receptor TLR9. Cytokine profiles elicited by the actions of stimulatory CpG DNA on TLR9 expressed APCs are crucial to the subsequent immune responses. To date, cytokine profiles in APCs upon CpG ODN stimulation in vitro are not fully investigated. In the present study, vector-based siRNA was used to downregulate TLR9 expression. Cytokine profiles were observed in murine macrophage cell line RAW264.7 transfected with TLR9-siRNA plasmid upon CpG ODN stimulation. We found that not all the cytokine expressions by the macrophage were decreased while TLR9 was downregulated. IL-12, TNF-α, IFN-γ and IL-1β expressions were significantly decreased, but IL-6,IFN-β and IL-10 expressions were not affected. Interestingly, the level of IFN-α was even increased. This alteration of cytokines produced by TLR9-downregulated APCs upon CpG ODN stimulation might indicate that the role of CpG DNA is more complicated in the pathogenesis and prevention of diseases. Cellular & Molecular Immunology.2005;2(2):130-135.

  17. Specific siRNA Downregulated TLR9 and Altered Cytokine Expression Pattern in Macrophage after CpG DNA Stimulation

    Institute of Scientific and Technical Information of China (English)

    BinQiao; BaohuaLi; XiuliYang; HongyongZhang; YiweiChu; YingWang; SidongXiong

    2005-01-01

    Bacterial CpG DNA or synthetic oligonucleotides (ODNs) that contain unmethylated CpG motifs (CpG ODN) can directly activate antigen-presenting cells (APCs) to secrete various cytokines through the intraceilular receptor TL R9. Cytokine profiles elicited by the actions of stimulatory CpG DNA on TLR9 expressed APCs are crucial to the subsequent immune responses. To date, cytokine profiles in APCs upon CpG ODN stimulation in vitro are not fully investigated. In the present study, vector-based siRNA was used to downregulate TLR9 expression. Cytokine profiles were observed in murine macrophage cell line RAW264.7 transfected with TLR9-siRNA plasmid uponCpG ODN stimulation. We found that not all the cytokine expressions by the macrophage were decreased whileTLR9 was downregulated. IL-12, TNF-α, IFN-γ and IL-1β expressions were significantly decreased, but IL-6, IFN-β and IL-10 expressions were not affected. Interestingly, the level of IFN-α was even increased. This alteration of cytokines produced by TLR9-downregulated APCs upon CpG ODN stimulation might indicate that the role of CpG DNA is more complicated in the pathogenesis and prevention of diseases. Cellular & Molecular Immunology. 2005;2(2):130-135.

  18. Low Doses of the Carcinogen Furan Alter Cell Cycle and Apoptosis Gene Expression in Rat Liver Independent of DNA Methylation

    OpenAIRE

    Tao CHEN; Mally, Angela; Ozden, Sibel; Chipman, J. Kevin

    2010-01-01

    Background Evidence of potent rodent carcinogenicity via an unclear mechanism suggests that furan in various foods [leading to an intake of up to 3.5 μg/kg body weight (bw)/day] may present a potential risk to human health. Objectives We tested the hypothesis that altered expression of genes related to cell cycle control, apoptosis, and DNA damage may contribute to the carcinogenicity of furan in rodents. In addition, we investigated the reversibility of such changes and the potential role of...

  19. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex

    OpenAIRE

    Miao, W.; T.H. Bao; Han, J. H.; Yin, M.; Yan, Y.; Wang, W. W.; Zhu, Y. H.

    2015-01-01

    MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decrease...

  20. Conditions that alter intracellular cAMP levels affect expression of the cAMP phosphodiesterase gene in Dictyostelium.

    OpenAIRE

    Riley, B B; Barclay, S L

    1990-01-01

    We examined expression of the Dictyostelium cAMP phosphodiesterase (PDE) gene under conditions that alter intracellular cAMP levels during in vitro differentiation of wild-type strain V12M2 and a sporogenous derivative, HB200. In control cultures, cellular PDE activity peaked at 6 hr and declined by 8 hr, while secreted PDE activity continued to increase through 8 hr. Lowering intracellular cAMP levels with caffeine or progesterone increased cellular and secreted PDE activities 2-fold, increa...

  1. GATA3 is a master regulator of the transcriptional response to low-dose ionizing radiation in human keratinocytes

    Directory of Open Access Journals (Sweden)

    Lamartine Jérôme

    2009-09-01

    Full Text Available Abstract Background The general population is constantly exposed to low levels of radiation through natural, occupational or medical irradiation. Even if the biological effects of low-level radiation have been intensely debated and investigated, the molecular mechanisms underlying the cellular response to low doses remain largely unknown. Results The present study investigated the role of GATA3 protein in the control of the cellular and molecular response of human keratinocytes exposed to a 1 cGy dose of X-rays. Chromatin immunoprecipitation showed GATA3 to be able to bind the promoter of 4 genes responding to a 1 cGy exposure. To go further into the role of GATA3 after ionizing radiation exposure, we studied the cellular and molecular consequences of radiation in GATA3 knock-down cells. Knock-down was obtained by lentiviral-mediated expression of an shRNA targeting the GATA3 transcript in differentiated keratinocytes. First, radiosensitivity was assessed: the toxicity, in terms of immediate survival (with XTT test, associated with 1 cGy radiation was found to be increased in GATA3 knock-down cells. The impact of GATA3 knock-down on the transcriptome of X-ray irradiated cells was also investigated, using oligonucleotide microarrays to assess changes between 3 h and 72 h post-irradiation in normal vs GATA3 knock-down backgrounds; transcriptome response was found to be completely altered in GATA3 knock-down cells, with a strong induction/repression peak 48 h after irradiation. Functional annotation revealed enrichment in genes known to be involved in chaperone activity, TGFβ signalling and stress response. Conclusion Taken together, these data indicate that GATA3 is an important regulator of the cellular and molecular response of epidermal cells to very low doses of radiation.

  2. GATA3 is a master regulator of the transcriptional response to low-dose ionizing radiation in human keratinocytes

    International Nuclear Information System (INIS)

    Background: The general population is constantly exposed to low levels of radiation through natural, occupational or medical irradiation. Even if the biological effects of low-level radiation have been intensely debated and investigated, the molecular mechanisms underlying the cellular response to low doses remain largely unknown. Results: The present study investigated the role of GATA3 protein in the control of the cellular and molecular response of human keratinocytes exposed to a 1 cGy dose of X-rays. Chromatin immunoprecipitation showed GATA3 to be able to bind the promoter of 4 genes responding to a 1 cGy exposure. To go further into the role of GATA3 after ionizing radiation exposure, we studied the cellular and molecular consequences of radiation in GATA3 knock-down cells. Knockdown was obtained by lentiviral-mediated expression of an shRNA targeting the GATA3 transcript in differentiated keratinocytes. First, radiosensitivity was assessed: the toxicity, in terms of immediate survival (with XTT test), associated with 1 cGy radiation was found to be increased in GATA3 knock-down cells. The impact of GATA3 knock-down on the transcriptome of X-ray irradiated cells was also investigated, using oligonucleotide micro-arrays to assess changes between 3 h and 72 h post-irradiation in normal vs GATA3 knock-down backgrounds; transcriptome response was found to be completely altered in GATA3 knock-down cells, with a strong induction/repression peak 48 h after irradiation. Functional annotation revealed enrichment in genes known to be involved in chaperone activity, TGFβ signalling and stress response. Conclusion: Taken together, these data indicate that GATA3 is an important regulator of the cellular and molecular response of epidermal cells to very low doses of radiation. (authors)

  3. GATA3 is a master regulator of the transcriptional response to low-dose ionizing radiation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, F.; Molina, M.; Berthier-Vergnes, O.; Lamartine, J. [Universite de Lyon, Lyon, F-69003 (France); Universite Lyon 1, Lyon, F-69003 (France); CNRS, UMR5534, Centre de Genetique Moleculaire et Cellulaire, Villeurbanne, F-69622 (France); Malet, C.; Ginestet, C. [Centre Leon Berard, Service de Radiotherapie, Lyon F-69008 (France); Martin, M.T. [Laboratoire de Genomique et Radiobiologie de la Keratinopoiese, CEA, IRCM, Evry F-91000 (France)

    2009-07-01

    Background: The general population is constantly exposed to low levels of radiation through natural, occupational or medical irradiation. Even if the biological effects of low-level radiation have been intensely debated and investigated, the molecular mechanisms underlying the cellular response to low doses remain largely unknown. Results: The present study investigated the role of GATA3 protein in the control of the cellular and molecular response of human keratinocytes exposed to a 1 cGy dose of X-rays. Chromatin immunoprecipitation showed GATA3 to be able to bind the promoter of 4 genes responding to a 1 cGy exposure. To go further into the role of GATA3 after ionizing radiation exposure, we studied the cellular and molecular consequences of radiation in GATA3 knock-down cells. Knockdown was obtained by lentiviral-mediated expression of an shRNA targeting the GATA3 transcript in differentiated keratinocytes. First, radiosensitivity was assessed: the toxicity, in terms of immediate survival (with XTT test), associated with 1 cGy radiation was found to be increased in GATA3 knock-down cells. The impact of GATA3 knock-down on the transcriptome of X-ray irradiated cells was also investigated, using oligonucleotide micro-arrays to assess changes between 3 h and 72 h post-irradiation in normal vs GATA3 knock-down backgrounds; transcriptome response was found to be completely altered in GATA3 knock-down cells, with a strong induction/repression peak 48 h after irradiation. Functional annotation revealed enrichment in genes known to be involved in chaperone activity, TGF{beta} signalling and stress response. Conclusion: Taken together, these data indicate that GATA3 is an important regulator of the cellular and molecular response of epidermal cells to very low doses of radiation. (authors)

  4. Disruption of Vitamin D and Calcium Signaling in Keratinocytes Predisposes to Skin Cancer

    Science.gov (United States)

    Bikle, Daniel D.; Jiang, Yan; Nguyen, Thai; Oda, Yuko; Tu, Chia-ling

    2016-01-01

    1,25 dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, and calcium regulate epidermal differentiation. 1,25(OH)2D exerts its effects through the vitamin D receptor (VDR), a transcription factor in the nuclear hormone receptor family, whereas calcium acts through the calcium sensing receptor (Casr), a membrane bound member of the G protein coupled receptor family. We have developed mouse models in which the Vdr and Casr have been deleted in the epidermis (epidVdr−∕− and epidCasr−∕−). Both genotypes show abnormalities in calcium induced epidermal differentiation in vivo and in vitro, associated with altered hedgehog (HH) and β–catenin signaling that when abnormally expressed lead to basal cell carcinomas (BCC) and trichofolliculomas, respectively. The Vdr−∕− mice are susceptible to tumor formation following UVB or chemical carcinogen exposure. More recently we found that the keratinocytes from these mice over express long non-coding RNA (lncRNA) oncogenes such as H19 and under express lncRNA tumor suppressors such as lincRNA-21. Spontaneous tumors have not been observed in either the epidVdr−∕− or epidCasr−∕−. But in mice with epidermal specific deletion of both Vdr and Casr (epidVdr−∕−/epidCasr−∕− [DKO]) tumor formation occurs spontaneously when the DKO mice are placed on a low calcium diet. These results demonstrate important interactions between vitamin D and calcium signaling through their respective receptors that lead to cancer when these signals are disrupted. The roles of the β–catenin, hedgehog, and lncRNA pathways in predisposing the epidermis to tumor formation when vitamin D and calcium signaling are disrupted will be discussed. PMID:27462278

  5. Altered Gene Expression Profiles of Wheat Genotypes against Fusarium Head Blight

    Directory of Open Access Journals (Sweden)

    Ayumi Kosaka

    2015-02-01

    Full Text Available Fusarium graminearum is responsible for Fusarium head blight (FHB, which is a destructive disease of wheat that makes its quality unsuitable for end use. To understand the temporal molecular response against this pathogen, microarray gene expression analysis was carried out at two time points on three wheat genotypes, the spikes of which were infected by Fusarium graminearum. The greatest number of genes was upregulated in Nobeokabouzu-komugi followed by Sumai 3, whereas the minimum expression in Gamenya was at three days after inoculation (dai. In Nobeokabouzu-komugi, high expression of detoxification genes, such as multidrug-resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters, in addition to systemic defense-related genes, were identified at the early stage of infection. This early response of the highly-resistant genotype implies a different resistance response from the other resistant genotype, Sumai 3, primarily containing local defense-related genes, such as cell wall defense genes. In Gamenya, the expression of all three functional groups was minimal. The differences in these molecular responses with respect to the time points confirmed the variation in the genotypes. For the first time, we report the nature of gene expression in the FHB-highly resistant cv. Nobeokabouzu-komugi during the disease establishment stage and the possible underlying molecular response.

  6. Correlation of Altered Expression of the Autophagy Marker LC3B with Poor Prognosis in Astrocytoma

    Directory of Open Access Journals (Sweden)

    Daniel Winardi

    2014-01-01

    Full Text Available Glioblastoma multiforme is one of the most serious malignant brain tumors and is characterized by resistance to chemotherapy and radiation therapy. Recent studies suggest that autophagy may play an important role not only in the regulation of cancer development and progression but also in determining the response of cancer cells to anticancer therapy. The purpose of the present study was to assess the relationship between protein expressions of two autophagy markers, LC3B and Beclin-1, with clinical parameters in astrocytoma patients. Furthermore, the expression of CD133, a marker of the cancer stem-like cells, in astrocytoma patients was also investigated. A total of 106 thin-section slides were retrospectively collected from astrocytoma patients. LC3B, but not Beclin-1, protein expression was found to significantly correlate with resistance to radiation- or chemotherapy. In addition, high intensity of LC3B staining was predictive of poor prognosis. Furthermore, survival time of patients with high-level expression in both CD133 and LC3B was significantly shorter than those with weak expression in both CD133 and LC3B. These results suggest that astrocytoma cancer stem-like cells together with enhanced autophagy may cause resistance to radiation therapy/chemotherapy and that targeting the cancer stem-like cell in astrocytoma may offer a viable therapeutic approach.

  7. Identification of genes with altered expression in medullary breast cancer vs. ductal breast cancer and normal breast epithelia

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Benoit, Vivian; Laenkholm, Anne-Vibeke; Nielsen, Ole; Johansen, Lene Egedal; Ditzel, Henrik

    2006-01-01

    Medullary breast cancer (MCB) is a morphologically and biologically distinct subtype that, despite cytologically highly malignant characteristics, has a favorable prognosis compared to the more common infiltrating ductal breast carcinoma. MCB metastasizes less frequently, which has been attributed...... to both immunological and endogenous cellular factors, although little is known about the distinct biology of MCB that may contribute to the improved outcome of MCB patients. To identify candidate genes, we performed gene array expression analysis of cell lines of MCB, ductal breast cancer and normal......) gene families, Vav1, monoglyceride lipase and NADP+-dependent malic enzyme, exhibited altered expression in MCB vs. ductal breast cancer, and the differences for some of these genes were confirmed on an extended panel of cell lines by quantitative PCR. Immunohistochemical analysis further established...

  8. Identification of genes with altered expression in medullary breast cancer vs. ductal breast cancer and normal breast epithelia

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Benoit, Vivian M; Laenkholm, Anne-Vibeke;

    2006-01-01

    to both immunological and endogenous cellular factors, although little is known about the distinct biology of MCB that may contribute to the improved outcome of MCB patients. To identify candidate genes, we performed gene array expression analysis of cell lines of MCB, ductal breast cancer and normal......Medullary breast cancer (MCB) is a morphologically and biologically distinct subtype that, despite cytologically highly malignant characteristics, has a favorable prognosis compared to the more common infiltrating ductal breast carcinoma. MCB metastasizes less frequently, which has been attributed......) gene families, Vav1, monoglyceride lipase and NADP+-dependent malic enzyme, exhibited altered expression in MCB vs. ductal breast cancer, and the differences for some of these genes were confirmed on an extended panel of cell lines by quantitative PCR. Immunohistochemical analysis further established...

  9. Treatment with analgesics after mouse sciatic nerve injury does not alter expression of wound healing-associated genes

    Institute of Scientific and Technical Information of China (English)

    Matt C Danzi; Dario Motti; Donna L Avison; John L Bixby; Vance P Lemmon

    2016-01-01

    Animal models of sciatic nerve injury are commonly used to study neuropathic pain as well as axon regen-eration. Administration of post-surgical analgesics is an important consideration for animal welfare, but the actions of the analgesic must not interfere with the scientiifc goals of the experiment. In this study, we show that treatment with either buprenorphine or acetaminophen following a bilateral sciatic nerve crush surgery does not alter the expression in dorsal root ganglion (DRG) sensory neurons of a panel of genes associated with wound healing. These ifndings indicate that the post-operative use of buprenorphine or acetaminophen at doses commonly suggested by Institutional Animal Care and Use Committees does not change the intrinsic gene expression response of DRG neurons to a sciatic nerve crush injury, for many wound healing-associated genes. Therefore, administration of post-operative analgesics may not confound the results of transcriptomic studies employing this injury model.

  10. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain

    DEFF Research Database (Denmark)

    Malkiewicz, Katarzyna; Mohammed, Roma; Folkesson, Ronnie;

    2006-01-01

    Polychlorinated Biphenyls (PCBs)-induced changes in synaptic transmission are one of the effects of their neurotoxicity but the mechanism remains unknown. We assessed the in vivo effects of the PCBs mixture, Aroclor 1254 on the expression of neuronal proteins that are involved in the synaptic...... function and/or are associated with neurodegeneration. Wistar rats were treated orally with repeated doses of Aroclor 1254 and the levels of soluble alpha-synuclein, parkin, synaptophysin and amyloid precursor protein (APP) in the brain were determined by Western blotting. The results showed that Aroclor...... did not cause changes in the expression and processing of APP but at a dose 100 microg/g/day repeated for 6 days caused a decrease in the expression of alpha-synuclein in the cerebellum, cortex, hippocampus and hypothalamus of the animals sacrificed 2 days after treatment. The decrease in alpha...

  11. Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells.

    Science.gov (United States)

    Chen, Chin; Fang, Rixun; Davis, Corrine; Maravelias, Charalambos; Sibley, Eric

    2009-12-01

    Null mutant mice lacking the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) are apancreatic and survive only a few days after birth. The role of Pdx1 in regulating intestinal gene expression has therefore yet to be determined in viable mice with normal pancreatic development. We hypothesized that conditional inactivation of Pdx1 restricted to the intestinal epithelium would alter intestinal gene expression and cell differentiation. Pdx1(flox/flox);VilCre mice with intestine-specific Pdx1 inactivation were generated by crossing a transgenic mouse strain expressing Cre recombinase, driven by a mouse villin 1 gene promoter fragment, with a mutant mouse strain homozygous for loxP site-flanked Pdx1. Pdx1 protein is undetectable in all epithelial cells in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Goblet cell number and mRNA abundance for mucin 3 and mucin 13 genes in the proximal small intestine are comparable between Pdx1(flox/flox);VilCre and control mice. Similarly, Paneth cell number and expression of Paneth cell-related genes Defa1, Defcr-rs1, and Mmp7 in the proximal small intestine remain statistically unchanged by Pdx1 inactivation. Although the number of enteroendocrine cells expressing chromogranin A/B, gastric inhibitory polypeptide (Gip), or somatostatin (Sst) is unaffected in the Pdx1(flox/flox);VilCre mice, mRNA abundance for Gip and Sst is significantly reduced in the proximal small intestine. Conditional Pdx1 inactivation attenuates intestinal alkaline phosphatase (IAP) activity in the duodenal epithelium, consistent with an average 91% decrease in expression of the mouse enterocyte IAP gene, alkaline phosphatase 3 (a novel Pdx1 target candidate), in the proximal small intestine following Pdx1 inactivation. We conclude that Pdx1 is necessary for patterning appropriate gene expression in enterocytes and enteroendocrine cells of the proximal small intestine. PMID:19808654

  12. Regulation of hypoxia inducible factor-1α expression by the alteration of redox status in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Zhang Wu-kui

    2011-05-01

    Full Text Available Abstract Hypoxia inducible factor-1 (HIF-1 has been considered as a critical transcriptional factor in response to hypoxia. It can increase P-glycoprotein (P-Gp thus generating the resistant effect to chemotherapy. At present, the mechanism regulating HIF-1α is still not fully clear in hypoxic tumor cells. Intracellular redox status is closely correlated with hypoxic micro-environment, so we investigate whether alterations in the cellular redox status lead to the changes of HIF-1α expression. HepG2 cells were exposed to Buthionine sulphoximine (BSO for 12 h prior to hypoxia treatment. The level of HIF-1α expression was measured by Western blot and immunocytochemistry assays. Reduce glutathione (GSH concentrations in hypoxic cells were determined using glutathione reductase/5,5'-dithiobis-(2-nitrob-enzoic acid (DTNB recycling assay. To further confirm the effect of intracellular redox status on HIF-1α expression, N-acetylcysteine (NAC was added to culture cells for 8 h before the hypoxia treatment. The levels of multidrug resistance gene-1 (MDR-1 and erythropoietin (EPO mRNA targeted by HIF-1α in hypoxic cells were further determined with RT-PCR, and then the expression of P-Gp protein was observed by Western blotting. The results showed that BSO pretreatment down-regulated HIF-1α and the effect was concentration-dependent, on the other hand, the increases of intracellular GSH contents by NAC could partly elevate the levels of HIF-1α expression. The levels of P-Gp (MDR-1 and EPO were concomitant with the trend of HIF-1α expression. Therefore, our data indicate that the changes of redox status in hypoxic cells may regulate HIF-1α expression and provide valuable information on tumor chemotherapy.

  13. Genetic alterations and expression of inhibitor of growth 1 in human sporadic colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sheng Chen; Jian-Bao Wei; Yong-Chun Zhou; Sen Zhang; Jun-Lin Liang; Yun-Fei Cao; Zong-Jiang Tang; Xiao-Long Zhang; Feng Gao

    2005-01-01

    AIM: To explore the effect and significance of inhibitor of growth 1 (ING1) gene in carcinogenesis and progression of human sporadic colorectal cancer.METHODS: mRNA expression, mutation, and loss of heterozygosity (LOH) of ING1 gene in 35 specimens of sporadic colorectal cancer tissues and the matched normal mucous membrane tissues were detected by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR),PCR-single strain conformation polymorphism (PCR-SSCP)and PCR-simple sequence length polymorphism (PCR-SSLP)using microsatellite markers, respectively.RESULTS: The average ratios of light intensities of p33ING1b and p47ING1a mRNA expression in the cancerous tissues were significantly lower than those in normal tissues.The difference between the two mRNA splices was not significant in the matched tissues. In addition, the ratios of light intensities of p33INB1b and p47ING1a mRNA expression in the cancerous tissues of Dukes' stages C and D were significantly lower than those in cancerous tissues of Dukes'stages A and B. However, no mutation of ING1 gene was detected in all 35 cases; only 4 cases of LOH (11.4%)were found.CONCLUSION: p33ING1b and p47ING1a mRNA expressions are closely related with the carcinogenesis and progression of human sporadic colorectal cancer. No mutation of ING1gene is found, and there are only few LOH in sporadic colorectal cancers. These might not be the main reasons for the down regulation of ING1 expression. Its low expression may happen in transcription or post-transcription.

  14. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    2011-09-01

    Full Text Available Tuberculosis (TB treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4 inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH. Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.

  15. Expression of p21-activated kinases 1 and 3 is altered in the brain of subjects with depression.

    Science.gov (United States)

    Fuchsova, Beata; Alvarez Juliá, Anabel; Rizavi, Hooriyah S; Frasch, Alberto Carlos; Pandey, Ghanshyam N

    2016-10-01

    The p21-activated kinases (PAKs) of group I are the main effectors for the small Rho GTPases, critically involved in neurodevelopment, plasticity and maturation of the nervous system. Moreover, the neuronal complexity controlled by PAK1/PAK3 signaling determines the postnatal brain size and synaptic properties. Stress induces alterations at the level of structural and functional synaptic plasticity accompanied by reductions in size and activity of the hippocampus and the prefrontal cortex (PFC). These abnormalities are likely to contribute to the pathology of depression and, in part, reflect impaired cytoskeleton remodeling pointing to the role of Rho GTPase signaling. Thus, the present study assessed the expression of the group I PAKs and their activators in the brain of depressed subjects. Using quantitative polymerase chain reaction (qPCR), mRNA levels and coexpression of the group I PAKs: PAK1, PAK2, and PAK3 as well as of their activators: RAC1, CDC42 and ARHGEF7 were examined in postmortem samples from the PFC (n=25) and the hippocampus (n=23) of subjects with depression and compared to control subjects (PFC n=24; hippocampus n=21). Results demonstrated that mRNA levels of PAK1 and PAK3, are significantly reduced in the brain of depressed subjects, with PAK1 being reduced in the PFC and PAK3 in the hippocampus. No differences were observed for the ubiquitously expressed PAK2. Following analysis of gene coexpression demonstrated disruption of coordinated gene expression in the brain of subjects with depression. Abnormalities in mRNA expression of PAK1 and PAK3 as well as their altered coexpression patterns were detected in the brain of subjects with depression. PMID:27474226

  16. Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture

    International Nuclear Information System (INIS)

    We have investigated the effect of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the synthesis and modification of polypeptides in normal avian cells and cells infected by wild-type and temperature-sensitive Rous sarcoma virus (RSV). Using two-dimensional gel electrophoresis, we have detected alterations in both the abundance of cellular polypeptides and in their phosphorylation that seem unique to TPA treatment. However, the state of phosphorylation of the major putative substrate for the action of the src gene-associated protein kinase, the 34- to 36-kilodalton protein, was not altered. Moreover, examination of the phosphorylated amino acid content of total cellular phosphoproteins revealed that the response to TPA was not associated with detectable increases in their phosphotyrosine content. These results make it unlikely that TPA acts by the activation of the phosphorylating activity of the cellular proto-src gene or by the activation of other cellular phosphotyrosine-specific kinases. We have shown previously that temperature-sensitive RSV-infected cells at nonpermissive temperature demonstrate an increased sensitivity to TPA treatment [Bissell, M.J., Hatie, C. and Calfin, M. (1979) Proc. Natl. Acad. Sci. USA 76, 348-352]. Our present results indicate that this is not due to reactivation of the phosphorylating activity of the defective src gene product or to its leakiness, and they lend support to the notion of multistep viral carcinogenesis

  17. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    Science.gov (United States)

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  18. Quantitative Trait Locus and Brain Expression of HLA-DPA1 Offers Evidence of Shared Immune Alterations in Psychiatric Disorders.

    Science.gov (United States)

    Morgan, Ling Z; Rollins, Brandi; Sequeira, Adolfo; Byerley, William; DeLisi, Lynn E; Schatzberg, Alan F; Barchas, Jack D; Myers, Richard M; Watson, Stanley J; Akil, Huda; Bunney, William E; Vawter, Marquis P

    2016-01-01

    Genome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC) were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1) in brain from individual subjects with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC) in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL) that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL) by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future tests in a

  19. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus

    Science.gov (United States)

    Shukitt-Hale, Barbara; Lau, Francis C.; Carey, Amanda N.; Galli, Rachel L.; Spangler, Edward L.; Ingram, Donald K.; Joseph, James A.

    2016-01-01

    Cognitive impairment in age-related neurodegenerative diseases such as Alzheimer's disease may be partly due to long-term exposure and increased susceptibility to inflammatory insults. In the current study, we investigated whether polyphenols in blueberries can reduce the deleterious effects of inflammation induced by central administration of kainic acid by altering the expression of genes associated with inflammation. To this end, 4-month-old male Fischer-344 (F344) rats were fed a control, 0.015% piroxicam (an NSAID) or 2% blueberry diet for 8 weeks before either Ringer's buffer or kainic acid was bilaterally micro-infused into the hippocampus. Two weeks later, following behavioral evaluation, the rats were killed and total RNA from the hippocampus was extracted and used in real-time quantitative RT-PCR (qRT-PCR) to analyze the expression of inflammation-related genes. Kainic acid had deleterious effects on cognitive behavior as kainic acid-injected rats on the control diet exhibited increased latencies to find a hidden platform in the Morris water maze compared to Ringer's buffer-injected rats and utilized non-spatial strategies during probe trials. The blueberry diet, and to a lesser degree the piroxicam diet, was able to improve cognitive performance. Immunohistochemical analyses of OX-6 expression revealed that kainic acid produced an inflammatory response by increasing the OX-6 positive areas in the hippocampus of kainic acid-injected rats. Kainic acid up-regulated the expression of the inflammatory cytokines IL-1β and TNF-α, the neurotrophic factor IGF-1, and the transcription factor NF-κB. Blueberry and piroxicam supplementations were found to attenuate the kainic acid-induced increase in the expression of IL-1β, TNF-α, and NF-κB, while only blueberry was able to augment the increased IGF-1 expression. These results indicate that blueberry polyphenols attenuate learning impairments following neurotoxic insult and exert anti-inflammatory actions

  20. Keratinocyte proliferation, differentiation, and apoptosis-Differential mechanisms of regulation by curcumin, EGCG and apigenin

    International Nuclear Information System (INIS)

    We have proposed that it is important to examine the impact of chemopreventive agents on the function of normal human epidermal keratinocytes since these cells comprise the barrier that protects the body from a range of environmental insults. In this context, it is widely appreciated that cancer may be retarded by consumption or topical application of naturally occurring food-derived chemopreventive agents. Our studies show that (-)-epigallocatechin-3-gallate (EGCG), a green tea-derived polyphenol, acts to enhance the differentiation of normal human keratinocytes as evidenced by its ability to increase involucrin (hINV), transglutaminase type 1 (TG1) and caspase-14 gene expression. EGCG also stimulates keratinocyte morphological differentiation. These actions of EGCG are mediated via activation of a nPKC, Ras, MEKK1, MEK3, p38δ-ERK1/2 signaling cascade which leads to increased activator protein 1 (AP1) and CAATT enhancer binding protein (C/EBP) transcription factor expression, increased binding of these factors to DNA, and increased gene transcription. In contrast, apigenin, a dietary flavonoid derived from plants and vegetables, and curcumin, an agent derived from turmeric, inhibit differentiation by suppressing MAPK signal transduction and reducing API transcription factor level. Curcumin also acts to enhance apoptosis, although EGCG and apigenin do not stimulate apoptosis. In addition, all of these agents inhibit keratinocyte proliferation. These findings indicate that each of these diet-derived chemopreventive agents has a profound impact on normal human keratinocyte function and that they operate via distinct and sometimes opposing mechanisms. However, all are expected to act as chemopreventive agents

  1. Exploring Mycobacterium tuberculosis infection-induced alterations in gene expression in macrophage by microarray hybridization

    Institute of Scientific and Technical Information of China (English)

    谢建平; 李瑶; 乐军; 徐永忠; 黄达蔷; 梁莉; 王洪海

    2003-01-01

    Tuberculosis remains a serious threat to public health. Its causative agent Mycobacte- rium tuberculosis is an intracellular pathogen which survives and replicates within cells of the host immune system, primarily macrophages. Knowledge of the bacteria-macrophage interaction can help to develop novel measures to combat the disease. The global gene expression of macro- phage following invasion by and growth of M. tuberculosis was studied by cDNA microarray. Of the 12800 human genes analyzed, totally 473 (3.7%) macrophage genes were differentially expressed after being infected by M. tuberculosis, among which, only 25 (5.2%, corresponding to less than 0.2% of the 12800 genes) genes were up-regulated, while others (94.8%) were down-regulated against the control. Of the 473 genes, 376 genes are registered in the GenBank, and 97 are novel genes. Expression of 5 up-regulated genes has been induced by more than 3-fold. 25 genes were down-regulated by more than 3-fold. Syndecan binding protein has been down-regu- lated up to 12.5-fold. The data gave an insight into the early gene expression in macrophage ensuing M. tuberculosis infection and a basis for further study.

  2. Serum Albumin Alters the Expression of Pseudomonas Aeruginosa Iron Controlled Genes

    Science.gov (United States)

    The objectives of this study were to examine the effect serum on global transcription within P. aeruginosa at different phases of growth and the role of iron in this regulation. Results presented in this study suggest a novel mechanism through which serum regulates the expression of different P. ae...

  3. Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt's lymphoma

    NARCIS (Netherlands)

    Salaverria, Itziar; Zettl, Andreas; Bea, Silvia; Hartmann, Elena M.; Dave, Sandeep S.; Wright, George W.; Boerma, Evert-Jan; Kluin, Philip M.; Ott, German; Chan, Wing C.; Weisenburger, Dennis D.; Lopez-Guillermo, Armando; Gascoyne, Randy D.; Delabie, Jan; Rimsza, Lisa M.; Braziel, Rita M.; Jaffe, Elaine S.; Staudt, Louis M.; Mueller-Hermelink, Hans Konrad; Campo, Elias; Rosenwald, Andreas

    2008-01-01

    Background Burkitt's lymphoma is an aggressive B-cell lymphoma characterized by typical morph 0 logical, immunophenotypic and molecular features. Gene expression profiling provided a molecular signature of Burkitt's lymphoma, but also demonstrated that a subset of aggressive B-cell lymphomas not ful

  4. Resistance training alters cytokine gene expression in skeletal muscle of adults with type 2 diabetes

    Science.gov (United States)

    Resistance training results in muscle hypertrophy and improves glycemic control in patients with type 2 diabetes. Whether resistance training modulates inflammation in muscles of diabetic patients remains unknown. We examined the expression of genes encoding the cytokines, tumor necrosis factor-al...

  5. ret/PTC-1 expression alters the immunoprofile of thyroid follicular cells

    Directory of Open Access Journals (Sweden)

    Aherne Sinead

    2008-05-01

    Full Text Available Abstract Background Hashimoto Thyroiditis (H.T. is a destructive autoimmune thyroid condition whose precise molecular pathogenesis remains unclear. ret/PTC-1 is a chimeric transcript which has been described in autoimmune thyroid diseas